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ABSTRACT 

Choline oxidase catalyzes the oxidation of choline to glycine betaine. The reaction includes 

betaine aldehyde as an intermediate. FAD is reduced by the alcohol substrate, betaine aldehyde 

intermediate and oxidized by molecular oxygen to give hydrogen peroxide. In this study, the
 

Ser101Ala variant of choline oxidase was prepared to elucidate the contribution of the hydroxyl 

group of Ser101 in the proton and hydride transfer reactions for proper preorganization and 

reorganization of the active site towards quantum mechanical tunneling. The thermodynamic 

parameters associated with the enzyme-catalyzed OH and CH bond cleavages and the 

temperature dependence of the associated solvent and substrate kinetic isotope effects were 

investigated using a stopped-flow spectrophotometer. The proton and hydride transfer have been 

shown to be occurring via quantum tunneling in CHO-S101A enzyme. 

INDEX WORDS: Choline oxidase, Quantum tunneling, Proton transfer, Hydride transfer,  

Kinetic complexity 
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CHAPTER 1. 

INTRODUCTION 

1.1 Introduction of Choline Oxidase and the reaction 

     Choline oxidase catalyzes the oxidation of choline to glycine betaine with betaine aldehyde as 

intermediate and molecular oxygen as final electron acceptor (1-3). The reaction occurs through 

two subsequent oxidation reactions which are mediated by flavin adenine dinucleotide (FAD) (1-

3). In the reaction, the alcohol substrate is oxidized to betaine aldehyde which is then hydrated 

followed by its oxidation to glycine betaine (Figure 1.1) (3). Previous studies have revealed the 

mechanistic, biochemical and structural details of oxidation of choline by choline oxidase. The 

alcohol substrate is activated by abstraction of hydroxyl proton through a catalytic base with pKa 

of ~ 7.5 (1, 3, 4). The pKa of the catalytic base was determined by pH profile studies on kcat and 

kcat/Km values by using choline and substrate analogs in choline oxidase (3, 4). Solvent, substrate 

and multiple kinetic isotope effects studies with steady-state kinetic approach showed that the 

abstraction of substrate hydroxyl proton yields the formation of alkoxide species. This activation 

step has been shown to be mechanistically separated from hydride transfer that occur between 

the α carbon of substrate and the N(5) atom  of flavin. This step is kinetically slower than the 

proton abstraction (2-4).  

 

 

 

Scheme 1.1 Two step, and four electron oxidation of choline catalyzed by choline oxidase. The 

figure was taken from reference (1) without author’s permission. 
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     Choline oxidase is grouped in Glucose-Methanol-Choline (GMC) oxidoreductase 

superfamily, which includes choline oxidase, glucose oxidase, cholesterol oxidase, methanol 

oxidase, pyranose 2-oxidase and aryl-alcohol oxidase (5). The enzyme was first described by 

Ikuta at al. in 1977. This group reported the purification and earliest characterization of the 

enzyme from Gram-positive soil bacterium Arthrobacter globiformis (6). Thereafter, choline 

oxidase was also purified and characterized from Alcaligens sp. and Cylindrocarpon didymium 

(7, 8).To date, most of the structural and mechanistic data have accumulated from recombinant 

choline oxidase from Arthrobacter globiformis.  The enzyme is significantly important in 

medicine and biotechnology.  

1.2 Importance of Choline Oxidase 

      Flavin dependent enzymes are important components in biological systems. It has been 

estimated that    1-3% of bacterial and eukaryotic organisms contain genes that express 

flavoproteins.  Enzymes that contain flavin are involved in a number of biological processes 

including enzymatic reactions, energy metabolism, biodegradation, DNA repair, protein folding, 

apoptosis and neural development (9). Choline and glycine betaine are essential molecules in 

biological systems (10, 11). Choline is an important nutrient in humans and is required for 

biosynthesis and signaling functions of cellular membranes that affects lipid transfer from liver 

(12). A number of choline related enzymes were overexpressed and/or showed elevated activity 

in cancer. Thus, monitoring choline metabolism could be used as a diagnostic tool in cancer (13). 

Glycine betaine has been shown to be an important compound in plants and bacteria providing 

stability to organisms in the presence of osmotic and temperature stress without interference 

from the cytoplasmic reactions (14-17). Moreover, glycine betaine is an essential source of 

methyl groups for biosynthesis of methionine in the liver and kidney (18).  In biotechnology, the 
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codA gene encoding choline oxidase has been used in many economically valuable plants in 

order to enhance the crops ability to overcome high salinity and high or low temperature stress; 

some examples includes, potato plants and rice crops (19, 20).  

      Choline oxidase is one of the most extensively characterized alcohol oxidizing flavin 

dependent enzyme. Accumulating data from choline oxidase might be applicable to related 

systems, such as choline dehydrogenase, a membrane associated flavin dependent enzyme 

(plasma membrane in bacteria and mitochondrial membrane in eukaryotic cells) (21, 22). The 

active site residues that play a role in the reaction catalyzed by choline oxidase have been shown 

to be fully conserved in choline dehydrogenase, suggesting that the data obtained from choline 

oxidase might be applicable to choline dehydrogenase. 

1.3 Biophysical Properties of Choline Oxidase 

     Choline oxidase is a homodimer with a molecular mass of 120 kDa. Previously, mass 

spectroscopy, size exclusion chromatography and SDS-PAGE techniques under non denaturing 

conditions were used in order to determine the molecular mass and the oligomerzation state of 

the enzyme (23). The UV-visible absorbance spectrum of choline oxidase showed three maxima 

at 272, 373 and 454 nm, consistent with presence of FAD covalently bound to the enzyme 

moiety (23). However, the relative intensities of the peaks in the near UV and the visible regions 

of the absorbance spectra indicated that FAD is present as a mixture of oxidized and anionic 

semiquinone states (23). In the same study, it was shown that treating the enzyme with urea 

resulted in decreasing the intensity of peaks at 373 nm as well as increasing in the 454 nm peaks, 

consistent with fully oxidized FAD in the denatured enzyme. The UV-visible absorbance 

spectrum of denatured enzyme showed no difference after dialysis with decreasing amount of 
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urea consistent with the covalent attachment of FAD to the enzyme moiety. Furthermore, a 

stoichiometry of 0.88 ± 0.12 was determined for each monomer of choline oxidase containing 

one FAD cofactor (23). The results from crystallographic studies are in agreement with the 

solution experiments. X-ray crystal structure showed that the FAD is covalently attached to the 

His99 Nє2 atom through the FAD C8M atom of the isoalloxazine ring (24).  

     The enzyme-bound flavin was observed as a mixture of FADox/FADsq between 35 and 85% 

when choline oxidase was expressed in Escherichia coli (25).  It was determined that at pH 8.0, 

anionic semiquinone is not reactive with molecular oxygen and oxidizing agent ferricyanide 

(25). Ab initio theoretical calculations showed that the majority of the spin density in the anionic 

semiquinone localized either on the benzene ring or the N(5) position of the flavin (25). The 

N(5) atom of flavin accepts a hydride ion during the oxidation of  choline, thus, it is expected to 

be readily accessible to molecular oxygen (3, 25). However, the benzene ring of flavin is 

covalently attached to the His99 Nє2 atom through a histidyl linkage (24) and likely it is not 

freely accessible to molecular oxygen due to hindrance by protein moiety (25). Furthermore, it 

was proposed that the histidyl linkage of the flavin with the protein moiety might play a role in 

the stabilization of the spin density on the benzene ring of the flavin through an inductive effect 

(25).  The catalytic inactivity of the flavin semiquinone was also determined by UV-visible 

spectral analysis in which the enzyme showed catalytic cycle between fully oxidized and reduced 

states under turnover (25).  These data were supported by the experiments from different 

preparations containing variable FADox/FADsq ratios of enzyme, showing that the anionic 

semiquinone is not required for catalysis (25). It was suggested that a positive charge localized in 

close proximity to the N(1)-C(2)=O locus of the flavin in the active site of choline oxidase might 

stabilize the anionic semiquinone (25). Active site residue His466 has been determined to be 
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~3.3 Å away from N(1) locus of flavin (25). This residue was investigated via site directed 

mutagenesis, in order to investigate the contribution of positively charged histidine side chain in 

the active site of choline oxidase (26). A possible positive charge stabilizing the negative charge 

on N(1) locus in anionic semiquinone was reversed in His466Asp variant enzyme (26). The UV-

visible absorbance spectrum of two-electron-reduced form of CHO-His466Asp at pH 6.0  

indicated that the enzyme-bound flavin hydroquinone was in the neutral state (26). Furthermore, 

when the pH value was increased up to pH 10.0, no change was observed in the absorbance 

spectra suggesting that the negative charge of aspartyl side chain stabilizes the neutral 

hydroquinone in CHO-His466Asp enzyme (26). In contrast, it has been shown that the anionic 

form of hydroquinone was stabilized between pH 6.0 and 10.0 in two-electron-reduced flavin in 

wild type choline oxidase (26).  A mixture of anionic and neutral hydroquinone at pH 6.0 and 

anionic species at pH 8.0 was observed in the CHO-His466Ala variant enzyme (26, 27). 

Accumulating data from wild type, the CHO-His466Asp and the CHO-His466Ala enzymes 

suggested that destabilization of the anionic semiquinone requires a negative charge in the 

proximity of N(1) locus of flavin (26, 27). It was shown that destabilization of the negative 

charge on the N(1) locus of reduced flavin results in removal of the covalent linkage in ~75 % of 

the CHO-His466Asp enzyme (26). Furthermore, it was concluded that a positive charge close to 

N(1) locus is important for the formation of covalent bond between the flavin and the protein 

moiety (26).  Around 160 mV decrease in the midpoint redox potential of the enzyme bound 

flavin in the two electron transfer reaction was determined in CHO-His466Asp, in agreement 

with the importance of a positive charge close to N(1) locus of the flavin (26).  

     The redox potentials of the enzyme-bound flavin in choline oxidase have been reported to be 

the highest among flavoproteins, with Eox/sq,7 = +211 mV and Eox/red,7 =-65 mV (26).  The study 
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showed that the thermodynamic stabilization of the flavin semoquinone significantly decreases 

when glycine betaine is bound in the active site for which the enzyme-bound flavin displays a 

midpoint reduction potential Eox/sq,7  of  +132 mV in choline oxidase (26).  It was reported that 

the covalent attachment of flavin to the protein and a positive charge provided by His466 residue 

in the active site might result in perturbations in the redox potential of flavin determined by site 

directed mutagenesis studies (26, 27).   

     A covalent adduct formation between N(5) atom of flavin and sulfite was observed in choline 

oxidase (27).  Incubating FADox containing choline oxidase with sulfite resulted in the bleaching 

of the peak at 452 nm with appearance of a new peak centered at 320 nm, in agreement with 

adduct formation between sulfite and the N(5)-flavin atom (27).  The enzyme showed high 

affinity to sulfite with a Kd value of 40 μM (at pH 7.0 and 15
 o
C), a slow rate constant was 

determined for the adduct formation (kon = 0.04 M
-1

s
-1

), suggesting that the entrance of sulfite for 

the active site constrained by the negative charge locates on the sulfite molecule (27). 

     It was reported that freezing of the enzyme at pH 6.0 resulted in conformational changes that 

cause the enzyme to lose catalytic activity (28). However, the catalytic activity reverted back 

with a pH dependent manner when the enzyme was treated at pH ≥ 6.5 (28). It was concluded 

that the impaired ionization(s) of the protein residues are not directly accessible to the bulk 

solvent and associated with the conversion of the inactive and active enzyme species (28). 

1.4 3D Structure of Choline Oxidase 

     The three-dimensional structure of choline oxidase from A. globiformis was investigated by 

X-ray crystallography, the crystal diffracted to a resolution of 1.8 Å (24). The overall crystal 

structure revealed that choline oxidase crystallized in the form of a homodimer with dimensions 
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of 88 Å x 70 Å x 46 Å consistent with results from solution experiments, gel electrophoresis and 

gel filtration chromatography (23) (Figure 1.2). It was reported that each monomer includes 546 

amino acid residues (24). Two monomers are connected to each other with electrostatic charge 

complementary residues in order to form a dimer, which are Asp72-Ly398 (4.1 Å), Asp250-

Glu53 (4.3 Å), Arg225-Glu370 (3.2 Å), Asp358-Arg396 (2.4 Å), Arg363-Asp394 (4.2 Å), and 

Arg363-Asp397 (2.9 Å) (24).    

 

Figure 1.1. 3-D structure of choline oxidase to 1.8 Å resolution. Two orthogonal views of the 

enzyme illustrated with the cartoon ribbon trace of the protein backbone. The FAD is shown as 

CPK atoms with gray, blue and red colors representing C, N and O respectively. This figure was 

taken from reference (24) without author’s permission. 

      

     The electron density maps showed that the FAD has a covalent attachment between its C8M 

atom and active site residue His99 Nє2 atom (24). The solvent-accessible calculations indicated 

that only 2.1 % of the FAD isoalloxazine ring is solvent accessible suggesting that FAD is 

almost completely buried within the protein (24).  The solvent excluded active site cavity was 

determined with the analysis of the molecular surfaces of the enzyme with an approximate 
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volume of 123 Å
3
 which is located within the substrate binding domain (24). The cavity is 

located adjacent to the re face of FAD and can easily accommodate the alcohol substrate (93 Å
3
) 

(24). The cavity is partially lined by hydrophobic residues (Trp61, Trp331, Phe357, and Val464) 

which form an aromatic cage (24). The polar residues located in the cavity are His351, His466 

and Glu312 which is the only negatively charged residue in the active site cavity of choline 

oxidase (24).   

     The interactions of active site residues with the choline substrate were analyzed by manually 

docking the substrate in the crystal structure of choline oxidase (Figure 1.3) (24). The distance 

between negatively charged Glu312 and positively charged trimethyammonium group of choline 

was measured to be 3 Å suggesting an electrostatic interaction (24), this is consistent with 

previously determined data with substrate and product inhibition studies (29) (see section 1.5).  

The model showed that positioning of the substrate is optimal for substrate activation, in which 

substrate hydroxyl proton abstracted by an active site base. His351 and His466 are being ~ 4 Å 

away from the substrate hydroxyl oxygen atom suggested that one of these residues might be 

serving as active site base (His466 active site catalytic base in choline oxidase, Giovanni Gadda 

& Crystal Smitherman, unpublished data) (24).  Furthermore, the model revealed that the α 

carbon of the substrate (hydride ion donor) is less than 4 Å away from Ser101 side chain and 

N(5) atom of the flavin (hydride ion acceptor)  (3, 24). 
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Figure 1.2. Hypothetical docking of choline molecule in the active site of choline oxidase. Blue 

and yellow colors represent hydrophobic and hydrophilic residues respectively. Choline is shown 

with green carbon atoms. The figure was taken from reference (24) without author’s permission. 

 

1.5 Substrate specificity and inhibitors  

     Steady state kinetic studies showed that choline oxidase can oxidize choline and betaine 

aldehyde  with 
app

kcat and 
app

Km values of 11-15 s
-1 

and 0.6-2.3 mM under atmospheric oxygen (at 

pH 7.0 and 25 
o
C) (23, 25). Inhibition studies with glycine betaine indicated that the 

trimethylammonium group of choline is a significant determinant that defines the substrate 

specificity (29).  Inhibition constants determined with glycine betaine, N,N-dimethylglycine and 

N-methylglycine decreased with each addition of methyl group on the ammonium head of the 

inhibitor (29). Furthermore, around 1 kcal mol
-1

 contribution in the binding energy by each 

methyl group was calculated suggesting that energetic contribution of trimethylammonium head 

group of choline has a significant role in the substrate binding (29). This conclusion was 

supported with steady state kinetic experiments with choline analogs (N,N-
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dimethylethanolamine, N-methylethanolamine and 3,3-dimethyl-1-butanol) in which kcat/Km 

values decreased with each N-substituted choline analog (29). Moreover, it was determined that 

the positively charged amino head group of choline has a critical effect on the alcohol oxidation 

reaction in choline oxidase based on a 80-fold decrease in the kcat/Km value for oxygen upon 

substitution of coline with 3,3-dimethyl-1-butanol (29).  In contrast, the inhibition constants 

determined with the substitution of acetate group of glycine betaine (tetramethylamine, 

trimethylethylamine, allyltrimethylamine and 2-amino-trimethylethylamine) showed that the 

acetate group of glycine betaine has no effect on the substrate binding. These data suggested that 

there is a thermodynamic equilibrium that makes the release of product favorable, therefore, 

formation of the acetate group in the alcohol oxidation reaction of choline oxidase favors product 

release (29).  

      Steady state kinetics and NMR studies with betaine aldehyde and its isosteric analog 3,3-

dimethylbutyraldehyde showed that the hydration of betaine aldehyde is required for the second 

reductive half reaction catalyzed by choline oxidase, in which enzyme-bound betaine aldehyde is 

converted to glycine betaine (30).  In contrast, non-hydrated 3,3-dimethylbutyraldehyde acts as a 

competitive inhibitor of choline oxidase with respect to choline (30).  The study showed that 

betaine aldehyde oxidation occurs through a base catalyzed reaction in which a hydride ion 

transfers from hydrated aldehyde to the flavin (30). These data are consistent with choline and 

hydrated betaine aldehyde (gem-diol) having similar chemical structures with the difference of 

hydrated betaine aldehyde having an extra hydroxyl group on the α-carbon (30).   

     Previously, opening and closing mechanism of the active site of choline oxidase was 

investigated through molecular dynamics in which the substrate is directed to and the product 

ejected from the active site (31). It was proposed that a solvent accessible cluster of hydrophobic 
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residues, Met62, Leu65, Phe357 and Met359, works as a gate that allows the substrate to get in 

the active site and ejects the product (31).  The time scale of opening and closing of the gate was 

determined to be10-20 ns indicating that the product release is not limiting the overall turnover 

of choline oxidase (3, 31). 

1.6 Kinetic Mechanism of Choline Oxidase 

     The mechanism of alcohol oxidation in choline oxidase was investigated with steady state 

kinetic approach by using choline and betaine aldehyde as substrates, pH profiles on substrate 

capture (kcat/Km) and overall turnover (kcat) (2, 4), kinetic isotope effects by using isotopically 

substituted substrate and solvent, and anaerobic rapid kinetic analysis with stopped flow 

spectrophotometer (3). It was determined that the oxidation of choline to glycine betaine is 

limited by two chemical steps of flavin reduction (k3 and k7 in Fig 6.1) between pH 6.5 and 10.0 

(2, 4).  
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Figure 1.3. Minimal steady state kinetic mechanism of choline oxidase at pH 10. E, enzyme; 

FADox, oxidized flavin; CH, choline; FADred, reduced flavin; BA, betaine aldehyde; GB, glycine 

betaine. The scheme was taken from reference (32)  without author’s permission. 

 

    The steady state kinetic analysis of choline oxidase with choline and betaine aldehyde as a 

substrate revealed that after the formation of enzyme substrate complex (E-FADox-CH), choline 

is oxidized to betaine aldehyde intermediate (E-FADred-BA), the enzyme betaine aldehyde 

complex further reacts with molecular oxygen (first oxidative half reaction) resulting in 

formation of E-FADox-BA complex and hydrogen peroxide (2, 4). In the second reductive half 

reaction flavin gets reduced by hydrated betaine aldehde forming E-FADred-GB complex. The 

turnover is completed by second oxidative half-reaction of flavin and product release (Scheme 

1.4) (2, 4). 

     From steady state kinetic approach, the turnover number (kcat) was determined as 60 s
-1

 in 

choline oxidase. These data are in agreement with calculated number of 55 s
-1

 for overall 

turnover from  rapid kinetic experiments using rate constants for reduction of choline (k3= 93 s
-1

) 

and betaine aldeyhe (k7= 135 s
-1

), using equation 1 [ See ref (3) for calculation].  It was 

concluded that the chemical steps for reduction of flavin are fully rate limiting (3). Independent 

evidence supporting this conclusion came from pH independent 
D
kcat values with choline and 1,2-

[
2
H4]-choline (3). The study showed that calculated 

D
kcat values for choline and betaine aldehyde 

from rapid kinetic experiments [see ref. (3) for calculation] are consistent with kcat being limited 

only by two chemical reactions (k3 and k7) catalyzed by choline oxidase (3).   

      
    

     
                                                                                                                              (1) 
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1.7 The Reductive half-reaction in choline oxidase 

     The alcohol oxidation reaction catalyzed in choline oxidase includes two reductive half 

reactions with two hydride ions transferred from choline and enzyme bound intermediate betaine 

aldehyde to the flavin.  Reduced flavin interacts with molecular oxygen to form hydrogen 

peroxide.  The mechanism of this reaction was previously elucidated using steady state kinetics, 

rapid kinetics and pH studies (2, 3), and by investigating various active site residues using site 

directed mutagenesis. Mutated residues include Ser101 (33), His99 (34), His464 (27), His351 

(35), Val464 (36), Glu312 (24) and Asn510 (37).  

     The reaction catalyzed by choline oxidase was shown to be pH independent between pH 

values of 5.0 and 10.0 in which the substrate binding, product binding and the order of kinetic 

steps are not affected by pH (2, 25).  The reductive half-reaction consists of hydroxyl proton 

abstraction by an active site base to activate the alcohol substrate, stabilization of the alkoxide 

species , and the hydride ion transfer from α-carbon of enzyme-alkoxide substrate to the N(5) 

atom of flavin (Figure 1.5) (3). Steady state and pH studies on kcat/Km and kcat with choline as 

substrate indicated that a catalytic base with a pKa value of ~7.5 accepts substrate hydroxyl 

proton in the activation process, furthermore, isotope effect experiments with  1,2-[
2
H4]-choline 

and inhibition studies with glycine betaine supported this conclusion (3, 4, 25, 38).    
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Figure 1.4. The reductive half reaction in choline oxidase. Proton abstraction by an active site 

base, stabilization of the alkoxide species and the hydride transfer to flavin. The figure was taken 

from reference (36) without author’s permission.  

 

     Substrate and solvent deuterium isotope effect studies were used to investigate the relative 

timing of proton and hydride transfers (3). It was concluded that the choline alkoxide proton is 

not in flight in the same transition state as hydride transfer which indicates step wise mechanism 

for proton and hydride transfer in the reaction catalyzed by choline oxidase (3). The evidence for 

this conclusion came from the substrate kinetic isotope effect of ~9 when choline is substituted 

with 1,2-[
2
H4]-choline and solvent kinetic isotope effect of unity (3). This data ruled out the 

synchronous hydride transfer mechanism in which the proton and hydride are concomitantly in 
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flight in the same transition state (3).  Furthermore, no significant change was observed in the 

substrate isotope effect on the rate of flavin reduction when aqueous solvent was substituted with 

deuterated solvent which indicates that the proton transfer is significantly faster than the hydride 

transfer (3). An alternative mechanism in which a single electron transferred to the flavin 

coupled with removal of alcohol hydroxyl proton before hydrogen transfer to the flavin from the 

α-carbon (Figure 1.6). This pathway was eliminated because it was expected that in such 

mechanism flavin radical species should be detected, however, no transient flavin radical was 

detected from single turnover experiments using stopped flow spectrophotometer in the reaction 

of flavin reduction by choline (3). 

 

Figure 1.5. Chemical mechanism for proton and hydride ion transfer in choline oxidase. The 

scheme was taken from reference (3) without author’s permission.  

 

     Stabilization of negatively charged alkoxide species for the optimal positioning of the enyme-

alkoxide complex and flavin in the reductive half-reaction is achieved by electrostatic 

interactions and hydrogen bonding between various active site residues and the enzyme-substrate 
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complex. Replacement of His466 or His351 with alanine using site directed mutagenesis showed 

that limiting rate constants significantly (~20 fold and ~75 fold respectively) decreased in the 

reductive half reaction (27, 35). It was proposed that these residues modulate the electrophilicity 

of the covalently bound flavin, and provide stabilization through hydrogen bonding between 

imidazole side chains and the hydroxyl group of alcohol substrate (27, 35). Furthermore, the 

experimental results from S101A enzyme showed that the serine residue at 101 position also 

contributes to the stabilization of the enzyme-substrate complex in order to achieve optimal 

hydride transfer from substrate to the flavin ( see section 1.10) (33). The negative charge of 

Glu312 residue has been shown to be critical in the reductive half reaction by providing an 

electrostatic interaction with the positively charged head group of alcohol substrate. Through this 

electrostatic interaction, the positioning of the substrate for optimal hydride transfer is achieved 

in the reductive half reaction of choline oxidase (24). 

1.8 The oxidative half-reaction in choline oxidase 

       In choline oxidase each reductive half-reaction is followed by an oxidative half-reaction in 

which the reduced flavin is oxidized with concomitant reduction of molecular oxygen to 

hydrogen peroxide (Scheme 1.1)  (2-4) 

. 

Scheme 1.2. Oxidative half reaction in choline oxidase. The figure was taken from reference 

(39) without author’s permission.  
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     A number of flavin dependent enzymes have been investigated to elucidate the activation of 

molecular oxygen that interacts with reduced flavin to form superoxide (O2
⁻•
), hydrogen peroxide 

(H2O2) or water (H2O) (40-42).  Recent studies showed that the activation of molecular oxygen 

requires a positively charged group that acts as an electrostatic catalyst. It has been demonstrated 

that a histidine residue in glucose oxidase (43) and a lysine residue in sarcosine oxidase (44) play 

a significant role in the activation of molecular oxygen. Steady state kinetics with choline or a 

substrate analog lacking the positive charge combined with site directed mutagenesis studies 

demonstrated that the activation of molecular oxygen in choline oxidase is provided by a non-

ionizable positively charged trimethylamine head group of the product in the alcohol oxidation 

reaction (Scheme 1.2) (29, 45).  Steady state kinetics showed that kcat/Koxygen value decreased 

when 3,3-dimethybutanol lacking the positive charge used as a substrate analogue instead of 

choline (29). However, the site directed mutagenesis studies established that substitution of the 

three histidines with alanine (His466 and His351) and asparagine (His99) in choline oxidase 

resulted in ≤ 1.5 times decrease in kcat/Koxygen value with respect to the wild type. These data are 

consistent with each histidine residue not being important for the oxidative half-reaction 

catalyzed in choline oxidase (29, 40) 

 

Scheme 1.3.  Proposed activation mechanism of molecular oxygen in glucose oxidase, 

monomeric sarcosine oxidase and choline oxidase. The figure was taken from reference (39) 

without author’s permission.  
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      It was demonstrated that hydrophobic active site residue Val464 of choline oxidase plays a 

role in the oxidative half reaction in choline oxidase (39). It was concluded that the Val464 

provides nonpolar site proximal to (C4a) atom of the flavin in order to navigate the molecular 

oxygen where it will be activated by positively charged head group of the ligand to the 

superoxide species (see section 1.9.5)  (39).  

1.9 Active site mutants 

     In choline oxidase, a number of active site residues were investigated with site directed 

mutagenesis approach. These data combined with x-ray crystallography, biochemical and 

mechanistic investigations provided useful information to understand the reaction catalyzed in 

choline oxidase at the molecular level. 

1.9.1 His466 

    His466 is an active site residue that is conserved in the Glucose-Methanol-Choline (GMC) 

oxidoreductase superfamily (40). His466 position has been determined to be ~3.3 Å away from 

N(1) locus of flavin in choline oxidase (25), therefore, it was expected that this active site residue 

might play a role in the oxidation of the alcohol substrate. Previously, His466 was replaced with 

alanine and aspartate (26, 27). The steady state kinetics data from CHO-His466Ala enzyme 

showed 3-fold decrease in kcat/Km value for choline, however, no significant difference was 

observed in kcat/Koxygen value as compared to the wild type enzyme (27). These data indicated that 

His466 is involved in the reductive half reaction in which the alcohol substrate is oxidized by 

flavin but not in the oxidative half reaction in which reduced flavin is oxidized by molecular 

oxygen. Furthermore, the pH independent  kcat/Koxygen values between pH 6.0 and 10.0 for the 

mutants are in agreement with His466 having no effect on the oxidative half reaction in choline 
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oxidase (25). Around 25 mV decrease in the midpoint redox potential of the enzyme-bound 

flavin was determined which suggested that His466 has a significant contribution to the 

electrophilic environment of the flavin cofactor (27). It was proposed that there might be a direct 

electrostatic interaction between Nє2 locus of imidazole side chain of His466 and N(1) locus of 

flavin (27). Evidence supporting such an interaction in choline oxidase came from absence of 

stabilization of the anionic flavin semiquinone and the sulfite N(5)-flavin adduct as seen in 

CHO-His466Ala (27). Moreover, ΔEm,7  value of -25mV was determined when His466 was 

replaced with alanine which accounts for  ~4.2 kJ mol
-1

 energetic contribution in choline oxidase 

(27). This energy difference could account for 5-fold decrease in the rate of hydride transfer to 

the flavin (27). However, these data are not consistent with ~20-fold decrease in the kcat/Km 

values determined in CHO-His466Ala enzyme at high pH where kcat/Km value reflects the first 

rate limiting step in both wild type and His466Ala enzymes (27). In this regard, it was further 

suggested that His466 might also facilitate the alcohol substrate activation by stabilizing the 

alkoxide species in the transition state in the oxidation of choline to betaine aldehyde (27).  

Evidence supporting the presence of such stabilization came from the substrate and solvent 

deuterium kinetic isotope effects. It was shown that the relative timing for bond cleavage in 

CHO-His466Ala enzyme, hydroxyl proton cleavage is in flight in the transition state for CH 

bond cleavage (27). These data suggested that lack of transition state stabilization of alkoxide 

species contributed by the His466 residue would make the formation of the alkoxide species 

energetically unfavorable, which makes catalysis significantly slower (27). Independent evidence 

for stabilization of alkoxide species by His466 came from absence of N(5)-flavin sulfite adduct 

formation in CHO-His466Ala enzyme which was present in the wild type enzyme. The adduct 

formation was restored in the presence of exogenous imidazole in the mutant enzyme (27). It was 
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proposed that the adduct formation between N(5) flavin and the negative charge on the oxygen 

atom of sulfite is stabilized by the imidazole ring of His466 (27). Furthermore, pH profiles of the 

absorbance spectra of CHO-His466Ala and the wild type enzyme showed that substituting the 

His466 with alanine results in one unit increase of the pKa value for the ionization of N(3) locus 

of flavin (27) consistent with decreased polarity of microenvironment of flavin N(3) locus (46). 

These data suggested that His466 modulates the polarity of the active site for efficient proton 

transfer from the hydroxyl group of  substrate (27).  

    Choline oxidase lost enzymatic activity upon substitution of His466 with aspartate (26). It was 

concluded that reversing the positive charge near the flavin N(1) locus  in choline oxidase 

resulted in lack of ability to stabilize negative charges in the active site irrespective of whether 

the negative charge is on the flavin or on the active site ligands (26).  In this study, around 160 

mV decrease in the midpoint redox potential of the enzyme bound flavin was determined when 

His466 was substituted with aspartate (26). Around 250000-fold decrease is estimated in the rate 

of hydride transfer to the flavin according to 160 mV decrease in the ΔEm,7 value for CHO-

His466Asp enzyme. This further explains the complete loss of enzymatic activity (26). 

1.9.2 His351 

     His351 is another active site residue that was investigated with site directed mutagenesis to 

understand its role in the reaction catalyzed by choline oxidase. Previously, His351 residue was 

substituted with alanine and it was shown that the CHO-His351Ala enzyme is properly folded 

with flavin covalently bound to the protein as in wild type (35). Anaerobic reductive-half 

reaction experiments with choline or betaine aldehyde in CHO-H351A enzyme showed 9 and 17 

times increase in Kd values respectively (35). These data suggested that His351 plays an 
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important role in substrate binding process, likely by forming a hydrogen bond with hydroxyl 

oxygen of choline.  Replacing His351 with alanine in choline oxidase resulted in increased Kd 

values for the substrates that correspond to 5-8 kJ mol
-1

 energy contributed by the His351 side 

chain. These data further supported that His351 is involved in substrate binding via hydrogen 

bonding interaction (35). X-ray crystal structure data of wild type is in agreement with His351 

side chain being involved in hydrogen bonding interaction with the hydroxyl group of the 

alcohol substrate(s) (35). The crystal structures resolved to 1.8 Å where DMSO was used as an 

additive to mimic the substrate shows that the distance between His351 and the methyl group of 

DMSO is 3.5 Å (35). Furthermore, the N(5) atom of the flavin to where the hydride ion is 

transferred from the α-carbon of the alkoxide species (3) is 6.7 Å away from the His351. It was 

proposed that the His351 further facilitates the hydride transfer reaction between the alkoxide 

species and the N(5) atom of flavin by forming hydrogen bonds to the negatively charged 

oxygen atom of the alkoxide intermediate in the transition state for futher reaction (35). This 

conclusion was consistent with a 75-fold decrease in the rate constant for reduction of flavin  

(kred) with choline as a substrate and 35- fold decrease in the kred with hydrated betaine aldehyde 

as a substrate which were observed using rapid kinetics approach (35). It was previously shown 

that in wild type choline oxidase, the hydride transfer occurs via quantum mechanical tunneling 

within a highly preorganized active site where minimum independent movements are allowed 

between the hydride ion donor (alkoxide species) and acceptor (N(5) atom of falvin) (38). It was 

further hypothesized that the substitution of His351 with alanine could impair the 

preorganization of the enzyme-substrate complex by allowing increased independent movements 

of hydride ion donor and acceptor. Thus, the observed rate constants in the hydride transfer were 

decreased in CHO-His351Ala enzyme with choline and hydrated betaine aldehyde (35). 
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Furthermore, 1.2 fold lower kcat/Km value for oxygen in His351Ala enzyme reported with respect 

to the wild type that suggests His351 residue does not participate in the oxidation reaction of 

flavin by molecular oxygen (35).  

1.9.3 His99 

     Active site residue His99 forms covalent bond through its Nє2 atom to C8M atom of flavin in 

choline oxidase (24). The contribution of covalent linkage in the oxidation reaction of  alcohol 

substrate was investigated by replacing His99 with asparagine (34). The overall integrity of 

His99Apn variant enzyme was shown to be similar to that of the wild type enzyme through 

kinetic and mechanistic investigations, therefore, the mechanistic differences can be attributed to 

the presence or absence of His99 residue (34). The steady state kinetic experiments and pH 

studies in the CHO-His99Asn enzyme showed that an unprotonated group is required acting as a 

base in the reductive half-reaction, the CH bond cleavage is being the rate limiting step in the 

reductive half-reaction and overall turnover reaction as does wild type choline oxidase. 

Furthermore, no active site ionizable group was observed that is involved in the oxidative half-

reaction where reduced flavin reacts with molecular oxygen (34).   

     The covalent bond between the His99 Nє2 atom and the CM8 atoms of flavin was shown to 

be play a role in the reductive half-reaction in which the alcohol substrate is oxidized to betaine 

aldehyde and a hydride ion is transfered to the flavin (34). In contrast, the covalent linkage 

showed no effect on the oxidative half-reaction in which molecular oxygen reacts with reduced 

flavin resulting in hydrogen peroxide formation (34).  The evidence for this conclusion came 

from anaerobic rapid kinetic and steady state kinetic experiments. Around 45-fold decrease was 

observed in the limiting rate constant of anaerobic reduction of flavin (kred) for CHO-His99Asn 
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in comparison to the wild type choline oxidase (34). Furthermore, steady state kinetic 

experiments revealed that 10-fold in kcat/Km and 30-fold decrease in kcat values with respect to the 

wild type enzyme (34).   

     The covalent linkage between FAD and choline oxidase through His99 active site residue has 

been shown to be important for the optimal positioning of the substrate within the active site 

which is required for the environmentally enhanced tunneling of the hydride ion in reaction 

catalyzed by choline oxidase (34). It was previously determined that the hydride transfer occurs 

in highly preorganized active site through quantum tunneling in wild type choline oxidase (38). 

Furthermore, it was concluded that the donor and acceptor (choline-alkoxide α carbon and N(5) 

atom of flavin respectively) are positioned optimally for high probability of tunneling (38). The 

evidences for this conclusion came from large kinetic isotope effects on the Eyring’s pre-

exponential factors ( AꞌH/ AꞌD), temperature independent kinetic isotope effects, negligible energy 

of activation isotope effects (ΔEa = (Ea)H-(Ea)D) and similar enthalpy of activations (ΔH
ǂ
) for light 

and heavy isotopes in wild type choline oxidase. In contrast,  it was determined that the 

positioning of the enzyme-alkoxide complex α carbon and the N(5) atom of flavin deviates from 

its optimal position as a result of non-covalent attachment of flavin in CHO-His99Asn enzyme 

(34). Experimental evidences for this conclusion came from kinetic isotope effects on the 

Eyring’s pre-exponential factors ( AꞌH/ AꞌD) value close to unity, large isotope effects on 

activation energies for light and heavy isotopes (ΔEa), temperature dependent 
D
kred value and 

different enthalpy of activation energies (ΔH
ǂ
) for protium and deuterium transfer (34). It was 

further concluded that such significant change in the CHO-His99Asn likely arises either from 

increased sampling of reactive configurations or misplacement of the isoalloxazine moiety of 

flavin with respect to the wild type choline oxidase where the hydride is transferred from the 
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enzyme-alkoxide complex α carbon, as a result of removal of the flavin covalent linkage in 

CHO-His99Asn enzyme (34). 

 1.9.4 Asn510 

    Asn510 in choline oxidase is another partially conserved active site residue in Glucose-

Methanol-Choline (GMC) oxidoreductase enzyme super family (37). The role of Asn510 in the 

alcohol oxidation catalyzed by choline oxidase was investigated by replacing the residue with 

alanine, aspartate, histidine and leucine (37).  Biophysical, mechanistic and kinetic analysis 

showed that these mutant enzymes maintained the overall structure with respect to the wild type 

enzyme (37). The evidences for this conclusion came from covalent attachment of flavin to the 

enzyme in Asn510Ala, Asn510His and Asn510Leu mutants, the sequential steady-state kinetic 

mechanism in Asn510Ala and Asn510His enzymes, large substrate kinetic isotope effects in the 

reductive half reactions of Asn510Ala and Asn510His and only minimum deviations of UV-

visible absorbance spectra of all four choline oxidase variant enzymes (37).   

    The study showed that Asn510 is important for the reductive and oxidative half-reactions in 

the reaction catalyzed by choline oxidase, but it has a minimum involvement in the substrate 

binding process (37). The experimental results supporting these conclusions came from steady 

state kinetics and anaerobic rapid reaction kinetics analysis in Asn510Ala and Asn510His variant 

enzymes in comparison to the wild type choline oxidase (37). Around 600-fold decrease in 

(kcat/Kcholine) and around 30-fold decrease in the limiting rate constant for reduction of flavin (kred) 

determined in CHO-Asn510Ala and CHO-Asn510His enzymes with respect to the wild type 

enzyme (37). Moreover, 15-fold decrease in oxidative half reaction (kcat/Koxygen) in Asn510His 

mutant and 50-fold decrease in Asn510Ala mutant in comparison to wild type indicated 
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involvement of Asn510 in the oxidative half-reaction in choline oxidase (37). It was reported that 

the substrate binding constant (Kd) increased by ≤ 6-fold when asparagine was substituted with 

all four amino acids indicating a minimum involvement of the Asn510 side chain in substrate 

binding reaction in the mutant enzymes (37).   

     The study showed that the chemical step of hydride transfer is the rate limiting step in overall 

turnover of the Asn510Ala and Asn510His enzymes as does the wild type choline oxidase (3, 

37). This conclusion was supported by rapid kinetics which directly measures the rate constant 

for hydride transfer. Calculated kcat values of 0.1 s
-1

 and 3.4 s
-1

 for choline and betaine aldehyde 

are in agreement with the experimentally measured kcat values of 0.09 s
-1

 and 3.4 s
-1 

for 

Asn510Ala and Asn510His enzymes respectively (37).   Furthermore, solvent kinetic isotope 

effects showed that replacing Asn510 with alanine and histidine decreased the rate constant for 

cleavage of the substrate hydroxyl proton (37). It was previously determined that the substrate 

hydroxyl proton cleavage is faster than the CH bond cleavage as indicated by a 
D2O

(kred) value of 

0.99 in wild type enzyme (3). However, 
D2O

(kred) values of 2.6 and 1.3 determined for Asn510His 

and Asn510Ala mutants respectively suggested that the rate constant for alcohol substrate proton 

cleavage is significantly decreased (37).  Asp510 residue is located at a close proximity to 

His466 which is the side chain proposed to be the catalytic base in choline oxidase (unpublished 

data, Dr. Giovanni Gadda and Crystal Simitherman).  It was suggested that decrease in the rate 

constants for substrate hydroxyl proton cleavage in Asn510Ala and Asn510His could arise from 

the disturbed orientation of His466 for optimal positioning with respect to the substrate hydroxyl 

group in the proton transfer reaction (37).   

     The results from multiple kinetic isotope effect experiments indicated that the relative timing 

of proton and hydride transfers in Asn510Ala enzyme is affected  in comparison to the wild type 
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choline oxidase but not in Asn510His enzyme (Scheme 1.3) (37). The evidences supporting this 

conclusion came from increased solvent and substrate kinetic isotope effect in Asn510Ala 

enzyme which is not consistent with the stepwise mechanism of proton and hydride transfer as 

seen in the wild type enzyme (37).  In contrast, decreased solvent and substrate kinetic isotope 

effects were calculated from multiple kinetic isotope effects experiments in Asn510His enzyme 

indicating that the proton and hydride transfers occur via stepwise mechanism as does wild type 

choline oxidase (37).  It was proposed that the change in the relative timing in Asn510Ala 

enzyme could be due to the loss of a hydrogen bonding interaction between the Asn510 residue 

and a reaction intermediate or transition state or a close by residue that might directly interact 

with an intermediate species or transition state such as His466 (27, 37).   

Scheme 1.4. Relative timing of proton and hydride transfers in the reactions catalyzed by 

Asn510Ala and Asn510His enzymes. The figure was taken from reference 12, taken without 

author’s permission.  
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     Asn510 also plays a role in the flavinylation reaction in which flavin is covalently attached to 

the His99 Nє2 atom through a histidyl linkage (24, 37). It was previously determined that the 

stoichiometry of covalent flavin attachment is 1:1 in wild type enzyme, however, Asn510 mutant 

enzymes showed 5-fold decrease in comparison to the wild type (23, 25, 37). It was proposed 

that in Asn510His, Asn510Ala and Asn510Leu enzymes, a decreased stabilization of the 

negative charge on the N(1)-C(2) locus of flavin which is required for the covalent attachment of 

flavin to the protein moiety affects the flavinylation reaction (37). In Asn510Asp enzyme 

stabilization of the negative charge on N(1)-C(2) locus of flavin was impaired to a greater extent 

due to negatively charged side chain of aspartate amino acid, further resulting in lack of 

stabilization of  anionic hydroquinone which forms during the reduction of flavin reaction (24, 

37). Such dramatic effect is in agreement with Asn510Asp enzyme being catalytically inactive 

(37). 

1.9.5 Val464 

     Val464 is an active site residue in choline oxidase, which is located at a close proximity 

(~5.0Å) to the reactive center of isoalloxazine ring of flavin C(4a) and the N(5) atoms according 

to previously published X-ray crystal structure (35) (Figure 1.7) . Val464 was substituted with 

alanine or theronine with site directed mutagenesis in order to investigate its role in the reaction 

catalyzed by choline oxidase (39). The X-ray crystallographic data of Val464Ala showed 

identical structure with respect to wild type enzyme (35). Thus, any conclusions made from 

kinetic and biochemical investigations resulted from the absence of the Val464 side chain in the 

active site of choline oxidase (39). This data supported by the experimental results that showed 

Val464Ala enzyme shared similar properties with respect to the wild type. Such similarities 

include sequential steady state kinetic mechanism and pH independent kcat/Koxygen value with 
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choline (39). Furthermore, it was determined that Val464Ala enzyme contains covalently 

attached flavin to the protein moiety and stabilizes the anionic semiquinone in the presence of 

oxygen (39). 

     The study showed that Val464 is important for the oxidation of reduced flavin by molecular 

oxygen in the reaction catalyzed by choline oxidase. However, it doesn’t play a role in the 

reductive half-reaction in which hydride ion is transfered from alkoxide-enzyme complex to the 

N(5) atom of flavin and the substrate binding (39). The substitution of valine with alanine 

resulted in 2-fold decrease in limiting rate constant for the reductive half reaction (kred) and 5-

fold decrease in the equilibrium constant for substrate binding (Kd) with respect to the wild type 

enzyme. In contrast, 50 fold decrease was determined in the second order  rate constant value of 

kcat/Koxygen  with respect to the wild type enzyme (39).   

 

Figure 1.6. The location of Val464 at a close proximity to the flavin C(4a) and N(5). This figure 

was taken from reference (35) without author’s permission. 
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     It was proposed that the nonpolar nature of Val464 at a close proximity of C(4a) atom of 

flavin would attract  the molecular oxygen to a site where a nearby positive charge that activates 

it in order to proceed the subsequent reaction with reduced flavin (39). The evidence for this 

conclusion came from a 50-fold decrease in the value of kcat/Koxygen  indicating the involvement 

of Val464 in the oxidative half-reaction in which molecular oxygen interacts with reduced flavin 

(39). Moreover, the comparison of  X-ray crystal structures of Val464Ala and wild type enzyme 

showed an increased size of a cavity which faces  the C(4a)-N(5) atoms of flavin where C(4a) 

oxygen adduct is observed in the wild type enzyme (39). The study also showed that the 

requirement of nonpolar residue at a close proximity to the C(4a) atom is not linked to the 

presence of an electrostatic catalyst which activates the molecular oxygen (39).   

1.10 Role of S101 residue and importance in catalysis 

     In wild type choline oxidase, Ser101 residue locates less than 4 Å away from the N(5) atom 

of the flavin isoalloxazine ring (32, 33). It was attractive to hypothesize that the hydrophilic 

feature of serine side chain might play a role in the reaction catalyzed by choline oxidase. 

Previously, Ser101 was mutated to various amino acids (Ala, Thr, Cys or Val) in order to 

investigate the role of this residue in the active site of choline oxidase (32, 33). The X-ray crystal 

structure of Ser101Ala was determined in a previous study with the average root-mean-square 

deviation (rmsd) of 0.41 Å when 527 equivalent Cα atoms compared to the wild type enzyme 

(Figure 1.8) (32).  Figure 1.8 shows overlaid structure of the Ser101Ala mutant and wild type 

choline oxidase in which the overall structure of both enzymes are practically identical (32).  The 

relative location of flavin and the active site residues were shown to be essentially no different 

than in the wild-type enzyme. However, an adduct formation during the crystallization process 

between molecular oxygen and C(4a) atom of flavin was observed in the wild type structure.       
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Such adduct formation was not observed in the structure of the Ser101Ala enzyme which showed 

a more planar flavin structure (24). It was hypothesized that the hydrogen bond forming ability 

of the serine side chain in the wild type enzyme with O(4) atom of flavin possibly stabilizes the 

flavin adduct formation. In contrast, such hydrogen bond forming ability is absent in Ser101Ala 

enzyme (32).  Alternatively, it was suggested that lack of flavin adduct formation with molecular 

oxygen in the Ser101Ala enzyme could be resulting from the flavin not being reduced in the data 

collection process at synchrotron (32). 

 

Figure 1.7. Overlaid X-ray crystal structure of wild type choline oxidase (carbons are colored 

gray) and S101A enzyme (carbons are colored green). The protein data bank entries are 2JBV for 

wild type, 3NNE for Ser101Ala mutant. The figure was taken from reference (33) without 

author’s permission. 

 

      Replacement of the Ser101 residue with alanine resulted in decreased in the limiting rate 

constant for reductive half reaction in Ser101Ala enzyme (32). The results from steady-state 
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experiments in Ser101Ala mutant and wild type enzyme showed that a ~10 fold decrease in 

overall turnover (kcat) and substrate capture (kcat/Km) with choline as a substrate (32). These data 

supported by the results from rapid kinetics experiments using stopped flow spectrophotometer 

and betaine aldehyde as a substrate showed decreased kred values for flavin reduction and 

increased Kd values for substrate binding (32). Furthermore, three fold larger  kcat/Koxygen value 

was determined in Ser101Ala enzyme indicating that  replacement of serine side chain with 

alanine resulted in higher efficiency in oxidative half reaction in choline oxidase (32). It was 

proposed that substitution of Ser101 to alanine results in less hydrophilic microenvironment in 

the proximity of C(4a) atom of flavin which might be the reason for higher oxygen activity in 

mutant enzyme compared to wild type choline oxidase (32). 

     Relative timing of hydroxyl proton abstraction by an active site base and the hydride transfer 

from substrate to the flavin was investigated through rapid kinetics with choline for Ser101 

mutants (Ser101Ala, Ser101Thr, Ser101Cys and Ser101Val) in stopped flow spectrophotometer 

(33). The results from substrate and solvent kinetic isotope effects showed that the reaction 

follows two well separated kinetic steps as observed in the stopped flow traces (33). Moreover, 

large kinetic solvent isotope effects of ~4 on first phase and negligible substrate kinetic isotope 

effect (≤ 1.1) indicated that the first phase is associated with the proton abstraction and 

significantly faster than the second phase (33). In contrast, large substrate kinetic isotope effect 

value of  ≥ 5 on the second phase and negligible solvent kinetic isotope effects revealed that the 

second phase is associated with the hydride transfer and significantly slower than the first phase 

(33).  

   Further, it was concluded that hydroxyl group of Ser101is associated with the stabilization of 

the transition state for the substrate hydroxyl proton abstraction (33). The substitution of Ser101 
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with other amino acids (Ala, Thr, Cys orVal) showed that the limiting rate constants for proton 

abstraction is decreased by at least 15-fold in the mutant enzyme (33). It was proposed that the 

transition state for the proton transfer in wild type is stabilized by hydrogen bonding between 

hydroxyl group of Ser101 and the oxygen atom of alkoxide intermediate which is more 

electronegative than in the enzyme-substrate complex due to a negative charge on the alkoxide 

species (33).  Furthermore, the hydrophilic microenvironment provided by Ser101 was shown to 

be associated with the hydride transfer from Cα of choline to the N(5) atom of flavin (33). 

Significant decrease in the limiting rate constants for hydride transfer was determined when 

S101 was substituted with less hydrophilic residues (Thr, Ala, Cys and Val)
 
(Figure 1.9) (33).  

 

Figure 1.8. Hydrophobicity dependence of the rate constants for hydride ion transfer. The figure 

was taken from reference (33) without author’s permission.  

 

      The Ser101 residue in choline oxidase is important for both activation of the substrate as well 

as hydride transfer reaction (33). A number of flavin dependent enzymes have similar catalytic 

strategies by having either serine, threonine or tyrosine in similar position in their active sites. 
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Some of the examples are class 2 dihydroorotate dehydrogenase (47), pyranose 2-oxidase (48), 

glucose oxidase (49), nitric oxide synthase (50), the old yellow enzyme (51), NADPH-

cytochrome P450 oxidoreductase (52), alditol oxidase (53), UDP-galactose 4-epimerase (54), 

cholesterol oxidase (55), nitronate monooxygenase (56) and heterotetrameric sarcosine oxidase 

(57).  

1.11 Quantum mechanical tunneling in wild type choline oxidase 

     Previously, quantum mechanical tunneling behavior of hydride transfer from α-carbon of 

alcohol substrate to the N(5) atom of flavin was investigated by temperature dependence of 

deuterium kinetic isotope effects in wild type choline oxidase (38). In this study, the steady state 

kinetics approach was used to understand the nature of hydride ion transfer by investigating the 

overall turnover (kcat) and substrate capture (kcat/Km) with choline (38).    

     These experiments were conducted at high pH as it was determined that the reaction catalyzed 

by choline oxidase is pH independent at alkaline pH values (38). The pH profiles of 
D
(kcat/Km) 

and 
D
(kcat) values determined with choline and 1,2-[

2
H4]-choline as substrates showed pH 

independent behavior in which the hydride transfer is not being masked by any other kinetic step 

(3).  Furthermore, the effect of oxygen availability on the kinetic isotope effects was investigated 

in order to probe the reversibility of the hydride transfer at different oxygen concentrations (38).  

The reversibility of the hydride transfer is affected by the oxygen availability in which the 

forward partition of the betaine aldehyde-enzyme complex during the reaction is significantly 

higher than reverting back to the oxidized enzyme-alkoxide complex in presence of high oxygen 

concentration (≥ 0.97 mM) at hight pH (38). The study showed that at saturating oxygen 

concentrations and at high pH in steady state kinetic experiments the calculated kinetic isotope 



34 
 

 

effects for the hydride ion transfer catalyzed in choline oxidase approaches the value of intrinsic 

kinetic isotope effects (3, 38). 

 

Figure 1.9. Temperature dependence of kcat/Km (Panel A) and kcat (Panel B). Black circles 

represent choline and white circles represent 1,2-[
2
H4]-choline. This figure was taken from 

reference (38) without author’s permission. 

 

     It was determined that the hydride ion transfer in choline oxidase from α-carbon of choline to 

the N(5) of flavin occurs via quantum mechanical tunneling rather than over the barrier within 

highly preorganized active site (38). In this study the temperature effects on the  
D
(kcat/Km) and 

D
(kcat) values were determined at saturating oxygen concentrations and within pH independent 

region in order to analyze the quantum behavior of hydride ion transfer (38). The Eyring’s 

analysis was used to determine the temperature dependence of 
 
kcat/Km and kcat values (Figure 

1.10).  A value of ~14 for isotope effects on Arrhenius prefactors (AHꞌ/ADꞌ) for kcat/Km was 

calculated from the Eyring’s plots (determined from the ratio of the y-intercepts) (38). It was 

proposed that such large isotope effects on AHꞌ/ADꞌ might be used as a evidence for ruling out 

classical over the barrier behavior for hydride transfer for which between 0.7 and 1.7 were 

predicted to be the range for classical behavior (38, 58). Furthermore, temperature independent 
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D
(kcat/Km) values (Figure 1.11) and similar enthalpy of activations for CH and CD bond 

cleavages (~18 kJ mol
-1

) in the reductive half reaction (kcat/Km) from Eyring’s analysis are 

consistent with environmentally enhanced tunneling behavior in the hydride transfer reaction of 

choline oxidase (38, 59). Temperature independent kinetic isotope effects on kcat/Km are in 

agreement with the enzyme-substrate complex forms in the preorganized active site in which 

minimum deviation of the tunneling probability effected by the environmental influences of the 

reaction coordinate other than affecting the distance between donor and acceptor in choline 

oxidase (38). 

 

Figure 1.10. Temperature dependence of 
D
(kcat/Km) and 

D
(kcat) values with choline and  1,2-

[
2
H4]-choline as substrates. The figure was taken from reference (38) without author’s 

permission. 

 

     In that study, kcat/Km value was used to make all the conclusions which directly probe the first 

chemical step in oxidation of choline to betaine aldehyde. In contrast, the kcat value includes two 

chemical steps, oxidation of choline and oxidation of betaine aldehyde. The author’s avoided 

making mechanistic interpretations from kcat values, however, the temperature dependency of 
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D
kcat and kcat values calculated qualitatively very similar to those calculated for 

D
(kcat/Km) and 

kcat/Km values which is consistent with the conclusions drawn for the first chemical step (38). 

1.12 Specific Goals     

     This thesis aims to investigate the quantum mechanical tunneling of the proton and hydride 

transfers of the choline oxidase S101A variant enzyme. The contribution of the hydrophilic 

active side residue Ser101 in the alcohol oxidation reaction of choline oxidase will be 

investigated in CHO-S101A variant enzyme by temperature dependence on kinetic isotope 

effects in the proton and hydride transfer reaction using stopped flow rapid kinetics approach.  

Biochemical and mechanistic investigations of wild type and various mutants of choline oxidase 

have been of great interest for medicine and biotechnology. Up to date, the transition state theory 

is the most acceptable theory that provides insight in the catalytic power of enzymes, however, 

accumulating body of data in many enzymes including choline oxidase pointed out that coupling 

of environmental vibrations in the microenvironment could play a significant role in enzymatic 

reactions as well as the quantum behavior of the particles such as proton (H
+
), hydrogen atom 

(H), or hydride ion (H
-
). It is attractive to hypothesize that the biophysical properties of 

molecules and enzymes could be used to diagnose and cure diseases which related to an impaired 

enzymatic reaction. This study has a great contribution to current investigations of quantum 

behavior of particles in enzymatic reactions.  
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CHAPTER 2. 

PROTON and HYDRIDE TRANSFER in CHO-S101A 

2.1 Introduction 

     Understanding how enzymes catalyze reactions has been a great interest for scientist because 

enzymes can accelerate biochemical reaction by factors as high as 10
20

 with eminent selectivity 

and they are involved in many biological systems, medicine and biotechnology . Proton (H
+
), 

hydrogen atom (H), or hydride ion (H
-
) transfers are present in variety of enzymes that have been 

investigated to understand the catalytic power of enzymes (1) . To date, a growing amount of 

data from experimental and computational studies revealed that hydrogen transfer takes place via 

quantum mechanical tunneling (1-6).  It has been hypothesized that coupling of protein dynamics 

from millisecond to femtosecond time scale might influence hydrogen tunneling mechanisms (1, 

2, 7, 8). Hydrogen atom has a unique feature that is distinguished from heavier atoms in 

biological reactions by having very small mass, therefore, it is attractive to investigate the 

quantum mechanical behavior of dynamics of hydrogen chemistry (1, 9). The wave particle 

duality states that each particle has a wavelength associated to its mass at a fixed energy. The 

quantum mechanical behavior heavily depends on the wavelength of the particle and the distance 

traveled between the donor and acceptor (1, 10, 11). Therefore, small changes in donor-acceptor 

distance could affect the hydrogen tunneling behavior. A number of enzymes have been 

scrutinized in recent years including soybean lypoxygenase-1 (12, 13), alcohol dehyrogenses (3), 

dihyrofolate reductase (14, 15), morphinone reductase (11, 16), glucose oxidase (1, 17) and 

choline oxidase (10) in order to elucidate tunneling mechanism. 

     In recent years, the catalytic mechanism of choline oxidase has been extensively studied, 

choline oxidase catalyze the four-electron oxidation of choline to glycine betaine with betaine 
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aldehyde as an intermediate, FAD is reduced by the alcohol substrate and oxidized by molecular 

oxygen to give hydrogen peroxide (Sheme 2.1) (10, 18-31). Previous studies have revealed the 

mechanistic details of deprotonation of the hydroxyl group of the alcohol substrate by an active 

site catalytic base (His466, Giovanni Gadda & Crystal Smitherman, unpublished data) that yields 

a negatively charged alkoxide species (18, 19). Further in the reaction, through electrostatic 

interactions and hydrogen bonds with a number of active site residues, the alkoxide species 

positions optimally for the hydride transfer from the α-carbon of the substrate to the flavin N(5) 

atom. In wild-type choline oxidase, the temperature dependence of KIEs with steady-state 

approach was used to elucidate the hydride transfer mechanism. It has been shown that the 

hydride transfer in wild-type enzyme occurs via quantum mechanical tunneling within a highly 

preorganized active site, suggested by similar enthalpies of activations values of ~18 kJ mol
-1

 for 

CH and CD bond cleavage, a ΔEa value close to unity and inflated isotope effects on Eyring’s 

prefactors (AHꞌ/ADꞌ) (10).  

     The X-ray crystal structure studies revealed that Ser101 located less than 4 Å from the flavin 

N(5) atom (Figure 2.1)
 
(32).  Hydrophilic nature of Ser101 position has been shown to be 

required for the proton and hydride transfer in a stepwise mechanism through stabilizing the 

negatively charged alkoxide intermediate via hydrogen bonding (31, 32). Relative timing of 

hydroxyl proton abstraction by an active site base and the hydride transfer from substrate to the 

flavin was investigated through rapid kinetics for the CHO-S101A enzyme. Substrate and 

solvent kinetic isotope effects showed that the reaction follows two well separated kinetic steps 

as observed in the stopped flow traces (31). Moreover, large kinetic solvent isotope effects of ~4 

on first phase and negligible substrate kinetic isotope effect (≤ 1.1) indicated that the first phase 

is associated with the proton abstraction and significantly faster than the second phase. In 
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contrast, large substrate kinetic isotope effect value of  ≥ 5 on the second phase and negligible 

solvent kinetic isotope effects revealed that the second phase is associated with the hydride 

transfer and significantly slower than the first phase (31).  

 In this study, the CHO-S101A variant enzyme was prepared to determine the temperature 

dependence of limiting rate constants for proton and hydride transfer with stopped-flow rapid 

kinetic approach. The contribution of the hydroxyl group of Ser101 toward the quantum 

mechanical tunneling of the proton and hydride transfer were investigated. 

2.2 Experimental Procedures  

 

      Materials. Choline chloride was from ICN (Aurora, OH).  1,2-[
2
H4]-Choline bromide was 

from Isotech INC. (Miamisburg, OH). Glucose and glucose oxidase were from Sigma-Aldrich 

(St. Louis, MO). All other reagents used were of the highest purity commercially available. 

Instruments. Stopped-flow experiments were conducted using a Hi-Tech SF-61 double-mixing 

stopped-flow spectrophotometer. 

Expression and Purification of Ser101 mutant enzyme. The gene coding for the CHO-S101 

enzyme variant was expressed by using the plasmid pET/codA S101A in Escherichia coli strain 

Rosetta(DE3)pLysS. The mutant enzyme is expressed and purified by using the same protocol 

previously used for the wild type enzyme (8).  In order to obtain oxidized and active mutant 

enzyme, the enzyme solutions were dialyzed at pH 6.0 and the oxidization of flavin was 

monitored by spectrophotometric analysis.  The enzyme was stored in 20 mM Tris-Cl pH 8.0 

buffer.  

Rapid Kinetic Assays.  In this experiment the choline oxidase Ser101Ala enzyme solution was 

loaded on a tonometer and 25 cycles of degassing were applied by alternating vacuum and 

flushing process with oxygen-free argon (pretreated with an oxygen scrubbing cartridge, Agilent, 
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Palo Alto, CA).  The procedure continued with mounting the degassed enzyme solution onto the 

stopped-flow instrument, which had been treated with an oxygen removing system including of 2 

mM glucose and 0.5 µM glucose oxidase. The observed rate constants for flavin reduction of the 

enzyme were determined by mixing various concentrations of the substrate (choline or 1,2-[
2
H4]-

choline ) and the enzyme anaerobically in the stopped-flow spectrophotometer in 50 mM sodium 

pyrophosphate (pH 10.0) at 15-37 
o
C, as previously described (5).   The enzyme and the 

substrate were mixed  in equal amounts in the presence of glucose (2 mM)/glucose oxidase (0.5 

µM) mixture, yielding enzyme concentration of     10 µM. Substrate concentrations were ≥ 40 

µM to obtain pseudo-first-order conditions.  The data was collected from photomultiplier at 450 

nm in dual beam mode.   In solvent kinetic isotope effect experiments, the first order rate 

constants for flavin reduction were determined by using either 99.9% deuterium oxide or water 

in preparation for the buffer, substrates and the enzyme. The pD values were determined by 

addition of 0.4 to the pH electrode readings and adjusted with NaOD. 

Steady-State Kinetic Assays 

Enzyme activity was monitored by measuring the initial rates of oxygen consumption with a 

Hansatech oxygen electrode thermostated at 15 
o
C or 37 

o
C. The assays were carried out in 50 

mM sodium pyrophosphate at pH 10.0. The steady state kinetic parameters were determined by 

varying the concentration of choline and 1,2-[
2
H4]-choline from 0.05 mM to 6 mM at fixed 

concentrations of oxygen from 0.06 mM to 0.135 mM. The reactions were started by adding 

choline oxidase into the reaction mixture with final concentration of 0.1-0.6 μM and 1 mL final 

volume. The reaction mixtures were equilibrated with fixed oxygen concentrations by bubbling 

O2/N2 gas mixture for at least 5 min. Substrate KIEs were determined by alternating choline and 

1,2-[
2
H4]-choline substrates.  
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Data Analysis.   The KaleidaGraph (Synergy Software, Reading, PA) and the Kinetic Studio 

Software Suite (Hi-TgK Scientific, Bradford on Avon, UK) were used to fit the kinetic data. 

Stopped-flow traces were best fit with the equation 1.  

       (      )      (      )                                                                                       (1)                                                                            

                                                                                                                                   

     Equation 1 describes a double exponential process where λ1 and λ2 are the first order rate 

constants which represent the absorbance chance in the fast and slow phases, t is time, A is the 

absorbance at 450 nm at any given time, B and C are the amplitudes of the absorbance changes 

for the fast and slow phases, and D is the absorbance at infinite time. The kinetic parameters 

associated with the reductive half reaction (for fast and slow phases) were determined by using 

eq 2 and 3. The derivations of the equations were previously published and are not present here 

(31).  

   
        

           
                                                                                                                             (2)                                                                                                                              

   
      

           
                                                                                                                             (3) 

The observed first order rate constants are represented by λ1 and λ2  associated with absorbance 

change in the reduction of flavin in fast and slow kinetic phases respectively in eq. 1 and 2. S is 

any given concentration of the substrate, λ1lim  and λ2lim  represent the limiting rate constants at 

saturated substrate concentration. The equilibrium between the enzyme and the substrate and the 

enzyme substrate complexes are dissociation constatnts and defined as 
app

Kfast and 
app

Kslow. C is 

an offset value that accounts for nonzero absorbance value at infinite time.  

  (
 

 
)     (
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                                                                                                               (4)                                                                              
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)                                                                                                                        (5)                       
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Eyring’s equation (eq 4) was used to fit with the limiting rate constants to analyze temperature 

dependence of proton and hydride transfer in CHO-S101A enzyme. kB is the Boltzman constant 

and h is the Plank constant.  The enthalpy of activation (ΔH
‡
) is calculated from the slope, the 

entropy of activation (ΔS
‡
) is calculated from the y-intercept of the plot. Arrhenius’ equation (eq 

5) was used to calculate the isotope effect on the Arrhenius’ pre-factors (AH/AD)from the y-

intercept and isotope effect on the activation energy (ΔEa) from the slope of the plot. 

2.3 Results 

Solvent and Substrate KIEs at 15 
o
C. Solvent KIEs were determined with choline as substrate 

for the S101A variant of choline oxidase, to investigate the proton transfer reaction associated 

with choline oxidation catalyzed by the enzyme. The rate constants (λ) for anaerobic flavin 

reduction were determined in a stopped-flow spectrophotometer by mixing the enzyme with 

choline in 50 mM sodium pyrophosphate, pL 10.0 and 15 
o
C, and monitoring absorbance 

changes over time at 450 nm. The high pL was chosen because previous studies showed that at 

alkaline pH the catalytic steps associated with flavin reduction are independent of pL both in 

wild-type choline oxidase and a number of active site enzyme variants, such as E312D, H351A, 

H466A, H99N and S101A (H. Yuan & G. Gadda, unpublished data). Anaerobic mixing of the 

enzyme with choline resulted in the two-electron reduction of the enzyme-bound flavin (Figure 

2.2-A), following a biphasic process (Figure 2.2-B). Accordingly the stopped-flow traces were fit 

best with a two-exponential process, defining fast (λ1) and slow (λ2) observed rate constants that 

were separated well (i.e., with λ1/λ2 ≥ 9). Limiting values at saturating choline were determined 

for both the fast and slow kinetic phases by fitting the hyperbolic patterns of λ1 and λ2 as a 

function of choline concentration (Figure 2.2-C). In contrast, 
app

KD values could not be 

determined accurately since they were smaller than the lowest concentration of substrate that 
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could be used in the reaction while maintaining pseudo first-order conditions. For this reason the
 

app
KD values are not reported. Replacement of water with deuterium oxide had large effects on 

the limiting value of λ1 at saturating choline (λ1(lim)), with values of 81 s
-1

 in H2O and 18 s
-1

 in 

D2O (Figure 2.2-C), yielding a solvent KIE of 4.5 on the fast kinetic phase seen in the stopped-

flow spectrophotometer. In contrast, much smaller differences were seen on λ2(lim), for which the 

solvent KIE was 1.7 (Table 2.1). These results are in agreement with a recent study carried out at 

25 
o
C showing solvent KIEs of 3.8 on λ1 and 1.7 on λ2, in which it was concluded that λ1 is 

associated with the proton transfer reaction catalyzed by the S101A enzyme variant. 

Substrate KIEs were determined with choline and 1,2-[
2
H4]-choline under the same 

conditions described above, in order to probe the hydride transfer reaction catalyzed by the 

S101A enzyme. While there were small differences in λ1(lim) upon substituting choline with 

deuterated choline, with values of 81 s
-1 

and 71 s
-1
, large differences where seen in λ2(lim), with 

values of 3.1 s
-1

 and 0.4 s
-1

 (Figure 2.3). Thus, the substrate KIE was 1.1 on λ1 and 8.3 on λ2. 

These data agree well with previous results at 25 
o
C showing substrate KIEs of 1 on λ1 and 6.5 

on λ2, in which it was concluded that λ2 is associated with the hydride transfer reaction catalyzed 

by the S101A enzyme variant. 

Effect of Temperature on the Proton Transfer Reaction. The effect of changing temperature 

on λ1 and its associated solvent KIE was investigated to establish whether the proton transfer 

reaction catalyzed in the S101A enzyme variant occurs quantum mechanically. Anaerobic flavin 

reduction was investigated as described above, with choline as substrate and either water or 

deuterium oxide as buffered solvent at pL 10.0 in the temperature range from 15 
o
C to 39 

o
C. As 

expected, λ1(lim) increased with increasing temperature (Table 2.1) yielding linear dependencies 

when the data were analyzed by using the Eyring’s formalism (Figure 2.4-A). The fit of the data 
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acquired in water and deuterium oxide to the Eyring’s equation yielded lines with similar slopes 

and similar y-intercepts (Figure 2.4-A). Accordingly, the 
D2O

λ1(lim) values were comprised 

between 3.4 and 5.3 (Table 2.2), with a temperature independent average solvent KIE of 4.4. 

From the Eyring’s analysis of the temperature dependence of λ1(lim), the enthalpy (ΔH
‡
), entropy 

(ΔS
‡
), and Gibbs free energy (ΔG

‡
) of activation for the proton and deuteron transfer reactions 

catalyzed by the S101A enzyme were calculated (Table 2.3). The Arrhenius analysis of the 

temperature dependence of  λ1(lim) was used to calculate the difference in the energy of activation 

for proton transfer in water and deuterium oxide (ΔEa ) and the isotope effect on the Arrhenius 

prefactors (AH/AD) (Table 2.3). Figure 2.4-B shows the temperature dependence of the 
D2O

λ1(lim) 

values, 1.9 ± 0.8 kcal/mol value of ΔEa from the slopes and 112 ± 30 value of  AH/AD were 

calculated from the y-intercepts of the lines.  

Effect of Temperature on the Hydride Transfer Reaction. The effect of changing temperature 

on λ2 and its associated substrate KIE was investigated to establish if hydride transfer in the 

S101A enzyme occurs within a highly preorganized enzyme-substrate complex as in the case of 

the wild-type enzyme (10). Anaerobic substrate reduction was investigated as described above 

with choline and 1,2-[
2
H4]-choline as substrate in aqueous buffer at pH 10.0 in the temperature 

range from 15 
o
C to 39 

o
C. When the λ2(lim) values were treated according to the Eyring’s 

formalism, the protiated substrate yielded a line with a negative slope larger than that of the 

deuterated substrate (Figure 2.5), yielding an unprecedented increase in the measured 
D
λ2(lim) 

values determined through rapid kinetics with increasing temperature (Table 2.2). 

It is well established that measured KIEs, including the 
D
λ2(lim) values determined here, may 

be affected by kinetic complexity, thereby not reflecting per se the intrinsic KIEs that would be 

required to draw mechanistic conclusions (33). Consequently, substrate KIEs determined using 
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the steady-state kinetic approach were used here as a tool to establish whether kinetic complexity 

affected the reductive half-reaction of the S101A enzyme. The steady-state kinetic parameters 

kcat and kcat/Kcholine were determined at pH 10.0 by measuring initial rates of oxygen consumption 

at varying concentrations of choline or 1,2-[
2
H4]-choline and oxygen, and the resulting KIEs 

were computed. As shown in Table 2.3, the 
D
kcat values were larger than the 

D
(kcat/Km) values at 

15, 23, 31 and 37 
o
C (Table 2.4), consistent with kinetic complexity in the reductive half-reaction 

being manifest in substrate KIEs. A commitment (Cf) value was calculated by using 
D
kcat and  

D
(kcat/Km) values for each temperature at 15, 23, 31 and 37 

o
C by using the equation 6 in order to 

address the kinetic complexity. Intrinsic KIEs were calculated from observed KIEs and the 

calculated Cf values by using equation 7 [both equation 6 and 7 are from (34)] ( Table 2.5). The 

Arrhenius analysis of 
D
λ2(lim) by using calculated intrinsic values showed temperature 

independent behavior as seen in Figure 2.5. 

   
  (    )

   (       )

 (       )   

                                                                                                                (6)                                                                                                  

        
          

     
                                                                                                                (7) 

  

2.4 Discussion 

     Temperature dependence of deuterium kinetic isotope effects was used to investigate the 

quantum mechanical behavior of proton and hydride transfer in the CHO-S101A variant. The 

reductive half-reaction in choline oxidase S101A mutant follows substrate proton abstraction 

from hydroxyl group of choline then hydride transfer from the α-carbon of choline alkoxide 

species to the flavin N(5) atom where betaine aldehyde forms as an intermediate. Evidence for 

this conclusion comes from large KIEs of 4.4 on fast phase (λ1) and smaller KIEs of 1.7 on slow 

phase (λ2) when water was substituted with deuterium oxide. In contrast, large KIEs of 8.3 on λ2 
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and smaller KIEs of 1.1 on λ1 were observed when choline was substituted with 1,2-[
2
H4]-

choline. These results are consistent throughout the temperature range between 15 and 39 
o
C and 

in agreement with previously published data at 25
o
C in CHO-S101A enzyme

 
(31) which 

indicates a stepwise mechanism for proton then the hydride transfer at all temperatures were 

tested.  

     The proton transfer in the reductive half-reaction of CHO-S101A enzyme occurs within a 

preorganized active site via quantum tunneling. Evidence supporting this conclusion came from 

Eyring and Arrhenius analysis. Similar enthalpy and entropy of activations and same Gibbs free 

energies for proton and deuteron transfer were calculated from Eyring’s analysis (Table 2.3). The 

similarity in thermodynamic parameters rules out the transition state model for this reaction 

where higher ΔH
‡
 and ΔG

‡
 are expected for the heavy isotope transfer compared to the light 

isotope due to zero point energy differences (1, 2, 8). This conclusion is also supported by the 

temperature independent KIEs in CHO-S101A enzyme. The activation energy difference for 

proton transfer in water and deuterium oxide (ΔEa) was calculated as close to unity as well as 

highly inflated value of KIEs on Arrhenius pre-factors (AH/AD), such behavior does not agree 

with the classical models and supporting the quantum tunneling behavior.  According to the Bell 

tunneling model, in enzymatic reactions with no tunneling the AH/AD
 
value approaches unity 

(range of 0.8 to 1.4)
 
(9). 

     A possible explanation for the value of AH
ꞌ
/AD

ꞌ
 (determined by taking the ratio of y-intercepts 

of Eyring’s plot) is being slightly higher than unity (1.5 ± 0.1) could be due to a higher viscosity 

coming from deuterated solvent versus to protiated  solvent.  These data indicating that different 

protein dynamics manifested from D2O or H2O might be affecting the limiting rate constants for 

the proton transfer reaction. Interestingly, a similar value (average of 1.4 ± 0.1) was observed for 
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D2Oλ2 which reflects the isotope effects on the hydride transfer (expected value is 1) when 

isotopic substitution is made for the hydroxyl proton (proton in solvent with water and deuteron 

in solvent with deuterium oxide) (Table 2.1). The data suggest that the protein dynamics might 

be affected by the increased viscosity of deuterated solvent with respect to the solvent with 

water, which may lower the limiting rate constant for the hydride transfer. Interestingly, 

averaged 1.1 ± 0.1 value of 
Dλ1 value was determined for the proton transfer when choline is 

substituted with 1,2-[
2
H4]-choline, both reactions were carried out in H2O providing equal 

solvent conditions that is affecting the protein dynamics. 

     In contrast, temperature dependence on the KIEs of hydride transfer showed ambiguous 

results in CHO-S101A enzyme. According to the Eyring’s analysis (Figure 2.5) kinetic isotope 

effects were determined to be an average of ≥ 14 at high temperature regime (≥ 25 
o
C) and an 

average of KIEs of ≤ 8 at low temperature regime (< 25 
o
C) (Table 2.2). The reduced KIEs at 

low temperatures arise from kinetic complexity in the reductive half-reaction catalyzed by CHO-

Ser101Ala. A possible conformational change in enzyme-substrate complex would mask the 

intrinsic kinetic isotope effects where such conformational change is not present in the high 

temperature regime (alternatively, present with a different extent between low and high 

temperatures). Evidence supporting this conclusion came from steady-state kinetics where 

substrate KIEs were determined to address possible kinetic complexity affecting intrinsic KIEs in 

CHO-S101A enzyme. 

     In order to elucidate the unusual behavior of temperature dependence of KIEs of hydride 

transfer observed in CHO-Ser101Ala, 
D
kcat  and 

D
(kcat/Kcholine) values at 15, 23, 31 and 37 

o
C were 

determined.  KIEs determined with steady-state kinetic approach could be used as a tool to show 

the presence of commitment to catalysis (33). In this study, significantly lower 
D
(kcat/Kcholine) 
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values than the 
D
kcat were determined at low and high temperature regimes in the reductive half-

reaction (Table 2.4).  An internal equilibrium could arise from conformational change 

influencing the enzyme-substrate complex. Such behavior results in lower  
D
(kcat/Kcholine) values, 

thereby, decreasing the intrinsic KIEs (33, 35, 36). Such internal equilibrium described here was 

previously proposed in CHO-Glu312Asp where deprotonation of the alcohol substrate yields an 

alkoxide species results in a conformational change that is associated with the enzyme-substrate 

complex
 
(29). 

      It was previously published that in the presence of kinetic complexity  
D
kcat and 

D
(kcat/Kcholine) 

values can be used to calculate the commitment (Cf) value that affects the intrinsic KIEs (34).  

Temperature dependent Cf values and independent KIEint values were calculated at 15, 23, 31 and 

37 
o
C by using this approach (Table 2.5) [for these calculations eq 4 and 5 were used from 

reference (34)]. The Arrhenius analysis of temperature dependence of KIEint values (
D2Oλ2) for 

the hydride transfer indicated that this reaction occurs via quantum mechanical tunneling as it is 

in the wild type choline oxidase (10). The evidences for this conclusion came from large AH/AD 

value of 32 ± 17 and small 1.4 ± 4.6 value of ΔEa for the hydride and deuteride transfer in the 

CHO-S101A enzyme (Figure 2.5). 

     The proton transfer reaction in the wild-type enzyme was shown to occur in the dead time of 

the stopped-flow instrument (2.2 ms) and a lower value of 1900 s
-1 

for limiting rate constant was 

estimated at 25 
o
C

 
. In this study, fast phases (λ1) for the proton and deuteron transfer were 

observed in the stopped flow traces for all temperatures tested (Table 2.4). Since the proton 

transfer has been shown to occur via quantum mechanical tunneling in CHO-Ser101Ala enzyme, 

it is plausible to assume that the wild type enzyme should have a tunneling mechanism for proton 

transfer as well. A possible explanation for ~12 fold decrease in the limiting rate constant for 
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proton transfer in CHO-Ser101Ala enzyme could be the internal equilibrium due to 

conformational change that affecting the enzyme-substrate complex. Evidences supporting this 

conclusion came from significantly lower  
D
(kcat/Kcholine) values with respect to 

D
kcat values 

suggesting that such conformational chance would affect the limiting rate constant for the proton 

transfer. 

     In conclusion, according to Eyring’s and Arrhenius analysis the proton transfer in CHO-

Ser101Ala enzyme occur via quantum mechanical tunneling. This conclusion suggested that the 

proton transfer in the wild type may also occur via tunneling; fast proton transfer could not be 

determined due to the experimental limitations in wild type choline oxidase (31).  In contrast, 

this study showed that a kinetic complexity manifested in the reductive half-reaction, determined 

with rapid the kinetic approach, may lower the intrinsic KIEs for the hydride transfer. Calculated 

intrinsic KIEs showed temperature independence that indicates quantum tunneling for the 

hydride transfer. It was established that solvent viscosity might affect the tunneling reaction by 

altering fast protein motions not only in the active site microenvironment but affecting the 

motions in entire protein (37, 38). In this study, similar values for isotope effects on Eyring’s 

prefactors (AH
ꞌ
/AD

ꞌ
) and hydride transfer (

D2Oλ2) when water substituted with deuterium oxide 

suggested that viscosity of the solvent might affect the reaction catalyzed in CHO-S101A. These 

data provide evidence for fast protein motions might be coupling with the reaction coordinate.  

Overall, substitution of Ser101 with alanine in choline oxidase did not change the quantum 

mechanical tunneling for proton (assuming that the proton transfer occurs via quantum tunneling 

in the wild type) and hydride transfer reactions but an internal equilibrium of the enzyme 

substrate complex due to a conformational change that is relevant for catalysis manifests itself in 

mutant enzyme but not in the wild type. 
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Scheme 2.1. Oxidation of Choline Catalyzed by Choline Oxidase 
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Figure 2.1. The X-ray structure of the CHO-Ser101Ala active site showing the distance between 

Ala101 and the N(5) atom of the flavin. The structure is from Protein Data Bank entry 3NNE. 

Yellow color represents carbon, red represents oxygen and blue represents nitrogen atoms.   
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Figure 2.2. The reduction of enzyme bound flavin in the CHO-S101A enzyme in anaerobic 

conditions. The experiments were carried out in 50 mM sodium pyrophosphate (pL 10.0) at 15 
o
C.  (A) UV-visible absorbance spectra obtained in saturated substrate concentration (6 mM 

choline in H2O or D2O). Oxidized enzyme (blue) and reduced enzyme (black). (B) Stopped-flow 

traces of choline in H2O (black) and in D2O (blue) obtained in saturated substrate concentration 

(6 mM choline in H2O or D2O). Data fit with eq 1. (C) Observed rate constants for proton 

transfer reaction in CHO-S101A enzyme as a function of choline in H2O (circles) and D2O 

(squares). Data fit with eq 2. 
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Figure 2.3. The reduction of enzyme bound flavin in the CHO-S101A enzyme in anaerobic 

conditions. The experiments were carried out in 50 mM sodium pyrophosphate (pH 10.0) at 15 
o
C.  (A) Stopped-flow traces of choline (blue) and 1,2-[2H4]-choline (black) obtained in 

saturated substrate concentrations ~6mM. Data fit with eq 1. (B) Observed rate constants for 

hydride transfer reaction in CHO-S101A enzyme as a function of choline (circles) and 1,2-[
2
H4]-

choline (squares). Data fit with eq 2. 

 

 

 

 

  

 

 



62 
 

 

-6

-4

-2

0

2

3.1 3.2 3.3 3.4 3.5

ln
(


1
/T

 )

1000/T

A

B

0

1

2

3

3.2 3.3 3.4 3.5

ln
(

D
2

O


1
)

1000/T

y = m1 + m2 * M0

ErrorValue

1.27344.7165m1 

0.38206-0.97587m2 

NA0.14213Chisq

NA0.3723R
2

 

Figure 2.4. Temperature dependence of λ1/T (Panel A) with choline in H2O (black circles) 

choline in D2O (white circles). Temperature dependence of 
D2O

λ1 (Panel B). Rapid kinetic assays 

were performed in 50 mM sodium pyrophosphate at pL 10.0 with varying concentrations of 

substrates from 0.04mM to 6 mM in anaerobic conditions. The temperature range was selected 

from 15 
o
C to 37 

o
C. All data used in the plots are in Table S1 in the Supporting information. 
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Figure 2.5. Temperature dependence of λ2/T (Panel A) with choline in H2O (black circles), with 

1,2-[
2
H4]-choline (white circles).  
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Figure 2.6. Temperature dependence of hydride transfer in the CHO-Ser101Ala ( 
D
λ2) with 

calculated intrinsic isotope effects.  
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Table 2.1. The limiting rate constants for proton transfer (λ1) and the hydride transfer (λ2) in 

CHO-S101A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conditions : 50 mM sodium pyrophosphate, pL 10.0 in anaerobic conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 choline, H2O 1,2-[
2
H4]-choline, H2O choline, D2O 

Temperature 

(
o
C) 

λ1(s
-1

) λ2(s
-1

) λ1(s
-1

) λ2(s
-1

) λ1(s
-1

) λ2(s
-1

) 

39 

37 

35 

33 

31 

29 

27 

25 

23 

21 

289 ± 14 

263 ± 20 

233 ± 21 

245 ± 28 

221 ± 14 

180 ± 5 

  167 ± 11 

148 ± 9 

146 ± 7 

116 ± 8 

18.6 ± 0.5 

14.8 ± 0.1 

14.3 ± 1.2 

13.3 ± 0.4 

11.5 ± 0.3 

10.0 ± 0.3  

  9.1 ± 0.3 

11.5 ± 1.2 

 7.3 ± 0.1 

4.2 ± 0.3 

300 ± 24 

279 ±13 

170 ± 1 

  192 ± 20 

190 ± 4 

 175 ± 10 

 168 ± 13 

128 ± 7 

  129 ± 9 

  115 ± 4 

 0.88 ± 0.20 

 1.25 ± 0.05 

 0.97 ± 0.04 

 0.82 ± 0.05 

 0.80 ± 0.09 

0.85 ± 0.02 

0.52 ± 0.02 

0.72 ± 0.01 

0.88 ± 0.10 

0.51 ± 0.02 

56 ± 4 

60 ± 2 

50 ± 2 

46 ± 1 

43 ± 1 

42 ± 2 

41 ± 1 

43 ± 3 

35 ± 2 

32 ± 1 

 9.3 ± 1.0 

10.5 ± 0.5  

  7.5 ± 0.7 

  9.3 ± 0.5 

 7.8 ± 0.1 

 9.4 ± 0.6 

 7.3 ± 0.3 

   21 ± 3 

 5.5 ± 0.7 

 2.6 ± 0.2 

19 

17 

15 

111 ± 8 

92  ± 4 

81 ± 3 

4.8 ± 0.1 

3.7 ± 0.1 

3.1 ± 0.1 

 110 ± 5 

   82 ± 3 

   71 ± 2   

0.58 ± 0.04 

0.50 ± 0.03 

0.38 ± 0.01 

 

31 ± 2 

22 ± 1 

18 ± 1 

 4.1 ± 0.2 

 3.3 ± 0.1 

1.9 ± 0.1 



65 
 

 

 

Table 2.2. Kinetic isotope effects on fast (λ1) and slow (λ2) phases 

T 
o
C 

D
λ1

a D
λ2

a D2O
λ1

b D2O
λ2

b 

39 1.0 ± 0.1 21 ± 5.0 5.1 ± 0.4 2.0 ± 0.1 

37 1.0 ± 0.1 12 ± 0.5 4.4 ± 0.4 1.4 ± 0.1 

35 1.4 ± 0.1 15 ± 1.0 4.7 ± 0.1 1.9 ± 0.1 

33 1.3 ± 0.2 16 ± 1.0 5.3 ± 0.6 1.4 ± 0.1 

31 1.2 ± 0.1 14 ± 2.0 5.2 ± 0.4 1.5 ± 0.1 

29 1.0 ± 0.1 12 ± 0.5 4.3 ± 0.2 1.1 ± 0.1 

27 1.0 ± 0.1 17 ± 1.0 4.1 ± 0.3 1.2 ± 0.1 

25 1.2 ± 0.1 16 ± 1.7 3.4 ± 0.3 0.5 ± 0.1 

23 1.1 ± 0.1 8.0 ± 0.3 4.4 ± 0.3 1.3 ± 0.1 

21 1.0 ± 0.1 8.3 ± 0.2 3.6 ± 0.2 1.6 ± 0.1 

19 1.0 ± 0.1 8.2 ± 0.6 3.7 ± 0.3 1.2 ± 0.1 

17 1.1 ± 0.1 7.5 ± 0.4 4.1 ± 0.1 1.2 ± 0.1 

15 1.1 ± 0.1 8.3 ± 0.3 4.4 ± 0.2 1.7 ± 0.1 

Average 1.1 ± 0.1 nd 4.4 ± 0.3 1.4 ± 0.1 

Conditions: 50 mM sodium pyrophosphate at pL 10. 
a D
λ1&2 values were determined by using 

choline and 1,2-[
2
H4]choline.  

b D2O
λ1&2 values determined by using choline in H2O and D2O. 
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Table 2.3. Thermodynamic parameters for proton transfer catalyzed by CHO-S101A 

CHO-S101A 
                                                                                                             D2O

λ1 

AH/AD
a
                   112 ± 30 

                  AH′/AD′
b 

  1.5 ± 0.1 

   ∆Ea
a
 , kcal mol

-1
  -1.9 ± 0.8 

  ΔH
‡

H
c
 ,kcal mol

-1
    8.8 ± 0.5 

  ΔH
‡

D
c
 ,kcal mol

-1
    7.2 ± 0.5 

  ΔS
‡

H
c
 ,kcal mol

-1
    0.020 ± 0.001 

  ΔS
‡

D
c
 ,kcal mol

-1
    0.028 ± 0.004 

  ΔG
‡

H ,kcal mol
-1

     14 ± 0.5 

   ΔG
‡

D ,kcal mol
-1

     15 ± 1.2 

Conditions: 50 mM sodium pyrophosphate , pL 10 in anaerobic conditions.  
a
AH/AD and ∆Ea

 
 

values were determined by using the Arrhenius equation.  
b
AH′/AD′ value was calculated by 

taking the ratio of y-intercepts from the Eyring’s plot. 
c
Data were calculated by using the 

Eyring’s equation (eq 4) 
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Table 2.4. KIEs determined with steady state approach for CHO-S101A 

 

 

 

 

 

 

 

 

 

Conditions: Steady state parameters were determined with choline and 1,2-[
2
H4]choline in 50 

mM sodium pyrophosphate at pH 10. Various concentrations of substrate used within the range 

from 0.05 to 6 mM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T 
o
C 

D
(kcat) 

D
(kcat/Km) 

15  9.5 ± 0.5 4.5 ± 0.9 

23 8.0 ± 0.6 4.3 ± 1.6 

31 7.1 ± 0.2 5.2 ± 0.8 

37  9.8 ± 0.4 6.6 ± 1.2 
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Table 2.5. Observed and intrinsic KIEs for hydride transfer inCHO-S101A 

 

 

 

 

 

 

 

 

 

Cf and KIEint values calculated with equations 6 and 7 from reference (34). 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T 
o
C KIEobs Cf KIEint 

15  8.3 ± 0.3  1.40 ± 0.60 19 ± 5 

23 8.0 ± 0.3  1.10 ± 0.70 16 ± 6 

31  14 ± 2.0  0.40 ± 0.18 19 ± 4 

37   12 ± 0.5  0.60 ± 0.25 19 ± 8 
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CHAPTER 3. 

CONCLUSIONS 

3.1 Conclusions  

     The proton and hydride tunneling in an active site variant Ser101Ala of choline oxidase were 

investigated through temperature dependence on kinetic isotope effects. The results presented in 

this study showed that the proton transfer occurs via quantum tunneling in CHO-S101A 

according to the Eyring’s and the Arrhenius’ analysis. Previously, the tunneling behavior of 

hydride transfer was investigated in wild type choline oxidase at 25 
o
C (1), however, due to 

instrumental limitations and significantly high rate constants (estimated value 1900 s
-1

) for 

proton transfer, this reaction could not be measured in wild type enzyme. Since the proton 

transfer occurs via tunneling in the CHO-S101A mutant enzyme, it is reasonable to assume that 

the wild type choline oxidase would also exhibit tunneling behavior for the same reaction. 

     Temperature dependence of KIEs for hydride tunneling in CHO-S101A showed an unusual 

behavior. The magnitude of KIEs was smaller at low temperature than high temperature regime. 

A possible explanation for such behavior could be that by introducing a mutation in the active 

site the donor-acceptor distance need not necessarily increased but may actually be decreased. In 

decreased donor-acceptor distances, the tunneling probability would be higher for both light and 

heavy isotopes which results in smaller KIEs (2). Alternatively, at low temperatures the active 

site motions can freeze out which makes distance sampling more difficult for both light and 

heavy isotopes (3). However, in some cases, a kinetic complexity might result in unexpected 

observations. The KIEs measured for hydride transfer in CHO-S101A decreased at low 

temperatures due to a kinetic complexity suggested by comparison of 
D
(kcat) and 

D
(kcat/Km) 

values. This study showed that observed kinetic isotope effects determined with rapid kinetic 
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approach might not be equal to the intrinsic values. The hydride tunneling reaction occurs via 

quantum tunneling in CHO-S101A enzyme similar to the wild type as suggested by the 

temperature independent intrinsic kinetic isotope effects (KIEint values were calculated by using 

the equations from (4)). In conclusion, substitution of Ser101 with alanine in choline oxidase did 

not change the quantum mechanical tunneling for proton (assuming that the proton transfer 

occurs via quantum tunneling in the wild type) and hydride transfer reactions but an internal 

equilibrium of the enzyme substrate complex due to a conformational change that is relevant for 

catalysis manifests itself in mutant enzyme but not in the wild type.  
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