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ABSTRACT 

Rhesus macaques are a widely used animal model of human diseases and related im-

mune responses.   Fc receptors (FcRs) mediate the interaction between antibody molecules 

and innate killing mechanisms, consequently eliminating the pathogen.   In rhesus macaques, 

FcRs are highly polymorphic.   To evaluate the potential influence of FcγR polymorphisms on 

the interaction with antibody molecules, we performed in silico analysis using SIFT, Provean, 

nsSNPAnalyzer, I-Mutant, MuSTAB and iPTREE-STAB web servers.   V20G in FcγRI, I137K in 

FcγRII and I233V in FcγRIII were further analyzed structurally using FOLD-X, AMMP and Chi-

mera to calculate changes in folding and interaction energy and for structure visualization.   Re-

sults from our analysis suggest that the selected variations destabilize protein structure.   Addi-

tionally, Q32R increases the binding affinity of FcγRI, whereas A131T decreases the binding 

affinity of FcγRII towards IgG1.   Together, our results indicate that these substitutions might 

influence effector and regulatory mechanisms resulting from antibody/FcR interactions.  

   



INDEX WORDS: FcγR, Rhesus Macaque, Single nucleotide polymorphism, in silico analysis, 
AIDS 

IN SILICO ANALYSIS SHOWS THAT SINGLE AMINOACID VARIATIONS IN RHESUS 

MACACQUE FCγRECEPTOR AFFECT PROTEIN STABILITY AND BINDING AFFINITY TO 

IGG1  

 

 

 

 

 

by 

 

 

 

 

RASHESH SANGHVI 

 

 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

in the College of Arts and Sciences 

Georgia State University 

2013 





 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by 
Rashesh Sanghvi 

2013



 
IN SILICO ANALYSIS SHOWS THAT SINGLE AMINOACID VARIATIONS IN RHESUS 

MACACQUE FCγRECEPTOR AFFECT PROTEIN STABILITY AND BINDING AFFINITY TO 

IGG1  

 

 

 

by 

 

 

RASHESH SANGHVI 

 

 

 

Committee Chair:  Dr.  Roberta Attanasio 

 

Committee: Dr.  Robert Harrison 

Dr.  Franco Scinicariello 

 

 

Electronic Version Approved: 

 

Office of Graduate Studies 

College of Arts and Sciences 

Georgia State University 

May 2013



iv 
 

 

ACKNOWLEDGEMENTS 

I would like to express my deepest gratitude to my advisor, Dr. Roberta Attanasio, for 

her continuous support and guidance throughout my Masters program. She has encouraged 

and supported all my academic decisions and provided me with opportunity to generate an idea 

for my thesis project.  I thank Dr. Robert Harrison for supporting me and guiding me in the field 

of Bioinformatics.  I am grateful to Dr. Franco Scinicariello for being in my thesis committee and 

supporting me. 

I would like to thank Palak Gupta and Manali Rupji for supporting me during the duration 

of my Masters program.



v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ..............................................................................................iv 

TABLE OF CONTENTS..................................................................................................v 

LIST OF TABLES .........................................................................................................vii 

LIST OF FIGURES.......................................................................................................viii 

1     INTRODUCTION......................................................................................................1 

1.1 Rhesus Macaque as Animal Models of Human Diseases............................. 1 

1.2 Molecules of Adaptive Immunity.................................................................... 2 

1.3 Interaction of Fc Receptors and Antibody..................................................... 3 

1.4 In Silico Analysis of Single Nucleotide Polymorphism ................................ 4 

1.5 Purpose of the Study ...................................................................................... 6 

1.6 Results ............................................................................................................. 7 

2 EXPERIMENT...........................................................................................................8 

2.1 Data .................................................................................................................. 8 

2.1.1 Sequence .................................................................................................... 8 

2.1.2 Homology Modeling ................................................................................... 9 

2.2 Web-Based Servers for Sequence Analysis.................................................. 9 

2.3 Structural Analysis.........................................................................................11 

2.4 FOLDX.............................................................................................................12 

2.4.1 Optimizing Models.....................................................................................12 



vi 

2.4.2 Energy Calculations ..................................................................................13 

3 RESULTS ...............................................................................................................14 

3.1 Proximity of SNPs to IgG Binding Site .........................................................14 

3.2 Sequence Based Predictions ........................................................................20 

3.3 Structure Homology Modeling and FOLDx Analysis ...................................24 

3.4 FOLDx Analysis..............................................................................................25 

3.4.1 Effect of Single nsSNP on Protein Stability and Protein Interaction......26 

3.4.2 Effect of nsSNPs on Protein Stability and Protein Interaction as per 

Allelic Sequences ...............................................................................................................

 27 

3.5 Analysis of Structure Using UCSF Chimera.................................................29 

4     CONCLUSIONS.....................................................................................................33 

REFERENCES..............................................................................................................38 

 



vii 

LIST OF TABLES 

Table 3.1  Sequence based analysis by SIFT................................................................22 

Table 3.2  Sequence based analysis by I-Mutant for forward mutations. .......................22 

Table 3.3  Sequence based analysis by I-Mutant for reverse mutations. .......................23 

Table 3.4  Sequence based prediction tools for forward mutations. ...............................23 

Table 3.5  Sequence based prediction tools for reverse mutations. ...............................24 

Table 3.6  SNPs affecting protein stability and protein interaction by FOLDx.................26 

Table 3.7  Protein stability and protein interaction of allelic sequences by FOLDx.........28 

 



viii 

LIST OF FIGURES 

Figure 1.1  Distinct receptors for the Fc region of the different immunoglobulin classes 

are expressed on different accessory cells. From: Janeway's Immunobiology, 8th edition 

(©Garland Science) [10]............................................................................................................. 3 

Figure 2.1   Schematic diagram of the approach used to study the effect of single amino 

acid variations on protein stability and binding affinity.  The programs and software used are 

indicated in the boxes. ............................................................................................................... 8 

Figure 3.1  Alignment of rhesus macaque FcγRI allelic sequences (GenBank accession 

numbers: HQ423394-HQ423396) with a human FcγRIa (GenBank accession number 

BC020823.1).............................................................................................................................14 

Figure 3.2   Interaction of the amino acids at the FcγRI and Fc region of IgG1.  Hydrogen 

bonds formed by the amino acids predicted to be involved in FcγRI binding to IgG1 are 

indicated.  FcγRI is in green, chain A of IgG1 is in blue and chain B of IgG1 is in red. ..............15 

Figure 3.3  Sequence alignment of rhesus macaque FcγRII allelic sequences (GenBank 

accession numbers: HQ423389-HQ423393) with a human FcγRIIa (GenBank accession 

number AAH20823.1). ..............................................................................................................16 

Figure 3.4  Interaction of the amino acids at the FcγRII and Fc region of IgG1.  Hydrogen 

bonds formed by the amino acids predicted to be involved in FcγRII binding to IgG1 are 

indicated.  FcγRII is in green, chain A of IgG1 is in blue and chain B of IgG1 is in red. .............17 

Figure 3.5  Sequence alignment of rhesus macaque FcγRIII allelic sequences (GenBank 

accession numbers: HQ423386-HQ423388) with a human FcγRIIIa (GenBank accession 

number CAA34753. 1). .............................................................................................................18 



ix 

Figure 3.6  Interaction of the amino acids at the FcγRIII and Fc region of IgG1.   

Hydrogen bonds formed by the amino acids predicted to be involved in FcγRIII binding to IgG1 

are indicated.   FcγRIII is in green, chain A of IgG1 is in blue and chain B of IgG1 is in red. .....19 

Figure 3.7  Position of Single amino acid variations on FcγRs with respect to the 

interaction site of the FcγRs with the Fc region of the antibodies.   The grey shaded region 

indicates the binding sites to the antibody Fc region. ................................................................20 

Figure 3.8  A) Superimposed structures of Gly and Val at position 20 in FcγRI.  B) 

Superimposed structures of Ile and Lys at position 137 in FcγRII.  C) Superimposed structures 

of Ile and Val at position 233 in FcγRIII .....................................................................................31 

Figure 3.9   Superimposed structures of Ala (Blue) and Thr (Red) at position 131 in 

FcγRII, along with IgG1 (Green)................................................................................................32 

 



1 

1     INTRODUCTION  

1.1 Rhesus Macaque as Animal Models of Human Diseases  

Animal models are an indispensible part for biomedical research.  They are of para-

mount importance for studying pathogenesis, host immune responses to viral infections as well 

as immunogenicity and protective efficacy of vaccines.  Nonhuman primates, specifically rhesus 

macaque models have been used in large number of studies on human infectious diseases 

such as yellow fever,  degenerative neurologic  disease like prion disease, childhood disease 

such as polio and tropical diseases like hepatitis E and bartonellosis as well as newly emergent, 

sexually transmitted disease caused by immunodeficiency virus.  Macaque models are also 

used in study of oncogenic and bioterrorism associated diseases [1].   Macaques serve as 

models for studying passive immunization and various therapeutic approaches.  

Rhesus macaques (Macaca mulatta), are very closely related to humans anatomically, 

physiologically and phylogenetically [1,2].  The patho-physiological responses of humans and 

nonhuman primates to internal and external insults are remarkably similar[3].  Nonhuman pri-

mates play an important role in understanding significant infectious diseases such as acquired 

immunodeficiency syndrome (AIDS), hepatitis and malaria, their treatment and prevention.  

They are also used for studying chronic neurological degenerative disorders like Parkinson's 

and Alzheimer's diseases [4].  Simian immunodeficiency virus-infected macaques show a de-

crease in CD4+T cells and also develop opportunistic diseases, malignancies and diseases of 

the central nervous system as would be seen in humans with human immunodeficiency virus 

(HIV) [5].  Thus, rhesus macaques provide an efficient model for studies related to diseases 

caused by single etiologies like HIV and influenza virus.  Rhesus macaques play an important 

role as animal model in understanding the host innate and adaptive immune responses elicited 
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by HIV vaccines, and are considered the best animal model currently available for AIDS re-

search [6,7].  

1.2 Molecules of Adaptive Immunity  

Neutralizing antibodies play an important role in protective responses to HIV/SIV infec-

tion.  Antibodies (Abs), also known as immunoglobulin (Igs), interact with their specific cellular 

membrane bound Fc receptors (FcRs) to give rise to effector functions that ultimately destroy 

the pathogen.  The Ab/FcR interaction is also involved in immune responses operating during 

autoimmune diseases and cancer and can be manipulated for therapeutic applications.   

FcRs are a family of membrane-bound glycoproteins mainly expressed on the surface of 

phagocytic effector cells like macrophages and neutrophils.  They are also expressed on natural 

killer (NK) cells.   FcRs interacts with the Fc region of the antibody, when the antibody binds the 

antigen forming immunocomplexes, setting into motion the cellular responses.   

FcRs belong to the immunoglobulin super family.  Chromosome mapping and cloning 

experiments indicate that FcR genes are the result of gene duplication of a common ancestor.  

FcγR interact with the Fc region of the IgG family of antibodies.  The three basic classes of hu-

man FcγR are: FcγRI(CD64), FcγRII(CD32) and FcγRIII(CD16)[8].  All the FcγRs show overall 

similar intron-exon assembly consisting of a leader region, 2 c-like domains for FcγRII and 

FcγRIII and 3 for FcγRI, and the connecting transmembrane-cytoplasmic region[9].  Figure 1.1 

shows the different types of human FcRs, their structure, the cell types expressing the various 

FcRs, and the binding affinity to the different antibody classes.  The association of FcRs with 

different intracellular chains is cell type-dependent [10]. 
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Figure 1.1  Distinct receptors for the Fc region of the different immunoglobulin classes are ex-
pressed on different accessory cells. From: Janeway's Immunobiology, 8th edition (©Garland Science) [10] 

In humans, there are 8 genes coding for FcγRs which are present as a gene cluster in 

chromosome 1.  Their gene products show highly diversified binding affinity towards the IgG 

group.  The diversity of FcγRs is further increased due to the presence of various single nucleo-

tide polymorphisms in the extracellular c-like domains.  FcγR-related mechanisms are also in-

volved in autoimmune diseases and inflammation [11].  Therefore, it is important to characterize 

FcR polymorphisms and study the effects of these polymorphisms on the interaction of FcγR 

with Igs.  

1.3 Interaction of Fc Receptors and Antibody 

Antibody Fc-dependent mechanisms include antibody-dependent cell-mediated cytotox-

icity (ADCC),  FcR- dependent increase in uptake of antibody-antigen complex by antigen pre-

senting cells [12,13], FcR- mediated enhancement of MHC class I-restricted cross-presentation 

[14] and modulation of immune responses by differential engagement of antibodies with activat-

ing and inhibitory Fc receptors [15].  FcγR-mediated immune responses result in removal of 

pathogens and virus-infected or cancer cells.  They are also involved in hypersensitivity reac-

tions [11,16,17].  FcγRs are present on various cells like natural killer cells, dendetric cells, mast 
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cells, monocytes, B-cells, eosinophils and neutrophils.  The Fc portions of IgG-sensitized anti-

gens are recognized by the FcγR present on the membranes of the cells, resulting in cell activa-

tion through the immune-receptor tyrosin-based activation/inhibitory motif.  The cell response 

depends on the type of FcR, antibody isotype and cell type.  The interaction of the FcγRIIa with 

immune complex (IC) leads to cell activation of neutrophils, which results in phagocytosis of the 

antigen, degranulation of the neutrophil and oxidative burst.  The degranulation process in turn 

results in local inflammation.  NK cells destroy the antibody coated cells by recognizing them 

using the NK-membrane bound FcγRIIIa (CD16).  IC interaction with FcR on the B-cells leads to 

maturation, thus resulting in differentiation to plasma cells and memory B-cells.  The plasma 

cells secrete antibodies specific for the pathogen.  Differential engagement with either activating 

or inhibitory FcR leads to either MHC class I restricted or MHC class II restricted antigen pres-

entation.   For all the immune responses mediated by FcR, the interaction of the FcR with the Fc 

region of the Igs is essential.   

Different classes of FcγRs show differential binding affinity towards the IgG subclasses.  

In order to understand this behavior, it is essential to investigate the 3D structure of the FcγR-

IgG complex and determine the amino acids involved in the interaction.  The FcγRI-IgG complex 

crystal structure is yet to be solved and hence exact interacting amino acids cannot be deter-

mined.  Ile88, Trp90, Trp113, His134, Val158, Gly159 and Lys 161 at the interface of the FcγRIII 

and IgG1 are involved in hydrophobic interactions.  Thr116, Lys120, His134, His 135, Val158 

and Lys161 are involved in hydrogen bonds and salt bridges [18].  Similarly Trp90, Trp113, 

Pro117, Val119, Lys120, Lys128, Ser129, Phe132, Arg134, Leu135 and Tyr160 are involved in 

interaction of FcγRII with the IgG Fc ligand [19].  

1.4 In Silico Analysis of Single Nucleotide Polymorphism  

Single Nucleotide Polymorphisms (SNP) is commonly found across the genome.  The 

non-synonymous (ns) mutations that result into amino acid residue changes, play an important 



5 

role in diversifying protein function [20].   nsSNPs result in amino acid variations that may cause 

changes in protein stability. The physiochemical properties of the mutant residues differ from the 

wild type, resulting in this change. The amino acid change may also disrupt salt bridges or hy-

drogen bonding affecting protein dynamics and thus stability.  It may also disrupt the binding site 

and affect protein interaction by altering the specificity of the protein, blocking the active site or 

affecting the binding affinity [21].  Identifying possibly deleterious nsSNPs or those responsible 

for a specific phenotype is of a major concern and requires testing thousands of SNPs in the 

respective genes.  Because it is not feasible to analyze all SNPs experimentally, there is obvi-

ous need for in silico analysis.  

Computational methods are needed to analyze the effects of such large number of 

nsSNPs.  Several in silico analysis tools have been developed based on machine learning to 

predict protein stability changes due to single amino acid substitutions.  These tools identify the 

deleterious nsSNPs from the neutral ones based on sequence and structure approaches [22] 

and take into consideration the physicochemical properties like acidic, basic, or hydrophobic, 

the conservation of the amino acid at a specific position and protein structure.  Some of these 

tools predict just the direction of the stability change which, in certain biological applications, 

may be more relevant than magnitude.   

The 3D structure has not been analyzed and deposited in the Protein Data Bank (PDB) 

for all proteins, thus a sequence-based approach is more appealing than structural information 

based methods [23].  In this study, different sequence based algorithms like Sorting Intolerant 

from Tolerant (SIFT) and PROVEAN, I-Mutant 2. 0, nsSNPAnalyzer, MuSTAB and iPTREES-

TAB were used for the prioritization of high-risk nsSNPs in FcomprisecγRs.   

Since structural information for most proteins is not available, it is necessary to predict 

the 3D structure of the protein by comparative modeling.  The resulting models can be used to 

predict the effects of the nsSNPs on protein stability and protein-protein interaction by mapping 

the mutations on the predicted structures.  The mutated structures are predicted using homol-
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ogy modeling and then are compared to the wild type structure to estimate the effects of the 

single amino acid substitution at the structural level.   

Another method of analyzing the effect of the nsSNPs is by estimating changes in the 

protein stability.  This can be investigated by measuring the difference of Gibbs free energy 

(∆∆G) between the wild type and mutated state of the protein (∆∆G=∆Gwild-∆Gmutated) where 

∆G = Gibbs protein unfolding energy.  The discrimination among deleterious or functionally ef-

fective nsSNPs from the neutral ones is based on the notion that protein stability perturbation 

should be above a certain threshold ∆∆G (±1 kcal/mol) [24] for it to be functionally important.  

1.5 Purpose of the Study  

Various Studies have shown correlation between the polymorphisms and the function of 

the FcγRs.   The polymorphism at position 158 of human FcγRIII, which codes for valine (V) or a 

phenylalanine (F) results in low or high susceptibility for antilymphocyte globulins (AGL), respec-

tively[25].  FcγRIIA R131 polymorphism has less affinity towards IgG2 compared to H131 

[26,27].  S48N polymorphism also affects the affinity towards IgG binding and causes recurrent 

infections [28].  V158/F158 polymorphism in FcγRIIIA causes difference in affinity for IgG1 and 

IgG3 and differential glycoslysation of FcγRIIIB  causes difference in affinity for IgG1[29].   

These allelic variants have shown to affect the susceptibility to various diseases like systemic 

lupus erythematosus [30] and inflammation following an organ transplant indicating the impor-

tance of these SNPs on the functional domain of FcγR.  An I187T substitution in the transmem-

brane region of FcγRIIB affects the inhibitory function on B cells[27].  A study on clearance rates 

of RhD(Rhesus D)-positive RBCs showed faster clearance rates for FcγRIIA- H131 or FcγRIIA- 

V158 homozygous subjects [31].   A recent study on AIDS vaccine efficacy in rhesus macaques 

showed TLR7 variant M5 allele very likely destabilizes an RNA secondary structure predicted 

for the V5 allele and also affects the survival time post infection in SIV-infected rhesus ma-

caques [32].  
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The research pertaining to AIDS is done with the assumption that the macaque FcγR 

and their interaction with the Fc receptors of the Igs represent that of humans.  The sequence 

homology of the macaque FcγR I, FcγR II and FcγR III is 94-95%, 88-90% and 91.7% with 

those of humans.  In addition, 11 distinct allelic sequences were identified indicating high poly-

morphism in macaque, which contained total 15 nsSNPs [33].   Thus it is required to study the 

impact of the polymorphisms in the macaque FcγR on their interaction with IgG subclasses.   

1.6 Results  

Our in silico analysis suggests that the presence of mutations (V20G in FcγRI, I137K in 

FcγRII and I233V in FcγRIII) can affect the structure and thus the function of the FcγR in the 

form of protein stability.   In addition, A131T in FcγRII affects the protein-protein interaction with 

IgG1.   
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2 EXPERIMENT 

Based on the various in silico analyses carried out to predict the effects of single amino 

acid variations and to increase prediction accuracy, we combined prediction obtained from vari-

ous in silico methods.  We used in silico methods based on sequence and structure of the pro-

tein.  The schematic diagram of the approach utilized is shown in Figure 2. 1.  

 

Figure 2.1   Schematic diagram of the approach used to study the effect of single amino acid varia-
tions on protein stability and binding affinity.  The programs and software used are indicated in the boxes.  

2.1 Data 

2.1.1 Sequence 

The protein sequences of the Indian rhesus macaque FcγRs and IgGs were ob-

tained from the Protein database at National Centre for Biological Information 

(http://www. ncbi. nlm. nih. gov/protein).   Three allelic sequences of FcγRI (CD64), five 

allelic sequences of FcγRII (CD32) and three allelic sequences of FcγRIII (CD16) having 

GenBank accession numbers: AEC03710.1- AEC03712.1, AEC03702.1- AEC03706.1 
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and AEC03707.1- AEC03709.1 respectively, were analyzed in this study [33].  In these 

sequences, 16 polymorphic sites were analyzed, three in FcγRI, nine in FcγRII and four 

in FcγRIII.  The protein sequence of Indian rhesus macaque IgG1 sequenced in a previ-

ous study having GenBank accession numbers: AAQ57554. 1 [34] was used to form the 

complex with FcγRs.  The 3D protein structures, 1T83 and 3RY6, were obtained from 

Protein Data Bank (PDB).  

2.1.2 Homology Modeling 

All sequences were used for sequence based homology modeling.  They were 

submitted to an online server at http://bmcc3. cs. gsu. edu/, which uses the molecular 

mechanics program AMMP to predict the 3D structure of a protein based on sequence.  

The modeler uses two techniques for optimization of the predicted structure.  The first is 

the genetic algorithm that builds a set of 20 structures varying from the start point and is 

optimized by conjugate gradient method.  The second is the four-dimensional embed-

ding.  This method is useful in solving the three-dimensional problem in four-dimensions 

and then forcing the solution back into three dimensions.  

 3D structures of the FcγRI and FcγRIII predicted by AMMP structure prediction 

server were superimposed on the chain C of the reference Protein Data Bank structure 

(PDB) 1T83  and the predicted structures of FcγRII on the chain C of the reference Pro-

tein Data Bank structure (PDB) 3RY6.  The predicted structure of Indian macaque IgG1 

was superimposed on the IgG chains A and B of both the reference structures.  

2.2 Web-Based Servers for Sequence Analysis 

Many web servers are available to predict the effect of single amino acid variations on 

protein stability and protein binding efficiency.  SIFT, I-Mutant2.0, I-Mutant3.0, MuStab, iPTree-

stab and snpAnalyser were used in this study.  The first sequence in all the FcγRs was as-
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sumed to be the base sequence. Then the observed polymorphisms in other sequences were 

analyzed.  

Sorting Intolerant From Tolerant (SIFT) predicts intolerant mutations using homology 

and requires only the sequence to obtain position specific information from alignments.  SIFT 

scores the mutation at a specific position based on a position-specific scoring matrix (PSSM).  

SIFT also takes into consideration the physiochemical properties of each amino acid and pre-

dicts if the amino acid change is tolerant or intolerant, i.e whether the change severely affects 

the protein function.  The output from SIFT includes a score from 0-1, where <=0. 05 is the 

threshold for tolerance [35].  

Protein Variation Effect Analyzer (PROVEAN), a sequence based predictor, estimates 

the effect of protein sequence variation on protein function.  It is based on a clustering method 

where BLAST hits with more than 75% global sequence identity are clustered together and top 

30 such clusters form a supporting sequence set.  A delta alignment scoring system is used, 

where the scores of each supporting sequence are averaged within and across clusters to gen-

erate the final PROVEAN score.  A protein variant is said to be “deleterious” if the final score is 

below a certain threshold (default is -2. 5), or is predicted to be “neutral” if the score is above the 

threshold [36].  

I-Mutant2.0 and I-Mutant3.0 is based on Support Vector Machine algorithm to predict the 

stability of the protein on single amino acid variations.  It can predict protein stability changes by 

using protein sequence or structure.  It has an overall accuracy of 77% when prediction is based 

on protein sequence.  I-Mutant2.0 and I-Mutant3.0 predicts the DDG values as a regression es-

timator and also the sign of the stability change.  I-Mutant3.0 furthermore classifies mutations 

into three categories: neutral mutation (-0.5<=DDG<=0.5), large decrease (<=-0.5) and large 

increase (>0.5).  

MuSTAB is another SVM based web server that uses various biochemical features, 

structural features and various biological features to predict the effect of the amino acid change 
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on the protein stability and function.  It uses amino acid composition, conformational parameters 

for alpha helix, beta sheet, and average buried area in folded state, polarity and number of 

codons for amino acid as a classifier to predict protein stability changes due to single amino 

acid variations.  It has 84.59% accuracy, 70.29% sensitivity and 90.98% specificity [23].  

IPTREE-STAB web server is based on an adaptive boosting algorithm and utilizes deci-

sion trees for accessing the protein stability and also predicts the DDG value.  It provides a bi-

nary classification as stabilizing or destabilizing depending on the DDG value. While discriminat-

ing proteins due to single amino acid change, it also considers three residues adjacent to the 

polymorphism site in N and C terminal.  iPTREESTAB achieves an overall accuracy of 82.1%, 

75.3% sensitivity and 84.5% specificity [23,37] .  

nsSNPAnalyzer is a random forest algorithm based tool.  nsSNPAnalyzer uses the mul-

tiple sequence alignment information along with the structural information like solvent accessibil-

ity, secondary structure and polarity to distinguish between neutral and disease mutation.  It 

also considers the similarity and dissimilarity between the wild type and the mutant residue [38].  

2.3 Structural Analysis 

The predicted structures were viewed in University of California, San Francisco (UCSF) 

chimera.  It is a computationally intensive program for visualization of molecular models and it 

provides an interactive interface for the user for analyzing the models and model related data.  It 

provides a platform for analyzing sequence alignments, generating homology models, molecular 

docking, viewing various density models, and also comparing different models by super imposi-

tion [39].  

The mutant and wild type structures were superimposed and the effect of the non syn-

onymous variation was observed in terms of steric hindrance due to the changes of the side 

chains and change in the charge of the amino acid.  Then, the degree of change in the hydro-
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phobicity or hydrophyllicity of the mutated amino acid and its effect on the interacting intra chain 

and inter chain molecules was analyzed.  

2.4 FOLDX 

FOLDx is a computer algorithm that computes the protein stability and protein-protein in-

teraction values.  It compares between the wild type and the mutant protein structures based on 

various energy interactions like van der Waals clashes, electrostatic interactions and hydrogen 

bonding.  The FOLDx energy function includes the terms that have been determined as crucial 

by protein stability experiments, and the unfolding energy is calculated using the following equa-

tion: 

DG = DGvdw + DGsolvH + DGsolvP + DGwb + DGHbond + DGel + DGkon + TDSmc + TDSsc + 

TDStr 

where ∆Gvdw depicts the total van derWaals contributions of all atoms compared to that with sol-

venyt; ∆GsolvH  and ∆GsolvP give the changes in the folded and unfolded state salvation energy; 

∆Gwb, gives the stabilizing free energy generated due to formation of more than one hydrogen 

bond between water molecules and protein; ∆GHbond is the free energy difference between the 

formation of an intramolecular hydrogen bond compared to intermolecular hydrogen bond for-

mation (with solvent); ∆Gel  gives the energy by electrostatic bonds formed by charged groups; 

∆Gkon reflects the effect of electrostatic interactions on the kon.  ∆Smc depicts the changes in en-

tropy due to the back bone of the protein in the folded state; ∆Ssc depicts the entropic cost of 

side chain optimization in a particular protein conformation [40,41] 

2.4.1 Optimizing Models 

The modeled structures were subjected to an optimization procedure using the re-

pairPDB function of FoldX.  This corrects the poor torsion angles and van der Waals clashes if 

found in any residue.  It checks if any other rotamer exists for the same residue that is more 

stable and avoids steric clashes in a specific position.  
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2.4.2 Energy Calculations 

The difference in the energy of the folded and unfolded protein gives an estimate of the 

Gibbs free energy of folding.  The effect of the single amino acid variations on the stability of the 

protein is analyzed by computing the difference between the Gibbs free energy of folding of the 

mutant structure and the wild type 

 DDG = DGMutant –DGWT  

where DG is the Gibbs free energy of folding.  

FoldX calculates the Gibbs free energies of the two molecules A (DGA) and B (DGB) as 

well as the complex AB (DGAB). The interaction energy can be estimated from the difference 

between these energies using the formula listed below:   

 DGbinding = DGAB - (DGA + DGB) 

The difference in the binding energies (DGbinding) of the mutant and wild type structures esti-

mates the -effect of the single amino acid variation on the stability of the protein-protein interac-

tion.   
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3     RESULTS 

A total of 3 nsSNP from 3 allelic FcγRI sequences, 9 nsSNP from 5 allelic FcγRII sequences 

and 4 nsSNP from 3 allelic FcγRIII sequences obtained from the 9 Indian macaques were iden-

tified.   

3.1 Proximity of SNPs to IgG Binding Site 

 

Figure 3.1  Alignment of rhesus macaque FcγRI allelic sequences (GenBank accession numbers: 
HQ423394-HQ423396) with a human FcγRIa (GenBank accession number BC020823.1).  
The allelic sequences are labeled based on the animal number used to obtain the respective sequence [33].  
The horizontal blue lines represent the start of the D1, D2 and D3 domains.  TM-CO represents the trans-
membrane and cytoplasmic region.  The vertical red arrows indicate the SNP positions in the allelic se-
quences of rhesus macaque CD64.  The red boxes indicate the amino acids involved in binding with IgG1 as 
per FOLDx prediction.   

FcγRI has three Ig like domains and all the three SNPs are present in the N-terminal 

domain (D1).  Since crystal structure of human FcγRI-IgG complex has not been solved yet, no 

information regarding the amino acids involved in the interaction with IgG is currently available.  
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However, on the basis of the information related to other human FcR-IgG complex structures, it 

is reasonable to assume that most of the interacting amino acids lie within the second domain 

(D2).   

 

Figure 3.2   Interaction of the amino acids at the FcγRI and Fc region of IgG1.  Hydrogen bonds 
formed by the amino acids predicted to be involved in FcγRI binding to IgG1 are indicated.  FcγRI is in green, 
chain A of IgG1 is in blue and chain B of IgG1 is in red.  

 

Using the AnalyzeComplex method of FOLDx, we determined the amino acids present 

at the FcγRI-IgG1 interface.  Another command of FOLDx, PrintNetworks, independently pre-

dicted the amino acids involved in intramolecular hydrogen bond formation and electrostatic in-

teraction.  Arg99, Lys127, Tyr130, Tyr145, His164 and Tyr173 were common amino acids pre-

dicted from both commands of FOLDx and were predicted to be involved in hydrogen bond for-

mation with IgG1.  Arg99, Asp100, Lys125, Lys127, Tyr130, Phe143, Phe144, Tyr145, Arg146, 

Lys170 and Arg172 were predicted to be involved in electrostatic interactions with IgG1.  Since 

none of the SNPs are present in the FcR-IgG binding site, they would not affect the binding af-
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finity of the rhesus FcγRI to IgG1.  However, these SNPs have potential to affect protein stability 

and may result in change of function or loss of function.  Figure 3.2 indicates the hydrogen 

bonds formed by amino acids predicted to be involved in FcγRI interaction with IgG1 by FOLDx.  

The Gln at position 32 forms a hydrogen bond with His at position 99.   

 

Figure 3.3  Sequence alignment of rhesus macaque FcγRII allelic sequences (GenBank accession 
numbers: HQ423389-HQ423393) with a human FcγRIIa (GenBank accession number AAH20823.1).  
The allelic sequences are labeled based on the animal number used to obtain the respective sequence [33].  
The horizontal blue lines represent the start of the D1 and D2 domains.   TM-CO represents the transmem-
brane and cytoplasmic region.   The vertical red arrows indicate the SNP positions in the allelic sequences of 
rhesus macaque CD32.  The red boxes indicate the amino acids involved in binding with IgG1 as per FOLDx 
prediction.   The grey shaded regions represent the amino acids involved in human FcγRII-IgG1 binding.  

FcγRII has two Ig like domains and two SNPs are present in the N-terminal domain (D1).  

The remaining 7 SNPs are present in the C-terminal domain (D2).  The amino acids involved in 

human FcγRII-IgG1 interaction are Trp90, Trp113, Pro117, Val119, Lys120, Lys128, Ser129, 

Phe132, Arg134, Leu135 and Tyr160 [19].  These are highlighted in Figure3.2 in grey shade.  

Using the AnalyzeComplex method of FOLDx, we determined the amino acids present 

at the rhesus FcγRII-IgG1 interface.  Another command of FOLDx, PrintNetworks, independ-
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ently predicted the amino acids involved in intramolecular hydrogen bond formation and electro-

static interaction.  Arg30, Lys125, Lys129, Ser138, Ser142, His162, Cyc163 and Ser173 were 

common amino acids predicted from both commands of FOLDx and were predicted to be in-

volved in hydrogen bond formation with IgG1.  Arg30, Glu31, Glu98, Lys123, Lys125, Lys129, 

Asp160, Tyr161, Tyr172 and Lys175 were predicted to be involved in electrostatic interactions 

with IgG1.   

 

Figure 3.4  Interaction of the amino acids at the FcγRII and Fc region of IgG1.  Hydrogen bonds 
formed by the amino acids predicted to be involved in FcγRII binding to IgG1 are indicated.  FcγRII is in 
green, chain A of IgG1 is in blue and chain B of IgG1 is in red.  

Figure 3.4 indicates the hydrogen bonds formed by the amino acids predicted from the 

human FcγRII-IgG1 crystal structure analysis [19] and by FOLDx analysis, to be involved in 

FcγRII interaction with IgG1.  The hydrogen bonds formed by residues predicted by crystal 

structure analysis are indicated in black.  The ones formed by the residues predicted by FOLdx 
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analysis are indicated in orange and those formed by residues predicted by both the techniques 

are indicated in yellow.  

 FcγRIII has two Ig like domains and out of the four SNPS, one is present in the N-

terminal domain (D1), another one is present in the C-terminal domain (D2) and the other two 

are within the cytoplasmic resion of FcγRIII.  The amino acids involved in human FcγRIII-IgG1 

interaction are Ile88, Trp90, Trp113, Thr116, Lys120, His134, His 135, Val158, Gly159 and Lys 

161 [18], These are highlighted in Figure 3.3 in grey shade.  

 

 

Figure 3.5  Sequence alignment of rhesus macaque FcγRIII allelic sequences (GenBank accession 
numbers: HQ423386-HQ423388) with a human FcγRIIIa (GenBank accession number CAA34753. 1).  
The allelic sequences are labeled based on the animal number used to obtain the respective sequence [33].  
The horizontal blue lines represent the start of the D1 and D2 domains.  TM-CO represents the transmem-
brane and cytoplasmic region.   The vertical red arrows indicate the SNP positions in the allelic sequences of 
rhesus macaque CD16.  The red boxes indicate the amino acids involved in binding with IgG1 as per FOLDx 
prediction.  The grey shaded regions represent the amino acids involved in human FcγRIII-IgG1 binding.  
 

Using the AnalyzeComplex method of FOLDx, we determined the amino acids present 

at the rhesus FcγRIII-IgG1 interface.  Another command of FOLDx, PrintNetworks, independ-

ently predicted the amino acids involved in intramolecular hydrogen bond formation and electro-
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static interaction.  Thr134, Lys138, Lys146, Arg148, Tyr150, Phe171, Ser178, Lys179, Ser182, 

Ser183 and Thr185 were common amino acids predicted from both commands of FOLDx and 

were predicted to be involved in hydrogen bond formation with IgG1.  Glu39, Lys132, Lys138, 

Lys146, Arg148, Lys149, Tyr150, Phe151, Arg173, Lys179 and Glu184 were predicted to be 

involved in electrostatic interactions with IgG1.  

 

Figure 3.6  Interaction of the amino acids at the FcγRIII and Fc region of IgG1.   Hydrogen bonds 
formed by the amino acids predicted to be involved in FcγRIII binding to IgG1 are indicated.   FcγRIII is in 
green, chain A of IgG1 is in blue and chain B of IgG1 is in red.  

Figure 3.6 indicates the hydrogen bonds formed by the amino acids predicted from the 

human FcγRIII-IgG1 crystal structure analysis [18] and by FOLDx analysis, to be involved in 

FcγRIII interaction with IgG1.  The hydrogen bonds formed by residues predicted by crystal 

structure analysis are indicated in black.  The ones formed by the residues predicted by FOLdx 

analysis are indicated in orange and those formed by residues predicted by both the techniques 

are indicated in yellow.  
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Figure 3.7  Position of Single amino acid variations on FcγRs with respect to the interaction site of 
the FcγRs with the Fc region of the antibodies.   The grey shaded region indicates the binding sites to the 
antibody Fc region.  

3.2 Sequence Based Predictions 

SIFT, a sequence based predictor, estimates the effect of amino acid variations on pro-

tein function based on homology of the sequence and the physio-chemical properties of the 

amino acid residues. It also takes into account the conservation of the sequence through evolu-

tion.  SIFT scores were classified as damaging (0.00–0.05) or tolerant (0.051–1.00).  Of the 15 

nsSNPs, V20G and V74A in FCγRI, R67M, P105T, K140N in FCγRII and V233I in FCγRIII 

showed the tolerance score of 0.00, 0.03, 0.04, 0.01, 0.02 and 0.03 respectively  [35].   

PROVEAN predicts the effect of the variant on the biological function of the protein 

based on sequence homology.  PROVEAN scores are classified as “deleterious” if below a cer-

tain threshold (here -2.5) and “neutral” if above it.  Of the 15 nsSNPs, V20G in FCγRI, P105T, 

T131A, K137I and K140N in FCγRII and L96P in FCγRIII were predicted “deleterious” with 

PROVEAN scores of -4.951, -4.714, -2.88,     -4.084, -2.783 and -5.504 respectively.  
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I-Mutant 3.0 is a SVM based tool used to predict the DDG stability values and the reli-

ability index for the DDG value.  It also classifies the prediction as largely destabilizing (DDG<-

0.5 Kcal/mol) or largely stabilizing (DDG>0.5 Kcal/mol) or having a weak effect (-

0.5<=DDG<=0.5 Kcal/mol).  For this study we have considered a threshold of -1.5 Kcal/mol to 

consider a SNP to be destabilizing.  Of the 15 nsSNPs, V20G and V74A in FCγRI and I137K in 

FCγRII were considered destabilizing with DDG values -2.19, -1.65 and -1.85 Kcal/mol respec-

tively.  

nsSNPAnalyzer predicts whether an nsSNP has a phenotypic effect.  It considers the 

structural environment, conservation of the residue at that position by sequence homology and 

the difference in the physical properties of the mutant compared to the wild type amino acid.  

nsSNPAnalyzer classifies mutations as “disease” or “neutral” depending on its internal score.  

Of the 15 nsSNPs, V20G in FCγRI and I233V in FCγRIII were considered to be “disease” caus-

ing.  

MuSTAB predicts the effect of the nsSNP on protein stability depending on various bio-

chemical, empirical and biological features.  Along with predicting whether the nsSNP increases 

or decreases the stability of the protein, it also gives the prediction confidence.  For this study 

we have considered nsSNP to be destabilizing if the prediction confidence is above 95%.  V20G 

in FCγRI, I137K in FCγRII and I233V in FCγRIII were predicted to decrease the protein stability 

considerably.  

iPTREE-STAB is a decision tree-based, predictive tool that not only discriminates the 

nsSNP on the basis of increase or decrease in thermal stability but also predicts the DDG val-

ues.  The nsSNP having DDG values > -2.5 kcal/mol were considered to be truly destabilizing.  

V20G in FCγRI and I137K in FCγRII were predicted to decrease the thermal stability of the pro-

tein.  

The nsSNPs predicted to have a phenotypic effect according to SIFT or PROVEAN and 

destabilize the protein according to at least two of the tools from I-Mutant3. 0, nsSNPAnalyzer, 
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MuSTAB and iPTREE-STAB were used for further analysis.  V20G in FCγRI, I137K in FCγRII 

and I233V in FCγRIII were further analyzed structurally to understand their effect.  

Table 3.1  Sequence based analysis by SIFT 

Straight Mutations Reverse Mutations 
 

Amino Acid Substitution 

Score Prediction Score Prediction 

G20V 1 TOLERATED 0 AFFECT PROTEIN FUNCTION 

Q32R 0.06 TOLERATED 1 TOLERATED 

F
c
γ
R

I 

A74V 1 TOLERATED 0.03 AFFECT PROTEIN FUNCTION 

R67M 0.04 AFFECT PROTEIN FUNCTION 0.17 TOLERATED 

I91V 1 TOLERATED 0.18 TOLERATED 

T105P 1 TOLERATED 0.01 AFFECT PROTEIN FUNCTION 

A131T 1 TOLERATED 0.21 TOLERATED 

I137K 1 TOLERATED 0.07 TOLERATED 

S138A 0.48 TOLERATED 1 TOLERATED 

K140N 0.02 AFFECT PROTEIN FUNCTION 1 TOLERATED 

N145D 0.9 TOLERATED 0.94 TOLERATED 

F
c
γ
R

II
 

R152Q 0.67 TOLERATED 0.27 TOLERATED 

P96L 1 TOLERATED 0.09 TOLERATED 

A113T 1 TOLERATED 0.47 TOLERATED 

M229V 1 TOLERATED 0.06 TOLERATED F
c
γ
R

II
I 

I233V 0.09 TOLERATED 0.03 AFFECT PROTEIN FUNCTION 

 

Table 3.2  Sequence based analysis by I-Mutant for forward mutations. 

Straight Mutations IMutant2.0 IMutant3.0 (Structure Based)  

Amino Acid Substitution  
(WT Position MT) 

DDG (Kcal/mol) Stability RI DDG (Kcal/mol) SVM 2 prediction RI RSA 

G20V -0.49 Decrease 2 -0.57 Decrease 8 34.3 

Q32R -0.84 Decrease 4 -0.35 Decrease 3 21.3 

F
c
γ
R

I 

A74V -0.35 Decrease 5 -0.11 Decrease 3 50.8 

R67M -1.58 Decrease 7 -0.15 Decrease 4 74.7 

I91V -0.02 Decrease 4 -0.33 Decrease 3 16.2 

T105P -0.42 Decrease 0 -1.06 Decrease 5 15.9 

A131T -0.59 Decrease 4 -1.02 Decrease 4 11.8 

I137K -2.26 Decrease 9 -1.05 Decrease 9 61.6 

F
c
γ
R

II
 

S138A -0.73 Decrease 5 -0.14 Decrease 7 70 
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K140N 0.07 Decrease 2 -0.6 Decrease 1 55.4 

N145D -0.51 Decrease 3 -0.39 Increase 0 55.3 

R152Q -1.7 Decrease 8 -0.62 Decrease 7 79.5 

P96L -0.78 Decrease 6 -1.02 Decrease 8 26.1 

A113T -0.88 Decrease 6 -1.23 Decrease 9 14.5 

M229V -0.62 Decrease 7 -0.8 Decrease 7 40 F
c
γ
R

II
I 

I233V -1.28 Decrease 9 -0.77 Decrease 7 29.2 

 

Table 3.3  Sequence based analysis by I-Mutant for reverse mutations. 

Reverse Mutations IMutant2.0 IMutant3.0 (Structure Based)  

Amino Acid Substitu-
tion 

 (WT Position MT) 

DDG 
(Kcal/mol) 

Stability RI 
DDG 

(Kcal/mol) 
SVM 2 Stability predic-

tion 
RI RSA 

V20G -3.95 Decrease 9 -2.54 Decrease 9 44.2 

R32Q -0.93 Decrease 8 -1.27 Decrease 9 38.4 

F
c
γ
R

I 

V74A -1.79 Decrease 9 -1.53 Decrease 9 42.9 

M67R -0.88 Decrease 7 -0.34 Decrease 4 58.5 

V91I -0.91 Decrease 4 -0.28 Decrease 4 21.5 

P105T -1.4 Decrease 7 -1.11 Decrease 9 7 

T131A -3.15 Decrease 9 -1.58 Decrease 10 16.6 

K137I -0.03 Decrease 3 -0.21 Increase 4 70 

A138S -0.39 Decrease 9 -0.48 Decrease 3 60.8 

N140K -2.03 Decrease 7 -0.78 Decrease 8 49.9 

D145N -2.43 Decrease 8 -0.64 Decrease 6 54.1 

F
c
γ
R

II
 

Q152R 0.54 Decrease 0 0.04 Increase 2 73.9 

L96P 0.28 Decrease 1 -1.75 Decrease 8 23.5 

T113A -0.7 Decrease 8 -1.78 Decrease 9 3.6 

V229M -3.48 Decrease 8 -1.1 Decrease 8 37.7 F
c
γ
R

II
I 

V233I -1.23 Decrease 5 -0.96 Decrease 7 31.9 

 

Table 3.4  Sequence based prediction tools for forward mutations. 
Amino Acid 

Substitu-
tion (WT 
Position 

MT) 

Provean 
Score 

Provean 
Prediction 

SNPAnalyser 
Prediction 

MuSTAB 
Prediction 

(protein sta-
bility) 

MuSTAB 
confidence 

iPTREE-STAB 
Prediction 

iPTREE-STAB Dis-
crimination 

G20V 4.732 Neutral Neutral  INCREASED 26.61% -1.5838 kcal/mol positive (stabilizing) 

Q32R -1.909 Neutral Neutral  DECREASED 92.32% -0.9691 kcal/mol negative (destabilizing) 

F
c
γ
R

I 

A74V 1.025 Neutral Neutral  INCREASED 29.11% -1.3200 kcal/mol negative (destabilizing) 

R67M -1.254 Neutral Neutral  INCREASED 30.89% -1.1536 kcal/mol negative (destabilizing) 

F
c
γ
R

II
 

I91V 0.723 Neutral Neutral  DECREASED 92.50% -2.5446 kcal/mol negative (destabilizing) 
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T105P 4.714 Neutral Neutral  DECREASED 83.04% -0.1737 kcal/mol positive (stabilizing) 

A131T 2.88 Neutral Neutral  DECREASED 78.75% -0.1405 kcal/mol negative (destabilizing) 

I137K 4.084 Neutral Neutral  DECREASED 98.21% -2.9075 kcal/mol negative (destabilizing) 

S138A -0.75 Neutral Neutral  DECREASED 79.64% -0.5370 kcal/mol negative (destabilizing) 

K140N -2.783 Deleterious Neutral  DECREASED 89.29% -0.5850 kcal/mol negative (destabilizing) 

N145D -2.023 Neutral Neutral  DECREASED 89.64% -1.7270 kcal/mol negative (destabilizing) 

R152Q 0.47 Neutral Neutral  DECREASED 85.89% -0.0586 kcal/mol negative (destabilizing) 

P96L 5.554 Neutral Neutral  INCREASED 26.61% 0.4325 kcal/mol negative (destabilizing) 

A113T 1.787 Neutral Neutral  DECREASED 81.61% -0.8613 kcal/mol negative (destabilizing) 

M229V 0.758 Neutral Neutral  DECREASED 87.32% -0.3474 kcal/mol negative (destabilizing) F
c
γ
R

II
I 

I233V -0.705 Neutral Disease  DECREASED 98.21% -0.3474 kcal/mol negative (destabilizing) 

 

Table 3.5  Sequence based prediction tools for reverse mutations. 
Amino Acid 

Substitu-
tion (WT 
Position 

MT) 

Provean 
Score 

Provean 
Prediction 

SNPAnalyser 
Prediction 

MuSTAB 
Prediction  

(protein sta-
bility) 

MuSTAB 
confidence 

iPTREE-STAB 
Prediction 

iPTREE-STAB Dis-
crimination 

V20G -4.951 Deleterious Disease  DECREASED 95.71% -3.1872 kcal/mol negative (destabilizing) 

R32Q 1.965 Neutral Neutral  DECREASED 93.04% -0.9691 kcal/mol negative (destabilizing) 

F
c
γ
R

I 

V74A -1.165 Neutral Neutral  DECREASED 94.64% -1.8655 kcal/mol negative (destabilizing) 

M67R 1.254 Neutral Neutral  DECREASED 79.64% -1.1536 kcal/mol negative (destabilizing) 

V91I -0.723 Neutral Neutral  DECREASED 92.50% -2.5446 kcal/mol negative (destabilizing) 

P105T -4.714 Deleterious Neutral  DECREASED 78.39% -0.1737 kcal/mol negative (destabilizing) 

T131A -2.88 Deleterious Neutral  DECREASED 92.50% -0.1405 kcal/mol negative (destabilizing) 

K137I -4.084 Deleterious Neutral  INCREASED 30.36% -1.8950 kcal/mol negative (destabilizing) 

A138S 0.85 Neutral Neutral  DECREASED 88.93% 0.4520 kcal/mol negative (destabilizing) 

N140K 2.816 Neutral Neutral  DECREASED 79.64% -1.5851 kcal/mol negative (destabilizing) 

D145N 1.723 Neutral Neutral  DECREASED 88.93% -1.7270 kcal/mol negative (destabilizing) 

F
c
γ
R

II
 

Q152R -0.47 Neutral Neutral  INCREASED 25.18% 0.8900 kcal/mol negative (destabilizing) 

L96P -5.504 Deleterious Neutral  DECREASED 87.86% -1.0747 kcal/mol negative (destabilizing) 

T113A -1.97 Neutral Neutral  DECREASED 91.07% -0.8613 kcal/mol negative (destabilizing) 

V229M -0.725 Neutral Neutral  DECREASED 94.11% -0.3474 kcal/mol negative (destabilizing) F
c
γ
R

II
I 

V233I 0.738 Neutral Neutral  DECREASED 96.79% -0.3474 kcal/mol positive (stabilizing) 

 

3.3 Structure Homology Modeling and FOLDx Analysis 

Single amino acid mutations can drastically modify the protein structure stability.  Thus, 

the modeling of a protein’s 3D structure and the knowledge of its structural information is nec-

essary for complete understanding of its functionality.  The 3D structure of the 3 allelic se-
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quences of FcγRI, 5 allelic sequences of FcγRII and 3 allelic sequences of FcγRIII were pre-

dicted via homology modeling using AMMP.  Model 1 for each of the prediction was considered 

to be the structure for the respective sequence.  The available structure PDB ID 3RJD was the 

reference for FcγRI.  PDB ID 3RY4 was the reference structure for FcγRII except for sequence 

HQ423391, which used PDB ID 3D5O as the reference.  PDB ID 1T83 was the reference struc-

ture for FcγRIII except for sequence HQ423388, which used PDB ID 1E4J as the reference.  

The 3D structures obtained for FcγRI and FcγRIII were superimposed over chain c of 1T83 and 

those of FcγRII were superimposed over chain c of 3RY6.    

The IgG1 sequences of Indian macaques were obtained from NCBI [34].  The 3D struc-

ture of the IgG1 was predicted via homology modeling using AMMP.  The predicted structures 

were superimposed over chains A and B of 1T83 and 3RY6.  The FcγR and IgG1 predicted su-

perimposed structures were combined into single PDB file using UCSF Chimera.   

 

3.4 FOLDx Analysis 

The effects of the nsSNPs on protein stability and protein interaction were computed 

with Foldx, which uses an empirical energy equation to calculate the Gibbs free energy DDG.  

The empirical energy terms consider the location, type of a mutated residue [42].  FOLDx is a 

structure based prediction tool.  Two different analysis protocols were utilized to obtain maxi-

mum information over the effect of the single amino acid substitutions: 1) All the nsSNPs were 

considered singularly and their effect on the protein stability and interaction potential was de-

termined, 2) The nsSNPs were considered according to the allelic sequences obtained from the 

previous study.  Initially, all the structures were minimized using the RepairPDB function of 

Foldx to obtain a stable protein stability value.  Then the structures for each single amino acid 

variation were generated using the BuildModel feature of Foldx3.0.  Finally, the effect of each 

single amino acid variation on the interaction between the FcγRs and IgG1 was determined us-
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ing the Analyze Complex feature.  When the DDG > 0, then the mutation is considered destabi-

lizing and when DDG < 0, it is considered stabilizing.  

3.4.1 Effect of Single nsSNP on Protein Stability and Protein Interaction 

BuildModel feature of FOLDx3. 0 was used to generate structures for each single amino 

acid variations.  For this purpose, the amino acid residues at the mutation sites in the first allelic 

sequence in each FcγR were considered as the wild type and the amino acid residues from 

other sequences were considered to be mutant residues.  To avoid any miscalculation in obtain-

ing the effect on the stability, reverse mutations were also analyzed, where the structures gen-

erated from the previous step by BuildModel were used as wild type structure and used as input 

for the same procedure of BuildModel.  The threshold of +- 1kcal/mol was considered to differ-

entiate between neutral and deleterious amino acid substitution, based on its effect  on the pro-

tein stability [24].  The interaction energy between the chain c and chain a + chain b, which 

forms the IgG1, was determined using the AnalyzeComplex feature of FOLDx3.0.  Then, the 

difference between the wild type structure and mutant structure interaction energies was deter-

mined.  If the difference is greater than zero, the mutation decreases the affinity between the 

two molecules.  When the difference is less than zero, it increases the affinity.  A threshold of +- 

1kcal/mol was considered to analyze whether or not the amino acid substitution affects the pro-

tein interaction.   

Table 3.6  SNPs affecting protein stability and protein interaction by FOLDx 
Straight Mutations Reverse Mutations  Amino Acid  

Substitu-
tion 

DDG for pro-
tein 

Difference in Interaction En-
ergy 

DDG for pro-
tein 

Difference in Interaction En-
ergy 

G20V -1.09 0 1.13 0 

Q32R 1.01 -1.25 -0.33 0.5 

F
c
γ
R

I 

A74V 0.22 0.14 -0.19 -0.14 

R67M 1.55 0 -1.13 0 

I91V 1.62 0 -0.3 0 

T105P 0.94 0 1.04 0 F
c
γ
R

II
 

A131T -0.57 4.62 0.53 -1.2 
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I137K -0.28 0.1 0.32 0.3 

S138A -0.54 0.82 0.61 0.01 

K140N 1.42 0 -1.59 0.02 

N145D -0.37 -0.09 0.34 0.15 

R152Q 0.13 0 -0.17 0 

P96L 0.25 0 -0.18 0 

A113T 2.34 0 -0.22 0 

M229V 0.73 0 -0.66 0 

F
c
γ
R

II
I 

I233V 0.11 0 0.37 0 

 

V20G and Q32R in FcγRI were predicted to affect protein stability having DDG values of 

1.13 kcal/mol and 1.01 kcal/mol.  As the DDG value of Q32R is very near to the threshold value, 

it was considered to have neutral effect on protein stability.  R67M, V91I, P105T and K140N in 

FcγRII were predicted to affect protein stability having DDG values 1.55, 1.62, 1.04 and 1.42 

kcal/mol.  Although the DDG value of P105T is near the threshold value, SIFT also predicted 

deleterious effects on the protein and was thus considered for further analysis.  A113Tin FcγRIII 

was predicted to affect protein stability significantly, having DDG values 2.34 kcal/mol.  Q32R in 

FcγRI is predicted to increase the affinity towards IgG1 and A131T in FcγRII is predicted to af-

fect the protein interaction by greatly decreasing the affinity towards IgG1.  

3.4.2 Effect of nsSNPs on Protein Stability and Protein Interaction as per Allelic 

Sequences 

Only the DDG (change) values of FOLDx are trained to approach experimental values.  

Thus the DG values of the wild type or mutant structures do not provide any inference on their 

own.  Again the first allelic sequence of each FcγR is considered as reference sequence and 

using the BuildModel feature of FOLDx3.0 the remaining allelic sequence structures were gen-

erated. This feature also provides the change in the Gibbs free energy (DDG) as compared to 

the wild type allelic sequence. The threshold of +- 1kcal/mol was considered to analyze whether 

or not the amino acid substitution affected the protein stability [24].  Utilizing the AnalyzeCom-
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plex feature of FOLDx3.0, the interaction energy between the chain c and chain a + chain b, 

which forms the IgG1, was determined.  The interaction energy of all the allelic sequences was 

compared.  A similar threshold of +- 1kcal/mol was used to analyze the effect of amino acid 

substitution on the protein interaction. 

Table 3.7  Protein stability and protein interaction of allelic sequences by FOLDx 
Straight Mutations Reverse Mutations  

Allelic  
Sequences DDG for pro-

tein 
Difference in Interaction En-

ergy 
DDG for pro-

tein 
Difference in Interaction En-

ergy 

Rhe3_Rhe
8 

0.01 -0.31 -2.17 0.33 

Rhe3_Rhe
9 

-0.93 0.14 0.98 -0.09 

F
c
γ
R

I 

Rhe8_Rhe
9 

0.03 0.22 0.58 -1.82 

Rhe2_Rhe
4 

1.18 -0.77 2.93 -0.6 

Rhe2_Rhe
6 

2.9 -0.38 -1.28 -0.84 

Rhe2_Rhe
7 

0.03 4.64 5.09 -3.45 

Rhe2_Rhe
9 

4.53 0.07 0.1 -0.22 

Rhe4_Rhe
6 

4.28 0 -0.93 0 

Rhe4_Rhe
7 

-0.01 1.23 1.66 -0.23 

Rhe4_Rhe
9 

4.48 -0.41 -0.8 1.83 

Rhe6_Rhe
7 

-1.4 6.05 4.24 0.07 

Rhe6_Rhe
9 

2.09 -0.84 0.62 1.67 

F
c
γ
R

II
 

Rhe7_Rhe
9 

4.68 -2.3 -2.14 1.18 

Rhe3_Rhe
4 

3.86 0 -2.67 0 

Rhe3_Rhe
9 

0.09 0 1.51 0 

F
c
γ
R

II
I 

Rhe4_Rhe
9 

-3.79 0.01 2.72 0 

 

FcγRI has three allelic sequences isolated from Rhe3, Rhe8 and Rhe9 [33] (GenBank 

accession numbers HQ423394-HQ423396).  Rhe3 has G, Q and A at positions 20, 32 and 74 

respectively, whereas Rhe8 has V, R and V and Rhe9 have V, Q and V at those positions re-

spectively.  Rhe8 is more stable than Rhe3 where the protein stability increases by 2.17 

Kcal/mol. Rhe8 has more affinity for IgG1 compared to HQ423396. 

FcγRII has five allelic sequences isolated from Rhe2, Rhe4, Rhe6, Rhe7 and Rhe9 [33] 

(GenBank accession numbers HQ423389-HQ423393).  Rhe2 has R, I, T, A, I, S, K, N and R at 



29 

positions 67, 91, 105, 131, 137, 138, 140, 145 and 152.  Rhe4 has V91, P105 and D145; Rhe6 

has M67, V91 and D145; Rhe7 has V91, P105, T131, A138, D145 and Q152; Rhe9 has M67, 

V91, K137, N140 and Q152 compared to Rhe2. Rhe7 is the most stable allelic sequence and 

Rhe9 is the most unstable with a 4.68 Kcal/mol difference in stability.  The order of sequence 

stability in decreasing order is Rhe7> Rhe4> Rhe2> Rhe6> Rhe9.  The highest difference in 

affinity towards IgG1 is between allelic sequences Rhe6 and Rhe7 with a difference of 6.05 

Kcal/mol in interaction energy, where Rhe6 has more affinity towards IgG1.  Rhe2 also has 

more affinity towards IgG1 compared to Rhe7, with a difference of 4.64 Kcal/mol in interaction 

energy.  It can be concluded that P105, T131, A138 and Q152 decrease the affinity for IgG1, 

from which only the positions 131 and 138 are in the binding site.  Thus, a Thr at 131 and Ala at 

138 affect the FcγRII-IgG1 interaction.  

FcγRIII has three allelic sequences isolated from Rhe3, Rhe4 and Rhe9 [33] (GenBank 

accession numbers HQ423386-HQ423388).  Rhe3 has P, A, M and I at positions 96, 113, 229 

and 233.  Rhe4 has L96, T113, V229 and V233; Rhe4 has L96 compared to Rhe3.  Rhe9 is the 

most stable allelic sequence and Rhe4 is the least stable.  Thus, a Leu at position 96 makes 

FcγRIII more stable.  However, due to the other mutations in Rhe4 at positions 113, 229 and 

233 it becomes more unstable.  Results from single amino acid variation analysis with FoldX 

indicated that the Thr at position 113 destabilizes the protein compared to Ala.  Thus, we can 

infer that the effect of Leu at 96 on the stability of the protein is not only masked by the Thr at 

113, but also further destabilizes the protein. 

3.5 Analysis of Structure Using UCSF Chimera 

Only the single amino acid variations that were indicated as affecting protein stability or 

interaction energy by more than three analysis tools used were chosen to be analyzed structur-

ally by UCSF Chimera.  Thus, structural analysis of the mutant and wild type modeled structures 

for V20/G20 in FcγRI, I137/K137 in FcγRII and I233/V233 in FcγRIII was carried out by superimposing 
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the structures and comparing the physical properties, solvent accessibility, hydrophobicity and 

charge density.  

V20/G20 mutation site in FcγRI indicated that the effect of the mutation may be due to 

lower hydrophobicity of Gly compared to Val in a hydrophobic patch and decrease protein stabil-

ity.  Gly at 20 has higher solvent accessibility and RSA compared to Val at 20.  Val interacts 

with Leu at position 3 which may take part in stabilizing the protein while folding.  

I137/K137 mutation site in FcγRII indicated that the effect of the mutation may be due to a 

strong positive charge and the hydrophilic nature of Lys compared to Ile, which has no charge 

and is hydrophobic in nature.   The hydrogen bond present between Lys137 and Asn135 may 

stabilize the protein as compared to Ile137.  The strong positive charge of Lys137 leads to elec-

trostatic interactions with Lys139, Lys140 and Asp160, further affecting the stability of the pro-

tein.   

I233/V233 mutation site in FcγRIII Ile233 causes additional VdWClashes with Asp253, 

which may result in decreased protein stability.  Furthermore, both residues have similar hydro-

phobicity properties.  FcγR is a membrane bound protein and this mutation site is at the c-

terminal of the protein which forms the proximal cytoplasmic tail of the protein.  Probably due to 

this reason the residue is highly conserved and may play an important role in the cell signaling 

pathways.   In which, any change in the residue may affect protein functionality.  
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Figure 3.8  A) Superimposed structures of Gly and Val at position 20 in FcγRI.  B) Super-
imposed structures of Ile and Lys at position 137 in FcγRII.  C) Superimposed structures 
of Ile and Val at position 233 in FcγRIII 

 

A131/T131 mutation in FcγRII decreases the affinity of FcγRII for IgGI as indicated by 

FoldX analysis.  The mutant residue Thr is hydrophilic in nature and is involved in hydrogen 

bonding as opposed to the hydrophobic nature of Ala.  The mutation site in present in a buried 

region with a very low RSA value.   Because of this, the introduction of a hydrophilic residue 

may affect protein functionality.  Thr131 interacts with Ser183 of chain B by hydrogen bonding.  
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Thr131 also causes VdWClashes AsnB182 and SerB183, which may prevent interaction be-

tween FcγRII and IgG1. 

 

Figure 3.9   Superimposed structures of Ala (Blue) and Thr (Red) at position 131 in 
FcγRII, along with IgG1 (Green). 
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4     CONCLUSIONS 

The number of SNPs reported in the SNP databases such as dbSNP at NCBI is increas-

ing.  Due to the large number of SNPs it becomes difficult to plan population based experiments 

to identify the SNP that can potentially affect the protein function.  Various non synonymous 

SNPs are reported to be involved in disease development.  Thus, it becomes necessary to iden-

tify potential diseases causing SNPs from the neutral ones.  Many in silico methods provide in-

formation on the effect of the polymorphisms on protein structure and function.   Various studies 

have been performed using in silico analysis approaches to predict the functional nsSNPs for 

genes such as G6PD, BARF and PTEN [1, 2].  The current in silico methods have wide range of 

performance and are chosen depending on different aspects of the proteins.  Thus, a single 

method would be insufficient to provide an accurate prediction of functional SNPs and their ef-

fects.  Therefore, to increase prediction accuracy, a combination of various methods based on 

evolutionary conservation, physio-chemical properties and protein structure are utilized. [43] 

The nsSNPs in FcRs can affect their affinity towards the immunoglobulin and thus affect 

the response of the adaptive immune system.  nsSNPs in FcγRs have been reported to affect 

the binding affinity towards the IgGs and clearance rates of the Rhesus D-positive red blood 

cells [31].   In our study, we investigated naturally present polymorphisms in FcγRs of rhesus 

macaque to identify functionally important ones.   An in silico analysis approach was undertaken 

using SIFT, PROVEAN, nsSNPAnalyzer, I-Mutant, MuSTAB and iPTREE-STAB online web 

servers.  SIFT and nsSNPAnalyzer are highly utilized pathogeneticity prediction methods [44].  

Provean is a relatively new prediction method by JCVI [36].  According to SIFT and nsSNPAna-

lyzer V20G in FCγRI and I233V in FCγRIII were predicted to affect protein function and cause 

disease.  Whereas, V20G in FCγRI and P105T and K140N in FCγRII were predicted by SIFT 

and PROVEAN to affect protein function.   I-Mutant, MuSTAB and iPTREE-STAB predict the 
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affect of the SNP on the protein stability.  MuSTAB only gives the direction of the stability 

change, whereas I-Mutant and IPTREE-STAB also predict the value of the protein stability 

change (DDG).  V20G in FCγRI and I137K in FCγRII were predicted to decrease protein stabil-

ity considerably.  MuSTAB also predicted I233V in FCγRIII to decrease protein stability, which 

correlated with the SIFT and nsSNPAnalyzer predictions.  FOLDx is also a protein stability pre-

dictor, but it utilized structure as compared to the sequence based prediction of the above three 

predictors.  I-Mutant3.0 and FOLDx were reported to give best predictive performance [45].  

Structures of the human FcγR are available in Protein Data Bank (PDB) and have been 

used to analyze the effect of polymorphisms [46,47].  Although the FcγRs of rhesus macaque 

are highly similar to their human counterparts, a 3D structure is essential for analyzing the im-

pact of the SNPs.   Therefore, we predicted the 3D structure of the rhesus macaque FcγRs 

through homology modeling using the AMMP program.  Depending on the highest sequence 

similarity according to AMMP profiling, the FcγRI modeled structure was based on PDB struc-

ture 3RJD, FcγRII was based on 3RY4 and FcγRII was based on 1T83.   The first sequence 

from each FcγR was considered to be the native sequence and their structures were predicted.  

The predicted structures were superimposed on to 1T83 for FcγRI and FcγRII and 3RY6 for 

FcγRIII.  The PDB structures were utilized to superimpose the modeled structures of rhesus 

FcγR, as the BLAST search of the sequences gave the respective hits.  1T83 is a complex of 

human FcγRIII and IgG1 and 3RY6 is a complex of human FcγRII and IgG1.  There is no sig-

nificant difference in the native FcγR and FcγR in FcγR-IgG1 complex[47].  Using the FOLDx 

program, the mutant structures were modeled and analyzed.  Each mutation was considered 

individually to study the inherent effect of the SNP.  In addition, the allelic sequences were ana-

lyzed to investigate if the polymorphisms neutralize each other by occurring simultaneously as 

an act of preservation of function by nature.   

FOLDx was used to analyze the effects of single amino acid variations on the structure 

and stability of the protein. Further, differences between the folding energies (kcal/mol) of the 
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wild type structure and the mutated modeled structures were analyzed.  A threshold of +-1 

kcal/mol was used to discriminate between functionally important and neutral SNPs.  Studies 

have suggested that a +-1 kcal/mol threshold is not too strict and considers possible SNPs af-

fecting protein stability [24].  A difference of 1 kcal/mol was observed between forward mutation 

and reverse mutation stability analysis over the conventional sign reversal of DDG, using 

FOLDx [48].  The amino acids predicted by FOLDx commands AnalyseComplex and PrintNet-

work, for rhesus FcγRII and FcγRIII coincided to a certain extent with the amino acids known to 

be involved in human FcγRII and FcγRIII interaction with human IgG1 [18,19].  The crystal 

structures of the rhesus FcγRI, FcγRII and FcγRIII should be solved in order to confirm the in-

volvement of the FOLDx predicted amino acids in interaction with rhesus IgG1.  

Our results indicate that Val -> Gly at position 20 in FcγRI decreases protein stability 

having DDG values 1.13 kcal/mol, which may be due to the introduction of a hydrophilic amino 

acid in a hydrophobic pocket.  Val -> Gly at position 20 in FcγRI was predicted deleterious by all 

the computational methods used in this study. 

Polymorphism may not always manifest into a disease, it may lead to change in specific-

ity instead if the mutations are present near the binding site.  Thus, decrease in protein stability 

predicted by FOLDx can lead to change in specificity of FcγR towards IgGs.  Our FOLDx analy-

sis suggested Gln -> Arg at position 32 in FcγRI to decrease the stability by 1.01 kcal/mol.  The 

decrease in stability may be caused due to replacement with a strong positive charge.  The mu-

tation site is also near the glycosylation site and may interact with 2-(Acetylamino)-2-Deoxy-A-

D-Glucopyranose (NDG) molecule.  The carbohydrate molecules are important for protein fold-

ing [49] and thus the folding energy may be affected due to the addition of a strong positive 

charged amino acid.  Arg -> Met at position 67 in FcγRII is predicted to decrease the stability by 

1.55 kcal/mol.  The wild type amino acid, Arg, is hydrophilic and has a very strong positive  

charge, which is replaced by a hydrophobic, no charged amino acid.  This may possibly disturb 

the electrostatic interactions.  Ile -> Val at position 91 in FcγRII decreases the protein stability by 
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1.62 kcal/mol. This decrease could possibly result from the interference in hydrogen bond for-

mation and surface accessibility.  Pro -> Thr at position 105 in FcγRII may affect protein stability 

due to the replacement of the not hydrophobic amino acid with hydrophilic amino acid and de-

crease the protein stability by 1.04 kcal/mol.  SIFT and PROVEAN also predicted the Pro -> Thr 

change at position 105 to be deleterious, which indicates that the change is in a conserved re-

gion.  Lys-> Asn at position 140 in FcγRII decreases the protein stability by 1.42 kcal/mol, pos-

sibly due to the loss of strong positive charge of Lys.  The PDB structure 3RY6 used to super-

impose the FcγRII modeled structures had a GLYCEROL (GOL) molecule present at the hinge 

of the two domains of FcγRII.  The mutation site Lys-> Asn at position 140 in FcγRII lies in the 

vicinity of the GOL molecule and the electrostatic interaction may be disturbed causing loss in 

stability.  Ala-> Thr at position 113 in FcγRIII decreases protein stability significantly by 2.34 

kcal/mol, which may be caused by the introduction of hydrophilic amino acid in a hydrophobic 

pocket, as the wild type residue is also hydrophobic.  Further, if a single amino acid variation 

shows a change in protein stability (DDG values) or protein-protein interaction (DDGbinding val-

ues), it should give comparable values with the sign reversal for the reverse mutation.  This 

would indicate that the prediction of the effect of the single amino acid variation on the protein 

structure or protein-protein interaction is substantial.  Val -> Gly at position 20 in FcγRI Arg -> 

Met at position 67 in FcγRII and Lys -> Asn  at position 140 in FcγRII give comparable values 

with the sign reversal for the protein stability and protein-protein interaction analyses by FOLDx, 

which suggests that these polymorphisms should also be considered as a potential target for 

future experiments.  

In conclusion, in silico analysis of the FcγRs indicates that V20G in FcγRI decreases 

protein stability and is not tolerated.  In FcγRII, the I137K destabilizes the protein and A131T 

causes decrease in affinity of FcγRII towards IgG1.  In FcγRIII, I233V and A113T destabilize the 

protein and may result in loss of function.  Val at positions 229 and 233 in FcγRIII were found in 

the group of SIV infected rhesus macaque which were unable to make ant-SIV antibodies com-
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pared to those having Met and Ile at those positions, respectively [50].  Thus for further analysis, 

these mutations should be given priority to obtain detailed information on their effects.  In order 

to confirm the structure modeled in this study, the actual structures should be determined by X-

Ray crystallography or Nuclear magnetic resonance (NMR) spectroscopy.  In addition, binding 

studies should be carried out to investigate the effect of the mutations on the interaction with 

IgGs [28].  
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