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  ABSTRACT 

 

In this research the growth of InN epilayers by high-pressure chemical vapor deposition 

(HPCVD) and structural, optical properties of HPCVD grown InN layers has been studied. We 

demonstrated that the HPCVD approach suppresses the thermal decomposition of InN, and 

therefore extends the processing parameters towards the higher growth temperatures (up to 

1100K for reactor pressures of 15 bar, molar ammonia and TMI ratios around 800, and a carrier 

gas flow of 12 slm). Structural and surface morphology studies of InN thin layers have been 

performed by X-ray diffraction, low energy electron diffraction (LEED), auger electron 

spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS) and atomic 

force microscopy (AFM). Raman spectroscopy, infrared reflection, transmission, 



 

photoluminescence spectroscopy studies have been carried out to investigate the structural and 

optical properties of InN films grown on sapphire and GaN/sapphire templates.  

InN layers grown on a GaN (0002) epilayer exhibit single-phase InN (0002) X-ray 

diffraction peaks with a full width at half maximum (FWHM) around 200 arcsec. Auger electron 

spectroscopy confirmed the cleanliness of the surface, and low energy electron diffraction 

yielded a 1×1 hexagonal pattern indicating a well-ordered surface. The plasmon excitations are 

shifted to lower energies in HREEL spectra due to the higher carrier concentration at the surface 

than in the bulk, suggesting a surface electron accumulation. The surface roughness of samples 

grown on GaN templates is found to be smoother (roughness of 9 nm) compared to the samples 

grown on sapphire. We found that the deposition sometimes led to the growth of 3 dimensional 

hexagonal InN pyramids.  

Results obtained from Raman and IR reflectance measurements are used to estimate the 

free carrier concentrations, which were found in the range from mid 1018 cm-3 to low 1020 cm-3. 

The optical absorption edge energy calculated from the transmission spectra is 1.2 eV for 

samples of lower electron concentration. The Raman analysis revealed a high-quality crystalline 

layer with a FWHM for the E2(high) peak around 6.9 cm-1. The results presented in our study 

suggest that the optimum molar ratio might be below 800, which is due to the efficient cracking 

of the ammonia precursor at the high reactor pressure and high growth temperature.  

 

INDEX WORDS: Indium Nitride, In-rich group III Nitrides, III-V semiconductors, High-
Pressure, Chemical Vapor Deposition, V/III molar ratio. 
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Chapter 1 

1.1 Motivation 

The unique properties of group III-nitride compound semiconductors, i.e. AlN, 

GaN, InN and their alloys, have inspired many advanced device designs/structures, 

integrating electrical, optical, and magnetic functionalities1-3. A key challenge in the 

realization of such true multifunctional devices lays in the integration of InN and indium-

rich group III-nitride heterostructures (x > 0.2) in existing Ga1-xAlxN device structures. 

The integration of In-rich alloys in group III-Nitride heterostructures requires the 

existence of overlapping processing parameters as well as the precise control of the 

thermal decomposition pressures of indium-rich alloys at the optimum processing 

temperatures. A further challenge to be met is the growth of high-quality InN itself and 

understanding the fundamental physical properties, which presently vary depending on 

the growth techniques utilized4-6. The large thermal decomposition pressures of InN and 

indium-rich group III-nitrides limits the growth temperatures for low-pressure deposition 

techniques3. Although recent results of InN layers grown by plasma assisted molecular 

beam epitaxy (MBE) demonstrated that high-quality InN layers can be achieved with 

low-pressure deposition techniques7,8, the integration of such layers in Ga1-xAlxN 

structures remains challenging problem.  

Surface stabilization data have shown that highly volatile compounds such as InN 

and related alloys can be grown at much higher temperatures if stabilized by elevated 
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nitrogen over-pressures, evoking the development of a novel high-pressure chemical 

vapor deposition (HPCVD) system at Georgia State University (GSU)9-12. This work 

focuses on studying the growth of InN at an intermediate pressure regime of 

approximately 15 bar, under which laminar flow conditions can be maintained.13 Optical 

diagnostic techniques are utilized to monitor in real-time gas phase kinetics as well as 

growth surface chemistry9,14. The following sections provide an overview of the past and 

current status of InN growth and its properties and the advancements that are required for 

higher quality InN materials and In rich group III-nitride heterostructures.  

1.2 Review of indium nitride research history 

Research on InN initiated in 1938 15 when synthesized powder samples were 

analyzed by X-ray diffraction in order to determine the crystallographic properties of this 

material. Juza and Hahn15 obtained InN from decomposition of InF6(NH4)3 at 600 οC. 

Juza and Hahn reported the crystal structure of InN to be wurtzite having lattice 

parameters a= 3.5377 Å, c= 5.7037 Å. These measured lattice constants are in excellent 

agreement with the present reported values. Research onto InN was sporadic between 

1938 and 1990.  

In the 1970’s, McChesney et al16 reported the disassociation pressure of InN as 

extremely high and stated that the formation of InN may require interaction of indium 

metal with atomic or other excited nitrogen species at high temperature that may require 

high pressures. They showed that the phase relation of InN results in a P-T-1 relation as 

depicted Figure 1 according to  

( )Td
Pd

RH N
F /1

ln
2
1 2−=∆  (1.1) 
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Figure 1. 1 Phase relations of InN shown by a decomposition curve separating InN 
and In+N2 phase fields. Tetragons represent experimental conditions where metallic 
indium is observed. Shaded circles indicate that InN was stable. (From ref. 2)   
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in which the dissociation pressure rises very steeply toward higher nitrogen pressure. 

Another report by Trainor and Rose17 in 1974 argued the partial pressure of atomic 

nitrogen rather than diatomic nitrogen is a more fundamental parameter describing 

thermal equilibrium. The thermal stability studies of InN indicate that InN samples 

decompose in a few minutes leave an indium residue in N2 (at standard pressure) at 500 

οC during the annealing process. However, if the InN samples were heated to 500 οC in  

nitrogen pressure (10-3 torr), the InN samples did not decompose. The stability of InN 

films can be achieved by thermal disassociation of N2. Trainor and Rose found the 

fundamental band edge for InN films to be 1.7 eV and their absorption study suggested 

that InN is a direct band gap semiconductor due to the similarity in the shape of 

fundamental absorption edge to that of GaN. InN samples grown on sapphire by reactive 

evaporation had a Hall effect mobility of 20 cm2/Vs and carrier concentration in the 1020 

cm-3 range. Trainor and Rose also suggested that higher quality films could be achieved 

by growing the films at higher temperatures (~600 οC) and lower growth rates. Hovel and 

Cuomo18 produced polycrystalline InN films grown on sapphire and silicon substrates 

with some reasonably good electrical properties (Hall mobility  µ=250 ± 50 cm2/Vs, and  

n-type carrier concentration 5.8×1018 cm-3) by reactive radio frequency (RF) sputtering. 

The InN films appeared dark red and possessed a resistivity in the range of (3-5) 10-3 Ω-

cm. Marasina et al19 utilized chemical vapor deposition to produce InN epitaxial layers 

with an electron concentration of 2·1020-8·1021cm-3 and a mobility of 50-30 cm2/Vs. They 

reported that the disassociation of InN rapidly occurred at 600 οC, and there was no 

deposition of InN layers above 670 οC. 
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In the 1980`s the properties of InN films grown via metallic Indium in a nitrogen 

environment were mainly studied by Tansley and Folley, who reported an electron 

mobility as high as 5000 cm2/Vs20 and a low background carrier concentration in the InN 

film (5×1016cm-3) . Those results were early indicators of the potential of InN for high 

mobility FET devices. However, the optical absorption data of InN samples prepared by 

reactive RF sputtering indicate an optical absorption edge at 1.89 eV.  

Recently epitaxial single-phase InN films have been grown on (0001) sapphire in 

the temperature range of 400-600οC by microwave-excited metal organic vapor phase 

epitaxy (MOVPE)21 using (CH3)3In and pure atomic nitrogen or excited nitrogen species 

supplied by microwave discharge of N2. It was shown that (0002) InN layers could be 

grown on (0001) sapphire at temperatures around 500 οC.   

More recent publications, mostly describing molecular beam epitaxy (MBE) InN 

layers, indicate a lower energy band gap, initially reported at around 1.1 eV 5 (Mg-doped 

InN samples), but later at progressively lower values of 0.9 eV22, then 0.8-0.7 eV6,23. 

Recently, a band gap value 0.65 of eV24 has been proposed. These studies include growth 

by MOVPE and MBE on different substrates and underlying layers over a wide range of 

growth conditions. The highest mobility and lowest background concentration are 2000 

cm2/Vs and 3.6Χ1017cm-3(25) for thick InN layers (~1.2 µm) grown by MBE26. The first 

growth of InN at high pressures was made by Dietz et al 10 in a High Pressure Chemical 

Vapor Deposition (HPCVD) system developed at Georgia State University.  

1.3 InN: A member of the group III-Nitride system 

Relevant questions that should be answered in choosing any particular material 

system over another are: 
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• What are the advantages of a new material system compared to existing material 

systems? 

• What are potential new application areas? 

• What are the costs and expected market value? 

The answers to these particular questions will be examined in the following sections. 

1.3.1 Importance of InN  

The importance of InN can be examined by comparing their basic material 

properties with conventional semi conducting material systems such as Si, GaAs, and 

other wide band gap materials such as GaN, AlN and SiC. Furthermore, important 

potential applications for InN based devices can be investigated as compared to currently 

available devices. 

1.3.1.1 InN physical properties 

The history of InN is closely related to that of GaN. It has been over a decade 

since the first blue/UV light emitting diodes (LED) composed of GaN came in to the 

market. GaN is now the second most important semiconductor material after Silicon. The 

value of the worldwide GaN device market, which is at present $3.5 billion, is estimated 

to be $7.2 billion by the year 200927. III-V materials are now being investigated for their 

applicability in high power, high frequency applications which currently rely on vacuum 

tube technology. Group III-Nitride materials show great promise for the development of 

device structures for short wavelength light emission, which can be used in full color 

displays, high density optical information storage media and blue laser diode structures28. 

In addition, high-frequency transistors operating at high powers and temperatures for 

turbine engine sensors, automotive technology and chemical sensing in corrosive 
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environments can be realized with group III-Nitride material systems. Generally to 

achieve high currents and high frequency operation, high charge carrier mobility (µ) and 

high saturation velocity (νsat) are desirable. InN is predicted to have the lowest effective 

electron mass among all the nitride semiconductors29. The value is about half that of GaN 

(See Table 1.1). This would result in a high mobility and high saturation velocity for the 

electrons1.  

InN exhibits favorable electron transport characteristics compared to other III-

Nitrides and III-V groups over a wide temperature range from 150 to 500 K based on the 

theoretical calculations by O’Leary et al.30. These authors predict that the peak drift 

velocity at room temperature in InN is 6×107 cm s-1 for an applied electric field strength 

of 22.5 kV/cm. A more recent comprehensive report by O’Leary et al31 studied how the 

transient electron transport that occurs in InN based devices has an extremely high speed 

with a cut off frequency of 2.5 THz for 0.1µm thick sample. This study indicates that InN 

based HFET (High Field Effect Transistors) can operate at higher microwave 

frequencies. For all cases a crystal temperature of 300 K and a doping concentration of 

1017  cm-3 have been assumed. Meanwhile, Polyakov et al.32 calculated a maximum low-

field electron mobility of 14000 cm2/Vs for low doped, uncompensated, dislocation free 

InN material at room temperature. These results suggest that InN has distinct advantages 

in high frequency centimeter and millimeter wave devices. 

 

 

 

 



8 

 

 

Table 1.1 Material properties of III-V wide band gap and conventional semiconductors 
Errors are within the bracket. a1, b2, c6, d22, e23, f24,g29, h33, i34,j35, k36,l, m30, n37,o38,p39,r8. 

Parameters InN GaN AlN SiC GaAs 

Lattice Constant, 

a0(Å) 

3.5377 

(±0.006)   
3.189(g) 3.11 3.07  

Lattice constant, c0 

(Å) 

5.7037 

(±0.01) (b) 
5.185(g) 4.98 10.053 5.65325

Effective mass (m0) 0.09(±0.02)(h)  0.2(i)  0.48(i) 0.68 0.063 

Mobility (cm2/Vs) 

Theoretical 

Experimental 

 

4400(i) 

3500(j)   

 

1000 (i) 

900(k)  

 

300(i)    

NA 

 

 

700 

 

 

8500 

Peak drift velocity 

(cm/s) 
5×107 (l)   3.1×107 (l) 1.7×107 a 2.0×107 1.0×107

Dielectric Constant 

(High frequency) 

8.4(a)   

5.8 (n) 

6.7 (r) 

5.3 4.77(g) 6.7 10.89 

Band Gap (eV) 

1.89(o)   

0.9 (d) 

0.8 (e)   

0.7(c)  

0.65(f)   

3.47(p)   6.2 3.26 1.43 
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Until 2002 the most commonly quoted38 band gap value for InN at room 

temperature was 1.89 eV. However, most of the fundamental properties related to InN are 

poorly understood, and, a sample of the material still contains a large concentration of 

defects and dislocations, which limit its application for optical devices. LED’s, laser 

diodes, and transistors typically involve InGaN with low In fractions. However, there will 

be great advantages if a large fraction of Indium can be incorporated in a ternary InGaN 

compound. One such advantage would be the ability to emit red light from such devices. 

If the InGaN heterostructures can be grown with every fraction of indium, red, green, and 

blue LED’s could be created with variations of the same material, making them practical 

to manufacture. Eventually it may be possible to arrange such LEDs into the pixels of full 

color displays that are brighter, more efficient, and better looking than today’s flat-panel 

LCD displays. In addition, use of InN-based materials could lead to photonic devices in 

the red light regime and much faster electronic devices, due to the before-mentioned 

higher mobility and peak velocity than those of other III-Nitride materials. InN-based 

optoelectronic devices offer an environmental-friendly emitter with no toxic element, 

which may replace GaAs-based devices.  

The direct band gap of (Ga1-y-xAlyInx)N alloy systems can be continuously tuned 

from 1.0 eV to 6 eV. This single ternary alloy system will introduce the possibility of 

single or Multi-Junction (MJ) solar cells for space based applications. It was shown that 

In1-xGaxN retains its optoelectronic properties at radiation damage doses at least 2 orders 

of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) 

currently used in high efficiency MJ solar cells7. This information indicates that In1-

xGaxN might be well suited for future ultra-radiation hardened optoelectronics.  
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Quian et al40. recently showed that InN thin films are suitable for the application 

of plasma filters with different carrier concentration, mobility and film thickness. The 

plasma filters are one of the most effective ways to increase the efficiency in Thermo 

Photo Voltaic (TPV) systems. InN shows good performance as a plasma filter material 

for widely employed GaSb or GaInAsSb photovoltaic cells.  

1.3.1.2 Status of current InN, In-rich group III-Nitrides and competing alternatives 

The material properties of InN change dramatically with the growth techniques 

employed and the understanding of this novel semiconductor is still very poor. During the 

last decade there have been several conflicting reports on the band gap of InN; values 

have varied between 0.6 and 2 eV in different papers2,33. Bagayoko and Franklin41 

presented an overview of two groups of experiments that provided different values of the 

band gap of w-InN. Experiments in group I, mostly before 2000, reported band gap 

values of 1.9–2.0 eV, while the ones in group II found band gap values of 0.7–1.0 eV, 

depending on the free carrier concentrations. Samples studied by group II, mostly grown 

by molecular beam epitaxy, were believed to be of much higher quality than those of 

group I that mostly investigated polycrystalline films. Inushima et al.5 determined the 

band gap of InN grown on sapphire by MBE was between 0.89 and 1.46 eV at respective 

electron concentrations of 5×1019 cm-3 and 2×1020 cm-3. Abdulkadir et al.42 studied 

samples of InN grown by metal-organic vapor phase epitaxy (MOVPE), and they 

reported that the band gap Eg for the InN samples is ~ 0.7 eV. Recently, the Hydride 

Vapor Phase Epitaxy (HVPE) growth technique has received attention because it is a 

useful method for growing thick layers of group III-Nitrides 43-45. Cathodoluminescence 

(CL) spectrum measurements of single crystalline (0002) InN grown by HVPE exhibits a 



11 

 

strong peak at 0.75 eV46. In conclusion, InN films grown by Molecular Beam Epitaxy22,47 

(MBE), HVPE and MOVPE48 revealed the band gap energy of InN is about ~0.7 eV.  

Until recently, the band gap energy of ~0.7 eV was considered the fundamental 

narrow band gap due to measurements by infrared photoluminescence (PL) and optical 

absorption of InN grown by MBE, MOCVD, and HVPE. However, the growth of high 

quality InN layers and related indium rich III-N alloys remains difficult due to InN 

stoichiometric instabilities, limited carrier concentration and low disassociation 

temperatures, leading to inconsistent and process dependent material properties9. 

Nevertheless, Butcher et al.49 has shown that In:N stoichiometry effects the apparent 

band gap of the InN film very strongly, and evaluation of stoichiometry variations in InN 

films (MBE grown and Remote Plasma Assisted Chemical vapor deposition (RPECVD)) 

suggests these films should not to be treated as homogenous materials. For instance, the 

electron carrier concentration dependence of the optical absorption edge for epitaxial 

material does not follow the Moss-Burstein effect12,50 for InN samples grown by different 

techniques. Figure 1.2 shows the apparent change in the band gap of InN materials grown 

by different techniques. The solid curve shown in Figure 1.3 is proposed by Walukiewicz 

et al.7 to describe the differences in the measured band gap with an alternate model. It is 

clearly shown in Figure 1.2 that the Moss-Burstein model cannot explain those data 

points below 1019 cm-3, which have high optical absorption edge values above 1.5 eV. 

Figure 1.3 shows variation of the apparent absorption edge for single crystalline InN 

films grown by HPCVD.  

The growth of GaN (0001) and AlN (0001) is quite well established and those 

samples exhibit both high crystalline quality and smooth surfaces.  
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Figure 1. 2. Apparent band gap of InN films as a function carrier of concentration. 
The solid curve represents the theoretical Moss-Burstein effects proposed by 
Walukewicz et al7. There is a considerable spread of data for material nominally 
referred to as InN (From ref. 50). 
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Figure 1. 3 Apparent absorption edge of InN films grown by HPCVD at GSU as a 
function carrier concentration. 
 

However, it is not easy to adopt this growth mode for InN (0001), which 

disassociates at temperatures lower than those required for desorption of In51and high 

vapor pressure of nitrogen. The growth of group III-Nitrides via MBE or CVD is limited 

to the low processing temperatures (usually ≤ 600 °C). Low growth temperature requires 

the application of extremely high V-III ratios in order to avoid the formation of In metal 

droplets9. Growth of corresponding high-quality N-face InxGa1-xN alloys with high In 

(0.5≤x≤0.89) content has been demonstrated by several groups52,53. One goal of the 
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recent study is to identify the nature of radiative recombination in InxGa1-xN with high In 

content52. Naoi et al. conclude that band-to-band recombination processes are responsible 

for PL emission not the localized state emission. However those samples54 were grown 

between 480 and 600 °C with free electron densities of 3×1019 cm-3 to 1×1018 cm-3. 

Nevertheless, experimental growth parameters such as temperature conflicts with low 

dissociation temperature of InN (550 °C, 630 °C4). In order to realize InN-based photonic 

devices and overcome the difficulty of the high thermal decomposition pressure of InN, a 

break through idea is necessary for reducing defect density and improving the quality of 

InN based III-Nitride alloys1,3. In order to grow InN at higher temperatures and higher 

pressures a High-Pressure Chemical Vapor Deposition was implemented at GSU9,10,12.  

1.3.2 Application areas  

The unique properties of group III-nitride compound semiconductors, e.g. AlN, 

GaN, InN and their alloys, inspired many advanced device designs/structures, integrating 

electrical, optical, and magnetic functionalities. Ultimately, the usefulness of indium 

nitride and group III-Nitride alloys depends on the determination of the band gap. A 

higher band gap preferred for microwave transistor devices, a smaller band gap is 

preferable for a full solar spectrum cell based on InGaN applications.  

1.3.2.1 Optical applications 

Electronic lightning technology become important with the invention55 of first light 

emitting diode LEDs in 1962. Following the achievement of LED technology, light 

amplification by stimulated emission (LASER) was demonstrated56,57 in a semiconductor 

by 4 groups. Development of semiconductors allowed the production of bright light 

emitters that are used in optical fiber networks, data storage (Compact-Disc Technology), 



15 

 

and document printing (Laser printers). But LEDs based on GaAs operate only in the red 

to yellow portion of the spectrum. SiC has been used for the fabrication of blue LEDs. 

However SiC or II-VI based LEDs were not emitting with enough intensity due to their 

indirect band gap. The first blue LEDs based on the III-V nitrides were made 

commercially available by Nichia in early 1994. Much research has been done on III-

Nitrides comprising the Al-Ga-In-N alloys and show great promise for meeting the next 

generation optical applications. 

1.3.2.2 LED applications 

InN is important as a component of group III-Nitrides (Ga1-y -xAly Inx)N enabling the 

fabrication of high-efficient light emitting  diodes in a wide spectral region, depending on 

the composition at room temperature. As shown in Figure 1.4, (Ga1-y -xAly Inx)N alloys 

system span a wide range of band gap energies from 1 eV to 6.2 eV which correspond to 

wavelengths ranging from near infrared to deep ultraviolet. In addition, the band gap of 

the Group III-N system is direct, leading to high quantum efficiency and faster switching 

speeds. Nakamura and his colleagues demonstrated the first blue/green light emitting 

diode based on InGaN. The structure consisted of a 3 nm layer In0.2Ga0.8N sandwiched 

between p-type AlGaN and n-type GaN, all grown on sapphire substrate58. Achieving a 

red light emitting diode based on InGaN structures depends on indium rich InGaN 

heterostructures. White LEDs have been developed recently by coating GaN LED with 

phosphorus59 which produces light that appears white. However this structure is not as 

efficient as the commercial fluorescent light sources. Combining red light emitting diodes 

with blue/green ones having the same power and brightness can produce full color 

displays and efficient white lamps.   
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Researchers at IBM60 demonstrated an InN nanowire LED, which emits infrared 

light. The nanowires emit infrared light, which makes them ideal for optical 

communications between devices on microchips that would speed up the computers 

drastically. If the mechanism in InN nanowires can be tuned to emit red, green and blue 

light, all nanowire LEDs could be manufactured on the same substrate. That could make 

LEDS even cheaper and lead to the devices with improved performance.  

 

Figure 1. 4 Band gap energy vs. lattice constant for binary group III-Nitrides 
material systems.  
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1.3.2.3 Laser applications 

Fabrication of high quality of LEDs enables the fabrication of semiconductor 

lasers that operate at light wavelengths from ultraviolet to the green. The advantage of 

blue GaN/InGaN lasers with shorter wavelength (405 nm) than a red laser (605 nm) 

allows five times more storage capacity (25 GB) over traditional DVDs. Blu-ray disc 

technology was recently adopted by a group of world leading consumer electronics 

(including Apple, Dell, HP, JVC, LG, Mitsubishi, Samsung, Sharp, Philips, Pioneer and 

Sony Corp.) which enable recording and rewriting61. The impressive accomplishments 

taking place and opening a variety of potential markets such as blu-ray are only the 

beginning of the application of this technology. The performance issues that are related to 

the crystal growth itself limit further development. It is possible to mix the Al, Ga, and In 

ratios to make ternary and quaternary alloys such as (Ga1-y -xAly Inx) N. It is therefore 

possible, in principle, to make semiconductor lasers that emit light from the deep 

ultraviolet with a photon energy of 6 eV, to the infrared with photon energy of 1 eV. 

However, only a much narrower range of operation from the near ultraviolet (3.5 eV) to 

the green (2.4 eV) has been demonstrated.  

InN one dimensional (1D) nanostructures, such as nanowires, nanorods, 

nanotubes and nanobelts are currently the most attractive structures due to the easier 

growth in single crystal forms without defects, and lasing in the crystals could be 

expected62. Hu et al.62 reported the investigation of infrared lasing in high quality single-

crystalline InN nanobelts grown by MOCVD. This can be considered a “major advance “ 

in the nanophotonics field and will impact imaging in chemistry biology, and optical 

communications.  
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1.3.2.4 Electronic applications 

Small effective electron mass, large polar optical phonon energy31, high electron 

mobilities close to the theoretical calculated mobility values32 make InN a promising 

device for  electronic applications. Nevertheless, theoretical calculations by O’Leary et 

al.30,31,63 also suggest that InN has superior electrical properties compared to GaN. As 

shown in Figure 1.5, InN achieves the highest steady-state peak drift velocity ~5×107 

cms-1 which is considerably larger than that of other III-Nitrides and of GaAs. The 

calculated electron mobility of InN by Chin et al. 34 is 4400 cm2/Vs for room 

temperature. The highest electron mobility measured at room temperature is 3500 

cm2/Vs35. Thus, InN based devices offer great potential for high-speed, high performance 

heterojunction FETs as compared to GaAs based HFETs for both power and frequency 

response. Wide band gaps enable the application of high supply voltages and also allow 

the material to withstand high operating temperatures (300° C and 500° C). AlInN might 

be a good candidate64for high-power/high temperature microwave applications because 

of its higher breakdown voltage. 

The current state of the solar cell with 30% percent efficiency are produced from 

the following materials: Ge (0.66 eV), GaAs (1.43 eV) and GaInP (1.9 eV)65,66. For the 

specific case of In1-xGaxN varying x values (x≤ 0.63) produces band gaps between 0.7 

and 1.9 eV which will cover the whole solar spectrum from infrared to UV. The 

possibility of designing and fabricating multi-junction solar cells using a single ternary 

alloy system is attractive. Since space based systems represent the primary application of 

MJ solar cells, radiation resistance is crucial. It has been shown that InN and InGaN are 2 

times more resistant under extraordinary particle radiation67. 
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Figure 1. 5 Calculated steady-state drift velocity as function of electric field in group 
III-Nitride materials and GaAs. In all cases, O’Leary et al.30 assumed a doping 
concentration of 1017  cm-3 and crystal temperature of 300 K. 

1.4  State of the art for InN based THz applications 

The terahertz region of the electromagnetic spectrum lies between 300 GHz and 30 THz, 

corresponding to the sub-millimeter wavelength range between 1 mm and 10 µm. There 

are many applications, which require operation in the terahertz region such as: 

• Terahertz imaging in medicine and biology could allow monitoring of receptor 

binding, tumor recognition, recognition of protein structural states, performing 

label free DNA sequencing, detection of epithelial cancer, and radiation effects on 

biological samples68 since THz radiation is not expected to damage tissues and 

DNA, unlike X-rays. Damage to cells or tissue is limited because of the energy 

levels are very low (1-12 meV)68.  
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• Millimeter/submilimeter wavelength astronomy, which is crucial to understand 

the formation of the universe by exploring features in the far-IR. In addition, 

many spectral signatures, namely thermal emission lines from gases that exist in 

Earth’s atmosphere are in the sub-millimeter range between 300- 2500 GHz. 

Reaction rates of those species contain information about global warming, total 

radiation balance and air pollution69. Furthermore, space applications including 

asteroid, moon and comet observations require terahertz sensors. 69.  

• Terahertz detectors can be used for detecting voids in fabrics and plastics, and can 

be used in security screening of plastic explosives.  

There are two major components technologies for terahertz applications: sensor 

and sources (emitter, generators etc.). However, the main challenge in terahertz 

applications is the lack of suitable both terahertz sources and detectors. Detectors that 

are used in this region are bolometer, pyroelectric detectors, and heterodyne detectors. 

However, those detectors show slow response, are generally built for low 

temperatures (~4.2 K) and it is difficult to integrate these detectors into focal plane 

arrays for imaging. Photon detectors based on semiconductors work in near infrared 

region (λ≥0.8 µm) to the long wavelength region (30 µm). Detectors based on free 

carriers are good candidates for far infrared/terahertz detection. Perera et. al70,71. 

worked on p-type GaAs /AlGaAs detectors utilizing heterojunction internal 

workfunction  photoemission (HEIWIP) approach. HEIWIP p-type detectors have 

been demonstrated with the tailoring threshold frequency limit around 3.2 THz (~93 

µm) 72. The Al fraction used for the 3.2 THz threshold detectors is 0.005 and close to 

the lower limit for MBE growth. The Al Fraction is decreased for lowering the 
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workfunction further but it may not be possible since the Fermi level will not reach 

the required level before GaAs becomes metallic as p-doping increases. Therefore, 

lowering the work function is not possible in p-type HEIWIP GaAs/AlGaAs devices. 

One potential way to extend terahertz detection beyond the 3.2 THz is to utilize the 

properties of InN and indium-rich InGaN alloys and heterostructures. These may lead 

to  more advanced THz detector and emitter73,74 devices, operating at temperatures 

higher than 77K and having higher sensitivity. The free carrier absorption coefficient 

and light absorption in n- type doped 1 µm thick InN layer grown on sapphire with 

carrier concentrations 5×1017 cm-3, 1×1018 cm-3, and 2×1018 cm-3 is shown in Fig. 1.7. 

The inset in Fig. 1.7 shows the optimum calculated absorption coefficient which 

occurs around 1×1018 cm-3. Furthermore, the ferromagnetic behavior of transition 

metal doped indium rich InGaN may enable unique enhancements of the absorption 

rates and hence the photo response under an applied magnetic field.   

Studies73-77 on InN show it to be a good material for optically excited THz 

emission. Monte Carlo simulations of InN, GaN and AlN showed that high frequency 

power generation in a constant electric field occurs for the whole sub millimeter 

range (0.25 THz-4 THz) around the liquid nitrogen temperature75. The possibility of 

THz radiation generated from InN films was observed by Ascazubi et al.77. From this 

study they concluded that if the carrier concentration of InN films can be reduced by 

an order of magnitude, InN will surpass InAs as the most efficient semiconductor 

THz emitter77. Chern et al.73 also concluded that power generated from InN films will 

improve with low carrier concentration. However, the material quality of InN is 

presently delaying final conclusions about THz generation and sensing in InN films. 
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Figure 1. 6 Free carrier absorption is calculated for different carrier 
concentration in a 1 µm n-type InN layer grown on sapphire. The calculated 
absorption coefficient of InN with a doping of 1×1018 cm-3 is shown in the inset. 
The free carrier concentration stays constant below 3 THz.  
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1.4  Objectives of this research 

The aim of this research is the optimization of the structural, electrical and optical 

properties of InN utilizing a unique growth process, high-pressure chemical vapor 

deposition (HPCVD). During the last 3 years, my research focused on the 

characterization and optimization of the HPCVD system as well as on the growth of InN 

epilayers and their characterization. We have demonstrated that the HPCVD approach 

suppresses the thermal decomposition of InN, enabling the growth of InN at temperatures 

up to 1100K12. The higher growth temperature improves the crystalline quality and brings 

the growth processing window close to that used for GaInN, which enables the growth of 

indium-rich group III-Nitrides integrated with GaInN. Our recent results on the structural 

and optical properties of InN grown by HPCVD revealed good quality single crystal InN 

epilayers with FWHM 200 arcsec, carrier mobility 400 cm2V-1s-1 and optical band gap is 

around 1.2 eV78. At present the free carrier concentrations are still in the low 1018 cm-3, 

the origin of which is being studied at present. A further reduction in external 

contamination such as residual oxygen is also investigated. Also, studies are under way in 

order to find a correlation between the surface morphology and structural properties of 

InN. For InN samples presented in this study, we have optimized the growth parameter 

with respect to growth temperature, gas flow velocity, group III:V precursor ratio, and 

evaluated the optical and structural properties as a function of free carrier concentration 

and V/III molar ratio.  

The most significant results of my research are the demonstration that HPCVD is 

a viable approach to stabilize high-quality InN layers at growth temperatures around 

1100K at reactor pressures around 15 bar. With this, the integration of indium-rich 
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InxGa1-xN epilayers into Ga1-xAlxN device structures will be possible for the future 

studies of HPCVD growth. However, many process parameters still have to be optimized 

and the physical properties of InN to be evaluated, before a pathway for truly 

multifunctional device structures based on AlN-GaN-InN alloys can be established. 
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Chapter 2 

This chapter will begin with a brief overview of the InN material system with a 

description of its crystal structure following. The effects of various growth techniques on 

the properties of InN films will be presented, with emphasis on the most popular growth 

techniques such as Metal Organic Chemical Vapor Deposition (MOCVD), Molecular 

Beam Epitaxy (MBE), and Hyride Vapor Phase Epitaxy (HVPE). Finally, an explanation 

of the major challenges present in the growth InN and In-rich group III- Nitride material 

system will be discussed. 

2.1 InN material system 

2.1.1 InN crystal structure 

Single crystal group III nitrides AlN, GaN and InN crystallize in three structures: 

wurtzite (hexagonal), zincblende (cubic), and rock salt. The hexagonal wurtzite structure 

of InN is the thermodynamically stable phase in contrast to cubic III-V semiconductors 

such as GaAs and InP which possess zincblende structure79. The edge length a0 of the 

basal hexagon, the height c0 of the hexagonal prism and internal parameter anion-cation 

bond length along the (0001) axis u0 defines the crystal structure of Group III-nitrides79 

as shown in Figure 2.1. The lattice constants for single and poly-crystalline InN films 

grown on sapphire substrates or GaN epilayers by either MBE or OMCVD technique are 

found to be in the range of a0=3.501-3.536 Å and c0=5.69-5.705 Å1. u0 for hexagonal InN 

films is found to be 0.37779 Å. 
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Figure 2. 1: Atomic arrangement in wurtzite InN crystals. 

In an ideal wurtzite crystal the 00 / ac  ratio equals 633.1
3
8

=  and the value for 

u0 is 0.37580. The possible reason for the variation of the bond lengths and the resultant 

00 / ac  ratios in crystalline quality is due to the incorporation of external contamination. 

The most common growth direction of hexagonal InN is normal to the basal plane81.The 

InN layers consist of different atoms that have a stacking sequence of bi-layers ABAB 

consisting of two closely interpenetrating hexagonal close-packed lattices79.  

Two interpenetrating face centered cubic lattices describe the zincblende 

structure. Zincblende structure has four nearest neighbors all with the same bond length. 

The lattice constant for cubic InN is a=4.986 Å. Recent studies shows that InN grown 

directly on r-plane sapphire substrates consists of a predominant zincblende structure 

along with a fraction in the wurtzite phase82. This meta-stable crystal structure is 

schematically depicted in Figure 2.3 
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Figure 2. 2 Cubic zincblende structure of InN. Red spheres indium atoms and gray 
spheres represent nitrogen atoms. 

Figure 2. 3 The epitaxial relationship between the sapphire substrate, the zincblende 
and the wurtzite. 
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2.1.2 Fluctuation in the structural properties obtained 

Materials properties such as crystalline quality, lattice parameters and carrier 

concentration of InN layers can be affected by the growth technique utilized. InN layers 

are traditionally grown at reduced processing temperatures due to the low dissociation 

temperature of InN and high equilibrium N2 vapor pressure, as shown in Table 2.1. 

Therefore, the temperature-processing window for the growth of InN is very narrow for 

MOCVD, MBE and HVPE (450-600ºC) growth techniques. However, these growth 

techniques do not provide a close match to the optimal processing window of InxGa1-xN 

heterostructures. In addition, MOCVD growth of InN is typically performed with 

elevated V/III ratios, which prevent InN disassociation, but also limit the cracking 

efficiency of N2 or NH3. 

Table2. 1: Growth parameters, lattice constants, and crystalline quality of different 
InN samples grown by different methods. 

N 
(cm-3) 

T 
(°C) Eg(eV) a (Å)  c (Å) 

V/III 
Molar 
ratio 

Mobility 
(cm2/Vs) 

FWHM of 
(0002) 
arcsec 

Growth 
Method 

1×1019 530 .7   18500 200 504 MOVPE81 

3×1019 500 0.75    890 792 HVPE46 
1×1020 500 1.44 3.542 5.720  105 400 HVPE83 
1×1020 550 0.85 3.550 5.700 30000 200 1700 MOVPE84 

3.5×1017 470 0.69 3.538 5.700  2050 250 MBE7 

6×1018 475 0.7 3.530 5.700  1900 300 PAMBE-
MOMBE22 

5×1018 450 0.75 3.530    240 RF-MBE23 
5×1019 806 1.2 3.560 5.700 800 225 290 HPCVD12 
7×1018 600 0.75 3.540 5.700 10000  540 OMCVD85 

1.8×1018 480 0.64 3.530 5.700  1250  PAMBE86 

The material quality of OMCVD, HPCVD and HVPE grown InN films is close to 

that for MBE grown InN samples as shown in Figure 2.4 (observed in terms of narrower 
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Full Width at Half Maximum (FWHM) of the X-ray diffraction rocking curve). InN films 

have a perfect crystalline structure with narrower rocking curve width. Both InN films 

grown by different techniques are single-phase films. Figure 2.5 shows a collection of 

band gap (Eg) data, and the data for lattice constant c and a axis. The c values obtained 

for different InN films grown with different techniques are relatively close, whereas the a 

values obtained from various literature sources are slightly scattered.  

 

Figure 2. 4 Relationship between the FWHM of X-ray of InN (0002) grown with 
different techniques and the optical band gap energy.  
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Figure 2. 5 Dependence of the lattice constants a and c on the optical band gap 
energy. 

2.2 Current growth methods used for growth of InN and In rich group III-
nitrides  

As outlined in previous chapter, InN layers are grown at reduced temperatures 

due to the low InN disassociation temperature and high equilibrium N2 vapor pressure 

over the InN film. Therefore, the current growth methods for InN and indium rich group 

III-Nitride materials have been dominated by low temperature growth techniques such as 

MBE, MOCVD, and HVPE. The following presents the current state of technology 
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aimed towards the growth of InN and In-rich group III-nitrides, along with appropriate 

substrates for the epitaxial growth of high quality material systems. 

2.2.1 Molecular beam epitaxy (MBE) 

The development of MBE systems has been slow due to difficulties associated 

with Ultra High Vacuum (UHV) Systems, low growth rate, low growth temperature, and 

a common source of ammonia for nitrides. Because of the low temperatures, the thermal 

cracking efficiency for NH3 is greatly reduced. NH3 and N2 are used as nitrogen sources 

during the MBE growth of nitrides. Cracking efficiency and incorporation of ammonia in 

the GaN layers grown with MBE were investigated at different temperatures28. It was 

found that incorporation of ammonia begins at 450 °C and the incorporation efficiency 

increases up to 700 °C. The actual efficiency of cracking of ammonia starts at ~ 800 °C. 

In the case of atomic nitrogen source, the disassociation energy of N2 is about 9.5 eV, 

Therefore, the supply of N2 gas to the substrate surface with the group-III elemental 

beams cannot induce any growth of nitrides. N2 molecules are disassociated into atomic 

reactive nitrogen by radio-frequency (rf) emission or electron cyclotron resonance (ECR). 

In RF plasma, effective generation of reactive nitrogen requires a small aperture size. In 

the case of an ECR plasma source, the generation rate of reactive atomic nitrogen 

increases with increasing input microwave power. However, nitrogen ions with energy 

higher than ~ 60 eV may induce defects in the epitaxial layer.  

Thermodynamic analysis of the MBE growth of III-Nitrides including InN has 

been reported by Koukitu and Seki87. The chemical reaction during the epitaxial growth 

of InN, which connects the gas phase NH3 to the species at the substrate surface is given 

by, 
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( ) ( ) .2
3

23 HInNgNHgIn +=+  (2.1) 

In the NH3 case, it is convenient to introduce α, the molar fraction of decomposed 

NH3, as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )gHgNgNHgNH 2233 2
3

21 ααα ++−⇒  (2.2) 

However, the exact value of α is not known and has been estimated for InN. 

Koukitu and Seki calculated the phase diagram during deposition to find the suitable 

growth conditions for the MBE growth of III-Nitrides. They reported that the  

temperature suitable for the InN MBE growth is from 600 to 700 ºC with V/III ≥1. 

However, the growth of InN is achieved for the temperature range 450 to 600 °C. As 

described above, there is 200°C difference between the optimal processing conditions of 

InN and In-rich InGaN heterostructures. 

Growth of good quality InN layers began not long ago, in 2002, Single crystalline 

hexagonal InN samples were grown and presented by Davydov et al22. and these samples 

had a band gap value less than 1.1 eV. Undoped InN layers were grown on the c plane 

sapphire substrates by ECR-plasma assisted MBE88. Following this study, Lu et al.89 have 

grown InN layers using rf - MBE that also provide the band gap energy of InN film 

below 1 eV. Both of the groups have performed the growth of InN with a turbo molecular 

pumped MBE chamber with an ultimate background pressure ~10-10 Torr. Metallic 

indium was supplied from an effusion cell at different temperatures. An ECR plasma 

source or EPI unibulk rf plasma source was used for generating atomic reactive nitrogen 

with different flow rates (0.7 to 5 sccm (standard cubic centimeters per minute)). The 

nitrogen flux causes a nitrogen partial pressure in the MBE chamber of 1.8 ×10-5 Torr 
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during growth. To overcome the substrate match problem, various growth initiation 

techniques were used as introduced in the following; 

I.  A 2 nm AlN nucleation layer was deposited at 950 °C and the substrate was 

cooled down slowly to desired InN growth temperature in rf-MBE growth89. 

II. A low temperature (LT) or high temperature (HT) InN buffer layer was first grown, 

followed by a temperature change to maximize the growth of InN 

III. Sapphire wafers were nitrided by nitrogen at higher temperatures (1100 °C) for 3 

or 30 minutes for thermal cleaning for both MBE techniques. 

IV. A single GaN or LT-InN/ GaN, or AlN/GaN double buffer layers were formed on 

the substrate.  

Application of these steps increases the quality of the InN epilayer, and the surface 

morphology of the epilayer improves significantly (smoothness of order of 1 nm rms). 

However, further process optimization needs to be done for high quality InN film 

production.  

2.2.2 Organometallic Chemical Vapor Deposition (OMCVD) 

The current market requirements for growing III-Nitride layers are restricting the 

MBE technique as an industrial growth tool. Today there are organometallic vapor 

deposition machines (also referred to as metal-organic chemical vapor deposition, vapor 

phase epitaxy or metal organic vapor phase epitaxy) with high throughput, better 

uniformity of the layer, and larger wafer areas. The precursors used for the group III 

component while growing group III nitrides are mainly TMGa (trimethyl Gallium), TEGa 

(Triethyl Gallium), TMAl, and TMIn. NH3 is used as group V precursor, which requires a 

higher growth temperature for group-III Nitrides. However, InN growth is going to be 
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restricted due to the low growth temperature resulting in a low decomposition rate of 

NH3, so a high V/III ratio is needed. The carrier gases N2 and H2 crucially determine the 

group III incorporation efficiency with respect to the role of carrier gas during the 

growth. Figure 2.6 shows the equilibrium partial pressures over group III-nitrides as 

functions of the input V/III ratios carried out by Koikutu et al. The equilibrium vapor 

pressure of nitrogen over the InN is several orders higher than that AlN and GaN as 

shown in Figure 2.6. Therefore, the growth temperature of InN is low due to the low 

disassociation temperature of InN and high equilibrium N2 vapor pressure over the InN 

film. According to Figure 2.6 (b), there are 3-deposition modes for InN growth due to the 

V/III input ratio. Etching can occur for a low V/III input ratio, and In droplets may appear 

at the surface for V/III > 50. Therefore, high V/III ratios over 10000 are required for the 

deposition of InN. However, there is a specific growth regime which allows the 

deposition of InN between V/III= 105 – 2.6×106. A V/III ratio greater than 2.6×106 will 

create large amounts of H2 that are produced from the prolysis of NH3, thus, preventing 

InN deposition90. Good quality InN films have not been achieved using MOCVD 

technique due to the high quantity of defects. One reason for the defect densities is 

attributed to the lack of a lattice-matched substrate material. Sapphire is available and is 

the preferred substrate choice, with relatively low cost and high quality for the epitaxial 

growth of group III-nitrides. A GaN buffer layer is another option, which reduces the 

lattice-mismatch from 22% to 10%. In order to overcome these limitations, various 

techniques have been applied including atomic layer epitaxy, two-step growth techniques 

and double-zone MOCVD. The suitable growth temperature region for deposition of InN 

is 450- 600 °C.  
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Figure 2. 6 The equilibrium partial pressures over a) GaN b) InN and c) AlN as  
functions of input ratios91. 
The growth temperature in the MOCVD growth of InN is one of the most crucial 

parameters to control the film quality. When the growth temperature decreases below 

400°C, the resultant InN films contain high levels of oxygen. Figure 2.9 shows the carrier 

concentration of InN grown at different temperatures under 76 or 760 Torr. The 

increasing growth temperature decreases the carrier concentration48. In the history of 

MOCVD, high quality GaN and related materials were grown, by implementing different 

reactor designs. Yamamato et al. studied the influence of reactor design by comparing 

two different horizontal reactors in which the reactant-gas flow spacing between the 

substrate and ceiling of the quartz chamber were changed. They found that the reactor 

with smaller spacing made InN films with larger grain size and the 2D growth of InN was 

enhanced. Enhancement in 2D growth resulted in good crystalline quality. In conclusion, 

the growth of InN is relatively poor at present compared to MBE grown InN samples 

with a carrier concentration of 4.7×1018 cm-3 and Hall mobility of 1100 cm2/Vs48. The 

growth of InN via traditional MOCVD techniques has proved difficult and has not 

yielded high quality InN. 
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Figure 2. 7 Growth temperature dependence of carrier concentration for InN film 
grown at different pressures. 

2.2.3 Hydride Vapor Phase Epitaxy (HVPE) 

Rapid progress in epitaxial technology of MOCVD grown GaN based materials 

and its capability to produce GaAlN/ InGaN quantum well structures made this growth 

method an industrial choice for the fabrication of GaN based device structures. However, 

GaN based structures grown by MOCVD or MBE must utilize foreign substrates such as 

sapphire, SiC or GaAs due to the absence of native group III-Nitride substrates. 

Differences in the thermal expansion coefficient and the lattice mismatch between the 

substrate and group III-Nitrides lead to defects in the epitaxial layer, cracking of layers 
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during the post growth cooling and residual strains in the epitaxial layers. Those defects 

contribute to high background electron concentrations and degrade the electrical and 

optical properties of materials. Slow progress and overwhelming technical difficulties in 

growing bulk layers via MOCVD and MBE, placed the HVPE method in a pathway to 

produce substrate materials of group III nitride semiconductor materials. Free standing 

GaN wafers with an electron mobility of 1320 cm2/V sec and a donor concentration of 

7.8 × 1015 cm-3 have been grown via this method 92,93. It has been shown that the 

dislocation density in GaN layers decreases with an increase in layer thickness93. As a 

result, HVPE is an attractive technique for the growth of quasibulk materials, which can 

provide lattice matched growth surfaces and thick, strain relieved buffer layers. 

HVPE technology has been used for over 3 decades to deposit single crystal 

layers of both GaN and AlN for more than 3 decades. The first single crystal InN samples 

were grown by Igarashi94 using an In-Br2-NH3-N2. Growth of InN epitaxial layers by 

HVPE were reported using InCl, InCl3 and NH3 sources95,96. A higher growth rate was 

observed using the InCl3-NH3 material source system as compared to the InCl-NH3 

material source system. Epitaxial growth of InN has been attempted on a GaN buffer 

layer using the InCl3-NH3 source system at growth temperatures as high as 750°C96. The 

growth rate decreases with increasing growth temperature as shown in Figure 2.10, and 

research showed that a high input partial pressure of InCl3 was necessary for the growth 

of InN at high temperature.  
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Figure 2. 8 Growth rate of InN films as a function of growth temperature. 

It was observed that, depending on the growth conditions, InN materials may be 

grown as nano-size structures (nano-rods, nano-wires) with typical diameters of 60-500 

nm83. 

2.2.4 Sputtering 

Plasma-assisted reactive deposition is a suitable method for growing group-III 

Nitride materials with high melting points, and this method is successful due to the low 

growth temperature, which enables the deposition of In- containing alloys and interfusion 

at interfaces of multilayer structures. However, the disadvantage of sputtering is that the 
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In, Ga, and Al targets are easily oxidized. The first group III nitride grown by plasma 

assisted deposition was InN powder in 191079. Fischer and Schröter reacted indium metal 

with nitrogen in a cathodic discharge to produce InN powder. The sputtering system 

employed a pair of magnetrons sputtering. The substrate assembly is rotatable and 

substrates were sputtered from a high purity In target which was nitrided under high 

purity nitrogen. Tansley and Foley reported on InN films grown by RF sputtering with 

the lowest electron concentration and highest mobility ever reported for nitride 

semiconductors. However these results have proved un-reproducible. The structural 

properties of InN grown by sputtering processes at low temperatures are polycrystalline 

or columnar which limits applications. While single crystalline InN films have been 

grown40, films qualities are very poor with high carrier concentration and low electron 

mobility.  

2.3 Challenges in growing InN and In- rich group III nitride material 

Thermal instability of InN makes the growth of high quality Ga1-xInxN films with 

high In content difficult. This is due partly to the lattice mismatch and mismatch of 

thermal expansion rates between the epitaxial film and substrate. GaN LED emission 

efficiency increases even with small additions of In, as outlined in the previous chapter. 

Several fundamental questions regarding the basic material properties of the InN such as 

the band gap energy, limited mobility, and limited electron concentration remain 

unsolved. There exists considerable uncertainty about the band gap of InN, the influence 

of point defect chemistry on the structural, optical and electrical properties, deep defect 

levels, and metallic clusters formed within the band gap. CVD growth of InN is a 

challenging task due to the extremely high equilibrium vapor pressure of nitrogen 
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required to balance the low decomposition temperature of InN. This low growth 

temperature requires the application of high V-III ratios in order to prevent the formation 

of metal droplets on the growth surface. Studies of the decomposition of InN layers have 

shown that oxygen is incorporated into the InN crystal under thermal treatments and 

might be one of the reasons for variation in the band gap energy of InN. In order to 

realize InN-based photonic devices and overcome the difficulty of high thermal 

decomposition pressure of InN, a disruptive technology is necessary for reducing defect 

density and improving the quality of InN based III-Nitride alloys. 
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Chapter 3 

Description of High Pressure Chemical Vapor Deposition 
Reactor and real time characterization tools 

3.1 Introduction 

Any scientific research requires an understanding of the associated scientific 

equipment and their working principles. Therefore, it is very crucial that one completely 

understands the limitations and capabilities of the scientific set up and according to the 

limitations finding new revolutionary approaches. While success in the hetero-epitaxial 

growth of single crystal, high quality InN has been achieved utilizing low-pressure 

techniques, a number of fundamental difficulties still exist: 

I. The low disassociation temperature of InN (500°C, 550°C, and 630 °C4), which is 

determined by the relatively low In-N bonding energy,  

II. High equilibrium N2 vapor pressure over the InN film, 

III. The low pyrolitic efficiency of NH3 at low growth temperatures. 

The difficulties associated with forming solid alloys of InN with AlN and GaN, along 

with the well-known difficulties in p-type doping of all III-nitrides plays an important 

role in the fabrication of electronic and optoelectronic devices. At present, nitride based 

semiconductors are characterized by low mobility p-type carriers, and obtained p-type 

materials with low hole concentration. Therefore, doping of group III-nitrides is very 

important for basic research and applications. A commonly used acceptor impurity for p-
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type doping is Magnesium, which leads to creation of Mg-H complexes in MOCVD 

process in the presence of NH3. Mg can be activated at temperatures of approximately 

800 °C. 

Traditionally, InN films require growth temperatures below 600 °C and sub 

atmospheric pressures. The growth temperature is the most critical parameter to control 

film quality as the surface mobility of atoms decreases at low temperatures and growth 

temperature directly influence the fabrication of GaxIn1-xN heterostructures. However, 

growth pressure is also a basic parameter affecting electrical properties of InN films97. As 

outlined in the previous chapter, InN films can be grown in temperature ranges between 

820 K-920 K with either atmospheric pressure or sub-atmospheric pressure (76 torr) in a 

conventional MOCVD system. Under these conditions, it is necessary to reduce the 

growth temperature in order to prevent the InN decomposition with a corresponding 

decrease in reactor gas flow rates to enhance TMI decomposition. However, conditions 

for laminar flow require a low Reynolds number, and Grashof number (Gr), which must 

be much smaller than the square of the Reynolds number (Re), as defined by following 

equations: 

2

23

r
gG

µ
βρ Th T ∆

=  (3.1) 

µ
ρ
PA
uhRe =  (3.2) 

where g is the gravity factor, ρ the density of the fluid, βT the volume coefficient of 

expansion, u the standard flow, P standard pressure. Gr/Re
2 ratio is proportional to 

g(P/u)2, therefore high pressure CVD growth must be carried out at sufficiently high flow 

velocity to maintain a small Gr/Re
2 ratio. Furthermore, higher N2 pressures can suppress 
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the nitrogen evaporation from the grown InN film. In order to establish the growth at 

higher pressures, a high-pressure flow channel reactor was implemented at Georgia State 

University.  

3.2 High pressure chemical vapor deposition approach 

Low-pressure deposition processes are limited to regimes where the partial 

pressures of the constituents do not differ vastly and the decomposition process can be 

countered by off-equilibrium process conditions. This becomes a challenge for InN and 

related indium rich III-N alloys due to their stoichiometric instabilities and low 

dissociation temperatures, leading to inconsistent, process dependent materials properties. 

At present, two of the most severe problems are related to the surface termination of 

indium-rich InGaN layers and secondly, the large thermal decomposition pressures in 

InN. This thermal decomposition limits the growth temperatures for low-pressure 

deposition techniques at and below 500°C, which is at least 200°C lower as compared to 

GaN growth. Even though recent results of InN layers grown by plasma assisted MBE 

demonstrated that high-quality InN layers could be achieved with low-pressure 

deposition techniques, the integration of such layers into wide band gap group III-nitrides 

heterostructures is a challenging task. Thermodynamic estimates suggest that the surface 

for highly volatile compounds such as InN and related alloys can be stabilized at much 

higher temperatures if stabilized at high pressures of the volatile gas species9,98.  

Recent studies in the indium - nitrogen system13 show much uncertainty in the p - 

T - x relations due to the missing experimental validation, but studies of the nitrogen 

pressure are needed to prevent thermal decomposition of bulk InN according to  

( ) ( ) ( )gN
2
1lInsInN 2+→ . (3.3) 
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Since McChesney et al.16 were not able to show reversibility of expected equilibrium: 

InN is not formed from direct reaction of indium metal and nitrogen. The interpretation 

of the linear relation between p and T is given in following; 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∆
→

0
02

11
TTR

H
pNp r  (3.4) 

which was obtained by integration of Van’t Hoff equation. ∆Hr represents the heat of 

formation, R the universal gas constant and T equilibrium temperature. Results are shown 

as a plot of P-T-1 in Figure 3.1. The relation indicates that in the pressure range pN2
≤ 102  

bar and for substrate temperatures ≤ 900 K the surface decomposition of InN will be 

effectively suppressed. In view of the higher melting temperature of InN (~1200 °C) as 

compared to InP (1062 °C) this appears to be a minimum requirement for the growth of 

high quality epitaxial InN heterostructures.  

The HPCVD approach presented here is aimed towards the growth of group III-

nitrides at elevated pressures using InN as a model system to demonstrate the capabilities 

of High-Pressure CVD. Moving towards High-Pressure Chemical Vapor Deposition 

(HPCVD) for the growth of group III-nitrides, requires a completely new reactor system 

design, with additional considerations of flow kinetics, gas phase reactions, diffusion 

through the boundary layer as well as altered surface chemistry. Modeling and simulation 

of the gas phase and surface reaction kinetics for InN growth at high pressures are 

presented in the following sections. 
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Figure 3. 1 Thermal decomposition pressure vs. reciprocal temperature for AlN, 
GaN and InN. 
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3.3 Modeling of high pressure CVD processes 

In order to gain an understanding of the growth process of InN, a numerical 

model was developed based on simulations of fluid dynamics coupled to chemical 

kinetics within a three dimensional grid that simulates vapor deposition inside the High-

Pressure CVD reactor99. The HPCVD reactor simulations are based on two different 

computational approaches due to the complexity of the chemistry: 

• A time evolution model based on chemical kinetic equations represented the 

reactor as a single volume that was kept at a constant temperature and pressure.  

• A steady-state model represented the reactor with a three dimensional grid of 

97,000 hexagonal cell at different temperatures, with varied flow velocities, and 

constant pressure.  

The steady-state model is computationally intensive and substantially increases 

with the number of chemical reactions. However, the time evolution model was used 

mainly to generate a reduced set of reactions to model the disassociation of In(CH3)3-NH3 

precursors under specific conditions of temperature, pressure, and molar ratios. First of 

all, the time evolution model calculation was performed using the full set of 79 gas phase 

reactions, which includes 47 species, by selecting specific initial conditions of molar 

ratios, temperature and pressure. Furthermore, the time evolution model was performed 

for the comparison of a reduced chemical set with the full set until the results of full set 

and reduced set were similar. Finally, the reduced set of chemical reactions generated by 

the time evolution model was used to perform the steady state calculation and compare 

the results with the time evolution model. This modeling explained above is depicted in 

Figure 3.2. 
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Figure 3. 2 Scheme for the selection of a reduced gas-phase chemical reaction model.
Both models predict the same species, however the resulting largest molar ratios 

for two models are different. For instance, NH2 and In are the most abundant species for 

the steady-state model, but NH3 and InCH3 are the most abundant species for the time 

evolution model. These differences in calculated mass fraction values of abundant species 

indicate that the flow dynamics affects the distribution.  

One of the possible surface reaction mechanisms for the growth of InN has been 

modeled using four paths. As shown in Figure 3.3, atomic indium and of InCH3 were the 

most abundant group III species in the gas phase for a reactor pressure of 12.5 

atmospheres and specific conditions of molar ratios, temperature. Therefore, those two 

species were selected to model the surface reactions for Path one and Path two, 

respectively. 
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Figure 3. 3 Final mass fractions obtained for the steady state model using a reduced 
set of chemical equations. The initial molar ratios and conditions are: 
N2:NH3:In(CH3)3= 0.99504:0.00493:0.00003, temperature=1300 K, pressure=12.5 
atm. 

The surface reaction paths are summarized in Table 3.1. The first path 

corresponded to the adsorption of atomic In, the capture of NH2 to form adsorbed InNH2 

and the disassociation of adsorbed InNH2 in to adsorbed InN and H2. Path two 

corresponded to the adsorption of InCH3 and the capture NH by adsorbed InCH3 to form 

adsorbed InCH3NH. Following this, the adsorbed InCH3NH disassociates into adsorbed 

InN and methane (CH4). Path three corresponded to the direct adsorption of InN. Path 

four corresponded to the direct adsorption of InNH2 and its disassociation into adsorbed 

InN and H2. The decomposition or etching of InN film results from the reaction  

NInN_SInN_S +↔  (3.5) 

and was included in each of the four paths.  
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Table 3. 1 Summary of the selected heterogeneous reactions. Symbol _S in reactions 
represent the adsorbed species. 

Path One Path Two Path Three Path Four 

In_SIn ↔  _S3InCH3InCH ↔  InN_SInN ↔  _S
2

InNH
2

InNH ↔  

_S2InNH2NHIn_S ↔+

 
)NH_S3In(CHNH_S3InCH ↔+

 

NInN_SInN_S +↔
 

2
HInN_S_S

2
InNH +↔

 

2HInN_S_S2nNHI +↔

 
4CHInN_S)NH_S3InN(CH +↔

 
 

NInN_SInN_S +↔
 

NInN_SnN_SI +↔  NInN_SInN_S +↔    

Reaction rate constants were calculated at fixed pressure for the steady state 

model. The deposition rate constants (first row in Table 3.1) were calculated using the 

kinetic theory of gases by Cardelino et al99. The surface reactions (second row in Table 

3.1) were calculated from the reverse hemolytic dissociations by Cardelino et al.99The 

contribution of the four paths leading to InN formation were simulated using initial 

conditions N2:NH3:In(CH3)3 with mass ratios of 0.73:0.04:0.23. The basic simulation 

used an inlet velocity of 0.01 m s-1, a total pressure of 10 atm, and 2.5 MW m-2 of 

substrate heating. These input values for simulation have been used in actual 

experiments9. 

This simulation resulted in a maximum substrate temperature of 1163 K, an 

average substrate temperature of 957 K, and a maximum InN growth rate of 190 nm per 

hour and average growth rate of 40 nm per hour. Figure 3.4 depicts the contribution to the 

growth rate resulting from four paths. Note that the growth rate for path two becomes 

negative where the substrate has higher temperatures. This is the due to the decrease in 

the available gaseous InCH3 at the higher temperatures. 
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A set of initial conditions for experimental values were chosen by our group11,12 

to verify the result of a steady-state calculation. In that experiment, the N2:NH3:In(CH3)3 

experimental ratios were 5.4 slm (standard liter per minute): 500 sccm: 300 sccm. The 

N2:NH3:In(CH3)3 mass ratios 0.73:0.04:0.23 and inlet flow of 0.17 m s-1 were chosen to 

validate the model chosen here for steady-state simulation. The experimental reactor 

pressure was 10.2 bar, and pressure was 10 atm for the simulation. The experimental 

reactor temperature ranged from 800 to 1150 K and the source materials were introduced 

through a 6s pulsing sequence. The simulation was performed at two different 

temperatures 1050 K and 1290 K. The calculated average InN growth rate is 0.027 µm 

per hour and 0.094 µm per hour for the lower and higher temperatures, respectively. The 

average experimental InN growth rate was 0.081 µm per hour. The simulation results 

compare very well with the experimental results, as seen in Figure 3.5. 

In conclusion, a simple set of heterogeneous reactions is analyzed and organized 

into four paths. The main path for the formation of InN film was the deposition of atomic 

In and InCH3 and their reaction with group V species. A reduced set of chemical 

reactions could be used to represent realistically the complete set of possible chemical 

equations for the decomposition of NH3 and In(CH3)3. Based on the simulation results, a 

high-pressure chemical vapor deposition reactor model was designed that could 

realistically simulate experimental results for the deposition of InN from the 

disassociation of NH3 and In(CH3)3. In the following sections, a brief introduction to the 

design of the HPCVD reactor system is provided together with its real-time optical 

capabilities in order to characterize flow, gas phase and surface reactions.   
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Figure 3. 4 InN growth rate in µm per hour. The arrow shows the direction of the 
flow. a) Path one; b) Path Two; c) Path Three; d) Path Four. 
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Figure 3. 5 Comparisons between experimental and simulated average InN growth 
rate in µm per hour. The central bar corresponds to the experimental value, the left 
bar to the simulation at lower substrate heating, and the right bar to the simulation 
of higher substrate heating.  

3.4 High pressure chemical vapor deposition reactor system 

The HPCVD flow channel reactor design shown in Figure 3.6 was based on the 

result of the flow simulations100,101. The inner reactor cylinder consists of two symmetric 

halves, where each half has a substrate holder embedded in a ceramic plate heated 

through the backside. Utilizing such an arrangement prevents material deposition on the 

opposite reactor wall and heat induced turbulence above the substrate surface can be 

reduced. The reactor channel height is 1 mm, accounting for reduced precursor diffusion 

length at elevated pressures and optimized use of the gases. In order to minimize the 

flow-induced turbulence in the reactor, a constant cross section is maintained from gas 

inlet (circular cross section), throughout the reactor (squared cross section: 24 mm × 24 

mm), and the reactor exit (circular cross section). 
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Figure 3. 6 a) Schematic perspective outline 
of half of the reactor flow channel assembly 
showing the flow direction and the optical 
access ports that provide an access to the 
growth surface. 

Figure 3.6 b) Cross sectional view of the 
machined and assembled flow channel 
assembly with inserted sapphire 
substrates. 

The inner reactor slides in a second outer cylinder (dia. 6”, length = 12“ ) that can be 

pressurized up to 100 bar. 

A schematic of HPCVD flow system is presented in Figure 3.7. In order to minimize 

gas phase reactions, extract sufficient organometallic (OM) nutrients from the bubbler, 

and embed the precursor flow in the reactor main stream, the design employs pulsed 

precursor injection schemes, which is advantage of: 

• The mixing of the gas sources and dilution of the gases in nitrogen carrier gas, 

• The pulsed of injection of all gas sources, and 

• Analyzing the gas-phase and surface decomposition dynamics in real-time. 

The flow channel reactor is interfaced to the gas injection panel. The gas injection 

sequences are tested and optimized in timing and flows in order to avoid pressure 

fluctuations during the switching sequences for real-time gas flow dynamics studies as 

well as the analysis of the gas-phase decomposition kinetics during the film growth 
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process. Optical ports are integrated into the flow channel reactor as schematically shown 

in Figure 3.8. 

Figure 3. 7 Schematics of the HPCVD flow control panel for precursor compression and pulsed precursor 
gas injection. 

 

Figure 3. 8 Schematic cross section of the reactor containing the optical access ports and 
the center of the substrates. Two optical ports provide access to the flow channel and 
three ports in each of the two half sections of the reactor provide access to the growth 
surface. 
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The optical ports along the centerlines of the substrates allow the probing of the 

gas phase dynamics and chemistry, while three ports entering through the back side of the 

substrate allow the monitoring of growth surface, film growth, and scattering process 

from the gas phase. 

3.5 High pressure chemical vapor deposition reactor characteristics 

Gaining a detailed insight into the growth kinetics at elevated pressure requires 

analysis of each step critical to the growth process. Gas flow dynamics are characterized 

by LLS (Laser Light Scattering). Gas phase reactions are monitored using Ultra-violet 

absorption spectroscopy (UVAS). The InN nucleation and growth process are monitored 

by Principle Angle Reflectance Spectroscopy (PARS) and LLS.  

3.6 Real time optical characterization of gas flow dynamics 

In the following sections real time optical characterization techniques integrated 

to high pressure CVD reactor are going to be presented. 

3.6.1 Laser Light Scattering (LLS) 

One crucial requirement is the maintenance of the laminar flow conditions in 

order to provide a consistent supply of precursor constituents above the growth surface. 

This allows the correlation of gas phase constituent concentrations to the diffusion 

processes and surface chemistry processes that drive the thin film growth process. The 

laser light scattering (LLS) in forward scattering geometry was used to analyze the flow 

characteristics in the HPCVD reactor. This is schematically illustrated in the inset of 

Figure 3.9. The onset of increased LLS scattering analysis for pure nitrogen flow is 

summarized in Figure 3.9, indicating the flow and pressure regime at which laminar flow 

can be maintained. The associated Reynolds number can be calculated via  
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η
ρul

=Re , (3.6) 

where ρ = 1.12 [kg ⋅ m-3]  is the density of the gas, “u” the flow velocity, “l” a flow 

reactor characteristic length parameter, and η = 1.8 ⋅10-5   [kg ⋅ m-1 ⋅ s-1]  the dynamic 

viscosity. For ideal gases, a direct proportionality exists between the density of the gas 

and the pressure. The average of the calculated Reynolds number is approximately 1480 

with no significant pressure dependency observed, which is consistent with typical flow 

channel reactor designs13. The LLS analysis indicates that for the high-pressure flow 

channel reactor laminar process conditions can be maintained for flows up to 20 slm and 

pressures up to 20 bar.  

InN growth surface was monitored through the backside of the sapphire substrate, 

utilizing laser light scattering (LLS) as shown in Figure 3.8. LLS was applied employing 

p-polarized light beam (λ=6328Å) and a Glan-Thompson prism during thin film growth. 

The intensity of the scattered signal was monitored simultaneously by a photo multiplier 

tube (PMT) located perpendicular to the plane of incidence. The LLS signal recorded 

during the InN growth will be presented in the following section. 

3.6.2 Principle Angle Reflectance Spectroscopy (PARS) 

PARS is based on the same principle as p-polarized reflectance spectroscopy. 

However, as schematically shown in Figure 3.10, PARS utilizes p-polarized light 

impinging the substrate-ambient interface near the principal angle ϕP corresponding to 

the pseudo-Brewster angle ϕB for p-polarized light impinging the ambient-substrate 

interface. Depending on the substrate temperature and monitoring wavelength, the 

principal angle ϕP varies from 27.5 deg to 30 deg for the sapphire-ambient interface13. 

The angle of total reflection, ϕT, is approximately 5 deg above ϕP.  
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Figure 3. 9 Transition from laminar to turbulent flow conditions as determined by 
LLS intensity measurements. The inset depicts LLS in forward geometry to analyze 
the onset of turbulence. 

Both inner half parts are identical with the exception of the angle of incidence for 

(PARS), which are 28 deg and 30 deg for the upper and lower part, respectively, as 

schematically depicted in Figure 3.8. The monitoring of InN nucleation and growth were 

monitored using a single wavelength principal angle reflectance (PARS) with a p-

polarized light beam (λ=6328Å) and a Glan-Thomson prism. The beams impinge on the 

substrates at an angle of incidence ϕ=30° and ϕ=28° for the upper and lower part, 

respectively. The reflected beams are detected by Si photodiodes. 
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Figure 3. 10 Angle dependency of reflectance for p- and s- polarized light at the 
sapphire-ambient interface, depicted are the characteristic angles: principle angle 
ϕp and total reflection angle ϕT. 

 

3.6.3 Ultra violet absorption spectroscopy (UVAS) 

The analysis of the decomposition dynamics of ammonia and TMI were analyzed 

utilizing UVAS for a reactor pressure of 10 bar at different temperatures 102,103. The 

reason the UVAS technique has been chosen is that the heater radiation limits the 

sensitivity of many optical probe techniques in the visible and Infrared (IR) regime, even 

if modulation techniques are applied. The radiation intensity for a 1000K black body 

emitter below 350 nm vanishes very quickly with negligible contributions below 300 nm.  
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A continuous precursor decomposition analysis is no longer possible at higher 

reactor pressures. In order to grow InN at elevated pressures, a two-step process has been 

chosen for the injection of the precursors in the HPCVD reactor. The decomposition 

dynamics of the precursors have been analyzed in the temperature regime of 300 K and 

1200 K for single peak absorption maxima. Figure 11a shows the temperature dependant 

ammonia [NH3] absorption monitored at 210.7 nm for a reactor pressure of 10 bar. The 

decomposition at 10 bar pressure starts around 850 K, which is significantly reduced 

compared to the decomposition temperature at atmospheric pressure, where the onset of 

ammonia decomposition is observed around 990 K10. The decomposition dynamics for 

TMI is depicted in Fig. 11(b), showing that the onset in the gas phase occurs around 

800 K, slightly higher than those reported under low-pressure OMCVD conditions104,105 

for the growth of group V compounds106,107. The observed decrease in the ammonia 

decomposition temperature with increase of reactor pressure is very crucial for InN 

growth optimization and the control of the point defect chemistry in this material system. 

It also allows more efficient use of the ammonia precursor, enabling a lower 

TMI:ammonia flow ratio. 
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Figure 3. 11 a) Change of the ammonia absorption peak maximum as function 
of temperature b) Decomposition of TMI at a 10 bar reactor pressure, 
monitored during pulsed TMI injection as function of temperature. 
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3.7 Growth procedure 

The growth of InN films by HPCVD is achieved by following two different 

growth procedures. The first growth procedure includes the growth of InN by exposing 

the substrate surface to pulses of ammonia (NH3) at typically 1100 K-1115 K. The 

symmetrically embedded sapphire substrate with a (0001) direction or GaN/sapphire 

substrates growth surface was heated to 1115 K and exposed to ammonia for typically 30 

min. After the nitridation of the sapphire or GaN surface and growth of nucleation layer, 

the temperature was lowered to the growth temperature. In the following the InN growth 

was initiated.  

The second growth procedure was performed in 3 main steps. First, thermal 

annealing of the substrate under nitrogen gas for 20 minutes, and nitridation of the 

substrate (mostly those substrates are GaN/ Sapphire) for 2 minutes at 1080 K. Second, 

growth of a nucleation layer. Third, the epitaxial growth of InN was performed. Epilayers 

were grown at a higher or same temperature compared to nucleation and nitridation. 

Samples with good crystalline quality and surface morphology were obtained in both 

growth procedures. 

The decomposition studies for ammonia in the previous section suggest 

temperatures above 800K for sufficient cracking of the ammonia precursor for the growth 

of InN at elevated pressures. However, literature data for InN growth by MOCVD 

indicate a growth temperature of 675K to 750K13, 775K108, 810-840K109. Under HPCVD 

conditions, we can expect to be able to increase the growth temperature about 200K–

250K higher than is possible at low-pressure MOCVD conditions. Since the 

decomposition temperature of ammonia decreases with increasing reactor pressure, the 
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high temperature and pressure conditions make HPCVD a promising technique for 

growing InN and In rich group III-Nitride. 

A unique pulsed injection scheme was used to temporally separate the precursors 

trimethylindium (TMI) and ammonia (NH3) that are embedded into a high pressure 

nitrogen carrier stream as shown schematically in Figure 3.12. This approach allow us to 

control the gas phase chemistry and to trace the surface chemistry processes. Those 

processes were being monitored in real-time using UV absorption spectroscopy and 

principal angle reflectance spectroscopy (PARS). The precursors were embedded in a 

high-pressure carrier stream, consisting of ultra-pure nitrogen. At all times during the 

growth process, the total gas flow through the reactor was kept constant. For the InN 

layers presented here, the total cycle sequence time was 6 sec, with TMI and ammonia 

pulse widths of 0.8 sec and 1.0 sec, respectively. The pulse separation was varied from 1 

to 1.6 sec. The reactor pressure was 15 bar with a total gas flow of 12 slm. The precursor 

flow ratio was evaluated for a molar ratio of ammonia to TMI from 600 to 1500 in the 

growth temperature of 1080 to 1150 °K. The temperature setting refers to the correlation 

of the analyzed black body radiation as a function of the power setting of the substrate 

heater and is not corrected for the change in surface emissivity during the growth.  
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Figure 3. 12 Schematic representation of a precursor cycle sequence used for the 
growth of InN via the precursors TMI and ammonia. 

3.8 Real-time optical characterization of InN growth: nucleation and steady-
state growth 

A typical set of real-time optical monitoring traces by PARS and LLS is 

illustrated in Figure 3.13. The temporal evolution of the PARS trace contains crucial 

information related to the growth surface and information on the overall layer growth. 

The fine structure superimposed in the interference oscillations is strongly correlated to 

the time sequence of the supply of precursors. From the analysis of the PAR signal, the 

average growth rate and the difference between the dielectric functions of film and 

substrate can be estimated. The monitored LLS trace tracks the evolution of the surface 

morphology, providing details on the nucleation and overgrowth kinetics as well as the 

overall surface roughness. As shown in Figure 3.13, the LLS signal increases at the 

beginning of the growth, but it decreases and becomes smoother during the steady-state 

growth. 
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Figure 3. 13 Real time optical monitoring of InN growth by PAR and LLS. 
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The correlation of the PAR fine structure evolution with the un-decomposed 

precursors above the growth surface has been studied during the pulsed precursor supply. 

Figures 3.14 and 3.15 show typical observed PAR and UV transmission traces monitored 

during nucleation and growth of InN. The lower half shows the UV transmission traces 

recorded for the wavelength λ=210.8 nm, monitoring the un-decomposed ammonia and 

TMI species above the growth surface. The PAR trace in the upper half of the figure was 

recorded for the wavelength λ = 6328 Å, monitoring highly sensitive changes in the 

dielectric function at the substrate-ambient interface. Also drawn in Figures 3.14 and 15 

are the positions of the precursor pulse injection with a total cycle sequence time of 6 sec. 

Note that the precursor injection time and the response seen in UVAS and PAR signals 

are temporally shifted according to the average gas velocity in the reactor. As depicted in 

Figure 3.14, it takes about one to two cycle sequences before the UV absorption feature 

for TMI clearly can be observed (see arrows). A steady state surface chemistry is 

typically reached soon thereafter. Figure 3.15 shows the PAR and UVAS responses 

during steady-state growth conditions. The periodic modulated PAR signal can be 

directly correlated to the presence of ammonia and TMI fragments on a surface layer. 

Monitoring the PAR, LLS, and UVAS responses during various growth conditions 

provides crucial information on the gas decomposition dynamics of the precursor and the 

subsequent diffusion through the surface boundary layer to the growth surface. 
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Figure 3. 14 Monitoring of InN nucleation by PARS and UV absorption traces. A 
precursor cycle sequence of 6 sec with 0.8 sec TMI and 1 sec ammonia pulses, 
separated by 1.4 sec were used.  
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Figure 3.15 PAR and UV absorption traces during steady-state InN growth at 1090 
K. The rector pressure was 15 bar with a total flow of 12 slm. The overall decrease 
in the PARS signal corresponds to InN growth.  
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3.9 Substrate choice 

A primary requirement for the epitaxy of any material system is the availability of 

the proper substrate. Currently, the growth of group III-N thin films occurs predominately 

on sapphire substrates and AlN buffer layers. A brief summary of substrates and buffer 

layers used for growing III-Nitrides layers are going to be presented in the following 

sections. 

3.9.1 Sapphire substrate 

Sapphire (Al2O3) is the most extensively used substrate material for the growth of 

the InN, but it has a large lattice mismatch for InN(0001)/α-Al2O3(0001). Sapphire is a 

highly regarded material because it is semi-insulating, it can withstand high growth 

temperatures (~1000 °C) and good quality sapphire is available at low cost ($30 for a 2 

inch wafer). The InN has a large lattice mismatch of ~25% with sapphire, very low 

thermal expansion coefficient (TEC), and very low thermal conductivity28. Those 

mismatches between sapphire and the InN epilayer can result in an extremely high 

density of structural defects. However, special growth techniques to alleviate strain and 

reduce intrinsic defect densities exist, which require substrate surface pretreatment and 

insertion of an intermediate buffer layer between the substrate and epilayer. Although the 

importance of a buffer layer was first demonstrated in MOCVD growth, it was also a big 

step for MBE grown InN layers92. Nitridation of the sapphire substrate surface 

significantly improves the crystalline quality of InN epilayer as a result of AlN layer 

formation. The AlN layer has the same lattice structure as InN and lattice mismatch is 

reduced to 13%. Crystal orientations of sapphire and InN (grown on c plane [0001] 

sapphire) are parallel, but two crystallographic orientations [ ] [ ]( )
32OAlαInN 0110/0110 −  and 
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[ ] [ ]( )
32OAlαInN 0210/0110 −  in the (0001) plane of InN crystal (double domain) are observed 

unlike single domain GaN and AlN. This is because the lattice mismatches of InN are 

relatively close in the two different orientations. However, only one orientation in the 

(0001) plane of InN crystal showed the epitaxial relation of [ ] [ ]( )
32OAlαInN 0110/0110 −

110. 

We have reported that the InN film directly grown on sapphire with good crystalline 

quality is hexagonal and the FWHM of for InN (0002) is around 490 arcsec12.  

3.9.2 Si substrate 

In addition to sapphire substrates, much effort has been aimed at the growth of 

InN on Si substrates111,112. Si is a suitable semiconductor substrate material for InN 

having a smaller lattice mismatch compared with sapphire; 8% for InN (0001)/Si (111). 

While there is significant lattice mismatch between Si and InN, the potential applications 

available as a result of implementing such a material system make it quite desirable. To 

accomplish integration of III-nitride LEDs or LDs with Si electronics, integration of 

optically active InN and In rich group III-Nitride device structures will have to be grown 

onto already existing Si based chip technology. The use of ammonia and hydrogen at 

high temperature will limit the application of Si due to the formation of a SiNx layer on 

the substrate surface. The Si substrate surface becomes nitrided during the growth even at 

low growth temperature (400°C), which causes poor effects on the grown InN film. 

Recently, heteroepitaxial InN was successfully grown by radio-frequency nitrogen 

plasma assisted MBE (instead of ammonia) on Si substrates at low temperature by using 

a double-buffer layer 111. Ahn et al. demonstrated by XRD analysis and scanning electron 

microscopy that such InN films are high quality and of single crystal form. The carrier 

concentration of those InN samples is around 6×1018 cm-3, but an n-type carrier 
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concentration lower than 1016 cm-3 is required for optoelectronic IC devices on Si 

substrates.  

3.9.3 GaN and AlN templates 

The difficulties in preparation of high quality InN due to the lattice mismatch and 

lack of suitable substrate material motivated researchers to seek a new substrate material 

other than sapphire and Si. One common solution is to insert an intermediate thin buffer 

layer between α-Al2O3 and the subsequent film. In this solution, a thin AlN buffer layer 

is grown at low temperature (400 °C) after nitridation or deposition of the AlN layer by 

using a growth technique at high temperature (1050 °C). Using an AlN buffer layer 

improves the structural (FWHM of XRD InN (0002) ~300 arcsec) and electrical 

properties of InN (µ300K=2050 cm2V-1s-1). In order to improve the InN quality for 

realization of optoelectronic device applications, high quality GaN templates are essential 

for the growth of InN films1,113. Growing InN films on GaN/sapphire substrates with a 

low temperature deposited AlN buffer layer reduces the lattice mismatch to 11%. 

One of the important characteristics of III-Nitrides is polarity. Significant effects 

of the polarities on InN film grown on Ga-Polar and N-Polar GaN templates by different 

growth techniques were observed114. It was found that the quality of InN is strongly 

affected by the polarity of GaN. High quality and thick InN films can be grown on Ga-

Polar GaN templates by High Pressure CVD in contrast to InN samples grown on N-polar 

GaN by MBE78,114. 

3.9.4 Other potential substrates and templates 

Several other materials have also been used as a substrate or template such as 

MgAl2O4, glass, GaP, GaAs, InP and InAs1. From the point of lattice and thermal 
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mismatch with the InN, GaP and GaAs have a smaller lattice mismatch (8% and 11.3% 

respectively) than that of sapphire. However, for obtaining uniform and high quality InN, 

As species on GaAs surfaces should be eliminated prior to the InN growth. But high 

temperature NH3 nitridation of InAs and GaP causes the formation of AsNx and PNx on 

the substrate surface1. 

3.10 Ex-Situ Characterization Tools 

A brief overview of the characterization techniques used in this study is provided 

in the following sections 

3.10.1 X- ray diffraction  

X-ray diffraction is a powerful, non-contact method used in order to understand 

the crystalline phases in bulk materials, thin films and powder samples. Additionally, X –

ray diffraction can determine the strain state, grain size, epitaxy, phase composition, 

preferred orientation, and defect structure of individual phases. The principle of this 

technique involves X-ray waves interacting with atomic planes in materials that will 

exhibit the phenomenon of diffraction. A schematic of the diffraction process is shown in 

Figure 3.16. X-rays scattered off the sample will do so at an equal angle. X-rays 

scattering off of neighboring parallel planes of atoms will interfere destructively at a 

certain angle of incidence. At other angles, these waves will interfere constructively and 

result in a large output signal at those angles. These constructive interferences occur 

when the Bragg condition is met for these X-rays, given by the famous expression: 

θλ sin2dn =  (3.7) 

where n is an integer, λ is the wavelength of the X-ray source, d is the lattice spacing, and 

θ is the Bragg angle. The reflected diffraction pattern from the epilayer determines the a-
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spacing and c-spacing lattice constants of a material according to Bragg’s law. The line 

width of a rocking curve measurement (ω scans) i.e., the full width at half maximum 

(FWHM), determines the crystalline quality. In addition, a rocking curve scan on an a-

axis or c-axis estimates crystalline quality. X-ray diffraction analysis of InN films was 

performed using a Philips X`pet MRD with a copper X-ray source. 

 

Figure 3. 16 Diagram of the experimental geometry for X-ray diffraction. 

 

3.10.2 Auger electron spectroscopy  

Auger Electron Spectroscopy (AES) is a very sensitive technique for monitoring the 

surface cleanliness and determining surface composition115. The sensitivity of AES is 

~%1 of a monolayer except for hydrogen and helium, since this technique is a three 

electron process technique. In an Auger process, the atom is ionized by removal of an 

electron from the core level by an impinging high-energy electron beam. The atom may 

decay to a lower energy state by emission of x-rays, by ejecting an electron called an 
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Auger electron, which leaves the atom in a doubly ionized state. The kinetic energy of the 

Auger electron is given by  

321 EEEEkin −−=  (3.8) 

where E1, E2 ,and E3 are respectively the core level, first outer shell, and the second outer 

shall electron energies, measured from the vacuum level. Figure 3.17 shows the complete 

Auger process. The Auger system used for InN sample analysis includes a 4-grid 

SPECTALEED optics system (retarding field analyzer (RFA)), LEED screen for 

detection and Lathanum-hexoboride filament for producing the electron beam. 

3.10.3 Low Energy Electron Diffraction   

LEED is a surface sensitive technique due to its low incident electron energy of 

approximately around 100 eV. The basic principal underlying the low energy electron 

diffraction is Bragg’s Law. Electrons follow the wave-particle duality. From the De-

Broglie relation, the wavelength of the electron having momentum P is given by λ = h / P 

where momentum P = mv = (2mEk)1/2 = (2meV)1/2, h = Planck’s constant, m = mass of an 

electron, e = charge of an electron, and V = accelerating voltage. If the incident energy of 

the electron is in the range of 20-200 eV, then the wavelength varies from 2.7 to 0.87 Å, 

matching with the  
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Figure 3. 17 Auger electron process. 

lattice spacing which is one of the necessary conditions for diffraction effects associated 

with atomic structure to be observed.  

A schematic diagram of the LEED apparatus79 is given in the Fig. 3.18. The system 

consists of an electron gun (which produces the primary electron beam), the sample 

(mounted perpendicular to the electron gun), four hemispherical grids of high 

transparency, and a fluorescent screen, which is maintained at a 6 keV positive potential. 
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Figure 3. 18 Schematic representations of the LEED apparatus. 

 
3.10.4 High resolution electron energy loss spectroscopy  

HREELS is a non-destructive and surface sensitive vibrational spectroscopic 

technique by which vibrations of adsorbates on the crystal surface and low energy 

electronic excitations can be studied. The high-sensitivity (< 0.1% of a monolayer) and 

broad spectral range (0-1000 meV or 0-8000 cm–1) of the method make HREELS an ideal 

tool for exploring the properties of a wide variety of surfaces. In the HREELS technique, 

a highly monochromatic beam of electrons is incident on a surface at a particular angle 

and the electrons are scattered from the surface inelastically. HREELS has several 
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vibrational excitation mechanisms. In the dipole scattering (long range) mechanism, the 

electric field of an incident electron interacts with the varying electric field by molecular 

vibration only perpendicular to the surface. In impact scattering (short range), the 

incoming electrons impact atoms and molecules at the surface, leading to vibrational 

excitation. The scattered electrons lose energy by exciting the surface vibrational modes 

such as surface phonons and the adsorbate vibrational modes of the atoms and molecules 

on the surface. The energy of the scattered electrons can be given as 

E scattered = E incident – E vibration. (3.9) 

The HREELS apparatus used in this study is the ELS3000 manufactured by LK 

technology. 

3.10.5 Atomic Force Microscopy  

Atomic force microscopy is a useful technique for deriving atomic-resolution information 

about the surface morphology and surface roughness in InN samples. Figure 3.19 shows a 

schematic of the microscopic setup. In this technique, an atomically sharp tip mounted at 

the end of a cantilever is scanned across the surface of the sample. When the tip moves 

up and down over its topography, the displacement caused by the features on the surface 

can be measured to create an image. The AFM measures the Van der Waals force 

between the tip and the surface; this may be either the short-range repulsive force (in 

contact-mode) or the longer-range attractive force (in non-contact mode). There are three 

scanning modes associated with AFM, namely; contact mode, non-contact mode, and 

tapping mode. Contact mode is the scanning mode in which the tip is in contact with the 

surface and the image is obtained by repulsive forces between tip and the sample. In 

tapping mode, the image is obtained by the tip, which just taps the surface for small 
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periods of time. In non-contact mode, the tip oscillates above the surface, and the image 

is obtained from the attractive forces between the tip and the sample. The tip is scanned 

over a surface with feedback mechanisms that enable the piezo-electric scanners to 

maintain the tip at a constant force (to obtain height information) or height above the 

sample surface(to obtain force information). As the tip scans the surface of the sample, 

the focused laser beam is deflected off the attached cantilever into a position sensitive 

dual photodiode system. Feedback from the dual photodiode system and the control 

software enables the tip to maintain either a constant force or constant height above the 

sample. The surface morphology of the InN layers in this thesis was analyzed using a 

PSIA-XE-100 AFM in both contact and non-contact mode. 

 

 

Figure 3. 19 Diagram of an atomic force microscopy set up. 
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3.10.6 Infrared reflection spectroscopy 

Theoretical model 

IR reflectance spectroscopy results are analyzed by introducing an IR dielectric 

function in order to obtain the phonon and plasmon properties, carrier concentrations, 

carrier mobility, layer thickness, and interface behavior. In order to determine the 

dielectric function, the interaction of electromagnetic radiation with the matter is 

established through solution of the equations of motion for atoms. The IR dielectric 

function can be written as in the following assuming the phonons and free carriers  
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where γp is the electron damping due to the scattering from randomly distributed 

stationary impurities, pω  is the plasmon frequency, Γ is the oscillating broadening 

constant, TOω , iLO S,ω  are the frequency, oscillator strength, and damping parameter of 

the ith oscillator. ∞ε  is the dielectric response in the high-energy limit for the film. 

Light propagation in a multilayer thin film structure is modeled using the Transfer 

Matrix Method116,117. Reflectivity can be calculated by solving the Maxwell equations for 

plane electromagnetic waves with boundary conditions for the electric/magnetic field 

component at the air/film and film/substrate interfaces. There are two waves with the 

electric-field amplitudes E+ and E- propagating in opposite directions in each layer. 

Suppose ‘0’ refers to air, ‘1’ the film, and “2” the substrate, respectively. The resultant 

matrix Mr is described by the following: 

12101 MMMM r = . (3.11) 
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Here, the interface matrix between the jth and (j+1)th layers has the 
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and the propagation matrix for the film with the thickness d  is described by 
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where λ is the incident wavelength. Thus, the reflectance R can be written as  

2

1,1

0,1
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M
M

R = . (3.14) 

Experimental details 

Infrared reflection measurements were carried out using the Perkin Elmer System 

2000 Fourier transform infrared spectrometer along with a Graseby reflection accessories 

set up. A Mercury Cadmium Telluride (MCT) detector was used for the short wavelength 

(1.5-20 µm) range, and a TGS based pyroelectric detector was used for the long 

wavelength (<50 µm) range. An aluminum mirror was used to collect background spectra 

I0. Then, this mirror was replaced with the InN sample and scanned for the same number 

of interferograms. After Fourier transformation, this yields IR, the reflected intensity 

spectrum. The reflectivity spectrum R of the InN film is then determined by the ratio 

IR/I0.  
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The best-fit parameters for the InN film and GaN film were obtained using the nonlinear 

Levenberg-Marquart118 fitting algorithm. 

3.10.7 Raman spectroscopy 

Raman spectroscopy is another valuable source of information about the 

characteristics of the crystal lattice. Raman spectroscopy is used for structure 

determination, stress analysis, defect analysis, and free carrier determination. The 

interaction of an external light source (electric field) with the matter leads to a 

polarization. This induced polarization has two terms; one term represents the elastic 

scattering and second term represents the inelastic scattering process (Raman Scattering), 

which consists of Stoke and anti-Stoke terms. These inelastically scattered, anti-Stoke 

and Stoke light beams appear as weak peaks, several orders of magnitude weaker than the 

laser line, which must be filtered out in order to observe the Raman signal. According to 

the symmetry of the crystal and vibrational mode, the intensity of the scattered radiation 

has a non-zero value only for specific polarizations and scattering geometries. These are 

known as Raman selection rules, which are essential for determining the crystal 

symmetry and allowed Raman modes. Hexagonal InN crystallizes into the structure of 

wurtzite with four atoms in the unit cell and belongs to C4
6v space group. According to 

group theory analysis at the Γ point, the phonon modes in hexagonal InN are 

characterized by the following irreducible representations. 

( ) ( )211111 22 EEBAEAoptac +++++=Γ+Γ . (3.15) 

Raman selection rules predict that A1 and E1 modes are both Raman and IR active, E2 is 

only Raman active and B1 is called the silent mode. Thus six optical modes may be 

observed in a first order Raman spectrum4: E2(high), E2(low), E1(LO), E1(TO), A1(TO), 
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and A1(LO). The Raman selection rules for the wurtzite structure of group III-nitrides are 

given in Table 3.2, of which x(yz)y belongs to 90° scattering geometry, while z(xy)z, 

x(zz)x, x(yy)x, and x(zy)x belong to the backscattering geometry. The allowed modes are 

highly sensitive to the polarization of the incident light and orientation of the crystal. The 

Raman spectra reported in accordance with the Porto notation C(BA)D , where C and D 

the propagation directions of the incident and scattered light and B,A represent their 

polarizations. Therefore, Porto notation is a convenient method for identifying the 

direction and polarization of the laser light incident on a crystal. Hexagonal InN thin 

films are usually grown along the [0001] direction of the substrate, which puts the c-axis 

of the hexagonal structure perpendicular to the crystal plane. Therefore, under 

backscattering geometry, the z(xx)z and z(xy)z configurations are easily observable due 

to the z-direction being along the [0001] direction.  

Table 3. 2 Raman Selection rules for hexagonal group III-nitrides. 

Configuration Allowed Mode 

z(xx)z A1(LO), E2(low), E2(high) 

z(xy)z E2(low) , E2(high) 

x(zz)x, A1(LO) 

x(yy)x, A1(LO) ,E2(low), E2(high) 

x(zy)y, E1(TO), E1(LO) 

x(yz)x, E1(TO), E1(LO) 
 

InN layer Raman measurements were carried out with a custom build Micro 

Raman spectrometer, which consists of a McPherson 2062 scanning monochromator as 

the main monochromator, and a McPherson 275 DS double subtractive monochromator 



82 

 

as a variable notch filter with an 2.33 eV excitation source. The signal is collected by a 

nitrogen cooled CCD. 

3.10.8 Transmission spectroscopy 

Theoretical model 

Photons with sufficient energy can excite electrons from the filled valence band to the 

empty conduction bands. In the case of samples that are sufficiently thin, the optical 

transmission spectra lead to the determination of the band gap energy and also defect 

levels within the band gap of the semiconductor. For photon energies greater than the 

band gap of the semiconductor, Eg, the absorption is dominated by band-to-band 

transitions. The spectral region where the material changes from being relatively 

transparent ( )gEh <υ  to strongly absorbing ( )gEh >υ  is known as the absorption edge 

of the material.  

The optical properties of InN (εInN, dInN) were also analyzed by fitting the 

transmittance spectrum of an “ambient / InN / GaN / Sapphire” stack using the dielectric 

functions of the group III-nitrides based on the “model dielectric function” (MDF) 

approach119. The MDF model for the InN dielectric function has been modified by adding 

two additional oscillators at 0.8 eV and 0.4 eV, and by adjusting the band gap oscillator 

E0. The modified MDF model dielectric function for InN is given by  
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where Sab is the oscillator strength, Eab is the energetic position and Γab is the damping 

constant of the added Lorentzian. The transmission coefficient for a double layer system 

presented below. The system is shown in Figure 3.20 with the Maxwell boundary 
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conditions at each of the interfaces. The Fresnel equations can also be applied in order to 

describe changes in the transmittance for multiple heterostructures assuming 

homogeneous isotropic properties. Fresnel coefficients are the same for both components 

of polarization for the special case 00 == tϕϕ  and can be rewritten as: 
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Figure 3. 20 Propagation of an electromagnetic wave through a double film. 
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The transmitted amplitude tt can be calculated from matrix multiplication. The equations 

can be written in a matrix for the 2 layer stack  
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where  

kkkk d ϕε
λ
πδ cos2

= . (3.20) 

Labeling starts from “0” for ambient, “1” for the first film, “2” for the second film and 

“3” for the substrate. The transmitted amplitude for a 2 layer film is given by 
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We applied this description to the calculation of transmissions 

∗∗= ttttT  (3.22) 

for the Air/InN/GaN/Substrate multilayer heterostructure. The transmitted amplitude for 

1 layer is given by 
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We used this expression for calculating transmission through the Air/InN/Substrate one 

layer structure. 

Experimental details 

Room temperature transmission measurements were performed with a custom 

built near-infrared-visible-UV spectrometer (scanning spectral range between 300 nm 

and 2800 nm), which consists of a triple-grating, ½ meter length, monochromator with 

phase-sensitive signal detection and processing. Emission from a halogen light source 
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was used to provide the spectral range for the measurements. The transmitted light from 

the UV to near infrared spectral region was collected using different detectors, including 

a photo multiplier tube (Hamamatsu R928)(300-900nm), an Indium Gallium Arsenide 

(InGaAs)(800-1700nm) detector, and a Mercury Cadmium Telluride (HgCdTe or MCT) 

(1600-2800nm) IR detector.   

3.10.9 Photoluminescence  

Photoluminescence (PL) refers to the emission of the light resulting from optical 

stimulation. In the PL technique, a suitable laser that has a photon energy output higher 

than the band gap of the semiconductor is incident on the surface of the sample, which 

will generate electron hole pairs. Those electron hole pairs will recombine, often through 

a radiative transition back to the ground state of the atom. Some of the observed 

recombination pathways are presented in Figure 3.21. Information about the band 

structure, donor and acceptor levels, defect types, impurities, crystalline quality, and 

defect densities in the material system can be extracted by measuring the wavelength of 

the emitted photon. 

Figure 3. 21 Schematic representation of possible optical transitions that can be observed 
via photoluminescence. 



86 

 

 
 
 
 
 

Chapter 4 

Growth of high quality single phase InN crystals by high 
pressure CVD 

Published as: The characterization of InN layers grown by high-pressure chemical vapor 

deposition. Mustafa Alevli, Goksel Durkaya, William Fenwick, Aruna Weesekara, 

Vincent Woods, Ian T. Ferguson, A. G. U. Perera and Nikolaus Dietz, Applied Physics 

Letter, 89, pp. 112119 (2006) 

4.1 Introduction 

In recent years, research on InN material optimization has dramatically increased, 

largely due to the crucial importance of indium-rich group III-nitride alloys in novel 

devices for solid-state lighting, photovoltaics, spintronics, or terahertz applications, 

utilizing the large spectral tenability and multi-functionality of group III-nitride alloys. 

However, the integration of indium-rich group III-nitride layers into Ga1-xAlxN alloys 

strongly depends on the existence of overlapping processing windows as well as on 

precise control of thermal decomposition pressures of indium-rich alloys at the optimum 

processing temperature. 

Presently, the most efficient growth of group III-nitride semiconductor devices is 

by organometallic chemical vapor deposition (MOCVD). However, epitaxial growth of 

InN at low pressure conditions such as MOCVD or MBE is problematic due to the large 

thermal decomposition pressure at its optimum growth temperature, creating conflicting 
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material properties due to the point defect chemistry in InN, which at present is not well 

understood2,4. Surface stabilization data showed that InN can be grown at much higher 

temperatures in high nitrogen pressures16, evoking the development of a novel HPCVD 

system at Georgia State University, in order to control the vast different partial pressures 

of the constituents involved in the growth of indium-rich group III-nitride alloys9-11,99,120. 

The combination of HPCVD and real time process monitoring control have been 

demonstrated to be viable to improve the InN materials properties, with InN growth 

temperatures as high as 1150 K for reactor pressures around 15 bar. This is a major step 

towards the fabrication of indium rich group III-Nitride heterostructures by providing a 

close match to the processing windows used for GaN –AlN alloys.  

4.2  Growth of InN by HPCVD 

InN layers were grown by HPCVD, a high-pressure flow channel reactor with 

incorporated real time optical characterization capabilities in order to study and optimize 

InN nucleation and growth. Ammonia (NH3) and trimethylindium (TMI) are employed in 

a pulsed injection scheme, utilizing pulse width, precursor pulse separation, and cycle 

sequence time as control parameters to engineer gas phase and surface chemistry kinetics. 

The precursors are embedded in a high-pressure carrier stream (ultra-pure nitrogen) and 

injected in the reactor utilizing a temporally controlled gas injection system. 

The InN layers investigated here were grown at growth temperatures of 1150 K, a 

reactor pressure of 15 bar, an ammonia to TMI precursor ratio of 600, and a total gas 

flow of 12 slm. The gas flow as well as the reactor pressure is kept constant at all times 

during the growth. The temperature setting refers to the calibrated correlation of the 

analyzed blackbody radiation as a function of the power setting of the substrate heater 
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and is not corrected for the change in surface emissivity during the growth.  Details of the 

HPCVD reactor, the growth configuration, as well as real-time optical characterization 

techniques employed have been published elsewhere11,13.  

4.2  Characterization of InN  

XRD measurements were carried out in a theta-two-theta coupled geometry using 

Kα x-rays to evaluate the presence of secondary phases or polycrystallinity. A one-half 

degree slit was used on the incident beam optics and a one-quarter degree slit on the 

diffracted beam optics for XRD. The Raman spectra are observed in backscattering 

configuration. All spectra are normalized to the peak intensity of the E2 (high) phonon 

feature. Room temperature IR reflection measurements have been performed over the 

frequency range of 200- 8000 cm-1 (50-1.25 µm) by using a Perkin-Elmer system 2000, 

Fast Fourier transform infrared spectrometer (FTIR) and Graesby optical reflection 

accessory setup. All IR reflection spectra were taken under a near normal (~8 deg) 

incident light arrangement to minimize anisotropy effects. Room temperature 

transmission measurements were performed with a custom built NIR-VIS-UV 

spectrometer, which consists of a triple-grating, ½ meter length monochromator, 

photomultiplier, InGaAs detector, and HgCdTe photodiodes and phase-sensitive signal 

detection and processing.  

Figure 4.1 shows the variation of XRD patterns in a logarithmic scale for InN 

layers grown directly on sapphire and on a virtual GaN-Sapphire substrate. The XRD 

peaks for samples #76 U and #71U are centered at 2-θ= 31.357 and 31.243°, respectively.  
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Figure 4. 1 XRD spectra for InN layers grown on sapphire (#71 U) and on a virtual 
GaN/Sapphire substrate (#76U). 

 

These peaks correspond to the diffraction of the hexagonal phase InN(0002) plane. The “ 

Full width half maximum” (FWHM) of the InN (0002) peaks are 432 arcsec and 528 

arcsec for the InN layers deposited on GaN/Sapphire and Sapphire substrate, 

respectively. The slight asymmetry on the left hand of the InN(0002) peaks may indicate 

the presence of a second phase in very close proximity, but further studies are needed to 

clarify its origin. Figure 4.2 shows the uniformity of InN layer grown on GaN/Sapphire 

substrate. Figure 4.3 shows Raman spectra of InN samples grown on sapphire (#71U) and 

GaN/Sapphire substrate (#76U), which were analyzed an using excitation energy of 2.33 

eV. 
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Figure 4. 2 Uniformity of an InN layer grown on a virtual GaN/Sapphire substrate 
(#76U). The inset shows a photograph of wafer area analyzed. 
The three optical phonon modes of hexagonal InN at 300 K analyzed in Raman spectra 

are E2 (high), A1(LO) and B1(high). The peak centered at wave numbers in the range 489-

492 cm-1 is attributed to scattering of light from E2 (high) phonon modes which is most 

sensitive to strain, whereas, the peak at 587 cm-1 is assigned to A1(LO) phonons in InN. 

The peak positions are in good agreement with those found in InN layers grown by MBE 

and OMCVD. Based on the allowed phonon mode peak positions for E2 (high) and 

A1(LO), our experimental peak positions are similar to the calculated values of 483 and 

588 cm-1 by Davydov and Kloichikhin.4 
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Figure 4. 3 Raman spectra for InN layers grown on sapphire (# 71U) and on a GaN 
epilayer (#76U). 

Figure 4.4 depicts the IR reflectance spectrum for sample #76U and the analysis of 

optical properties in the IR region. The dielectric functions of the InN and GaN  layers 

are modeled using equation 4.1, assuming two oscillators, one of which is the Lorentz 

oscillator for phonons and the second the classical Drude oscillator for the plasma 

frequency, 
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where ∞ε  is the high frequency dielectric constant, LOω  and TOω  are LO and TO 

frequencies of  E1 phonon mode, pω  is the plasma frequency, and Γ and pγ  are the 

damping constants of the two oscillators. Similarly, the dielectric function for GaN 

epilayer and the sapphire substrate was modeled as described in reference 121. A matrix 

method117 is used to calculate the multilayer stack reflection. The optical properties of the 

GaN layer were measured and analyzed using a three-layer reflection model 

(Air\GaN\Sapphire) before the InN layer was deposited. The best fit parameters for the 

GaN film were obtained using the non-linear Levenberg-Marquart fitting algorithm121. 

Thereafter, the IR reflections of InN\GaN\Sapphire structure were measured and the best 

fit parameters for InN film were obtained by using the same fitting algorithm as above. 

Frequencies of LO and TO phonon modes were kept constant at 593 and 576 cm-1 during 

the fitting process. The free carrier concentrations were calculated by 

2
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m

n effp
c

εεω ⋅⋅⋅
= ∞  (4.2) 

with pω  obtained from the fitting process. In Equation (4.2), meff  is the effective mass of 

electron in InN, 0ε  is permittivity in vacuum and q is the electron charge. The electron 

effective mass was taken as 0.09m0
122, where m0 is the free electron mass. The average of 

the values ∞ε  obtained from the fittings is 5.59 and is used in the free carrier calculation. 

The best-fit approximation of the experimental data shown in Figure 4.4 revealed 

a InN layer thickness d=317 nm, a plasma frequency -1cm 3461=pω  and a plasma  
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Figure 4. 4 IR reflectance spectrum and best fit for an InN layer deposited on a 
virtual GaN / Sapphire substrate (#76U). 

damping constant -1cm 239=pγ . The carrier mobility µc is calculated via effective mass 

and the damping constant pγ  123and was found to be 112cm   434 −−= sVcµ . 

Figure 4.5 show the room-temperature transmission spectra for samples #71U and 

#76U, taken at the same spots as those for the XRD spectra shown in Figure 4.1. Each 

spectrum is corrected for the substrate and spectrometer response characteristics. The 

calculated absorption spectra indicate an absorption edge around 1.5 eV with absorption 

structures around 1.2 eV and 0.7 eV. The sample 76U characteristic interference fringes 
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are due to the underlying GaN epilayer of 1789 nm thickness. The optical analysis on InN 

layers grown under similar conditions but with slight variations in the ammonia: TMI 

flow ratio (NH3:TMI=600±30) showed that these small deviations in the InN 

stoichiometry shift the absorption edge from 1.5 down to 1.1 eV, while the free carrier 

concentration and mobility values are almost unchanged. The XRD analysis showed 

single-phase InN (0002) peaks with a slight broadening of the FWHM values for 

ammonia: TMI flow ratios below 570. 

The correlation of absorption edge shift and free carrier concentration as obtained 

by IR reflectance does not support the proposed Moss-Burstein effect7 as the leading 

cause for the shift of the fundamental absorption edge to higher values when the carrier 

concentration is increased. Additional effects such as stoichiometry deviations124 and the 

associated point defect chemistry have to be considered to understand the physical 

properties of InN. 

As shown previously, ammonia: TMI flow ratios below 500 cause an absorption 

edge shift well below 0.7 eV, while the free carrier concentration remains in the mid 1019 

cm-3. For ammonia: TMI flow ratios below 500, the XRD analysis has shown also the 

presence of the InN(101) phase in addition to the InN(0002) phase. 

No equivalent changes are found in the Raman spectra that would provide a link 

between the appearance of the InN(101) peak in the XRD spectra and changes in the 

E2(high) and A1(LO) Raman modes. The analysis of the E2(high) and A1(LO) as a 

function of the ammonia: TMI flow ratio also provided no direct correlation between the 

free carrier concentration and InN stoichiometry deviation for the InN layers investigated. 
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Further studies on InN layers grown in an expanded process window are needed to 

correlate the point defect chemistry, structural and optical properties of InN. 

Figure 4. 5 Transmission spectra for InN grown on sapphire (#71U) and on virtual 
GaN-sapphire substrate (#76U). 

4.3  Conclusion  

In conclusion we have studied the structural and properties of InN layers grown 

by HPCVD on quasi lattice-matched virtual GaN substrates and sapphire substrates. The 

XRD analysis showed high-quality, single-phase InN(0002) peaks with hexagonal 

symmetry and FWHM around 430 arcsec for InN layers deposited on GaN epilayers. The 

FWHM increases with lattice-mismatch to about 530 arcsec for InN deposited on 
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sapphire substrates. Sharp E2 (high) and A1(LO) at 488 cm-1, 590 cm-1 phonon modes are 

observed. At present, the free carrier concentrations in these InN layers are in the mid 

1019 cm-3 and carrier mobilities around 430 cm2V-1s-1 , values that can be improved by 

further process optimization. The transmission spectra indicate that the band gap of the 

InN layers is well above 1 eV, contradicting results reported for plasma- assisted MBE 

grown InN layers. Our results also indicate that the absorption edge is extreme sensitive 

to small deviations in the InN stoichiometry, requiring precise control of gas phase and 

surface chemistry processes.  
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CHAPTER 5 

Structural and surface morphological analysis of InN layers 
grown by high pressure CVD 

5.1 Introduction 

In order to understand the physics behind what is occurring in InN material, 

structural and optical measurements were performed on the grown samples. Therefore, 

structural characterization and surface morphology techniques were used for determining 

what sort of InN material has been grown. Structural and surface morphology studies of 

InN thin film layers have been performed by X-ray diffraction, Low Energy Electron 

Diffraction (LEED), Auger Electron Spectroscopy (AES), High-Resolution electron 

energy loss spectroscopy (HREELS) and Atomic Force Microscopy (AFM). In order to 

obtain high quality In rich group III-nitride heterostructures, it is necessary to grow single 

phase high quality InN crystals with very low electron concentration and defect densities. 

Therefore, the analysis of the crystalline quality of InN layers was carried out by X-ray 

diffraction spectroscopy. Surface structure, surface chemical composition, and surface 

bonding configuration of InN layers were investigated with AES, LEED and HREELS. 

Atomic force microscopy was used to derive the information about the growth 

mechanism of InN and surface roughness of InN layers.  
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5.2 X ray diffraction 

The structural quality of InN epilayer, effects of V/III ratio on the layer quality of 

InN were studied by means of X ray diffraction and presented in the following sections. 

5.2.1 Structural characterization of single phase InN thin film layers 

To assess the crystalline quality and crystallographic orientation of the InN films, 

X-ray diffraction patterns were taken. Structural and compositional characterization was 

performed using X-ray diffraction with a CuKα (1.54 Å) X-ray source. 2-θ rocking 

curves with Full Width at Half Maximum (FWHM) of InN samples grown on Sapphire 

and GaN/ Sapphire are presented in Figures 5.1 and 5.2 in a logarithmic plot, which aids 

recognition of possible weaker signals from off axis crystal planes. As shown in Figures 

5.1 and 5.2, the line width of the 2-θ scans were reduced to ~390 arcsec by optimizing 

growth conditions and substrates. (The smallest FWHM is 200 arcsec presently; see 

Chapter 7.). The lowest FWHM for the InN (0002) peaks are 385 arcsec and 495 arcsec 

for the InN layers deposited on GaN/sapphire and sapphire substrate, respectively. The 

FWHM of InN (0002) diffraction peak increases for InN layers deposited on sapphire 

substrates due to the lattice mismatch between the InN and substrate layers. In the XRD 

spectra presented in the following, the InN (0002) diffraction peak at ~31.3° is observed 

plus the peak of the (0002) reflection from the GaN buffer layer and (0006) reflection 

from the α- Al2O3 substrate. The InN (0002) diffraction peak is very close to that 

expected for unstrained InN (31.33° for c=5.7039 Å)22. This peak position is a little 

different for each sample measured. However, due to the uncertainty in the specification 

of off-angles on the substrate, it is not possible to ascertain θ angles to better less than 

±0.5° of the peak position experimentally. The strong intensities of the peaks indicate that 
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the InN thin films are high purity and that the sample consists of wurtzite material. 

Refined values of the lattice parameters c were extracted from the XRD data, which 

compared well to the literature values as presented in Table 5.1. The result indicates that 

the “c”-axis of InN with a wurtzite structure is perpendicular to the substrate surface of 

(0001) α-Al2O3. As expected for the film grown on GaN/sapphire at 800 “V/III molar 

ratios”, less distortion is present in InN films. Butcher et al.125 have previously shown 

that increases in the c axis lattice occur when excesses of nitrogen are present in the InN 

lattice and that such increases are not simply the result of oxygen alloying. All the 

diffraction peaks in the spectrum are indexed to be hexagonal wurtzite phase. No peak in 

the vicinity of 33° is observed. This anomalous diffraction peak is attributed to metallic 

indium, which can be observed in presence of micron sized Indium clusters present in the 

films89. It was concluded that the “anomalous” 33° peak is in fact the (1011) diffraction 

peak of InN. This peak can also be assigned to diffraction peaks of random InN grains. It 

is therefore likely that the 33° XRD line observed in some InN films has not been only 

assigned to metallic Indium126 but InN itself also. The interpretation of InN diffraction 

peak positioned at 33° is also presented in the following for different V/III molar ratios. 

5.2.2 Effect of V/III ratio 

The V/III precursor ratio is one of the most crucial parameters influencing the InN 

layer quality due to the variable decomposition of NH3 and TMI. The broadening of the 

XRD peak is presented in Figure 5.3 as a function of V/III ratio for a series of samples 

grown at fixed temperature (1080 K) and reactor pressure (15 bar). A weak (101) 

diffraction peak appears on the lower shoulder of the (0002) diffraction peak, which 

might be attributed to shifting in the processing window. By further studying the effect of 
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the V/III molar ratio, we found that its effect was coupled with the effect of growth 

temperature. It is possible to produce a highly crystalline InN epilayer for up to 1.5-hour 

growth times (sample #76), but the growth temperature must be lowered while 

maintaining the same V/III molar ratio. On the other hand, increasing the indium-to-

nitrogen flux ratio during epitaxy results in the appearance of the (101) diffraction peak at 

33.0°. This observation strengthened the association of diffraction peak at 2θ~33° with 

surface In layer or the In clusters in the InN samples. We have however verified that by 

decreasing the growth temperature to 1078 K, and reducing the nucleation temperature, it 

is possible to grow high quality, single phase, InN at 800 molar ratios (samples #125L, 

#192L, #207and 209L). Our XRD results strongly indicate that low V/III ratios (between 

600 and 800 molar ratios) are required for growing good quality InN layers. The FWHM 

gradually becomes broader, and the X-ray diffraction intensity approximately same with 

increasing V/III molar ratio. In addition, peak asymmetry appears on the low angle side 

of the (0002) peak and asymmetry increases as the V/III molar ratio increases. This 

asymmetry is due to several peaks underlying in the (0002) structure as shown in Figure 

5.4. Although secondary peaks are less prominent as the quality of the layer improves, it 

is still hard to determine whether those peaks are due to the native point defects or 

impurity incorporation. However, this secondary peak does not represent a secondary 

phase. 
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Table 5. 1 Growth parameters, structural and optical data for InN films grown on 
GaN template and sapphire substrate. 

Sample 
V/III molar 

ratio 

Lattice 

parameter (c) 

(Angstrom) 

FWHM 

(arcsec) 

Sample 

Thickness (nm) 

71U 800 5.7290 528.3  

76U 800 5.7000 432.4 317 

110U 800 5.7085 408.1 550 

111U 1055 5.7036 439.6 340 

112U 1585 5.7021 704.2 320 

125L 800 5.6982 385.9 593 

135U 800 5.7051 492.7 228 
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Figure 5. 1 XRD spectra for InN layers on sapphire substrate ( #71U and #135U). 
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Figure 5. 2 XRD spectra for InN layers on a GaN/Sapphire template (#76 U and 

 #125 L). 
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Figure 5. 3 X-ray diffraction patterns for the InN films grown with different 
NH3/TMI ratios. 
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Figure 5. 4 The XRD peak analysis indicates an asymmetric lower shoulder which 
might be due to the either native point defects or impurity incorporation. 

5.3 Surface structure, composition of InN layers. 

Studies of the surface structure and reactions are an important aspect in gaining an 

understanding of growth mechanisms. The surface structure, composition and bonding of 

InN films were investigated using AES, LEED and HREEL spectroscopic techniques. 

The InN sample was rinsed with acetone and isopropyl alcohol before insertion into a 

high vacuum chamber, mounted on a tantalum sample holder and held in place by 

tantalum clips. Sample heating was done by electron bombardment of the back of the 
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tantalum sample holder. Auger electron spectroscopy of inserted samples in an UHV 

chamber revealed that in addition to indium and nitrogen, oxygen and carbon 

contamination were present due to the exposure of the sample to the atmosphere. Sample 

cleaning was achieved in two steps. In the first step, the surface carbon of the InN 

samples was cleaned by bombardment with 0.5 (Sample #125 L)-1 keV (Sample #65 U) 

Ar ions at a glancing angle of 70˚ from the surface normal. After the sputtering process, 

AES results revealed that the surface was effectively cleaned with little oxygen 

remaining. No low energy electron diffraction (LEED) pattern was observed prior to or 

after the sputtering process. Following the sputtering in the second step, surface 

preparation for a well-ordered surface was done in-situ by Atomic Hydrogen Cleaning 

(AHC) in order to remove the atmospheric contaminants, particularly oxygen. AHC was 

performed by backfilling the vacuum chamber with hydrogen to a pressure 8.4×10-7 Torr 

in the presence of a tungsten filament heated to 1850 K to produce atomic hydrogen. The 

sample was positioned 20 mm from the filament for 20 minutes (giving an exposure of 

1000L of H2). During this time, the sample temperature rose to about 350 K due to the 

proximity of the heated filament. Following this process, the sample was heated to 600 K 

while remaining in front of the tungsten filament for an additional 20 minutes (an 

additional 1000L of H2). After one cycle of AHC, both AES and HREELS showed that 

surface carbon and oxygen contaminants had been removed from the surface. Low 

energy electron diffraction measurements revealed a 1×1 LEED pattern, but after several 

additional cleaning cycles the hexagonal diffraction pattern became sharper for both 

samples 125L and 65U (Fig. 5.5 (a) and 5.5 (b)) using various electron energies from 40 

to 170 eV. The LEED pattern indicates that the surface is c-plane oriented and well 
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ordered. Veal et al.127,128 reported a similar hexagonal pattern from AHC-cleaned, MBE-

grown InN at an incident energy of 164 eV. The intensity of the background indicates the 

amount of the surface disorder, and bright spots and a dark background reveal that the 

surface is well ordered. 

Figure 5.5 (a) LEED of AHC cleaned InN 
sample (#65U) for an incident electron 
energy of 40 eV.  

Figure 5.5 (b) LEED of AHC cleaned InN 
sample (#125) for an incident electron 
energy 40 eV. 

5.3.1 Surface electron accumulation in InN layers 

InN has a large spontaneous polarization and large piezoelectric coupling with 

other group III nitrides. Surface and interface properties of InN material will have a 

crucial influence on the design concept of the low dimensional devices based on InN. It is 

believed that the high carrier concentration of InN films is due to the surface charge 

accumulation. Lu et al.129 claimed that the top layer of InN samples possesses a much 

higher carrier concentration than that in bulk according to I-V and C-V measurements. 

Since nitride material electron and hole effective masses are much smaller than those in 

conventional III-V materials, electron and hole confinement may be achieved 
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simultaneously. Colakerol et al.130 reported quantized energy levels in the surface 

electron accumulation layer on InN films grown by rf-MBE. 

Surface electron accumulation of InN layers grown by High-Pressure CVD were 

observed with High Resolution Electron Energy Loss Spectroscopy (HREELS) on a 

surface of known termination with no indium overlayers or droplets. HREELS is a non-

contact and nondestructive probing technique that can be used for studying the 

semiconductor’s space-charge region. HREELS is capable of distinguishing between 

contributions from the accumulation layer and bulk layers. HREELS experiments were 

performed in a specular scattering geometry with an incident and scattered angle of 60° 

and incident energy ranging from 7 eV to 35 eV. HREEL spectra recorded from the clean 

InN (0001) surface are shown in Figure 5.6. The first loss feature in all spectra at ~66 

meV (550 cm-1) is assigned to Fuchs-Kliewer surface phonon excitations in agreement 

with previous reports54,127,131. The HREEL spectrum obtained using 7 eV incident 

electron energy reveals surface adsorbate loss features at 870 and 3260 cm-1 due to the 

bending and stretching vibrations of a surface N-H species132. A small peak observed 

near 1430 cm−1 is assigned to a combination loss of the Fuchs-Kliewer phonon and the N-

H bending vibration. With increasing incident electron energy, the intensity of the N-H 

stretch decreased considerably while the N-H bend was almost unchanged. The excitation 

of the N-H stretch is attributed to dipole scattering while the N-H bend is due to impact 

scattering. As the incident energy is increased further, all modes due to surface vibrations 

decrease due to the reduction in surface sensitivity with an increasing penetration depth 

of the electrons. HREEL spectra of a room temperature, H-dosed surface were unchanged 

from those shown in Figure 5.6 indicating that no reactive indium exists on this surface. 
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Figure 5. 6 HREELS from an atomic hydrogen cleaned InN sample.  Spectra were 
acquired in the specular direction with incident electron energies of a) 7 eV, b) 15 eV, 
c) 25 eV, and d) 35 eV. 
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The presence of N-H and lack of indium-related vibrations demonstrates N-termination 

of the surface and implies N-polarity of the film. 

The shift of the plasmon peak position in the HREEL spectra is attributed to a 

variation of carrier concentration with depth. The position of the plasmon peak is related 

to the surface and bulk plasma frequencies127,133. The shift of the plasmon feature to 

lower loss energy as the incident electron energy is increased implies that the plasma 

frequency is larger for the surface than for the bulk and indicates an accumulation of 

electrons on the surface. The plasmon peak position shifts most dramatically when the 

incident electron energy is changed from 15 to 25 eV as shown in Figure 5.6. HREEL 

spectra reported by Mahboob et al. 127 and Veal et al. 128 also show that most of the shift 

occurs as the incident energy is changed from 15 to 30 eV. This feature is reproduced in 

their simulations using a four or five layer slab model with an electron concentration that 

is large at the surface and decreasing deeper into the layer. The intensity of the N-H 

vibrations, and the lack of In-H vibrations even after room temperature atomic hydrogen 

exposure leads to the following conclusion: the electron accumulation observed here is 

not caused by indium droplets, indium overlayers, or isolated In-In dimers on the InN 

surface. This finding is consistent with the pinning of the surface Fermi level in the 

conduction band and indicates that In-In bonds are not the only source of surface states in 

the conduction band. 

5.3.2 Desorption of hydrogen InN (0001) surface 

Surface reactions including hydrogen are crucial steps in the growth mechanism 

of InN thin films. Surface hydrogen atoms produced by the decomposition of (In(CH3)3-

NH3) precursors during InN growth are most frequently eliminated by desorption after 
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reacting with adsorbed methyl groups or other hydrogen atoms. Adsorbed hydrogen 

reduces the number of available reaction sites for indium and nitrogen precursors. 

HREELS has been used to determine the kinetic parameters for hydrogen desorption 

from the N-polar InN surface, and the effects of heating on surface structure and 

electronic properties are also reported. HREEL spectra from sample #125L, taken after 

AHC and annealing to various temperatures for 900 s, are shown in Figure 5.7. After 

annealing to 375 ºC, the intensity of both N-H stretch and bend decrease and disappear 

completely after heating the sample to 425 ºC for 900 s. The presence of N-H vibrations 

and the lack of In-H features indicates that the layer is nitrogen terminated which is 

consistent with N-polar InN )1000( 131,134. A broad feature centered at an energy loss of 

~3800 cm-1 is due to the conduction band plasmon excitation. The peaks at 3260 and 860 

cm-1 are assigned to N-H stretching and bending vibrational modes, respectively. The 

reductions in intensity of N-H vibrations are assigned to recombinative desorption of 

hydrogen. In addition to the N-H vibrational peaks, a small feature appears at 2000 cm-1  

,which may be due to a surface N-N vibrational mode. This is possible because N-N 

stretching vibrational modes have been reported to occur over a wide range of 

frequencies. De Paola et al. 135reported ν(N-N) on Ru  (001) at 2195 cm-1 and 2200-2250 

cm-1, respectively. Apen and Gland136 identified the N-N stretching mode on the GaAs 

surface at 1671 cm-1. At the present time, the broad range of frequencies observed for N-

N stretches do not allow an assignment to be definitively made. 

The growth temperature regime for MOCVD and MBE suggests that the typical 

growth temperature of InN is of the same order at which hydrogen desorbs (425 to 500 

ºC) from the InN surface. If the growth temperature were lower than the hydrogen 
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desorption temperature, sites on the InN growth surface could be occupied by hydrogen, 

which is produced during the precursor decomposition process. This will affect the 

growth rate. 
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Figure 5. 7 HREEL spectra from sample #125L after preparation by atomic hydrogen 
cleaning (AHC) and after heating for 900 s to 375, 400, and 425 °C. The surface was 
restored to the same initial state with AHC prior to each heat treatment.   
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5.4 Atomic Force Microscopy: Surface morphology of InN layers 

In order to improve the growth in a systematic way it is essential to understand 

the underlying kinetic processes such as adsorption, desorption and diffusion. But a lack 

of fundamental understanding of deposition of InN has prevented the establishment of a 

consistent growth strategy. The growth of continuous InN by High-Pressure CVD with 

low surface roughness and a thickness greater than a few hundred nanometers is 

challenging. The limitation in thickness of InN thickness is attributed to shifting in the 

processing window due to the IR absorption of radiation within the growing layer as well 

as InN etching during the growth. The etching effect on the surface of the InN films will 

be examined including real time PAR signal traces recorded during the growth. We 

presented mainly in situ characterization of InN growth in the previous chapter, and 

present herein real-time measurements of the changes in the optical properties of InN 

layers using Laser Light Scattering (LLS). It was found that the InN deposition was 

sensitive to V/III molar ratio and growth temperature. Surface morphology has been 

largely improved by using GaN/sapphire substrate instead of sapphire as substrate. 

Through 3D (three dimensional) nucleation, and subsequent coalescence, adatom 

diffusion on growing surfaces is considered to be a key parameter controlling the 

coalescence, the material quality and surface morphology. The surface morphology of the 

InN layers was measured by AFM using a PSIA XE 100 in both contact and non-contact 

mode. Non-contact AFM mode (nc-AFM) is a non-invasive method for sensitive surface 

studies. Contact mode (C-AFM) is primarily used for power dissipation and friction 

studies. In the following section, the evolution of surface morphology is examined using 

AFM images of samples grown on sapphire and GaN templates.  
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5.4.1 Effect of substrate  

The AFM images of InN films (#74U and #148 L) grown on sapphire substrate 

are presented in Figures 5.8 and 5.9. Analysis of the AFM images reveals that the 

deposited InN films consist of columnar structures (hexagonal columnars are clearly seen 

in Figure 5.9.) with diameters ~800 nm (#74U) and ~300 nm (#148L) depending on the 

growth time and growth temperature (see Table 5.2). This characteristic feature of InN 

films with columnar structures was reported by Yamamoto et al.137 The hexagonal 

structure of InN is considered to be seeded from a discrete island. An InN sample (#74U) 

that was grown at an elevated temperature (1090K) with a V/III ratio of 800 for 1.5 hours 

exhibited a surface morphology with root mean square (rms) roughness of approximately 

52 nm, but with a diameter of structures ~800 nm. On the other hand, an InN sample 

(#148 L) that was grown at a lower temperature (1078K) with the V/III ratio (800) but for 

a longer time (~5 hours) exhibits surface morphology with rms roughness near 74 nm. 

Sample #148L is composed of columnar structures with hexagonal tops separated by 

deep trenches. This results show that the diameter of the hexagonal tops increases with 

increasing growth temperature in the range of 1070-1100 K, growth time from 1.5 hours 

to up to 5 hours and this result is consistent with the literature. Changing the V/III molar 

ratio, and growth temperature might reduce the hexagonal top size. The coalescence is 

not complete for both films and large hexagonal domains dominate the surface structure. 

Increasing the thickness of InN layers grown on sapphire substrate did not accelerate the 

coalescence process for the InN film. This may be due to insufficient diffusion of the 

adatoms. However, the average grain area for both samples is about the same at 0.2 µm2. 

The InN film consists of disoriented hexagons with respect to each other and the c axis of 
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the substrate as shown in Figure 5.10. This is characteristic of highly mismatched 

systems with a mismatch x > 10%138. The weakness of the InN bond may assist InN 

columnar growth with different crystal orientations. The magnitude of the tilt angle 

depends on the magnitude of the mismatch and actual growth conditions138. It is found 

that under the current growth conditions, with InN films grown on sapphire substrates, 

increasing the film thickness (close to 1 µm) does not lead to an apparent improvement 

on the surface roughness. 

 

Figure 5. 8 AFM image of Sample #74 U (5µm x 5µm, 256 x 256 pixels, Contact 
mode). 
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Figure 5. 9 AFM image of Sample #148L (5µm x 5µm, 256 x 256 
pixels, Non-Contact mode). 
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Figure 5. 10 Slightly misoriented hexagonal InN films grown on Sapphire (sample 
#148L). 

The difficulties in the growth of high quality InN due to the lattice mismatch and 

lack of suitable substrate materials motivated researchers to seek a new technique for 

improving the material quality as well as the surface quality of the materials. As shown 

previously, the large lattice mismatch between sapphire and InN leads to a surface 

roughness ~26 nm (#136U) for the InN samples grown by HPCVD. Therefore, the 

surface morphology of InN films grown on GaN templates was investigated by means of 

AFM. In addition to lattice mismatch, the growth temperature utilized for InN is one of 

the most critical parameters influencing the crystal quality, surface roughness and growth 

rate of the InN film. For sample #76U, growth was initiated at 1090 K, while for sample 

#192L, growth was initiated at a lower temperature of 1078 K. The nucleation directly on 

GaN/sapphire substrates for sample #192L is a relatively long nucleation when compared 

to #76U sample. As shown in Figures 5.11 and 5.12, some important improvement was 

obtained for samples #76U and #192 L. The RMS roughness over the entire 1µm2 is 14.3 

nm for sample grown at higher temperature (#76U) and 8.9 nm for the sample grown at 

lower temperature (#192 L).  
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Figure 5. 11 AFM image of Sample # 76U (1µm x 1µm, 256 x 256 pixels, Contact 
mode). 

 

 

Figure 5. 12 AFM image of Sample # 192L (1µm x 1µm, 256 x 256 pixels, Contact 
mode). 
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InN samples were grown with an aim towards the optimized growth temperatures, 

V/III ratios and total gas flow through the reactor. However, thermal etching sometimes 

dominates the growth kinetics. Therefore, steady state growth parameters often do not 

allow InN growth after a certain period of time. Thermal etching generates holes, 

trenches, and increase roughness on the film surface, which has been correlated to LLS 

monitoring during film growth. The LLS monitoring was used to measure the surface 

roughness qualitatively on the GaN/sapphire. The reflected intensity of the LLS signal 

was recorded and a typical intensity versus time plot obtained during the InN growth is 

shown in Figure 5.13 during the InN growth. The decrease in laser intensity is believed to 

be due to absorption of the laser light by the growing InN layer. The increase in the laser 

intensity starts at approximately 90 min after the beginning of growth when etching 

dominates the film growth. This experimental observation for the growth/etching 

transition will allow us fine control on the nucleation and steady state growth. If growth 

is dominant over etching, InN samples are produced with good quality and smoother 

surface. 

 

 

 

 

 

 

 

 



121 

 

 

 

Figure 5. 13 Real time optical monitoring of InN film (#125 U) surface by LLS 
where etching starts to dominate the growth. AFM image of Sample # 125L (5µm x 
5µm, 256 x 256 pixels, NC mode is presented in inset). 
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Table 5. 2 Growth parameters, FWHM of InN (0002) rocking curves, crystallinity and surface roughness of InN samples  

Sample 
V/III ratio 

During 
nucleation 

V/III 
ratio 

During 
growth 

Temp. during 
nucleation 

(K) 

Temp. during 
growth 

(K) 
Substrate 

Growth 
time 

(minute)

FWHM 
(0002)  
arc sec 

Roughness 
(nm) Structure 

74U 475 950 1100 690 Sapphire 90  NA 52 NA 

76 U 400 800 1100 1090 p-
GaN/Sapphire 90  432.4 14.2 Single 

crystal 

111U 530 1055 1100 1090/1085 p-
GaN/Sapphire 180 439.6 17.2 Single-

Crystal 

120U 1055 800 1070 1090 p-
GaN/Sapphire 180 593.6 32.4 Poly-

crystalline 

125U 1055 800 1078 1090 p-
GaN/Sapphire 180 468 10.5 Poly 

crystalline 

126U 1500 800 1078 1090 p-
GaN/Sapphire 180 643.2 44 Poly-

crystalline 

136U 400 800 1100 1090 Sapphire 180 649.8 26 Single-
Crystal 

139U 400 800 1100 1090 i-
GaN/Sapphire 180 495 13 Poly-

crystalline-

148 L 400 800 1100 1078 Sapphire 300 852 74 Single 
crystal 

150L 400 800 1100 1078 GaN/Sapphire 180 1638 79 Single 
crystal 

192L 1055 800 1078 1078 p-
GaN/Sapphire 180  443 8.98 Single 

crystal 
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5.4.2 Formation of hexagonal InN pyramids by HPCVD 

We have demonstrated that 3D InN pyramids can be produced on 2 µm GaN 

templates using the HPCVD technique. The impact of large InN hexagonal pyramids 

with different sizes on the crystal quality of InN epilayer was evaluated by means of X-

ray diffraction of InN (0002) rocking curves, which yielded a full width at half maximum 

below 1643 arcsecond. The effects of very small misorientation of the pyramids and 

different sizes of hexagonal pyramids observed over the InN surface lead to poor 

crystalline quality of InN. From XRD measurements, we observed that there was no In 

metal peak and no other InN related peak except the InN (0002) diffraction peak. The 

size and shape of pyramids under study have been determined by means of AFM 

analysis. Figure 5.14 presents an example image of hexagonal pyramids. The growth is 

2D at the earlier stage of InN growth as observed in Figure 5.14. On the other hand, by 

the time when InN growth continued, the surface of InN became populated by 3D 

hexagonal pyramids as depicted in Figure 5.14. Interestingly, it is found that for the 

growth of InN on a GaN template, there is a transition from the 2D growth mode to the 

3D growth mode. From a higher magnification AFM image of the pyramid, we 

determined a diameter of 24 µm and a height of 500 nm; the shape corresponds to a 

perfect hexagon in the film plane and to a truncated pyramid in the vertical direction. 

Nevertheless, further investigations are needed to understand better the factors 

controlling the nucleation and growth of InN pyramids. 
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Figure 5. 14 AFM images of the sample surface containing InN pyramids (50×50 µm, NC 
mode) 

5.5 Summary and conclusion 

We have studied the structural and surface morphology properties of InN layers 

grown on GaN (0002) epilayer/sapphire substrates and sapphire substrates. InN layers 

grown on GaN epilayers exhibit single phase InN (0002) Bragg peaks with FWHM 

around 200 arc sec. Lattice parameters “c” extracted from the XRD data were found to be 

deviating from the unstrained InN film ±0.0015 Å. The XRD results show that InN 

grown with a lower ammonia:TMI molar ratio have better crystalline quality. InN films 

of high crystalline quality have been grown by HPCVD and no Bragg peak in the vicinity 

of 33° is observed in the XRD spectra good quality InN thin epilayers. The increasing 

indium-to-nitrogen flux ratio during epitaxial growth results in the appearance of the 

(101) diffraction peak at 33.0°. This observation strengthened the association of the 

diffraction peak at 2θ~33° which might be due to the In clusters in the InN samples. A 
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peak asymmetry appears on the low angle side of (0002) peak and the asymmetry 

increases as the V/III molar ratio increases due to several peaks underlying in the (0002) 

structure. Secondary peaks are less prominent as the quality of the layer improves, and it 

is still hard to determine whether those peaks are due to the native point defects or 

impurity incorporation. However, this secondary peak does not represent a secondary 

phase. LEED yielded a 1×1 hexagonal pattern demonstrating a well-ordered c-plane 

surface. HREEL spectra after AHC cleaning exhibit bending and stretching vibrations 

with no indications of an indium droplet formation. The plasmon excitations shifted 

about 300 cm-1 higher in spectra acquired using 7 eV electrons due to higher plasma 

frequency and carrier concentration at the surface than in the bulk, which indicates 

surface electron accumulation. Since HREEL spectra taken with low incident energy 

show that the surface is N-H terminated, the electron accumulation on InN surfaces is not 

due to the excess of indium. We have investigated the surface morphology properties of 

InN films grown by the HPCVD technique on different templates with different growth 

parameters by using AFM. Some InN films show that columnar structures were grown on 

sapphire at temperatures of 1078 and 1090 K. Several of InN layers exhibit disoriented 

hexagonal columnar structures with respect to each other and the c axis of the substrate 

due to the lattice mismatch between the InN film and sapphire substrate. Samples grown 

on GaN templates are found to be smoother (9 nm) compared to the samples grown on 

sapphire (~26 nm). The surface roughness of the InN samples has been correlated with 

the FWHM of InN (0002) rocking curve and this correlation is shown in Figure 5.16. 

This result suggesting that crystalline quality is improved if the surface topography is 

smoother. The appearance of second phase InN (101), which is attributed to In metallic 
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clusters, makes the InN surface is rougher commensurate with its increasing contribution 

in the XRD spectrum. We have demonstrated growth of 3 dimensional hexagonal InN 

pyramids, which are a forerunner of InN nanostructures of targeted geometries. The 

growth was observed to be 2D at the earlier stage of InN growth but as InN growth 

continued, the surface became populated by 3D hexagonal pyramids. Interestingly, it is 

found that for the growth of InN on a GaN template, there is a transition from a 2D to a 

3D growth mode. 
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Figure 5. 15 FWHM of XRD rocking curves taken at the (0002) reflection measured 
on  HPCVD grown InN as a function of the surface roughness. 

 

 

 



128 

 

 
 
 
 
 

Chapter 6 

Optical properties of InN thin films 

6.1 Optical transmission measurements of InN films 

The electronic structure of single crystalline InN layers was carefully studied by 

means of optical transmission. In the case of most semiconductor samples, the 

fundamental energy band gap can be observed by transmission spectroscopy in the range 

from 0 to 6 eV. Therefore, optical transmission spectra lead to the determination of the 

band gap energy and also defect levels within the band gap of the semiconductor. When a 

photon is incident on a semiconductor several interactions with carriers can take place 

which depend on the energy of the incident photon. These mechanisms are band-to-band 

(interband) transitions, impurity-to-band transitions excitonic transitions, free carrier 

(intraband) transitions and phonon transitions. For incident photon energies greater than 

the band gap of the semiconductor, Eg, the absorption is dominated by band-to-band 

transitions. 

As discussed in previous chapters, the InN band gap was estimated to be 1.85 eV 

until 200038. Since then, it has been reported by several groups that band gap energy of 

InN is approximately 0.7 eV89,139. We have reported InN layers grown via HPCVD with 

different III/V precursor rations which exhibit absorption edge energies of 0.75 –1.6 

eV14. In addition, we have reported that the optical absorption shifts below 1.1 eV as 

carrier concentration decreases140. The variation of the optical absorption edge can be 
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attributed to the following causes. High carrier densities (~1020 cm-3) introduce a large 

concentration of donors, charge dislocation lines141, grain boundaries (in polycrystalline 

films) and surface charge defects127. It is generally believed that the smaller band gap 

values are due to the higher quality films while those showing large band gap values 

possess carrier densities in the range of ~ 1020 cm-3 and contain a large number of defects. 

However, Shubina et al. recently reported Mie resonances observed in low band gap InN 

films that are a result of metallic In clusters in the films, which can cause strong photo-

emission around 0.7 eV. This emission is attributed to the surface states at metal-InN 

interfaces. Our results revealed for hexagonal InN an optical absorption edge of about 1 

eV, which is much smaller than 1.85 eV, the value established for many years. 

Normal incidence optical transmission measurements of a series of InN thin film 

layers grown by HPCVD on sapphire substrates and GaN templates were performed. 

Optical transmission measurements at room temperature were carried out in the 300 nm – 

2800 nm wavelength range (4 eV-0.4 eV) as outlined in Chapter 3. The sample 

identification numbers, sample growth conditions and substrate are given in Table 6.2.  

Acquired transmission spectra for InN films on sapphire and GaN templates are 

presented in Figures 6.1 and 6.2 with varying NH3/TMI ratio. Each spectrum represents 

transmission through the entire stack. Transmission spectra of Samples #142 U, #143 U 

that were grown on sapphire, as shown in Figure 6.1, were modeled using a three phase 

model (air/InN/Sapphire) as discussed in Chapter 3. On the other hand, the spectra of 

samples 110U, 111U, 112U that were grown on GaN/Sapphire templates as shown in 

Figure 6.2 were modeled using a four-phase model (air/InN/GaN/sapphire). The 

experimental spectra and the best-fit spectra of these samples are shown in Figures 6.1 
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and 6.2. Samples grown on GaN/Sapphire exhibit characteristic interference fringes due 

to the underlying GaN epilayer with a thickness of approximately 2 µm. The optical 

analysis of InN layers grown under similar condition but with slight variations in the 

ammonia:TMI molar ratios showed a shift in the absorption edge from 1.65 down to 1.48 

eV. Optical absorption edges calculated from the fitting of transmission spectra indicate a 

down turn with increasing ammonia:TMI molar ratio. This behavior is valid for both InN 

samples grown on both sapphire and GaN/sapphire substrates. It was found from the best-

fit algorithm that there are absorption structures centered around ~1.1 eV, ~0.8 eV and 

~0.5 eV. The development of the absorption structures for these samples suggest that the 

observed absorption edge shift to lower energy values is caused by these absorption 

structures centered at different energies14.  

Numerical analysis of the optical transmission data is used to examine the 

absorption edge and the absorption centers present in the InN films. The energetic 

position of two optical absorption centers present in InN films is shown in Figure 6.3 as a 

function of InN optical absorption edge. The linear correlation between the optical 

absorption edge and the two absorption centers indicates a closed relation between the 

carrier concentration and the absorption centers in the film. However, the strength and 

broadening of these two absorption centers do not directly correlate to the optical 

absorption edge. It is observed that there is a shift to lower energies with the shift in 

absorption edge. The correlation between the optical absorption edge and the carrier 

concentration will be presented in the following section. Additional effects such as point 

defect chemistry, defect levels and structural quality must considered in order to 

understand the optical absorption edge and the absorption centers present in the InN film.  
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Figure 6. 1 The experimental transmission spectra and their best-fit curves of 
samples #143U and #142U with different V/III molar ratios. Arrows indicate the 
calculated optical band gap. 
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Figure 6. 2 The experimental transmission spectra and their best-fit curves of 
InN samples grown on GaN templates with different V/III molar ratio. Arrows 
indicate the calculated optical band gap. 
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However, the absorption centers that appear at ~0.5 eV might be attributed to the spectra 

of recombination of degenerate electrons with the holes trapped by deep acceptors states 

142. In other words, the absorption center around 0.5 eV is due to the unidentified deep 

defect centers. The absorption centers at ~0.75 eV can be attributed to either In clusters 

formed (Mie resonance) or InN related band to band transitions143. It is worth mentioning 

that the observed variation of the optical absorption energy and the absorption centers is 

related not only to the variation of carrier concentration but also to the nitride-indium 

stoichiometry, the degree of impurity incorporation and/or crystalline quality. The optical 

transmission measurements and numerical analysis of the optical absorption edge has 

shown that the band gap of this semiconductor is narrow and consistent with the recent 

observed improvements in InN film technology.  

A correlation of analysis the thickness of the InN film with the optical absorption 

edge and FWHM of InN (0002) X-ray rocking curve has been performed. Figure 6.4 

compares the optical absorption edge obtained from the optical transmission fit above, 

and the crystalline quality (as measured by X-ray diffraction) for various InN film 

thicknesses. The optical absorption edge decreased from 1.6 eV to 1.2 eV as the film 

thickness increased from 300 nm to 550 nm. This is most likely due to the reduction in 

residual compressive strain in the crystal structure. 
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Table 6. 1 The optical transmission spectroscopy fitting parameters for InN samples. The columns list InN layer 
thickness (d), the optical absorption edge (E0), high frequency dielectric constant (ε∞),  Sab Lorentzian oscillator 
strength, Eab1 energetic position of absorption center, and Γab damping constant. 

Sample d (nm) E0 (eV) ε∞ Sab1 Eab1(eV) Γab1 Sab2 Eab2(eV) Γab2 
110U 490 1.66 7.6 0.6 0.63 0.17 0.07 1.08 0.3 
111U 338 1.63 7.1 0.55 0.5 0.1 0.5 0.8 0.34 
112U 290 1.54 7.8 0.52 0.51 0.36 0.52 0.83 0.36 
125L 305 1.4 7 0.92 0.44 0.39 0.27 0.82 0.5 
192L 400 1.2 8.3 0.29 0.49 0.14 0.45 0.77 0.8 
135U 210 1.37 NA 2 0.4 0.6 0.46 0.84 0.45 
142U 335 1.49 6.5 0.19 0.53 0.19 - - - 
143U 380 1.69 5.5 0.2 0.56 0.17 - - - 
207L 470 1.23 8 1 0.48 2.1 0.5 0.75 0.95 
209L 470 1.21 8 0.73 0.45 2 0.53 0.75 0.63 
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Table 6. 2 The growth parameters of InN samples. Rp reactor pressure was at 15 bar and total gas flow rate was 12 
slm.  

Sample V/III ratio 
Nucleation 

V/III ratio 
Growth 

Temp. Nucleation 
(K) 

Temp. Growth  
(K) Substrate 

Growth 
time (min.) 

76U 400 800 1100 1090 p-GaN/Sapphire 90 

110U 400 800 1100 1090/1085 p-GaN/Sapphire 180 

111U 530 1055 1100 1090/1085 p-GaN/Sapphire 180 

112U 800 1583 1100 1090/1085 p-GaN/Sapphire 180 

125L 1055 800 1078 1078 p-GaN/Sapphire 180 

192L 1055 800 1078 1078 p-GaN/Sapphire 180 

135 L 400 800 1100 1078 Sapphire 180 

135U 400 800 1100 1090 Sapphire 180 

142U 400 800 1100 1090 Sapphire 180 

143U 350 615 1100 1090 Sapphire 180 

207L 1055 800 1078 1078 GaN/Sapphire 180 

209L 1055 800 1078 1078 GaN/Sapphire 180 
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Figure 6. 3 Optical absorption edge dependence of absorption centers obtained 
from the analysis of optical transmission spectra of thin InN films. The solid lines 
represent the linear fitting results.  
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Figure 6. 4 Comparison of optical absorption edge energy and, FWHM of InN 
(0002) as a function of InN thickness. 
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6.2 Infrared reflection measurements of InN films 

Infrared reflection spectroscopy has been recently proven to be a powerful tool for 

the determination of free carrier properties and determination of free carrier effective 

mass1,6. Infrared reflection measurements of the InN films were performed at room 

temperature in the frequency range of 1000 – 8000 cm-1 (~1.25 µm - 10 µm) under near-

normal incidence geometry (less than 8° incidence angle). The shift of the IR reflection 

line was caused by plasma oscillations in the range of 4500 to 3000 cm-1 with increasing 

free carrier concentration, as shown in Figures 6.5 and 6.6. Therefore, we can estimate 

electron concentration in the sample with this shift. Interference fringes were observed 

for every IR reflection spectrum in the range above the plasma frequency and were used 

to calibrate the film thickness. IR reflection spectra of samples grown on sapphire were 

modeled using a three phase (air/InN/Sapphire) while the spectra of samples grown on 

GaN/sapphire templates were modeled using a four-phase model (air/InN/GaN/sapphire). 

Based on a multi-oscillator model for optical phonons and a Drude model for free 

carriers, the theoretical IR reflection spectra can be calculated with a standard multilayer 

technique. The InN optical phonon frequencies of E2(high) and A1(LO) were assumed 

constant at 479 and 590 cm-1, respectively. It is reasonable to keep the optical phonon 

frequencies fixed because the reflection spectra are dominated by the plasma frequency. 

The best-fit parameter values obtained for thickness, high frequency dielectric constant 

(ε∝), plasma frequency (ωp), and damping constant of plasma oscillator (Γ) are listed in 

Table 6.3.  
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Figure 6. 5 The experimental IR spectra and their best fit curves of samples #76U, 
and #135U. The fitting parameters are given in Table 6.3. All experiments were 
performed at room temperature. 
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Figure 6. 6 Infrared reflection curve of three InN samples with different free carrier 
concentrations and two different doping regimes. The crosses are theoretical fits 
using a complex dielectric function model.  
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Table 6. 3 Model fitting parameters for IR reflection spectroscopy. Evidence for the existence of two separate InN layers 
was found by the IR spectra fitting. Layer thickness (d), high frequency dielectric constant (ε∞), plasma frequency (ωp), 
damping constant (Γ), and estimated free concentration are given for each layer.  The layer next to GaN or sapphire is the 
2nd layer and the layer above is the 1st layer. 

Sample N × 1019 (cm-3) ωp (cm-1) Γ(cm-1) ε∞ µ (cm2/Vs) d (nm) 

76U 6.7 3471 860 5.7 434 256 

110U 16 4530 820 7.6 126 520 

111U 15 4450 980 7.6 105 340 

112U 12 3990 490 7.6 2111 320 

135U 11 3720 327 7.0 327 228 

 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

125L 9 <0.05 3494 - 390 - 7.5 7.3 266 - 393 79 

139U 8.6 <0.04 3110 <200 423 - 8.8 8.4 245 - 373 64 

192L 6 <0.05 3029 - 460 - 6.5 7.5 225  452 81 

207L 10 <0.1 3660 - 860 - 7.8 8 120 - 452 41 

209L 8.5 <0.1 3250 - 427 - 8 7.5 250 - 415 120 
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A Levenberg-Marquardt fitting algorithm was used121, where the model 

parameters were varied until a close fit between calculated and experimental data was 

found. The best-fit of the infrared reflection spectra reveals the plasma frequency pω  and 

the plasma damping constant γp. The plasma parameters pω  and γp are related to the 

concentration Ne, the effective mass me, and the mobility µe of the free electrons by the 

following equations: 

∞
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The effective electron mass of InN was set constant to 0.09m0
122, neglecting the 

first order dependency of the electron mass with the free carrier concentration. The 

experimental spectra and the best-fitted spectra of these samples are shown in Figure 6.5. 

The calculated results agree well with the experimental data, including the interference 

fringes. According to the fitting analysis, the high frequency dielectric constant ε∞ varies 

from 5.2 to 8.3 with an average value of 7.5. Other reported values for the high frequency 

dielectric constant ε∞ are so far controversial; 9.3144, 8.434, 7.5, 6.7145, and 5.8146. The 

obtained free carrier concentrations from IR reflection spectra fitting of these samples are 

in the mid 1019 or lower 1020 cm-3 range. The carrier mobilities of these thin films are 

generally in 100 cm2/Vs to 400 cm2/Vs range. The detailed parameters, such as the film 

thickness d , mobility µ , carrier concentration n, plasma frequency ωp , damping constant 

γp and high frequency dielectric constant ε∝,  are listed in Table 6.3.  
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The infrared reflection spectra of samples #192 L, #125L and #139U could only 

be modeled by assuming two InN layers with different film thickness and doping levels 

as shown in Figure 6.6. The best-fit parameters of those two layers are also listed in Table 

6.3 with the estimated free carrier concentration. In Table 6.3, the top most layer of the 

structure, which is open to the air, is labeled as the 1st layer and the 2nd layer is under the 

1st layer. The plasma frequency of the 1st layer is much higher as is the free carrier 

concentration. The required 2nd InN layer for samples #125L, #192L and #139U was 

found to have a low free carrier concentration. This reveals that an InN layer with a low 

free carrier concentration has been formed during the initial growth of the first few 

hundreds of nanometers. After that, the free carrier concentration in the InN layer rapidly 

increased requiring it to be considered as a separate layer for modeling purposes. The 

average ε∞ value of these low doped InN layers is around 8 which is close 8.4, the 

theoretically predicted value34. It should be noted that ωp and Γ were found to be below 

200 and 100 cm-1, respectively, but precise values could not be found from these fits. The 

reason for this difficulty is that ωp of the top-most layer is much higher than that of the 

2nd layer and it is overshadowed by the plasma oscillator of the 2nd layer. Therefore, the 

fitting algorithm could not find a reasonable minimum.  

The correlation of optical absorption edge of the InN films with the free carrier 

estimates obtained by IR-reflection spectroscopy is shown in Figure 6.7. The sample 

#192L with lowest carrier concentration has an absorption edge situated near 1.2 eV. The 

energy of the edge is a little higher than ~1.1 eV147 expected for the 6 ×1019 cm-3 carrier 

concentration, which takes into account the Burstein-Moss effect and assumes a band-gap 

of ~0.7 eV. This small difference between our optical absorption edge and the optical  
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Figure 6. 7 Dependence of optical absorption edge on carrier concentration as 
obtained from a modified model dielectric function in combination with 
experimental data. 
absorption accounting for Moss-Burstein effect can be due to the non-stoichiometry 

contribution, residual oxygen causing oxides in InN films and /or voids for both InN 

samples either grown by HPCVD or MBE. 

The surface morphology analysis of the HPCVD grown InN samples and their 

surface roughness is presented in Chapter 5. Figure 6.8 shows the surface roughness 

dependence of mobility for InN films. One can see that the samples with relatively 

smooth surfaces have high mobility (432 cm2/Vs) in spite of the fact that the difference in 



145 

 

roughness is on a nm scale. Excellent morphology for InN is important to attain a high 

electron mobility as reported by Yamamoto et al148.  

 

Figure 6. 8 Surface roughness of InN samples with different carrier mobilities 
obtained from the fitting of the experimental infrared reflection spectra. 
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6.3 Raman spectra of InN film in backscattering geometry 

InN epilayers grown by HPCVD with different carrier concentration were 

investigated by Raman spectroscopy. Raman spectroscopy is a valuable tool that can 

probe collective oscillations of free electrons, via their coupling with LO phonons of the 

wurtzite structure. As photoluminescence experiments do not give a complete description 

of the electron gas in doped semiconductors, Raman spectroscopy is a crucial step in 

determining crystalline parameters. In addition, Raman spectroscopy is a nondestructive 

and fast method to measure strain and structural quality of the InN material149. In order to 

gain insight into the free carrier concentration, the observed line shape of the A1(LO) 

mode damped by free electrons is simulated by using Linhard-Mermin approach149. 

DP+EO is considered as the major light scattering mechanism within the interaction. In 

the DP-EO scattering mechanism, the crystal potential is modulated by the relative 

displacement in atomic configuration where atomic displacement introduces elastic strain 

while the effective masses remain unchanged by the induced strain.  

The Raman spectra of the InN layers were obtained in back scattering geometry 

z(….)z  using an excitation energy of 2.33 eV at room temperature. Figure 6.9 shows 

Raman spectra of InN films grown on GaN/Sapphire and sapphire substrates. The spectra 

are normalized to intensity of the E2 (high) line. The two allowed optical phonon modes 

of hexagonal InN are E2(high) and A1(LO) for Raman in back-scattering geometry. The 

peak positions of the observed E2 (high) and A1 (LO) are in good agreement with that 

predicted as ~486 cm-1 and ~590 cm-1, respectively, by Davydov et al4.  

 



147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 9 Room temperature Raman 
scattering of wurtzite-InN grown on 
GaN/sapphire and Sapphire 
substrates. Raman modes are 
identified using Lorentzian fitting. 
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The line shape of E2 (high) is related to structural defects and impurities in GaN 

structures. Wei et al.150 used this relation as a valuation method for expressing crystalline 

quality, and concluded that the E2(high) line with FWHM of 4 cm-1 indicated a superior 

crystalline quality material. The FWHM of the E2(high) line in sample  # 192L is 6.9 cm-1 

and in sample #209L is 8.3 cm-1 exhibiting high crystalline quality4. Due to the non-polar 

character of the E2 (high) mode, there is no interaction of this mode with the conduction-

band electrons151. The observed Raman bands E2 (high) and A1 (LO) become broader for 

the samples depicted in Figure 6.9 indicating the presence of structural defects. However, 

the sharper peak structures observed for #192L and #209L indicate improved crystalline 

quality of the HPCVD grown InN films. The broad Raman mode around 560 cm-1 is 

mainly attributed to the substrates (GaN/Sapphire).  

The excitation (2.33 eV) applied in the Raman investigation is above the 

speculated band gap of InN (0.67 eV)152. Therefore, some defect related luminescence 

contribution to the Raman scattering is unavoidable. We distinguish the overlapped 

Raman modes by applying Lorentzian curve fittings as shown Figure 6.9. The summary 

of the Lorentzian curve fittings results is given in Table 6.4.  

6.3.1 Electron oscillations –phonon interaction in HPCVD grown InN by Raman 

spectroscopy 

The broadening of A1(LO) phonon mode, illustrated in Figure 6.10, indicates that 

changes are induced in InN layers when layers have different free carrier concentration. 

By monitoring the E2 (high) phonon mode, we can conclude that no significant structural 

changes occur with varying carrier concentration. The mechanism responsible for the 

broadening of LO-phonon modes in InN must therefore be attributed to the change in the 
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phonon-electron oscillation interaction. The total longitudinal dielectric function of a 

polar lattice can be written as the sum of background (first term), phonon (second term) 

and free carrier (third term) contributions 
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where ε∞ is the background dielectric constant, ω is the frequency, q is wave vector, Γ is 

the phonon anharmonic damping parameter, ωLO  and ωTO  are the longitudinal and 

transverse phonon frequencies, respectively. The Linhard approach does not include the 

effect of collisional damping due to the impurities, etc. Mermin incorporated the effect of 

collisional damping into the Linhard theory within the relaxation time approximation153. 

The dielectric susceptibility of a free electron gas is given by the Linhard-Mermin 

expression153 
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temperature-dependent Linhard expression for the dielectric susceptibility154. We also 

assume m*=0.14 me. The Raman scattering intensity of the coupled modes is determined 

by integrating all scattering processes up to cut-off wavevector qmax  
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including the Yukawa-type impurity potential weighting function W(q) for q≠ 0 

processes. The Yukawa-type impurity potential is given by 
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where qTF is Thomas-Fermi screening wave-vector given by 
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The response function S(ω) in Eq. (6.5) is determined by the predominant scattering 

mechanism, and in our case DP+EO is considered as the major light scattering 

mechanism within the interaction. The corresponding scattering factor for the DP+EO 

mechanism is 
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where  
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where C is the first Faust-Henry coefficient. 

The intensity of scattered light is calculated by integrating the spectral line shape function 

up to the maximum wave-vector limit by weight factor due to the Yukawa -type impurity 

potential. The free electron concentration was used as an input parameter for that routine 

so that the numerically produced curve and Lorentzian curve, which fitted experimental 

data, are fitted to each other. The values ωTO=445 cm-1 and ωLO=592 cm-1 used here were 

obtained from IR reflection analysis. Figure 6.10 illustrates the simulated Raman line 

shape of InN films with different free carrier concentrations.  
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Figure 6. 10 The experimental Raman 
spectra and  the simulated A1(LO) 
line shapes. The line shape is 
calculated using the DP+EO 
scattering mechanism, which 
provided the best fit of the 
experimental results. 



152 

 

The A1(LO) mode broadens with increasing carrier concentration. The simulated line 

shape shows a small asymmetry on the low frequency side with respect to the other 

mechanisms that we have investigated. The free carrier concentrations of the samples 

were observed in the range ~8×1017-~1.6×1020 cm-3. The plasma frequency has been 

obtained from IR reflection analysis and used in Raman simulations for better 

compatibility of results with those from IR reflection simulations. Figure 6.11 illustrates 

the estimated free carrier concentrations obtained from plasmon-phonon coupling as a 

function of optical absorption edge, which has been calculated from the optical 

transmission spectra analysis. The optical absorption edge behavior versus the free carrier 

concentration shows an exponential behavior in free carrier concentration range 10+17 cm-

3<ne<10+20 cm-3.  The calculated trend of decreasing carrier concentration with decreasing 

optical absorption edge is consistent with the trend obtained from the IR reflectance data. 

The estimated band gap energy is slightly higher than the reported ~0.8 eV which is 

expected for samples of free carrier concentration in the order of  ~10+18 cm-3.  

6.3.2 Micro-Raman analysis: strain relaxation at the edges of holes 

Micro Raman experiment and analysis of InN thin epilayer was performed by 

Ronny Kirste at Technical University Berlin. While epitaxial thin film InN samples are 

currently available, there are currently no bulk InN films in existence. Strain exists in InN 

films due to the lattice and thermal coefficient mismatches between InN epilayer and 

substrates such as GaN and sapphire. As this strain greatly influences growth behaviors 

and optical properties of InN, it is important to know the strain level at GaN/InN or 

sapphire/InN interfaces.  
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Figure 6. 11 Optical absorption edge vs. carrier concentration. 
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Table 6. 4 Model parameters for modeling the A1(LO) line shape 

Sample #192L #135U #125L #111U 

N (cm-3)×1019 8.1 9.4 10 12 

ωp (cm-1) 3029 3930 3441 3736 

γp (cm-1) 129 394 368 421 

qTF× 106
 4.2 5.25 - 7.22 

A1(LO) position (cm-1) 591.1 591.1 589.1 590.9 

FWHM A1(LO) (cm-1) 18.9 20.1 24.8 20.8 

E2 (High) position (cm-1) 486.8 486.8 486.7 486.1 

FWHM E2 (High) (cm-1) 6.9 10.6 9.2 10 

Raman spectroscopy is a fast method capable of measuring strain in epitaxial 

films. Micro-Raman spectroscopy was performed at room temperature in back scattering 

geometry with excitation energy of 488 nm. Raman spectra in the E2(high) mode 

frequency regions obtained at different lateral positions from InN (spot 1) to sapphire 

(spot 4) are depicted in Figure 6.12(a) in order to probe the actual strain conditions. It is 

noted that the obtained strain-free frequency of 489.9±0.2 cm-1 for the E2(high) mode 

coincides well with the reported value of 490 cm-1 at the spot (1)155. High impurity 

density leads to tensile strain (2) at the transition of the InN-thin film (1) to substrate as 

shown in Figure 6.12 (c). The frequency of the E2 (high) mode softens from 490 cm-1 to 

488 cm-1 on transition from spot (2) to (3) and finally the Raman signal from the substrate 

dominates. Analysis of the shift and FWHM of E2 (high) regarding the lateral position is 
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depicted in Figure 6.12(c-d). E2 (high) is nearly relaxed and constant with a low FWHM 

at Spot (1), a growing tensile strain with increasing FWHM is established at Spot (2), a 

relaxation occurs with increasing FWHM at Spot (3), and the amplitude of E2 (high) 

decreases and shifts into the sapphire mode at Spot (4). In conclusion, Micro-Raman 

analysis reveals that high impurity density leads to tensile strain at the InN-sapphire 

transition indicated by the position of E2 (high). 
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Figure 6. 12 (a) Raman spectra of InN recorded at lateral positions. (b) Spectra were obtained at four different spots. (c) Raman shift of 
E2(high) related to lateral position. (d) FWHM of E2(high) against the distance from the InN/sapphire interface. 

(a) 
(b) 

(c ) (d) 
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6.4 Photoluminescence 

It was found that the apparent band gap energy for InN is near ~0.67eV33,152, 

which is much smaller than the 1.89 eV38 value. A few groups measured the photo-

luminescence (PL) of InN samples grown by MBE. It has been a mystery until 2000 that 

no photoluminescence spectrum could be observed for InN. The optical band gap or 

absorption edge energy has been primarily determined by optical absorption or 

transmission measurements. Evidence of a narrower band gap for InN was reported in 

2001. Davydov et al.22 reported a band gap value of 0.9 eV for high quality MBE grown 

InN by means of optical absorption, PL, photoluminescence excitation (PLE) 

spectroscopy, as well as by ab initio calculations. Wu et al. have shown good consistency 

of data for the optical absorption edge, PL peak energy, and photo-modulated reflectance 

for MBE grown epitaxial layers with a carrier concentration of the order of 1018 cm-3 and 

a mobility higher than 1000 cm2/Vs, which resulted in the band gap energy for InN 

between 0.7 and 0.8 eV. 

PL studies were performed in the visible and near infrared spectral range in order 

to examine the PL peak position of InN samples grown by HPCVD. PL spectra of three 

InN samples with free electron concentrations 6 ×1019 cm-3 (Sample #209) and 1×1020cm-

3 (Sample #102U) are shown in Figures 6.13 and 6.14. The PL analysis revealed PL 

emissions as low as 0.75 eV, but no PL was detected below 0.75 eV. It is found that the 

shape of spectrum with higher concentration becomes slightly asymmetric and shifts 

towards higher energy. The upper energy tail is probably due to an additional distribution 

defect or impurity states. The PL spectrum of sample #209L with higher crystal quality is 

narrow and can be fitted with three Gaussians at 0.8, 0.95 and 1.1 eV. According to the 2 
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observed PL spectra, the FWHM increases with increasing free carrier concentration. To 

further justify our determined PL peak position for InN epifilms, we have performed 

transmission measurements. The inset of Figures 6.13 and 6.14 show the typical 

absorption curves obtained for those InN samples. Corresponding absorption coefficient 

curves are calculated from the experimental transmission spectra and thickness extracted 

from the fitting of transmission spectra. It is seen that there is a good agreement between 

the photoluminescence and absorption curves. It can be speculated that the optical 

absorption and luminescence bands of InN crystals clearly have characteristics typical of 

interband transitions. It is also clear that the optical absorption edge as well as the PL 

peak position shifts down to 1.1 eV with decreasing carrier concentration. This 

discrepancy between PL peak positions is probably due to the large layer inhomogeneity 

for the sample with the highest carrier concentration.  

It should be pointed out that there is a possible influence of the surface on the 

optical data. It was already discussed in Chapter 5 that there are surface donor states 

degenerate with the conduction band that lock the position of the Fermi level above the 

valence band maximum, and these should be taken into account in the interpretation of 

the optical data. The surface accumulation layer caused by these degenerate surface 

donors itself is absorbing for the exciting photons. Therefore, the surface electron layer 

should be taken in to account in the evaluation of optical data.  
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Figure 6. 13 Experimental PL spectra of InN samples with an electron concentration 
of 6×1019 cm-3 (from IR reflection data analysis). The inset shows the absorption 
coefficient calculated by using the film thickness from the fitting of experimental 
transmission spectra.  
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Figure 6. 14 Experimental PL spectra of InN samples with an electron concentration 
of 1×1020 cm-3 (from IR reflection data analysis). The inset shows the absorption 
coefficient calculated by using the film thickness from the fitting of experimental 
transmission spectra. 
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6.5 Conclusion  

InN layers grown by HPCVD were studied by Raman, infrared reflectance, 

transmission spectroscopy and photoluminescence spectroscopy. InN materials are 

typically single crystalline with electron concentration varying from the mid 1018 cm-3 to  

the low 1020 cm-3. The spectra were analyzed to extract the free electron concentrations 

and correlated to the optical absorption edge obtained from optical transmission spectra 

analysis using a Modified Model Dielectric Function approach. The numerical analysis of 

the optical transmission data shows that the optical absorption edge for InN layers shifts 

below 1.1 eV as the free carrier concentration decreases to low 1018 cm-3. An exponential 

dependence is observed between optical absorption edge and free carrier concentration. It 

is observed that the absorption centers shift to lower energies with the shift in absorption 

edge. The observed absorption edge shift to lower energy values may be caused by the 

appearance of several absorption centers whose origin might be due to the unidentified 

deep defect centers. Experimental IR reflection and Raman spectra are modeled as 

alternative approaches to Hall Effect measurements since high surface carrier density and 

difficulties in having ohmic contacts from the InN surface limit accuracy of the 

technique. The electron density in the bulk of InN is difficult to measure experimentally, 

due to the presence of the surface electron accumulation for InN layers and due to 

gradient defect properties across the film. For this reason, Hall data for the electron 

concentrations have to be treated with caution, since Hall measurements typically 

produce some average value of the electron concentration across the sample thickness. IR 

reflection spectra analysis have been analyzed using, two-layer model, which indicates 

the existence of the surface layer with a higher free carrier concentration than that of 
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inner layer. The required second InN layer is estimated to have a free carrier 

concentration (below 5×1017 cm-3). The Raman analysis revealed a high-quality 

crystalline layer with a FWHM of the E2(high) around 6.9 cm-1. the A1(LO) mode 

analysis reveals that the carrier concentration is in the range 8×1020 -.1.6×1020 cm-3. A 

strong correlation between crystal quality and optical properties is observed with a shift 

of the high energetic PL emission to lower energies and a narrowing of the luminescence 

spectra as the structural quality improves. The PL spectrum of InN samples with high 

crystal quality is narrow and was fitted with three Gaussians at 0.8, 0.95 and 1.1 eV. The 

optical absorption edge agrees very well with the PL peak position positioned at 1.1 eV.  
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Chapter 7 

The effect of the growth surface polarity on physical 
properties of InN 

Part of this chapter has been published in: “The influence of substrate on the structural 

quality of InN layers by high pressure chemical vapor deposition”, N. Dietz, M. Alevli, 

R. Atalay, G. Durkaya, R. Collazo, J. Tweedie, S. Mita, and Z. Sitar, Applied Physics 

Letter, 92(4), 041911(2008) 

7.1 Introduction 

An extremely important characteristic of III-nitride semiconductor materials is 

surface polarity. In GaN semiconductor based materials, it has been shown that Ga-

polarity is highly favorable to achieve thin films via metalorganic vapor phase epitaxy 

(MOVPE) and molecular beam epitaxy114,156. However, there is little information 

reported about the effects of polarity on InN growth114,156,157. In this chapter, the effect of 

thin film polarity on InN growth on Ga-polar and N-polar GaN templates was 

investigated utilizing High Pressure Chemical Vapor Deposition. It has been found that 

InN films grown on Ga-polar GaN templates possess a higher crystalline quality than InN 

films grown on N-polarity GaN. The resulting FWHM of the x-ray rocking curve analysis 

around the InN (0002) reflections were approximately 200 arcsec for InN samples grown 

on Ga-polar GaN as opposed to 295 arcsec for InN sample grown on N-Polar GaN. The 
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FWHM of x-ray rocking curves of InN layer grown in Ga polarity were very close to the 

those of InN layer grown by MBE, which is 82 arcsec.158 

7.2 Experimental details 

Two substrates with different polarities were used for the growth of InN under 

HPCVD conditions. InN thin films were deposited on epitaxial GaN layers (thickness 

~0.9 µm), which were grown by Low-pressure MOCVD on c- plane sapphire substrates. 

The control of polarity was achieved by substrate pretreatment and subsequent low 

temperature AlN buffer growth159. The conditions for the pretreatment and the buffer 

growth were specific to each type of polarity. The conditions for the pretreatment and the 

buffer growth are described in detail elsewhere159. The polarity of the GaN film was 

determined from etching experiments. N-polar GaN is etched in KOH solution while Ga-

Polar GaN is inert. The FWHM of the (0002) symmetric reflection and the (302) skew-

symmetric reflection for the N-polar GaN were 774 and 1395 arcsec, respectively. The 

FWHM for the Ga-polar GaN were 410 and 1386 arcsec, respectively. The observed 

difference between the FWHM of the ω-rocking curves of the two films is attributed to 

the absence of the low-temperature AlN nucleation layer on the N-polar films. It is 

important to note that the initial roughness of the template is different, i.e., for the Ga 

polar template the roughness is 0.2 nm root mean square (RMS), and while for the N-

polar template it is greater than 2 nm RMS. The details of the growth and physical 

properties of GaN layers have been described elsewhere159. The InN layers were grown 

by High Pressure CVD by employing ammonia (NH3) and trimethylindium (TMI) as 

precursors. A pulsed injection scheme utilizing pulse width, precursor pulse separation, 

and cycle sequence time as control parameters was followed in order to control the gas 
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phase and surface chemistry kinetics. For the layers described below, the reactor pressure 

was 15 bar, the total gas flow 12 slm (standard liters per minute), the precursor molar 

ratio 630, and the growth temperature 1100 K. The GaN templates did not receive any 

further treatment prior to the InN layer growth. No buffer layer was used for the growth  

of InN on the Ga- and N-polar templates.  

With the same precursor molar ratio and same growth temperature we compared 

the InN film growth on two-polar substrates surfaces. Crystallographic characterization 

was carried out by acquiring on- and off-axis high-resolution X-ray diffraction ω-rocking 

curves and 2-θ-ω scans using a Phillips X`Pert MRD with a Cu X-ray source operated at 

40 kV and 45 mA. An open slit on the detector side in the double axis configuration was 

used for the ω-rocking curves, while a triple axis configuration was used for the 2θ-ω 

scans perpendicular to the sample surface. 

7.3 Results 

Figure 7.1 shows the XRD pattern on a logarithmic scale for InN layers grown on 

Ga-polar GaN (#209L) that includes three Bragg peaks corresponding to the InN (0002), 

GaN (0002) and sapphire (0006) reflections. Figure 7.2 shows the InN (0002) Bragg 

peak, along with the peaks resulting from deconvolution procedure using Gaussian peaks. 

The Bragg peak includes 2 peaks, a sharp dominant peak at 31.345° corresponding to InN 

and a second peak at 31.31° with an area ratio and a height ratio between the main peak 

and the secondary peak of 1.3 and 3.2, respectively. The rocking curves for the InN 

symmetric (0002) and skew symmetric (103) and (302) reflections are shown in Figure 

7.3.  
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Figure 7. 1 ω-2θ scan XRD curve for a InN sample grown on a Ga-polar template. 
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Figure 7. 2 The InN peak deconvolution indicates an asymmetric lower shoulder, 
which might be due to impurities. 
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Figure 7. 3 High resolution X-ray rocking curves of InN film grown on OMCVD-
GaN with Ga-polarity, InN (002) reflection, (103) reflection and (302) reflection. 
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The FWHM of these curves are summarized in Table 7.1, along with other 

crystallographic information. Similar to #209L, the 2θ-ω scan performed on the layer 

grown on a N-polar template doesn’t show any other reflections besides those already 

listed. However, the FWHM (0002) and (002) of InN layer grown on N-polar GaN 

template were about 290 arcsec and 4450 arcsec, respectively, much poorer compared to 

the quality of InN sample grown on N-polar GaN template. The Bragg peak for InN 

sample grown on N-polar template also consists of two peaks. Although the secondary 

peak is more prominent in the layer grown on the N-polar template than in the layer 

grown on the Ga-polar template, its nature is difficult to assess. The secondary peak may 

represent a strain state due to biaxial stresses, the presence of native point defects, and/or 

impurity incorporation.  

InN layer etching using 3M KOH solutions at 65 °C for 10 min shows no 

selective etching of the surface, which would suggest an In-polar surface. Further etching 

with a stronger 10M KOH solution revealed nonselective etching; however, the etched 

features for the InN layer grown on N-polar GaN were much larger in number and size. 

This could be due to the either different starting surface morphology or the high defect 

incorporation. 

In addition to the high resolution XRD measurements, the Raman spectra for the 

InN layers grown on N-polar and Ga-polar GaN templates were carried out in the energy 

range of 200-900 cm-1. The spectra were taken in back scattering geometry z(….)z using 

an excitation energy of 2.33 eV at room temperature, and they are depicted in Figure 7.4. 

The observed E2(high) and A1(LO) peak positions are in good agreement with predicted 

phonon frequencies of 486 cm-1 and 591 cm-1 respectively, as reported by Davydov et al.4 
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The line shape of E2 (high) is related to structural defects and impurities in GaN 

structures. Wei et al.150 used this relation as a valuation method for expressing crystalline 

quality, and they concluded that the E2(high) line of FWHM of 4 cm-1 indicated a 

superior crystalline quality material. The FWHM of the E2(high) line in sample  # 209L is 

8.3 cm-1 exhibiting high crystalline quality4. Due to the non-polar character of the E2 

(high) mode, there is no interaction of this mode with the conduction-band electrons151.  

On the other hand, the A1 (LO) mode interacts with free carriers resulting in broadening 

of the line shape. In order to estimate free carrier concentration, the observed line shape 

of A1(LO) mode damped by free electrons is simulated by using Linhard-Mermin 

approach149. DP+EO is considered as the major light scattering mechanism within the 

interaction. The intensity of scattered light is calculated by integrating the spectral line 

shape function up to maximum wave-vector limit by weight factor due to a Yukawa-type 

impurity potential. Figure 7.5 shows experimentally obtained Raman spectra and 

simulated A1 (LO) peak for InN layers grown on Ga-polar GaN (sample #209L) and 

grown on N-polar GaN (sample #207L). The general form of the dielectric function used 

for numerical calculations is given by149,160 
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where Гe corresponds to electron damping constant and χe
0(q,ω) is the temperature 

dependent Lindhard susceptibility. The plasma frequency has been obtained from IR 

reflection analysis and used in Raman simulations for a better compatibility of results 

with those from IR reflection simulations.  
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Figure 7. 4 Raman spectra of InN layers #207L and #209L grown on N-polar and 
Ga-polar GaN/sapphire templates, respectively. 
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Figure 7. 5 Analysis of E2(high) and A1(LO) modes in the Raman spectrum for InN 
layer #209L grown on a Ga-polar GaN/ sapphire template.  
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The theoretical background used to describe the behavior of the LO mode is described in 

detail elsewhere113,149. The effective electron mass of InN is set constant to 0.14m0, 

noting that this will slightly underestimate the free carrier concentration.122 

Figure 7.6 shows the optical transmission spectra of InN samples with the 

simulated spectra. The transmission spectra have been fitted by applying a modified 

Model dielectric Function (MDF) discussed Chapter 3 and Chapter 5.119 The best-fit 

parameter values provide estimates of the thickness, high frequency dielectric constant, 

and optical absorption edge (see Table 7.1). From the fitting analysis, the optical 

absorption edge of the InN layers was found to be 1.23 eV and 1.21 eV for samples 

#207L and #209L, respectively.  

Table 7. 1 The optical and structural data for InN samples grown on Ga- polar and 
N-polar GaN samples. 

 Sample#207L 
InN on N-polar 

GaN 

Sample#209L 
InN on Ga-polar GaN 

XRD: 2-θInN (002) Pos. 
2-θInN (002) FWHM (arcsec) 
ω-RC(002) FWHM (arcsec) 
ω-RC(103) FWHM (arcsec) 
ω-RC(302) FWHM (arcsec) 

31.311° 
295 
4243 
5000 
6100 

31.345° 
202 
2082 
2857 
3501 

Raman: E2(High)  pos. (cm-1) 
             E2(High)  FWHM (cm-1) 
             A1(LO)  pos. (cm-1) 
             A1(LO) FWHM (cm-1) 

487.7 

9.4 
593.1 
20.8 

486.3 
8.3 

591.9 
18.2 

  ε∞ (via A1(LO) simulation) 7.9 7.8 
 Ne (via A1(LO) simulation) (cm-3) 4.3 ×1018  2.5 ×1018 
dInN  (from transmission) (nm) 470  470 
Absorption band edge (eV) 1.23  1.21 
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Figure 7. 6 Transmission spectra and their best fits for InN layers deposited on N-
polar GaN and Ga-polar GaN substrates. 
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The PL spectra obtained from ~0.5µm thick InN grown on Ga-polar GaN at 10K is 

shown in Figure 7.7. Here, a laser at 532 nm was used as the excitation source and a 

Germanium, GaAs photodetector was used for monitoring the luminescence. A broad 

spectrum was observed which can be fitted with three Gaussian functions centered at 

0.85, 0.95 and 1.1 eV. It should be emphasized that PL corresponding to the 0.85 eV 

transition could be from the absorption center at 0.75 eV obtained from the experimental 

transmission spectra fitting. The optical absorption of InN was also studied at room 

temperature, and the absorption coefficient versus the photon energy suggests that the 

absorption edge is at 1.1 eV or 1.2 eV (transmission spectrum fitting), which may 

correspond to the 1.1 eV PL peak position. The optical absorption of InN is presented in 

Figure 7.8. It should be noted that no PL corresponding to the 1.9 eV transition could be 

observed from sample #209L.  

7.4 Conclusions 

In conclusion, we have analyzed the structural properties of InN layers grown by 

High Pressure CVD on polarity controlled GaN/Sapphire substrate templates. The XRD 

analysis and Raman analysis revealed that the FWHM of InN (0002) layers with 

hexagonal symmetry and the E2(high) phonon mode of Raman scattering were as small as 

200 arcsec and 8.3 cm-1, respectively, for layers deposited on Ga-polar GaN epilayers. 

The FWHM increases for InN layers grown on N-polar GaN templates, using the same 

growth conditions. The free carrier concentrations in these InN layers were estimated by 

A1(LO) line shape analysis and determined to be in the low 1018 cm-3 range. The 

luminescence and transmission measurements suggested that the optical band gap energy 

of InN is approximately ~1.1 eV at 10K. However, a high density of residual carriers in 



176 

 

the middle 1018 cm-3 range still exists in the film. For the determination of the accurate 

band gap energy of InN, however, further reduction in residual carrier concentration is 

needed. Also, there is a surface electron layer, which should be considered in the 

interpretation of optical PL data, since the surface accumulation layer itself is absorbing 

the exciting photons. The results suggest that the polarity of the substrate surface affects 

the defect incorporation during the growth and the subsequent structural and electrical 

properties of the InN layers. Further work is necessary to verify this understanding.  
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Figure 7. 7  PL spectra of Sample #209L at 10K. 
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Figure 7. 8 The value of α versus photon energy at room temperature in a wider 
energy range for sample #209L. At higher energies the curve shows a monotonic 
increase and then stays constant. 
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Chapter 8 

Conclusion and future Work 

8.1 Introduction 

The InN growth studies performed during this thesis showed that the HPCVD 

approach reduces the thermal decomposition of InN, which enabled the growth of InN 

layers at growth temperatures around 1100 K for reactor pressures of 15 bar. This thesis 

concentrated on the structural and optical properties of single crystalline InN films that 

were grown at different growth temperatures, on different substrates, and with varying 

V/III molar ratios. The relevant discussion is the crystalline quality, the variation in the 

optical absorption edge of InN, and free carrier concentration of InN film and their 

relation to the In:N stoichiometry. We correlated the in-situ real-time surface 

characterization (LLS) to the ex-situ X ray diffraction and AFM results to investigate the 

role of surface morphology. While excellent progress has been made in the crystalline 

quality of InN films to date, there is still more work required for defining the defect 

centers, the origin of the high free carrier concentration, and the origin of the surface 

electron accumulation layer. In this chapter, a summary of the structural properties, 

surface morphology, and optical properties are presented, future work is outlined.  

8.2 Surface morphology and structural properties 

The XRD analysis showed high-quality, single-phase InN based on InN(0002) 

Bragg peaks with FWHM around 200 arcsec for InN layers deposited on GaN epilayers. 
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The FWHM increases to about 490 arcsec for InN deposited on sapphire substrates, an 

affect attributed to due to the increase in lattice-mismatch. The structural characterization 

using XRD demonstrated that InN film grown under HPCVD have hexagonal wurtzite 

structure. Refined lattice parameters “a” and “c” were extracted from the XRD data, 

which compared well to the values in the literature. However, the c-axis lattice constant 

obtained from the (0002) InN XRD diffraction peak is 5.70 Å, which is close to the 

commonly accepted value that deviates from the unstrained InN film ±0.0015 Å. 

Broadening of FWHM of InN (0002) peak is observed with varying V/III ratio for a 

series of samples grown at fixed temperature and reactor pressure. The XRD results 

showed that InN films grown with lower ammonia:TMI molar ratio have better 

crystalline quality. No peak in the vicinity of 33° is observed for high quality InN thin 

films presented in this thesis study. However, a weak peak appears at 33° due to the 

increasing indium-to-nitrogen flux ratio. This observation strengthens the assignment of 

diffraction peak at 2θ~33°, which might be due to microscopic indium clusters, are 

present in the films. We have analyzed the structural properties of InN layers grown by 

HPCVD on polarity controlled GaN/sapphire substrate templates. It was found that high 

quality single crystalline InN films with a FWHM of 2Θ-ω scan of around 200 arcsec 

could be grown on Ga-polar GaN templates, while the FWHM increases for InN layers 

grown on N-polar GaN templates.  

The surface structure and chemical composition of InN samples were investigated 

using AES, HREELS and LEED. AES confirms the removal of the contaminants such as 

carbon and oxygen from the InN surface. LEED patterns taken from clean InN layers 

showed a clear hexagonal 1x1 pattern demonstrating the surface was well ordered and c-
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plane oriented. HREEL spectra taken at low incident electron energy demonstrated that 

the surface was N-H terminated and free of indium over-layers and droplets and that the 

film is InN )1000( . HREELS spectra also showed a shift to lower plasma frequency when 

electrons with larger penetration depths are used due to a higher electron concentration 

on the surface when compared with bulk InN. This result supports the presence of a 

surface electron accumulation. 

An AFM studies on InN surfaces reveals that some InN layers exhibit columnar 

hexagonal structures with diameters of ~300 nm to ~800 nm depending on the V/III ratio, 

growth time and growth temperature. InN films show that columnar structures were 

grown on sapphire substrates at temperatures of 1078 and 1090 K. Several of InN layers 

that exhibit hexagonal columnar structures show that disoriented columns with respect to 

each other and the c axis of the substrate. The surface roughness of InN samples grown 

on GaN templates is found to be lower (9 nm) compared to the samples grown on 

sapphire (~26 nm). The surface roughness of the InN samples has been correlated with 

the FWHM of the InN (0002) rocking curve suggesting that crystalline quality is 

improved if the surface topography is smoother. The appearance of a second phase InN 

(101) in InN film, which is attributed to In metallic clusters, makes the InN surface 

rougher commensurate with its increasing contribution in the XRD spectrum. We also 

observed the growth of three-dimensional hexagonal InN pyramids with up to 24 µm 

diameter. The appearance of such pyramids lead to the broadening of the XRD (0002) 

Bragg peak. The growth was observed to be two-dimensional at the earlier stage of InN 

growth often continues three-dimensional during the later stage of growth leading to 

hexagonal pyramid structures.  
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8.3 Optical properties 

Normal incidence optical transmission measurements were performed on a series 

of InN thin layers grown by HPCVD on sapphire substrates and GaN templates were 

performed. The optical properties of the InN films were modeled by approximating the 

transmission spectra using a Modified Model Dielectric Function approach. From this 

approach we were able to estimate the optical absorption edge and the absorption centers 

present in the InN layers. The best-fit algorithm indicated the presence of absorption 

structures centered around 1.1 eV, 0.8 eV and 0.5 eV. The analysis also showed that 

optical absorption edge in InN shifts below 1.1 eV as the free carrier concentration 

decreases in the 1018 cm-3 free carrier concentration range. The observed optical 

absorption edge shift to lower energy values might be caused by the absorption centers, 

whose origins are not clear at present. Our results indicate a direct correlation between 

the optical absorption edge and the two absorption centers confirms a close relation 

between the carrier concentration and the absorption centers in the InN layers. The 

absorption centers that appear at ~0.5 eV might be caused by unidentified deep defect 

states. The absorption centers at ~0.75 eV might be attributed to the either In clusters 

(Mie resonances) or the InN-related band to band transitions. 

The calculated optical absorption edge of the InN films was correlated with free 

carrier concentration in the layers extracted via IR-reflection spectra fittings. An 

exponential dependence is observed between the optical absorption edge and free carrier 

concentration. A correlation of these results to determine the true band gap energy of InN 

is at present not possible, since a further reduction in residual carrier concentration is 

needed. The sample with the lowest carrier concentration has an absorption edge situated 
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near 1.2 eV. The energy of the edge is a little higher than the ~1.1 eV expected value for 

the 6 × 1019 cm-3 carrier concentration, which takes into account the Burstein-Moss effect 

and assumes a band-gap ~0.7 eV. The average ε∞ value of these InN layers is around 

8±0.4, which is close to the theoretically predicted value of 8.4. IR reflection spectra 

analysis have been analyzed using, a two-layer model, which indicates the existence of a 

surface layer with a higher free carrier concentration than that of the inner layer. The 

required 2nd InN layer is estimated to have a free carrier concentration (below 5 × 1017 

cm-3). The surface roughness dependence of mobility and surface morphology suggests 

that the surface roughness of our InN films has to be significant improved in order to 

attain a high electron mobility. 

Two of the allowed optical phonon modes in InN are the hexagonal InN are E2 

(high) and A1 (LO), which are analyzed in more detail in the measured Raman spectra 

taken in back-scattering geometry. The peak positions of the observed E2 (high) and A1 

(LO) modes are in good agreement with the predicted values of 486 cm-1 and 591 cm-1. 

The FWHM of the E2 (high) line is 6.9 cm-1 indicates a high crystalline quality. The A1 

(LO) mode line shape analysis revealed the carrier concentrations in the range 8×1017-

1.6×1020 cm-3. The optical absorption edge behavior versus the free carrier concentration 

shows an exponential behavior in the free carrier concentration range 1017 cm-3<ne<1020 

cm-3.  

PL spectra of two InN samples with free electron concentrations of 6 ×1019 cm-3 

and 1×1020 cm-3 were observed. The FWHM of PL spectra increase with increasing free 

carrier concentration. The PL spectrum of InN with higher crystal quality is narrower and 
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can be fitted with three Gaussians at 0.8, 0.95 and 1.1 eV. The PL emission is in good 

agreement with the absorption edge at around ~1.1 eV.  

8.4 Open questions and future work 

The growth of InN layers under high-pressure CVD reactor system has provided 

very promising results. However, there is still significant work to be done in order to 

reduce or eliminate the uncertainties in the fundamental properties of InN. The InN band 

gap was believed to be 1.85 eV until 2000, but since been revised to approximately 0.7 

eV. One of the assumptions is that the band gap shift is related to the reduction of the free 

carrier concentration in InN. Since the free carrier concentration in the InN layers 

investigated in this thesis are still well above 1018 cm-3, further efforts are needed to 

reduce the free carrier concentration in the InN layers. Relevant questions that are still 

open are; 

• What is the origin of the high free carrier concentration? 

• How can the occurrence of the surface electron accumulation layer be 

suppressed? 

• What is the effect of surface electron accumulation layer on optical 

properties (PL,IR reflectance…) 

• How much improvement on the optical and structural properties of InN 

can be expected by going at even higher rector pressures? 

Further studies of InN layers grown by HPCVD are needed to correlate the point defect 

chemistry, growth temperature, and reactor pressure with the structural and optical 

properties of InN. The present integration of a two-stage nitrogen compressor will enable 

the future growth of InN layers for pressures up to 100 bar. Accessing the higher 
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pressures regimes might further stabilize the InN at elevated pressures, preventing 

thermal decomposition and improving the crystalline quality.  
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