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ABSTRACT 

Hurricane Hugo struck the coast of South Carolina on September 21, 1989 as a cate-

gory 4 hurricane on the Saffir-Simpson Scale. Landsat Thematic mapper was utilized to 

determine the extent of damage experienced at the Santee Experimental Forest (SEF) (a 

part of Francis Marion National Forest) in South Carolina. Normalized Difference Vege-

tation Index (NDVI) and the change detection techniques were used to determine initial 

forest damage and to monitor the recovery over a 22-year period following Hurricane 

Hugo. According to the results from the NDVI analysis the SEF made a full recovery af-

ter a 10-year period. The remote sensing techniques used were effective in identifying 

the damage as well as the recovery. 
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1.1.1.1. INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION     

Coastal wetland forests are unique environments that contain a wealth of biodiver-

sity. Under ordinary conditions, and without exterior influences, vegetation within a for-

ested area would likely maintain an equilibrium in which species succession is dictated 

by niche differentiation based on the areas’ characteristics (Foster, 1988). However, 

equilibrium is rarely achieved due to the occurrence of external influences. A distur-

bance is an interference of an ecosystem by any exterior force that includes hurri-

canes, floods, and fires, which alter vegetation dynamics and cover (Lugo, 2008). Due 

to the high concentration of biodiversity within coastal forests and wetlands (Russell et. 

al., 2002), the initial and sustained impacts caused by natural disasters must be stud-

ied. Hurricanes are some of the most significant natural disturbances that affect coastal 

forest ecosystems in the Southeastern United States (Wang et. al., 2010). 

Hurricanes that impact the Southeastern United States are responsible for an ex-

tensive amount of damage. In 1989, Hurricane Hugo alone caused an upwards of $1.2 

billion in forestry and agricultural damage (Cablk et. al., 1994).  A severe hurricane has 

the capacity to markedly alter the composition of a forested wetland area immediately, 

initiating long-lasting changes in structure and succession (Foster, 1988; Wang et. al., 

2010). This level of destruction merits an investigation of both the initial and sustained 

impacts caused by this type of natural disaster. Specifically, understanding how certain 

tree populations react to a hurricane landfall in an area can reveal their susceptibility to 

reoccurring storms. To develop a more complete understanding of how certain tree 

populations react to a hurricane landfall in an area, it is essential to study the same 

area over long time periods, prior to the hurricane and once the hurricane has passed 

(Frangi & Lugo, 1998). The passage of Hurricane Hugo through the coast of South Caro-
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lina in 1989 provided a unique opportunity for a long-term study on how a coastal plain 

forest responds to a severe natural disaster.  

Although many studies (e.g. Cablk et. al., 1994; Hook et. al., 1991; Helm et. al., 

1991) have been conducted on the immediate effects of a hurricane on forested areas, 

little work has focused on the long-term response and recovery of vegetation. This lack 

of knowledge limits our ability to understand and prevent additional forest destruction 

caused by events following a severe hurricane (e.g., wild fires and additional habitat 

loss). It is important to assess the time length for a forested area to begin recovery and 

to determine whether natural regeneration processes are sufficient to restore the hur-

ricane damaged areas. The current study has two main objectives: 1) to examine the 

vegetation damage in Francis Marion National Forest due to Hurricane Hugo, specifi-

cally in the Santee Experimental Forest subsection; 2) to investigate the regeneration of 

the vegetation cover over a 20-year period. By reassessing the damage on the native 

plant species caused by Hurricane Hugo, we can better understand the early phases of 

revegetation.  

1.11.11.11.1 Background Information/Literature ReviewBackground Information/Literature ReviewBackground Information/Literature ReviewBackground Information/Literature Review    

Hurricane Hugo developed as a tropical depression off the coast of Africa on 

September 9, 1989. The storm strengthened as it travelled through the Atlantic before 

making landfall on the coast of South Carolina on September 21st, 1989, in Charleston, 

SC (Figure 1) as a Category 4 hurricane with maximum sustained winds of 222 km/h with 

a barometric pressure of 93.4MPa causing extensive damage to coastal forests 

(Gresham et. al., 1991; Conner & Inabinette, 2003) A storm of similar magnitude to Hugo 

is considered to have a return period of 100 years (Cablk et. al., 1994), this emphasizes 

the importance of understanding the destruction and reestablishment of the coastal 

plain forests. The eye of Hurricane Hugo came within 8 km of Francis Marion National 
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Forest (hereafter FMNF) located near Charleston, SC (Hook et. al., 1991Kulkarini, 

2004). The FMNF was hit by the upper right quadrant of Hurricane Hugo, which is the 

area that produces the strongest winds (Foster, 1988). The storm caused a large 

amount of destruction within the forest and its surrounding areas, making it an impor-

tant area of interest for studying the aftermath of the hurricane. It was estimated that 

FMNF sustained a loss of 75% of harvestable timber due to the hurricane (Dunning & 

Watts, 1991LeGrand, 1990). Figure 1 shows the path of Hurricane Hugo as it encoun-

tered the coast of South Carolina. 

 

Figure 1 A map of Southeastern United States showing Hurricane Hugo ap-
proaching the coast of South Carolina on September 21, 1989. 

 

 

1.21.21.21.2 Vegetation DamageVegetation DamageVegetation DamageVegetation Damage    

There are many factors involved in the type and severity of vegetation damage in 

an area impacted by a hurricane (Conner & Inabinette, 2003; Gresham et. al., 1991). 

The key determinants of hurricane vegetation damage on coastal wetland forests in-

clude wind speed, age of trees, species involved, and the amount of flooding that oc-
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curs. Intense wind speeds can cause severe defoliation and breakage of forested areas 

(Conner, 1995). Flooding due to storm surge can cause elevated mortality rates for ex-

tended periods of time due to the high salinity associated with surge waters (Conner, 

1995). Salt water inundation resulting from Hurricane Hugo caused significant damage 

to six species along the South Carolina coast [i.e., sweetgum (Liquidambar styraciflua), 

red maple (Acer rubrum), sugarberry (Celtis laevigata), redbay (Persea borbonia), 

waxmyrtle (Myrica cerifera), and laurel oak (Quercus lauriflolia], (Conner & Inabinette, 

2003)].  

Along with flood inundation, the age of the tree stand and species present play a 

key role in the severity of tree mortality. Specifically, the species of tree plays a large 

role in the variance of tree damage (Gresham et. al., 1991). Species such as live oak 

(Quercus virginiana) and bald cypress (Taxodium distichum) have very high resistance 

to wind damage in the event of a tropical storm, leading to less damage within the spe-

cies (Gresham et. al.  1991). Longleaf pine (Pinus palustris), which is commonly found in 

the FMNF also exhibited high resistance to wind damage due to the presence of a large 

taproot and an extensive lateral root system (Gresham et. al., 1991). However, species 

such as loblolly pine (Pinus taeda) and southern red oak (Quercus falcate) grow taller 

making them more susceptible to wind damage in a tropical storm event (Gresham et. 

al. 1991).  Loblolly pine and long leaf pine were the most prevalent tree species in FMNF 

covering 155,547 acres (65%) prior to Hurricane Hugo in 1989, making the area vulner-

able to severe vegetation destruction (Supervisor, 1995).  

The severity of forest damage caused by a hurricane is related not only to the 

species of trees, but the age of trees as well (Foster 1988; Gresham et. al. 1991; Hook et 

al., 1991). Tree height increases with age, making older trees more susceptible to dam-

age from high wind speeds (Foster, 1988). Susceptibility of conifers to wind damage in-
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creases dramatically, after the age of 15 years (Foster, 1988). For instance, in 1938, a 

hurricane impacted the Harvard Forest, located in Massachusetts and destroyed nearly 

every conifer species over 30 years old (Foster, 1988). When determining the suscepti-

bility of a forested area to high wind speeds, the age of the tree stands must be consid-

ered. 

1.31.31.31.3 Detection of VegetationDetection of VegetationDetection of VegetationDetection of Vegetation    

Remote Sensing of vegetation change can be classified into four different cate-

gories: (1) chlorophyll content, (2) leaf water content, (3) detection based on spectral 

mixture analysis, and (4) structural changes of damaged forest (Wang et. al., 2010).  

The first approach utilizes indices such as the NDVI. The NDVI is a well-known and 

popular method used to detect changes in vegetation over time. NDVI displays the 

“abundance and activity of chlorophyll absorption of broad-band red wavelengths and 

chlorophyll reflectance of broad-band near infrared wavelengths” (Myneni et. al., 1995) 

and can, therefore, display the health of the vegetation in forested areas. NDVI differen-

tiates green vegetation cover from other cover categories due to chlorophyll absorption 

(Wang et al., 2010). NDVI can be utilized to determine greater information about vegeta-

tion rather than using a single channel (Townsend & Walsh, 2001). This is possible be-

cause healthy vegetation reflects highly in the near-infrared portion of the electromag-

netic spectrum, but very poorly in the red portion (Townsend & Walsh, 2001). NDVI has 

been effectively used to study forested environments and has been utilized to investi-

gate the damage caused by Hurricane Katrina to forests in the Lower Pearl River Valley 

(Ramsey, 2001; Rogers et. al., 2009; Wang et. al., 2010). Wang et al. (2010) investigated 

the accuracy of multiple vegetation detection indices including the enhanced vegeta-

tion index (EVI), the normalized difference infrared index (NDII), the leaf area index (LAI) 

and NDVI. They concluded that NDII, NDVI, and EVI were capable of accurately detect-
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ing changes in vegetation cover caused by a hurricane. NDII and NDVI were found to be 

more sensitive to damage detection and were the indices that provided results similar 

to the USDA Forest Service analysis (Wang et al., 2010). NDVI is calculated from the ra-

tio between the red band (band 3 in Landsat TM/ETM+, 630-690 nm), which is the chlo-

rophyll absorption region, and the near-infrared (band 4 in Landsat TM/ETM+, 760-

900nm) which is scattered by vegetation (Feely et. al., 2005) as follows: 

NDVI= (NIRNDVI= (NIRNDVI= (NIRNDVI= (NIR----RED)/(NIR+RED),                                  (1)RED)/(NIR+RED),                                  (1)RED)/(NIR+RED),                                  (1)RED)/(NIR+RED),                                  (1)    

where NIR is the near infrared band, and RED is the red band. Vegetation absorbs en-

ergy in the red band wavelength yield little reflectance whereas the satellite sensor de-

tects enhanced reflected from the NIR wavelengths. The NDVI utilizes the contrast in 

absorption and scattering to estimate vegetation greenness of an area (Feely et. al., 

2005).  The NDII uses Landsat TM/ETM+ bands 4 and 5 to differentiate between concen-

trations of plant foliage and seasonal foliage change (Feely et. al., 2005).  The NDII is 

calculated as shown in the following equation:  

NDVII= (NIRNDVII= (NIRNDVII= (NIRNDVII= (NIR----SWIR)/(NIR+SWIR),SWIR)/(NIR+SWIR),SWIR)/(NIR+SWIR),SWIR)/(NIR+SWIR),                     (2)             (2)             (2)             (2)    

where NIR is the near infrared band, and SWIR is shortwave infrared that reflects at 

1.24, 1.65 or 2.13 (nm) (Wang, et. al., 2010). NDVI was the band combination chosen in 

this study rather than NDII because it is more robust and effective and has been proven 

to be effective in past studies (Cablk et. al., 1994; Ramsey et. al., 2001; Rogers et. al., 

2009). This combination of bands was additionally chosen because of the large contrast 

that exists between the red and the infrared band in these areas of the electromagnetic 

spectrum. 

1.41.41.41.4 Satellite Remote Sensing Satellite Remote Sensing Satellite Remote Sensing Satellite Remote Sensing     

Ecosystems are continuously shifting; change in vegetation cover can either be 

gradual via natural progression or abrupt via natural disturbances or other outside in-
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fluences. Hurricanes are capable of causing widespread destruction over large areas 

in a relatively short period of time. However, the intermittent nature and unpredictable 

behavior of hurricanes makes it difficult and expensive to monitor their impacts effec-

tively using ground-monitoring techniques. Traditionally, the assessment of a hurri-

cane-impacted forest region has been based on ground surveys, aerial photography, 

and ecological models, or a combination of these methods (Wang et. al., 2010,). Re-

cently, satellite remote sensing has become the preferred method of monitoring vegeta-

tion changes in forested areas caused by hurricanes due to high temporal and spatial 

resolution, efficiency, predictability, and the relative low cost (Ramsey et. al., 2009). 

Research on the effectiveness of remote sensing for monitoring post hurricane vegeta-

tion change was first conducted in the early 1990s (Wang et. al., 2010). Remote sensing 

is an important and useful tool because it can be used to generate data when field sam-

pling cannot be used to attain the distribution of vegetation cover (Shuman & Ambrose, 

2003). An additional benefit of remote sensing is that it does not disturb the environ-

ment during data collection, allowing for the preservation of the actual effects from the 

natural disaster. This makes remote sensing an ideal tool for detecting damage directly 

following a natural disaster. 

Satellite remote sensing can additionally provide advantages for assessing vege-

tation inventory and monitoring the growth and recessions of areas with vegetation 

cover (Ozesmi & Bauer, 2002) Remote sensing images have been used frequently to 

map and classify vegetation temporal changes (Shuman & Ambrose, 2003). Remotely 

sensed images have also been used to assess vegetation species composition (Jensen 

et al., 1985) and to identify plant stress using multispectral reflectance (Anderson & 

Perry, 1996). Proper selection of satellite imagery has been shown to be just as critical 

as the choice in sensors in multi temporal change detection (Coppin et. al., 2004). Cer-
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tain seasons such as summer and winter (evergreen species) show vegetation to be far 

more stable than in spring and fall and are therefore the ideal seasons for multi-

temporal studies (Coppin et. al., 2004). When selecting multi-temporal satellite images 

for a study it is important where possible to limit the selection to dates in the same anni-

versary window. This will minimize the differences in reflectance that is caused by 

phenology, seasonal differences in vegetation cover, and differences in the sun’s angle 

(Coppin et. al., 2004).  

When dealing with land cover change over time, appropriate time intervals be-

tween data acquisition dates must be identified. In a previous study investigating re-

vegetation in South Carolina, researchers concluded that a two year time period was 

not a sufficient amount of time in-between two images to detect re-vegetation of an area 

(Colwell & Thomason, 1998). Three years is the minimum time interval to detect land 

cover changes from non-forested areas to areas that have begun to reestablish vegeta-

tion except where large disturbances are involved (Aldrich, 1975). In order to detect a 

change from shrubs to the establishment of a forest canopy the suggested interval is 5 

to 20 years when utilizing remotely sensed imagery (Park et. al., 1983). Therefore, ac-

cording to these studies (Coppin et. al., 2004; Colwell et. al., 1980; Aldrich, 1975) 

change detection intervals should be separated by at least five years in order for re-

vegetation detection using satellite imagery. The availability of cloud free images was 

limited during the 5th and 6th year anniversary window thus, the current study rounded 

up to 10-year intervals. Additionally, one of the dominant tree species within the SEF 

longleaf pine spends 5-10 years in a grass stage before making an accent to the can-

opy. Allowing more time between intervals will ensure that low lying longleaf pine stand 

will not be mistaken for shrubland/grassland in the unsupervised classification process. 
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When studying a site affected by a hurricane, it is important to establish the area 

subjected to the greatest impact. To determine this, the anatomy of a hurricane must be 

analyzed. The most destructive winds within a hurricane take place on the easterly side 

(specifically the northeast quadrant), where the combination of rotary velocity and for-

ward movement generate the highest wind speed (Foster, 1988). From this, one would 

expect the greatest damage to occur in areas that encounter the easterly side of a hur-

ricane. Therefore, in this study, FMNF was chosen as the study site due to its close 

proximity to the eye of the storm.  

1.51.51.51.5 ObjectivesObjectivesObjectivesObjectives    

The current study investigated temporal times scales needed for a coastal wet-

land forest to begin to recover from a major disturbance. The overall aim of this study 

was to investigate the re-vegetation patterns that occur following a major disturbance 

in a coastal plain forest. Due to the potential effects of hurricane disturbances on the 

coastal plain forests of South Carolina, FMNF was an ideal study site due to both its lo-

cation and high levels of natural regeneration. Specifically, the study investigated a 

subsection of the forest that has experienced little to no human alterations since its es-

tablishment in 1937, the Santee Experimental Forest (Hook, et. al., 1991). A land cover 

change analysis was conducted to determine the primary damage assessment of the 

effect Hurricane Hugo had on the FMNF in 1989, as well as how the damaged areas re-

covered after twenty-two years. This study sought to answer the following research 

questions, 

• What was the extent of damage in the Francis Marion National Forest and 

the Santee Experimental Forest following the landfall of Hurricane Hugo? 
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• After a twenty-two year period, to what extent has the Francis Marion Na-

tional Forest and the Santee Experimental Forest recovered to regain its 

pre-disturbance vegetation cover?  

• Can remote sensing be used explicitly to monitor long-term recoveries in 

coastal plain forest landscapes? 
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2.2.2.2. METHODSMETHODSMETHODSMETHODS    

2.12.12.12.1 Study AreaStudy AreaStudy AreaStudy Area    

The focus of this study was the Santee Experimental Forest, located within the FMNF, 

which is situated within 8 kilometers of where the eye of Hurricane Hugo made landfall 

(Hook et. al., 1991).  The forest is located on the South Carolina coast, which has been 

shown to experience hurricane or tropical storm activity once every 2.6 years making 

this area suitable for post hurricane studies (Cablk et. al., 1994). FMNF contains 

258,938 acres and is located within the counties of Charleston and Berkeley in South 

Carolina (Monitoring and Evaluation Report, 2010). The area extends from approxi-

mately 33°27’ N to 32°54’ N, and 79°59’ W to 79°23’ W (Figure 2). 
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Figure 2 A map showing the location of the Santee Experimental Forest (study area) 

within Francis Marion National Forest. Inset, the location of the study area marked as a 

red box on the map of South Carolina. 



13 
 

The Santee Experimental Forest is located approximately 40km from the coast, 

on the western portion of the FMNF (Hook et. al., 1991). The site spans over 6,100 acres 

and includes many of the forest types associated with the lower coastal plain regions 

such as mixed pine hardwood, loblolly pine, longleaf pine, mixed loblolly pine and long-

leaf pine, upland hard woods, bottomland hardwoods, and creek swamp containing the 

tree species shown in Table 1 (Hook et. al., 1991). The age of the stands ranged from 80 

to 110 years old (Hook et. al., 1991). 

 

Table 1 Tree species present on the Santee Experimental Forest 
Scientific NameScientific NameScientific NameScientific Name    Common NameCommon NameCommon NameCommon Name    

Pinus taeda Loblolly pine 

Liqudambar 
styraciflu 

Sweet gum 

Quercus falcaya Southern red 
oak 

Ouercus alba White oak 

Acer rubrum Red maple 

Pinus palustris Longleaf pine 

Quercus vevlutina Black oak 

Quercus pagoda Cherrybark oak 

Quercus michauxii Swamp chestnut 
oak 

Quercus nigra Water oak 

Fraxinus pennsyl-
vania 

Green ash 

Liriodendron 
tulipifera 

Yellow poplar 

Quercus shumardii Shumard oak 

Nyssa sylvatica Black tupelo 

Quercus hemi-
sphaerica 

Laurel oak 

Taxodium disti-
chum 

Bald cypress 

Nyssa aquatica Water tupelo 
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This specific area was chosen because, according to U.S Forest Service, it has 

not been subjected to any logging in the time between Hugo and the present, making it 

an ideal area for tracking the natural regeneration of vegetation after Hurricane Hugo. 

2.22.22.22.2 Data AcquisitionData AcquisitionData AcquisitionData Acquisition    

In this study, four satellite remote sensing images were utilized to determine land 

cover change caused by Hurricane Hugo and the recovery thereafter. The images were 

acquired by Landsat 5 Thematic Mapper (TM). Landsat 5 was launched on March 1, 

1989 and utilizes the thematic mapper (TM) sensor to obtain data. Landsat 7, which was 

used to acquire the 1999 image was launched on April 15, 1999 and utilizes enhanced 

thematic mapper (ETM). The combination of the thematic sensor’s red and near-

infrared band is best suited for determining temporal vegetation change.  

In order to accurately assess the land cover change at the Santee Experimental 

Forest, cloud free satellite images were obtained for four different periods. The image 

used to represent pre-Hugo vegetation (Figure 3) was acquired on October 30, 1987.  

The rationale for the selection of the 1987 image was that all images in 1988 that were 

in the proper time frame had cloud cover over the study area. This image was selected 

because it represented a time period prior to Hugo and was one of the clearest images 

near the date of the storm in 1989. The image used to represent post-Hugo vegetation 

(Figure 4) was acquired on October 03, 1989. This was the only cloud free images within 

a 30-day period after landfall.  The third image used to represent post-Hugo vegetation 

recovery (Figure 5) was acquired on October 23, 1999. This image was the closest 

cloud free image to the Hurricane Hugo anniversary date and would display the recov-

ery after a ten-year period. The fourth image (Figure 6) was acquired on October 16, 

2011 in order to show the vegetation recovery after a 22-year period. Table 2 provides 

the characteristics of the images used. 
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Table 2 Landsat 5 and 7 TM/ETM+ used in the study 
AcquisitionAcquisitionAcquisitionAcquisition    SensorSensorSensorSensor    Spatial Resolution Spatial Resolution Spatial Resolution Spatial Resolution 

(m)(m)(m)(m)    
No. Of No. Of No. Of No. Of 
BandsBandsBandsBands    

10/30/198710/30/198710/30/198710/30/1987    TM 5 30 7 

10/3/198910/3/198910/3/198910/3/1989    TM 5 30 7 

10/23/199910/23/199910/23/199910/23/1999    ETM+ 30 8 

10/16/201110/16/201110/16/201110/16/2011    TM 5 30 7 

 

Figure 3 A true color image of Landsat 5 TM image of October 30, 1987 (bands 
3,2,1 displayed as red, green, and blue, respectively). The study is outlined in red. 
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Figure 4 A true color image of Landsat 5 of October 03, 1989 (bands 3,2,1 dis-
played as red, green, and blue, respectively). The study site is outlined in red. 
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Figure 5 A true color image of Landsat 7 ETM+ October 23, 1999 (bands 3,2,1 
displayed as red, green, and blue, respectively). The study is outlined in red. 
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Figure 6 A true color image of Landsat 5 Thematic Mapper of October 16, 2011 
(bands 3,2,1, displayed as red, green, and blue, respectively). The study site is outlined 

in red. 
 

All Landsat scenes were obtained from the United States Geological Survey 

(USGS) in the form of raw Landsat TM bands. The scene location was based on Land-
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sat’s Worldwide Reference System (WRS) path 16 and row 37. The images represent 

the clearest images in the USGS Landsat TM/ETM+ archive for the month of October. 

The images chosen were cloud free and were taken near the same time each year in 

order to minimize phenological differences. A subset consisting of the FMNF, located to 

the North of Charleston, SC where Hurricane Hugo first encountered the South Carolina 

coast, was selected as shown in Figures 7. The image was then subset an additional 

time in order to focus on the Santee Experimental Forest (Figure 8).  

2.32.32.32.3 Image ProcessingImage ProcessingImage ProcessingImage Processing    

Images obtained from the Landsat 5 sensor contain certain levels of noise from 

atmospheric interference, caused by dispersion of electromagnetic energy, and noise 

produced from the sensor itself (Kiage et. al., 2007). Atmospheric noise was removed 

from the images by using ATCOR 2 workstation in ERDAS Imagine 2011, which reduced 

error. After each image was atmospherically corrected, a subset was then created in 

order to emphasize the study area (Santee Experimental Forest).  

2.42.42.42.4 Data Transformation MethodsData Transformation MethodsData Transformation MethodsData Transformation Methods    

Transformation processes help expose changes in surface reflectance that can 

be used to visualize change in map form. A variety of techniques were utilized in this 

study, including image classification and NDVI.  For image classification, each image 

was classified into land cover types using spectral reflectance as a point of reference 

using the unsupervised classification method (Rogers et. al., 2009). This was done us-

ing the Interactive Self –Organizing Data Analysis (ISODATA) algorithm from ERDAS 

2011 Imagine. This process involves assigning each pixel value within the image a cer-

tain land cover classification based on the image’s pixel spectral response. Each pixel 

with similar spectral statistics was aggregated into the same class. Each aggregated 

spectral clusters was specified as one of the seven major land use/land cover catego-
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ries based on the Anderson Classification Scheme (Anderson et. al., 1976) (i.e., 

1.water, 2.forested land, 3. marshland, 4. farming (agriculture), 5.barren/damaged for-

est, 6.urban and build up land, 7.grassland) in order to simplify the analysis of the al-

tered landscape. There are areas within the FMNF with agriculture (Figure 9) and bar-

ren (Figure 10) land covers, however these land cover classes were not represented in 

the SEF. Due to the absence of certain classes (i.e. Water, wetland, and agriculture) 

within the SEF, only the following classes were used: forest, bare ground, urban, grass-

land/shrubland, damaged forest and flooded vegetation. Table 3 provides a summary of 

the land cover classes used in this study. 
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Figure 7 Subset of Francis Marion National Forest on October 30, 1987 (bands 
3,2,1 displayed as red, green, and blue, respectively). The study site is outlined in red. 
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Figure 8 True color Landsat 5 image of Santee Experimental Forest on October 
03, 1989 (bands 3,2,1 displayed as red, green, and blue, respectively). 

 

The assignment of each spectral cluster was aided based off visual findings contained 

in the original images, familiarity with the study area, and matching the latitude and 

longitude coordinates from the original image with corresponding coordinates on 

Google Earth. 
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Figure 9 Agriculture land cover within the FMNF boundary (taken by author on 
October 7, 2011). 
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Figure 10 Bare ground area within the FMNF boundary (taken by author on Octo-
ber 7, 2011). 

Table 3 Land-cover types used in classification of satellite image....    
Land CoveLand CoveLand CoveLand Coverrrr    CodeCodeCodeCode    DescriptionDescriptionDescriptionDescription    

ForestForestForestForest    1 High density of trees that dominate the canopy. 

Bare GroundBare GroundBare GroundBare Ground    2 Soil surfaces that contain minimal vegetation 

UrbanUrbanUrbanUrban    3 Built up environments with parking lots, roads, and build-
ings 

GrasGrasGrasGrass-s-s-s-
land/Shrublandland/Shrublandland/Shrublandland/Shrubland    

4 Areas with grass land accompanied by sparse bushes; 
abandoned agricultural areas 

Damaged FoDamaged FoDamaged FoDamaged Forrrrestestestest    5 Areas that experienced vegetation destruction  

Flooded VegFlooded VegFlooded VegFlooded Vegeeeetationtationtationtation    6 Areas that experienced flooding  

 

In order to differentiate between spectral clusters and to label the classes accu-

rately, the spectral data layer was placed upon the original image. The opacity for the 

raster layer was then set to zero. Then the opacity of a single spectral cluster class was 
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changed to one and assigned a bright color, to highlight the area in which the cluster 

exists. This technique provided an effective method for determining the location of spe-

cific spectral clusters. Once each spectral cluster was assigned a land cover/ land use 

class, they were subjected to a recoding process. Recoding involves combining similar 

land cover classes into a single representative class. This resulted in seven land cover 

classes. The recoded image was then subjected to a suite of filters including the 8 x 8 

ha clump and 2 x 2 ha eliminate filters to reduce noise in the classification. 

2.52.52.52.5 Accuracy AssessmentAccuracy AssessmentAccuracy AssessmentAccuracy Assessment    

Each image was then subjected to an individual accuracy assessment once the 

final land cover classes were established. Due to the use of historical images for the 

study, ground referencing was not conducted.  The original images and the accuracy 

assessment tool from ERDAS Imagine 2011 were relied on to conduct the assessment. 

The tool randomly plotted 50 random points on the original image. The land class in 

which each point is located was then determined using corresponding latitude and lon-

gitude coordinates with Google Earth. The classes of each point were then compared to 

the original classification and a report was created that showed user’s accuracy, pro-

ducer’s accuracy, overall accuracy, errors of emission and a Kappa coefficient. A con-

fusion matrix, which is a cross tabulation of land cover class labels given by the user 

compared to observed reference data points randomly plotted at different locations 

was also created (Foody, 2002).  The final classification accuracy for each image was 

determined by dividing the sum of all the correctly classified pixels by the number of 

pixels in the confusion matrix (Kiage et. al., 2007). 

2.62.62.62.6 Change DetectionChange DetectionChange DetectionChange Detection    

In this study, four thematic images were created using unsupervised classifica-

tion from four different time periods, which were compared to each other to determine 
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the change in vegetation cover. The October 30, 1987 image and the October 3, 1989 

image were placed into the matrix tool in the ERDAS Imagine 2011 software. Once the 

two images were run through the matrix, a single image was produced highlighting the 

land cover classes that changed. Then the October 3, 1989 and October 23, 1999 re-

generation images were subjected to the matrix to determine the land cover change.  A 

change detection matrix was also conducted for the October 23, 1999 and October 16, 

2011 images to determine vegetation recovery over a 20-year period  

 NDVI analysis was performed on each of the images in order to highlight vegeta-

tion changes. NDVI values range between -1 and 1. Values above 0.6 include areas of 

dense vegetation and values below 0 indicate no vegetation (Kiage et. al., 2007). Sur-

faces that have negative NDVI values contain water or ice (Kiage et. al., 2007). NDVI 

provides a simplistic approach for differentiating between areas with and without vege-

tation making the index ideal for this study. 

 

 

 

3.3.3.3. RESULTSRESULTSRESULTSRESULTS    

3.13.13.13.1 Accuracy Assessment of Classification ResultsAccuracy Assessment of Classification ResultsAccuracy Assessment of Classification ResultsAccuracy Assessment of Classification Results    

Tables 4, 5, 6, and 7 are confusion matrices that show user’s and producer’s ac-

curacy as well as the Kappa statistic for the land cover classification accuracy assess-

ment. The overall accuracy for 1987 was 93%, with a Kappa statistic of 0.723. These re-

sults imply that there is coherence between the classification class and the actual land 

cover with very few misclassifications occurring. The overall accuracy for the October 

03, 1989 image was 81% with a Kappa statistic of 0.786. Although the overall agreement 

was not as strong for this image due to the difficulty in differentiating between damaged 
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forest, flooded vegetation and the bare ground class, the forest class had a high level of 

accuracy, which is the class we are mainly focus on. The confusion matrix for the Octo-

ber 23, 1999 image was an improvement on the 1989 classification with an overall clas-

sification of 86% with a Kappa statistic of 0.672. The Kappa statistic for the 1999 was 

low due the low accuracy in the bare ground category, which is minimal in the SEF. The 

most recent image from October 16, 2011 had the highest overall accuracy with 96% 

and a Kappa Statistic of 0.985. In this classification, the actual land cover and the clas-

sification groups were similar due to the relatively short amount of time that passed 

since its acquisition date, making it easier to identify land cover classes using Google 

earth. The ISODATA algorithm was extremely accurate in identifying forested areas in 

each of the images. The classified images for the SEF are shown in Figure 11-14. 

Table 4 Error Matrix of the land-cover classification map derived from the Octo-
ber 30, 1987 Landsat 5 TM image. 

Classified DClassified DClassified DClassified Daaaata ta ta ta 
(land(land(land(land----cover type)cover type)cover type)cover type) 

Reference Reference Reference Reference     
DDDDaaaatatatata    

 1     2    3     4     5    
6 

Classified Classified Classified Classified 
TTTTooootaltaltaltal 

Producer’s Producer’s Producer’s Producer’s 
AAAAcccccuracycuracycuracycuracy 

User’s User’s User’s User’s 
AccAccAccAccuuuuracyracyracyracy 

1.Forest 8
0 

3 0 0 0 0 83 100.00% 97.26% 

2.Barren 0 7 0 0 0 0 7 50.00% 100.00% 
3.Urban 0 4 6 0 0 0 10 60.00% 65.00% 
4.Grass/Shrubland 0 0 0 0 0 0 0 0 0 
5.Damagede Forest 0 0 0 0 0 0 0 0 0 
6.Flooded Vegeta-
tion 

0 0 0 0 0 0 0 0 0 

Reference Total 8
0 

1
4 

6 0 0 0 100   

Overall Classifica-
tion Accuracy 

93%    

Overall Kappa sta-
tistics 

0.723    

 

Table 5 Error Matrix of the land-cover classification map derived from the Octo-
ber 03, 1989 Landsat 5 TM image. 

Classified DClassified DClassified DClassified Daaaata ta ta ta 
(land(land(land(land----cover type)cover type)cover type)cover type) 

Reference Reference Reference Reference     
DDDDaaaatatatata    

 1       2    3     4    5    
6 

Classified Classified Classified Classified 
TTTTooootaltaltaltal 

ProduceProduceProduceProducer’s r’s r’s r’s 
AAAAcccccuracycuracycuracycuracy 

User’s User’s User’s User’s 
AccAccAccAccu-u-u-u-
racyracyracyracy 
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1.Forest 5
3 

3 6 0 0 3 65 84.20% 92.56% 

2.Barren 0 4 0 0 0 0 4 94.2% 100.00% 
3.Urban 0 3 3 0 0 0 6 50.00% 100.00% 
4.Grass/Shrubland 0 0 0 0 0 0 0 0 0 
5.Damagede Forest 0 0 0 0 1

3 
2 15 100.00% 60.00% 

6.Flooded Vegeta-
tion 

0 0 0 0 2 8 10 72.8% 83.6% 

Reference Total 5
3 

1
0 

9 0 1
5 

1
3 

100   

Overall Classifica-
tion Accuracy 

81%    

Overall Kappa sta-
tistics 

0.786    

 

Table 6 Error Matrix of the land-cover classification map derived from the Octo-
ber 23, 1999 Landsat 7 ETM image. 

Classified DClassified DClassified DClassified Daaaata ta ta ta 
(land(land(land(land----cover type)cover type)cover type)cover type) 

Reference Reference Reference Reference     
DDDDaaaatatatata    

 1       2    3     4    5    6 

Classified Classified Classified Classified 
TTTTooootaltaltaltal 

Producer’s Producer’s Producer’s Producer’s 
AAAAcccccuracycuracycuracycuracy 

User’s User’s User’s User’s 
AccAccAccAccu-u-u-u-
racyracyracyracy 

1.Forest 7
8 

0 0 8 0 0 86 92.30% 97.46% 

2.Barren 0 5 0 2 1 0 8 94.2% 53.80% 
3.Urban 0 0 0 0 0 0 0 0 0 
4.Grass/Shrubland 3 0 0 3 0 0 6 50.00% 100.00 
5.Damagede Forest 0 0 0 0 0 0 0 0 0 
6.Flooded Vegeta-
tion 

0 0 0 0 0 0 0 0 0 

Reference Total 8
1 

5 0 1
3 

1 0 100   

Overall Classifica-
tion Accuracy 

86%    

Overall Kappa sta-
tistics 

0.672    

 

Table 7 Error Matrix of the land-cover classification mapr derived from the Octo-
ber 16, 2011 Landsat 5 TM image. 

Classified DClassified DClassified DClassified Daaaata ta ta ta 
(land(land(land(land----cover type)cover type)cover type)cover type) 

Reference Reference Reference Reference     
DDDDaaaatatatata    

 1       2    3     4    5    6 

Classified Classified Classified Classified 
TTTTooootaltaltaltal 

Producer’s Producer’s Producer’s Producer’s 
AAAAcccccuracycuracycuracycuracy 

User’s User’s User’s User’s 
AccAccAccAccu-u-u-u-
rarararacycycycy 

1.Forest 9
2 

0 0 0 0 0 92 100.00% 100.00
% 

2.Barren 0 2 0 0 0 0 2 100.00% 100.00
% 

3.Urban 0 2 4 0 0 0 6 100.00% 68.52
% 
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4.Grass/Shrubland 0 0 0 0 0 0 0 0 0 
5.Damagede Forest 0 0 0 0 0 0 0 0 0 
6.Flooded Vegeta-
tion 

0 0 0 0 0 0 0 0 0 

Reference Total 9
2 

4 4 0 0 0 100   

Overall Classifica-
tion Accuracy 

96%    

Overall Kappa sta-
tistics 

0.985    
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Figure 11 Land-cover map of the Santee Experimental Forest Generated from 
unsupervised classification of the 1987 TM image. 
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Figure 12 Land-cover map of the Santee Experimental Forest generated from un-
supervised classification of the 1989 TM image. 
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Figure 13 Land-cover map for the Santee Experimental Forest generated from 
unsupervised classification of the 1999 ETM image. 
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Figure 14 Land-cover map of the Santee Experimental Forest generated from un-

supervised classification of the 2011 TM image. 
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Table 8 Change in land cover from 1987-2011 based off of unsupervised classifi-
cation. 

Classified Data (landClassified Data (landClassified Data (landClassified Data (land----cover type)cover type)cover type)cover type)    1987 1987 1987 1987 
(acres)(acres)(acres)(acres)    

1989 1989 1989 1989 
(acres)(acres)(acres)(acres)    

1999 1999 1999 1999 
(acres)(acres)(acres)(acres)    

2011 2011 2011 2011 
(acres)(acres)(acres)(acres)    

ForestForestForestForest    6,048 1,587  5,381 6,089 

Bare ground Bare ground Bare ground Bare ground     78 90  46  27 

UrbanUrbanUrbanUrban    33  7  44  34 

Damaged ForestDamaged ForestDamaged ForestDamaged Forest    0  2,624  0  0  

Shrubland/GShrubland/GShrubland/GShrubland/Grasslandrasslandrasslandrassland    0  0  679  0  

Flooded VegetationFlooded VegetationFlooded VegetationFlooded Vegetation    0 1,851 0 0 

 

3.23.23.23.2 Land Cover Change DetectionLand Cover Change DetectionLand Cover Change DetectionLand Cover Change Detection    

The most dominant land cover class in the 1987 classification (pre-Hugo) within 

the SEF was forest at 6,048 acres (98%) shown in Figure 15. The results for the change 

detection between October 30, 1987 and October 03, 1989 show the largest land cover 

change with a 2,624 acre change from forested area to damaged forest and 1,851 from 

forest to flooded vegetation.  Out of the 6,100 acres within the SEF only 1,529 acres re-

mained as forestland cover. 

After a 10 year period (1989-199) there was a 3,918 acre change from the dam-

aged forest and flooded vegetation class to the forest class. This equates to a 64% re-

covery for a 5,381 acres area of forestland cover in 1999, shown in figure 16. After an 

additional 12 years of recovery (22 years overall) there was 670 acres land cover 

change from shrubland/ grassland to forested land resulting in 6,089 acres of forest-

land overall shown in Figure 17.  
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Figure 15 A change-detection map obtained by comparing the 1987 and the 1989 
land cover. 
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Figure 16 A change-detection map obtained by comparing the 1989 and 1999 
land cover. 
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Figure 17 A change-detection map obtained by comparing the 1999 and the 2011 
land cover. 
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3.33.33.33.3 NDVI ResultNDVI ResultNDVI ResultNDVI Result    

Table 9 Descriptive statistics for NDVI values. 
ImagesImagesImagesImages    Mean Mean Mean Mean 

NDVINDVINDVINDVI    

Minimum Minimum Minimum Minimum 

NDVINDVINDVINDVI    

Maximum Maximum Maximum Maximum 

NDVINDVINDVINDVI    

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

NDVINDVINDVINDVI    

October 30, October 30, October 30, October 30, 

1987198719871987    

0.397 0.027 0.996 0.423 

October 03October 03October 03October 03, , , , 

1989198919891989    

0.266 0.062 0.933 0.288 

October 23, October 23, October 23, October 23, 

1999199919991999    

0.452 0.128 0.996 0.479 

October 16, October 16, October 16, October 16, 

2011201120112011    

0.457 0.023 0.996 0.485 

 

The NDVI images used in this change detection method are shown in Figures 18, 

19, and 20. NDVI pixel values vary between -1.0 to +1.0. Values that have a rating less 

than 0 represent areas that contain high levels of moisture. Areas that display values 

close to 0 are areas that contain no vegetation (bare ground). Increasing values are in-

dicative of an increase in vegetation cover (Kulkarini, 2004). 

 The 1987 image (pre-Hugo) had an average NDVI value of 0.397 with the mini-

mum value of 0.027 and a maximum value of 0.996 with a standard deviation of 0.423. 

The image shows that the majority of the study area is covered with dense vegetation. 

This result is similar to results from the classification image. 

The 1989 image (post-Hugo) had an average NDVI value of 0.266 with the mini-

mum value of 0.0622 and a maximum value of 0.9338 with a standard deviation of 0.288. 

This image highlights the change from forested area to wetland/flooded vegetation and 
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damaged vegetation. In general the large decrease in forested area can be seen in the 

NDVI image (figure 18). 

 According to the image differencing tool from ERDAS Imagine 2011, 5,986 acres 

within the SEF experienced a NDVI decrease resulting in an average NDVI value of 

0.266 with the, which was the lowest value in the study.  After a ten-year (October 03, 

1989-October 23, 1999) period 6,162 acres experienced an increase in NDVI resulting 

in the second highest average NDVI value of 0.452. In 2011, 22 years after Hurricane 

Hugo showed the highest average NDVI value of 0.457. Table 8 shows the range of 

NDVI for each of the time periods. 

 

Figure 18 A map of classification based on NDVI values for 1987 and 1989 show-
ing a decrease in forest cover. 
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Figure 19 A map of classification based on NDVI values for 1989 and 1999 show-
ing an increase in forest cover. 

 

Figure 20 A map of classification based on NDVI values for 1999 and 2001 show-
ing slight increases in forest cover. 
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Figure 21 Highlights areas that had altered NDVI values from 1987-1989 
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Figure 22 Highlights areas that had altered NDVI values from 1989-1999 
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Figure 23 Highlights areas that had slightly altered NDVI values from 1999-2011 
 

Finally,    in order to determine if a variation in soil moisture affected NDVI values 

for the study area, precipitation levels were examined for a period of three months 
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(July, August, and September) leading up to the image acquisition month of October 

(Table 9). 

Table 10 Precipitation levels for July, August, & September for Charleston, SC. 
(Source: NOAA 1987, 1989, 1999, & 2011) 
YearYearYearYear    July July July July 

(in)(in)(in)(in)    
August August August August 
(in)(in)(in)(in)    

September September September September 
(in)(in)(in)(in)    

Total Total Total Total 
(in)(in)(in)(in)    

1987198719871987    2.71 7.85 14.49 25.05 

1989198919891989    6.15 10.17 13.35 29.67 

1999199919991999    3.06 2.53 10.81 16.4 

2011201120112011    5.41 2.63 3.6 11.64 

  

4.4.4.4. DISCUSSIONDISCUSSIONDISCUSSIONDISCUSSION    

Hurricanes have the capacity to drastically alter an environment, with both im-

mediate and long-lasting effects. Specifically, when considering mature coastal plain 

forests, hurricanes can lead to defoliation, snapping, and uprooting of mature tree 

stands (Cablk et. al., 1994). This type of vegetation damage can permanently alter land 

cover types, leading to a change in the surrounding areas. Moreover, understanding 

how certain tree populations react to a hurricane landfall in an area can reveal their 

susceptibility to reoccurring storms.  In the current study, we investigated the initial 

and sustained impacts of Hurricane Hugo on a coastal plain forest, the Santee Experi-

mental Forest (SEF), which passed through the coast of South Carolina in 1989. The 

study suggests that the initial impact by Hurricane Hugo on the SEF resulted in a de-

crease in vegetation cover in the coastal plain forest, primarily in the trees comprising 

the canopy cover. This initial decrease in vegetation coverage was regenerated in the 

ten years following the hurricane and has thus remained consistent. The land cover fol-

lowing Hurricane is currently dominated by young growth tree stands, indicating that 

the hurricane altered the vegetation mosaic of the SEF shown in Figure 24. 
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Figure 24 Young tree stands within the Santee Experimental Forest  (taken by author 
October 7, 2011). 

 

An overall decrease in initial vegetation coverage within the SEF post-Hugo was 

measured. The first satellite image measuring vegetation cover was obtained from 

1987, two years prior to the hurricane and again 14 days post-hurricane. Vegetation in-

dices measured from Landsat 5 satellite imagery showed a 0.131 reduction in Normal-

ized Differencing Vegetation Index (NDVI) value from October 30, 1987 to October 03, 

1989 (date of storm). There are multiple indicators that point to Hurricane Hugo as the 

reason for this initial mass reduction in vegetation cover. First, Hurricane Hugo was the 

only significant tropical cyclone within this time period to influence the region. Second, 

past studies (Cooper-Ellis et. al., 1999 ; Smith, 1997) indicate that high wind speeds are 

among the most significant factors that cause vegetation damage during a hurricane. 
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Wind speeds at the study area during Hurricane Hugo were estimated to be 121 miles 

per hour (Hook et. al., 1991), which explains why up to 74% of the forest was damaged. 

Thus, it is likely that the reduction in NDVI values is related to the loss of canopy and de-

foliation caused by the powerful winds from Hurricane Hugo. 

Beyond investigating the amount of damage in the SEF caused by Hurricane 

Hugo, we also investigated the timescales needed for a coastal plain forest to reach 

recovery in terms of vegetation cover. Considering its location relative the path of the 

storm, the study site experienced extensive vegetation damage. Due to high wind 

speeds, vegetation defoliation is the most common effect of hurricanes on forests 

(Lugo, 2008), while some individuals may also experience snapping and breakage, 

which would explain the decrease in overall NDVI values for the 1989 post-Hugo image. 

Foliage height profiles show a clear distinction between canopy defoliation, which 

exhibits higher levels of defoliation compared with understory defoliation in areas that 

were affected by hurricane winds (Lugo, 2008). This was consistent in the SEF, the 

tallest trees sustained the greatest damage from Hurricane Hugo, while the vegetation 

comprising the understory, suffered less damage (Hook et. al., 1991). In the aftermath 

of Hurricane Hugo, the canopy was fragmented due to fallen trees and defoliation, 

which lead to a decrease in chlorophyll activity. Decreased chlorophyll activity may 

lead to lower absorption rates of the red band, thus resulting in lower NDVI values, 

which was the expected result.  

After the initial decrease in chlorophyll levels, the NDVI values showed that the 

SEF had a large vegetation cover recovery after a ten-year period (1989-1999). It was 

not expected that the NDVI values for the 1999 (recovery image) image would surpass 

the values of the 1987 image (pre-Hugo), only 10 years after Hurricane Hugo. Factors 

that influence NDVI values were examined to determine the cause of the unexpected 
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increase. NDVI values are associated with vegetative factors that include growing 

vegetation, cover percentage, leaf area index, and green biomass (Di et. al., 1994). A 

large influence in these identifying factors is soil moisture, which is linked to precipita-

tion. In order to determine if a variation in soil moisture affected NDVI values for the 

study area, precipitation levels were examined for a period of three months (July, Au-

gust, and September) leading up to the image acquisition month of October (Table 9). 

Although NDVI levels are influenced by precipitation, in this study, it can be deduced 

that precipitation levels were not the cause of differentiating NDVI values because 1987 

(25.05 in) experienced more precipitation during this time period and still sustained 

lower NDVI values than in 1999 (16.4 in) and 2011 (11.64 in). 

The high NDVI values represented in the two recovery images (1999 and 2011) 

can be attributed to a drastic change to the forest’s environment due to the loss of its 

canopy. The changes include an increase understory light, temperature increase, and a 

decrease in relative humidity (Lugo, 2008). Tree fall gaps created by downed trees and 

defoliation increases the available light, which lead to forest regeneration (Bellingham 

et. al., 1996). Following Hurricane Hugo the trees comprising the understory received 

substantially more energy after they were released to the canopy.  

The recovery process after a major disturbance such as a hurricane is largely 

determined by residuals (Chazdon, 2003). Residuals are the organisms or their seeds 

that survived the disturbance (Turner & Dale, 1998). The recovery process that follows 

an intense wind event follows a course of secondary succession due to the presence of 

residuals (Whitemore & Burelsome, 1998).  Although, trees may sustain high levels of 

damage, many species have the ability to resprout (Chazdon, 2003). The understory of 

the SEF received less damage than the canopy, this combined with increase light expo-
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sure allowed residuals from the understory to regenerate, and this would explain the 

rapid regeneration of vegetation cover. 

Older trees exhibit low vitality and contain dead vegetation in the canopy. The 

presence of canopy gaps would allow opportunity for younger trees to populate. NDVI 

values for the 1987 pre-Hugo images were lower than the 1999 image due to the pres-

ence of younger vegetation in the latter image. The NDVI values for the 1999 images are 

higher because younger stands are more responsive to phenology in greenness (Song 

& Woodcock, 2003). The higher NDVI values can be attributed to the growth of new fo-

liation in the canopy (Song & Woodcock, 2003). Furthermore, younger stands have 

higher NDVI values because the new understory growth has a larger influence on the 

remotely sensed signal than in old growth stands (Song & Woodcock, 2003). The small 

increase in NDVI values from 1999 to 2011 can be attributed to the continued growth of 

younger tree stands. 

The results of land cover change detection showed that the largest land cover 

change between 1987 and 1989 was from forested land to damaged forest/flooded 

vegetation (4,465) acres. The increase in flooded vegetation can be attributed to the 

increase in moisture content, which was evident in the post-Hugo classification. The in-

crease in damaged forest is a direct result of the wind trauma experienced by the vege-

tation during the disturbance. Wind caused defoliation, snapping, and uprooting, which 

was clearly identified in the unsupervised classification process for the post-Hugo im-

age (1989). Not surprisingly, ten years after Hugo (1999), all flooded vegetation land 

cover returned to forest cover. This is due to a subsidence of floodwaters within the 

study area. Areas that were previously damaged vegetation changed to forest cover or 

grassland/shrubland. Areas that returned to forest cover can be attributed to the re-

generation of residuals and pioneering species.  After a period of 20 years (2011) the 
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forest cover in SEF was back to 98% similar to the 1987 image. The results from the 

land cover change detection are consistent with NDVI values in that much of the vege-

tation cover returned to the SEF after a 10-year period.  

 

5.5.5.5. SUMMARY OF MAJOR FINDINGS AND RECCOMNEDATIONS FOR FUTURE SUMMARY OF MAJOR FINDINGS AND RECCOMNEDATIONS FOR FUTURE SUMMARY OF MAJOR FINDINGS AND RECCOMNEDATIONS FOR FUTURE SUMMARY OF MAJOR FINDINGS AND RECCOMNEDATIONS FOR FUTURE 

STUDIESSTUDIESSTUDIESSTUDIES    

The objectives for this study were all accomplished, as the study was able to de-

termine the extent of the damage in the Santee Experimental Forest following Hurricane 

Hugo, monitor the vegetation cover recovery process of the Santee Experimental For-

est after a twenty-two year period, and confirm that remote sensing can be used to 

monitor long-term recoveries in coastal plain forest landscapes. The initial impacts 

from Hurricane Hugo from 1987-1989 on the SEF vegetation were accurately identified. 

The forested areas in the SEF were drastically reduced from 6,048 acres to 1,587 

acres, which is equivalent to a 74% decrease. Intense winds and flooding from Hugo 

contributed to 4,465 acres of damaged forest and flooded vegetation. The 1987-1989 

changes were clearly depicted in the unsupervised classification and were supported 

by the NDVI values due to the decrease in chlorophyll activity. 

The 1999 unsupervised classification image showed a 64% forest cover regen-

eration from 1989 and an additional 11% by 2011. Although the forest cover was more 

extensive in the 1987 image compared to the 1999 image, the NDVI values were higher 

for the latter. The NDVI values for the 2011 images exhibited an increase as well, but at 

a slower rate. This can be explained by the increase in young vegetation. The phenol-

ogy in younger tree stands are more responsive to the NDVI band combination because 

growing vegetation has a lower red reflectance due to the absorption by chlorophyll, 

whereas stands that contain an aging canopy contain dead vegetation that is no longer 
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active.  This proved the final objective of the study, which was to confirm that NDVI can 

be used to monitor forest recovery.  

The recovery in vegetation cover after a 22-year period provided an example of 

the resilience of a coastal plain forest after a large disturbance. Throughout the course 

of the study, new questions evolved that require additional investigation. Future studies 

are needed to determine the recovery timescales needed by other forest types that are 

subjected to frequent hurricane activity. Furthermore, future research can continue to 

monitor the SEF recovery to determine when NDVI values return to pre-Hugo level, this 

will show the full recovery process.  

 

6.6.6.6. CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION    

This study shows that Landsat TM images combined with remote sensing tech-

niques such as NDVI and the ISODATA algorithm can be utilized to help monitor the ini-

tial effects and recovery of vegetation cover in a coastal plain forest. These techniques 

can be used by the forest service to determine stands that are recovering successfully 

from a large natural disturbance over long periods of time, with relative low cost com-

pared to field surveys.  

REFERENCESREFERENCESREFERENCESREFERENCES    

Aldrich, R. (1975). Detecting disturbances in a forest environment. Photogrammetric 

Engineering and Remote Sensing, 41, 39-48. 

Anderson, J., Hardy, E., Roach, J., Witmer, R.,. (1976). A Land Use And Land Cover 

Classification System For Use With Remote Sensor Data. 

Anderson, J., & Perry, J. (1996). Characterization of wetland plant stress using leaf 

spectral reflectance: Implications for wetland remote sensing. Wetlands, 16(4), 

477-487. 



51 
 

Bellingham, P., Tanner, E., Rich, P., & Goodland, T.,. (1996). Changes in Light Below the 

Canopy of a Jamaican Montane Rainforest After a Hurricane. Journal of Tropical 

Ecology, 12, 699-722. 

C. A. Gresham, T. M. W. a. D. J. L. (1991). Hurricane Hugo Wind Damage to 

Southeastern U.S. Coastal Forest Tree Species. The Association for Tropical 

Biology and Conservation, 23(4), 420-426. 

Cablk, M., Michener, W., & Jensen, J.,. (1994). Impacts of Hurricane Hugo on a Coastal 

Forest: Assesment Using Landsat ™ Data. Geocarto International 2, 15-24. 

Chazdon, R. (2003). Tropical Forest Recovery: Legacies of Human Impact and Natural 

Disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6, 51-

71. 

Colwell J. E., D. G., and Thomason F., . (1998). Detection and measurement of changes 

in the production and quality of renewable resources. 

Conner, W. H. (1995). Woody plant regeneration in three South Carolina 

Taxodium/Nyssa stands following Hurricane Hugo. Ecological Engineering, 4(4), 

277-287. 

Conner, W. H., & Wayne Inabinette, L. (2003). Tree growth in three South Carolina 

(USA) swamps after Hurricane Hugo: 1991-2001. Forest Ecology and 

Management, 182(1-3), 371-380. 

Cooper-Ellis, S., Foster, D., Carlton, G., Lezberg, A.,. (1999). Forest Response to 

Catastrophic Wind: Results from an Experimental Hurricane. Ecology, 80(8), 

2683-2696. 

Coppin P., J. I., Nackaerts K., Muys B., & Lambin E., . (2004). Digital change detection 

methods in ecosystem monitoring: a review. Remote Sensing, 25, 1565-1596. 



52 
 

Di, L., Rundquist, D., Had, L.,. (1994). Modelling Relationships Between NDVI and 

Precipitation During Vegetative Growth Cycles. International Journal of Remote 

Sensing, 15(10), 2121-2136. 

Dunninf, J., &  Watts, B.,. (1991). Habitat occupancy by Bachman's sparrow in the 

Francis Marion national forest before and after hurricane Hugo. 108(3). 

Feely, K. J., Gillespie, T.W., Terborgh, J.W. (2005). The Utility of Spectral Indices from 

Landsat ETM+ for Measuring the Structure and Composition of Tropical Dry 

Forests. . Remote Sensing 25, 1565-1596. 

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote 

Sensing of Environment, 80(1), 185-201. 

Foster, D. (1988). Species and Stand Response to Catastrophic Wind in the Central New 

England, U.S.A. . Journal of Ecology, 76, 135-151. 

Frangi, J. L., & Lugo, A. E. (1998). A Flood Plain Palm Forest in the Luquillo Mountains of 

Puerto Rico Five Years After Hurricane Hugo1. Biotropica, 30(3), 339-348. 

Hook, D. D., Buford M.A., & Williams T.M., . (1991). Impact of Hurricane Hugo on the 

South Carolina Coastal Plain Forest. Journal of Coastal Research, 18, 291-300. 

Jensen, J. R., Hodgson, M. E., Christensen, E., Mackey, H. E. J., Tinney, L. R., & Sharitz, 

R. (1985). Remote sensing inland wetlands: a multispectral approach (No. DP-

MS-85-68; Other: ON: DE85017060 United StatesOther: ON: DE85017060Wed 

Feb 06 22:06:45 EST 2008NTIS, PC A03/MF A01; 1.EDB-85-141659English). 

Kiage L., L. K., Walker N., Lam N., and Huh, O. (2007). Recent land-cover/use change 

associated with land degradation in the Lake Baringo catchment, Kenya, East 

Africa: evidence from Landsat TM and ETM+. International Journal of Remote 

Sensing, 28, 4285-4309. 



53 
 

Kulkarini, A. (2004). Evaluation of the Imapacts of Hurricane Hugo on the Land Cover of 

Francis Marion Forest, South Carolina Using Remote Sensing. Master's Thesis. 

LeGrand. (1990). The Changing Seasons. 

Lugo, A. E. (2008). Visible and Invisible Effects of Hurricanes on the Forest Ecosystems: 

An International Review. Austral Ecology, 33, 368-398. 

Myneni, B., Hall, F., Sellers, P., Marshak, A.,. (1995). The Interpretation of Spectral 

Vegetation Indexes. Transactions on Geosciences and Remote Sensing, 33, 481-

486. 

Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. [Article]. 

Wetlands Ecology & Management, 10(5), 381-402. 

Park A. B., H. R. A., Hicks G. M., Peterson C. J.,. (1983). Multitemporal change detection 

techniques for the identification and monitoring of forest disturbances. 

Proceedings of the 17th International Symposium on Remote Sensing of 

Environment, 77-97. 

Ramsey, E., Hodgson, M., Sapkota, S., & Nelson, G.,. (2001). Forest Impact Estimated 

with NOAA AVHRR and Landsat ™ data Related to an Emperical Hurricane Wind-

Field Distribution. Remote Sensing of Environment, 77, 279-292. 

Ramsey E., R. A., Middleton B., Lu, Z. . (2009). Satellite Optical and Radar Data Used to 

Track Wetland Forest Impact and Short Term Recovery from Hurricane Katrina. 

Societies of Wetland Scientists, 29, 66-79. 

Rogers, J., Murrah, A., Cooke, W.,. (2009). The Impact of Hurricane Katrina on the 

Coastal Vegetation of the Weeks Bay Reserve, Alabama from NDVI Data. 

Estuaries and Coasts, 32, 496-507. 

Russell, K. R., Guynn Jr, D. C., & Hanlin, H. G. (2002). Importance of small isolated 

wetlands for herpetofaunal diversity in managed, young growth forests in the 



54 
 

Coastal Plain of South Carolina. Forest Ecology and Management, 163(1‚Äì3), 43-

59. 

Shuman, C. S., & Ambrose, R. F. (2003). A Comparison of Remote Sensing and Ground-

Based Methods for Monitoring Wetland Restoration Success. Restoration 

Ecology, 11(3), 325-333. 

Smith, G., Nicholas, N., Zedaker, S.,. (1997). Succession Dynamics in a Maritime Forest 

Following Hurricane Hugo and Fuel Reduction Burns. Forest Ecology and 

Management, 95, 275-283. 

Song, C., & Woodcock, C.,. (2003). Monitoring Forest Succession with Multitemporal 

Landsat Images: Factors of Uncertainty Transactions on Geoscience and 

Remote Sensing, 41(11), 2557-2567. 

Supervisor, F. M. (1995). Summary of Results 6 Year Activity Evaluation. 

Townsend, P. a. W., S. (2001). Remote sensing of forested wetlands: application of 

multitemporal and multispectral satellite imagery to determine plant community 

composition and structure in southeastern USA. . Plant Ecology, 157, 129-149. 

Turner, M., Dale, V.,. (1998). Comparing Large Infrequent Disturbances: What Have We 

Learned? Ecosystems, 1, 493-496. 

Wang, W., Qu, J. J., Hao, X., Liu, Y., & Stanturf, J. A. (2010). Post-hurricane forest 

damage assessment using satellite remote sensing. Agricultural and Forest 

Meteorology, 150(1), 122-132. 

Whitemore, T., & Burslem, D,. (1998). Major Disturbances in Tropical Rainforests 

Dynamics of Tropical Communities Black (pp. 549-565). Oxford: Blackwell 

Science. 

 
 

    



55 
 

 

 


	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 5-3-2013

	Comparing Vegetation Cover in the Santee Experimental Forest, South Carolina (USA), Before and After Hurricane Hugo: 1989-2011
	Giovanni R. Cosentino
	Recommended Citation


	Microsoft Word - 337923-text.native.1366402289.doc

