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ABSTRACT 
 
 

         Enhancement methods applied on various satellite images (ASTER, ETM and 

RADAR SAT-1) facilitated the identification and mapping of tectonic fractures in the 

Zagros fold-and-thrust belt in southwest Iran. The results of the fracture analysis on these 

enhanced images reveal four principal fracture sets within each fold structure: (i) an axial 

set defined by normal faults oriented parallel to the fold axial trace, (ii) a cross-axial, 

extensional fracture set oriented perpendicular to the fold axial trace, (iii) and two sets of 

intersecting shear fractures, oriented at an acute angle to the cross-axial set.  Study of the 

enhanced images also revealed five fracture sets along the Kazerun fault zone: (i) Riedel 

R- and R’-shear fracture sets, (ii) extensional T fracture set oriented at a high angle to the 

trace of the main Kazerun fault, (iii) oblique, synthetic P-shear fracture set, at a low angle 

to the trace of the main Kazerun fault, and (iv) synthetic Y-shear displacement fracture 

set, oriented sub-parallel to the main trace of the fault.  The estimated mean azimuths of 

the shortening that developed the fold- and fault-related fracture systems are remarkably 

close, and are oriented perpendicular to the general NW-SE trend of the Zagros fold-and-

thrust belt.  



 

 

 

The sampling and analysis of the fold- and fault-related fracture systems were 

done in a GIS environment.  This study shows that an analysis of enhanced satellite 

images can reveal significant information on the deformation style, timing, and 

kinematics of the Zagros fold-and-thrust belt. This study suggests that the Zagros 

orogenic belt, which has mainly been forming since Miocene, due to the convergence of 

the Iranian and Arabian subplates, has evolved both by thin- and thick-skinned tectonics.  

Reconfiguration of the Precambrian basement blocks, and the ensuing slip and rotation 

along the Precambrian faults during the Zagros orogeny, have deformed the folds, and 

redistributed the fold-related fractures through rigid-body rotation. 

    

INDEX WORDS:    Fracture Analysis, Fold-and Fault-Related Fractures, Kazerun Fault 
Zone, Lineament Extraction, Image Enhancement Techniques, Fold-and-Thrust Belt, 
Thin- and Thick-Skinned Tectonics, GIS, Remote Sensing, Zagros, Iran. 
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µm                    = Micron 
DEM                = Digital Elevation Model 
VNIR               = Visible Near Infra Red 
SWIR               = Short Wavelength Infra Red 
TIR                  = Thermal Infra Red 
RADAR           = RAdio Detection And Ranging 
SAR                 = Synthetic Aperture Radar  
DN                   = Digital Value 
PCA                 = Principal component analysis  
R-G-B              = Red- Green-Blue  
SA                              = Axial set of shear fractures 
SX                              = Cross-axial set of shear fractures 
SO1, SO2                  = Oblique sets of shear fractures  
R                      = Synthetic sets of Riedel shear fracture  
R’                     = Antithetic sets of Riedel shear fracture 
P                      = Oblique shear fracture set   
Y                      = Displacement shear fracture set      
 T                     = Extensional fractures  
>                      = Greater than 
<                      = Less than 
%                             = Percentage 
σ1                              = Maximum principal compressive stress 
σ3                              = Minimum principal compressive stress    
Z                      = Mean azimuth of the shortening direction   
β                      = Angle of rotation of the fold axial trace. 
α                      = Angle between the cross-axial fracture and the two oblique sets.   
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γ                      = Acute angle between the trend of the Sx sets in the rotated and           
                           unrotated parts of the fold.   
ρ                     = Acute angle between R and R’ fractures  
τ                    = Acute angle between the Y-shear fractures and the main fault  
φ                   = Acute angle between the P-shear fractures and the main fault  
λ                   = Acute angle between the R-shear fractures and the main fault  
 η                  = Acute angle between the R’-shear fractures and the main fault  
CCW            = Counterclockwise 

CW               = Clockwise
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1.1- INTRODUCTION AND OBJECTIVES 
 
The Zagros fold-and-thrust belt (ZFTB), in southwest Iran, exposes extensive areas of 

deformed Cambrian to Holocene (e.g., Sepehr and Cosgrove, 2005) sedimentary rocks 

with minimum vegetation cover.  This Phanerozoic sequence is folded and faulted above 

the crystalline Precambrian basement, forming large (on the order of 104 m), doubly-

plunging asymmetric folds that host vast volumes of hydrocarbons in anticlinal traps.  

The high hydrocarbon productivity of these fold traps is related to the presence of two 

systems of fracture that have produced porosity in the carbonate reservoirs (Beydoun, 

1991).  Several sets of fold-related fractures, that constitute the first system, have a well-

defined relationship to the fold structural elements (axial trace, limb), and occur within 

the boundaries of the fold structures.  The spatial variation of these sets of fractures is a 

function of the spatial variation of the fold elements and location within the fold-and-

thrust belt (Beydoun, 1991).  The second fracture system includes several sets of 

basement faults, and their related, subsidiary fractures, that cut through the folded 

Phanerozoic sedimentary sequence.  While the spatial density and variation of the fold-

related fractures correlate with that of folds, the fault-related fracture system is localized 

along isolated linear zones possibly marking the boundaries of blocks of basement rock.  

The fault-related fracture sets, which apparently have been active since the Precambrian, 

cut across the fold-related fracture system that has been developing since Tertiary (e.g., 

Tartar et al., 2004; Allen et al., 2004, Vernant et al., 2004). 

The ongoing processes involved in the collision between the Iranian subplate (part 

of Eurasia) and Arabian subplate (e.g., Berberian, 1995; Allen et al., 2004; Tartar et al., 

2004; Vernant et al.), that started during the Miocene-Pliocene Epoch (Berberian, 1995), 
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account for folding and faulting of the Zagros Mountains.  Because the exposed region of 

the Zagros fold-and-thrust belt occupies a large area (200-300 km wide and 1800 km 

long; Sepehr and Cosgrove, 2005), traditional methods of field mapping and localized 

analysis of rock fracture systems may not capture the spatial variation in the orientation 

and density of these structures.  At these scales, the relationship of large geological 

structures (e.g., fractures with trace length on the order of 103-105 m) can more 

effectively be identified and studied through remote sensing in a Geographic information 

system (GIS) environment.  Mapping and analyzing these structures can reveal 

significant gradients in the areal and linear density of the discontinuities, and orientation 

of the calculated directions of shortening over large regions.   

Although numerous investigations have studied Zagros using remote sensing 

(Barzegar, 1994; Iranpanah, 1989; Bushara, 1995; Rangzan, 1995; Hessami et al., 2001;  

Talebian et al., 2002; Blance et al., 2003; Ali et al., 2003; Ali and Pirasteh, 2004; Sepehr 

and Cosgrove, 2005; and Yassaghi, 2006), detailed studies of the fracture patterns of the 

Zagros area using satellite data at the scale conducted in this thesis are scarce.  Moreover, 

the kinematic relationship between the high-angle strike-slip faults such as Kazerun fault, 

and smaller-scale faults and fractures that occur in narrow zones around these faults, and 

those that occur within anticlinal structures, are not well known.   

This study applies Geographic Information system (GIS) and remote sensing 

using satellite images such as RADARSAT-1, Shuttle Radar Topography Mission 

(SRTM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 

LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+), ASTER derived Digital 

elevation models (DEM), topographic maps, century earthquake data, and geological 
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maps to help establish the kinematic and genetic relationships between fold- and fault-

related fractures and large fold and fault structures, and analyze the tectonic history of the 

area.  This dissertation was conducted a discussion of the processing of these images with 

the latest enhancement techniques to optimize the visualization of the lineaments, folds 

and fractures.  These remote sensing analyses included texture analysis, high-pass 

filtering, histogram equalization, principal component analysis, inversion, supervised 

image classification and edge enhancement. The study shows that GIS facilitates the 

sampling, processing, and analysis of the fracture data, and is a very helpful tool in 

distinguishing between different sets of fold- and fault-related fractures.  

The significance of the study is to (i) define the kinematic characteristics of 

fractures in the Zagros folds and faults;  (ii) show the effect of basement tectonics on 

deformation of the Phanerozoic sequences;  and (iii) identify the implications for the 

Zagros orogeny. 

The main objectives of this study are: (i) Delineate, map, and collect information 

about the fractures and faults based on interpretations of various satellite images. (ii) 

Identify and distinguish between fold- and fault-related fractures. (iii) Determine the 

spatial distribution and gradient of the fold- and fault-related fracture sets.  (iv) 

Determine the kinematic significance of each fracture system in several spatially 

distributed structural domains. (v) Define any correlation between the fracture patterns 

and the major structural elements of the area, such as Kazerun fault, in terms of 

distribution, orientation, density, and size of fractures. (vi) Compare the orientation of 

shortening inferred from each fracture system, and apply the knowledge of the spatial 

variation in the orientation of the kinematic axes to the understanding of Zagros orogenic 
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movements. (vii) Test the competing thin- vs. thick-skinned tectonics hypotheses 

proposed for the Zagros orogeny. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1-  Map showing structures in the Zagros fold-and-thrust belt, southwest Iran. 
Inset map shows location of the study area in the Middle East. Legend: A, Main Zagros 
thrust fault; B, Boundary of Imbricate Zone and Simply Folded zone; C, Kazerun Fault; 
D, Oman Line; E, Zagros Deformation Front; F, Axial trace of anticlines; G, Salt Domes. 
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1.1.1- The Study Area 

The study area is delineated by the Oman Line and the Kazerun right-lateral strike-slip 

fault zone, between 26o 30’ N and 31o 30’ N latitudes, and 50o 30’ E and 57o 00’ E 

longitudes, mostly in the eastern half of the Zagros fold-and-thrust belt (Figure1-1).  The 

Kazerun fault zone with its subsidiary faults is about 300-450 km long (Motiei, 1995; 

Talbot et al., 1996; Sepehr and Cosgrove, 2005).  

Three RADARSAT, sixteen ETM+, and seven ASTER scenes cover the study 

area.  Forty one DEMs covering the area were generated from the ASTER data. The 

processed images and extracted lineaments were used in a GIS environment to analyze 

the relationship between fold- and fault- related fractures and the kinematic significance 

of the geological structures. 
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1.2- GEOLOGICAL AND TECTONIC SETTING 
 
The Zagros fold-and-thrust belt in southwest Iran extends from the northern area of the 

Strait of Hormuz in the Persian Gulf through northeast Iraq (Figure 1-1).  The belt hosts 

more than half of the world’s known hydrocarbon reserves (Sepehr and Cosgrove, 2005).  

Contractional tectonic has led to folding, thrusting, and large-scale strike-slip faulting of 

the Phanerozoic sedimentary cover sequence, and significant crustal shortening in the 

Zagros Mountains.  The Phanerozoic sequence, partly exposed in the belt, was deposited 

in the Tethys oceanic basin (James and Wynd, 1965; Stocklin, 1968; Kamen-Kaye, 1970; 

Setudehnia, 1978; Berberian and King, 1981; Lensch et al., 1984; Dercourt et al., 1986; 

Kazmin et al, 1986a, b; Ala, 1990) above a basement of Precambrian rocks (Table 1-1).  

The basement is believed to have gone through an extensional tectonic event during the 

Precambrian before the deposition of the Cambrian sediments (e.g., Stocklin, 1968; 

Berberian and King, 1981).  Little is known about the crystalline basement of Zagros due 

to the lack of exposure of the basement except for rare exotic blocks carried to the surface 

with salt diapirs (Haynes and McQuillan, 1974; Kent, 1979).  The Phanerozoic 

sedimentary cover is decoupled from the Precambrian basement by a dècollement 

horizon on top of the late Proterozoic-Cambrian Hormuz salt (Table1-1; e.g. Colman-

Sadd, 1978; Alavi, 1994). 
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Table 1.1- Generalized stratigraphical divisions and orogenic phases of the Zagros simply 
folded belt (Hessami et al., 2001). 

 

 

The Neotethys basin, located between the Iranian sub-plate (part of Eurasian 

plate) and the Afro-Arabian plate (Berberian and King, 1981; Stoneley, 1981; Beydoun et 

al., 1992; Berberian, 1995; Talbot and Alavi, 1996; Babaei et al., 2005), started opening 

during the Permian, and was the site of sedimentation during the Mesozoic along the 

northeastern margin of the Arabian plate.  The closure of the Neotethys basin, mostly  

during the Late Cretaceous, was due to the convergence and northeast subduction of the 

Arabian plate beneath the Iranian sub-plate (Berberian and King, 1981; Stoneley, 1981; 

Beydoun et al., 1992; Berberian, 1995).  The closure led to the emplacement of pieces of 
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the Neotethyan oceanic lithosphere (i.e., ophiolites) onto the northeastern margin of the 

Afro-Arabian plate (e.g., Babaie et al., 2001; Babaei et al., 2005; Babaie et al., 2006). 

Continent-continent collision starting in Tertiary has led to the formation of the Zagros 

fold-and-thrust belt (ZFTB), continued shortening of the mountain range, and creation of 

the Zagros foreland basin.  The SW-NE oriented contraction, that started in Miocene, led 

to the development of NW-SE trending, SW-verging folds and NE-dipping thrusts in the 

Phanerozoic sedimentary cover strata of the Afro-Arabian basement.  This basement is 

above a detachment zone of Infracambrian-Cambrian Hormuz evaporite (Kadinsky-Cade 

and Barzangi, 1982; Alavi, 1994). 

The shortening direction in the study area (southeastern Zagros) is N7oE 

(Molinaro et al., 2005) within the sedimentary cover and it is reported to be around 45 to 

85 km (e.g. Blanc et al., 2003; McQuarrie, 2004; and Molinaro et al., 2005) and 10km 

(Molinaro et al., 2005) to 28km (Talebian and Jackson, 2004) within the basement.  

Based on Global Positioning System (GPS) measurements, Hessami et al. (2002, 2006) 

has demonstrated that the present-day shortening rate is not homogeneous along or across 

the Zagros belt, and is faster across the SE Zagros.  A shortening rate of 14-19 ±3 mm a–1 

has been measured for the NW Zagros, east of the Kazerun fault zone (Hessami et al., 

2006; Vernant et al. 2004).  Hessami et al., 2006, measured a shortening rate of 13-22 ±3 

mm a–1 for the SE Zagros.  

The NW-SE trending Zagros fold-and thrust belt (ZFTB) is divided into three, 

NW-SE oriented, parallel structural and stratigraphic regions, which in southwest to 

northeast order are: the Zagros Foredeep, the Zagros Simply-Folded Belt (ZSFB), and the 

Zagros Imbricate Zone (Figure 1-1; Stocklin, 1968; Falcon, 1974; Berberian, 1995). The 
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ZFTB is also subdivided along strike into three lateral segments which comprise the 

Lurestan Arc, the Dezful Embayment and the Fars Arc (Figure 1-2).  

The study area (Figure 1-1) is part of the Zagros-Simply Folded Belt (Alavi, 

2004) and Fars Arc, showing large volumes of Phanerozoic sedimentary rocks in doubly-

plunging folds.  From bottom to top, the 250 km wide Zagros-simply folded belt consists 

of a metamorphosed Precambrian basement and 14 km of Phanerozoic sedimentary rocks 

(4 to 7 km of Paleozoic and Mesozoic faulted and folded rocks, Sepehr and Cosgrove, 

2005; and 3 to 5 km of Cenozoic sedimentary rocks, Alavi, 2004). 

The contractional Zagros orogeny formed a variety of asymmetric, NW-SE 

trending, double- and multiple-hinged, en-echelon folds, and NE-dipping thrusts on the 

southwestern limbs of the folds (Figure 1-1).  Fold axial planes generally dip to N-NE, so 

that the southern limbs of the folds are steeper, and in some cases they are overturned or 

vertical.  The length and width of these folds along the Zagros are in the order of tens of 

kilometers. Their wavelengths range from a few hundred meters to more than ten 

kilometer (Sepehr et al., 2006).  

Surface lineaments reflecting basement faults such as the N-S trending Izeh, 

Kazerun, and Mengarak fault zone (Falcon, 1969; Kadinsky-Cade and Barzangi, 1982; 

Baker et al., 1993; Talbot et al., 1996) transect and deflect, with dextral separation, 

several of the NW-SE trending folds in the Phanerozoic stratigraphic succession of the 

Zagros Range in Iran and Iraq (McQuillan, 1973; Furst, 1990, Ameen, 1992; Bushara, 

1995; Berberian, 1995; Talbot and Alavi, 1996).  
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Figure 1.2- Structural map of the Zagros fold-and-thrust belt (Sepehr et al., 2006). 
 
 
1.2.1- Morphotectonic divisions of the Zagros 
 
 Morphotectonic divisions defined based on the structural and geological features 

in an area.  They show the effect of tectonic events on the morphology of the area.  The 

morphotectonic units show different degrees of thrusting, folding, and uplift.  In general, 

crustal thickness, topography, intensity of deformation, displacement of thrust faults, and 

age of sedimentary rocks decrease from the High Zagros in the northeastern part of ZFTB 

toward the Foredeep in southwestern part of the belt (Figure 1-1).  The boundaries 

between these units are defined based on the apparent transitions in topography, 

deformation style, subsurface data, and seismic characteristics.  These boundaries are 

interpreted as reflecting deep major thrust fault (Aziz Zadeh, 1997).  Cambrian Hormuz 

salt has extruded along some of these faults, indicating a deep extension for the major 

thrust fault (Berberian, 1995).  Structural and stratigraphic studies show a vertical 
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displacement of about 6 km along these thrust faults (Falcon, 1969, 1974; James and 

Wynd, 1965).  The Zagros morphotectonic units are shown in Figure 1-3. 

 
1.2.1.1- The High Zagros Thrust Belt (Zagros Imbricate Zone) 
 

The High Zagros Thrust Belt (HZTB), with a width of more than 80km, is located 

between the Main Zagros Reverse Fault (MZRF) and the Main Recent Fault (MRF) in the 

northeastern part of the ZFTB, and the High Zagros Fault (HZF) in the southeastern part 

of the HZTB (Figure 1-3).  

The High Zagros Thrust Belt is an intensely deformed zone, characterized by high 

mountains, with elevations of up to 4000 meters above sea level, and overthrust anticlines 

that expose deep formations.  Thrust faults are the dominant structure in this belt.  The 

HZTB was formed as a result of the Late Cretaceous subduction and Pliocene continent-

continent collision.   

1.2.1.2- The Zagros Simply Folded Belt (ZSFB) 
 
The Zagros Simply Folded Belt borders the High Zagros Fault (HZF) along its 

northeastern edge and the Mountain Frontal Fault (MFF) along the southwest (Figure 1-

3).  This belt is 1375km long, 250km wide along the southern part, and 120km wide 

along the northwestern edge. The Bala Rud and N-S trending Kazerun fault zones divide 

the ZSFB laterally into different geological provinces; The Dezful Embayment and two 

folded belts: the Lurestan province to the northwest and the Fars province to the southeast 

(Figure 1-3; Sepehr and Cosgrove, 2005).  The Fars province which is the main focus of 

this study extends from the Kazerun fault to the Strait of Hormuz.  Its southern border is 

the Persian Gulf and most of the Hormuz salt diapirs are located in this province (Figure 

1-4).   The thickness and competence of the layers in a multilayer fold can control the 
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wavelength of the fold (Sepehr et al., 2006).  The Fars region is dominated by Jurassic 

Oligocene’s competent carbonate units and displays large wavelengths (Sepehr et al., 

2006).  The larger wavelength folds associated with the Fars region also suggests that 

these folds formed above a deeper basement (Sepehr and Cosgrove, 2005).   The ZSFB is 

oriented E-W in the Lurestan province, NW-SE in Khuzestan and Fars provinces, and 

ENE-WSW north in Bandar Abbas region.  The Zagros anticline traces swing from NW-

SE trend in the northwest into E-W and NE-SW in the southeast of the Fars region 

(Figure 1-1). 

 During the Zagros folding event, the Cambrian to Miocene strata behaved 

competently forming open folds, whereas the incompetent Gachsaran evaporite (Table1-

1) deformed into disharmonic folds and formed diapirs.  During the Late Tertiary 

deformation (Sepehr and Cosgrove, 2005), the Cambrian Hormuz salt and other 

detachments, such as the lower Miocene Gachsaran Fm. (evaporite), the Triassic Dashtak 

Fm. (evaporite) and the Cretaceous Kazhdumi Fm. (Shale), facilitated the decoupling 

between the basement and the Phanerozoic sedimentary cover, and Tertiary units, 

respectively.   

The Zagros Simply Folded Belt is characterized by large, elongated, doubly-

plunging and box folds that are locally pierced by salt dome structures that bring the 

Cambrian Hormuz salt to the surface.  Thrust faults are less common in the Simply-

Folded Belt compared to the High Zagros Thrust Belt or Imbricate zone.  The ZSFB is 

divided into the inner and outer parts based on the topography of the Mountain Front 

Flexure (Falcon, 1969).  The inner ZSFB in the northeastern part of the belt exposes the 
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Asmari Fm. (Table 1-2) with older units in an elevated folded structure.  The outer ZSFB 

in the southwestern part of the belt exposes evaporite and clastic rocks in open folds.  
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Table 1.2- The Cenozoic sedimentation in the northern rim on the Persian Gulf (Farhoudi 
et al., 1989). 

 
Age Zagros Mountain Ranges 

Pliocene Bakhtyari Fm.: 518m conglomerate   
Aghajari Fm.: About 3000m sand 

interbedded with marl and silt-stone, 

aquiclude 

Miocene Mishan Fm.: 700m marl and shale, 

aquiclude 

Gachsaran Fm.: 1950m marl, gypsum, and 
other evaporites, aquiclude 
 
Asmari Fm.: 315m limestone and 
sandstone (at the base), aquiferous 

Oligocene Asmari Fm. 

Eocene Jahrom Fm.: 470m, Massive and thin 

bedded dolomite, aquiferous 

Paleocene Pabdeh Fm.: shale and limestone 

 

O’Brine (1950) divided the stratigraphic column of the Zagros simply folded to 

five following structural/mechanical groups (Table 1-3):  

i) The basement group, which is formed from Pan African granite, gabbro, basalt, 

amphibolites and schist, and some pieces of them, brought to the surface with salt domes 

(Kent, 1970; Haynes and McQuillan, 1974).  
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ii) The lower mobile group, formed from 4 thousand meter Hormuz salt.  The salt along 

with gypsum, shale, carbonates, and pieces of basement’s igneous and metamorphic 

rocks, comprise the Hormuz series (Stocklin, 1968; Kent, 1970).   

iii) The competent group is the thickest section of the Zagros stratigraphic column.  This 

group is formed from 6-7 thousand meter of Cambrian to Lower Miocene platform 

sediments, shale, sandstone, carbonates and evaporites.  

iv) The upper mobile group is formed from 1600 meter Miocene gypsum, anhydrite, and 

salt which serves as the cover rock for Asmari Fm.’s oil fields.   

v) The incompetent group is formed from 3-4 thousand meter of Lower Miocene to 

recent molasses including shale, sandstone, conglomerate, and anhydrite.   
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Table 1.3- Structural, lithological, and stratigraphical divisions of the Zagros simply 
folded belt, modified from O’Brine, 1950 (Colman-Sadd, 1978). 

 
 

 
 
 
 
1.2.1.3- The Zagros Foredeep and the Dezful Embayment 
 

The Zagros Foredeep is limited to the Mountain Front Fault (MFF) from 

northeast, and to the Zagros Foredeep Fault (ZFF) from southwest (Figure 1-2).  This belt 

is characterized by symmetrical and elongated folds (Berberian, 1995).   

 There are two regional embayments in the Zagros Foredeep: (i) The Dezful 

Embayment (a depressed area within the Zagros Folded Belt) in Iran, and (ii) the Kirkuk 
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Embayment in Iraq.  The Dezful Embayment is a foreland basin and a thick sequence of 

post-Miocene sediments were accumulated in this area.  The borders of the Dezful 

Embayment are surrounded by parts of the Mountain Front Fault (MFF) and the Dezful 

Embayment Fault (DEF) from the north, the N-S trending Kazerun fault zone from the 

east and southeast, parts of MFF and the E-W trending Bala Rud fault zone from the west 

and northwest, and Zagros Foredeep Fault (ZFF) from the south and southwest (Figure 1-

2).   

1.2.1.4- The Zagros Coastal Plain 
 
The Zagros Coastal Plain is a narrow region which is limited by the Zagros Foredeep  

Fault (ZFF) from the north, and by the Zagros-Arabia boundary from the south (Figure 1-

2).   

1.2.1.5- The Persian Gulf-Mesopotamian Lowlands 
 
This tectonically formed marginal sea is 1000km long and 250km wide (Figure 1-3). The 

Persian Gulf is a foreland depression which formed on the southern rim of the Zagros 

mountain range as a result of late Tertiary movements and opening of the red sea 

(Farhoudi et al, 1989).  From the Early Miocene to the present, uplifting of the Zagros 

has been accompanied by the depression of the Persian Gulf (Less and Falcon, 1952).  

1.2.2- Salt Diapirism in the Zagros 

The Hormuz Formation comprises a thick (1-2 km) sequence of evaporates between the 

crystalline basement and the Phanerozoic sedimentary cover (Colman-Sadd, 1978; Kent, 

1979).  The Hormuz evaporites acted as a basal de’collement during the Zagros orogeny, 

allowing the sedimentary cover to be shortened and folded in a thin-skinned style 

(Bahroudi et al., 2003).  Sepehr and Cosgrove (2005) related the distribution of the 
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relatively open box fold anticlines in the Fars Arc and its less complex basin floor 

geometry to the presence of Hormuz salt.  Salt domes are distributed extensively 

(150,000 km2 area) and unevenly between the Kazerun fault in the west and Oman line in 

the east.  The uneven distribution of the Hormuz salt is attributed to the basement fault 

reactivations (Husseini, 1988; Sepehr and Cosgrove, 2005). 

Based on the density of the 120 salt domes distributed in the study area, the 

Zagros Simply Folded Belt is divided into two separate areas:  The Bandar Abbas-

Sarvestan area in the southeast that comprises most of the salt domes, and the Kazerun 

area in the northwest with only 14 salt domes.  East of the Kazerun fault, most of the 

anticlines are either pierced with a salt dome or have some evidence of eroded salt domes 

on them (Berberian, 1995).  These two regions are separated by a transitional area 

without any salt dome (Figure 1-4).  Berberian (1976) and Kashfi (1983) attributed the 

shallow earthquakes with small magnitudes that occur in the transitional zone of the 

Zagros range to the movement of the Hormuz salt.   

The Hormuz evaporite has breached to the surface at isolated points by piercing 

through the core of many anticlines, at the crest of the anticlines, at their limbs, along 

basement faults, and in the releasing stepovers between lineaments, especially in the Fars 

Province (Talbot and Jarvis, 1984; Furst, 1990; Berberian, 1995; Yassaghi, 2006), and, in 

places, in synclines (Aziz Zadeh, 1997).  The Hormuz Fm. Carries up pieces of the 

basement that underlies the Phanerozoic sequence to the surface.   

Salt and anhydrite from the Infracambrian Hormuz evaporite, uppermost Jurassic, 

and Miocene Gachsaran Fm (the youngest seal rock), were disharmonically folded with 

the more competent rocks in the Zagros folds (Stocklin, 1968).  The initial 1-2 km thick 
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Hormuz Fm. suggested by Colman-Sadd, 1978; and Kent, 1979, ranges in depth today 

from zero where they are exposed as salt glaciers that have flowed into synclines to 

thousands of meters where they are exposed in the core of the anticlines (Edgell, 1996) 

due to the folding and subsequent remobilization of the salt.    

If faults rooted in basement are the main pathways along which salt diapirs move 

up to the surface through the 8-14 km of sedimentary cover (Kamen-Kaye, 1970; Talbot 

and Jarvis, 1984; Furst, 1990; Berberian, 1995; Talbot and Alavi, 1996), then mapping of 

the salt plugs and their spatial distribution would reveal the distribution and orientation of 

the basement faults.  
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Figure 1.4- The uneven distribution of the Hormuz salt diapirs in the Zagros Simply 
Folded Belt.  The Bandar Abbas-Sarvestan area in the southeast is separated by a 
transitional area, which is void of salt domes, from the Kazerun area in the northwest; 
Legend: A, Salt Domes; B, Main Zagros thrust fault; C, Boundary of Imbricate Zone and 
Simply Folded zone; D, Kazerun Fault; E, Oman Line; F, Zagros Deformation Front. 
 

1.2.3- Seismotectonics in the Zagros 

In areas such as Central Iran, where seismic activity is related to active surface faults, 

distinguishing seismogenic faults is possible through field observations.  But in areas like 

the Zagros that have scattered seismic patterns and active basement faults that are 

covered beneath a thick sedimentary cover, distinguishing the seismogenic faults is not 

easy.  
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 Study of the earthquakes size and distribution reveals that seismic activity is 

relatively intense in the Zagros fold-and-thrust belt, and increases from northwest to 

southeast (Figure 1-5).  Most of the earthquakes in this belt are shallow and have 

magnitudes mostly between 5-6 body-wave magnitude (Mb) and hypocenters located 

between 8 and 14 km depths (mean <20 km)  (Jackson and Fitch, 1980; Baker et al., 

1993; Berberian, 1995; Maggie et al., 2000; Talebian and Jackson, 2004).  The 

hypocenters of the earthquakes are located below the Hormuz salt and along reverse 

faults (Molinaro, et al., 2005) suggesting the minimum estimate of the depth to basement 

around 8km (Morris, 1977; Molinaro, et al., 2005).   Most of the large earthquakes in the 

Zagros range are measured and located by long-period teleseismic P and SH body waves 

(Jackson et al., 1980; Kadinsky-Cade et al., 1982; Ni et al., 1986; Baker et al., 1993; 

Berberian, 1995; Talebian and Jackson, 2004).  Although the estimated foci of these 

earthquakes are 8-14 km deep, Dewey and Grentz, 1973, reported some high magnitude 

earthquakes with foci deeper than 15 km.  Considering the thickness of the sedimentary 

cover (8-14km) and the depth of the basement (25-50km), it is possible that the large-

scale earthquakes (5-6 Mb), with hypocenters located at depths of approximately 10-

20km, are not precisely located.  If true, then the involvement of the basement in the 

deformation of the Zagros Mountains cannot be discarded. (e.g., Baker et al., 1993).  

Jackson and Fitch, 1981; Kadinski-Cade and Barzangi, 1982; Kashfi, 1983; Iranpanah, 

1989; McQuillan, 1991; Edgell, 1992; Baker et al., 1993; Berberian, 1995; Talbot and 

Alavi, 1996; Talebian and Jackson, 2004; Molinaro et al., 2005; Sherkati et al., 2005 also 

believe that the basement is involved in the deformation of the Zagros. 
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Figure 1.5- The distribution of the earthquake hypocenters (magnitudes > 3.5 Mb) in the 
study area; Legend: A) The depth of the earthquakes foci; B) Main Zagros thrust fault; C) 
Boundary of the Zagros Imbricate Zone and Zagros Simply Folded Belt; D) Zagros 
Deformation Front. 
 
 

Deformation in the Infracambrian Hormuz salt probably accommodates most of 

the potential movement in the basement faults, preventing surface rupture of these faults.  

As a result, surface ruptures of deep-seated earthquakes may not be visible even after 

earthquakes with 6-7 Mb. (Jackson et al., 1981; Jackson et al., 1984; Berberian, 1995).  

The focal-plane solutions indicate that most of the large scale earthquakes occur on 

reverse faults with dips of 30-60o above the basement (Jackson et al., 1981; Jackson et 

al., 1984; Ni et al., 1986; Berberian, 1995).  One main reason for these widely distributed 
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earthquakes in the Zagros, is the presence of active blind thrusts, which are also related to 

the development of the surface folds (Aziz Zadeh, 1997).   

Seismologic and paleogeographic evidence indicate that these thrust faults are 

formed due to reversed movement on the older normal faults that reactivated during 

continental contractional deformation of the Zagros orogeny.  The reactivation of these 

basement faults was accompanied with vertical movement and folding and uplifting of 

the Phanerozoic sedimentary cover.  Studies by Berberian (1995) and Aziz Zadeh (1997) 

show that the seismic regions in the Zagros range coincide with the location of major 

blind thrust faults, mapped through other geophysical methods.  Major blind faults mark 

the boundaries of the morphotectonic units of the Zagros described earlier (Figures 1-2, 

1-3).  The thrust faults demarcate discrete segments of the basement that are as much as 

110km long.  The following sections give the description of these faults, along a traverse 

from northeast to southwest margins of the ZFTB (Figures 1-2, 1-3).   

1.2.3.1- The Major Zagros Reverse Fault (MZRF) 

The MZRF marks the collision zone between the Central Iran domain and the Arabian 

plate.  This fault trends NW-SE from west of Iran to north of Bandar Abbas (Berberian, 

1995).  

1.2.3.2- The Main Recent Fault (MRF) 

The MRF is a NW-SE trending, active, right-lateral strike-slip fault that generally follows 

the trend of the MZRF (Tchalenko et al., 1974; Berberian, 1995; Figures 1-2, 1-3).   This 

fault is >640 km long, bounds the Zagros to the northeast, and is separated by Central 

Iran from the ZFTB (Berberian et al., 2001).  The average slip along this fault is 

40mm/yr, and the fault is characterized by high-magnitude seismicity. 
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1.2.3.3- The High Zagros Fault (HZF) 
 
The active HZF separates the High Zagros Thrust Belt (HZTB), also referred as the 

Imbricate zone, to the northeast from the Zagros Simply Folded Belt (ZSFB) in the 

southwest (Figures 1-2, 1-3).  Along this segmented reverse fault, Paleozoic rocks were 

vertically displaced by 6km (Huber, 1977, Berberian, 1995).  The result of this 

displacement is obvious in the level of the exposure of the sedimentary cover strata in 

both sides of the HZF.  In various places along this fault, the Hormuz salt intrudes and 

reaches the surface confirming that the HZF is a deep fault.  There is some seismic 

activity in the southeastern part of the HZF with strike-slip focal mechanism solutions 

(Aziz Zadeh, 1997).  This fault contains a seismic gap which extends for 440km.  

1.2.3.4- The Mountain Frontal Fault (MFF)  
 
The MFF delineates the south-southwestern boundary of the ZSFB.  This fault which 

subdivides the Simply Folded Belt, is the surface manifestation of an active, reverse, 

blind thrust (Berberian, 1995) and demarcates discrete segments of fault blocks with 

length ranging from 15 to 115 km. (Figure 1-2).  It is believed that since the early 

Tertiary, the MFF had controlled sedimentation of the Zagros foreland basin (Sepehr and 

Cosgrove, 2004; Sherkati and Letouzey, 2004).  The apparent subsidence of the Zagros 

Foredeep in the Dezful Embayment area is suggested by the thickening of sediments 

formed after the deposition of the Asmari Fm. This is evidence of the relative motion 

along the MFF and the Dezful Embayment Fault (DEF) from the Early Miocene (Aziz 

Zadeh, 1997).  

   Stratigraphic, seismic, and drilling investigations show more than 6km vertical 

displacement along MFF thrust fault (Falcon, 1974; Huber, 1977; Berberian, 1986).  Due 
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to this vertical movement, the southwestern margin of the ZSFB was uplifted.  The MFF 

is displaced right-laterally about 140km by the Kazerun fault.  

1.2.3.5- The Dezful Embayment Fault (DEF) 

The DEF is located at the northeastern margin of the Dezful Embayment, between the 

MFF in the north and the Zagros Foredeep Fault (ZFF) in the south.   

1.2.3.6- The Zagros Foredeep Fault (ZFF) 
 
The Zagros Foredeep Fault (ZFF) which almost parallels the MFF, defines the 

northeastern boundary of the Persian Gulf-Mesopotamian Lowlands. This fault has a 

reverse sense and like the MFF, delineates discrete and discontinues segments of fault  

(Figure 1-2).  The ZFF is right-laterally displaced about 150 km by the Kazerun active 

fault.  Other blind faults in the ZFTB may remain undetected because of their lack of 

seismic activity.   
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2. METHODOLOGY 
 

Analysis of the spatial distribution, orientation, scale, and kinematic significance 

of the fold- and fault-related fracture systems was conducted in a geographic information 

system (GIS) environment using ArcGIS 9.1, using a series of remote sensing images 

enhancement techniques.  The traces of fractures in most of the fold structures, especially 

around the Kazerun fault, were digitized and stored in the Geographic Information 

System (GIS) database.  Using ArcGIS 9.1 software, different fracture sets for each of 

fold and fault structures were identified and categorized from the enhanced images.  The 

results of the analysis revealed the relationship between different fracture sets, and 

allowed testing and comparison of the kinematic relationship between fracturing and 

tectonics in the Zagros fold-and-thrust belt.  

 The remote sensing analysis utilized different satellite images such as Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), LANDSAT 7 

Enhanced Thematic Mapper plus (ETM+) with 30 meter resolution, and RADARSAT 1 

SAR, as well as the Shuttle Radar Topography Mission (SRTM), ASTER-derived Digital 

elevation models (DEM), geological maps (1:100,000, 1:250,000 and 1:1000,000) 

published by the National Iranian Oil Company and the Geological Survey of Iran, and 

topographic maps (1:250,000).  

 ArcGIS 9.1, ERDAS Imagine 8.7, Envi 4.3, and Rockwork software were used 

in this study to: (i) determine the orientation (i.e., trend), length, and location of the 

fracture traces, (ii) geo-reference and rectify the raw, digital image data, (iii) apply 

various methods to enhance the visualization of the traces of the fracture sets on the 

images, and (iv) conduct structural/kinematic analysis.  
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2.1- Image Processing 

Digital images are usually affected by geometric distortions and require rectification.  

Image processing is a sequence of processes applied on an image using computer 

programs.  It includes image rectification, enhancement, and interpretation of raw digital 

images (Lillesand and Kiefer, 2000).  A raw image is stored in a column and row 

geometry.   

2.1.1- Image Rectifications and Geo-referencing  

When a raw image is obtained, usually there are no relationships between the real world 

coordinates and the image’s coordinates.  A process named geo-referencing, applied to 

establish the relationship between the raw image and the real world coordinates, assigns a 

reference for the image.  In order to integrate various types of images and spatial data in a 

GIS environment, the digital image data must first be in the same coordinate system and 

geo-referenced.  After geo-referencing the pixels in the new image keep their original 

row and column values.   

All data used in this study were geo-referenced in the Universal Transverse 

Mercator (UTM) coordinate system as the map projection and World Geodetic System 

(WGS) 1984 datum.  In order to have comparable resolution, the majority of images were 

resampled to 30 m.  In some case where greater detailed analysis was needed, images 

were resampled to 15 m resolution.  The data was then rectified so that it could be 

combined with other data sets which had a different datum.  

 ERDAS Imagine 8.7 and ENVI 4.3 were used to geo-reference and rectify the 

raw digital image data, and to apply various enhancement methods.  In this study, 3 
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RADARSAT, 16 ETM+, 7 ASTER, and two SRTM scenes that cover the study area were 

used.  41 DEMs covering the area were generated and derived from the ASTER data.   

2.1.1.1- LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+)  

LANDSAT 7 was launched on April 15, 1999, and followed its predecessors’ 16-day 

orbit around the Earth.  It captures a 185-km cross-track and 170 km along-track swath of 

seven bands.  LANDSAT 7 is sensitive to the Earth’s reflectivity at eight different 

wavelengths (eight bands).  LANDSAT bands 1 through 3 cover the visible range, bands 

4, 5 and 7 cover the infrared range, band 6 covers the thermal, and band 8 is a 

panchromatic image (Table 2-1).  Color is achieved by combining any three of the optical 

bands.  The most important advantage of the ETM+ over the Thematic Mapper (TM) 

image is the addition of the band 8, with 15 m resolution, that can be combined with the 

other bands of ETM+ (30 m resolution) to produce a higher resolution.  Because ETM+ 

was easily accessible, it was used as the base coverage of the Zagros area in this study 

(Figure 2-1).  

Table 2.1-  Landsat 7 +bands with bandwidth and resolution. 

 
       Bands Bandwidth     Resolution 

Band 1 0.450-0.515 µm 30 m 
Band 2 0.525-0.605 µm 30 m 
Band 3 0.630-0.690 µm 30 m 
Band 4 0.760-0.900 µm 30 m 
Band 5 1.55-1.75 µm 30 m 
Band 6 10.40-12.50 µm 60 m 
Band 7 2.09-2.35 µm 30 m 
Band 8 0.520-0.900 µm (Pan) 15 m 
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2.1.1.2- Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) 
    
ASTER is a recent satellite optical system, and one of several instruments aboard the 
  
Terra satellite.  The ASTER instrument on the Terra satellite was launched in December 

1999 as part of NASA's EOS.  The Terra spacecraft travels in a near circular, sun-

synchronous orbit with an inclination of approximately 98.2 degrees.  The purpose of 

ASTER is to collect data on land surface temperature, emissivity, reflectance, and 

elevation over 98% of the globe.  It is the only high spatial resolution instrument on 

board Terra.    
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Figure 2.1- Grey scale ETM+ satellite image mosaic of the Kazerun fault zone, showing 
the location of anticlinal axes, the Kazerun fault segments (Yasuj, Kamarij, and 
Burazjan), and digitized traces of fractures. Inset map shows the location of the area. 
 

ASTER collects data in 14 bands, within three subsystems (VNIR, SWIR, TIR),  

and different regions of the electromagnetic spectrum.  It provides 3 bands (not including 

the backward-looking telescope in band 3 for digital stereo-pair used in DEM generation) 

in the visible to near infrared (VNIR) at 15 m resolution, 6 bands in the short-wave 

infrared (SWIR) at 30 m resolution, and 5 bands in the thermal-infrared (TIR) with the 

lowest spatial resolution of the three subsystems at 90 m resolution (Table 2-2).  The 
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ASTER data have 60 km wide swaths.  All bands of the ASTER data were investigated 

for use in this dissertation (e.g. Figure 2-2). 

Table 2.2- Major characteristics of ASTER data. 

Bands Spectral range Ground Resolution 
VNIR Band 1 0.52 - 0.60 µm 15 m 
VNIR Band 2 0.63-0.69 µm 15 m 
VNIR Band 3 0.78-0.86 µm 15 m 
SWIR Band 4 1.6 – 1.70 µm 30 m 
SWIR Band 5 2.145-2.185 µm 30 m 
SWIR Band 6  2.185-2.225 µm 30 m 
SWIR Band 7 2.235-2.285 µm 30 m 
SWIR Band 8 2.295-2.365 µm 30 m 
SWIR Band 9 2.360-2.430 µm 30 m 
TIR Band 10 8.125 – 8.475 µm 90 m 
TIR Band 11 8.475 – 8.825 µm 90 m 
TIR Band 12 8.925 – 9.275 µm 90 m 
TIR Band 13 10.25 – 10.95 µm 90 m 
TIR Band 14 10.95 – 11.65 µm 90 m 

Swath width: 60 km 
Coverage interval: 16 days 

Altitude: 705 km 
 

 

The ASTER data are of special interest to this study, because it has the variety of 

spatial resolution, the broadest spectral range, and the highest available number of bands.  

After geo-referencing the ASTER images, they were resampled using the Cubic 

Convolution method (Lillesand and Kiefer, 2000) to correct the spatial resolution for 

each image scene, and make the coordinates system consistent with the rest of the data set 

(UTM-WGS 1984).  The digital number (DN) values assigned for each pixel in the 

visible and near infrared (VNIR) subsystem, containing three bands (1, 2, and 3) were 

resampled from X= 18.98m and Y= 17.52m to X=Y=15m spatial resolution, where X and 

Y are the DN values assigned for each pixel.  The shortwave infrared (SWIR) subsystem, 

operating in six bands (4, 5, 6, 7, 8, and 9) were resampled from X= 37.97m and Y= 
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35.04 m to X=Y= 30m spatial resolution.  The thermal infrared (TIR), operating in five 

bands (10, 11, 12, 13, and 14) were resampled from X= 115.56 m and Y= 104.799 m to 

X=Y= 90m spatial resolution.  Mosaics of these overlapping images were made from 

each of the subsystems in order to create a larger set of images.  

The VNIR subsystem consists of two telescopes; nadir looking and backward 

looking (27.7o off-nadir).  Since these two sensors cover the same area from two different 

angles, they provide a pair of stereo images that can be used in the generation of DEMs.  

ASTER-derived DEMs, with 30 m resolution, were built to create a perspective view of 

the study area.  The DEMs were geo-referenced and put together in a mosaic, and 

overlaid by the ASTER, ETM+, and RDARSAT, to improve the visual interpretation by 

creating a 3D view.  The topographic relief of the 3D view is exaggerated two times for a 

more detailed perspective of fractures.   

The Shuttle Radar Topography Mission (SRTM) is also capable of producing 

DEMs with an X-Y resolution of (approximately 30 meters) and a vertical resolution (Z) 

of 6 to 10 meters.  The data have been degraded to 3 arc seconds for the study area (~ 90 

meters).  SRTM data used in this research were acquired from CGIAR Consortium for 

Spatial Information (CGIAR-CSI) with 90-meter spatial resolution.  Although the 

ASTER-derived DEMs have a higher spatial resolution, the SRTM DEMs generally have 

better reliability.  A hillshade map was derived from the SRTM (Figure 2-3) using 

ArcMap.  The hillshade function used the SRTM elevation raster data to create a shaded 

relief map of the study area.  The hypothetical illumination of a surface which was useful 

for fracture analysis in this study.    
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Figure 2.2- 4, 6, 8-band combination of SWIR image showing a part of the Kazerun fault 
zone, and Khormuj, Gisakan, Ateshgah, Chah Pir, Kaki, and Seyah anticlines.           
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                       Figure 2.3- A hillshade map derived from the SRTM dataset. 

2.1.1.3- RADARSAT 1- SAR 

RADAR (RAdio Detection And Ranging) operates in the microwave portion (1mm to 1 

meter) of the electromagnetic spectrum (Figure 2-4).  Using radar in imaging as an active 

sensor is very helpful in remote sensing studies.  Compared with the passive or optical 

sensors (e.g., LANDSAT, ASTER), the radar longer wavelength signal penetrates deeper 
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in to the earth’s surface and it is not affected by weather condition, haze or cloud cover.  

Since radar transmits an electromagnetic energy signal to the earth surface and receives 

and records the backscattered energy form the target, it is independent of the sun and can 

operate on a 24-hour basis.  However, the backscatter energy depends on local 

topography, surface roughness, and moisture levels.  High backscatter values (e.g., 

Diffuse reflection) are portrayed as light image tones, while low backscatter values (e.g., 

Specular reflection), are shown as dark image tones (Figure 2-5).  Corner reflectors also 

produce bright images.  RADARSAT contains only one spectral band. 

 

 

Figure 2.4- Electromagnetic spectrum showing the microwave section (1mm to 1 meter). 
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Figure 2.5- Surface roughness and their related reflections 

The RADARSAT-1 satellite was launched on November 4, 1995 by Canada in 

order to monitor environmental changes and the Earth’s natural resources.  It is equipped 

with a Synthetic Aperture Radar (SAR) which can collect data over a 1,175 km wide area 

using 7 beam modes (Table 2-3, Figure 2-6).  Using the beam modes provides the user 

with a range of resolutions, incidence angles, and coverage areas.   

The RADARSAT SAR device is made up of three parts: a radar, a data downlink 

transmitter, and a radar receiver.  The radar transmitter and radar receiver function 

through a short physical antenna.  The antenna directs the transmitted energy in a narrow 

beam width which is perpendicular to the satellite track.  The elevation of the beam can 

be modified so that the beam intercepts the earth's surface over the range of look or 

incidence angles (Figure 2-6).  The ability of the SAR system to operate in a variety of 

beam modes plays an important role in obtaining a wider range of resolution and 

coverage area due the fact that image characteristics vary with the incidence angle 
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associated with each beam.  Depending on the beam modes, SAR provides various 

resolution, swath width, incidence angle and coverage area.  Table 2-3 illustrates the 

resolution and area coverage for each RADARSAT beam mode.  

 

Table 2.3– RADARSAT beam modes and resolutions. 

 

 

 

 

Figure 2.6 - The beam selection modes, characterized by a specific beam elevation angle.   

This study included the application of the standard beam mode of the RADAR 

SAT-1, with 7 different beam positions, a resolution of 25 m, and a 100 km by 100 km 



 
 

 

39

coverage.  This resolution is suitable for mapping of the fracture systems, as the 20o- 49o 

incidence angle (S1-S7) of the standard beam mode minimizes land cover variation and 

brings out the structural features (Figure 2-7).    

RADARSAT is a right-looking sensor, facing west during the descending orbit, 

and facing east during the ascending orbit.  The acquisition of both ascending and 

descending passes maximizes the number of lineaments that can be identified.  The 

multiple look direction characteristic of RADARSAT is helpful in distinguishing 

differently oriented linear features such as the traces of fracture and faults in the Zagros 

fold-and-thrust belt.  Some of the fracture traces that might be hidden in one look 

direction due to a shadowing effect, become visible from the opposite look direction.  

Natural corner reflection is another special property of radar.  If any lineament and 

fracture along a small fault is present, the backscatter energy form the corner will be 

highlighted, revealing faults or other lineaments that would be otherwise hidden.  

The enhancements carried out on RADARSAT images include texture analysis, 

speckle suppression or reduction, edge enhancements using are edge detection Robinson 

filter- (window size 3*3), and the histogram-equalized stretch process, which increases 

the contrast of pixel values at the peaks of the histogram and decreases the pixel values at 

the tails.    
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Figure 2.7 - RADARSAT -1 image showing the Sisakht, Yasuj, and Kamarij segments of 
the Kazerun fault zone.  The area comprises Oligo-Miocene Asmari Formation to the east 
of the Kamarij and Yasuj segments of the fault.  The Asmari Formation is juxtaposed 
against Middle Miocene Gachsaran Formation to the west of the fault zone. 
 

2.1.2- Visualization of Multi-band Images 

The satellite images are displayed as a single band (panchromatic) or color composites.  

Multi-band composites are created by using the measured reflected energy and spectral 
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information in each of three spectral bands to control the amount of three primary colors; 

red, green, and blue (R, G, and B), in a color output image.  Many combinations of bands 

are possible.  

The way in which the bands in each type of images are mapped to the three 

primary colors in the output image depends on the information desired to be highlighted 

in the image.  For some applications, it may be desirable that landcover classes be 

associated with familiar colors, e.g., green for grass.  In other cases, contrasting colors are 

preferred to highlight objects of interest from the background.   

In order to distinguish between different geological units and distinguish between 

sets of lineaments, different band combinations were used in this study.  An image using 

for example, band 7 as a color gun red, band 4 as a color gun green, and band 2 as a color 

gun blue would be designated (7,4,2).  This convention was used in this study because it 

works well in arid areas such as the Zagros and provides the greatest distinction between 

rock types.   

On the multi-spectral images, bands 3, 2, 1, also known as the True-Color 

Composite image of the ASTER image (Figure 2-8), and bands 4, 3,2 of ETM+ as red, 

green and blue, respectively, were selected.  The true color composite made from ASTER 

approximates the range of vision for the human eye, and hence these images appear to be 

close to what we would expect to see in a normal photograph.  The true-color images 

tend to be low in contrast and somewhat hazy in appearance.  This is because blue light is 

more susceptible than other bandwidths to scattering by the atmosphere.  Broad-based 

analysis of underwater features and landcover are typical applications for the true-color 

composites.  This combination is much like the 4, 3,2 of Landsat, with the biggest 
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difference being that band 3 of ASTER but band 4 of Landsat measures the near-infrared 

(Table 2-1and 2-2).  A true color scene is one that assigns bands that are approximately 

equal to the red, green, and blue portions of the electromagnetic spectrum.  Thus the true 

color composite images look partly realistic, and are useful as location maps, for 

distinguishing important urban features such as roads and towns, as well as 

geomorphologic features such as rivers, topography, and ridges.  However, the colors of 

the true color composite images are not completely natural because the bands of both 

Landsat and ASTER do not exactly match the red-green-blue regions of the 

electromagnetic spectrum.  
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Figure 2.8- A true color simulation of an ASTER pseudo-colored composition (RGB: 3, 
2, 1) showing the Yasuj and Kamarij segments of the Kazerun fault zone.    
 
 
2.1.3- Image Enhancement 

Image enhancement in this study utilized the procedures that made the geo-referenced 

images clearer and more interpretable for fracture analysis.  This section describes all the 

enhancement methods that were used in this study to improve the visual impact of the 

raw data for the user’s eye.  The enhancement techniques that were used here to 

accentuate the linear features from satellite images are classified in four categories 
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(described in detail in the following sections): (1) Contrast Enhancement or Radiometric 

Enhancement (e.g., Contrast Stretching, and Histogram-Equalized Stretching); (2) Spatial 

Enhancement (e.g., Image Inversion, Edge Enhancement, High-Pass Filters, Texture 

Analysis, Speckle Reduction for Radar Image); (3) Multi-band Operations or Spectral 

Enhancement (e.g., Principal Component Analysis, Band ratios, Image Fusion); (4) 

Image Classification (e.g., Unsupervised Classification). 

2.1.3.1- Contrast Enhancement or Radiometric Enhancement  

This type of enhancement transforms and manipulates the raw digital image on each 

individual value of the pixels in the image.  The contrast enhancement, also called global 

enhancement, increases the contrast ratio on an image (Figure 2-9).  One of the major 

causes of low contrast in satellite images is scattering of the EM wave by objects and 

gases in the atmosphere.  Thus this technique can also be used to minimize the effect of 

haze.   In a black and white image, our eye can distinguish 30 shades of gray.  However, 

the computer monitor is capable of displaying 256 gray levels (Drury, 2001).  Thus the 

energy expressed as digital number (DN) of satellite images, can vary in intensity from 0 

(black) to 225 (maximum brightness) and reveal more information from an image 

(Lillesand and Kiefer, 2000).  

2.1.3.1.1- Contrast Stretching 

The contrast stretch is linear and the simplest type of contrast enhancements.  After the 

histogram is calculated, a minimum DN value that belongs to the low end of the 

histogram is set to 0 (extreme black), and the maximum DN value that belongs to the 

high end of it, is assigned to 255 (extreme white) (Figure2-9).  In other words, the image 

is stretched so that the DN values range from 0 to 255.  This way the range of data is 
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changed by spreading it equally between 0 and 255, the maximum brightness of the 

medium (range between black and white) is utilized, and the light areas seem lighter and 

dark areas seem darker.  

2.1.3.1.2- Histogram-Equalized Stretching  

The histogram-equalized stretching is one type of the contrast stretching.  The histogram-

equalized stretching is a non-linear stretch, and the frequencies of the DN values are 

considered.  The shape of the histogram represents the contrast of the image.  A broad 

pick shows a range of contrast, whereas a single pick indicates low contrast (Drury, 

2001).   

These types of stretch are used to gradually increase the contrast in one range, or 

decrease the contrast in other ranges (Figure 2-9).  After the histogram is calculated, 

based on the DN values’ frequency, it will be redistributed between 0 and 255.  It is 

possible to allocate the image display based on the frequency of image values on the 

histogram by applying the histogram-equalized stretching (Lillesand and Kiefer, 2000).  

Figure 2-10A shows the histogram-equalized stretching applied on an ETM+ image, 

bands 3,2, and 1 as color guns red, green and blur, respectively.  
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Figure 2.9 - Principle of contrast enhancement (Lillesand and Kiefer, 2000). 

 

2.1.3.2- Spatial Enhancement  

Spatial enhancement is also called local enhancement due to the fact that an image pixel 

value will be modified based on the pixel values in their immediate neighborhood. 

2.1.3.2.1- Image Inversion  

The inversion option inverts the contrast of a black and white image, as well as the 

lookup table which creates an effect similar to a photographic negative.  In the case of 

ASTER and ETM+ multi-spectral images, each single band is treated as a black and 

white image.  Using the inversion option, subtle details in an image histogram become 

more visible (Figure 2-11).  

2.1.3.2.2- Edge Enhancement and High-Pass Filters 

Edge enhancers highlight the edges between homogeneous pixels.  This method sharpens 

up the image without eliminating other features (Figure 2-10B).  High-pass filtering, 



 
 

 

47

which can be considered as an edge enhancement method, emphasizes the high frequency 

components that show local details of an image by removing the low frequency 

components (Jensen, 1986; Lillesand and Kiefer, 2000).  Utilizing the high pass filters 

allows the removing of the lower peak in a histogram and pushing the histogram to 

higher values.  High-pass filtering accentuates the obvious lineament such as 

transportation lines or drainages.   

2.1.3.2.3- Texture Analysis 

Texture analysis is particularly applicable to radar data, although it is useful in the 

enhancement of visible/infrared image.  This enhancement method is especially useful for 

geological (lithological) discrimination.  In this study, texture analysis was applied to 

both of the optical data, ASTER and ETM+, as well as the RADARSAT images (Figure 

2-10C).  

2.1.3.2.4- Speckle Reduction for Radar Image 

Radar images appear with some degree of speckle that affects its appearance.  Speckles 

appear as a random pattern of darker and brighter spots or as a grainy, salt and pepper 

texture caused by random interference from the multiple scattering microwave signal 

returns from the Earth’s surface.  The radar image speckle was reduced through the 

speckle reduction technique (Lillesand and Kiefer, 2000).  In order to reduce speckle 

values in pixel of interest, the Median filter is used.  In this filter the DN value of the 

pixel of interest is replaced by the value of the pixel in the center of a user defined 

window in which all the DN values are arranged sequential.   
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Figure 2.10- Examples of the contrast and spatial enhancement techniques applied to the 
selected bands 4 (red), 3 (green), and 2 (blue) of the ETM+ sub-scenes in the Zagros Mts.  
In the Kaki anticline: (A) Equalized Histogram; (B) Edge Enhancement; (C) Texture 
analysis (see text for explanations). 
 
 
 
 

 

 

 

 

 

Figure 2.11- (A) Image inversion applied to the band 1, 5, 4 assigned for the color guns, 
red, green, and blue on the ETM+ sub-scene of the Kuh-e Buzpar and Kuh-e Neyzar, 
Zagros Mts. 
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2.1.3.3- Multi-band Operations or Spectral Enhancement  

To extract the structural features and fractures from satellite images that cannot be clearly 

detected in a single band, the spectral information of the fractures recorded in multiple 

bands are utilized.  

2.1.3.3.1- Principal Component Analysis  

Principal component analysis (PCA) is a data compression method (Figure 2-12), applied 

to compress redundant data into fewer bands (Jensen, 1986).  Applying PCA creates a 

new data set with fewer variables (Lillesand and Kiefer, 2000).  The reduction of the 

bands (also called components) facilitates the interpretation of data (Jensen, 1986; Faust, 

1989).  The PCA is applied on ETM+ and ASTER (VNIR and SWIR) data.  

         

Figure 2.12- Enhancement methods applied to the ASTER sub-scenes in the Zagros 
Mountains: principal component analysis of SWIR (4,6,8) on the left side, and principal 
component analysis of VNIR (3,2,1) on the right side 
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2.1.3.3.2- Image Fusion  

There are many methods for data integration (Bretschneider and Kao, 2000).  Image 

fusion is one of the data integration methods and is the process of combining different 

images. This method is used to obtain a high-resolution multi spectral image from a 

lower spatial resolution (but higher spectral resolution) multi-spectral image is combined 

with a higher spatial resolution (and lower spectral resolution) panchromatic image.  In 

this study, RADARSAT-1 (microwave) data were digitally fused with ASTER (optic) 

images to combine the reflectance data from the ASTER image and the textural data from 

the RADARSAT-1 image into a new set of data.  RADARSAT shows surface roughness 

and accentuates the terrain features, whereas ASTER retains most of its multispectral 

information and shows reflectance which is controlled by chemistry.  For data fusion, the 

Color Normalized (CN) spectral sharpening technique was used (IDL, 2005).  There is 

mismatch in spectral data of two ASTER and RADARSAT data due to differences of 

sensor platform altitude, date of imaging, atmospheric path and solar irradiance 

conditions.  The CN Spectral Sharpening enables correction for the mismatch (Gorin, 

2004).  The CN Spectral Sharpening is used here on the relatively low resolution ASTER 

image.   The result of this technique is the enhancement of the ASTER data based on the 

high-resolution RADARSAT image.  The final image, produced with this technique, 

preserved the spectral information form ASTER, and incorporated the topography of 

RADARSAT-1 (Figure 2-13).  Both data sets were geo-referenced and resampled to a 

15m resolution. 
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Figure 2.13 – (a) Image fusion enhancement method applied to ASTER (2, 2, 3) and 
RADARSAT-1 fused data. (b) Fracture map produced using the image fusion 
enhancement technique. 
 
2.1.3.3.3- Band Ratios 

Band ratio images are produced by dividing the digital number (DN) values of one band 

by the corresponding DN values of another, and plotting the new DN values as an image 

(Sabins, 1987).  This technique is used to enhance contrasts between selected features 

and suppress illumination differences between spectral features attributable to surface, 

look angle, and topographic effects.  In a band ratio image, the black and white extremes 

represent areas with the greatest differences in the spectral reflectance of the two bands.  

The denominator is greater than the numerator for the areas with the darkest signatures of 
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a band ratio image, and the brightest signatures are areas where the denominator is 

smaller than the numerator (Sabins, 1987). 

One advantage of producing the band ratio images is the suppression of the 

appearance of topography.  In individual multispectral bands, the DN values of a 

lithologic unit will be higher on a sunlit side of a ridge than on a shadowed side of a 

ridge.  However, the ratio of two bands will produce DN values that are the same for both 

sides of the ridge.   

Band ratios can also be combined to produce a color image by assigning different 

band ratios to RGB (Figure 2-14).  This technique provides information from as many as 

6 bands in a single image.  In this study, 2 combinations were used.  The first 

combination assigned the ASTER (SWIR) band ratio 5/6 to red, 4/8 to green, and 5/9 to 

blue.  The second combination assigned the ASTER (SWIR) band ratio 4 to red, 6/5 to 

green and 7/8 to blue.  
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Figure 2.14- Band-ratio (5/6, 4/8, 5/9) assigned to color guns (red, green, blue) applied to 
the ASTER sub-scene in the Zagros Mountains.  
 
 
2.1.3.4 Image Classification  
 
The basic objective of image classification procedures is to automatically categorize all 

pixels in an image into land cover or different type of rock classes (Lillesand and Kiefer, 

2000).  Image classification incorporates techniques that increase the visual distinction 

between features in an image.  



 
 

 

54

2.1.3.4.1- Unsupervised classification 

Unsupervised classifiers do not utilize training data as the basis for classification.  There 

are algorithms that examine the unknown pixels in an image and aggregate them into a 

number of classes.  Data in different classes should be separated from each other in the 

measurement space, whereas values within a group type should be close together 

(Lillesand and Kiefer, 2000).   

Unsupervised classification on the 3-2-1-combination ASTER image was applied 

in this study.  All pixels in the data set have been clustered into 20 and 50 classes, 

respectively, but because they are classified only based on the natural groupings in the 

image values, the characteristics of the spectral classes will not be known.  Therefore the 

classified data were compared with the geological map as the reference data.  The twenty 

classes were only useful for a preliminary study of the area, whereas the fifty classes 

provide more details about different geologic units.   

2.2- Fracture sampling and data processing 

After the enhancement were applied, linear geomorphological features such as the 

horizontal traces of fractures and faults, fold axial traces through points of maximum 

curvature of lithostratigraphic contacts on geological maps, and straight segments of 

drainage systems on topographic maps, were traced and digitized in a geographic 

information system (GIS) database.  The spatial data for these observed linear features 

and fractures were stored as line shapefiles in different layers in the GIS.  The various 

types of fracture were identified based on contrasting color tonation or hue, textural 

changes of the rocks in the images (Figure 2-15a), distinct displacement in the 

sedimentary layers (Figure 2-15b), straight arrangements of water bodies (Figure 2-15c), 



 
 

 

55

lineation of vegetation, distinct displacement in the linear arrangement of the vegetation, 

changes in straight segments of drainage systems, and size and linear displacement of 

river traces (e.g., right lateral changes along the Khersan and the Fahlyan river courses as 

they cut cross the Kazerun right-lateral fault, Figure 2-15d).  These lineaments were 

compared with existing geological and topographic maps to ensure that they did not 

represent roads, shadows, or other cultural, non-geological linear structures.  Shear 

fracture were distinguished from joints (tensile fractures) if they were observed to offset 

lithostratigraphic contacts.   

Because fractures in more competent stratigraphic units (e.g., Asmari limestone) 

were discerned more reliably on satellite images than those in the incompetent units, such 

as marl (e.g., Gurpi Formation) or evaporite (e.g., Gachsaran Formation), a large majority 

of the fracture data were collected from the limestones of the Asmari and Sarvak 

Formations, and Bangestan group.  Fractures were studied mostly in two types of 

structural regions, in anticlinal folds, and in the basement fault zone (e.g., Kazerun fault 

zone) (Figure 2-16).   

2.2.1. Fold-related fractures 

In anticlinal folds, the trend and length of each digitized fracture was compared with the 

trend and length of the axial trace of the fold, in which the fracture was measured, using a 

downloadable script called “Easy Calculator” of the ArcGIS 9.1.  Fractures were assigned 

to the ‘axial’ fracture set if their trend were measured within the confines of an anticline, 

and their trend was within ±5o of the trend of the confining fold axial traces.  An 

identification number (Id=1) was assigned to the axial fractures in the GIS database.  
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Fractures whose trend were within 80o-90o from the fold axial trace were categorized as 

‘cross-axial’, and denoted by an id=2.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15 - Subscenes of the study area showing a) textural changes of rocks 
delineating a fault, b) shear displacement in the sedimentary layers of an anticline, c) 
straight arrangements of water bodies, d) linear, left-lateral displacement of river trace 
along a fault.    
 

The axial and cross-axial fractures were denoted by SA and SX in the ArcGIS 

database.  Fractures trending at moderate (>15o and <80o) acute angles to the trend of the 

axial trace were called ’oblique’ fractures.  These oblique fractures were divided into two 

groups based on the sense of their angle, measured clockwise or counterclockwise, from 

the axial trace of the fold to the fracture trace.  These fractures were denoted by ‘SO1‘ 

and ‘SO2’.  An id of 3 or 4 was assigned to the oblique fractures if they had a clockwise 

or counterclockwise sense of angle from the axial trace of the fold, respectively (Figures 
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3-2; 3-4).  Different symbols were assigned to each of these four types of fracture in the 

ArcGIS database.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16-  A) Schematic illustration of four fracture sets associated with a fold 
(Modified after Stearns, D.W., and Friedman, M., 1972). The maximum principal 
shortening axis (Z) is assumed to be parallel the maximum principal compressive stress 
(σ1).  B) Schematic illustration of fault-related sets of fracture for the right lateral 
Kazerun fault zone.  

 

Sets of fractures were identified based on their type and orientation.  The mean, 

mode, and angular relationships between sets of axial, cross-axial, and oblique fractures 

were determined, in each domain, from the rose diagrams.  Rose diagram is a polar 
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histogram which help to visualize the number of fractures with their orientations plotted 

within a range (Van Der Pluijm and Marshak, 2004).  The angles between sets of 

fractures, along with the type of the fractures (tensile vs. shear) belonging to each set, 

were examined for any apparent symmetry and relationship to the axial trace of the 

containing fold.  Tensile fractures do not show any displacement or offset of 

lithostratigraphic contacts, where as shear fractures show offset of lithostratigraphic 

contacts.  Tensile fractures are usually filled with alluvium.  If the angular relationships 

between the shear and tensile fractures and the fold axial trace were consistent with the 

angles detected during experimental deformation of rocks (e.g., Twiss and Moores, 

1992), the angles were used to determine the direction of shortening (the minimum 

principal strain, Z) for folding and fracturing. 

2.2.2. Fault-related fractures 

Fault-related fractures are sets of fractures that form subsidiary to a fault-zone to 

accommodate motion along the main fault.  In the Kazerun strike-slip fault zone, an array 

of subsidiary faults, known as Riedel, Y and P-shears develops.  A subsidiary fault is said 

to have a synthetic or antithetic sense if it has the same or opposite sense of shear as its 

main fault.  The Riedel shears are short shear fractures that form first, at an angle to the 

trace of the fault.  The shear fractures, in the Kazerun fault zone, whose trends made an 

angle between 15o-20o to the trace of the main Kazerun basement fault were classified as 

the synthetic Riedel R-shear fractures.  The shear fractures, in the fault zone, whose trend 

made an angle of 65o-70o to the fault trace were classified as the antithetic Riedel R’ 

shear fractures (Riedel, 1929; Price and Cosgrove, 1990).  As shear continues, the third 

sets of fractures develop.  These fractures were assigned to the P-shear set if they were 
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synthetic, and made angles smaller than 20o to the Kazerun fault trace (Figure 3-11).  Y-

shear fractures were defined if they were synthetic and parallel (±3o) to the trace of the 

main Kazerun fault.  Y-shear fractures accommodate the main displacement in the fault 

zone.  Tensile fractures were assigned to the T-fractures if no offset of lithostratigraphic 

contacts were observed along them.  T-tensile fractures bisect the acute angle between 

conjugate Riedel (R and R’) shear fractures and reflect the shortening direction.    

2.2.3.  Fractures in fold structures deformed in the fault zone   

The Kazerun fault deforms several large-scale fold structures in the study area.  The 

deformation has led to: (i) the rigid body rotation of the fold limbs and the original fold-

related fractures (axial, cross-axial, and two oblique sets) in the fault zone, and (ii) 

formation of fault-related fracture sets both within the boundaries of the folds and around 

them, in the fault zone.  The fault-related fractures that occur within the fold were 

distinguished from the original rotated fold-related fractures by the angles that they 

subtend relative to the axial trace of the folds.  Fractures in the deflected part of the folds 

with angles that matched those of the fault-related fracture system were assigned to R-

shear, R’-shear, P-shear, or Y-shear set (Figures 2-16).   

Fractures measured inside the confines of folds, which were deformed in the fault 

zone, were assigned to one of the fault-related R-, R’-, P-, or Y-shear sets if their 

orientation (i) did not match any of the axial, cross-axial, or oblique sets, (ii) matched the 

fault-related fractures outside of the fold.  

The fractures that are digitized in the study area are those that had a good 

exposure because of their occurrence in a competent lithology, commonly limestone  

(Asmari and Sarvak Formation).  Evaporites such as Gachsaran Formation provide poor 
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exposures, and hence do not clearly reveal fractures on the satellite images, rendering 

them unsuitable for fracture analysis.  

2.3- Domain Boundaries  

The orientation and length of fractures, and position of the two ends of their traces were 

determined in several structural domains.  Structural domains were defined as areas 

within which the measured linear elements remained homogeneous in their orientation.  

Domains were assigned through a trial and error process, in which the linear data, plotted 

in rose diagrams, appeared as well-defined narrow modes, with the least amount of 

scatter and standard deviation (Figure 2-17).  These domains were defined from the 

Oman line (east of the study area) to the more structurally complex Kazerun fault zone 

(west of the study area).  The orientation of fold-related fractures were measured and 

stored in the GIS database.  At first larger areas were chosen as different domains and the 

mean and standard deviation were calculated for each one.  The area was reduced until 

the variation of standard deviations of the orientations of the linear features for each 

domain ranged between ±5 and ±12 from the mean orientation of the anticlinal axial 

traces for that domain.     

 There are also examples where the domain boundaries can be distinguished on 

satellite images by specific features such as sharp rotation of fold axial traces, and 

displacement of stratigraphical contacts showing the shear faults.   Using the topographic 

maps and DEMs, the drainage patterns were also digitized and stored in the GIS database.  

The mean orientation of drainage patterns was comparable with the mean of the axial 

trace of the folds in each domain suggesting that the trend of the straight drainage 

patterns follow the fractures.  The boundaries of the domains were further refined using 
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the earthquake epicenters.  A 25 km buffer zone for the seismic data was defined around 

the domain boundaries (Figure 2-18), and more than 78% of seismic activity, with 

magnitude greater than 3.5 Mb, and foci deeper than 14 km, that occurred in the study 

area, was located along the defined domain boundaries.  Based on these data, 11 major 

structural domains with varying areal extent and overall orientation were defined in the 

Zagros area as illustrated in Table 2-4 and Figure 2-18.  

Because the orientation of fault related fracture sets are a function of the geometry 

of the Kazerun shear zone, other structural domains were defined based on the segments 

of the Kazerun fault.  In this case, the fault segments’ boundary separates each domain.  

Based on detailed fracture analysis, 5 domains were defined along and around the 

Kazerun shear zone (Figure 3-10).  

 

Table 2.4- The characteristics of the structural domains along the Zagros fold-and-thrust 
belt. 

     ID NAME Perimeter (Km) Area (Km2) Orientation 
1 I 591.33 19120.88 N1550-N1650 

2 II 815.10 22129.71 N 600-N 800 

3 III 1073.35 15735.15 N 800-N 940 

4 IV 368.22 1995.33 N 550-N 700 

5 V 1370.70 36947.85 N 940-N 1130 

6 VI 863.50 34481.21 N 1100-N 1340 

7 VII 662.53 15998.43 N1000-N1250 

8 VIII 1233.10 23079.06 N 1350-N 1490 

9 IX 755.18 13790.35 N1500-N1700 

10 X 1370.83 26326.29 N1200-N1360 

11 X1 970.00 25001.53 N1300-N1650 
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Figure 2.17- The structural domain boundaries.  Legend: A, Boundary of Imbricate Zone 
and Simply Folded zone; B, Zagros Deformation Front. 
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Figure 2.18- Structural domains and seismcity. Seismic data from:  
http://www.seismology.harvard.edu/CMTsearch.html; (Ni and Barzangi, 1986; Baker et 
al., 1993).  Legend: A) Boundary of Zagros Imbricate Zone and Zagros Simply Folded 
Belt; B) Zagros Deformation Front; C) The earthquakes foci with magnitude greater than 
3.5 Mb, and foci deeper than 14 km. 
 
 

 The various lineament data were imported into the Rockwork software for 

structural analysis using rose diagrams and fracture density maps.  Rose diagrams for 

both fold-and fault-related fractures were plotted and compared with each other and with 

the general trend of the Zagros fold-and-thrust belt (Figure 3-11).  The radii in these 

diagrams are spaced at 10o class interval.  Using the rose diagrams different sets of 

fractures were distinguished from each other (Figures 3-4B, 3-8).  

 

http://www.seismology.harvard.edu/CMTsearch.html
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3. STRUCTURAL ANALYSIS 
 
In this study, fractures that occur within the confines of anticlinal folds (i.e., intra- and 

trans-fold fractures) have been analyzed separately from fault-related fractures that occur 

in fault zones such as Kazerun.  The structural data include the spatial distribution, 

orientation, and length of individual fractures, and the statistical measures of each 

fracture set.  In this section, fracture data for the Kazerun fault zone and Zagros folds and 

the general background information on the formation of fracture in strike-slip faults and 

in folds are presented.  

3.1- Results: Fold-related fractures  

The deformation structures of the Zagros Range are dominated by elongated, doubly-

plunging, box-shaped folds extending to few tens of kilometers along the axial trace, and 

blind, thrust faults beneath the folds (Berberian, 1995).  Kashfi, (1983) based on 

differences in fold structures divided the Zagros Range into two, NW and SE regions.  

The anticlines in the SE region are symmetrical box-shaped folds, with steep limbs and 

flat tops, and sliding of the strata over the Hormuz salt.  In contrast, the folds in the NW 

region are mainly asymmetric and flexural slip types, and are associated with thrust 

faults.  The study area is located in the SE region defined by Kashfi (1983), east of the 

Kazerun fault, which he believes accommodates vertical movements of the basement 

blocks via thick-skinned tectonics.  Because of the vertical movements in this area, there 

is a limited amount of shortening involved in these folds.  

The anticlines are well-exposed and, in places, their cores are marked by salt 

domes that have breached to the surface and eroded, whereas the synclines are buried by 

younger, Quaternary alluvium.  The anticlinal axial traces generally trend NW-SE, and 
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show a gradual but continuous regional variation in their orientation outside of the 

Kazerun fault zone, and local rotation around the fault.   

The folds selected for the analysis of the fold-related fractures in this study are 

located between 27o 40’ N and 30o 30’N latitudes, and 51o 00’ E and 53o 00’ E longitudes.  

Enhancements performed on the satellite images, especially the texture analysis on 

RADARSAT image, histogram equalizer on ETM+ images, band ratio (5/6, 4/8, 5/9 and 

4, 6/5, 7/8), hillshade map derived from the SRTM dataset, and 4,6,8 band combination 

of SWIR and 1,3,2 band combination of VNIR of ASTER data, simplified the 

identification of anticline folds (e.g., Figures 2-2, 2-3, 2-10A &C, 2-14).   

Study of the anticlinal folds and their related fracture systems revealed the 

presence of two general types of fracture: intra-fold and trans-fold fractures.  An intra-

fold fracture has a length in the 102–104 m range, and is confined to the interior of fold 

polygons.  A trans-fold fracture, on the other hand, transects one or more fold polygons, 

and has a length greater than 104 m.  

About 2.75% of the fractures in the study area are of the trans-fold fracture type 

(Figure 3-1).  The frequency of the trans-fold fractures increases in the vicinity of the 

structural domain boundaries (see below), and major fault zones (e.g., Kazerun fault 

zone).  Most of these trans-fold fractures strike between N-S and NE-SW.  The N-S 

fracture set parallels basement faults such as the Kazerun fault, and the NE-SW set is 

perpendicular to the general trend of the trace of the anticlinal axial traces in the Zagros 

Mountains.   
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Figure 3.1- Map of the study area showing the boundaries of the structural domains, and 
the distribution of measured fractures in each domain. The trans-fold fractures are solid 
line in the domains (highlighted in blue).  Red polygons show the distribution of the 
Hormuz salt. 
 

The frequency of the fractures is a function of the lithology of the fractured rock.  

The fractures are closely spaced in more competent rock units such as limestone and 

dolomite but frequency and length of the fractures decreases in places where the rock 

units are less competent (Chart 3-1).  A good example is the west side of the Kazerun 

fault zone where, compared to the east side, the frequency and length of fault decreases 

significantly in the less competent units of the Gachsaran, Pabdeh and Gurpi Formations.   
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Chart 3.1- Graphs showing the relationship between fractures attributes and lithology;     
(a) histogram showing the lithology vs. frequency of fractures and (b) showing the 
lithology vs. length of fractures. 
 

 
3.1.1- Geometrical relationship between the anticlines and their fractures 

The intra-fold fractures have a well-defined geometrical relationship to the fold 

elements by being defined to be confined to the inside of the fold polygons, suggesting 

formation with the folding event.  These fractures belong to any of the following sets (Si, 

where ‘S’ denotes a set): (i) The axial set (SA) is a group of fractures with traces oriented 

parallel to the axial trace of the confining fold (anticline).  The axial fractures are 

commonly associated with extension in the hinge zone of the anticlines in the Zagros 

Mountains, and are defined by normal faults.  (ii) The cross-axial set (SX) is a group of 

fractures oriented perpendicular to the axial trace of the anticline. The cross-axial 

fractures in a doubly-plunging fold may represent extensional (opening, or mode I) 

fractures which form perpendicular to the minimum principal compressive stress (σ3), 

i.e., parallel to the maximum principal compressive stress (σ1) (Stearn et al., 1972; Aydin 
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and Pollard, 1988).  (iii) Two sets of fold-related, oblique, shear fracture sets that are 

symmetric with respect to the extensional, cross-axial set. 

  The map traces of the two oblique sets are at an acute angle to the fold axial trace.  

These two sets of shear fractures are henceforth referred to as oblique fracture set 1 (SO1) 

and oblique fracture set 2 (SO2).  The two oblique fracture sets may or may not constitute 

a conjugate set, that is, they may not have formed at the same time under the same state 

of stress.  If they were formed as conjugate pairs, the acute bisector of the two sets should 

face the direction of maximum principal compressive axis (σ1), or, in a homogenous pure 

shear deformation, the instantaneous shortening direction which is parallel to the 

minimum stretch (Z-axis) of the infinitesimal strain ellipsoid.  In this study, because of 

the deformed nature of the rocks, the strain terminology (e.g., the infinitesimal maximum 

shortening direction, Z-axis) is preferred, and used, instead of the equivalent stress terms 

(e.g., the maximum compressive stress, σ1).  

 Remote sensing of fractures on satellite images and maps can only provide the 

length, position, and trend of the traces of the fractures, and not the true planar orientation 

(i.e., strike and dip) of fractures.  The results of the fracture analysis on 8,447 fractures 

measured in and 149 folds in the study area, are given in Table 3-1 and Figures 3-2, 3-3, 

3-4, and are described below: 

 The axial fractures of the SA axial set have a mean orientation of 308±8o, which is 

roughly parallel to the 149 measured axial traces that represent the NW-SE general trend 

of the Zagros fold-and-thrust belt (Figure 3-2).    
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Figure 3.2- Schematic illustration of four fracture sets (axial [SA], cross-axial [Sx], and 
the two oblique sets [SO1 and SO2]) associated with the folds.  The mean minimum 
principal stretch axis (Z) (i.e., shortening direction), calculated from these sets of 
fracture, is assumed to parallel the maximum principal compressive stress (σ1).  The 
mean trend of the four fold-related fracture sets are also given.  The angle α is measured 
between the cross-axial and the two oblique sets.   
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Figure 3.3- ETM+ satellite image of part of the Kazerun fault zone, showing the spatial 
location of the anticlines and fold-related fractures of (a) Sarbalesh and Davan anticlines 
around the Kamarij segment of the fault zone, and (b) Gisakan, Seyah, Chah Pir, and 
Beyrani anticlines around the Burazjan segment of the Kazerun fault zone.  Inset maps 
show the map area. 
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 The cross-axial fractures are oriented along a mean azimuth of 039±7o (i.e., NE-

SW), almost perpendicular to the axial set, and hence, the axial trace of the confining 

folds.  The oblique SO1 and SO2 shear fracture sets, are oriented 356o-012o and 064o-077o, 

respectively.  The means of the SO1 and SO2 sets are oriented 004±8o and 071±6o, 

respectively, compared to the 039±7o mean trend of the cross-axial set.  The mean of the 

two intersecting SO1 and SO2 sets make acute α angles (Figure 3-2) of 33±2o and 33±1o, 

respectively, to the mean cross-axial set (SX).  These angles are remarkably close to the 

32o fracture angle reported for naturally- and experimentally-formed shear fractures (e.g., 

Twiss and Moores, 1992).  The angle 2α between the two oblique sets (mean 66±3o) is 

bisected by the cross-axial extensional set.  Based on the definition, the standard 

deviation in smaller in each of the fracture sets.  If the fractures were randomly oriented, 

the standard deviation would be much larger.  
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Figure 3.4- A) Normal color composite image of enhanced ETM sub-scene showing the 
Kuh-e- Buzpar and Kuh-e-Neyzar anticlines.  Band 3, 2, 1 assigned for the color guns, 
red, green, and blue.  Poly-lines are anticlinal axial trace and fracture sets (see legend).  
The NE-SW trending cross-axial fractures (SX) bisect the angle between the mean 
oblique shear fracture sets (SO1 & SO2).  The NE-SW horizontal shortening direction (Z-
axis) is perpendicular to the main NW-SE trend of the Zagros fold-and-thrust belt.  Inset 
map shows the location of the area.  B) Grey scale image of enhanced ETM sub-scene 
showing the Khormuj anticline and its four sets of fold-related fractures.  Inset rose 
diagram shows the orientations of the four sets of fracture in the Khormuj anticline.  
 

 
The mean orientations of the major sets of fold-related fracture vary from domain 

to domain, as indicated by the rose diagrams on Figure 3-5 and shown in Table 3-1.  The 

fractures orientations indicate a 15o-23o clockwise rotation form the eastern domains 

toward the western domains.  The anticlinal axial traces trend NW-SE in the western part 
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of the study area and gradually change to the E-W orientation in the central and 

southeastern part of the study area.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5- Rose diagrams showing the mean orientations of the fold-related sets of 
fracture in different structural domains (Roman numerals).   
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Table 3.1- Range and mean orientation of the fold-related sets of fracture in each 
structural domain (Roman numerals). ‘n’ is the total number of fractures in each domain.  
α1  is the mean angle between SO1 and SX, and α2 is the mean angle between SO1 and SX. 

 

  
II III VI V VI VII VIII IX X 

Range: 
059o-070o 

Range: 
080o-094o 

Range: 
054o-061o

Range: 
095o-115o

Range: 
110o-133o

Range: 
108o-121o 

Range: 
122o-141o 

Range: 
159o-169o

Range: 
124o-140o

SA 
Mean: 
064o±5 

Mean: 
087o±5 

Mean: 
057o±3 

Mean: 
105o±10 

Mean: 
121o±11 

Mean: 
114o±7 

Mean: 
131o±9 

Mean: 
164o±5 

Mean: 
132o±8 

Range: 
149o-170o 

Range: 
355o-005o 

Range: 
148o-161o

Range: 
010o-027o

Range: 
026o-040o

Range: 
018o-031o 

Range: 
040o-054o 

Range: 
062o-078o

Range: 
036o-046o

SX 
Mean: 
160o±9 

Mean: 
000o±5 

Mean: 
155o±6 

Mean: 
018o±8 

Mean: 
033o±6 

Mean: 
024o±6 

Mean: 
047o±7 

Mean: 
070o±8 

Mean: 
041o±5 

Range: 
179o-021o 

Range: 
139o-159o 

Range: 
179o-010o

Range: 
156o-174o

Range: 
172o-008o

Range: 
166o-179o 

Range: 
179o-019o 

Range: 
015o-025o

Range: 
177o-007o

SO1 
Mean: 
010o±8 

Mean: 
149o±5 

Mean: 
004o±5 

Mean: 
165o±9 

Mean: 
180o±8 

Mean: 
172o±6 

Mean: 
10o±9 

Mean: 
020o±5 

Mean: 
002o±5 

Range: 
115o-131o 

Range: 
022o-037o 

Range: 
110o-129o

Range: 
043o-058o

Range: 
050o-064o

Range: 
051o-063o 

Range: 
072o-089o 

Range: 
088o-100o

Range: 
070o-081o

SO2 
Mean: 
119o±7 

Mean: 
030o±7  

Mean: 
120o±8.5 

Mean: 
052o±6 

Mean: 
057o±7 

Mean: 
057o±6 

Mean: 
080o±8 

Mean: 
094o±6 

Mean: 
076o±5 

n 
65 633 83 1435 1891 949 2327 690 305 

α1 31±1o 31±5o 30±1o 33±1o 33±1o 32o 33±5o 36±2o 39±0o 

α2 36±3o 30±2o 35±3o 32±1o 32o 32±1o 33±2o 37±3o 34±1o 
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3.2- Fault-related fractures  
 
3.2.1- The Kazerun fault and the strike-slip faulting 
 
The Kazerun fault zone cuts across the NW-SE trending Zagros fold-and-thrust belt, with 

roughly north-south trend, sub-parallel to the Oman line (Falcon, 1969, Stocklin, 1968) 

which runs along the eastern boundary of the Zagros Mountains.  The fault zone is a 300 

km long strike-slip, basement fault zone (Falcon, 1969; Baker et al., 1993; Berebrian, 

1995; Hessami et al., 2001a), which deforms the Zagros folds.  The Kazerun fault is 

comprised of several major, N-S striking fault segments (from north to south) Sisakht, 

Yasuj (90km), Kamarij (40km), and Burazjan (Sepehr and Cosgrove, 2005) (Figures 2-1, 

3-16).   Strike-slip faults, similar to the Kazerun fault, obliquely cut across the fold axial 

traces in the fold-and-thrust belts of northwest Greece and Albania (Baker et al., 1993).  

Past studies of the Kazerun fault include Falcon (1969, 1974), Kent (1979), Baker (1993), 

Berberian (1995), Talbot and Alavi (1996), Aziz Zadeh (1997), Nedaei (1999), Hessami 

(2001a, 2006), Sherkati and Letouzey (2004), and Sepehr and Cosgrove (2004, 2005).   

The Kazerun fault zone, and its subsidiary faults, which constitute a major focus 

of this study, was initiated in the Early Cambrian as an active basin boundary fault.  The 

fault marked the western boundary of a salt basin in which the Hormuz evaporites were 

deposited in the Fars region (Sepehr and Cosgrove, 2005).  The basin was part of the 

larger sedimentary environment which existed in central Iran and Pakistan (Berberian and 

King, 1981).  The Afro-Arabia-Eurasian continent-continent collision during the 

Cretaceous reactivated the Kazerun and other N-S trending faults such as Izeh (Falcon, 

1969; Baker et al., 1993; Berebrian, 1995; Hessami et al., 2001a).  Reactivation of the 
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basement faults led to changes in the sedimentary environments, which resulted in facies 

change and thickening of the sedimentary sequences (Sepehr and Cosgrove, 2005).   

3.2.2- Fractures in strike-slip faults and background 

3.2.2.1- Strike-slip faults and their associated structures 

Based on their geological settings, strike-slip faults are divided into two main groups:  (i), 

the first group includes strike-slip faults that form in the upper part of the crust.  These 

faults range in size from very small structures to a few tens of kilometers. (ii) The second 

group includes strike-slip faults that are distributed on the regional scale.  These large 

structures are located along the boundaries of lithospheric plates (Price and Cosgrove, 

1990).  Movements along strike slip faults form many secondary structures.  Their types 

depend on the shape, size, and development environment in which the fault develops. 

 Reactivation of basement faults deforms structures in the cover strata.  A very 

large amount of shear strain is required to rotate folds in the cover strata to near 

parallelism with the strike of a first order, basement strike-slip fault (Price and Cosgrove, 

1990).   

A complex arrangement of secondary fractures may form around a major strike-

slip fault.  Figure 3-6 illustrates the relationship between a strike-slip fault and its 

secondary structures in the basement.  The secondary fractures form not only in the 

basement fault zone, but also in the sedimentary cover (Price and Cosgrove, 1990).   
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Figure 3.6- The geometrical relationship of the first order strike-slip fault with the 
secondary structures developed in the basement (a) and cover rocks (b), (Price and 
Cosgrove, 1990).   
 

In the early stages of deformation along reactivating basement faults, a simple 

arrangement of en-echelon folds may form in the sedimentary cover (Figure 3-7A).  As 

deformation increases, the Riedel R-shear fractures may develop.  These fractures, 

reaching to the surface, can cause the rupture of the folds in the form of domes, synclines 

and half-anticlines (Figure 3-7B).  In a next stage, deformation develops further and, 

because of faulting, some of the older structures may be uplifted and eroded (Figure 3-

7C).  The area around the fault zone becomes more complex with the increasing number 
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of fractures, (Figure 3-7D), (Harding and Lowell, 1979). 

 

 
 
Figure 3.7- Schematic diagram showing the evolution history of structures  
associated with the basement strike-slip fault.  C and E arrows represent the major  
compression and extension direction, respectively (Harding and Lowell, 1979). 
 
Major strike-slip faults exhibit non-linear and curved traces at the surface.  Due to 

this fact, the movement of these faults will cause a space problem which can only be 

solved by either an overlap of the two fault blocks, or formation of a gap between them.   

These gaps, which cannot develop in deeper parts of the earth is crust because of high 

pressures, may be filled with magma.  At the surface, the most common features in  

extending areas are pull-apart basins.  The widths of these basins are controlled by the 

geometry of the first order strike-slip fault, and their lengths depend on the displacement 

of the fault (Aydin and Nur, 1982). 
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3.2.2.2- Strike-slip faulting and block rotation 

Most major fault zones consist of closely spaced faults that are sub-parallel to each other.  

Structural analyses and paleomagnetic studies show that these fault zones undergo block 

rotation rather than homogeneous deformation.  Freund (1970) first suggested that in 

strike-slip regions, while block faults move, they undergo rotation along a vertical axis.  

Because the boundary of the blocks is bordered with strike-slip faults, as the blocks 

rotate, the faults also rotate with them (Figure 3-8).  During the deformation, the direction 

of the block rotation is opposite to the direction of the fault rotation.  The amount of the 

rotation angle derived from the paleomagnetic data is very large, and sometime reaches 

100o.  In a situation in which the older sets of faults accommodate enough rotation for 

them to be poorly oriented for slip, new sets of faults will form, and their subsequent 

rotation results in the re-rotation of the older faults (Figure 3-9), (Nur, et al, 1989). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8- Two-dimensional model demonstrating the simultaneous mechanisms of 
strike-slip faults movement and block rotation (Nur, et al, 1989).  A) Pre-rotation 
geometry of the strike-slip faults and the blocks; B) With the start of the deformation, the 
right-lateral faults rotate in a counterclockwise sense, and the left-lateral faults rotate in a 
clockwise sense. 
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Figure 3.9- Two-dimensional model showing rotations more than 45o in the old strike-
slip faults (Nur, et al, 1989). 
 
 
3.2.2.3- Deformation system in the strike-slip faults 
 
There are two deformation models suggested for the formation of the strike-slip faults: 

pure shear deformation and simple shear deformation.  Each of these regimes has specific 

geometrical and symmetrical characteristics that differentiate them from one another. 

3.2.2.3.1- Pure shear deformation 
 
This deformation system forms conjugate sets of strike-slip faults.  Even though, during a 

progressive deformation, these fractures are separating from each other along a vertical 

axis, and they make larger angles to the shortening axis (internal rotation), the stress and 

strain axes are coaxial in each stage of the deformation.  Thus, in the pure shear 

deformation model there is no external rotation.   

 During progressive pure shear deformation, in order to avoid room problems 

caused by the movement of faults, the faults move continually, but not simultaneously.  
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These problems also restrict the development of strike-slip faults, and because of that, the 

fault length rarely exceeds 100km.   

In this deformation system, folds and extensional fractures might form.  The folds 

and thrusts develop in a direction perpendicular to the shortening axis, and extensional 

fractures develop in a direction perpendicular to the lengthening axis (i.e., parallel to the 

shortening direction).  Structurally, the pure shear deformation system has an 

orthorhombic symmetry.  

3.2.2.3.2- Simple shear deformation 
 
The simple shear deformation results from the shear movements along the block 

boundaries that are formed by the pure shear deformation.  In the early stages of the 

simple shear deformation system, the principal axes of stress and principal axes of strain 

are coaxial.  But in the next stages, simultaneously with the internal rotation of structures, 

the principal axes of strain start to rotate, and they will not be parallel to the principal axis 

of stress any more (external rotation).  Hence, the simple shear deformation system has a 

monoclinic structural symmetry.   

 Riedel (1929) first conducted laboratory experimental studies on the development 

of secondary fractures associated with areas undergoing simple shear deformation.  He 

found that a shear zone would form in the cover strata due to the movement of the 

basement blocks.  The shear zone, in profile, is V-shaped, and the base of the V is above 

the basement fault (Figure 3-10 a).  During the progressive deformation, a 

complementary system of shear fractures (R and R’) forms (Figure 3-10 b).  These 

fractures are referred to as the Riedel R- and R’-shear, respectively (Price and Cosgrove, 

1990).   
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Figure 3.10- (a) Riedel’s experimental model showing the deformation in the cover rocks 
due to the movement of the basement strike-slip fault;  (b) The type of fractures 
(extension or shear) developed in the shear zone; (c) Interpretation of the shear system 
that formed fractures in figure b; (d) Tchalenko’s (1968) terminology for shear 
discontinuities formed due to the uniform shear in direction D, in a clay layer: Riedel 
Shears (R and R’), Tchalenko’s ‘thrust shears’ (P), and structures formed due to the 
concentration of stress at the edge of the shear box (Price and Cosgrove, 1990). 
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 Figure 3-10d illustrates similar experiment by Tchalenko (1968) on a clay  

layer subjected to a uniform shear.   In the resulting fracture pattern, D is the direction of 

the principal shear which is parallel to the basement fault’s shear direction.  In addition, 

secondary fractures form: R- and R’-shear, and P-shear fractures which form after the R-

shears.   

Oliver (1989) conducted a series of experiments on fold structures (e.g., upright 

box-fold, overturned, and isoclinal folds) in a shear zone.  He discussed U-shaped shear 

zones which gradually narrow down toward the basement.  Price and Cosgrove (1990) 

concluded that in simple shear deformation, caused by basement faults, the formation of 

the various structures couldn’t be completely explained through laboratory simulations.   

 Figure 3-11 shows the structures that can develop in simple shear zones.  In a 

simple shear deformation system, the strike-slip faults form along two conjugate sets.  

The set of fractures that show a sense of movement similar to the main shear system are 

referred to as the synthetic R-shear, and the set of fractures that show an opposite sense 

of movement are referred to as the antithetic R’-shear.  The R-shears fractures are 

oriented at low angles (15o-20o) to the shear zone wall, and the R’-shear fractures form at 

angles greater than 45o (65o-70o) to the main shear zone wall.  

 The R’-shear fractures rarely develop in nature, and they form only when there is 

a large overlap between R-shear fractures.  When the R’-shear fractures form, as the 

shear progresses on the basement, they rapidly rotate by a small angle, and after they 

lock, become inactive (Mandle, 1988).  During progressive deformation, R-shear 

fractures start to rotate simultaneous with the formation of the P-shear fractures (Figure 

3-10d) and splay faults.  The extensional splay fractures, which form at the termination 
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end of the R-shear fractures, develop perpendicular to the lengthening strain axis (i.e., 

parallel to the shortening direction), and may rotate with continued shear along the main 

fault.  When R-shear fractures are not able to accommodate continued movement in the 

basement anymore, the shortening axis rotates, and creates a local stress field that leads to 

the formation of the P-fractures.  

Folds and thrusts are among the secondary structures that accompany strike-slip 

faults (Figure 3-11).  Folds may form around shear zones in the early stages of the shear 

zone deformation perpendicular to the shortening direction, and in places where segments 

of the faults step or bend along the shear zone.  During progressive deformation, these 

folds gradually stretch and rotate until they are subparallel, or at a low-angle, to the shear 

zone wall.   
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Figure 3.11- Orientation of fold and faults in a right-lateral simple shear system 
(Sylveter, 1988). 
 
3.2.3- Results: Fault- related fractures 
 
The N-S and NE-SW oriented dextral strike-slip faults, such as Kazerun, Mengarak, Izeh, 

Korebas, and Sarvestan, and sinistral Bala Rud fault, intersect the NW-SE and E-W 

trending Zagros folds.  These sub-vertical and seismically active faults, which have 

controlled the Phanerozoic stratigraphy, probably are reactivated basement faults that 

have been active since the Precambrian (Falcon, 1974; Berberian, 1995; Hessami et al., 

2001a).   

An area around the Kazerun fault zone, between 28o 00’ N and 31o N latitudes 

and 51o 15’ E and 52o 30’E longitudes, was selected for the analysis of fault-related 

fractures.  Fractures were measured around the Yasuj, Kamarij, and Burazjan segments 
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(Sepehr et al., 2005) of the Kazerun fault zone (Figures 2-1 & 3-13a).  The Kamarij and 

Burazjan N-S striking transfer faults have deformed some of the anticlines through drag 

and rotation, and formed a system of fractures.  The Sarbalesh anticline (Figure 3-3a, 

Table 3-5), for example, is displaced along the Kamarij segment, where the trend of its 

axial trace has changed from an original N52oW-N42oW, outside of the shear zone, to 

N22oE -N18oE in the shear zone, which is sub parallel to the N20oE trend of the Kamarij 

fault zone.  The nearly N-S trending Burazjan fault zone, rotates the axial traces of the 

Gisakan, Chah Pir, Khormuj, and Seyah anticlines from their NW-SE trend to near 

parallelism with the trend of the trace of the fault.  Folds around the northern section of 

the Kazerun shear zone, and the N-S trending Yasuj segment (e.g., Fahliyan, Zan va 

Mard, Shahneshin, and Zardshehneh), are not deformed by these faults (Figure 2-1), and 

their orientation ranges between N51oW-N39oW.  These folds are transected by the Yasuj 

fault, and show a right lateral offset (2.11-5.45 km) along the fault.  
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Figure 3.12- Structural map showing (a) the three segments of the Kazerun fault zone in 
the study area (modified after Sepehr and Cosgrove, 2005), and their related domains (II: 
Yasuj Domain; III: Kamarij Domain; IV: Burajzjan Domain), showing rotation of the 
folds, and (b) fault-related fractures and rotated folds along the fault segments in different 
domains.   
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Fault-related fractures that were digitized for this study are elements of different 

sets of extensional and shear fracture that form subsidiary to a fault-zone to accommodate 

motion along the main fault.  The fracture system comprises the following subsidiary 

fractures: (i) extensional fractures (T set) which may form parallel to the infinitesimal 

principal shortening direction, and may rotate with continued slip.  (ii) Synthetic (R-

shear) and antithetic (R’-shear) sets of the Riedel shear fracture form at oblique, acute 

angles to the horizontal shortening direction (for a vertical main fault).  (iii) P-shear 

fractures may form at a small angle (<20 o) and be synthetic to the main fault.  (iv) Y-

shear fractures form parallel and synthetic to the main fault, and accommodate the main 

displacement.  A complete or partial system of these sets of fracture can be used for 

kinematic analysis, i.e., to estimate the directions of shortening and extension from the 

fracture orientations.  The extensional fractures of the T-set can be distinguished from the 

R- R’-, P-, and Y-shear fractures because they do displace the lithostratigraphic contacts.  
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Figure 3.13- Grey-scale image of enhanced ETM sub-scene showing the Khormuj 
anticline and its four sets of fault-related fractures.  Inset rose diagram shows the 
orientation of the sets of fracture related to the Burazjan segment of the Kazerun fault.   

 

The mean orientations of the Riedel R- and R’-shear fractures, and the acute angle 

between them (ρ) are given in Table 3-1 for selected areas.  The traces of the P-shear 

fractures make a low angle (φ) (mean: 6-21o) measured CCW from the trace of the main 

Kazerun fault zone.  The acute angle between the displacement Y-shear, fractures and the 

main fault (τ) is 1-6o CW from the fault trace.  The Y-shear sets can be traced up to 47 

km away (east) of the main N-S striking Kazerun shear zone.  The mean azimuths of the 

Riedel R- and R’-shear fracture sets are slightly different for each of the Kazerun fault 

segments (Table 3-1).  The mean orientations for the Riedel R-shear fracture set (λ) and 
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R’-shear fracture set (η) are 11-31o CW and 66-95o CW, respectively, from the trend of 

the right-lateral Kazerun shear zone (Figure 3-13).   

The acute angle (ρ) between the R-shear and R’-shear fractures ranges between 

54o and 64o (mean: 59±5o).  This angle is bisected by the mean of the extensional T set, 

which is oriented between 044o to 061o (Figure 3-14, Table 3-2).  The standard deviations 

calculated for each of the fault-related fracture sets are tighter because of the defined 

relationship between them.  The orientations of the P- and R-shear fracture sets, both 

synthetic to the right lateral Kazerun fault zone, make a low angle from the trace of the 

Kazerun fault zone. However, the Riedel R-shear fractures, are more dominant, and make 

a higher clockwise angle from the trace of the fault, compared to that of the P-shear 

fractures.  The mean azimuth of the shortening directions (Z-axis) for the Yasuj, Kamarij, 

Burazjan domains, are 052±1o, 060±1o, and 050±7o, respectively (Figure 3-15).   The 

estimated mean shortening direction in the deformed Kamarij domain is rotated 8o CW 

from the mean azimuth of the shortening direction of the Yasuj domain where the fold is 

not deformed.  In the Burazjan domain, the rotation is between 4o to 15o CCW from the 

mean azimuth direction of the Kamarij domain (Figure 3-8). 
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Table 3.2- The range of the orientation of the Riedel shears, P-shear, Y-shear, and 
extensional T fractures in different segments of the Kazerun fault zone.  The table also 
shows the mean of the angles ρ, λ, η, and φ in each segment of the Kazerun fault zone 
(see text and Figure 3-14 for explanation).       
 

    Kazerun Fault Segment 
Yasuj 
(N-S) 

Kamarij 
(N20oE) 

Burazjan 
(N5oE) 

R 020o-031o 032o-038o 016o-027o 

R' 083o-095o 086o-094o 073o-087o 

ρ 63o-64o 54o-56o 56o-62o 

P 160o-174o 006o-015o 164o-171o 

ϕ 6o-20o 11o-15o 14o-21o 

Y 178o-007o 024o-030o 000o-013o 

η 83o-95o 66o-74o 68o-82o 

λ 20o-31o 12o-18o 11o-22o 

T 051o-053o 059o-061o 044o-057o 
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Figure 3.14- The angular relationships measured from the right-lateral Kazerun fault zone 
to the synthetic Riedel R-shear fractures (λ), antithetic Riedel R’-shear fractures (η), and 
synthetic P-shear fractures (φ).  The ρ angle is the acute angle between the two Riedel 
shear fractures.  The ranges of the angles are also given for each set. 
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Figure 3.15- Structural map of part of the study area showing the mean azimuths of the 
estimated shortening direction for the Yasuj, Kamarij, and Burazjan fault segments. The 
mean shortening directions are perpendicular to the general NW-SE trend of the Zagros 
fold-and-thrust belt.   
 
 
3.3- Results: Deformed folds in the Kazerun fault zone  
 
Folds are deformed in the Kazerun fault zone.  The axial traces of some of the folds 

studied in this dissertation (e.g., Sarbalesh, Gisakan, Seyah, Khormuj, and Chah Pir, 

Figure 3-3a) are rotated from the regional NW-SE trends to between N1o E and N20o E in 

the Sisakht, Kamarij, and Burazjan segments of the Kazerun fault zone.  Within each of 

these fault segments, the rotated fold axial trace is sub-parallel, or at a low-angle, to the 

local orientation of the fault segment (Berberian, 1995; Sepehr and Cosgrove, 2005), 

indicating large shear strains along the fault. 
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The rotated folds selected for analysis in this study are located in, and 

immediately around, the Kazerun fault zone, between 29o 04’ N and 29o 30’ N latitudes 

and 51o,24’E and 51o,48’E longitudes.  Tables 3-4 to 3-8, Figure 3-16 show the data 

used in the analysis of 774 fractures in this study.  The data include the mean and range 

of fracture orientations, sense of rotation (CW vs. CCW from the main fault), and the 

mean angle of rotation in five rotated folds near the Kazerun shear zone. 

 The fractures of the SA axial set in the unrotated part of the folds have a mean 

orientation of 314±8o, which is roughly parallel to the mean axial trace of the 149 

measured folds that represent the NW-SE general trend of the Zagros fold-and-thrust belt 

outside of the fault zone (Figure 3-16).  The mean orientation of the SA axial fractures in 

the rotated part of the folds in the Kazerun fault zone is 020±2o (in the Kamarij fault 

segment) and 172±9o (in the Burazjan fault segment).  The mean trend of the rotated 

anticlinal axial traces varies as a function of the orientation of individual segment of the 

Kazerun fault.  In each segment, the mean axial trace is orientated sub-parallel to the 

local trend of individual segment. For example, the mean azimuths of the rotated axial 

traces around the Kamarij and Burazjan segments are 172±9o and 020±2o, respectively.  

The Gisakan fold is rotated in two different places along its axial trace, and the upper part 

of the fold is oriented 003o, which is parallel to the Burazjan fault segment (Figure 3-3b).  

Folds are not deformed along the Yasuj segment of the fault.   

  East of the Kazerun fault zone, only the western parts of large anticlines located 

in the shear zone are deformed by the fault.  To quantify the rotation of the folds due to 

faulting, the rotation angle (β) was defined as the horizontal acute angle measured from 

the unrotated segment of the anticlinal axial trace to the rotated axial trace for each 
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deformed fold (Figure 3-16).  The mean rotation angle for the deformed folds (β) is 

63±3o clockwise in the Kamarij fault zone, and 35±3o clockwise in the Burazjan segment 

of the Kazerun fault zone.  Because the Gisakan and the Seyah anticline were rotated in 

two different places, two clockwise rotation angles of β1 (42) and β2 (28±3o) were 

defined for the Gisakan fold (Table 3-4), and two clockwise rotation angles of β1 (31±4o) 

and β2 (26o) were defined for the Seyah fold (Table 3-6).  

 The cross-axial fractures in the undeformed part of folds in the fault zone are 

oriented along a mean azimuth of 046±5o (i.e., NE-SW), almost perpendicular to the axial 

set, and hence, the axial traces of the confining folds.  The horizontal, acute rotation 

angle (γ) measured from the mean trend of the cross-axial set in the unrotated part of a 

fold outside of the Kazerun fault zone, to the rotated trend of the cross-axial set, in the 

deformed part of the same fold in the Kazerun fault zone (Figure 3-16), is given in Tables 

3-3 to 3-7.  The mean of the γ rotation angles for the Kamarij and Burazjan fault 

segments are clockwise 56±5o and 29±2o, respectively. 

 The oblique shear fractures of the SO1 and SO2 sets, in the unrotated segments of 

the folds, are oriented 007o-017o (mean: 012±5o) and 076o-087o (mean: 044±4o), 

respectively, relative to the 046±5o mean trend of the unrotated cross-axial set.  The 

means of the SO1 and SO2 sets in the rotated segments of the folds are oriented 040o-048o 

(mean: 044±4o) and 108o-118o (mean: 113±5o), respectively, relative to the 079±4o(mean: 

075o-083o) trend of the rotated cross-axial set.  The mean of the two intersecting SO1 and 

SO2 sets make a mean 2α angle (Figure 3-16) of 69±1o in the rotated segment, and 68±2o 

in the unrotated segment.  These angles are remarkably close to each other.  The angle 2α 
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between the two oblique sets is bisected, in the rotated and unrotated parts of the 

deformed folds, by the cross-axial extensional fracture set.   

 
 

 
 
Figure 3.16- Schematic diagram of a fold rotated in the Kazerun fault zone.  The four 
fold-related fracture sets: axial (SA), cross-axial (Sx), and the two oblique sets (SO1 and 
SO2) are shown both in rotated part (i.e., northern side of the fold) and unrotated part of 
the fold.  The angle β is the angle of rotation of the fold axial trace (relative to the 
undeformed southern part of the fold).  The angle α is measured between the cross-axial 
fracture set and each of the two oblique fracture sets. The angle γ is the acute angle 
between the trend of the unrotated and rotated Sx fracture sets in the fold.  
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Table 3.3- The range and mean orientation of the fractures in the unrotated (southern) and 
rotated (northern) parts of the Sarbalesh anticline (Kamarij segment of the Kazerun fault 
zone).  ‘n’ is the total number of fractures measured in the unrotated and rotated part of 
each fold.  

 Unrotated Segment of Sarbalesh Rotated Segment of Sarbalesh β γ 

SA Range: 132o-142o; Mean: 137±5o Range: 018o-022o; Mean: 020±2o 60o-66o  

Sx Range: 042o-053o; Mean: 048±6o Range: 103o-108o; Mean: 105±3o  50o-61o 

SO1 Range: 011o-018o; Mean: 015±4o Range: 066o-073o; Mean: 069±3o   

SO2 Range: 076o-088o; Mean: 082±6o Range: 133o-139o; Mean: 136±2o   

2α 65o-70o 66o-67o   

n 117 47   
 
Table 3.4- The range and mean orientation of the fractures in the unrotated (southern) and 
rotated (northern) parts of the Gisakan anticline (Burazjan segment of the Kazerun fault 
zone).  ‘n’ is the total number of fractures measured in each part of the fold.  
 

 
Unrotated Northern Segment of 

Gisakan 
Rotated Northern Segment of 

Gisakan β1 γ1 

SA Range: 140o-142o; Mean: 141±1o Range: 002o-003o; Mean: 003±0o 41o-42o  

Sx Range: 058o-63o; Mean: 61±3o Range: 083o-091o; Mean: 087±4o  25o-28o 

SO1 Range: 027o-037o; Mean: 032±5o Range: 052o-060o; Mean: 057±4o   

SO2 Range: 091o-102o; Mean: 100±7o Range: 117o-128o; Mean: 122±6o   

2α 64o-65o 65o-68o   

n 53 7   
 
 

 
Unrotated Southern Segment of 

Gisakan 
Rotated Southern Segment of 

Gisakan β2 γ2 

SA Range: 127o-142o; Mean: 144±3o Range: 159o-167o; Mean: 163±4o 25o-32o  

Sx Range: 040o-057o; Mean: 048±8o Range: 065o-077o; Mean: 072±5o  20o-25o 

SO1 Range: 007o-022o; Mean: 015±7o Range: 033o-042o; Mean: 057±4o   

SO2 Range: 075o-093o; Mean: 084±9o Range: 097o-111o; Mean: 122±6o   

2α 68o-71o 64o-69o   

n 36 24   
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Table 3.5- The range and mean orientation of the fractures in the unrotated (southern) and 
rotated (northern) parts of the Khormuj anticline (Burazjan segment of the Kazerun fault 
zone).  ‘n’ is the total number of measured fractures in each part of the fold. 

 

 Unrotated Segment of Khormuj Rotated Segment of Khormuj β γ 

SA Range: 122o-140o; Mean: 131±9o Range: 000o-001o; Mean: 000±1o 41o-58o  

Sx Range: 039o-053o; Mean: 046±7o Range: 86o-88o; Mean: 087±1o  35o-47o 

SO1 Range: 002o-018o; Mean: 010±8o Range: 052o-055o; Mean: 053±2o   

SO2 Range: 073o-089o; Mean: 081±8o Range: 121o; Mean: 121±0o   

2α 71o 66o-69o   

n 309 11   

 

Table 3.6- The range and mean orientation of the fractures in the unrotated (southern) and 
rotated (northern) parts of the Seyah anticline (Burazjan segment of the Kazerun fault 
zone).  ‘n’ is the total number of measured fractures in each part of the fold. 

 

 
Unrotated Northern Segment of 

Seyah 
Rotated Northern Segment of 

Seyah β1 γ1 

SA Range: 126o-136o; Mean: 131±5o Range: 161o-162o; Mean: 162±0o 26o-35o  

Sx Range: 041o-042o; Mean: 042±0o Range: 071o-075o; Mean: 073±2o  30o-33o 

SO1 Range: 004o-005o; Mean: 004±1o Range: 034o-039o; Mean: 037±3o   

SO2 Range: 077o-079o; Mean: 078±1o Range: 103o-111o; Mean: 107±4o   

2α 73o-74o 69o-71o   

n 76 14   
 

 
Unrotated Southern Segment of 

Seyah 
Rotated Southern Segment of 

Seyah β2 γ1 

SA Range: 117o-127o; Mean: 122±5o Range: 142o-154o; Mean: 148±6o 25o-27o  

Sx Range: 031o-040o; Mean: 036±5o Range: 057o-065o; Mean: 061±4o  25o-24o 

SO1 Range: 178o-006o; Mean: 003±4o Range: 018o-030o; Mean: 024±6o   

SO2 Range: 064o-073o; Mean: 101±6o Range: 084o-100; Mean: 092±0o   

2α 66o-67o 66o-70o   

n 13 17   
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Table 3.7- The range and mean orientation of the fractures in the unrotated (southern) and 
rotated (northern) parts of the Chah Pir anticline (Burazjan segment of the Kazerun fault 
zone).  ‘n’ is the total number of measured fractures in each part of the fold. 

 

 Unrotated Segment of Chah Pir Rotated Segment of Chah Pir β γ 

SA Range: 129o-139o; Mean: 134±5o Range: 165o-169o; Mean: 167±2o 30o-36o  

Sx Range: 035o-049o; Mean: 042±7o Range: 063o-078o; Mean: 070±8o  28o-29o 

SO1 Range: 004o-014o; Mean: 009±5o Range: 030o-040o; Mean: 030±5o   

SO2 Range: 074o-083o; Mean: 079±4o Range: 100o-113o; Mean: 106±6o   

2α 69o-70o 70o-73o   

n 14 59   
 
 
 
3.4- Results: Remote Sensing  
 
The enhancements applied to the ASTER, ETM+ and RADARSAT-1 images provided 

scenes with sharp and highly discernible fracture traces.  The statistical summary of total 

lineaments accentuated from the satellite data in Kazerun shear zone and in the vicinity of 

folds is given in Table 3-8.  Among the various enhancement methods that were carried 

out on the ETM+, RADARSAT-1, and ASTER images were the histogram -equalized 

stretch, image inversion, PCA analysis on VNIR and SWIR of ASTER data, ASTER 

band-ratio (5/6,4/8,5/9), image fusion, 3D perspective views, and texture analysis. These 

enhancement techniques used were successful in discriminating the different stratigraphic 

units on fold structures and fractures.   

Histogram-equalized stretch and image inversion were successful used for the 

discriminating of different lithologies (i.e., rock type), particularly in different 

stratigraphic units within folds structures.  These enhancement methods proved to be the 
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most suitable for recognizing folds through contrasting tones.  Subtle details not clear in 

an image histogram, became more visible after using the inversion option.   

      

Table 3.8- The statistical summary of total number of lineaments accentuated from the     
satellite images. 

 
 

Lineaments Total # % 

SA 907 1073 

SX 3656 43.3 

SO1 1203 14.24 

SO2 1327 15.71 

R 472 5.59 
R' 386 4.57 
P 149 1.76 
Y 236 2.79 
T 111 1.31 

Non-Geological 0 0 
Total 8447 100 

 
 
     

ASTER and ETM+ images generated from different band combinations in the 

study area appear similar in some locations and hence they portray the same information.  

Applying Principal Component Analysis (PCA) enhancement, compresses all of the 

information from the original 14- and 8- bands of ASTER and ETM+, respectively, to 

three new bands or components.  The reduction of these bands facilitates the 

interpretation of data (Jensen, 1986; Faust, 1989), for example, the PCA on ASTER 

images were useful for extracting fracture traces (Figure 3A-b, c).  For ASTER data, 
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three separate PCA images (with 3 new bands) generated for each VNIR (3-bands), and 

SWIR (6-bands) subsystems.  The results of the PCAs, generated for VNIR and SWIR, 

were most helpful for accentuating the fractures.  Two PCAs of SWIR and VNIR data are 

complementary of each other, and the data from both of them were compared with each 

other for data quality assurance.  Applying the PCA enhancement on SWIR datasets is 

especially useful in discriminating limestone from the alluvium that fill some of the 

opened fractures.  The PCA analysis, when applied to ETM+, was not very effective 

especially for short fracture traces that were common in this study possibly due to a 

higher number of original variables and bands compared to the VNIR and SWIR.   

The applied band-ratio (5/6, 4/8, 5/9) on ASTER’s SWIR subsystem reduced the 

topographic effect between multi-spectral bands, and helped distinguish lithological units 

and especially lithologically-defined structures and faults.  Application of this band-ratio 

helped in extracting the larger number of fractures in the study area (Figure 3A-a).  Band-

ratio enhancement was especially useful where the extensional fractures (e.g., Sx) were 

filled with alluvium.  Alluviums show a different spectral absorption and reflectance as 

compared to the lithology (e.g., limestone) of the folded layers.  Band 4 covers the 

spectral region where most rocks and minerals have a maximum reflectivity, whereas 

bands 5 to 9 cover the short wavelength infrared ranges where many carbonate minerals 

have absorption features, allowing the discrimination of carbonate rocks, which defined 

the folded and faulted structure, from other rocks.   

The Bangestan and Khami Groups (Jurassic-Cretaceous), which are exposed in 

the core of many anticlines, as well as the Asmari Formation (Oligocene) are dominated 

by carbonate rocks (limestone and dolomite). 



 
 

 

102

The rough surfaces of faults and boundaries of fracture zones are defined by 

asperities and irregularities.  Some of these irregularities act as natural corner reflectors 

(Figure 2-5), especially where fractures are open and not filled with vein material or 

alluvium, whereas the unfractured materials mimic near-diffuse to diffuse reflectors that 

produce high amounts of backscatter and reflect almost uniformly in all directions 

(Figure 2-5).  The diffuse and corner reflectors produce a bright image in the 

RADARSAT images that helped discriminating the fractures in the study area.   

  Due to the radar shadow-illumination effect, the side-looking geometry of the 

Standard Beam mode of RADARSAT-1 data has been effective in structural studies 

(Werle, 1999).  Multiple side-look direction of RADAR provides precise information on 

the subtle changes in the relief, and helps the features, hidden in shadow from one look 

direction, to be revealed from another look direction.  A look direction perpendicular to 

the direction of lineaments enhanced the detection of these fractures.   

Shadowing effect in these images enhances lineaments, joints, and faults, by 

highlighting changes in feature orientation.  Because RADARSAT brightens the sensor-

facing slopes of ridges while accentuating the lee slopes with shadow, linear ridges will 

be easily distinguished and separated from fractures and faults. 

The shallow incidence angles of the Standard Beam mode of RADARSAT-1 are 

ideal for enhancing the subtle topographic relief of lineaments as they minimize the land 

cover variations.  Radar is also sensitive to changes in moisture and roughness, which 

result in contrasting backscatter between different materials filling open fractures and the 

sedimentary rocks forming the anticlines (Werle, 1999).  Because edges of the images are 

the areas that contain most of the information necessary for distinguishing and 
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discriminating between the adjacent objects, the edge enhancement technique were 

carried out on these images.  The fractures and the borders of the images are influenced 

by the illumination condition (e.g., illumination direction, looking direction), and terrain 

properties.  Thus the result of this enhancement sharpened the edges of the image and 

accentuated the fracture lineaments.   

One of the most effective techniques used in this study was data fusion in which 

ASTER and RADARSAT-1 data were combined using the PC Sharpening technique.  

The image produced using this technique preserved the spectral information (e.g., 

distinction between different lithologies) from ASTER, and incorporated the structural 

and topography information of the RADARSAT.  The integration of these two types of 

sensors, helped to enhance and extract the fracture traces (Figure 3B). 

Unsupervised image classification, was not very useful for detailed fracture 

analysis.  Because of its sensitivity to the topography; landforms played a greater role in 

the classification than differences in surface properties.   
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4. DISCUSSION  
 
4.1- Structural Analysis 
 
The combined application of the remote sensing enhancement methods, orientation data 

on rose diagrams, and GIS helped to distinguish fault- and fold-related fracture systems 

in the study area.  GIS, in particular, was very useful for sampling, processing, and 

analyzing of the fractures over most of the study area.  Four major fold-related fracture 

sets, which provide qualitative constraints for the deformation of the Zagros, were 

identified in the study area: (i) a NW-SE oriented axial set (SA); (ii) a NE-SW oriented 

cross-axial, extensional set (SX); and (iii) two oblique sets of shear fracture, SO1 and SO2, 

at 33±2o and 33±1o, respectively, to the mean cross-axial set.  The axial fractures are less 

dominant than the oblique and cross-axial fractures.  The NW-SE trending axial fractures, 

that are parallel to the axial trace of the corresponding folds in which fractures were 

measured, are parallel with the main trend of the Zagros.  The NE-SW trending cross-

axial fracture set bisects the acute angle between the two oblique sets of shear fractures 

(SO1 and SO2), and resolves a NE-SW directed horizontal shortening axis, perpendicular to 

the main trend of the Zagros (Figures 3-2).   

Movement of deep-seated strike-slip faults can develop en-echelon folds and 

lineaments in the overlaying sedimentary cover (Naylor et al., 1986).  Examples of en-

echelon fold development can be seen along the Kazerun (e.g., Chah pir, Gisakan, Seyah, 

and Khormuj anticlines) and Sabzpoushan faults (e.g., Nareh and Takhteh anticlines).  

The movements along the basement strike-slip faults in the study area: have led to: (i) the 

rotation of some of the folds in the Kazerun fault zone (e.g., the Gisakan and Sarbalesh 

anticlines), (ii) extrusion of salt domes along the releasing stepovers of en-echelon 
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lineaments (Yassaghi, 2006), (iii) generation of new, undeformed folds at the restraining 

stepovers of en-echelon lineaments (e.g., Nareh and Takhteh along the Sabzpushan fault), 

and (iv) generation of a fracture system in the sedimentary cover (Naylor et al., 1986).  

Moreover, slip due to the reactivation of the Kazerun fault zone has led to the 

deformation of folds and formation of new sets of fault-related fractures in the deformed 

anticlines.   

Fracture sets in the Kazerun fault zone include the two Riedel shear fracture sets 

(R, R’); a set of the extensional T fractures (mean orientation: 052±8o) parallel to the 

shortening direction, an oblique shear fracture set (P) at an angle of 6o-21o CCW from the 

Kazerun fault; and a NW-SE trending displacement shear (Y) fracture set, parallel to sub-

parallel to the Kazerun fault zone.   

 There is no displacement of stratigraphic contacts along the T-fractures set, which 

are oriented perpendicular to the fold-related axial fracture set, implying that they formed 

by extension.  Table 3.1 shows that the acute angle α between the mean extensional T-

fracture set and the SO1 (33±2o) and SO2 (33±1o) oblique sets (Figure 3-2) are remarkably 

close to the angle reported (~32o) for naturally- and experimentally-formed shear 

fractures (e.g., Twiss and Moores, 1992).  The mean of the measured T-fracture set 

bisects the 2α angles between the intersecting SO1 and SO2 oblique fracture sets.  These 

angular relationships imply: (i) that the two oblique fractures are most probably members 

of a conjugate shear fracture system that formed under the same state of stress and 

synchronous with the cross-axial set, and (ii) that the direction of the horizontal, 

minimum principal stretch (Z-axis), or shortening direction, is subparallel to the trace of 

the cross-axial set.  The means of the 2α angles measured in the rotated and unrotated 
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segments of deformed folds in the Kazerun fault zone (Figure 3-16) are remarkably close 

to each other (Tables 3-3 through 3-7).  This suggests that the folds are deformed by rigid 

body rotation such that the angular relationship between the conjugate fractures is 

preserved. 

The orientation of the mean axial and cross-axial fold-related fracture set is 

308±8o (i.e., NW-SE) and 039±7o (i.e., NE-SW), respectively, parallel and perpendicular 

to the trend of the Zagros fold-and-thrust belt.  The orientation of the mean axial and 

cross-axial fold-related fracture set in the undeformed folds of the Kazerun fault zone is 

314±8o (i.e., NW-SE) and 046±5o (i.e., NE-SW), respectively, parallel and perpendicular 

to the trend of the Zagros fold-and-thrust belt.  The shortening direction, resolved from 

these fold-related fractures is oriented 046 ±9o, perpendicular to the grain (i.e., general 

trend) of the Zagros orogenic belt.  The shortening direction, resolved from the fold-

related fractures through out the ZFTB, in the undeformed folds, in the Kazerun fault 

zone is oriented 046 ±5o, which is remarkably close to each other, and to the assumed 

shortening direction of the Zagros Mountains.   The shortening direction, determined 

from the analysis of the fault-related fractures in the Kazerun basement fault zone, is 

oriented 050o ±5o, subparallel to the shortening determined from the fold-related 

fractures.  This shows that the fold-related and fault-related fractures are kinematically 

compatible.  The horizontal shortening directions, resolved from both fold- and fault-

related fractures, in this study, are consistent with the current SW-NE convergence of the 

Arabian and Eurasian plates measured using GPS (e.g. Vernant et al., 2004; Hessami et 

al., 2006) and based on the detailed studies of the focal mechanisms (Jackson and Fitch, 

1981).    
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It is widely believed (e.g., Falcon, 1969; McQuillan, 1991; Ameen, 1992) that the 

basement of the fold-and-thrust belt of the Zagros is the continuation of the Arabian Plate 

basement, which is fractured by N-S trending faults (e.g., Henson, 1951; Bushara, 1995).  

The basement faults in the Zagros fold-and-thrust belt have been reactivated due to the 

collision of the Arabian and Iranian plates.  The reactivation of the basement faults is also 

proposed for NW Iraq (Ameen, 1992) and in Saudi Arabia (Edgell, 1992).   

Recent work by Yassaghi (2006) shows that basement faults (Oman, Bastak, 

Bostaneh, Hendurabi, Razak, Sarvestan, and Kazerun), mapped using field observation 

and integration of geomagnetic maps with remotely sensed data, align with some of the 

domain boundaries, which were delineated in this study based on the fracture analysis, 

and the regional changes in the fold axial traces (Figure 4-1).  The changes in the axial 

traces, from the general NW-trending in the Fars region to the EW-trending in Larestan, 

and toward the Bandar Abbas region, can be explained by the presence of active deep-

seated faults (Yassaghi, 2006).   

The defined domain boundaries, reported in this study, also align with the linear 

clusters of the epicenters of recent seismic activity in the Zagros Range 

(http://www.seismology.harvard.edu/CMTsearch.html, Ni and Barzangi, 1986; Baker et 

al., 1993), which are thought to mark the boundaries of the Precambrian blocks that lie 

beneath the Phanerozoic sequence (Figure 4-1).  Some of the trans-fold fractures (length 

≥ 104 m, Figure 3-1) that cut across several folds, occur along fault segments which 

probably mark the boundaries of these Precambrian blocks (Figure 3-1).  The spatial 

distribution of the Hormuz salt, to the east in the Fars region, also seems to correlate with 

some of the domain boundaries reported in this dissertation (Figure 3-1).  Their 

http://www.seismology.harvard.edu/CMTsearch.html
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distribution in east of the Kazerun fault zone suggests the vertical movement of salt along 

the basement fault.     

The orientation of fracture sets shown on the rose diagrams of Figure 3-5 for 

domains II to X, are different probably due to rotation along the Precambrian faults that 

delineate domain boundaries.  It is possible to rotate the fracture orientations (given by 

the rose diagrams) in the western domains, into parallelism with fractures in the eastern 

domains, by a 15o to 23o counterclockwise rotation of the rose diagrams.  The 

counterclockwise rotation of the mean fracture set orientation in each domain is as 

follows: domain III to II, 17±3o CCW; domain V to III, 17±3o CCW; domain VI to V, 

15±1o CCW; domain VIII to VII, 22o CCW; and domain IX to VIII, 23±1o CCW rotation 

(Figure 4-2).   Domains IV and X are more complex because they are bounded by the 

Kazerun fault zone, and several other smaller basement faults (e.g., Bastak, Bostaneh, 

and Hendurabi; Yassaghi, 2006), respectively.    
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Figure 4.1- Basement faults (dark solid lines, Yassaghi, 2006) align with some of the 
defined domain boundaries in this study.  Legend: A) Boundary of Zagros Imbricate 
Zone and Zagros Simply Folded Belt; B) Zagros Deformation Front; C) The earthquake 
epicenters with magnitude greater than 3.5 Mb, and foci deeper than 14 km. D) basement 
faults. 
 

If the domain boundaries demarcate the Precambrian blocks’ fault boundaries, the 

constant 15o to 23o CCW rotation angle may suggest that the basement blocks were 

rotated during or after the fold-related fractures were formed.  Given that the Zagros folds 

have been evolving since the Miocene, it is highly likely that the rotation of the 

Precambrian blocks, due to slip along basement faults, occurred synchronous with fold 

growth.  The rotation in the basement blocks was also synchronous with slip along the 

basement faults (domain boundaries).  The simple shear within the Kazerun fault zone is 
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accommodated by right-lateral Riedel right-lateral R- and left-lateral R’-shear fractures, 

and P synthetic (right-lateral) shear fractures. 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2- The mean orientations of the shortening direction (arrows), calculated from 
the orientation of the mean fold-related fracture sets, in different structural domains 
(Roman numerals). The mean orientation of the shortening direction is assumed to be 
parallel that of the maximum principal compressive stress, in a homogeneous pure shear 
deformation regime.    
 

The shortening direction resulted from fracture analyses in folds and those in the 

Kazerun shear zone are consistent.  The mean shortening directions estimated from fold-

related fractures and fault-related fractures analyses are 046±5o and 050± 5o, respectively.  
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They are kinematically compatible and indicate that the fractures which formed with 

folding event and those with faulting event generated under the same kinematic state of 

shortening.  Fracture analyses suggest that formation of folds and basement block 

faulting occurred during the Zagros orogeny.  These data also have implications for thin- 

and thick-skinned tectonics that is discussed in next section.  This study emphasizes the 

significance of basement structures in the deformation of sedimentary cover and Zagros 

orogeny.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

112

4.2. Thin- vs. thick-skinned tectonics 

The thin-skinned tectonics hypothesis assumes no or minor basement involvement in the 

deformation of the younger cover strata.  It suggests that the NW-SE orientation of the 

fold-and-thrust belt of the Zagros, is due to the late Miocene-Pleistocene, SW-NE 

directed shortening of the Phanerozoic cover strata, and has no structural contribution 

from the underlying Precambrian basement structures (e.g., Blanc et al. 2003; Sepehr et 

al., 2006).          

An alternative but less advocated hypothesis (e.g., Kashfi, 1983; Iranpanah, 1989; 

McQuillan, 1991; Edgell, 1992; Talbot and Alavi, 1996), assumes a thick-skinned 

tectonic model that involves the Precambrian basement.  The thick-skinned tectonics 

hypothesis holds that several sets of Precambrian basement faults reactivated and led to 

the formation of the Phanerozoic depositional basins through block faulting, and 

controlled facies changes and propagation of the basement faults into the younger 

sedimentary sequence since the Precambrian (Edgell, 1973; Stoneley, 1981, 1990).   

Renewed movements of these faults led to the draping and shearing of the 

sediments and possibly their syn-depositional deformation in fault-bounded troughs.  The 

faults may have led to the subsidence of the cover strata and compaction and maturation 

of the source rock by displacing them to greater depths (Ala, 1990).   

In some fold-and-thrust belts such as Appalachians and Canadian Rocky 

Mountains, there are transverse or oblique structures which deform the fold axial traces 

(Harris, 1970; Dahlstorm, 1970; Boyer and Elliott, 1982).  They are described as lateral 

ramps on thrust faults within the sedimentary cover, and are examples of thin-skinned 

tectonics, in which the basement is not involved in the shortening and deformation of the 
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sedimentary cover.  The Sheep Mountains in Wyoming (Rocky Mountains) fold-related 

fractures show an example of thin-skinned tectonics with brittle deformation occurring in 

the fold hinge (Bellahsen et al, 2006).   

In contrast, in other fold-and-thrust belts such as Himalayas and Tien Shan 

Mountains in Asia (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1979), the 

strike-slip faults truncate and rotate the fold axial traces.  These active, large strike-slip 

faults, which are oblique to the strike of the belt and basement faults (Baker et al., 1993), 

are examples of a thick-skinned tectonics in which the basement faults are involved in the 

deformation (shortening) of the belt.   

Our knowledge of the basement faults, and especially the Kazerun fault, is mostly 

post-Cretaceous when sedimentary thickness and facies changes were the results of the 

fault activity.  It is likely that the pre-Cretaceous kinematic and tectonic history of the 

Kazerun fault was different from what it is.  The basement faults probably have had a 

significant impact on the vertical tectonics and differential uplift throughout the 

Phanerozoic in the Zagros Range.  Attributing the more than 6 km of vertical tectonic 

movement in the Zagros solely to the thrust faults in the basement may not explain other 

related phenomena such as facies change and horizontal slip along regional strike-slip 

faults.  It is possible that both the low angle thrust faults in the sedimentary cover strata, 

and vertical strike-slip faults in the basement have continuously shaped the tectonic, 

sedimentary, and stratigraphic history of the Zagros Range since the Precambrian.   

The Phanerozoic sedimentary cover, although mechanically detached from the 

underlying basement blocks by the incompetent and weak Hormuz salt, probably was 

continuously deforming throughout the Paleozoic and Mesozoic mainly by movements 
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along basement faults.  Deformation of the Phanerozoic cover sequence by folding and 

thrusting, which became dominant since the Cretaceous collision, due to the convergence 

of the Arabian and Iranian subplates, probably occurred synchronous with movement 

along the basement faults.  This thick-skinned deformation rotated the Precambrian 

blocks, and folded the sedimentary cover strata into a series of large symmetrical 

detachment folds which overlie the Hormuz salt which acts as a de’collement.  The shape 

of the Jura-type box fold anticlines (Kashfi, 1983) in the study area is probably controlled 

by the distribution and thickness of the Hormuz salt (Sepehr and Cosgrove, 2005; 

Molinaro et al., 2005; Sepehr et al., 2006). 

Most of the anticlines are not truncate by the basement faults (e.g., Kazerun fault 

zone), and they plunge toward these faults and terminate against them (Figure 2-1, 3-3, 3-

13).  It suggests that these folds are formed synchronously with basement block faulting 

or they pre-date the basement faulting.  Based on the analyses of fold- related and fault-

related fractures and remarkably close shortening directions estimated from them (046±5o 

and 050± 5o, respectively), this study suggests synchronous basement block faulting and 

folding in the Phanerozoic cover strata in a major part of the Zagros Range.  The analyses 

propose a combination of thin- and thick-skinned tectonics throughout the Phanerozoic. 
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5. CONCLUSIONS 
 
The Zagros fold-and-thrust belt in southwest Iran evolved through a protracted period of 

basement block faulting and a later contractional deformation that reactivated slip along 

basement faults.  The contraction, which started in the Triassic due to the convergence of 

Africa and Eurasia, culminated with the separation and northeastward movement of 

Arabian subplate away from the African plate, and its convergence and ultimate collision 

with the Iranian plate.   

These tectonic movements have led to the formation of two major systems of 

fracture. One system includes four sets of fracture which formed during folding of the 

Phanerozoic cover strata.  The spatial variation of the orientation of these fold-related sets 

of fracture is a function of the variation of the axial trace of the related folds.   

The second system of fractures includes five sets of fracture which formed due to 

displacement along the Kazerun fault zone.  The kinematics revealed by the fault-related 

fracture system is compatible with simple shear deformation along the Kazerun, right-

lateral strike-slip fault zone.  Although the orientations of the fault-related fractures vary 

with the change in the orientation of the Kazerun fault, the angular relationships between 

them and the fault remain constant.  These angular relationships indicate formation of the 

fractures under a right-lateral slip during and after folding.     

The Kazerun fault deforms the fold-related fracture sets by a rigid body rotation, 

whereby the angles among fractures of this system remain virtually unchanged.  In the 

Kazerun shear zone, the axial traces of some of the folds are rotated to the N-S trend, 

subparallel to the general trend of the fault zone.  The drag of the folds along the fault is 

kinematically consistent with the dextral movement of the Kazerun fault.   
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The shortening directions systematically vary across the structural domain 

boundaries which mark the basement faults.  The mean shortening direction determined 

from the fold-related and fault-related fractures is 046±5o and 050± 5o, respectively, 

which are remarkably close.  Both of these shortening directions are consistent with the 

regional SW-NE directed contraction which has been acting perpendicular to the strike of 

the Zagros since the convergence of the African and Eurasian plates began in the 

Triassic. 

Despite the prevalent work that predominantly supports the thin-skinned tectonics 

model for the Zagros fold-and-thrust belt, this study shows evidence for deformation 

involving the basement at least since the Zagros folding began, and continuing to the 

present.  While the Phanerozoic cover strata above the Infracambrian Hormuz salt 

deformed mainly through folding and thrusting, the Precambrian basement, which was 

segmented during the late Precambrian, deformed by slip along high-angle faults.  The 

fracture analyses conducted in this study suggest that both thin- and thick-skinned 

tectonics (Edgell, 1996; Sherkati and Letouzy, 2004; Molinaro et al., 2005) have 

simultaneously been involved in the Zagros orogeny.  

Throughout this study, several different GIS and Remote Sensing applications and 

analyses were used in conjunction with geological principals and methodology.  GIS 

allows the user to view and analyze spatial data of a large area easily and capture data 

simultaneously.  A geodatabase consisting of fractures, faults, drainage patterns, 

lithology, domain boundaries, and earthquake data was created for the study area.  

Calculation of the length and trend of each fracture as well as drainage patterns were 

measured to complete the geodatabase.   The resulting spatial data assisted in defining the 



 
 

 

117

angular relationship between the different sets of fractures, quantifying the amount of 

rotation on deformed folds in the Kazerun shear zone, distinguishing between different 

characteristics of the sets of fractures and estimating the shortening direction of both 

fold-related and fault-related fractures.  The geodatabase was also essential in providing 

statistics of the thousands of lineaments and data points that were needed to complete this 

study and allowing for the defining of the relationship between fracture set attributes 

(e.g., frequency and length) and the lithology.  

This study confirms that the combination of various enhanced images, with 

different resolutions and image processing methods applied on them, combined with 

common GIS techniques, are very effective and possibly the most suitable approach for 

the analysis of fractures in vast and structurally complex areas such as the Zagros fold-

and-thrust belt.   
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