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ABSTRACT 

THE EFFECT OF ALEKS ON STUDENTS‘ MATHEMATICS ACHIEVEMENT IN 

AN ONLINE LEARNING ENVIROMENT AND THE COGNITIVE 

COMPLEXITY OF THE INITIAL AND FINAL ASSESSMENTS  

by 

Eze N. Nwaogu 

For many courses, mathematics included, there is an associated interactive e-

learning system that provides assessment and tutoring. Some of these systems are 

classified as Intelligent Tutoring Systems. MyMathLab, Mathzone, and Assessment of 

LEarning in Knowledge Space (ALEKS) are just a few of the interactive e-learning 

systems in mathematics. In ALEKS, assessment and tutoring are based on the Knowledge 

Space Theory. Previous studies in a traditional learning environment have shown ALEKS 

users to perform equally or better in mathematics achievement than the group who did 

not use ALEKS. 

The purpose of this research was to investigate the effect of ALEKS on students‘ 

achievement in mathematics in an online learning environment and to determine the 

cognitive complexity of mathematical tasks enacted by ALEKS‘s initial (pretest) and 

final (posttest) assessments. The targeted population for this study was undergraduate 

students in College Mathematics I, in an online course at a private university in the 

southwestern United States. The study used a quasi-experimental One-Group non-

randomized pretest and posttest design.  

Five methods of analysis and one model were used in analyzing data: t-test, 

correlation analysis, simple and multiple regression analysis, Cronbach‘s Alpha 

reliability test and Webb‘s depth of knowledge model. A t-test showed a difference 

between the pretest and posttest reports, meaning ALEKS had a significant effect on 



 

 

students‘ mathematics achievement. The correlation analysis showed a significant 

positive linear relationship between the concept mastery reports and the formative and 

summative assessments reports meaning there is a direct relationship between the 

ALEKS concept mastery and the assessments. The regression equation showed a better 

model for predicting mathematics achievement with ALEKS when the time spent 

learning in ALEKS and the concept mastery scores are used as part of the model. 

According to Webb‘s depth of knowledge model, the cognitive complexity of the 

pretest and posttest question items used by ALEKS were as follows: 50.5% required 

application of skills and concepts, 37.1% required recall of information, and 12.4% 

required strategic thinking: None of the questions items required extended thinking or 

complex reasoning, implying ALEKS is appropriate for skills and concepts building at 

this level of mathematics.  
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CHAPTER 1 

INTRODUCTION 

With the introduction of computers in the 1980s and 1990s, methods of teaching 

and learning basic mathematics have undergone several changes. The current trend of 

distance learning across most subject areas involves using computers, the Internet, and 

online interactive learning technologies. This trend has led to an explosion of online 

courses and programs across colleges and universities in the United States. For many 

online courses, there is an associated interactive e-learning system that plays the role of a 

tutor and instructor. A good example is Student Assessment Manager (SAM), which 

provides instruction and tutoring on basic computer applications in word processing, 

spreadsheet, database, and graphics presentation.  

The number of courseware programs in the educational software industry has 

extensively increased in the past 10 years. In particular, there are many hypermedia 

courseware resources available in the market for almost every educational subject 

(Elissavet & Economides, 2003). Some of these interactive e-learning systems are 

classified as Intelligent Tutoring Systems (ITSs). An ITS assesses and tutors students in 

different subject matters. In particular, undergraduate mathematics has several popular 

web-based interactive learning systems, such as MyMathLab (MML), Mathzone, and 

Assessment of LEarning in Knowledge Spaces (ALEKS). 

As an undergraduate mathematics instructor, I have facilitated online math classes 

for several years using various ITSs, and during this period I have seen student successes 

and failures in mathematics achievement. Some students have achieved high grades with 

the use of ITS, while other students have withdrawn or done very poorly in the course. 
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One of the ITSs I have used is ALEKS. ALEKS claims to have based its assessment and 

teaching strategy on Knowledge Space Theory (KST). ALEKS also claims to reveal the 

knowledge state of a learner and provide instruction based on that knowledge (ALEKS, 

2010). ALEKS is used at several higher institutions and public schools. Results of 

mathematics achievement at institutions such as Louisiana Technical University (2006), 

Black Hills State University (2005) and University of Memphis (2008) indicate that 

learning is very efficient because of the accuracy of the assessment (Falmagne, Cosyn, 

Doignon, & Thiery, 2004). Also, ALEKS has been shown to help less prepared students 

reach success in beginning algebra (Allen, 2007). Because of ALEKS‘s reported success 

and my experience as a mathematics instructor observing the learning outcomes of 

student enrolled in my course, I became interested in investigating the effect of ALEKS 

on mathematics achievement.  

In this chapter, I discuss the background of the proposed study, the problem 

statement, rationale, the theoretical framework, and the operational definition of terms. 

The background of the study includes technology enhancements, computers, and distance 

education institutions while the problem statement and rationale look at issues facing the 

achievement in mathematics. Finally, the theoretical framework introduces the main 

theories that underlie this research study. Operational definitions of terms describe terms 

that apply to this research study. 

Background of the Study 

Technology Enhancement 

In the 1980s, the major drawback for implementing interactive learning systems 

was not only the sluggishness of the Internet but also the slowness of Internet-accessing 
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technologies. However, in recent years, the introduction of high-speed fiber optic 

network and the use of broadband technology like DSL and cable-modem in residential 

areas have made accessing and navigating the Internet much faster. According to U.S. 

Federal Communications Commission (2011), Internet connections are growing fast. For 

example, the number of connections over 200 kbps in at least one direction increased by 

28% in 2010 to nearly 169 million. Furthermore, other recent technologies like WI-FI 

and dish antennas have made it easier to access and use web-based interactive learning 

systems on the Internet. This technological growth has resulted in development and the 

use of various applications for online learning.  

Computers and Distance Education Institutions 

Personal Computers (PCs) in use reached nearly one billion units worldwide at 

year-end in 2006. The United States continues to lead the world in PC use and the total 

number of Internet users. With only 4.6% of the world‘s population, the United States 

accounts for over 24% of all PCs in use (Juliussen, 2007). The United States retains a 

large PC-usage lead with over three times as many PCs as the second place nation, Japan. 

The proliferation of computers has led to the explosion of online courses.  

With the global increase in PC use, many people are using the Internet for 

different purposes, and the United States is leading the pack. The number of Internet 

users worldwide surpassed 1.2 billion in 2006—up from only about 2 million in 1990, 45 

million in 1995, and 430 million in 2000. Worldwide yearly increase in Internet users is 

predicted to be 140 to 145 million in the next 5 years, which means the 2-billion mark 

will likely occur in 2012. Many of these users focus on academics.  
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According to the U.S. Department of Education‘s National Center for Education 

Statistics, during the 12-month 2000–2001 academic year, 56% (2,320) of all 2-year and 

4-year Title IV-eligible, degree-granting institutions offered distance education courses 

for any level or audience (i.e., all types of students, including elementary and secondary, 

college, adult education, continuing and professional education; U.S. Department of 

Education, 2003). The next section discusses the issues surrounding the teaching and 

learning of mathematics online. 

Problem Statement 

Based on personal and professional experience and a review of related research, I 

began this research with the assumption that there are problems facing the learning of 

basic mathematics. One such problem is that mathematics is explained by strict rules and 

axioms (Stemhagen, 2003). Even in the traditional mathematics classroom, students have 

a difficult time following these rules. Online students face even greater challenges 

because in most circumstances they are learning the concepts on their own through the 

use of computer based systems. Depending on the effectiveness of the computer-based 

system, many students learning mathematics online either withdraw or receive poor 

grades. Smith and Ferguson (2005) showed large differences between average attrition 

rates for mathematics versus non-mathematics online courses (0.30 versus 0.18). Clearly, 

there is a need for the evaluation of these computer-based learning systems to determine 

their effects on learning, and this study addressed that need. Flag (1990) noted that 

systematic evaluation of the effectiveness of computer-based education (CBE) in all its 

various forms (including integrated learning system, interactive multimedia, interactive 

learning environments, and micro worlds) often lags behind in development efforts.  
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Although there are several reasons for this lack of evaluation, one important 

reason is that consumers of technological innovations for education seem to assume that 

because these innovations are advertised as effective, they are effective (Revees, 1997). 

Because the instructional impact of an ITS is dependent on how well it was designed, 

formative and summative evaluation of an ITS is important (Polson & Richardson, 1988). 

Most of the evaluation on the ITS is based on its sufficiency rather than its educational 

impact or effect on teaching and learning (Corbett, Koedinger, & Anderson, 1997). 

According to Mark and Greer (1993), as intelligent tutoring system issues are 

investigated and ITS are developed, evaluation methodology becomes important, and, 

until recently, little attention has been paid to evaluation of intelligent tutoring systems. 

As a result, educational evaluation of ITS like ALEKS is important to determine its effect 

on teaching and learning of mathematics. So the question becomes, ―What is the effect of 

ALEKS on students‘ mathematics achievement?‖ 

Another issue facing the learning of mathematics is the lack of higher level 

cognitive complexity for mathematical tasks that are used in assessment items. Lower 

level cognitive-demanding mathematical tasks would lead to plain memorization of 

mathematics concepts. Zelkowoski (2009) noted that little learning is accomplished by 

only incorporating low-level cognitive tasks into teaching and assessment. Stein, Grover 

and Henningsen (1996) emphasized the importance of incorporating cognitively 

demanding mathematical tasks because of their impact on student learning. The 1999 

Trends in International Mathematics and Science Study, which looked at the ways that 

mathematics instruction differs among seven countries, found that the United States (the 

lowest performer in the study) rarely enacted tasks at a high level of cognitive demand 
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(Zurawsky, 2006). To learn mathematics and make connections between concepts and 

meanings, educators must present mathematical tasks or assessment items to the students 

using a higher level cognitive demand than at present. Therefore, determining the cogni-

tive complexity of the pretest and posttest assessments used by ALEKS in this study is 

important.  

Rationale for the Study 

Current research on the effectiveness of ALEKS (Allen 2007; Hagerty & Smith, 

2005; Hampikian et al., 2006; Hanna & Carpenter, 2006; Lavergne, 2007; Taylor, 2008) 

has shown an increased average success learning rate in different learning contexts and 

subject. However, most of these studies conducted on ALEKS have been on its use as a 

supplemental or remediation tool in a traditional, web-enhanced or hybrid environment. 

These learning environments have the potential of exposing the students to other sources 

of additional math tutoring beside ALEKS. Also, none of the previous research studies 

investigated the complexity of mathematical tasks enacted by ALEKS in the pretest and 

posttest assessments. Thus, this study was designed to look at the effect of ALEKS on 

mathematics achievement in an online learning environment and the cognitive 

complexity of the pretests and posttests.  

Significance of this Study 

This study is significant for four reasons. Online courses and their associated 

intelligent tutoring systems are growing across disciplines; hence, the findings of this 

research will inform instructional designers, faculty teaching mathematics online, 

students learning mathematics online and concerned administrators.  
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First, knowing the effect of ALEKS on students‘ mathematics achievement will 

help instructional designers incorporate ALEKS in their design of online mathematics 

courses.  

Second, faculty armed with information on the effect of ALEKS on students‘ 

mathematics achievement and the cognitive complexity of mathematical task enacted by 

ALEKS in the pretest and posttest assessments will be in a better position to guide 

students‘ learning during their online learning experience.  

Third, students are more likely to gain in learning and retaining mathematical 

knowledge when the decision to adopt an ITS for teaching and learning mathematics 

online is based on research.   

Fourth, the findings will also provide useful information for the administrators 

interested in increasing retention through reducing attrition rate in mathematics courses 

taught online.  

Purpose of the Study 

A number of studies show that ALEKS users have performed equally or better in 

mathematics achievement than the group who did not use ALEKS (Allen, 2007; Hagerty 

& Smith, 2005; Hampikian et al., 2006; Hanna & Carpenter, 2006; Hu et al., 2008; 

Lavergne, 2007; Taylor, 200). However, none of these studies have specifically 

investigated the effect of ALEKS on students‘ achievement in mathematics in online 

environments or investigated the complexity of mathematical tasks enacted by ALEKS in 

the pretest and posttest assessments. Hence, the purpose of this research was to 

investigate the effect of ALEKS on students‘ achievement in mathematics in an online 
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environment and to determine the cognitive complexity for mathematical tasks enacted 

by ALEKS‘ pretest and posttest assessments. 

Research Questions and Hypothesis Testing 

This research tested one null hypothesis and attempted to answer two questions.   

Hypothesis 

H0: There is no difference between students‘ achievement as measured by 

students‘ scores on pretest (Baseline Assessment) and posttest (Final 

Assessment) from ALEKS. 

Question I 

What are the factors contributing to students‘ mathematics achievement in using 

the ALEKS? 

1. Is there a relationship between weekly Concept Mastery and the 

achievement score in weekly formative assessments? 

2. Is there a relationship between the Time Spent in ALEKS per week and 

the achievement score in weekly formative assessments? 

3. Is there a relationship between the Total Time Spent in ALEKS and Final 

Concept Mastery? 

4. Is there a relationship between the final Concept Mastery score and the 

Posttest? 

5. Is there a relationship between the Total Time Spent in ALEKS and the 

Posttest scores? 



9 

 

Question II 

What is the cognitive complexity of mathematical tasks enacted by ALEKS on the 

pretest and posttest assessments? 

Theoretical Framework 

The theoretical framework that guided this study was based on Falmagne, Cosyn, 

Doignon, and Thiery‘s (2004) Knowledge Space Theory (KST) and Norman Webb‘s 

(1997) Depth of Knowledge (DOK). This section will discuss these theories and the 

reason for selecting them for this study. 

Knowledge Space Theory 

By default, KST is the framework underlying ALEKS‘s design. KST explains 

how to reveal a learner‘s knowledge structures and achievement in a particular subject 

domain, in this case mathematics (Falmagne et al., 2004). The two major concepts of 

KST are the ‗knowledge state,‘ a particular set of problems or skills that some individual 

is capable of solving or performing correctly, and the ‗knowledge structure,‘ which is a 

collection of these knowledge states (Conlan, O'Keeffe, Hampson, & Heller, 2006). 

Before learning commences, ALEKS uses the principles of the KST to determine the 

knowledge state of the student in the subject domain and ultimately creates a knowledge 

structure from that knowledge state. 

Depth of Knowledge (DOK) 

 Adopted to guide the analysis of ALEKS‘ pretest and posttest assessments‘ 

cognitive complexity is Webb‘s (1997) Depth of Knowledge. DOK is the degree of depth 

or cognitive complexity of knowledge required by standards and assessments; cognitive 

complexity refers to the cognitive demand of tasks associated with the standards (Florida 
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Department of Education, 2008). There are different DOK for different content areas. 

The content area for this research study is introductory college algebra. The DOK 

descriptors for mathematics are shown in Appendix A.  

 There are four levels of depth of knowledge for mathematics: Level one – Recall; 

Level two-Basic Application of Skills and Concept; Level three-Strategic Thinking; and 

Level four-Extended Thinking (Webb, Depth of Knowledge Levels for Four Content 

Areas, 2002). These levels are used to ensure that the intent of the standard and the level 

of student demonstration required by that standard match the assessment items. As 

further discussion will show, each level of the depth of knowledge is similar to Bloom‘s 

(1956) taxonomy of learning and the cognitive demand for mathematical task of Stein, 

Smith, Henningsen, and Silver (2000). DOK descriptor was used to determine the 

cognitive complexity of mathematical tasks enacted by ALEKS in pretest-posttest 

assessment. 

Finally, the goal for using the DOK models to frame this research study was to 

provide explanation for cognitive skill assessment used by ALEKS and to determine the 

cognitive complexity of mathematical tasks enacted by ALEKS on the pretest and 

posttest assessments. 

Operational Definitions of Terms 

College Mathematics I 

This course is the first half of the college algebra sequence, which is completed in 

College Mathematics II.  

Doing Mathematics 
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This is work that involves mathematical tasks that require complex and non-

algorithmic thinking. 

Final ALEKS Concept Mastery Report  

The ratio of the number of the total topics learned for the course to the total 

number of topics assigned for the course expressed in percentage. 

Formative Assessment  

Weekly quizzes administered by ALEKS at the end of each week. 

Hypermedia 

 This is a hypertext which is not constrained to be text: it can include graphics, 

video and audio. 

Hypertext 

 This is a text which contains links to other texts. 

Intelligent Tutoring System (ITS)  

According to Polson and Richardson (1988), an ―Intelligent Tutoring System 

(ITS) is a computer program that: 1) is capable of competent problem solving in a 

domain, 2) can infer a learner‘s approximation of competence: and 3) is able to reduce 

the difference between the competence of ITS and that of the student through application 

of various tutoring strategies. 

Online Learning Environment 

This term describes education that occurs only through the Web. That is, it does 

not consist of any physical learning materials issued to students or actual face to face 

contact. Purely online learning is essentially the use of eLearning tools in a distance 

education mode using the Web as the sole medium for all student learning and contact. 
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Online Learning System (OLS) 

An Online Learning System (OLS) is a learning management system that can be 

any form of educational material, which is readily available for distribution on the Web 

or privately over an internal network. 

Posttest or Summative Assessment 

This is ALEKS‘ Final Assessment (scheduled assessment) administered at the end 

of the course.  

Pretest 

This is ALEKS‘ Initial Assessment administered at the beginning of the course 

before learning begins. 

Ready to Learn 

This is the most efficient path provided by ALEKS to the student in order to 

master the domain of learning.  

Summative Assessment  

ALEKS‘ final assessment or posttest assessment administered at the end of the 

course. 

Total Time in ALEKS Report  

The total number of hours spent learning in ALEKS for the course. 

Weekly ALEKS Concept Mastery Report  

The ratio of the number of topics learned for the week to the total number of 

topics assigned for the week expressed in percentage. 

Weekly Time in ALEKS Report  

The number of hours spent learning in ALEKS per week. 
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Summary 

 The purpose of this chapter was to discuss the role of computers in distance 

education, the problem statement and rationale for the study, the significance of this 

study and the purpose of the study, theoretical framework and operational definitions of 

terms used. The advancement of the Internet technologies has promoted distance 

education and the use of Internet Intelligent Tutoring Systems such as ALEKS in 

teaching and learning. ALEKS has provided a medium for the teaching and learning of 

mathematics. With all the challenges facing the teaching and learning of mathematics, the 

use of ALEKS has shown to be effective to students learning mathematics traditionally 

and in a hybrid learning environment. 

This study was focused on students who were studying mathematics in an online 

environment. I investigated the effect of ALEKS on students‘ mathematics achievement 

and in addition determined the cognitive complexity for mathematical tasks enacted by 

ALEKS in pretest and posttest assessments.  

The skill assessment technology used in ALEKS is based on KST; thus, the 

cognitive complexity for mathematical tasks enacted by ALEKS on the pretest and 

posttest assessments was determined by using the DOK model. Finally, to facilitate the 

collection of meaningful data, the operational definition section described terms as it 

applies to this research study. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

The purposes of this chapter are to establish the importance of the study and to 

provide a benchmark for comparing the results of this study. Hence, the review of 

literature starts by looking at the conceptual framework of the theory and model that 

frames this research: Knowledge Space Theory (KST) and Norman Webb‘s Depth of 

Knowledge Model (DOK). Then from the instructional design perspective, I discuss task 

analysis as it pertains to this research study. I also identify Computer Based Learning 

Environments in Mathematics; describe the ITS, ALEKS; and discuss the use of ALEKS 

in teaching and learning mathematics and related subjects at different institutions.  

KST and DOK Model 

A theoretical framework serves as a basis for conducting research, while a 

conceptual framework shows the operationalization of such theories (Khan, 2007). This 

research study was framed by KST and DOK models: KST explains how to reveal a 

learner‘s knowledge structures and achievement in a particular subject domain while 

Depth of Knowledge provides the degree of depth or cognitive complexity of knowledge 

required by standards and assessments. In this section, I discuss KST, the DOK model, 

task analysis and their operationalization in this study.  

Knowledge Space Theory 

In 1985, Falmagne, Doignon, and associates developed a theory of knowledge 

representation called Knowledge Space Theory. KST is based on precedence relation. It 

is evident, especially in mathematics, that some levels of knowledge normally precede 

other levels because of prerequisite requirement, logical steps or pedagogical ease. 
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According to Falmagne et al. (2004), precedence relation may be used to design effective 

and efficient assessment mechanics. There are three assumptions in precedence relations: 

1. From mastery of one problem, the mastery of other problems is assumed or 

―surmised.‖ 

2. Dependency relations exist between problems of a set. 

3. If a learner is capable of mastering a problem d, then he or she will also be 

capable of mastering problems b and c. (see Figure 1) 

KST-based System 

 Besides ALEKS, another KST based system is the Relational Adapting Tutoring 

Hypertext (RATH). RATH version 0.1 is a prototype for a Relational Adaptive Tutoring 

Hypertext in WWW-Environment (Hockemeyer, Held, & Albert, 1998). According to 

Hockemeyer et al., Relational Adaptiving Tutoring Hypertext combines mathematical 

models for the structure of hypertext with the theory of Knowledge Spaces from 

mathematical psychology; it uses prerequisite relationship and items in the domain 

knowledge and student‘s current knowledge state to present the student with links in a 

hypertext document for which the student fulfills the prerequisite relationship. 

Consequently, the student should be able to understand the information provided by the 

linked sites. This first prototype of RATH was applied to the field of elementary 

probability theory.  

Application of KST in Science 

Tóth (2007) used KST analysis to answer the following research question: Is there 

any similarity or difference between the students‘ groups from two different secondary 

schools in the cognitive organization of the basic concepts of density, mass percent,  
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Figure 1. Precedence diagram for four types of algebraic skills. Precedence relations 

between problems are represented by downward arrows. Problem (d) is preceded by 

problems (b), (c), and (a). The mastery of problem (d) implies the mastery of (b), (c), and 

(a). 

molar mass, molar volume and their application in calculations? The first group used 

KST to map students‘ knowledge structures in calculating density, mass-percent; molar 

mass and molar volume while the second group learned the concepts of density, molar 

mass, molar volume and mass percent by rote-learning using mnemotechnics. With the 

first group, there was a strong connection between the concepts of density, molar mass, 

molar volume and the calculation of gas volume, while with the second group there was 

no such connection. The research concluded that the reason for this disconnected 

cognitive structure is the difference in the learning method between the two groups. 

Taagepera et al. (1997) used KST analysis to construct students‘ knowledge 

structures and suggested tentative critical learning pathways for each of three concepts 

(pressure, density and conservation of matter). For pretest, the same multiple-choice 

questions were administered to all (4th through 12th graders) before the topics were 
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formally taught and a posttest was given to the same grade levels. KST analysis was used 

to construct knowledge structures and suggested learning path. The result found KST as a 

valuable quantitative assessment method for evaluating and suggesting the most feasible 

learning pathways taken by the students. 

Arasasingham et al. (2004) used KST to assess student understanding of 

stoichiometry by examining the ability of beginning college chemistry students to make 

connections among the molecular, symbolic, and graphical representations of chemical 

phenomena, as well as to conceptualize, visualize, and solve numerical problems. 

Students took a test designed to follow conceptual development; the cognitive 

organization of the material or thinking patterns was analyzed by applying knowledge 

space theory. The results indicated that KST was a useful tool for revealing various 

aspects of students' cognitive structure in chemistry and could be used as an assessment 

tool or as a pedagogical tool to address a number of student-learning issues. 

Illustration of Knowledge State 

In KST, an Item is considered the basic unit of knowledge. In this research study, an Item 

could be a mathematics problem requiring varying skills of difficulty, a set of math 

problems, tasks like graphing, or an applied problem or problems. A body of knowledge 

consists of a set of items called a Domain. An example of a Domain would be an 

instructional unit, such as lesson, topic or subtopic with a learning goal. The following 

example of learning the quadratic formula concept illustrates this concept of KST (see 

Table 1). As is shown in later sections, the terms state, use, apply and integrate would be 

similar to knowledge, comprehension, analysis and evaluation levels of Bloom‘s 

taxonomy of learning. 
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Table 1 

Four Types of Skills in Learning the Quadratic Formula  

a. b. c. d. 

State Quadratic 

formula 

Use Quadratic 

formula 

Apply Quadratic 

formula 

Integrate Quadratic 

Formula 

 

The student's knowledge state is defined as the collection of items the student is 

capable of performing (Giovanni, Roberto, & Riccardo, 2008). For example, the 

knowledge state (a, b, c) corresponds to a student who can perform Items a, b and c but 

who cannot perform Item d. Not all subsets of items are considered to be feasible states 

(Villano & Bloom, 1992). For example, if a student is capable of performing Item d then 

one may be able to infer that the student can perform (Item b) and thus, any state that 

contained Item d would contain Item b also. One also might not expect to find a student 

who could perform Item d but none of the other items; thus (d) would not be considered a 

feasible state. The collection of all feasible states is called the knowledge structure. A 

knowledge structure must contain the null state, Ø, which corresponds to the student who 

fails all the items, and the domain (Q), which corresponds to the student who has 

mastered all the items. An important special case of a knowledge structure called 

Knowledge Space occurs when the collection of knowledge states is closed under union 

(Albert & Hockemeyer, 1997a). The application of the knowledge space framework for 

skill assessment and tutoring makes it possible to obtain learning paths that describe the 

knowledge paths from the total novice learner through the knowledge space to the 

complete expert of the given domain. A student is capable of changing its knowledge 

state by following a learning path (Giovanni et al., 2008). 
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An analysis of the precedence diagram shows there are six different feasible 

knowledge states induced by the surmised relationship: K = { Ø, {a}, {ab}, {abc}, 

{abcd}, Q} 

Learning Paths 

The knowledge structure allows several learning paths. An example of possible 

learning paths to this knowledge structure for the four items a, b, c, d are 

1: {Ø}  (a)  {a, b}  {a, b, d}  {a, b, d, c}. 

2: {Ø}  (a)  {a, b}  {a, b, c}  {a, b, c, d}. 

3: {Ø}  (a)  {a, c}  {a, c, d}  {a, c, d, b}. 

4: {Ø}  (a)  {a, c}  {a, c, b}  {a, c, b, d}. 

Outer Fringe of a Knowledge State 

With the exception of the topmost knowledge state in the knowledge structure, 

each knowledge state has at least one immediate successor. For example, the knowledge 

state abc in the knowledge structure k, has abcd as immediate successor. In this case, the 

item d is considered an outer fringe of abc. Teaching, learning and knowledge acquisition 

take place in the outer fringe.  

Inner Fringe of a Knowledge State 

Also with the exception of the empty state, each knowledge state has at least one 

predecessor state which is the state containing exactly the same problems except one. For 

example, the knowledge state abc has ab as predecessor. The item c is considered an 

inner fringe of the knowledge state abc. If a student is having a problem mastering the 

outer fringes, reviewing the previous states takes place in the inner fringes.  
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Validation of Knowledge Spaces 

To build knowledge structures, subject matter experts such as teachers and text-

book writers are questioned for prerequisite relationships. Using a computer-aided 

procedure, the experts are queried on prerequisite relationships in learning objectives 

from the particular concept. From the judgments of each expert, a precedence diagram 

and a knowledge space representing these prerequisite relationships are derived. The 

experts' knowledge spaces are integrated subsequently into knowledge spaces 

representing only those prerequisite relationships on which all, or a majority, of the 

experts agreed. For validating subspaces of these knowledge spaces, test data from actual 

students are collected and used to refine the knowledge structure obtained from the 

experts. The results from querying the experts and from the validation study are used to 

advance application of these knowledge spaces for knowledge assessment of students 

(Baumunk & Dowling, 1997). 

Uncovering Knowledge State in a Knowledge Structure 

With the knowledge space in place, the students are subjected to an assessment 

procedure with specific questioning and updating rules to help uncover their knowledge 

states. Each response (Correct, Incorrect, or Don‘t Know) increases or decreases the 

likelihoods of certain knowledge states. The system at the same time keeps track of the 

uncertainty of the assessment system regarding the student‘s knowledge state. When 

there are no more useful questions left to ask and the uncertainty of the assessment 

system regarding the student‘s knowledge state is at its lowest, the assessment stops and 

the computer selects the most likely knowledge state for the student. When there is no 

more useful question, it means that all problems have either a very high probability or a 
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very low probability of being answered correctly. This process ensures that few know-

ledge states are left to be selected. Because of the random nature of the assessment, it is 

very likely that the selected knowledge state may contain problems to which the student 

gave a false response because of careless errors. Additionally, all problems are open-

ended (no multiple choice), with multiple possible solutions, and minimal correct 

guesses. 

In summary, KST shows how to capture a learner‘s knowledge state for 

instructional intervention. KST can be used for the assessment of misconceptions and 

mental states for guidelines, for a description of knowledge acquisitions and for the 

definition and design of intelligent tutoring system (Lukas & Albert, 1999). Because 

ALEKS uses KST to access students‘ knowledge before providing instructional 

intervention, it is a KST-based system.  

Norman Webb’s DOK Model 

Norman Webb (2002) of the Wisconsin Center for Educational Research, 

University of Wisconsin–Madison stated that the alignment of the content standards for 

student learning with assessments for measuring students‘ attainment of these 

expectations is an essential component of an effective standards-based education system. 

Project Lead the Way (PLTW) (2008) used Webb‘s DOK to complete a depth of 

knowledge analysis on a course called Introduction to Engineering Design (IED). 

Minnesota Department of Education (MDE; 2007), Idaho Mathematics Content 

Standards (2007) and Florida Department of Education (FDE; 2008) have adopted the 

DOK model in the different content areas. This section discusses how the DOK model 
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was used in the IED‘s depth of knowledge analysis and the alignment of standards and 

assessments at different school districts.  

PLTW (2008) used Webb‘s DOK model to complete a depth of knowledge 

analysis on an IED course. The analysis is intended to provide feedback to PLTW leaders 

regarding the relative level of cognitive rigor promoted as established in the course 

objectives. According to PLTW (2008), all course objectives were reviewed to identify 

those objectives that most emphasized mathematics and/or science concepts and skills. 

Eventually nationally recognized standard frameworks for both science and mathematics 

were used to guide the categorization process. In the original analysis each course 

objective was assigned a score using Webb‘s (1997, 2002) Depth of Knowledge model. 

Using descriptive statistics, the DOK levels assigned to objectives on 

mathematics or science were analyzed. The result showed that out of 168 objectives in 

the IED course, 108 (64.28%) were identified for emphasizing one or more of the 

mathematics standards established by the National Council of Teachers of Mathematics 

(NCTM); 114 (67.85%) objectives were identified for emphasizing one or more of the 

stated science standards established by the National Research Council. 

The MDE alignment study of its Minnesota Comprehensive Assessment-II 

(MCA-II) for grades 3-8 and 11 used procedures based on the DOK‘s alignment model 

developed by Webb (1997). The methodology for this alignment used an independent 

panel of experts to examine MCA-II tests in mathematics and the corresponding state 

content standards for mathematics. The state benchmarks and core test items from the 

MCA-II math tests were rated at three different cognitive levels followed by a mapping 

of a test item to each benchmark. These ratings were variously applied to four alignment 
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criteria: cognitive consistency, categorical concurrence, range-of-knowledge, and 

balance-of-representation. According to the report, Cognitive consistency compared 

coded ratings of cognitive complexity in each content standard and test item, while 

Categorical concurrence provided a very general indication of whether both tests and 

standards incorporate the same content. Range-of-Knowledge was used to examine 

whether a comparable span of knowledge expected of students by a standard is the same 

as, or corresponds to, the span of knowledge that students need to correctly answer the 

assessment items. Balance-of-Representation was used as a proportional index that 

represents the distribution of content domains between content standards and assess-

ments. The results showed that the 2006 MCA-II were highly aligned for categorical 

concurrence and range-of-knowledge but alignment for cognitive consistency and 

balance-of-representation had mixed results. 

Idaho Mathematics Content Standards (2007) report consists of a description of 

the four criteria used to judge the alignment between grades 3 through 8 and 10 Idaho 

content standards, and the test questions found in the mathematics Idaho Standards 

Achievement Tests (ISAT). According to the report, the mathematics content standards 

were used to describe the expectations for what students are to know and do. The 

reviewers determined the alignment of test questions to the five content standards using 

DOK‘s model as the platform for the alignment; the final results of this study indicated 

that there was alignment between the Idaho mathematics Grade 3 through 8 and 10 

content standards, goals, and objectives and the mathematics ISAT. 

The Florida Comprehensive Assessment Test (FCAT; 2008) is based on DOK 

Cognitive complexity, or the cognitive demand associated with an item. According to the 
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report, in the early years of the FCAT program, the FDE used Bloom‘s Taxonomy to 

classify test items but changed in 2004 to a new cognitive classification system based 

upon Webb‘s DOK levels. The rationale behind classifying items by their level of 

complexity is to focus on the expectations of the item, not on the ability of the student. 

The result of this classification is that items are chosen for the FCAT based on standards 

and grade-level appropriateness, but the complexity of the items remains independent of 

the particular curriculum a student has experienced.  

The FCAT report identified three categories: low complexity, moderate 

complexity, and high complexity to form an ordered description of the demands an item 

may make on a student. Low complexity items may require a student to solve a one-step 

problem; moderate complexity items may require multiple steps, while high complexity 

items may require a student to analyze and synthesize information. These distinctions 

made in an item complexity ensure that items will assess the depth of student knowledge 

at each benchmark. 

Webb (1997) has developed a process for aligning standards and assessments; in 

addition, the process and criteria have demonstrated application on analyzing the depth of 

knowledge and reviewing of curricular alignment as well as cognitive rigor in assessment 

items. Webb‘s body of work offers the Depth of Knowledge (DOK) model a platform 

employed to analyze the cognitive expectation demanded by standards, curricular 

activities and assessment tasks (Webb, 1997). DOK‘s model is based upon the 

assumption that curricular elements may all be categorized based upon the cognitive 

demands required to produce an acceptable response and that each grouping of tasks 
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reflects a different level of cognitive expectation, or depth of knowledge, required to 

complete the task (PLTW, 2008).  

Hence, I selected the DOK model as a basis for use in this research study for 

several reasons. It can answer the question ―What is the cognitive complexity of 

mathematical tasks enacted by ALEKS on the pretest and posttest assessments?‖ The 

DOK model focuses on complexity rather than difficulty of a test item. For example, a 

level one task can ask the student to recall or restate a more complex concept making the 

latter more difficult. The rationale for classifying items by their level of complexity is to 

focus on the expectations of the item, not the ability of the student (Florida Department of 

Education, 2008). 

According to Hess (2008), depth of understanding of a concept is required to be 

able to explain how/why a concept works (level two), apply it to a real world situation 

with justification and supporting evidence (level three), or to integrate one concept with 

other concepts or other perspectives (level four). Consequently, DOK levels are used by 

schools districts to develop curriculum materials and performance assessments to 

demonstrate learning. 

In addition to DOK‘s four levels, the model also defines four alignment criteria: 

DOK consistency, categorical concurrence, range-of knowledge correspondence, and 

balance of representation (Webb, 2002, p. 3). Webb defined alignment as the degree to 

which expectations and assessments are in agreement and serve in conjunction with one 

another to guide the system toward students learning of what they are expected to know 

and do. For the purpose of this study, Webb‘s criterion of DOK consistency is used. 

According to Webb (2002), DOK consistency between content standards and test items 
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indicates alignment if what is elicited from students on the test is as demanding 

cognitively as what students are expected to know and do as stated in the content 

standards. In this research study, I looked at whether what is elicited in the pretest and 

posttest items was as cognitively demanding as what the students were expected to know 

or do. 

Hence, in this research study, the cognitive complexity of pretest and posttest 

items was determined by aligning the pretest and posttest items with Webb‘s (1997) 

DOK levels. In the next section, I discuss Webb‘s (1997) DOK cognitive domain, Stein, 

Smith, Henningsen, and Silver‘s (2000) cognitive demand for mathematical tasks, and 

Bloom‘s (1956) taxonomy. 

Cognitive demand addresses the kind of thinking processes involved in solving a 

given task (Zurawsky, 2006). In mathematics, these thinking processes include memori-

zation, the use of procedures, algorithms and formulas, and complex thinking and reason-

ing strategies that would be typical of ―doing math,‖ such as conjecturing, justifying and 

interpreting (Henningsen & Stein, 1997). Stein et al. (2000) defined cognitive demand for 

a mathematical task as ―the kind and level of thinking required of students in order to 

successfully engage with and solve the task‖ (p. 11). The model of Stein et al. delineates 

four categories of cognitive demand for tasks: lower-level demands of Memorization and 

Procedures without Connections, and higher-level demands of Procedures with 

Connections and ―Doing Mathematics.‖ ―Doing Mathematics‖ is more than mere 

calculations and deductions; it includes observation of patterns, testing of conjectures and 

estimation of results (Schoenfeld, 1992).  
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Bloom's (1956) taxonomy is a classification system of educational objectives 

based on the level of student understanding necessary for achievement or mastery. Bloom 

and colleagues have suggested six different cognitive stages in learning. These categories 

are Knowledge, Comprehension, Analysis, Application, Synthesis, and Evaluation. For 

the purpose of this research study, Table 2 shows that different learning objectives as 

shown by Bloom require different cognitive demands for mathematical tasks and 

different cognitive complexity levels of Norman Webb‘s Depth of Knowledge. 

Because of the dependence relationship in mathematics, it is important that the 

learning objective of every concept/topic be in higher percentage. In this study, ALEKS 

uses the Concept Mastery Report (percentage indicating the mastery of concept/topic) to 

show the level of mastery of each student before advancing to the next concept/topic. The 

expectation is that outstanding concept mastery would reduce frequent reviewing of 

previous concepts and increases the student‘s progression along the learning path 

provided by ALEKS. Those students with good mastery of the previous concept/topic are 

likely to succeed in the next concept/topic. One of the objectives of this study is to show 

the relationship between Concept Mastery (ALEKS Mastery Report), Quizzes and 

posttest. 

In summary, the operationalization of these theories that form this research shows 

that ALEKS is a KST-based system. DOK levels provide a platform to determine the 

cognitive complexity of pretest and posttest items. Additionally, similarities have been 

shown between Webb‘s (1997) Depth of Knowledge levels, Bloom‘s (1956), taxonomy 

of learning objectives, and cognitive demand for mathematical tasks of Stein et al. 

(2000). 
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Table 2 

Relationship between Webb’s DOK Model, Cognitive Demand for Mathematical Tasks, 

and Bloom’s Taxonomy Level of Learning 

Webb‘s DOK 

Cognitive 

Domain 

Cognitive 

Demand for 

Math Tasks 

Categories 

Bloom‘s Cognitive 

Domain Objectives 

Learning Outcomes 

Example: Quadratic 

formula 

Recall Memorization Knowledge State Learner memorizes 

the formula 

Basic Applica-

tion of Skills 

and Concept 

Procedures 

without 

connections to 

concepts or 

meaning 

Comprehension Use  Learner knows how 

to substitute values 

into quadratic formula 

and come up with 

answer(s) 

Strategic 

Thinking 

Procedures 

with 

connections to 

concepts or 

meaning 

Analysis Application Differentiate 

and Apply 

Learner is able to 

break down the 

formula and apply it 

to another areas 

Extended 

Thinking 

Doing 

Mathematics 

Synthesis/Evaluation Integrate and 

Judge 

Integrate the formula 

to other similar 

problems and judge 

appropriateness of its 

use/solution  

 

Task Analysis 

"Task analysis for instructional design is a process of analyzing and articulating 

the kind of learning that you expect the learners to know how to perform" (Jonassen, 

Tessmer, & Hannum, 1999, p. 3). As noted by Jonassen et al., the process of task 

analysis, which developed from the behaviorist era, has followed the paradigm shifts 

from cognitivism onto constructivism, but, regardless of the learning theory, a task 

analysis is needed for an in-depth understanding of the learning that is to take place. The 
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purpose of task analysis in this study was to define and describe the tasks, subtasks, and 

sequence or path of instruction that would best facilitate learning. Based on this purpose, 

the appropriate format of task analysis for this study was hierarchical task analysis. 

"A hierarchy is an organization of elements that, according to prerequisite rela-

tionships, describes the path of experiences a learner must take to achieve any single 

behavior that appears higher in the hierarchy‖ (Seels & Glasgow, 1990, p. 94)". Thus, in 

a hierarchical analysis, the instructional designer breaks down a task from top to bottom, 

thereby, showing a hierarchical relationship amongst the tasks, and then instruction is 

sequenced from the bottom up. A hierarchical task analysis (also known as a prerequisite 

task analysis) answers the following question: "What must the learner know or be able to 

do to achieve this task?‖ Some of the principles that set hierarchical task analysis apart 

from the other formats of analysis are as follows: 

1. A hierarchical task analysis is developed from bottom up, from general to 

specific. 

2. A hierarchical task analysis is based on learning taxonomies, starting from 

the most complex to the least complex. The nature of the terminal task 

determines at which level in the taxonomy one should start breaking down 

the task from more complex to less complex, going through each of the 

learning levels. 

3. A hierarchical task analysis is represented in terms of levels of tasks. Each 

level should (more or less) represent one learning level (e.g. problem-

solving, concept learning, etc.). The highest level is the most complex. 

Lower levels form prerequisite skills for higher levels. Lines connect tasks 
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between levels. Each task can be broken down into one or more tasks from 

one level to the next. 

4. A hierarchical task analysis is read bottom-up. Arrows pointing upwards 

are used to connect the tasks towards the terminal task. 

5. In a hierarchical analysis, each task is a prerequisite to the task directly 

above it. Tasks that can happen concurrently with other tasks are put on 

the same level in the hierarchy. 

Learning Hierarchy Analysis 

When an instructional objective indicates that the learner will use a concept, apply 

a rule, or solve a problem, a learning hierarchy analysis can identify the prerequisite skills 

to perform that objective (Jonassen et al., 1999). A learning hierarchy shows prerequisites 

in an ordered relationship where lower skills on the chart will be learned before the 

higher-ranking ones until the objective is met. Because of the prerequisite relationship, 

learning hierarchy analysis is also referred to as prerequisites analysis.  

In 1962, Robert Gagne introduced the learning hierarchy concept. The basis for 

the concept of learning hierarchy is a dependence relationship among intellectual skills 

which stipulates that there are a set of prerequisite skills for any higher order intellectual 

skill and the mastery of prerequisite skills facilitates learning of higher skills. According 

to White and Gagne (1978), the development of relationship among intellectual skills has 

made the method of constructing a learning hierarchy an ideal method for analyzing 

instructional content, particularly when instructional designers are faced with the task of 

developing instructional material.  
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In addition, developing a learning hierarchy defines what must be taught and the 

sequence in which to teach it. For example, in Figure 2, task four of integrating quadratic 

formula to other similar problems and judging the appropriateness of its use/solution has 

been decomposed into the following enabling tasks: task three of application of quadratic 

formula to other areas, task two of substituting values into the quadratic formula and 

coming up with answer, and task one of memorizing of the quadratic formula. The 

implication is that the learner cannot perform the third task until he/she has performed the 

first and second tasks respectively. 

 

Figure 2: Hierarchical Relationship among the Tasks 
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Learning hierarchy analysis is appropriate for this study because it shares similar 

concepts with the Knowledge Space Theory. Both KST and learning hierarchy analysis 

are based on dependency and prerequisite relationship among intellectual skills. In each 

case, mastering the lower intellectual skills facilitates the learning of the higher 

intellectual skills. In addition, learning hierarchy analysis explains the instructional 

activities and strategies that determine the sequence of course content. 

Computer Based Learning Environments in Mathematics 

Handal and Herrington (2003) identified different categories of computer-based 

learning in mathematics and their associated learning outcomes. They argued that the 

sequence of progression from Drills and Tutorials to Games and Simulation and finally to 

Hypertext and Hypermedia based instruction is reflective of the progression from 

behaviorist to constructivist learning approaches. Behaviorism is based on observable 

changes in behavior; Cognitivism is based on the thought process behind the behavior, 

and Constructivism is based on the premise that individuals all construct their own 

perspectives of the world through individual experiences and schema (Ertmer & Newby, 

1993).  

Drills and Tutorial  

Drills and tutorial are based on behaviorist learning philosophy and are used to 

teach declarative skills (Lawrence, 1997). The expected outcome is that the gradual 

increase in the difficulty of drilling activity will also increase the mathematical know-

ledge of the students. Tutorials are enhanced drill and practice activity because they 

provide guidance, structure, sequence and immediate feedback. Drills and tutorial have 

the advantage of filling in for the instructor, providing individualized instruction, and 
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supporting already learned material. While providing opportunities to enrich the 

understanding of mathematical concepts, drill and tutorial have the potential to use 

multimedia capabilities to motivate students in an online learning environment (Handel & 

Herrington, 2003). 

According to Hasselbring‘s (1988) report, when prior training for developing a 

declarative knowledge network is implemented, using computer-based drill and practice 

is effective in developing mathematics automaticity or fast recall of mathematics facts in 

learning for handicapped children. An experimental mathematics program, which was 

called "Fast Facts," successfully developed the recall of basic mathematics facts in 160 

mildly handicapped and nonhandicapped students aged 7-14. 

Behaviorism is based on observable changes in behavior, and the mind is treated 

as a passive black box that receives knowledge by transmission (Mergel, 1988). 

Behaviorist learning models include drill and practice and programmed instruction. One 

of the instructional design approaches includes generative computer assisted instruction 

(CAI). Generative instructional strategy is similar to showing flash cards, and feedback is 

either right or wrong. Urban-Lurain (2004) discussed the progression from CAI to ITS. 

With the strides made in the Artificial Intelligence (AI) community in the 1960s and 

1970s, CAI improved from generative to adaptive, but the adaptive nature used only 

observable behavior and not the knowledge state of the learner. During the same period, 

cognitive scientists started looking at how the brain emerges from the mind in the form of 

information processing. The merging of research from cognitive science and artificial 

intelligence led to the development of ITS from CAI. 
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Games and Simulation 

The concept of information processing led into instructional design approaches 

that are based on cognitive learning theory and advancement in using structured games 

and simulations to assist in the learning of mathematics concepts. Games are goal-

oriented activities that use multimedia technology to simplify reality, while simulations 

are used to facilitate learning through artificial situations when it is not possible to 

perform the real situation (Handal & Herringhton, 2003). Games are governed by rules 

that involve competition with win or lose situations. Certain skills and practices are 

assumed in order for the learner to win. Simulation is very similar to gaming in that it is 

goal oriented but also different in that there are no rules or competition. The idea is that 

the learner will gain some knowledge while playing the game or while following the 

simulation. Games and simulations are structured to follow the cognitive learning model, 

and participants gain factual information and learn procedural sequences (Walcott & 

Walcott, 1976).  

Lucas (1974) investigated the effect of using simulation-gaming techniques on the 

acquisition and cognitive retention of concepts, facts and principles in a study with 295 

participants. The experimental group received instruction in a simulation gaming 

technique, while the other group received instruction in a lecture-discussion format. Even 

though both groups did well in the cognitive achievement, the students in the 

experimental group did better in delayed posttest results, showing simulation-gaming as a 

teaching tool that enhances learning. 
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Hypertext and Hypermedia 

Hypertexts provide clickable buttons to other nodes, and implementation of good 

principles of hypertext interface design helps avoid navigational problems and hence 

maximize learning (Koneman & Jonassen, 1994). Hypermedia Based Instruction (HBI) is 

based on the constructivist philosophy of learning (Gabbard, 2000). It is very similar to 

previously discussed computer based instructions. The major difference is that while the 

computer-based instructions present information in structured and linear sequence, 

hypermedia present information in a node-and-link structure by mixing hypertext and 

multimedia. The use of hypertext and hypermedia introduces teachers to two innovations 

that offer students an opportunity to create their own meaningful learning environments 

(Blanchard & Rottenberg, 1990).  

Hypermedia Based Instruction is closely related to constructivist learning 

principle and has been claimed to be very effective and successful in reaching a variety of 

learning styles because it is more media rich than the traditional computer based 

instructions (Handal & Herringhton, 2003). According to Handal and Herringhton, 

clickable thesauruses or dictionaries embedded within a learning environment are 

examples of HBI applications.  

Intelligent Tutoring Systems 

According to Polson and Richardson (1988), an ―Intelligent Tutoring System 

(ITS) is a computer program that: 1) is capable of competent problem solving in a 

domain; 2) can infer a learner‘s approximation of competence; and 3) is able to reduce 

the difference between ITS‘ competence and the student‘s through application of various 

tutoring strategies‖. An ITS is made up of four major components: Expert Model, Student 
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Model, Pedagogical Model and Task Environment (Corbett, Koedinger, & Anderson, 

1997; see Figure 3). 

The Expert Model or the domain model is used to store the knowledge of the 

instructional domain and interpret student‘s solution (Pramuditha, Antonija, & Brent, 

2006). In an educational environment, this would represent the course, such as College 

Algebra. ITS uses the processes of knowledge engineering to build the concepts that are 

contained in the Expert Model. Based on the content of the expert model, the Student 

Model diagnoses, stores, and tracks a student‘s cognitive state in the subject matter.  

The Student Model uses an Overlay, Differential, or Perturbation principle to 

perform the diagnosis while the Pedagogical model provides tutoring support through 

diagnostic and didactic support (Urban-Lurain, 2004). In order to determine the student‘s 

present cognitive state, the Overlay principle treats the student‘s present knowledge of 

math as a subset of the expert model. The Differential principle uses the missing concept 

from the student‘s math knowledge to determine the student‘s present math cognitive 

state. The Perturbation principle uses the student‘s misconceptions in the student‘s math 

knowledge to determine the student‘s present math cognitive state.  

The Pedagogical Model or teaching model provides instructional interventions 

taking into account the knowledge base and the student model (Albert & Schrepp, 1999). 

Two kinds of instructional support are available: diagnostic support and didactic support. 

Levels of diagnostic support are Behavioral, Epistemic and Individual. Behavioral 

support is based on observable behaviors only; epistemic support is based on both 

observable behavior and the knowledge state of the student, while Individual support 

involves observable behaviors, knowledge state and the affective behaviors of the  
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Figure 3: Components of an Intelligent Tutoring System. 

student. Didactic supports are derived from curriculum and instruction. Curriculum 

support handles the scope and sequence of the course while instructional support covers 

issues such as demonstration, monitoring, and exploration. 

The Task Environment or the Interactive Human Computer Interface presents 

information to and receives information from the student (Albert & Shrepp, 1999). The 

principle design for the interface is contextualization and facilitation of learning. The ITS 

task environment calls for facilitation of learning in a contextualized environment. In a 

constructivist approach, knowledge is constructed with active participation and 

negotiation by the learner and the mind is treated as an active entity (Lefoe, 1998). Other 

constructivist models include generative learning, cognitive flexibility and cognitive 

apprenticeship. Compared to other constructivists‘ models, generative learning theory 

gives more emphasis on the generation of new conceptual understandings by the learner 

(Wittrock, 1990).  
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ITS leverages the generative theory by the way it asks students questions in so 

called application of concepts problems. Application problems are real life problems. 

Cognitive flexibility encourages the display of concepts in more than one form. Learning 

activities must provide multiple representations of content (Spiro, Feltovich, Jacobson, & 

Coulson, 1992). Because hypermedia supports the linking of graphics, audio, text and 

video elements in a node-like structure, its use in ITS gives it the cognitive flexibility. 

Cognitive apprenticeship is a process where the master of a skill demonstrates that 

skill to an apprentice (Colins, Brown, & Newman, 1989). In this learning environment, 

the ITS assumes the role of a coach while the students are the apprentices.  

In summary, generative learning, cognitive apprenticeship and cognitive 

flexibility play a very important role in how the ITS facilitates learning in an online 

environment. Generative learning encourages active participation of the student by the 

ITS, while cognitive apprenticeship would encourage the ITS to demonstrate and expect 

the students to do the same.  

In this study, participants used a particular ITS, ALEKS, in learning mathematics. 

ALEKS is an intelligent tutoring system that was built on the work of a team of cognitive 

scientists, software engineers, and mathematicians from New York University and 

University of California at Irvine with funding provided by the National Science 

Foundation (ALEKS, 2010). ALEKS uses knowledge space theory to assess a student‘s 

knowledge state and prescribe targeted instruction on topics/concepts a student is ready to 

learn (Falmagne et al., 2004). ALEKS assesses the student's current course knowledge by 

asking the student a number of content area questions (usually 20-30 questions). ALEKS 

avoids multiple-choice questions but chooses each question on the basis of the student‘s 
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answers to all the previous questions. By the time the student has completed the 

assessment, ALEKS has developed a precise picture of the student‘s knowledge of the 

course material, knowing which topics the student has mastered and which topics the 

student is ready to learn. The student's knowledge is represented by a multicolor pie (See 

Appendix B). 

The pie chart is also the student's point of entry into the Learning Mode. The 

Learning Mode is the interface that provides instruction based on what the student is 

ready to learn. In the Learning Mode, the student is offered a choice of topics that he or 

she is ready to learn. Based on the diagnosis, the student has the prerequisite knowledge 

to learn these topics successfully. When a student is working on a particular problem, the 

student can access an explanation to that problem by clicking on the ―Explain‖ button. 

The explanation typically provides a step-by-step solution to the problem, with 

commentary. In some cases, an alternative or more detailed explanation is also available. 

The student receives immediate feedback, suggestions for correcting mistakes or to 

improve student‘s progress such as looking up definitions in ALEKS on-line dictionary. 

ALEKS may propose that the student temporarily abandon the problem and work on a 

related problem. If the student is successful in solving the new problem, the system will 

generally offer two or three more instances of the same topic to make sure the student has 

mastered it. To ensure knowledge retention, ALEKS periodically reassesses the student, 

using the results to adjust the student's knowledge of the course.  

ALEKS teaches mathematics through continuous involvement of the student. For 

example, ALEKS does not use True/False or Multiple Choice problems. Because ALEKS 

measures the learning rate from the active time in the learning mode, it shuts off after a 
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certain time of non-activity in that mode. ALEKS expects continuous engagement and 

generation of the student‘s ideas while in the learning mode. As already discussed in the 

previous sections, depending on the student‘s learning preferences, instructional delivery 

demonstrated through ALEKS learning mode could be in different formats: text, audio, 

simulation and video. After an ALEKS demonstration of problem solving steps, the 

student is asked to work out a similar problem.  

Before progressing to another topic, the ALEKS learning mode uses drill and 

tutorial to ensure concept mastery. This involves repeated questions on a particular 

concept or topic until ALEKS is satisfied that the learner has mastered the concept. For 

areas that use mathematical instruments, ALEKS simulates such instruments and such 

simulation environments include ALEKS's pencil, paper, ruler, and eraser. ALEKS uses 

hypertext to link together its supplemental and additional resources and to ensure a non-

linear instructional sequence; ALEKS incorporates hypermedia-based instruction in the 

form of ALEKS‘s mathematics dictionary and thesaurus.  

The Use of ALEKS in the E-learning of Mathematics 

Researchers at several universities in the United States have published research 

results on the use of ALEKS. Hu, Luellen, Okwumabua, Xu, and Mo (2008), of the 

University of Memphis (UM), explored the effectiveness of using ALEKS to close the 

racial score gaps in an undergraduate behavioral statistics course. This observational 

study focused on 548 UM undergraduate students who completed a statistics course 

under the same professor between Spring 1995 and Fall 2005 terms. In their study, 137 

students took the course in an online format that used ALEKS, and the other 411 students 

took the course in a conventional lecture format.  
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Hu et al. (2008) compared the academic performance of students from online 

ALEKS-using sections of statistics to a retrospective comparison group comprised of 

students who took statistics under a conventional lecture format. When the performance 

of students enrolled in the online ITS sections was considered, the racial disparity 

observed for Black and White students enrolled in the lecture formatted sections did not 

hold. The study reported that ALEKS closed the racial gap by eliminating one letter 

grade between groups of students in this course at this university. 

In another study, Hanna and Carpenter (2006) used ALEKS to provide tutoring 

for precalculus students that were in Calculus I and II courses at Louisiana Technical 

University. Students were required to use the program outside of class for at least 3 hours 

a week and had to make 6% progress in new material learned with ALEKS each week. 

Students‘ progress was checked weekly. In the (Calculus I course), 91% of students who 

used ALEKS for 23.5 hours or more during the term (107 students) received an A, B, or 

C. Only 9% of these ALEKS users received a D or F or withdrew from the course. 

Additionally 55% of students using ALEKS less than 23.5 hours (218 students) received 

an A, B, or C, and 45% received a D, F, or withdrew from the course. These results 

showed higher achievement for students who spent more time in ALEKS. In Calculus II 

course, students who used ALEKS (n = 30) were compared with students who did not use 

ALEKS at all (n = 45).Overall, 90% of students who used ALEKS received an A, B, or 

C, and only 10% received a D, F, or withdrew from the course. Of the students who did 

not use ALEKS, only 53% received an A, B, or C, and 47% received a D, F, or withdrew 

from the course. These results showed that those students who used ALEKS performed 

better than those who did not.  
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Hagerty and Smith (2005) used ALEKS to replace traditional homework assign-

ments in a college algebra course at Black Hills State University. Four sections of the 

course used ALEKS (the experimental group) and four sections of the course were taught 

in a traditional manner (the control group). Students (n = 251) were randomly assigned to 

one group or the other. Three of the four ALEKS sections dramatically outperformed the 

control groups in gains between the pretest and the posttest. The exception was one 

ALEKS section that was the only ―night‖ section in the experimental group. Students did 

not have sufficient computer access and were allowed to switch to a traditional format 

early in the course. 

Hampikian, Moll, Gardner, and Schrader (2006), at Boise State University, used 

ALEKS as a key component in two new introductory engineering courses offered 

concurrently with the students' first mathematics course. One group of students (n = 17) 

took Precalculus concurrently with Engineering 110 (using ALEKS), and another group 

(n = 28) took Calculus I paired with Engineering 120 (using ALEKS). Grade 

performance of the students taking the ALEKS-oriented courses was compared with that 

of students who took only Precalculus or Calculus I alone. Of the students using ALEKS 

in Engineering 110, ~41% received an A or B in Precalculus, and ~59% received an A, 

B, or C. Among students in Precalculus alone (no ALEKS), ~27% received an A or B, 

and ~52% received an A, B, or C. Of the students using ALEKS in Engineering 120, 

~79% received an A, B, or C in Calculus I. Approximately 49% of the students in 

Calculus I alone (no ALEKS) received an A, B, or C.  

In an action research project, LaVergne (2007) discussed the impact of ALEKS 

on standardized math scores of students in algebra. In the study, LaVergne placed all 
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students in Algebra 1A on ALEKS two class periods per week in addition to their 

standard curriculum. The average improvement score on a standardized test was higher 

than the district and national averages for the students using ALEKS for a certain amount 

of time within the week. Students who used ALEKS for 31-60 minutes per week (n = 83) 

and students who used ALEKS for 61-90 minutes a week (n = 15) both improved by an 

average of 2.7 points.  

Taylor (2008) explored the differences in mathematical achievement of under-

prepared college freshmen in an intermediate algebra course using different teaching 

approaches based on students‘ demographics, algebra tests, mathematics anxiety, and 

mathematics attitude. In this study, 54 freshmen who enrolled in a course using ALEKS 

and 39 freshmen students who enrolled in a traditional lecture course without ALEKS 

were investigated for the effects of this web-based technology centric course. The result 

showed that ALEKS intermediate algebra students performed as well as the traditional 

group taught by lecture. The anxiety of the ALEKS group decreased by more than that of 

the traditional group, and the ALEKS group attitude towards math improved at a greater 

rate.  

Allen (2007), from the Community College of Rhode Island, studied grade 

distribution of students in Elementary Algebra who used ALEKS (McGraw-Hill) and 

those who used MyMathLab (Addison-Wesley). A total of 210 student records were 

analyzed for this study. Of these, 107 used ALEKS and 103 used MyMathLab.  

Allen (2007) showed that 34% of students who used ALEKS and 24% of students 

who used MyMathLab received the grades of A, B or C, while 38% of students who used 

ALEKS and 45% of students who used MyMathLab received a grade of D or F. Although 
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a numbers of factors influencing success make it impossible to claim that ALEKS 

outperformed MyMathLab, based on this result, it seems reasonable to conclude that that 

ALEKS was able to assist less prepared students to reach success in elementary algebra 

because of ALEKS‘s emphasis on repetition of all algebraic skills and continuous 

assessment.  

There has been at least one case in an introductory graduate level statistics course 

where the use of ALEKS did not make a difference between a hybrid course and a 

traditional face to face course. Xu, Meyer, and Morgan (2008), at the University of 

Memphis, used a mixed-methods approach to evaluate a hybrid teaching format that 

incorporated ALEKS to address students‘ learning needs in a graduate-level introductory 

statistics course. Student performance in the hybrid course with ALEKS was found to be 

no different from the same course taught in a traditional face-to-face format. Survey and 

focus group interviews revealed that students‘ experience with ALEKS and learning of 

statistics varied systematically across performance levels. Both quantitative and 

qualitative data suggested that (a) class format may not be as important as students‘ 

mathematical ability and skills for their success in introductory statistical courses, and 

(b) a teaching approach that addresses the underlying determinants of learning behaviors 

would be more effective than simply delivering the material in a different format. 

Research results have shown that majority of the institutions that used ALEKS for 

remediation or as a supplement in different mathematics subjects and in different learning 

environments had an increased learning rate. The same research results have shown that 

the group that used ALEKS performed as well as or better than the group who did not use 
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ALEKS; however, none of the research findings focused on a basic mathematics course 

that was taught completely online. 

Summary 

In summary, this review of literature discussed the operationalization of the KST 

and DOK model in this research study. From the instructional design perspective, this 

review of literature discussed task analysis and its similarity with the KST. It also 

described ALEKS as an example of an intelligent tutoring system and its use in the 

teaching and learning of Mathematics at different institutions. Finally, different computer 

based learning environments in mathematics and their associated learning theories were 

identified and discussed. 
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CHAPTER 3 

METHODOLOGY 

The purpose of this research was to investigate the effect of ALEKS on students‘ 

achievement in mathematics in an online environment and to determine the cognitive 

complexity for mathematical tasks enacted by ALEKS‘ pretest and posttest assessments. 

This chapter will present the research methodology, population, procedure, and 

instruments that were used in collecting data. The methods of data analysis, assumptions 

and limitations of the study are also addressed.  

 This is a quasi-experimental study that used the one-group, non-randomized, 

pretest-posttest design. Quasi-experiments are studies that aim to evaluate interventions 

but do not use randomization (Harris et al., 2006). This research design was selected for 

this study because of the difficulty in randomizing participants. In the present university 

and the online learning environment, ALEKS is the primary source for assessment, 

teaching, and learning of mathematics, so ethical considerations typically will not allow 

random withholding of ALEKS.  

This category of design is most frequently used when it is not feasible for the 

researcher to use random assignment, and it is commonly employed in the evaluation of 

educational programs when random assignment is not possible or practical (Gribbons & 

Herman, 1997). Because of the already established course schedule by the college and 

students‘ self-selection into particular sections of the course, it was impossible to apply 

random sample without upsetting the student‘s course schedule. So, in order not to 

disrupt students‘ course schedules, this research used the intact classes established by the 

university for the College Mathematics I course. 
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Research Design 

As noted by Mertens (2005), one-group, pretest-posttest design method might be 

necessary in a situation where the school does not allow for differential provision of 

services. Also, according to Conttrell and Mckenzie (2011), schools or groups may not 

find it ethical or permissible to allow research where some students are treated 

differently. In addition, this method was selected because students who are learning 

College Mathematics I in this online environment rely on the ALEKS system for 

instruction, so designing a control group by removing the ALEKS system would 

introduce a differential provision of services. 

Borg and Gall (1989) state that the one-group, pretest-posttest design is justified 

in circumstances in which one is attempting to change attitude, behavior or knowledge 

that is unlikely to change without introduction of experimental treatment. In this study, 

the research design was justified by the use of ALEKS as an instructional intervention 

which was used to try to enhance students‘ mathematical knowledge. 

The schematic for one-group, pretest-posttest design is as follows: 

 A group of participants is measured twice 01X02 

o There is no control group 

 The treatment effect is computed as 02 – 01 

Where: 

 01 and 02 are observations of the dependent variables (Pretest and Posttest 

respectively) 

 X is the experimental treatment, which is learning with ALEKS 
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According to Creswell (2003), quantitative studies use research questions and 

hypotheses to shape and focus their study. This research tested one null hypothesis and 

answered two questions:  

H0: There is no difference between students‘ achievement as measured by 

students‘ scores on pretest (Baseline Assessment) and posttest (Final 

Assessment) from ALEKS. 

Question I. What are the factors contributing to students‘ mathematics achievement in 

using the ALEKS?  

Question II. What is the cognitive complexity of mathematical tasks enacted by 

ALEKS on the pretest and posttest assessments? 

Method 

Population 

The research took place within the online campus of a large private, multi-

campus, 4-year urban university which offers mathematics in the College of Arts and 

Sciences. The main campus of the university institution is situated in the southwestern 

region of the United States. The school offers courses in both online and ground format. 

There are about 210,000 online students at all program levels (associate‘s, baccalaureate, 

master‘s, doctoral). However, only about 70,000 are online bachelor degree students who 

might be taking College Mathematics I.  

The gender make-up of the university in 2010 was 63% female and 37% male. 

The race distribution was as follows: 54.7% White, 22.9% African American, 12.6% 

Hispanic, 1.2% Native American/Native Alaskan, 4.8% Asian Pacific Islander, and 3.8% 

others/unknown. Most of the students are working professionals taking courses or 
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completing degree requirement. The average age of students is 35 years and the age range 

is from 25 years to 50 years.  

On average, students who take the mathematics course are nontraditional students, 

White women of approximately 35 years of age. The students who take College 

Mathematics I are generally undergraduates majoring in the arts, business, health Science 

or humanities. College Mathematics I is for all students who have not taken any College 

Mathematics course. These students are required to take the course at any point in their 

degree program.  

Sample 

A purposeful sampling was used in this study. A total of 80 students who enrolled 

in the College Mathematics I course during five different 5-week sessions were recruited 

for the study. These five sessions were taught consecutively or concurrently over a 7-

month period and the average size for each class was 18. However, because of different 

class size and attrition, the final number of participants varied. According to Bartlett, 

Kotrlik, and Higgins (2001), in order to use multiple regression analysis the ratio of 

observations to the independent variable should not fall below 5 because if this minimum 

is not followed the research study could run the risk of ―overfitting.‖ That is, providing a 

result that is specific to the sample (Halinski & Feldt, 1970). But Miller and Kunce 

(1973) and Halinski and Feldt (1970) reported a more conventional and optimal approach 

of at least10 observations per independent variable.  

Procedures 

The instructional role of the researcher in this study was to facilitate the online 

class by posting and grading discussion questions, grading individual and team 
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assignments, providing feedback, guidance and direction to the students throughout the 

course. All reports and assessments required for this study were graded and reported by 

ALEKS. In this study, I served as both the researcher and the instructor. In my role as a 

researcher, I directed the ALEKS system to provide me with the initial and final 

assessment reports, weekly quizzes reports and skill mastery reports. I had no influence 

over the reports provided by ALEKS because as noted in previous chapters, ALEKS 

reports are automatically generated based on student‘s skill assessment, tutoring, and 

learning progression. 

All activities pertaining to assessment, tutoring and learning of College 

Mathematics I were conducted online inside the ALEKS system. Numerical codes were 

used to identify students‘ scores from ALEKS. 

Determination of Student’s Knowledge State by ALEKS 

Knowledge state plays an important role in learning with ALEKS. In this research 

study, the initial contact of the learner with ALEKS begins with the determination of the 

learner‘s knowledge state of College Mathematics I.  

When a student first logs on to ALEKS, a brief tutorial shows him or her how 

to use the ALEKS answer input tools. The student then begins the ALEKS Initial 

Assessment. In a short period of time (about 45 minutes for most courses), ALEKS 

assesses the student's current course knowledge by asking a number of questions 

(usually 20-30). The student's knowledge is represented by a multicolor pie chart which 

is also the student's entry into the Learning Mode. The pie chart displays current 

progress state (see Figure 4).  
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Figure 4. Multicolor Pie Chart Representing Student‘s Knowledge. Source: 

http://www.aleks.com/highered/math/tour_math_pie 

The colored pie slices represent the concepts covered in the syllabus of College 

Mathematics I. Beside each pie section is the topic of the concept cluster, the number 

of concepts in that pie section, and the number of concepts the student has mastered. 

Darker colors in each pie section indicate concepts that have been mastered.  

To avoid the problem of the participants becoming test-wise, the pretest and 

posttest were algorithmic questions. A pretest (initial assessment) was administered by 

ALEKS to all students prior to tracking their learning progress. The pretest was helpful 

in assessing students‘ prior knowledge of College Mathematics I. 

Data were collected from individual participants using ALEKS‘s reports 

instrument for the 5-week duration of the course. Each week the students completed the 

pie slice assigned, quizzes, individual homework and learning team homework. They also 
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completed main forum discussion from week 1 to week 4 and a final assessment in week 

5. Initial assessment was administered and data collected in week 1. At the end of each 

learning module or week, the quiz report and weekly time spent in ALEKS report were 

made available by ALEKS to the researcher. During the fifth week, the final assessment 

and final examination are administered by ALEKS (see Table 3). 

ALEKS provided data on each participant in 10 different areas: Initial Assessment 

Report and Final Assessment Report, Weekly Concept Mastery Report, Weekly Quiz 

Report, Weekly Time in ALEKS Report, Final Concept Mastery Report, Total Time in 

ALEKS Report, and list of pretest and posttest questions enacted by ALEKS. Through 

these areas, data were analyzed to determine the effect of ALEKS on students‘ achieve-

ment in mathematics in the online environment and to determine the cognitive complex-

ity of mathematical tasks enacted by ALEKS‘ pretest-posttest assessments (see Table 4). 

Research Ethics 

Institutional Review Board Approval 

 In compliance with research ethics, prior to commencing data collection and 

analysis I obtained two Institutional Review Board (IRB) approvals: one from the site 

where the research was conducted and the other from Georgia State University.  

Validity and Reliability 

Validity does not only ensure reliability, but it also remains the most important 

characteristic a test or a measuring instrument can possess (Gay & Airasian, 2003). The 

main variable that was measured in this study was mathematics achievement.  
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Table 4 

Relationship between Data Collection Process and Tools 

Data Collection Process Tools 

Weekly Concept 

Mastery score 

Weekly ALEKS Concept Mastery Report: Each 

week ALEKS calculates in percent the ratio of 

number of topics mastered to the number of 

topics assigned for week. (Number of topics 

mastered per week).  

 

ALEKS 

Weekly Time in 

ALEKS 

Weekly Time in ALEKS Report: Each week 

ALEKS calculates the number of hours spent in 

learning mode. (Number of hours per week). 

 

ALEKS 

Weekly Quiz 

grade 

Weekly ALEKS Quiz Report: Formative 

assessments in form of Weekly Quizzes are 

given, graded and scored in percents by ALEKS.  

 

ALEKS 

Final Concept 

Mastery score 

Final ALEKS Concept Mastery Report: ALEKS 

calculates in percentage the ratio of the total 

number of topics mastered to the total number of 

topics assigned for the course. (Total Number of 

topics mastered for the course). 

 

ALEKS 

Total Time in 

ALEKS  

Total Time in ALEKS Report: ALEKS calculates 

the total number of hours spent in learning mode. 

(Number of hours in learning mode for course). 

 

ALEKS 

 Initial 

Assessment grade 

ALEKS Initial Assessment Report: Pretest in 

form of initial assessment is given, graded and 

scored in percents by ALEKS. 

 

ALEKS 

Final Assessment 

grade 

ALEKS Final Assessment Report: Posttest in 

form of Final assessment is given, graded and 

scored in percents by ALEKS 

 

ALEKS 

 

Sample of Pretest 

and Posttest 

Questions 

Pretest and Posttest Questions used ALEKS used 

Initial and Final Assessment 

 

ALEKS 

 

ALEKS related 

Discussions  

Discussions in OLS Main Forum: Main forum 

discussions related to ALEKS will be analyzed 

for students‘ view of learning with ALEKS.  

OLS 
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To determine mathematics achievement in College Mathematics I, this research used 

pretest, posttest, quizzes, and concept mastery reports provided by ALEKS as valid 

measures for these criteria. 

History and Maturation 

Gay and Airasian (2003) state that the longer a study lasts, the more likely history 

and maturation will be a threat. Each class session lasted for 5 weeks and sections were 

taught concurrently and or subsequently for 7 months. The class duration helped 

minimize the threat of history and maturation.  

Testing and Instrumentation 

Pretest sensitization tends to be a problem when the duration between pretest and 

posttest are close (Bonate, 2000). In this research study, pretest and posttest were 4 weeks 

apart. In addition, ALEKS uses algorithmic questions. In algorithmic questions, the 

difficulties of the mathematics questions are preserved while the numerical constants that 

appear in the questions are changed. As stated earlier, ALEKS does not use multiple 

choice or true false questions. As a result, memorizing the questions from the pretest 

would not help the participant on the posttest. Because the ALEKS system was the 

primary instrument for collecting data in this research, lack of consistency or unreliable 

data collection from the measuring instrument that could occur with humans was not an 

issue. 

Instruments 

In this research the main instruments used from the ALEKS system were the 

ALEKS Initial Assessment Report (pretest) in week 1, and ALEKS Final Assessment 
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Report (posttest) in week 5 (See Table 5). Between Initial and Final assessment the 

following instruments were used to collect data from ALEKS:  

Table 5 

Relationship between Instruments and Subquestions 

Instruments Subquestions 

Weekly ALEKS Concept Mastery 

Report and Weekly ALEKS Quiz 

Report  

 

Is there a relationship between weekly Concept Mastery 

and weekly formative assessments? 

 

Weekly Time in ALEKS Report 

and Weekly ALEKS Quiz Report  

Is there a relationship between the Time Spent in ALEKS 

per week and achievement score in weekly formative 

assessments? 

 

Total Time in ALEKS Report and 

Final ALEKS Concept Mastery 

Report  

 

Is there a relationship between the Total Time Spent in 

ALEKS and the Final Concept Mastery score? 

 

Final ALEKS Concept Mastery 

Report and ALEKS Final 

Assessment Report  

 

Is there a relationship between the Final Concept Mastery 

score and the Posttest score? 

 

Total Time in ALEKS Report and 

ALEKS Final Assessment Report  

Is there a relationship between the Total Time Spent in 

ALEKS and the posttest score? 

 

ALEKS Initial Assessment Report 

and ALEKS Final Assessment 

Report  

 

Are there any differences in students‘ achievement scores 

between the pretest and posttest assessments? 

 Sample of Pretest-Posttest 

Questions (SPPQ) 

What is the cognitive complexity of mathematical tasks 

enacted by ALEKS on the pretest and posttest 

assessments? 

 

Weekly Time in ALEKS Report, Weekly ALEKS Concept Mastery Report, Weekly 

ALEKS Quiz Report, ALEKS Final Concept Mastery Report, Total Time in ALEKS 

Report, and Pretest and Posttest questions items. 
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Assumptions of the Study 

In this study, I made the following assumptions: 

1. The technical performance of the OLS and ALEKS systems during the 

session did not affect the students‘ performance. OLS and ALEKS are 

computer systems, and there are always possibilities of malfunction. The 

breakdown of any of these systems could disrupt the research in the 

following way: inability to take quizzes, examinations, pretest, and 

posttest.  

2. The anxiety that comes with learning in an online environment is not a 

major factor in learning mathematics with ALEKS. As stated earlier in the 

problem statement, the issue of learning how to navigate two systems 

(OLS and ALEKS) could raise some anxiety and hence affect students‘ 

performance in the learning of mathematics.  

3. The anxiety that comes with learning mathematics was not a major factor. 

Bowers (2001) reports that mathematics anxiety temporarily disrupts 

mental processes needed for doing arithmetic and drags down 

mathematics competence. 

4. The Initial Assessment, Final Assessment, ALEKS Concept Mastery, 

Quizzes, and Time Spent in ALEKS measure the effect ALEKS on 

students‘ math achievement. This research assumed there are no other 

variables that measure the effect of ALEKS on students‘ math 

achievement besides those mentioned.  
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5. Participants in this study are those who began and completed the course. 

That is, only students who took the final exam and final assessment in the 

course were included in the statistical analysis of the research. In this 

study, completing the course meant taking the pretest, all the quizzes, and 

the posttest.  

6. Participants used the ALEKS system and the prescribed learning path as 

their primary source of learning College Mathematics I. The major 

theoretical framework of this study was that ALEKS prescribes a learning 

path based on the knowledge space theory, so not using ALEKS or 

following the prescribed learning path will flaw the research study.  

Limitations of the Study 

This research was constrained by the following: 

1. As the instructor and researcher, I was aware that my personal bias could 

affect the design, sampling, measurement and interpretation of data 

collected in this study. I have taught mathematics in face-to-face 

environments for many years. I have also facilitated online mathematics 

classes for several years using various ITS. During this period I have seen 

students‘ successes and failures in both face-to-face and online environ-

ments. One of the ITS I have used and still continue to use is ALEKS, 

which as noted earlier is a KST based system. Because KST is an assess-

ment theory that reveals the knowledge state of a learner and provides a 

focused instruction based on the knowledge state of the learner, I expected 

that students who use ALEKS would learn and retain mathematical 
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knowledge. I also expected those students who have followed the 

prescribed learning path provided by ALEKS (i.e., completing each 

week‘s pie slice) would perform better in the formative and summative 

assessments provided by ALEKS than those who did not. However, 

because ALEKS produced all the necessary data required for this research 

study, I am confident that this reduced potential researcher‘s bias in this 

study.  

2. The study was constrained by the number of students who participated in 

the final assessment. Participants who completed the final assessment 

were used in the statistical analysis of the study. In online environments 

students are likely to drop out because of reasons other than mathematics 

difficulty, and hence not having enough students complete the final assess-

ment will affect the total number of participants. As stated earlier in the 

introduction, attrition in the online mathematics learning environment is a 

known problem and was an issue in this research study. College 

Mathematics I is not an exception to attrition: from my experience in the 

College Mathematics I courses I have taught, an average of 33% of the 

students drop out before the end of the course. 

3. As an instructor I had no control over what additional resources, beyond 

ALEKS, participants used to gain mathematics knowledge. For example, 

concept discussions in OLS, books, or personal tutoring could have been 

used to gaining the mathematical knowledge of College Mathematics I.  
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4. The findings of this research were limited to ALEKS rather than other 

ITSs because ALEKS is a KST based system. There are other ITSs that 

are not based on KST, so it is inappropriate to generalize this study to such 

systems. 

5. Purposeful sampling was used. Therefore, the generalizations of the 

results from this study are limited to a group similar to the subjects used in 

this research. Other generalizations may or may not apply. 

Data Analysis  

Five methods of analysis and one model were used in analyzing the data: t-test, 

correctional analysis, simple regression analysis, multiple regression analysis, 

Cronbach‘s Alpha reliability test and Webb‘s depth of knowledge model. A paired-

samples t-test compares the means of two scores from related sample while simple and 

multiple linear regression analysis allows the prediction of one variable from several 

other variables (Cronk, 2004). In this research study, I used a paired-samples t-test to test 

the hypothesis, correctional analysis to determine the relationship between the 

independent and dependent variables, and simple and multiple linear regression analysis 

to predict students‘ achievement in College Mathematics I based on concept mastery 

and/or time spent learning in ALEKS. Cronbach‘s alpha measures the internal 

consistency of a data set (Cronk, 2004). In this research, Cronbach‘s Alpha was used to 

determine the degree to which the pretest and posttest items measure achievement. 

To answer the second question, ―What is the cognitive complexity of 

mathematical tasks enacted by ALEKS on the pretest and posttest assessments?‖ I used 
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Webb‘s (1997) four levels of DOK (see Appendix A) to determine the cognitive 

complexity of the pretest and posttest assessment.  

Summary 

This chapter discussed research methodology, population, procedure and 

instruments that were used in data collection. The assumptions, limitations and 

constraints of the study were also discussed. The methods of data analysis showed it was 

a quantitative study. All data except for the cognitive complexity of mathematical tasks 

enacted by ALEKS on the pretest and posttest assessments were collected through 

ALEKS reports. In the following chapter, data were collected, results were analyzed and 

presented.  
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CHAPTER 4 

RESULTS 

The purpose of this research was to investigate the effect of ALEKS on students‘ 

achievement in mathematics in an online learning environment and to determine the 

cognitive complexity for mathematical tasks enacted by ALEKS‘ pretest and posttest 

assessments. Data were collected from College Mathematics I courses participants‘ 

gender, race, age distribution and the number of students within each class session. For 

the purpose of this research a class session or session is interpreted as an academic term 

of 5-weeks‘ duration. In this chapter, I present data to show the assumptions that were 

confirmed for the different statistical analysis I used in this research. Then I present the 

reliability of the pretest and posttest question items. This study was guided by two 

research questions, and the results of these research questions are organized, presented 

and discussed. Finally, students‘ responses to an open-ended question posted in the OLS 

were analyzed and presented.  

Participants 

This research was conducted during fall and spring semesters of the academic 

year 2010-2011. Data were collected from College Mathematics I, and there were a total 

of five class sessions involved in this research. There were 16 students per session for a 

total of 80 students. Eighty students took the pretest (16 from each session), but 59 took 

the posttest or the final exam. Out of the 59, 11 enrolled in session I, 12 in session II, 11 

in session III, 13 in session IV, and 12 in session V of the College Mathematics I. The 

following number of students did not complete the course: Five out of 16 (31.25%) in 

session I, 4 out of 16 or (25.00%) in session II, 5 out of 16 (31.25%) in session III, 3 out 
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of 16 (18.75%) in session IV, and 4 out of 16 (25.00%) in session V. The majority of the 

participants were female (72.27%); 23.72% were male (see Table 6). More than 94% 

were over 22 years old. More than 42% of the participants identified themselves as 

White, 20.0% identified themselves as Black, 3.4% identified themselves as Hispanic, 

8.5% identified themselves as Asian, and 25.0% did not report their race (See Table 7). 

Testing Assumptions about Data Used in the Analyses 

Before conducting the analysis, data were first screened for any missing data and 

outliers, resulting in 56 students who completed the pretest and posttest assessments. In 

this section, I discuss the assumptions regarding the data used in this research study. 

According to Osborne and Waters (2002), when these assumptions are not met, it could 

result in Type I or Type II errors or in an underestimation of the significance effect or 

effect size(s).The ANOVA, t-test, correlation and regression analysis were used to 

analyze the data in this research. The t-test provided the differences between the pretest 

and the posttest; the correlation analysis provided the relationship between the 

independent and the dependent variables, while the regression analysis which included 

ANOVA results provided the model for predicting mathematics achievement with 

ALEKS. Because of these statistical analysis used in this research, the assumptions of 

normality, homogeneity of variances, multiple collinearity, linearity and 

homoscedasticity are discussed. 

Assumptions of Normality 

For all posttest and pretest data, the Kolmogorov-Smirnov test of normality was 

used to determine whether the distribution of values was normal (p > 0.05) or not normal 

(p < 0.05) and to indicate whether parametric or nonparametric statistical analysis should  
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Table 6 

Gender Distribution of Participants 

Class Session Male Female Total 

Session I 2 9 11 

Session II 3 9 12 

Session III 4 7 11 

Session IV 2 11 13 

Session V 3 9 12 

Total 14 45 59 

 

Table 7 

Race Distribution of Participants 

Class Session White Black Hispanic Asian Not Reported Total 

Session I 3 2 1 1 4 11 

Session II 7 4 0 0 1 12 

Session III 6 3 0 1 1 11 

Session IV 6 1 0 2 4 13 

Session V 3 2 1 1 5 12 

Total 25 12 2 5 15 59 

 

be used to analyze the test results. The Kolmogorov-Smirnov test of normality showed 

0.716 and 0.497 for pretest and posttest respectively, indicating that p > 0.05 (see Table 

8), hence satisfying the assumptions for normality. 

Regression assumes that variables have normal distributions because a non-

normally distributed variable distorts the relationship and significance tests. If skewness  
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Table 8 

One-Sample Kolmogorov-Smirnov Test 

 Pretest Posttest 

N 56 56 

Normal Parameters
a,b

 Mean 41.09 75.64 

Std. Deviation 23.428 19.928 

Most Extreme 

Differences 

Absolute .093 .111 

Positive .093 .111 

Negative -.061 -.101 

Kolmogorov-Smirnov Z .697 .829 

Asymp. Sig. (2-tailed) .716 .497 

a. Test distribution is Normal. 

b. Calculated from data. 

 

= 0, the data are perfectly symmetrical, but a skewness of exactly zero is unlikely for 

real-world data, so Bulmer (1979) suggests the following rule of thumb: 

 If skewness is less than −1 or greater than +1, the distribution is skewed. 

 If skewness is between −1 and −½ or between +½ and +1, the distribution is 

moderately skewed. 

 If skewness is between −½ and +½, the distribution is approximately 

symmetric. 

Following the above rule, the variables posttest, concept mastery, and total time spent 

learning in ALEKS are skewed with the statistics of approximately -1.3, -2.2, and 1.1, 

respectively, while the pretest is approximately symmetric skewed with a statistic of 0.3 

(see Table 9). In addition, posttest (-1.3), concept mastery (-2.2) are negatively skewed 

while total time spent learning in ALEKS (1.1) and pretest (0.3) are positively skewed. 

According to Brown (1997), a skewed distribution may actually be a desirable outcome 

on a criterion-referenced test; violations of assumption of normality are only problematic  
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if the test is norm-referenced and being used for norm-referenced. The evaluation used in 

this research attempted to uncover the strengths and weakness of a student in terms of 

what he or she knows or does not know, understands or does not understand, or can do or 

cannot do, as measured against a benchmark or standard, and hence it was a criterion 

referenced test. 

Assumptions of Homogeneity of Variances 

Levene's test is an inferential statistic used to assess the equality of variances in 

different samples. It tests the null hypothesis that the population variances are equal 

(called homogeneity of variance). ANOVA and t-test assume that variances of the 

populations from which different samples are drawn are equal. If Levene's test statistic is 

significant (i.e., p ≤ .05), then the two variances are significantly different. If it is not 

significant (i.e., p > .05), the two variances are not significantly different; that is, the two 

variances are approximately equal. If the Levene's test did not produce significant results, 

this research would have met the homogeneity of variances assumption. In this study, 

Levene‘s Test was used to determine the assumption that the variance on the dependent 

variable was met, and the test showed a significance of .763 for the dependent variables 

posttest (see Table 10). Thus, it can be assumed that the variance was approximately 

equal hence meeting the homogeneity of variances assumption.  

Assumptions of Multicollinearity 

The Variance Inflation Factor (VIF) which is used to identify multicollinearity, is 

a measure of how highly correlated each independent variable is with the other predictors 

in the model. If the value of VIF is larger than 10 for a predictor, this implies large 

inflation standard errors of regression coefficient and large value of inflation standard  

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Student%27s_t-test
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Table 10 

Test of Homogeneity of Variances 

 Levene Statistic df1 df2 Sig. 

Posttest .554
a
 6 30 .763 

a. Groups with only one case are ignored in 

computing the test of homogeneity of variance for 

Posttest. 

errors lead to small t-statistics for partial regression coefficients and wider confidence 

intervals. The VIF of the independent variables concept mastery and total time spent in 

ALEKS were 1.036 each (see Table 11). Hence, the assumption of multicollinearity in 

this research study was satisfied. 

Assumptions of Linearity 

Multiple linear regressions can only accurately determine the relationship 

between dependent and independent variables if the relationship is linear in nature. 

According to Osborne and Watters (2002), non-linearity results in misestimating the true 

relationships. In a multiple regression, under-estimation of the true relationship increases 

the chance of Type I errors. Pedhazur (1997) suggested the examination of the residual 

plots of the standardized residuals as a function of standardized predicted values as a 

method of detecting non-linearity. In this research the plots of the standardized residuals 

versus the standardized predicted suggested a linear relationship between the independent 

variables (concept mastery and total_time) and the dependent variable (posttest) (see 

Figure 5). 
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Table 11 

Variance Inflation Factor Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) 4.835 6.082  .795 .430   

Concept_Mastery .816 .068 .852 11.968 .000 1.000 1.000 

2 (Constant) 8.888 5.359  1.659 .103   

Concept_Mastery .865 .060 .903 14.361 .000 .965 1.036 

Total_Time -.246 .057 -.272 -4.328 .000 .965 1.036 

a. Dependent Variable: Posttest 

Assumptions of Homoscedasticity 

Homoscedasticity means that the variance of errors is the same across all levels of 

the independent variable, but when the variance of errors differs at different values of the 

independent variable heteroscedasticity is indicated (Osborne & Waters, 2002). Accord-

ing to Tabachnick and Fidell (1996), minor heteroscedasticity has no effect on the 

significance tests but when heteroscedasticity is evident, it can increase the possibility of 

Type I error. Homoscedasticity assumption can be checked by a visual examination of a 

plot of the standardized residuals by the regression standardized predicted values. Hetero-

scedasticity is indicated when the residuals are not evenly scattered around zero or the 

horizontal line. In this research study, the residuals are somewhat randomly scattered 

around 0 (the horizontal line) showing relatively even distribution (see Figure 6). 
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Figure 5. Linearity. 

 
Figure 6. Homoscedasticity. Chart of Regression Standardized Residual versus 

Standardized Predicted value. 
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Reliability of ALEKS’s Pretest and Posttest 

In this study, the construct of mathematics achievement was operationally defined 

as scores in the weekly quizzes and posttest. The weekly quizzes were generated by 

ALEKS. The test items from each quiz matched the course weekly objectives, while the 

posttest items matched the course objectives for the College Mathematics I. This 

provided face validity. 

The reliability of the pretest and posttest was analyzed using the Cronbach‘s 

alpha. Cronbach‘s alpha calculates the mean of all possible split-half correlations and is 

preferred by many researchers when the internal consistency of test items is to be 

determined (Ary, Jacobs, Razavieh, & Sorensen, 2006). Reliability of the pretest-posttest 

is the extent to which these exams yielded consistent results. Ideally, the reliability 

coefficient should be close to one. Cronbach‘s alpha for the pretest-posttest was 0.984 

based on scores from a sample of 97 questions used on the pretest-posttest assessment, 

while the ―Cronbach‘s alpha if item is deleted‖ was at least 0.984 for pretest and posttest. 

The Cronbach‘s alpha provided content validity.  

Testing of Hypothesis 

H0: There is no difference in the measures between the pretest (Baseline 

Assessment) and the posttest (Final Assessment) from using the ALEKS mathematics 

tutoring system. 

For this hypothesis, the independent variables were the concept mastery and time 

spent learning in ALEKS. The dependent variables were mathematics achievements 

defined as scores on the quizzes and posttest. After verifying that the assumptions were 

met, a paired sample t-test was run to compare the mean pretest score to the mean 
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posttest score. SPSS was used for the analysis and the alpha level was set at 0.05. The 

mean on the pretest was 41.09 (SD = 23.43), and the mean on the posttest was 75.64 (SD 

= 19.93; see Table 12). A significant increase from the pretest to posttest was found 

(t(55) = −12.256, p < .001). Therefore, the null hypothesis was rejected, meaning there 

was statistically significant difference in mathematics achievement between the pretest 

and posttest assessment administered in the College Mathematics I. 

Research Question I 

―What are the factors contributing to students‘ mathematics achievement in using 

the ALEKS?‖ After I determined from the hypothesis that there is a significant difference 

in mathematics achievement between the baseline (pretest) and final assessment (posttest) 

with ALEKS instructional intervention between the pretest and posttest, I proceeded to 

answer the overarching question. The sub-questions 1 through 5 and research question II 

were used to answer this question.  

Subquestion 1: Is there a relationship between the weekly Concept Mastery and the 

achievement scores in weekly formative assessments (quizzes)? 

The Pearson Correlation coefficient was used to determine if there were linear 

relationships between the weekly concept mastery, weekly time spent in ALEKS and the 

weekly quizzes (see Tables 12, 13, 14, & 15). From the tables, the results showed a 

linear, significant and positive relationship between the weekly concept mastery and the 

weekly quiz grades for all 4 weeks indicating that participants with higher concept 

mastery scored more on the Quiz formative assessments. 
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Table 12 

Correlation results between Weekly Concept Mastery, Weekly Time Spent in ALEKS and 

Weekly Quiz grades from Week 1 

  

WK1_Concept 

Mastery 

WK1_Time_ 

Spent 

WK1_Quiz_ 

Grade 

WK1_Concept 

Mastery 

Pearson 

Correlation 

1 .195 .510** 

 Sig (2-tailed)  .150 .000 

WK1_Time_ 

Spent 

Pearson 

Correlation 

.195 1 .117 

 Sig (2-tailed) .150  .389 

WK1_Quiz_ 

Grade 

Pearson 

Correlation 

 .117 1 

 Sig (2-tailed) .000 .389  

**.Correlation is significant at the 0.01 level (2-tailed). N = 56. 

Table 13 

Correlation results between Weekly Concept Mastery, Weekly Time Spent in ALEKS and 

Weekly Quiz grades from Week 2 

  

WK2_Concept 

Mastery 

WK2_Time_ 

Spent 

WK2_Quiz_ 

Grade 

WK2_Concept 

Mastery 

Pearson 

Correlation 

1 .196 .454** 

 Sig (2-tailed)  .140 .000 

WK2_Time_ 

Spent 

Pearson 

Correlation 

.196 1 .059 

 Sig (2-tailed) .140  .661 

WK2_Quiz_ 

Grade 

Pearson 

Correlation 

 .059 1 

 Sig (2-tailed) .000 .661  

**.Correlation is significant at the 0.01 level (2-tailed). N = 56. 
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Table 14 

Correlation results between Weekly Concept Mastery, Weekly Time Spent in ALEKS and 

Weekly Quiz grades from Week 3 

  

WK3_Concept 

Mastery 

WK3_Time_ 

Spent 

WK3_Quiz_ 

Grade 

WK3_Concept 

Mastery 

Pearson 

Correlation 

1 .156 .773** 

 Sig (2-tailed)  .251 .000 

WK3_Time_ 

Spent 

Pearson 

Correlation 

.156 1 .037 

 Sig (2-tailed) .251  .786 

WK3_Quiz_ 

Grade 

Pearson 

Correlation 

 .037 1 

 Sig (2-tailed) .000 .786  

**.Correlation is significant at the 0.01 level (2-tailed). N = 56. 

Table 15 

Correlation results between Weekly Concept Mastery, Weekly Time Spent in ALEKS and 

Weekly Quiz grades from Week 4 

  

WK4_Concept 

Mastery 

WK4_Time_ 

Spent 

WK4_Quiz_ 

Grade 

WK4_Concept 

Mastery 

Pearson 

Correlation 

1 .169 .632** 

 Sig (2-tailed)  .213 .000 

WK4_Time_ 

Spent 

Pearson 

Correlation 

.169 1 −.077 

 Sig (2-tailed) .213  .573 

WK4_Quiz_ 

Grade 

Pearson 

Correlation 

 −.077 1 

 Sig (2-tailed) .000 .573  

**.Correlation is significant at the 0.01 level (2-tailed). N = 56. 
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Each week showed a linear and significant relationship between the concept 

mastery and quiz scores; however, week 3 showed the strongest relationship with (r(54) 

= .773, p < .001), while week 2 showed the weakest relationship (r(54) = .454, p < .001). 

In order to understand what happened in weeks 2 and 3, I looked at the skill sets required 

for the topics covered in weeks 1, 2, and 3. As already discussed in the methodology, the 

following topics were covered from week 1 to week 4 and in the following order: 1) Real 

Numbers; 2) Solving Linear Equations and Inequalities; 3) Graphing Linear Equations 

and Inequalities; and 4) Systems of Linear Equations.  

Real numbers, the topic covered in week 1, required reading and comprehension 

skills; solving linear equation and inequalities, the topic covered in week 2, required 

solving of equations using the properties of real numbers. Graphing linear equations and 

inequalities, covered in week 3, required the skills of creating graphs from data generated 

from solving equation and inequalities. This would mean that the sudden skills change 

from reading and comprehension in week 1 to solving equations in week 2 could account 

for the weakest relationship experienced in week 2. The skill of graphing linear equations 

and linear inequalities used in week 3 was an extension of week 2 skills but more visual, 

practical and hands-on. For example, solving equation for its coordinates, which is part of 

week 2 skills, is required for graphing linear equation and inequalities in week 3. This 

would mean that the extension of week 2‘s concept and skills could account for the 

strongest relationship experienced in week 3. In addition to these extreme relationships 

experienced in weeks 2 and 3, all participants with higher concept mastery scored more 

on the Quiz formative assessments. 
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Subquestion 2: Is there a relationship between the time spent learning in ALEKS 

per week and the achievement score in weekly formative assessments? 

The Pearson Correlation coefficient was used to determine the relationship 

between the times spent learning in ALEKS and the quiz scores from week 1 through 

week 4 (see Tables 12-15). In order to answer research subquestion 2, I collected all the 

participants‘ weekly quiz scores and the time spent learning in ALEKS and analyzed 

them in SPSS. None of the weeks showed a significant relationship between the time 

spent in ALEKS and quiz scores. Hence, the time spent learning in ALEKS was not 

related to the quiz scores.  

However, the results showed a steady decline in the correlation coefficient 

between the time spent in ALEKS and the quiz scores from week 1 to week 4: (r(54) 

= .117; r(54) = .059; r(54) = .037; r(54) = −.077, respectively) at the .05 significance 

level. Because of the dependency relationship between mathematical concepts, the topics 

covered in college mathematics I are organized in their degree of difficulty from the least 

difficult in week 1 to the most difficult in week 4. Consequently, it was evident from 

these results that when students failed to master the basis in the first week, the time spent 

in ALEKS continued to show weaker relationship with the quiz formative assessments up 

to the point of a negative correlation in week four. This outcome argues for the 

importance of laying a solid foundation at the beginning of the course in order to 

facilitate a better understanding of subsequent concepts.  
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Subquestion 3: Is there a relationship between the Total Time Spent in ALEKS and 

Final Concept Mastery? 

A Pearson correlation coefficient was calculated for the relationship between 

participants‘ total time in ALEKS and final concept mastery. See Table 15 for the results.  

In order to answer this question all the participants‘ total time spent learning in 

ALEKS and their total concept mastery for the course were collected from ALEKS and 

analyzed in SPSS. The result showed a very weak correlation (.188) between the total 

time spent learning in ALEKS and the final concept mastery. Because of the weak 

correlation between time spent learning in ALEKS and the concept mastery in the 

summative assessment (posttest), it would mean that participants‘ total time spent in 

ALEKS is not related to the concept mastery. This would also mean that concept mastery 

and time spent learning in ALEKS would not be confounding factors when studying 

mathematics achievement with ALEKS. 

Subquestion 4: Is there a relationship between the final Concept Mastery score and 

the Posttest? 

In order to answer this question a posttest was administered by ALEKS in week 5 

and all the participants‘ final concept mastery scores and their posttest scores were 

collected from ALEKS and analyzed in SPSS. A Pearson correlation coefficient was 

calculated for the relationship between participants‘ final concept mastery and posttest 

scores (see Table 16). A strong positive correlation was found (r(54) = .852, p < .001), 

indicating a significant linear relationship between the two variables. 

The result showed a very strong correlation (.852) between the final concept 

mastery scores and their posttest scores. The strong and positive correlation result  
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Table 16 

Correlation Result between Posttest, Final Concept Mastery, and Total Time 

 Posttest Concept Mastery Total Time 

Posttest Pearson 

Correlation 

1 .852
**

 -.103 

Sig. (2-tailed)  .000 .451 

N 56 56 56 

Concept 

Mastery 

Pearson 

Correlation .852
**

 
1 .188 

Sig. (2-tailed) .000  .166 

N 56 56 56 

Total Time Pearson 

Correlation 

-.103 .188 1 

Sig. (2-tailed) .451 .166  

N 56 56 56 

**Correlation is significant at the 0.01 level (2-tailed). 

between final concept mastery and posttest scores in the summative assessments 

(posttest) indicates that participants‘ total time spent learning in ALEKS is related to the 

final concept mastery meaning that participants who scored high on concept mastery also 

scored high on the posttest. 

Subquestion 5: Is there a relationship between the Total Time Spent in ALEKS and 

the Posttest scores? 

A Pearson correlation coefficient was calculated for the relationship between 

participants‘ Total Time spent in ALEKS and posttest scores (see Table 16). A weak 

correlation that was not significant was found (r(54) = −.103, p > .05). 

To answer this question, I had ALEKS administer a posttest in week 5. I then 

collected data on each participant‘s total time spent learning in ALEKS and his or her 

posttest score. The analysis results showed a weak and negative correlation (−.103) 
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between the Total Time Spent learning in ALEKS and the Posttest scores. Because of the 

weak correlation between these two variables, it would mean that participants‘ time spent 

in ALEKS is not related to the performance on the posttest. In fact, the negative sign 

indicates that without mastering the concepts students may start scoring less in the 

assessments regardless of the time spent learning in ALEKS.  

To further explore research Question I, ―What are the factors contributing to 

students‘ mathematics achievement in using the ALEKS?‖ I attempted to fit the research 

data into two simple linear regression models and a multiple regression model. 

A simple linear regression was run to predict participants‘ achievement in 

mathematics based on their concept mastery. A significant regression equation was found 

(F(1,54) = 143.223, p < .001) with an R
2
 of .726 (see Table 17). Participants‘ predicted 

achievement was equal to 4.835 + .816 × (Concept Mastery), where achievement and 

Concept Mastery were measured in percentage points. 

Another simple linear regression was calculated to predict participants‘ 

mathematics achievement based on Time Spent in ALEKS. A nonsignificant regression 

equation was found (F(1,54) = .577 p > .05) with an R
2
 of .011 (see Table 17). Partici-

pants‘ predicted achievement was equal to 78.775 – (.093 × (Time Spent in ALEKS)), 

where achievement was measured in percentage points and Time spent in ALEKS was 

measured in hours.  

Finally, a multiple linear regression was calculated to predict participants‘ 

achievement based on the concept mastery and the total time spent in ALEKS. A 

significant regression equation was found (F(2,53) = 104.496, p < .001; see Table 17), 
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with an R
2
 of .798. Participants‘ predicted achievement was equal to 8.888 – (.246 × 

(Time Spent in ALEKS) + (.865 × (Concept Mastery)), where achievement and Concept  

Mastery were measured in percentage points and Time spent in ALEKS was measured in 

hours. 

Table 17 

Results of Simple and Multiple Regression Model 

Model Summary Posttest and Concept Mastery 

Model 

R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .852
a
 .726 .721 10.524 

a. Predictors: (Constant), Concept_Mastery 

b. Dependent Variable: Posttest 

Model Summary Posttest and Total_Time_Spent in ALEKS 

 

Model 

R 

R 

Square 

Adjusted R 

Square Std. Error of the Estimate 

1 .103
a
 .011  -.008  20.006 

a. Predictors: (Constant), Total_Time 

b. Dependent Variable: Posttest 

 

Model SummaryPosttest, Total_Time andConcept_Mastery 

Model 

R 

R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .893
a
 .798 .790 9.131 

a. Predictors: (Constant), Total_Time, Concept_Mastery 

b. Dependent Variable: Posttest 
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 The simple linear regression analyses of the participants‘ mathematics achieve-

ment based on concept mastery or time spent in ALEKS showed R
2
 of .726 and .011, 

respectively; thus, 72.6% of the variation in achievement can be explained by differences 

in concept mastery (higher concept mastery score leads to higher achievement score), 

while only 1.1% of the variation in achievement can be explained by differences in time 

spent in ALEKS. The simple linear regression analyses of the participants‘ mathematics 

achievement based on concept mastery showed that participants average percentage 

achievement increased by .816 for each percentage increase in concept mastery while the 

simple linear regression analyses of the participants‘ mathematics achievement based on 

time spent in ALEKS decreased by .093 for each hourly increase. 

However, the multiple regression analysis showed an R
2
 of .798; thus, 79.8% of 

the variation in achievement can be explained by differences in concept mastery and time 

spent in ALEKS. From the regression results, it mean that the multiple linear regression 

equation (Mathematics Achievement = 8.888 – (.246 × (Time Spent in ALEKS)) + 

(.865 × (Concept Mastery)) showed a better model for predicting math achievement in 

College Mathematics I (R
2
 =.798) than either of the simple linear regression equations. In 

this case, the regression weights of both concept mastery and time spent in ALEKS are 

significant when used together as predictors of students‘ mathematics achievement in 

College Mathematics I than when concept mastery or time spent in ALEKS were separate 

predictors. 

In the multiple regression equation, the regression weight for concept mastery was 

positive (.865) and the regression weight for time spent in ALEKS was negative (−.246). 

In this case, I argue that the variance in concept mastery that does not account for 
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variance in mathematics achievement was suppressed by the time spent in ALEKS. As 

already shown for Subquestion 2 and for Subquestion 5, time spent in ALEKS was not 

correlated to mathematics achievement. It is reasonable then to infer that the suppression 

of time spent in ALEKS from the multiple regression equation resulted in a better 

prediction of the achievement. It also means that spending time without mastering the 

concepts does not lead to mathematics achievement.  

Research Question II 

What is the cognitive complexity of mathematical tasks enacted by ALEKS on the 

pretest and posttest assessments? A sample of 97 questions items and solutions from 

ALEKS‘s pretest and posttest were printed and given to three professors of mathematics 

to rate according to the questions‘ cognitive complexity using Webb‘s (1997) Depth of 

Knowledge levels (see Chapter 2). The mathematics professors were also given DOK 

levels descriptors (see Appendix A). All three professors independently analyzed each 

question and solution and rated it according to DOK level one, two, three or four. 

According to Shrout and Fleiss (1979), it is important to assess the reliability of 

judgments made by raters in order to know the extent the measurement are measuring 

anything and Intraclass correlation coefficients has been shown to provide such measures 

of reliability. Hence, a reliability test was run on the ratings of the three professors to 

determine interrater reliability. Intraclass Correlation (ICC) was used to measure the 

interrater reliability. The average measure of the ICC was 0.987; indicating inter-rater 

consistency on all the four DOK levels (see Table 18). Next, with direction of the 

researcher, the three professors held a meeting and discussed question items for which 

they did not agree on the same DOK level. The professors used the method of consensus  
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Table 18 

Intraclass Correlation Coefficients 

 
Intraclass 

Correlation
a
 

95% Confidence Interval 

F Test with True Value 

0 

Lower Bound Upper Bound Value df1 

Single Measures .962
b
 .947 .973 78.161 96 

Average Measures .987 .982 .991 78.161 96 

 

Intraclass Correlation Coefficient 

 

F Test with True Value 0 

df2 Sig 

Single Measures 192 .000 

Average Measures 192 .000 

 

Two-way random effects model where both people effects and measures effects are random. 

a. Type A intraclass correlation coefficients using an absolute agreement definition. 

b. The estimator is the same, whether the interaction effect is present or not. 

 

to reach agreement on these questions they did not agree on individually. See Appendix F 

for samples of question items that the professors did not agree on. All data were 

transcribed into an Excel spreadsheet (see Appendix D). 

The distribution of the 97 pretest and posttest items consisted of the following: 26 

questions about Fractions, Signed Numbers, Percents and Geometry; 18 questions about 

Real Numbers; 26 questions about Solving Linear Equations and Inequalities; 22 

questions about Graphing Linear Equations and Inequalities; and 5 questions about 
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Systems of Linear Equations. The analysis of the pretest and posttest test items according 

to the DOK‘s levels showed 36 questions (37.1%) in DOK level 1, 49 questions (50.5%) 

in DOK level 2, 12 questions (12.4%) in DOK level 3, and none (0.0%) in DOK level 4 

(see Table 19). A graphical display of the topics and their DOK‘s levels are shown in 

Appendix E. 

Additional Findings 

In this study, I also analyzed additional qualitative data in order to answer the 

guiding research questions. In order to gain more insight on what participants report to be 

the contributing factors to their performance in College Mathematics I, the following 

question was placed in the OLS discussion forms. ―Discuss at least one main factor 

(Textbook, ALEKS, Team, Instructor, Tutor etc.) that contributed to your performance in 

this math class or what could you have done differently to perform better?‖ This question 

was asked at the end of each 5-week session after the posttest. In a regular class session, 

discussion was not compulsory in the final week of the course so this affected the number 

of responses. Fifty out of the 59 students (84.7%) responded. These responses were 

collated and analyzed and the following themes emerged from the data. While the 

information was used to gain a more holistic view of the research findings, it was not 

used to interpret the primary data. Rather, it provided further understanding of student 

experiences using ALEKS and an avenue for future research.  

A majority of the students perceived ALEKS as a significant and a useful helper, 

especially with its continuous practice over their study plan or learning path. For 

example, a student said, ―For me Aleks was huge, I feel like I spent the most amount of 

time with it and by being able to practice over and over it really helped me.‖ One student,  
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Table 19 

Pretest & Posttest Topics and Depth of Knowledge (DOK) Distribution 

Topics DOK 

Level 1 

DOK 

Level 2 

DOK 

Level 3 

DOK 

Level 4 Total 

Fractions, Signed Numbers, 

Percents & Geometry 
12 10 4 0 26 

Real Numbers 11 7 0 0 18 

Solving Linear Equations & 

Inequalities 
6 19 1 0 26 

Graphing Linear Equations & 

Inequalities 
6 13 3 0 22 

Systems of Linear Equations 0 1 4 0 5 

Total  35 49 12 0 97 

 

who identified herself as visual learner, said, ―The biggest contribution was the use of 

ALEKS. I am a visual learner and having the ability to not just focus on a textbook is 

nice. It took me a bit to get the hang of some subjects and ALEKS helped to explain it 

better than the textbook.‖ Alongside ALEKS, some students found their coworkers, 

colleagues and family members as very crucial to their performance in this class. For 

example, one student said, ―I also used the help of a couple of engineering students from 

work. They explained a couple problems to me.‖ 

Of those that responded, there were a couple of students who did not find ALEKS 

helpful in their performance. For these students, ALEKS was not only complicated and 

not-user-friendly but it also added to their learning curve. One of these students said ―I 

started getting stressed out over the time factors. There is so much to learn in such a short 

amount of time‖ and the other student said, ―I had very little success in this class, the 

book example help a lot more, and at times putting them together with the lecture help 
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me a lot especially on my homework assignments. I really didn't do well on ALEKS, I 

find it to be challenging. My success would be the book example because it breaks it 

down for you, for each problem.‖ 

Finally, many students identified time management and procrastination as what 

they could have done differently to improve their performance. For example, one student 

said, ―I could have had a higher grade right now if I would have allowed myself more 

time and if I would have used that time to retake the exams until I got A's on all of them. 

When taking any class, one must not procrastinate. It is better to do a little everyday to 

have a better understanding and stay ahead of the game.‖ 

The open-ended question used to gain more insights into the students‘ feeling 

about ALEKS has shown that majority of the students liked ALEKS, supporting the 

result of the research question one and the decision to reject the null hypothesis.  

Summary 

The analysis in this study was carried out based on the stated assumptions; hence, 

this chapter discussed the assumptions made in this research and presented the results and 

the findings of the study. This chapter also answered and discussed each of the research 

subquestions. The result showed a strong and significant relationship between the concept 

mastery and achievement scores: quizzes and posttest. The higher the concept mastery 

scores, the higher the achievement scores. The results did not show any significant 

relationship between the variables (a) time spent learning in ALEKS and (b) achievement 

scores. In other words, times participants‘ spent learning in ALEKS was not identifiably 

related to their performance on any of the achievement scores. Further, the results did not 
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show any relationship between the two independent variables: concept mastery and time 

spent learning in ALEKS. 

Simple and multiple regressions equation were fitted to predict participants‘ 

mathematics achievement based on their concept mastery and/or time spent in ALEKS. 

As shown in the models, the multiple regressions which used concept mastery and the 

time spent in ALEKS as independent variables to predict mathematics achievement 

provided a better model than the simple regression models which used either the concept 

mastery or time spent in ALEKS to predict mathematics achievement.  

 The findings of this research placed the cognitive complexity of half the pretest 

and posttest assessment items as questions that require basic reasoning. This was 

followed by questions that require recall and reproduction, and the least significant were 

questions that require strategic thinking. None of the question items required extended 

thinking or complex reasoning. 

Finally, the additional findings showed that most students liked ALEKS and 

identified ALEKS as the major contributor to their success in College Mathematics I. 

However, there were some students who used other sources beside ALEKS or who did 

not like ALEKS at all. But in all cases, ALEKS provided what needs to be learned, the 

learning path, and validated that the material has been learned. 
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CHAPTER 5 

CONCLUSION 

This study was designed to determine the effect of ALEKS on mathematics 

achievement in College Mathematics I. The findings reported in the previous chapter 

indicate that ALEKS showed a significant effect on students‘ achievement in College 

Mathematics I. These findings offer insight on how to interpret and use some of the 

ALEKS reports. In this chapter, I provide a summary of the study and discuss what the 

results mean in the context of using ALEKS as a tutoring system for mathematics. 

Finally, I provide a conclusion and recommendations for further research in the area of 

teaching and learning with intelligent tutoring systems. 

Summary of the Study 

The purpose of this research was to investigate the effect of ALEKS on students‘ 

achievement in mathematics in an online learning environment and to determine the 

cognitive complexity for mathematical tasks enacted by ALEKS‘ pretest and posttest 

assessments. The participants of this study were enrolled in one of five different sessions 

of the College Mathematics I in a 4-year private university located in the southwestern 

region of United States. I taught all the five sessions. The theoretical frameworks 

underlying the present study were Knowledge Space Theory and Webb‘s (1997) Depth of 

Knowledge Model (1997). KST explains how to reveal a learner‘s knowledge structures 

and achievement in a particular subject domain, while Depth of Knowledge is a scale of 

cognitive demand. ALEKS‘s design is based on Knowledge Space Theory. Webb‘s DOK 

Model was used to determine the cognitive complexity of ALEKS‘s pretest-posttest 

question items. 
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Two instructional media were used in this study: (a) the Online Learning System, 

a learning management system that was used for discussion, assignment submission and 

for providing information and document to the students; and (b) ALEKS, a mathematics 

tutoring system used to tutor and assess students achievement in College Mathematics I. 

ALEKS provided all the instruments for the data collection that was used to answer 

questions I and II, while OLS provided students response to the additional findings. The 

study was guided by two research questions: 

Research Question I: What are the factors contributing to students‘ mathematics 

achievement in using the ALEKS? To answer this question, I developed five research 

subquestions and one additional question: 

1. Is there a relationship between weekly Concept Mastery and the 

achievement score in weekly formative assessments? 

2. Is there a relationship between the Time Spent in ALEKS per week and 

the achievement score in weekly formative assessments? 

3. Is there a relationship between the Total Time Spent in ALEKS and Final 

Concept Mastery? 

4. Is there a relationship between the final Concept Mastery score and the 

Posttest? 

5. Is there a relationship between the Total Time Spent in ALEKS and the 

Posttest scores? 

Research Question II: What is the cognitive complexity of mathematical tasks 

enacted by ALEKS on the pretest and posttest assessments? 
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Quantitative research methodologies, t-test, regression and correlation, were used 

in this study to analyze the data related to the research question 1, while Webb‘s (1997) 

depth of knowledge levels was used to analyze and answer the research question 2. For 

additional insight into the results, students‘ written responses to the open-ended questions 

were collated and analyzed for emerging themes.  

Discussion 

The significant differences between the pretest and posttest in this research results 

showed that ALEKS had a significant effect on students‘ mathematics achievement. For 

example, the negatively skewed posttest and positively skewed pretest as shown in the 

assumption of normality indicate that the teaching, materials, and student learning are all 

functioning very well. The difference between the positively skewed distribution at the 

beginning of a course and the negatively skewed distribution at the end of a course would 

be an indication of how much the students had learned while the course was going on 

(Brown, 1997). This would be true because the students had previously scored poorly in a 

positively skewed distribution (with students generally scoring very low) at the beginning 

of the course on a similar test.  

As already stated in the theoretical framework, Knowledge Space Theory is one 

of the theories that frame this research. According to Falmagne et al. (2004), KST 

explains how to reveal a learner‘s knowledge structure and achievement in a subject 

domain. ALEKS used KST in College Mathematics I to assess and provide learning 

paths. Through individual‘s knowledge structure, ALEKS made sure that students were 

presented with information they were ready to learn. Hence, this result would mean that 

ALEKS was successful in assessing and providing learning paths for the students. It also 
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means that defining learning paths for individuals based on their knowledge structure 

leads to mathematics achievement.  

Jonassen et al. (1999) described task analysis for instructional design as a process 

of analyzing and articulating the kind of information that one expects the learners to 

know and perform. Learning hierarchy analysis uses dependency and prerequisite 

relationship among intellectual skills to determine what is to be learned and the sequence 

it is to be learned (Seels & Glasgow, 1990). Hence, it would appear from the result of the 

posttest that using task analysis to recommend content level and learning sequence 

facilitates mathematics achievement. 

The main ALEKS report that predicted student achievement was the concept 

mastery reports. There was a significant and positive relationship between weekly 

ALEKS concept mastery reports and the weekly ALEKS quiz reports. Also, there was a 

strong, significant, and positive relationship between final ALEKS concept mastery 

report and the posttest assessments, referred in this report as ALEKS final assessment 

report. These results showed that the weekly ALEKS concept mastery report and the final 

ALEKS concept mastery report are the major predictors of students‘ achievement when 

learning with ALEKS. This would mean that students gained mathematical knowledge in 

College Mathematics I between the pretest and posttest assessments through the use of 

ALEKS. In addition, the ALEKS concept mastery was the only ALEKS report in this 

study that predicted mathematics achievement in College Mathematics I, implying that 

instructors could use the concept mastery report to guide students‘ learning. Furthermore 

faculty could use the weekly concept mastery reports to identify students who are at the 

risk of failing and provide appropriate help and advice. For example, a less than 
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satisfactory score in the concept mastery on the first week is an indication of serious 

issues on mathematics achievement in the subsequent weeks. 

However, the quizzes and the posttest assessments results did not show that the 

time spent learning in ALEKS each week and the total time spent learning in ALEKS for 

the course have any effect on students‘ achievement. Instead, the results showed a non-

significant and weak relationship between the weekly time in ALEKS reports and weekly 

ALEKS quiz reports. Also, the result showed a nonsignificant and weak relationship 

between the total time in ALEKS report and ALEKS final assessment report. Because it 

was already shown that mastering the concepts is associated with higher achievement, 

thse results suggest that spending time in ALEKS without mastering the concepts does 

not translate to mathematics achievement. This would imply that ALEKS would have to 

integrate in its design a way of making sure that the time spent learning has a direct 

relationship with concepts mastered. In addition, a constant decline in the correlation 

coefficient between time spent studying in ALEKS and the formative assessments 

(weekly quizzes) implies that week 1 or the first formative assessment is very important 

in catching students who are at risk of failing the course.  

Even though the result of this research study supports previous studies (Allen, 

2007; Hagerty & Smith, 2005; Hampikian et al., 2006; Hu et al., 2008; Lavergne, 2007; 

Taylor, 2008) of higher mathematics achievement when using ALEKS, this study differs 

with some other previous studies (Hanna & Carpenter, 2006; Stillson & Alsup, 2003) that 

showed higher test scores are associated with time spent using ALEKS. Stillson and 

Alsup, in their study of the effectiveness of teaching Basic Algebra using the interactive 

learning system ALEKS to supplement traditional instruction, found that higher test 
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scores were associated with more time spent learning in ALEKS. In another study, Hanna 

and Carpenter used ALEKS to provide tutoring for precalculus students that were in 

Calculus I and II courses; their results showed higher achievement for students who spent 

more time in ALEKS. But in my current study, the results did not show any relationship 

between the time spent in ALEKS and mathematics achievement. The major differences 

between my current study and these previous studies (Hanna & Carpenter; Stillson & 

Alsup) are that the previous studies took place in a traditional learning environment 

where ALEKS was used as a supplement to traditional instruction, while the current 

study was conducted in an online learning environment and ALEKS was used as the 

primary source of instruction. It is possible that in the previous studies that the assistance 

of the instructor in the classroom made the students stay on task and also provided just-

in-time assistance, thus helping the students master more concepts in a shorter period of 

time. But in the online learning environment, students are left to monitor their time in 

ALEKS and would only receive delayed assistance mostly electronically when 

mathematics problems arise. Therefore, comparing previous studies and this study, it 

would appear that the time spent in learning ALEKS correlates to higher mathematics 

achievement when the use of ALEKS is monitored, for example, in a traditional learning 

environment.  

The regression equation showed a better model for predicting mathematics 

achievement in ALEKS when the time spent learning in ALEKS was suppressed from the 

equation, implying that mastering the concept is more important for mathematics 

achievement in ALEKS than the time spent learning in ALEKS. The findings of this 

study have shown that ALEKS concept mastery report is important when predicting 
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students‘ mathematics achievement in formative and summative assessments. Because 

some studies (Hanna & Carpenter, 2006; Stillson & Alsup, 2003) have shown direct 

relationship between time spent in ALEKS and mathematics achievement in a traditional 

learning environment, this would imply that ALEKS designers would find a way of 

assisting an online learner master more concepts in a shorter period of time. 

The cognitive complexity or the depth of knowledge of most of the pretest-

posttest questions item was at level two. According to Webb‘s (1997) depth of 

knowledge model, question items in level two require the application of skills and 

concepts or engagement of some mental processing beyond a habitual response. A level 

two assessment item requires students to make some decisions as to how to approach the 

problem or activity. According to the result, there were no question items in level four or 

question items that required extended thinking over an extended period of time, complex 

reasoning, planning, and developing. So, the cognitive complexity of most test items 

required application of Skills and Concepts, followed by question items that require a 

recall of information and few of the questions that required Strategic Thinking, but none 

required Extended Thinking. As shown in the literature review, Recall corresponds to 

Memorization (in the cognitive demand for math task domain) or Knowledge (in 

Bloom‘s, 1956, cognitive domain); Application of Basic Skills and Concepts corresponds 

to Procedures without Connections to Concepts and Meaning (in the cognitive demand 

for math task domain) or Comprehension (in Bloom‘s cognitive domain); Strategic 

Thinking corresponds to Procedures with Connections to Concepts and Meaning (in the 

cognitive demand for math task domain ) or Analysis and Application (in Bloom‘s 

cognitive domain); while Extended Thinking corresponds Doing Math (in the cognitive 
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demand for math task domain ) or Synthesis and Evaluation (in Bloom‘s cognitive 

domain). So, following these correspondences, most of the assessment items fall within 

Procedures without Connections or Comprehension followed by Memorization or 

Knowledge, few of the questions required Procedures with Connection with Meaning or 

Analysis and Application. None of the items required Doing Math or Synthesis and 

Evaluation. The results might suggest that most of the questions items presented by 

ALEKS pretest and posttest assessment in College Mathematics I is appropriate for skills 

and concept building.  

Finally, the qualitative findings indicated that most students liked ALEKS as the 

major source of instruction. However, there were some students who used other resources 

beside ALEKS or who did not like it, citing the reason that it was challenging. This 

implies that students have different preferences and learning styles (Pashler, McDaniels, 

Rohrer, & Bjork, 2009). Rakap (2010), in a study of the learning styles and computer 

skills of adult students‘ learning online, showed that learning styles/preferences had 

significant effect on students‘ knowledge acquisition. This means that ALEKS should not 

be the only source of instruction in the online learning environment: Provision should be 

made for real time instruction (synchronously or face to face).  

Implications for Practice 

Baroody and Coslick (1998) identified skill and concept approach as important to 

mathematics instruction. Skill approach focuses on the memorization of basic skills, 

while concept approach emphasizes meaningful memorization of skills (Baroody & 

Dowker, 2003). Because beginning-level mathematics classes like Introduction to 

Algebra normally emphasize skill and concept building and this research showed that 
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ALEKS‘s pretest and posttest cognitive complexity focused more on skill and concept 

building, instructional designers who are interested in skill and concept building may 

consider incorporating ALEKS in their design.   

As concept mastery has proved to be effective in predicting students‘ achieve-

ment, faculty teaching mathematics with ALEKS could use the concept mastery reports 

to guide student learning by requiring students to score at a certain level on the concept 

mastery before attempting any of the formative or summative assessments. In addition, a 

mathematics instructor could use concept mastery to provide feedback and study plan for 

a student. Also, knowing the cognitive complexity of the pretest and posttest assessments 

will help the instructor determine explicitly what the student must do in order to 

demonstrate learning. 

The result of this research will assist the administrators who are interested in 

reducing mathematics attrition in online learning environment by making decision on 

which mathematics intelligent tutoring system to adopt. Students are likely to gain in 

learning when the decision to adopt a mathematics tutoring system is based on research.  

Recommendations for Further Study 

The following recommendations for further investigation are based on the 

findings of this study. To validate the findings of this research further, the study should 

be replicated in a controlled environment and with a larger sample and in other 

introductory algebra mathematics courses. Additional research should be conducted 

comparing ALEKS with other intelligent tutoring systems. In part such studies would add 

to what is known about the effect of ALEKS on mathematics achievement while 
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providing an insight to the knowledge base about the role of intelligent tutoring system in 

teaching and learning. 

In order to find out the role of instructors in mastering mathematics concepts, this 

study should be replicated in a controlled environment with and without instructor led 

sections. The findings of such study will provide insight on the role of instructor in 

concept mastery.  

The present study did not take into consideration the role participants‘ technology 

skills play in online learning environment. For example, two systems that require 

technological skills were used in this research study: OLS and ALEKS. As a result, a 

study that examines the effect of technology skills on mathematics achievement in online 

learning environments will provide a stronger model for predicting mathematics 

achievement.  

Because this research study supports the evidence of mathematics achievement as 

shown in the review of literature, there should be a study to compare the achievement 

level of a class taught with ALEKS and another class taught without ALEKS in an online 

learning environment. Such a study would not only show whether there is achievement 

but the level of achievement.  

Because mathematics anxiety has shown to affect mathematics achievement in a 

traditional learning environment, a study on the effect of mathematics anxiety on 

mathematics achievement in an online learning environment using ALEKS is also 

recommended.  
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Conclusion 

The purpose of this research was to investigate the effect of ALEKS on students‘ 

achievement in mathematics in an online learning environment and to determine the 

cognitive complexity for mathematical tasks enacted by ALEKS‘ pretest and posttest 

assessments. The participants in this study were enrolled in a College Mathematics 

course in a 4-year private university located in the southwestern region of United States. 

The finding of this study shows that ALEKS had a significant effect on students‘ 

mathematics achievement in the College Mathematics course, and the main ALEKS 

report that predicted students‘ achievement in mathematics was the concept mastery 

report. Time spent learning in ALEKS was not a predictor of mathematics achievement.  

The cognitive complexity or the depth of knowledge of most of the pretest and 

posttest questions used in this study required the application of skills and concepts or 

engagement of some mental processing beyond a routine response. None of the pretest-

posttest questions required extended thinking over a period of time, complex reasoning, 

planning and developing. 
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APPENDIX B 

Multicolor Pie Chart Representing Student‘s Knowledge 

Source: http://www.aleks.com/highered/math/tour_math_pie 
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APPENDIX C 

Data 

Pretest, Posttest, Concept Mastery, Total Time Spent in ALEKS, Age and Gender 

from Researched Institution 

Code Pretest Posttest 

Concept 

Mastery Total_Time Age Gender 

1 11 61 71 37 37 2 

2 60 84 84 44 26 1 

3 43 65 100 50 41 2 

4 25 79 93 35 25 2 

5 57 95 95 34 25 1 

6 65 100 100 25 41 2 

7 94 92 100 7 61 2 

8 57 48 49 27 48 2 

9 48 80 97 32 34 2 

10 87 100 100 7 21 1 

11 54 88 100 29 27 1 

12 7 59 59 27 30 2 

13 4 41 45 13 25 2 

14 21 64 85 98 35 2 

15 11 87 100 28 28 2 

16 18 59 60 25 31 2 

17 36 79 100 57 48 2 

18 39 79 100 79 44 2 

19 73 94 94 19 24 2 

20 24 10 10 8 48 2 

21 53 82 100 25 33 2 

22 36 78 100 21 32 1 

23 25 92 100 35 37 2 

24 22 80 99 69 50 1 

25 53 68 84 15 21 2 

26 34 68 100 47 44 2 

27 41 89 91 38 37 2 

28 1 76 94 22 36 2 

29 70 100 100 13 32 2 

30 39 68 100 32 44 1 

31 32 72 72 39 43 2 

32 41 81 84 21 34 2 

33 28 68 100 34 32 2 

34 24 86 94 65 47 2 

35 39 98 99 19 37 2 
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Code Pretest Posttest 

Concept 

Mastery Total_Time Age Gender 

36 0 49 89.7 17.7 35 1 

37 49 64 92 60 30 1 

38 16 70 86 80 37 2 

39 22 70 91 44 26 2 

40 79 94 100 10 20 2 

41 72 92 100 17 35 2 

42 32 72 90 60 69 1 

43 55 64 97 33 35 2 

44 1 66 100 71 40 2 

45 0 24 100 44.4 47 1 

46 31 95 100 47 32 2 

47 41 43 57 23 46 2 

48 67 100 100 13 29 1 

49 21 53 76 91 55 2 

50 22 58 58 17 30 2 

51 88 80 88 11 42 2 

52 18 11 11 9 29 2 

53 37 93 100 26 36 2 

54 65 95 95 14 31 1 

55 70 100 100 25 25 1 

56 78 100 100 7 43 2 

57 22 76 95 28 29 1 

58 0 82 100 29.2 35 2 

59 43 70 70 28 29 2 

 

Data 

Weekly Concept Mastery, Time Spent in ALEKS, and Quiz Grades from Researched 

Institution 

Code Concept Mastery Time Spent in ALEKS WK1 Quiz Grade 

1 100 3.4 88 

2 100 8.9 88 

3 100 12.3 76 

4 100 10.2 84 

5 100 5.3 88 

6 100 6.3 88 

7 100 10.2 100 

8 100 2.1 96 

9 94.4 2.8 64 

10 100 9.5 88 
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11 100 3.5 100 

12 100 6.6 100 

13 5.6 1.3 48 

14 100 20.8 88 

15 100 6.1 100 

16 100 7.2 88 

17 100 8.3 92 

18 100 24.4 96 

19 100 4 96 

20 100 9.3 76 

21 27.8 0.4 100 

22 100 3.7 80 

23 94.4 2.2 88 

24 100 0.8 76 

25 100 8.3 84 

26 94.4 15.1 96 

27 100 4.3 92 

28 100 8.9 88 

29 100 10.7 100 

30 0 8 68 

31 100 1.2 100 

32 100 8.4 84 

33 100 0.9 80 

34 100 4.9 76 

35 100 10.9 84 

36 100 7.6 88 

37 100 1.6 84 

38 100 1.4 80 

39 100 19.8 84 

40 100 8.2 80 

41 100 3.8 96 

42 100 5 88 

43 100 3.8 80 

44 94.4 7.6 64 

45 100 3.7 60 

46 100 15.6 64 

47 100 10 96 

48 100 1.4 88 

49 16.7 8.5 56 

50 33.3 1.6 48 

51 100 5.4 92 
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52 100 2.7 96 

53 100 11.1 100 

54 100 2.7 92 

55 100 3.5 80 

56 100 6.3 80 

Code Concept Mastery Time Spent in ALEKS WK2 Quiz Grade  

1 100 1.8 72 

2 100 8.9 92 

3 12.5 6.2 44 

4 100 9.6 76 

5 100 13.1 80 

6 100 12.1 88 

7 100 4 92 

8 100 4.4 100 

9 100 1.3 88 

10 79.2 3.2 52 

11 75 1.5 24 

12 100 6.2 88 

13 100 0.9 88 

14 100 6.8 100 

15 87.5 7.9 76 

16 100 24.7 84 

17 95.8 5.6 88 

18 100 4.8 80 

19 100 17.5 96 

20 100 16 96 

21 100 3.8 100 

22 66.7 4 76 

23 100 6.2 80 

24 95.8 6.9 80 

25 95.8 4 92 

26 100 6.9 88 

27 100 15.1 100 

28 100 2.9 80 

29 100 9.7 80 

30 100 9.7 88 

31 100 7.4 68 

32 100 1.4 100 

33 100 7.5 88 

34 87.5 6.2 96 

35 87.5 3.5 64 
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36 100 7.3 84 

37 100 14 84 

38 100 3.3 92 

39 100 5.5 80 

40 100 16.5 88 

41 100 10.1 80 

42 100 0.7 96 

43 100 3.7 84 

44 100 2.1 100 

45 100 18.2 84 

46 100 15.6 80 

47 100 10.8 96 

48 100 2.1 96 

49 83.3 16.1 72 

50 62.5 3.8 76 

51 100 3.6 84 

52 100 2.4 96 

53 100 5.1 100 

54 100 0.4 92 

55 87.5 2.8 84 

56 70.8 5.4 36 

Code Concept Mastery Time Spent in ALEKS WK3 Quiz Grade  

1 20.8 1.4 36 

2 100 12.5 68 

3 8.3 13 24 

4 100 11.6 96 

5 100 13.7 76 

6 100 9.3 84 

7 100 10.5 92 

8 100 5.5 100 

9 100 1.2 92 

10 50 5.7 24 

11 8.3 0.8 12 

12 91.7 7.8 88 

13 100 0.4 88 

14 83.3 10.5 76 

15 20.8 4.4 16 

16 45.8 9.6 12 

17 100 5.5 88 

18 100 7.8 88 

19 100 15.6 88 
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20 100 16.3 88 

21 100 5.3 92 

22 100 8.6 68 

23 66.7 4.5 28 

24 100 5.5 64 

25 100 9 76 

26 100 19.3 88 

27 37.5 1.1 24 

28 100 12.9 68 

29 100 7.4 76 

30 79.2 3.5 48 

31 100 3.7 100 

32 100 6.4 56 

33 33.3 5.4 92 

34 79.2 4.6 68 

35 100 10.7 52 

36 79.2 17.9 56 

37 100 20.8 80 

38 62.5 11.9 56 

39 100 2.1 82 

40 100 11.8 80 

41 100 6.5 88 

42 58.3 15.9 44 

43 87.5 12.2 28 

44 100 24.8 76 

45 100 16.8 96 

46 100 5 92 

47 37.5 21.3 12 

48 100 2.9 80 

49 12.5 2.5 8 

50 70.8 2.3 16 

51 100 3.9 72 

52 100 2 100 

53 100 1.3 92 

54 79.2 5.1 92 

55 79.2 9.8 28 

56 0 1.5 28 

Code Concept Mastery Time Spent in ALEKS WK4 Quiz Grade  

1 20 5 90 

2 100 6.1 90 

3 100 4.8 70 
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4 100 8.9 100 

5 100 4.2 100 

6 100 7.1 100 

7 100 1 100 

8 100 1.4 100 

9 20 2.2 30 

10 20 0.5 30 

11 91.7 3.7 80 

12 100 0.5 100 

13 100 2.9 100 

14 95.8 3.4 30 

15 20.8 2 30 

16 95.8 25.3 60 

17 100 4.7 80 

18 100 2.7 100 

19 100 8.7 90 

20 100 8.7 100 

21 100 1.7 100 

22 100 2.4 100 

23 66.7 1.6 100 

24 100 5.1 90 

25 100 5.6 100 

26 100 7.1 90 

27 37.5 2.4 50 

28 100 9.7 80 

29 100 1.3 100 

30 79.2 2.4 70 

31 100 3.2 100 

32 100 5.8 70 

33 60 8.3 80 

34 60 2.9 80 

35 100 2.2 90 

36 100 12.6 80 

37 80 9.8 80 

38 100 12.9 70 

39 100 10.7 90 

40 80 6.4 70 

41 100 1.4 100 

42 100 5.9 90 

43 100 1.9 100 

44 80 11.2 80 
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45 100 3.8 90 

46 100 7.3 80 

47 100 3 90 

48 100 2.3 80 

49 20 3.5 60 

50 100 1.9 80 

51 80 7.1 60 

52 100 2.3 90 

53 100 2.7 100 

54 100 0.9 80 

55 60 3.1 90 

56 60 3.9 40 
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APPENDIX D 

Raters Result on DOK levels 

Test Items 

DOK 

Level 1 

DOK 

Level 2 

DOK 

Level 3 

DOK 

Level 4 

 Equivalent fractions  
x    

 Simplifying a fraction  
x    

 Ordering fractions  
 x   

 Addition or subtraction of fractions with 

different denominators  
 x   

 Fractional part of a circle  
 x   

 Product of a fraction and a whole number  
x    

 Fraction multiplication  
x    

 Fraction division  
 x   

 Integer addition: Problem type 1  
x    

 Integer addition: Problem type 2  
x    

 Integer subtraction  
 x   

 Integer multiplication and division  
x    

 Signed fraction addition  
 x   

 Signed fraction multiplication  
x    

 Signed decimal addition  
x    

 Converting between percentages and decimals  
x    

 Converting a percentage to a fraction  
x    

 Converting a fraction to a percentage  
 x   
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Test Items 

DOK 

Level 1 

DOK 

Level 2 

DOK 

Level 3 

DOK 

Level 4 

 Percentage of a whole number  
 x   

 Writing a ratio as a percentage  
 x   

 Word problem on percentage: Problem type 1  
  x  

 Word problem on percentage: Problem type 2  
  x  

 Word problem on percentage: Problem type 3  
  x  

 Computations from circle graphs  
  x  

 Supplementary and complementary angles  
x    

 Sum of the angle measures of a triangle  
 x   

 Integers and rational numbers  
 x   

 Rational and irrational numbers  
x    

 Evaluating expressions with exponents: Problem 

type 1  
 x   

Substitution and evaluation  
x    

 Order of operations: Problem type 1  
 x   

 Order of operations: Problem type 2  
 x   

 Exponents and order of operations  
x    

 Evaluation of a linear expression in two 

variables  
x    

 Evaluation of a polynomial in one variable  
x    

 Writing an inequality  
x    

 Writing a compound inequality  
 x   

 Writing a mathematical expression  
 x   
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Test Items 

DOK 

Level 1 

DOK 

Level 2 

DOK 

Level 3 

DOK 

Level 4 

 Translating sentences into equations  
x    

 Introduction to algebraic symbol manipulation  
x    

 Distributive property: Basic  
x    

 Distributive property: Advanced  
 x   

 Combining like terms: Basic  
x    

 Properties of addition  
x    

 Properties of real numbers  
 x   

 Additive property of equality with whole 

numbers  
x    

 Additive property of equality with integers  
x    

 Additive property of equality with a negative 

coefficient  
 x   

 Multiplicative property of equality with whole 

numbers  
x    

 Multiplicative property of equality with signed 

fractions  
 x   

 Using two steps to solve an equation with whole 

numbers  
 x   

 Solving a two-step equation with integers  
 x   

 Solving a two-step equation with signed 

fractions  
 x   

 Solving an equation to find the value of an 

expression  
 x   

Several occurrences of the variable  
 x   

 Solving a linear equation with several 

occurrences of the variable: Problem type 1  
 x   

 Solving a linear equation with several 

occurrences of the variable: Problem type 2  
 x   

 Solving a linear equation with several 

occurrences of the variable: Problem type 3  
x    
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Test Items 

DOK 

Level 1 

DOK 

Level 2 

DOK 

Level 3 

DOK 

Level 4 

 Solving a linear inequality: Problem type 1  
x    

 Solving a linear inequality: Problem type 2  
 x   

 Solving a linear inequality: Problem type 3  
 x   

 Solving a linear inequality: Problem type 4  
 x   

 Solving a word problem using a linear equation: 

Problem type 1  
 x   

 Solving a word problem using a linear equation: 

Problem type 2  
 x   

 Solving a word problem using a linear equation: 

Problem type 3  
 x   

 Algebraic symbol manipulation  
x    

 Solving a triangle: Problem type 1  
 x   

 Area and perimeter of a rectangle  
 x   

 Finding the side length of a rectangle given its 

perimeter or area  
 x   

 Word problem with linear inequalities  
 x   

 Reading a point in the coordinate plane  
x    

 Plotting a point in the coordinate plane  
x    

 Solutions to a linear equation in two variables: 

Problem type 1  
 x   

 Solutions to a linear equation in two variables: 

Problem type 2  
 x   

Graphing linear equations  
 x   

 Graphing a line given the x- and y-intercepts  
 x   

 Graphing a line given its equation in slope-

intercept form  
 x   

 Determining the slope of a line given its graph  
 x   
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Test Items 

DOK 

Level 1 

DOK 

Level 2 

DOK 

Level 3 

DOK 

Level 4 

 Graphing a vertical or horizontal line  
x    

 Interpreting the graphs of two functions  
x    

 Graphing a compound linear inequality on the 

number line  
x    

 Y-intercept of a line  
x    

 Finding x- and y-intercepts of a line given the 

equation in standard form  
 x   

 Finding the slope of a line given its equation  
 x   

 Writing an equation of a line given the y-

intercept and a point  
 x   

 Writing the equation of a line given the slope 

and a point on the line  
 x   

 Writing the equation of the line through two 

given points  
 x   

 Writing the equations of vertical and horizontal 

lines through a given point  
 x   

 Writing equations and drawing graphs to fit a 

narrative  
  x  

 Application problem with a linear function: 

Problem type 1  
  x  

 Application problem with a linear function: 

Problem type 2  
  x  

 Writing the equation of a parallel line  
 x   

 Classifying systems of linear equations from 

graphs  
  x  

 Solving a system of linear equations  
 x   

 Solving a word problem using a system of linear 

equations: Problem type 1  
  x  

 Solving a word problem using a system of linear 

equations: Problem type 2  
  x  

 Solving a word problem using a system of linear 

equations: Problem type 3  
  x  
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APPENDIX E 

Graphical Display of the Depth of Knowledge (DOK) Results 
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     Equivalent fractions  

     Ordering fractions  

     Fractional part of a circle  

     Fraction multiplication  

     Integer addition: Problem type 1  

     Integer subtraction  

     Signed fraction addition  

     Signed decimal addition  

     Converting a percentage to a fraction  

     Percentage of a whole number  

     Word problem on percentage: Problem type 1  

     Word problem on percentage: Problem type 3  

     Supplementary and complementary angles  

     Integers and rational numbers  

     Order of operations: Problem type 1  

     Exponents and order of operations  

     Evaluation of a polynomial in one variable  

     Writing a compound inequality  

     Translating sentences into equations  

     Distributive property: Basic  

     Combining like terms: Basic  

     Properties of real numbers  

     Additive property of equality with integers  

Chart Title 

Series4 Series3 Series2 Series1 
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APPENDIX F 

Sample Questions that Raters did not Agree on 
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APPENDIX F 

Sample Questions that Raters did not Agree on 
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APPENDIX F 

Sample Questions that Raters did not Agree on 
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