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CONNECTED DOMINATING SET BASED TOPOLOGY CONTROL IN WIRELESS

SENSOR NETWORKS

by

JING (SELENA) HE

Under the Direction of Dr. Yi Pan and Dr. Yingshu Li

ABSTRACT

Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of

systems where human intervention is not desirable or possible. Connected Dominating Sets

(CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient

coverage while reducing redundant connections in a relatively crowded network. Moreover,

Minimum-sized Connected Dominating Set (MCDS) has become a well-known approach

for constructing a Virtual Backbone (VB) to alleviate the broadcasting storm for efficient

routing in WSNs extensively. However, no work considers the load-balance factor of CDSs



in WSNs. In this dissertation, we first propose a new concept — the Load-Balanced CDS

(LBCDS) and a new problem — the Load-Balanced Allocate Dominatee (LBAD) problem.

Consequently, we propose a two-phase method to solve LBCDS and LBAD one by one and

a one-phase Genetic Algorithm (GA) to solve the problems simultaneously.

Secondly, since there is no performance ratio analysis in previously mentioned work,

three problems are investigated and analyzed later. To be specific, the MinMax Degree

Maximal Independent Set (MDMIS) problem, the Load-Balanced Virtual Backbone (LB-

VB) problem, and the MinMax Valid-Degree non Backbone node Allocation (MVBA) prob-

lem. Approximation algorithms and comprehensive theoretical analysis of the approximation

factors are presented in the dissertation.

On the other hand, in the current related literature, networks are deterministic where

two nodes are assumed either connected or disconnected. In most real applications, however,

there are many intermittently connected wireless links called lossy links, which only provide

probabilistic connectivity. For WSNs with lossy links, we propose a Stochastic Network

Model (SNM). Under this model, we measure the quality of CDSs using CDS reliability. In

this dissertation, we construct an MCDS while its reliability is above a preset application-

specified threshold, called Reliable MCDS (RMCDS). We propose a novel Genetic Algorithm

(GA) with immigrant schemes called RMCDS-GA to solve the RMCDS problem. Finally,

we apply the constructed LBCDS to a practical application under the realistic SNM model,

namely data aggregation. To be specific, a new problem, Load-Balanced Data Aggrega-

tion Tree (LBDAT), is introduced finally. Our simulation results show that the proposed

algorithms outperform the existing state-of-the-art approaches significantly.

INDEXWORDS: Connected dominating set, Load balance, Energy efficient, Reliability,
Topology control, Stochastic wireless sensor networks
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CHAPTER 1

INTRODUCTION

1.1 Wireless Sensor Networks

1.1.1 Basic idea

Wireless sensor networks (WSNs), consisting of small nodes with sensing, computation,

and wireless communications capabilities, are now widely used in many applications, includ-

ing environment and habitat monitoring, traffic control, and etc. Although sensor networks

share many common aspects with generic ad hoc networks, several important constraints in

WSNs introduce a number of research challenges. First, due to the relatively large number

of sensor nodes, it is impossible to build a global addressing scheme for the deployment of

a large number of sensor nodes as the overhead of ID maintenance is high. Thus, tradi-

tional IP-based protocols may not be applied to WSNs. Second, sensor nodes are tightly

constrained in terms of energy, processing, and storage capacities. Thus, they require care-

ful resource management. Thirdly, The requirements regarding dependability and Quality

of Services (QoS) are quite different. In ad hoc networks, each individual node should be

fairly reliable, while in WSNs, an individual node is next to irrelevant. The QoS issues in

an ad hoc network are dictated by traditional applications, while for WSNs, entirely new

QoS concepts are required, which also take energy explicitly into account. Fourth, Redun-

dant deployment will make data-centric protocols attractive in WSNs. Finally, although

position awareness of sensor nodes is important, it is not feasible to use Global Positioning

System (GPS) hardware for this purpose. GPS can only be used outdoors and without the

presence of any obstruction. Moreover, GPS receivers are expensive and unsuitable for the

construction of small cheap sensor nodes. In summary, there are commonalities, but the fact

that WSNs have to support very different applications, that they have to interact with the

physical environment, and that they have to carefully adjudicate various trade-offs justifies
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considering WSNs as a system concept distinct from ad hoc networks.

1.1.2 Deterministic Wireless Sensor Networks and Stochastic Wireless

Sensor Networks

WSNs are usually modeled using the Deterministic Network Model (DNM) in recent

literature. Under this model, there is a transmission radius of each node. According to

this radius, any specific pair of nodes are always connected to be neighbors if their physical

distance is less than this radius, while the rest of the pairs are always disconnected. The

Unit Disk Graph (UDG) model is a special case of the DNM model if all nodes have the same

transmission radius. When all nodes are connected to each other, via a single-hop or multi-

hop path, the WSN is said to have full connectivity. In most real applications, however, the

DNM model cannot fully characterize the behavior of wireless links. This is mainly due to

the transitional region phenomenon which has been revealed by many empirical studies [1–4].

Beyond the “always connected” region, there is a transitional region where a pair of nodes

are probabilistically connected. Such pairs of nodes are not fully connected but reachable

via the so called lossy links [4]. As reported in [4], there are often much more lossy links

than fully connected links in a WSN. Additionally, in a specific setup [5], more than 90% of

the network links are lossy links. Therefore, their impact can hardly be neglected.

The employment of lossy links in WSNs is not straightforward, since when the lossy

links are employed, the WSN may have no guarantee of full network connectivity. When

data transmissions are conducted over such topologies, it may degrade the node-to-node

delivery ratio. Usually a WSN has large node density and high data redundancy, thus this

certain degraded performance may be acceptable for many WSN applications. Therefore,

as long as an expected percentage of the nodes can be reached, that is the node-to-node

delivery ratio satisfies some preset requirement, lossy links are tolerable in a WSN. In other

words, full network connectivity is not always a necessity. Some applications can trade full

network connectivity for a higher energy-efficiency and larger network capacity [5].
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1.2 Topology Control in Wireless Sensor Networks

1.2.1 Motivation

One perhaps typical characteristic of wireless sensor networks is the possibility of de-

ploying many nodes in a small area, for example, to ensure sufficient coverage of an area

or to have redundancy present in the network to protect against node failures. These are

clear advantages of a dense network deployment, however there are also disadvantages. In

a relatively crowded network, many typical wireless networking problems are aggravated by

the large number of neighbors: many nodes interfere with each other, there are a lot of

possible routes, nodes might needlessly use large transmission power to talk to distant nodes

directly (also limiting the reuse of wireless bandwidth), and routing protocols might have to

recompute routes even if only small node movements have happened.

Some of these problems can be overcome by topology-control techniques. Instead of us-

ing the possible connectivity of a network to its maximum possible extent, a deliberate choice

is made to restrict the topology of the network. The topology of a network is determined

by the subset of active nodes and the set of active links along which direct communication

can occur. Formally speaking, a topology-control algorithm takes a graph G = (V,E) rep-

resenting the network, where V is the set of all nodes in the network and there is an edge

(v1, v2) ∈ E ⊆ V 2 if and only if nodes v1 and v2 can directly communicate with each other.

Hence all active node forms an induced graph T = (VT , ET ) such that VT ⊆ V and ET ⊆ E.

1.2.2 Options for topology control

To compute an induced graph T out of a graph G representing the original network G,

a topology control algorithm has a few options:

• The set of active nodes can be reduced (VT ⊂ V ), for example, by periodically switch-

ing off nodes with low energy reserves and activating other nodes instead, exploiting

redundant deployment in doing so.

• The set of active links/the set of neighbors for a node can be controlled. Instead of
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using all links in the network, some links can be disregarded and communication is re-

stricted to crucial links. When a flat network topology (all nodes are considered equal)

is desired, the set of neighbors of a node can be reduced by simply not communicating

with some neighbors. There are several possible approaches to chose neighbors, but

one that is obviously promising for a WSN is to limit the reach of a node’s trans-

missions - typically by power control, but also by using adaptive modulations (using

faster modulations is only possible over shorter distances) - and using the improved

energy efficiency when communicating only with nearby neighbors. In essence, power

control attempts to optimize the trade-off between the higher likelihood of finding a

(useful) receiver at higher power values on the one hand and the increased chance of

collisions/interference/reduced spatial reuse on the other hand.

• Active links/neighbors can also be rearranged in a hierarchical network topology where

some nodes assume special roles. One example, illustrated in Figure 1.1, is to select

some nodes as a Virtual Backbone (VB) for the network and to only use the links

within this backbone and direct links from other nodes to the backbone. To do so, the

backbone has to form a Dominating Set(DS): a subset D ⊂ V such that all nodes in

V are either in D itself or are one-hop neighbors of some node d ∈ D (∀ v ∈ V : v ∈

D ∨ ∃ d ∈ D : (v, d) ∈ E). Then, only the links between nodes of the dominating

set or between other nodes and a member of the active set are maintained. For a

backbone to be useful, it should be connected. A related, but slightly different, idea is

to partition the network into clusters, illustrated in Figure 1.2. Clusters are subsets of

nodes that together include all nodes of the original graph such that, for each cluster,

certain conditions hold (details vary). The most typical problem formulation is to find

clusters with cluster heads, which is a representative of a cluster such that each node

is only one hop away from its cluster head. When the (average) number of nodes in

a cluster should be minimized, this is equivalent to finding a maximum (dominating)

independent set (a subset C ⊂ V such that ∀ v ∈ V − C : ∃ c ∈ C : (v, c) ∈ E and

no two nodes in C are joined by an edge in E, ∀ c1, c2 ∈ C : (c1, c2) /∈ E). In such
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a clustered network, only links within a cluster are maintained (typically only those

involving the cluster head) as also selected links between clusters to ensure connectivity

of the whole network. Both problems are intrinsically hard and various approximations

and relaxations have been studied.

Figure 1.1. Restricting the topology by using Dominating Sets

In conclusion, there are three main options for topology control: flat networks with a

special attention to power control on the one hand, hierarchical networks with backbones or

clusters on the other hand.

1.2.3 Measurements of topology control algorithms

There are a few basic metrics to judge the efficacy and quality of a topology-control

algorithm [6]:

• Connectivity Topology control should not disconnect a connected graph G. In other

words, if there is a multihop path in G between two nodes u and v, there should also

be some such path in T (clearly, it does not have to be the same path).

• Stretch factors Removing links from a graph will likely increase the length of a path

between any two nodes u and v. The hop stretch factor is defined as the worst increase
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Figure 1.2. Using clusters to partition a graph

in path length for any pair of nodes u and v between the original graph G and the

topology-controlled path T . Formally,

hop stretch factor = max
u,v∈V

|(u, v)T |
|(u, v)G|

(1.1)

where (u, v)G is the shortest path in graph G and |(u, v)| is its length.

Similarly, the energy stretch factor can be defined:

hop stretch factor = max
u,v∈V

ET (u, v)

EG(u, v)
(1.2)

where EG(u, v) is the energy consumed along the most energy-efficient path in graph

G. Clearly, topology-control algorithms with small stretch factors are desirable. It

particular, stretch factors in O(1) can be advantageous.

• Graph metrics The intuitive examples above already indicated the importance of a

small number of edges in T and a low maximum degree (number of neighbors) for each

node.
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• Throughput The reduced network topology should be able to sustain a comparable

amount of traffic as the original network (this can be important even in wireless sensor

networks with low average traffic, in particular, in case of event showers). One metric

to capture this aspect is throughput competitiveness (the largest φ ≤ 1 such that,

given a set of flows from node si to node di with rate ri that are routable in G, the set

with rates φri can be routed in T ), see reference [6] for details.

• Robustness to mobility When neighborhood relationships change in the original

graph other nodes might have to change their topology information (for example, to

reactivate links). Clearly, a robust topology should only require a small amount of such

adaptations and avoid having the effects of a reorganization of a local node movement

ripple through the entire network.

• Algorithm overhead It almost goes without saying that the overhead imposed by the

algorithm itself should be small (low number of additional messages, low computational

overhead). Also, distributed implementation is practically a condition.

In the present context of WSNs, connectivity and stretch factors are perhaps the most

important characteristics of a topology-control algorithm, apart from the indispensable dis-

tributed nature and low overhead. Connectivity treats as optimization goal.
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CHAPTER 2

RELATED WORK

The idea of using a CDS as a virtual backbone was first proposed by Ephremides et al.

in 1987 [7]. Since then, many algorithms that construct CDSs have been reported and can

be classified into the following four categories based on the network information they used:

• Centralized algorithms;

• Substraction-based distributed algorithms;

• Distributed algorithms using single leader;

• Distributed algorithms using multiple leaders.

We use n to denote the number of sensors in a WSN, ∆ to denote the maximum degree

of nodes in the graph representing a WSN, and opt to denote the size of any optimal MCDS.

2.1 Centralized Algorithms for CDSs

Guha et al. [8] first proposed two centralized greedy algorithms with performance ratios

of 2(H(∆) + 1) and H(∆) + 2 respectively, where H is a harmonic function. The greedy

function is based on the number of white neighbors of each node. At each step, the one with

the largest such number becomes a dominator.

Due to the instability of network topology in WSNs, it is necessary to update topol-

ogy information periodically. Therefore, many distributed algorithms are proposed. These

distributed algorithms can be classified into two categories: substraction-based and addition-

based algorithms. The substraction-based algorithms begin with the set of all the nodes in

a network, then remove some nodes according to pre-defined rules to obtain a CDS. The

addition-based CDS algorithms start from a subset of nodes (usually disconnected), then
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include additional nodes to form a CDS. Depending on the type of the initial subset, the

addition-based CDS algorithms can be further divided into single-leader and multiple-leader

algorithms.

2.2 Substraction-based Distributed Algorithms for CDSs

Wu and Li first proposed a completely distributed algorithm in [9] to obtain a CDS. The

CDS construction procedure consists of two stages. In the first stages, each node collects

its neighboring information by exchanging message with the one-hop neighbors. If a node

finds that there is a direct link between any pair of its one-hop neighbors, it removes itself

from the CDS. In the second stage, additional heuristic rules are applied to further reduce

the size of the CDS. Wu’s algorithm [9] uses Rule 1 and Rule 2, where a node is removed

from the CDS, if all its neighbors are covered by its one or two direct neighbors. Later, Dai’s

[10] work generalizes this as Rule k, in which coverage is defined by an arbitrary number of

connected neighbors. Dai’s algorithm is reduced to Wu’s algorithm when k is 1 or 2.

2.3 Addition-based Distributed Algorithms for CDSs

Single-leader distributed algorithms for CDSs use one initiator to initialize the distribut-

ed algorithms. Usually, a base station could be the initiator for constructing CDSs in WSNs.

In these distributed algorithms, a spanning tree rooted at the initiator is first constructed,

and then maximal independent sets (MISs) are identified layer by layer, finally a set of con-

nectors to connect the MISs is ascertained to form a CDS. Wan et al. [11] presented an

ID-based distributed algorithm to construct a CDS using a single initiator. For UDGs, Wan

et al.’s [11] approach guarantees that the approximation factor on the size of a CDS is at

most 8opt + 1. The algorithm has O(n) time complexity and O(n log n) message complex-

ity. Subsequently, the approximation factor on the size of a CDS was improved in another

work reported by Cardei et al. [12], in which the authors used the degree-based heuristic

and degree-aware optimization to identify Steiner nodes as the connectors in the CDS con-

struction. The approximation factor on the size of a CDS is improved to 8opt, while this
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distributed algorithm has O(n) message complexity, and O(∆n) time complexity. Later, Li

et al. [13] reported a better approximation factor of 5.8+ ln 4 by constructing a Steiner tree

when connecting all the nodes in the MISs.

Distributed algorithms with multiple leaders do not require an initiator to construct a

CDS. Alzoubi et al.’s technique [14] first constructs an MIS using a distributed approach

without a leader or tree construction and then interconnects these MIS nodes to get a CDS.

Li et al. proposed a distributed algorithm r-CDS in [15], whose performance ratio is 172. r-

CDS is a completely distributed one-phase algorithm where each node only needs to know the

connectivity information within its 2-hop-away neighborhood.An MIS is constructed based

on each node’s r value which is defined as the number of this node’s 2-hop-away neighbors

minus the degree of this node. The nodes with smaller r values are preferred to serve as MIS

nodes.Adjih et al. [?] presented an approach for constructing an MCDS based on multi-point

relays (MPR), but there is no approximation analysis of the algorithm yet. Recently, in [?],

another distributed algorithm was proposed whose performance ratio is 147. This algorithm

contains three steps. Step 1 constructs a forest in which each tree is rooted at a node with the

minimum ID among its 1-hop away neighbors. Step 2 collects the neighborhood information,

which is used in Step 3 to connect neighboring trees.

2.4 Other Algorithms

Because CDSs can benefit a lot to WSNs, a variety of other factors are considered when

constructing CDSs. There are more than one CDS can be found for each WSN. To conserve

energy, all CDSs are constructed and each CDS serves as the virtual backbone duty cycled in

[16]. For the sake of fault tolerance, k-connect m-dominating sets [17] are constructed, where

k-connectivity means between any pair of backbone nodes there exist at least k independent

paths, and m-dominating represents that every dominatee has at least m adjacent dominator

neighbors. To minimize delivery delay, a special CDS problem — Minimum rOuting Cost

CDS (MOC-CDS) [18] is proposed, where each pair of nodes in MOC-CDS has the shortest

path. The work [19] considers size, diameter, and Average Backbone Path Length (ABPL)
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of a CDS in order to construct a CDS with better quality.

2.5 Related Literatures under the SNM model

Traditional routing schemes only considered fully connected links as a path of nodes

in a WSN, and then send data through that sequence of node. Compare with the fully

connected links, lossy links only provide probabilistic connectivity. However, there exists

more lossy links in a WSN. Therefore, opportunistic routing schemes (e.g., ExOR [20] and

More [21]) proposed to take lossy links as advantage. The Opportunistic Routing scheme

called ExOR [20] proposed a new unicast routing technique for multi-hop wireless networks.

ExOR forwards each packet through a sequence of nodes, who can successfully receive the

transmission and are close to the destination. ExOR explore package overhearing along lossy

links. When a lossy link succeeds, some transmissions can be saved. Later, Chachulski et al.

combined random network coding with opportunistic routing to support both unicast and

multicast routing in More [21]. The successful of opportunistic routing indicates that lossy

links provide the potential throughput increase.

Recently, lots of works [5, 22–25] study the impact of lossy links to the topology control.

Ma et al., in [22, 23] worked on achieving energy-efficiency by turning off redundant nodes

and links, while still satisfying the given QoS requirements. And Liu et al., investigated how

to control the minimal transmission range for each node while the global network reachability

satisfies some constraints in [5, 24, 25].

2.6 Remarks

All the above mentioned existing works consider to construct an MCDS, a k-connect m-

dominating CDS, a minimum routing cost CDS or a bounded-diameter CDS. Unfortunately,

they do not consider the load-balance factor when constructing a CDS. In contrast, in this

dissertation, we first show an example to illustrate that a traditional MCDS cannot prolong

network lifetime by reducing the communication cost. Instead, it actually increase the

workload imbalance among dominators, which leads to the reduction of network lifetime.



12

Based on this observation, we then study to build an LBCDS and load-balancedly allocate

dominatees to dominators. We use two distinct ways to solve the problems. One way is

two-phase. We first build an LBCDS. After constructing an LBCDS, we investigate how

to load-balancedly allocate dominatees to dominators. The probability based centralized

and distributed algorithms are proposed to obtain an optimal allocation scheme. The upper

bound and lower bound of the performance ratios of the proposed algorithms are analyzed

in Chapter 3. The other way is only one phase. An effective GA named LBCDS-GA is

proposed to solve the problem in Chapter 4. Comprehensive theoretical analysis are given

in Chapter 6.

On the other hand, all the above mentioned existing works either consider to construct

an MCDS under the DNM model or design a routing protocol, investigate the topology

control under the SNM model. To the best knowledge of us, however, none of them attempt

to construct an MCDS under the SNM model, which is more realistic. This is the major

motivation of this research work. GAs are a family of computational models inspired by

evolution, which have been applied in a quite broad range of NP-Hard optimization problem

[26–29]. Therefore, a GA based method, namely RMCDS-GA, is proposed in Chapter 5

to construct a reliable MCDS under the SNM model. In RMCDS-GA, each possible CDS

in a WSN is represented to be a chromosome (feasible/potential solution), and the fitness

function is to evaluate the trade-off between the CDS reliability and the size of the CDS

represented by each chromosome.

Finally, I apply the constructed LBCDS to a practical application under the realistic

SNM model, namely data gathering. Data Gathering is a fundamental task in WSNs. For

applications where each sensor continuously monitors the environment and periodically re-

ports to the sink, a tree-based topology is often used to gather and aggregate sensing data

from sensor nodes. Thus, data gathering trees with aggregation are also referred to as Data

Aggregation Trees (DATs). To be specific, a new problem, Load-Balanced Data Aggregation

Tree (LBDAT), is introduced in Chapter 7.
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CHAPTER 3

CONSTRUCTING A LOAD-BALANCED VIRTUAL BACKBONE IN

WIRELESS SENSOR NETWORKS

3.1 Motivation

Wireless Sensor Networks (WSNs) are deployed for monitoring and controlling of sys-

tems where human intervention is not desirable or feasible. One typical characteristic of

WSNs is the possibility of deploying many nodes in a area to ensure sufficient coverage of an

area or/and to have redundancy against node failures. However, in a relatively crowded net-

work, many problems are aggravated: 1). Many nodes interfere with each other, 2). There

are a lot of possible routes, 3). Nodes might needlessly use large transmission power to talk

to distant nodes directly, and 4) Routing protocols might have to recompute routes even if

only a small number of nodes changed their locations. These problems can be overcomed

by selecting some nodes as a Virtual Backbone (VB) for a network, in which only the links

within this backbone and direct links from other nodes to the backbone nodes are mainly

used in the WSN. Usually, we use a Dominating Set (DS) to serve as a backbone for a

WSN, which is a subset of nodes in the network where every node is either in the subset

or a neighbor of at least one node in the subset. For a backbone to be useful, it should be

connected, namely, Connected Dominating Set (CDS). The nodes in a CDS are called

dominators, otherwise, dominatees. In a WSN with a CDS as its VB, dominatees only for-

ward their data to their connected dominators. Moreover, the CDS with the smallest size

(the number of nodes in the CDS) is called a Minimum-sized Connected Dominating

Set (MCDS).

With the help of a CDS, routing is easier and can adapt quickly to topology change.

Only dominators need to maintain the routing information. Therefore, the search space

for the route is reduced only within the CDS. Furthermore, if there is no topology change
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in the subgraph induced by the CDS, there is no need to update the routing information.

Moreover, in addition to routing [30], a CDS has many other applications in WSNs, such as

broadcasting [31], topology control [32–39], coverage [40–42], data collection [43], and data

aggregation [44]. Clearly, the benefits of a CDS can be magnified by making its size smaller.

Therefore, it is desirable to build an MCDS to reduce the number of nodes and links involved

in communication. As a matter of fact, constructing a CDS, especially an MCDS for WSNs

is one way to extend network lifetime.

Ever since the idea of employing a CDS for WSNs was introduced in [7], a huge amount

of effort has been made to find CDSs with variety of features for different applications,

especially the MCDS. In the seminal work [8], Guha and Kuller first modeled the problem of

computing the smallest CDS as the MCDS problem in a general graph, which is a well-know

NP-Hard problem [45]. After that, to make a CDS more resilient in mobile WSNs, the fault-

tolerance of a VB is considered. In [17], k-connected and m-dominated sets are introduced as

a generalized abstraction of a fault-tolerance VB. In [18], the authors proposed a Minimum

rOuting Cost Connected Dominating Set (MOC-CDS), which aims to find a minimum CDS

while assuring that any routing path through this CDS is the shortest in WSNs. Additionally,

the authors investigate the problem of constructing a quality CDS in terms of size, diameter,

and Average Backbone Path Length (ABPL) in [19].

Unfortunately, to the best of our knowledge, all the related works did not consider the

load-balance factor when they construct a CDS. If the workload on each dominator in a

CDS are not balanced, some heavy-duty dominators deplete their energy quickly. Then, the

whole network might be disconnected. Hence, intuitively, we not only have to consider to

construct an MCDS, but also need to consider to construct a load-balanced CDS (LBCDS).

An illustration of an LBCDS is depicted in Fig. 3.1, in which dominators are marked as

black nodes, while white nodes represent dominatees. In Fig. 3.1(b) and Fig. 3.1(c), solid

lines represent that the dominatees are allocated to the connected dominators, while the

dashed lines represent the communication links in the original graph shown in Fig. 3.1(a).

According to the traditional MCDS construction algorithms, a CDS {s4, s7} with size 2 is
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obtained for the network shown in Fig. 3.1(a). However, There are two severe drawbacks

of the CDS shown in Fig. 3.1(a). For convenience, the set of neighboring dominatees of the

dominator si is denoted by ND(si). First, ND(s4) = {s1, s2, s3, s5, s6}, which represents

that dominator s4 connects to 5 different dominatees, and ND(s7) = {s6, s8}. If every

dominatee has the same amount of data to be transferred through the connected dominator

at a fixed data rate, dominator s4 must deplete its energy much faster than dominator s7,

since dominator s4 has to forward the data collected from 5 connected dominatees. Second,

dominatee s6 connects to both dominators. If s6 chooses dominator s4 as its data forwarder,

obviously, only one dominatee s8 can forward its data to dominator s7. In this situation,

the workload imbalance in the CDS is further amplified. Consequently, the entire network

lifetime is shortened. We show a counter-example in Fig. 3.1(b), where the constructed CDS

is {s3, s6, s7}. According to the topology shown in Fig. 3.1(b), we can get the dominatee

sets of each dominator: ND(s3) = {s1, s2, s4}, ND(s6) = {s4, s5}, and ND(s7) = {s4, s8}.

Compared with the MCDS constructed in Fig. 3.1(a), the numbers of dominatees of all

the dominators in Fig. 3.1(b) are very similar. For convenience, we use A(si) = {sj|sj is a

dominatee and sj forward its data to si} to represent the dominatees allocated to a dominator

si. Thus, we can have two different dominatee allocation schemes shown in Fig. 3.1(b) and

Fig. 3.1(c) respectively. One is: A(s3) = {s1, s2, s4}, A(s6) = {s5} , and A(s7) = {s8}.

The other one is: A(s3) = {s1, s2}, A(s6) = {s4, s5} , and A(s7) = {s8}. Apparently, the

workload on each dominator is almost evenly distributed in the CDS constructed in Fig.

3.1(c). Intuitively, the construction algorithm and dominatee allocation scheme shown in

Fig. 3.1(c) can extend network lifetime notably.

To solve the workload imbalance problem of an MCDS, in this chapter, we first inves-

tigate how to construct a load-balanced CDS. When we build the LBCDS, we consider the

degree of each dominator as the indicator of potential future workload. Taking the degree of

each dominator in consideration, we use the p-norm to measure how balanced the LBCDS

can make. The details are introduced in Section 3.3. After constructing an LBCDS, we

explore how to Load-Balancedly Allocate dominatees to Dominators (LBAD). We propose
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(a) (b) (c)

Figure 3.1. Illustration of regular CDS and LBCDS.

a novel probability-based algorithm to solve this problem. The detailed design, algorithm

description and theoretical analysis are presented in Section 3.4.

3.2 LBVB Problem Statement

In this section, we introduce the network model and define the LBCDS problem and

the LBAD problem formally.

3.2.1 Network Model

We assume a WSN is deployed in a square with area size A = cn, where c is a constant

and the WSN is consisting of n sensors, denoted by s1, s2, . . . , sn respectively. All sensors are

independent identically distributed (i.i.d.) over the whole network. We also assume all nodes

have the same transmission range. We modeled the WSN as a connected undirected general

graph G = (V,E), in which V represents node set and E represents the link set. ∀ u, v ∈ V ,

there exists an edge (u, v) in G if and only if u and v are in each other’s transmission range.

In this chapter, we assume edges are undirected (bidirectional), which means two linked

nodes are able to transmit and receive information from each other.

The load-balance factor is our major concern in this work. Thus, finding an appropriate

measurement to evaluate load-balance is the key to solve the LBCDS and LBAD problems.

We use p-norm to measure load-balance in this chapter. The definition of p-norm is given
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as follows:

Definition 3.2.1. p-norm. Thep-norm of an n× 1 vector X = (x1, x2, · · · , xn) is:

|X|p = (
n∑

i=1

|xi|p)
1
p (3.1)

The authors in [46] stated that p-norm shows interesting properties for different values

of p. If p is close to 1, the information routes resemble the geometric shortest paths from the

sources to the sinks. For p = 2, the information flow shows an analogy to electrostatics field,

which can be used to measure the load-balance among xi. More importantly, the smaller

the p-norm value, the more load-balanced the interested feature vector X.

In this chapter, we use node degree (Definition 3.2.2) and the number of dominatees

connected to a dominator (Definition 3.2.3) of the interested node set as the information

vector X, since the degree of each node and the number of the dominatees connected to a

dominator is a potential indicator of traffic load.

We use the WSNs shown in Fig. 3.1 to illustrate how to use p-norm to measure the

load-balance of CDSs. Two different CDSs for the same network are identified in Fig. 3.1.

The degree of the node si is denoted by di in Fig. 3.1. |di − d̄| are used as the information

vector X, where d̄ is the mean degree of each graph in Fig. 3.1. Therefore, the p-norm value

of the CDS shown in Fig. 3.1(a) is
√
9. Similarly, in Fig. 3.1(b), the p-norm value is

√
2.

Clearly,
√
2 <

√
9, which implies that the CDS in Fig. 3.1(b) is more load-balanced than

the CDS in Fig. 3.1(a).

After we construct an LBCDS, the next step is to allocate dominatees to each dominator

in the LBCDS. The p-norm can again be used to measure the load-balance of different

allocation schemes, in which, the number of dominatees connected to a dominator of the

interested node set is used as the information vector X. An illustration example is shown in

Section 3.4.
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3.2.2 LBCDS Problem Definition

Now we give the formal definition of the problems we investigate in this chapter.

Definition 3.2.2. Load-balanced CDS (LBCDS). For a WSN represented by graph G =

(V,E), the LBCDS problem is to find a node set D ⊆ V , D = {s1, s2, · · · , sM} such that

1. G[D] = (D,E ′), where E ′ = {e| e = (u, v), u ∈ D, v ∈ D, (u, v) ∈ E)}, is connected.

2. ∀ u ∈ V and u /∈ D, ∃ v ∈ D, such that (u, v) ∈ E.

3. min|D|p = (
∑M

i=1 |di − d̄|2) 1
2 .

Definition 3.2.3. Load-balanced Allocation of Dominatees (LBAD). For a WSN represented

by graph G = (V,E), and a CDS D = {s1, s2, · · · , sM}. The number of the dominatees

connecting to each dominator si (1 ≤ i ≤ M) is denoted by |A(si)|, and the expected

allocated dominatees of each dominator is denoted by |Ā|. The LBAD problem is to find M

disjoint sets on V , i.e. A(s1), A(s2), · · · , A(sM), such that

1. Each set A(si) (1 ≤ i ≤ M) contains exactly one dominator si.

2.
∪M

i=1A(si) = V,A(si)
∩

A(sj) = ∅ (1 ≤ i ̸= j ≤ M).

3. ∀ u ∈ A(si) (1 ≤ i ≤ M) and u ̸= si, such that (u, si) ∈ E

4. min|D|p = (
∑M

i=1 ||A(si)| − |Ā||2) 1
2 .

3.3 Load-Balanced CDS

In essential, we design a greedy algorithm to solve the LBCDS problem. The algorithm

starts from an empty Dominator Set (DS). Each time, it adds the node into the DS set that

has the smallest |di− d̄| value (where 1 ≤ i ≤ n). If there exists a tie on |di− d̄| value, we use

greater di value to break the tie, since the nodes with higher degree can make the algorithm

converge faster. The algorithm terminates when the nodes in the DS set form a CDS.

The pseudocode of the greedy algorithm is shown in Algorithm 1.
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LBCDS-Approximate algorithm as shown in Algorithm 1 is a centralized one-phase

greedy algorithm. Initially, all the nodes are white. All black nodes form an LBCDS finally.

We use the following terms in the algorithm,

di: The degree of node si.

d̄: The mean degree.

cur degree: The degree number used in each round.

isFound : A flag to indicate whether there exists a node si satisfying |di − d̄| = cur degree

in each round.

Algorithm 1 : LBCDS-Approximate

Require: A WSN represented by graph G = (V,E); Node degree di; Mean degree of the
graph d̄.

1: Initialize cur degree = d̄
2: Initialize isFound = false
3: if All black nodes form a CDS then
4: return All black nodes
5: end if
6: Sort the n sensors based on |di − d̄| values. If there exists a tie, use greater di value to

break the tie, where 1 ≤ i ≤ n.
7: for i = 1 to n do
8: if |di − d̄| = cur degree and node si is not marked as black then
9: Mark node si black {dominator node}
10: isFound = true
11: end if
12: end for
13: if isFound = false then
14: cur degree = cur degree+ 1
15: end if
16: Call Algorithm 1 {recursive call}

Initially, cur degree is set to d̄. From line 6 to 11, the algorithm searches the nodes with

the degree cur degree; mark them as black shown at Line 8; and set the flag isFound to

true at Line 9. If isFound is false after searching all the n nodes, which means no satisfied

sensor can be found in this round, then the algorithm gives to the next round by updating

cur degree at Line 13. Repeat the above procedures until all the black nodes form a CDS
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(from Line 3 to 5).

3.3.1 Example Illustration
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Figure 3.2. Construction of an LBCDS.

We use the WSN shown in Fig. 3.1(a) to illustrate how to build a LBCDS. Based

on each node’s degree, we can calculate d̄ = 3. According to the aforementioned LBCDS

construction algorithm, in the first round, all the nodes with degree 3 are added into the DS

set. Thus, node s7 is added into the DS set, since d7 = d̄ = 3. In the next round, nodes s3

and s6 with degree 4 are added into the DS set. Nodes s1 and s2 are not added into the DS

set, because they have smaller degree values than nodes s3 and s6. So far, there are three

nodes in the DS set, which forms a CDS, therefore the algorithm terminates. Finally, we get

an LBCDS which is {s3, s6, s7}.

3.3.2 Remarkes

According to Definition 3.2.2, p-norm is the measurement of the load-balance for CDSs.

The smaller the p-norm value, the more load-balanced the CDS is. Moreover, |di − d̄| is the

information vector X in Equation 3.1. The LBCDS construction algorithm greedily searches

the dominators with the smallest |di−d̄| values. Based on this greedy criterion, the algorithm

can output a CDS with a small p-norm value.
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3.4 Load-Balanced Allocation of Dominatees

Constructing an LBCDS is the foundation to solve the LBAD problem. In this section,

we introduce how to use an existing LBCDS for load-balanced allocation of dominatees.

3.4.1 Terminologies

In a traditional/naive way, such as the work in [44], each dominatee sets its data for-

warder to be the connected dominator with the smallest ID. Thus, the load-balance factor

in not take into account. In some environment, the dominator with the smallest ID, which

is chosen by majority dominatees, probably has heavy workload than the other dominators

with a smaller number of dominatees. Therefore, the node degree cannot imply the potential

workload precisely. In a WSN with a CDS as the VB, only the dominator and dominatee

links contribute to the workload. Based on this observation, we define the following:

Definition 3.4.1. Valid Degree (VD). For each dominatee si, V Di is the number of its

connected dominators. For each dominator sj, V Dj is the number of its allocated dominatees.
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Figure 3.3. Allocation examples.

Fig. 3.1(b) and Fig. 3.1(c) illustrate an imbalanced and a balanced allocations of

dominatees. Using |V Di − d̄| as the information vector X, we still can use p-norm to

measure the load-balance factor of the dominatee allocation scheme. Therefore, the p-norm

value of the allocation scheme shown in Fig. 3.1(b) is
√
8. Similarly, in Fig. 3.1(c), the
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p-norm value is
√
6. Clearly,

√
6 <

√
8, which implies the allocation scheme shown in Fig.

3.1(c) is more load-balanced than the scheme shown in Fig. 3.1(b).

Due to the instability of network topology, it is not practical to always allocate one

dominatee to one dominator. In order to adapt to network topology change, a terminology

Expected Allocation Probability (EAP) is proposed as follows:

Definition 3.4.2. Expected Allocation Probability (EAP). For each dominatee and domi-

nator pair, there is an EAP, which represents the expected probability that the dominatee

is allocated to the dominator.

The EAP value associated on each dominatee and dominator pair directly determines

the load-balance factor of each allocation scheme. We conclude the properties of the EAP

values as follows:

1) For each dominatee si,
|NE(si)|∑

j=1

EAPij = 1.

where NE(si) is the set of neighboring dominators of si, |NE(si)| is the number of the

nodes in set NE(si);

2) In order to produce the most load-balanced allocation scheme, which is obtained

when the expected number of allocated dominatees of all the dominators are the same. It

can be formulated as follows:

EAPi1 × V D1 = · · · = EAPi|NE(si)| × V D|NE(si)| (3.2)

An example about how to calculate EAP values is shown in Fig. 3.1. The gray nodes

i.e. s6 in Fig. 3.1(a) and s4 in Fig. 3.1(b) are dominatees connected to more than one

dominator. The numbers shown on the links are the EAP values of each dominatee and

dominator pair. If a dominatee only connects to one dominator, the EAP value associated

with the pair is equal to 1. Otherwise, Equation 3.2 can be used to calculate the EAP values

of all connected dominators links.

As mentioned in Definition 3.4.1, the degree of each dominator is not a good indicator

of workload. Hence, after allocating dominatees through the EAP scheme, the informa-
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Figure 3.4. Load-Balanced Dominatee Allocation with Expected Allocation Probability
(EAP ).

tion vector X in Equation 3.1 is the summation of the EAP values of dominator j minus

the expected number of allocated dominatees of each dominator, which is formulated by
ND(sj)∑
i=1

|EAPij − p̄|, where p̄ = n−M
M

representing the expected number of allocated domina-

tees of each dominator. In Fig. 3.1(a), p̄ = 3. Therefore, the p-norm value of the allocation

scheme shown in Fig. 3.1(a) is
√
3.306. Similarly, in Fig. 3.1(c), p̄ = 5

3
and the p-norm

value is
√
0.51. Apparently,

√
0.51 is much smaller than

√
3.306, which means the allocation

scheme in Fig. 3.1(c) is much more load-balanced than the scheme in Fig. 3.1(a). There

are two reasons to have a very small p-norm value in Fig. 3.1(c). First, an LBCDS is used.

Second and more important, we adopt the probability-based dominatee allocation scheme.

The allocation criterion is that making the expected number of allocated dominatees of each

dominator the same. The criterion implies, on average, the expected number of allocated

dominatees of all the dominators are the same. If every dominatee has the same amoun-

t of data to be transferred through the allocated dominator at a fixed data rate, then the

probability-based allocation scheme can achieve the maximized load-balance on the expected

workload among dominators.

3.4.2 Algorithm Description

The allocation system starts from finding an LBCDS using the aforementioned LBCDS

construction Algorithm. Then the EAP value is calculated for each dominatee and dominator

pair. EAP only indicates the probability the dominatee will be assigned to the dominator
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for each dominator and dominatee pair. Thus the final step is allocate the dominatees to the

dominators. We use the stochastic allocation, which is a dominatee is randomly assigned to

an adjacent dominator based on the EAP value.

Fig. 3.1(c) shows an example about how to perform the stochastic dominatee allocation.

In Fig. 3.1(c), only dominatee s4 connects to more than one dominator and its associated

EAP values are: EAP43 =
1
4
; EAP46 =

1
4
; and EAP47 =

1
2
. Dominatee s4 generates a random

number δ = 0.358. If δ ∈ [0, 0.25], s4 chooses dominator s3 , else s4 chooses dominator s6 if

δ ∈ (0.25, 0.5], otherwise s4 chooses dominator s7 if δ ∈ (0.5, 1]. Since δ = 0.358, dominatee

s4 is assigned to dominator s6.

Each time a dominatee which is connected to more than one dominator wants to send

data, it must redo the last step to pick a proper dominator based on the EAP probability

and then forward its data. One example illustrates how to choose a random dominator based

on EAP probability is shown in subsection 3.4.2.

In Section 3.3, the detailed description of how to construct a LBCDS is introduced.

The third step is a trivial process. In the rest of this section, we design two algorithms to

implement the second step, namely how to calculate the EAP value for each dominator and

dominatee pair. We introduce the centralized algorithm first as follow:

Centralized Algorithm We propose a constrained non-linear programming scheme

to solve the LBAD problem. The essence of allocating dominatees is to achieve maximum

load-balance among dominators. We use the p-norm value to measure the load-balance

factor. Consequently, the objective of the optimization problem is to minimize the p-norm

value of the dominatee allocation scheme. In addition, the constraint is to guarantee Property

1 of EAP values. To conclude, the optimization problem is formulated as follows:

Minimize : |EAP |p =
M∑
j=1

(
|ND(sj)|∑

i=1

|EAPij − p̄|)2

Subject to : for dominatee si,
|ND(si)|∑

j=1

EAPij = 1

Where : 0 ≤ EAPij ≤ 1

(3.3)
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The centralized algorithm is shown in Algorithm 2:

Algorithm 2 : LBAD-Centralized

Require: A WSN represented by a graph G = (V,E); an LBCDS: G[D] = (D,E ′)
1: Solve the constrained non-linear programming formulated in Equation 3.3. Let EAPij

be the optimal solution of the non-linear programming.
2: for each dominatee si do
3: Generate a number δ between 0 and 1

4: if δ ∈ [
k−1∑
j=0

EAPij,
k∑

j=0

EAPij], where 0 < k ≤ NE(si) then

5: mark the link between dominatee si and dominator sk black
6: end if
7: end for
8: return All black links

The centralized algorithm can guarantee to find the optimal solution. However, solving

the non-linear programming is too time and energy consuming. If the precision is the major

concern, we can solve the non-linear programming formulas at the base station. Nevertheless,

if the energy and time are the primary concern, a distributed algorithm to find a near-optimal

solution is preferred. We therefore propose the distributed algorithm as follows:

Distributed Algorithm The objective of the LBAD problem is to find a load-

balanced dominatee allocation scheme. The most load-balanced allocation scheme is that

the expected number of allocated dominatees of all the dominators are the same, which is

formulated in Equation 3.2. Additionally, we guranntee Property 1 of EAP values. By list-

ing all the equations, we can solve them to get EAPij of each connected dominatee si and

dominator sj, which is formulated as follows:

EAPi1 : EAPi2 : · · · : EAPi|ND(si)| =

V D2 × V D3 × · · · × V D|ND(si)| :

· · · :
|ND(si)|∏
j=1,i ̸=j

V Dj : . . .

: V D1 × V D2 × · · · × V D|ND(si)|−1

(3.4)

Therefore, the distributed LBAD problem can be transformed to calculate the EAP
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value of each dominatee locally. The dominatee stochastic allocation step is the same as the

centralized algorithm.

The distributed algorithm is a localized two-phase algorithm where each node only needs

to know the connectivity information within its 1-hop-away neighborhood. All the nodes get

the V D values by broadcasting messages to all its neighbor nodes, and then store the values

locally. Each dominatee calculates the EAP values using Equation 3.4.

The pseudocode is given in Algorithm 3. We call it LBAD-Distributed algorithm. We

use the following terms in Algorithm 3,

V Dk: The VD value of each node sk.

ND(sk): The set of neighboring dominatees of dominator sk.

|ND(sk)|: The number of the nodes in set ND(sk).

NE(sk): The set of the neighboring dominators of dominatee sk.

|NE(sk)|: The number of the nodes in set NE(sk).

EAPij: The EAP value of each connected dominatee si and dominator sj pair.

Each node si maintains the following data structures:

1) si’s ID, initialized to 0.

2) The dominator/dominatee flag f . 1 means dominator; 0 means dominatee. It is

initialized to 0.

3) |ND(si)|, if si is a dominator; |NE(si)|, if si is a dominatee, initialized to 0.

4) Neighboring dominator/dominatee lists. A list contains: a dominator/dominatee’s

ID, its V D value, and EAPij, initialized to ∅.

Initially, each node initializes its data structures and broadcasts a hello message con-

taining its ID, V D, and f to its 1-hop neighbors to exchange neighbors’ information. All

the nodes run the following:

• For any dominator si, upon receiving a hello message from node sj: if sj is a dominator,

ignore the message. If sj is a dominatee, update |ND(si)| and dominatee sj’s ID and V D

value in the neighboring dominatee list of the dominator si.
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• For any dominatee si, upon receiving a hello message from node sj: if sj is a dominatee,

ignore the message. If sj is a dominator, update |NE(si)| and dominator sj’s ID and V D

value in the neighboring dominator list of the dominatee si. Calculate and store EAPij

based on the V D values stored in the neighboring dominator list using Equation 3.4.

Algorithm 3 : LBAD-Distributed

1: Initialization Phase:
2: For each dominatee si, get the number of neighbor dominators (denoted by |NE(si)|)

and store locally.
3: For each dominator sj, get the number of neighbor dominatees (denoted by |ND(sj)|)

and store locally.
4: Allocation Phase:
5: For each dominatee si, calculate its neighboring dominators’ EAPij by the following

formula:
6: EAPi1 : EAPi2 : · · · : EAPi|ND(si)| = V D2×V D3× · · ·×V D|ND(si)| : · · · : V D1×V D2×

· · · × V D|ND(si)|−1 =
|ND(si)|∏
j=1,i ̸=j

V Dj

The distributed algorithm is a 2-phase algorithm. The first phase is the initialization

phase, where all the nodes get its neighborhood information and update its own data struc-

ture locally. In practical, it is hard to decide when the initialization phase completes. Hence

we set a timer. If the timer expires, the second phase, allocation phase, starts to work. In

the allocation phase, every dominatee calculates the EAP values of its connected dominators

using Equation 3.4. We only use 1-hop-away neighborhood information to calculate the EAP

values locally. Therefore, it is an easy and efficient algorithm. Nevertheless, only using the

1-hop-away neighborhood information to calculate the EAP values may lead us to find a

local optimal solution instead of a global optimal solution.

3.4.3 Analysis

Based on the assumptions mentioned in section 3.2.1, n sensors are i.i.d. in a square

with area size A = cn. The communication range of each sensor is 1. Thus, we denote

the unit circle associated with each sensor si by ci. According to the network model, the
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following lemma can be proved:

sqrt(cN)


Sensor


Figure 3.5. Network Partition

Lemma 1. For any unit circle ci, let the random variable Zi denote the number of the

sensors within it. Then, the probability that ci contains more than lnn sensors is no greater

than
exp((exp(γ)−1)×(π

c
))

exp(γ×lnn)
, i.e. Pr[Zi > lnn] ≤ exp((exp(γ)−1)×(π

c
))

exp(γ×lnn)
, for any γ > 0.

Proof: Since all the sensors are i.i.d., the number of the sensors in ci satisfies the binomial

distributions with parameters (n, π
A
) [47]. Applying the Chernoff bound and for any γ > 0,

we have

Pr[Zi > lnn] ≤ E[exp(γZi)]
exp(γ lnn)

=
[1+(exp(γ)−1) π

A
]n

exp(γ lnn)

≤ exp((exp(γ)−1) π
A
×n)

exp(γ lnn)
(by 1 + x ≤ ex)

=
exp((exp(γ)−1)×(π

c
))

exp(γ×lnn)
(by A = cn) �

From Lemma 1, the probability that an unit circle contains more than lnn sensors is

zero when n → ∞. Hence, we can use lnn as the upper bound of the number of the sensors

in an unit circle in our analysis. Then, we can get the following theorem which states the

upper and lower bounds of the p-norm of the distributed Algorithm.

Theorem 1. The upper bound of the p-norm value in the distributed Algorithm is M(lnn−

1− 2π
3×c

−
√
3

2×c
− n−M

M
)2; The lower bound of the p-norm value in the distributed Algorithm

is M(π
c
− n−M

M
)2.
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Figure 3.6. Connectivity guarantee.

Proof: According to Definition 3.2.3, the p-norm value of the allocate dominatees with

EAP is formulated as: |EAP |p =
M∑
j=1

(|
|ND(sj)|∑

i=1

EAPij − p̄|)2. The p-norm value depends on

how many dominatees are adjacent to each dominator, namely ND(sj) in the formula. So

the upper bound and lower bound of the number of neighboring dominatees are the key

challenges to analyze the performance ratio. The upper bound of the number of the sensors

in a unit circle occurs when there is only one dominator in a unit circle and all the other

diminatees connect to the dominator, then we can get the upper bound of the p-norm value.

However, we are considering a CDS. In order to maintain the connectivity, at least two

dominators must be within each other in the transmission range, namely in one unit circle.

Fig. 3.6 illustrates the situation. There are some overlapped area shown by the gray area in

the figure. The gray area is a sector with 120 degree and its size is: 2π
3
−

√
3
2
. Because all the

sensors are i.i.d., the expected number of the sensors is:
2π
3
−

√
3

2

c×n
× n = 2π

3×c
−

√
3

2×c
. Therefore,

the upper bound of the p-norm value is:

|EAP |p ≤
M∑
j=1

(lnn− 1− 2π
3×c

−
√
3

2×c
− n−M

M
)2

= (lnn− 1− 2π
3×c

−
√
3

2×c
− n−M

M
)2

The lower bound of the number of the sensors in each unit circle can be estimated by

π
c×n

× n = π
c
. Hence the lower bound of the p-norm value is:

|EAP |p ≥
M∑
j=1

(π
c
− n−M

M
)2 = M(π

c
− n−M

M
)2 �
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3.5 Simulation

In this section, we evaluate our proposed algorithms by comparing our work with the

work in [44], in which each dominatee chooses the neighboring dominator of the smallest ID

as its parent. Four different schemes are implemented:

• LBCDSs with LBAD, noted by LB-A.

• LBCDSs with the smallest ID dominator selection scheme, noted by LB-ID.

• MIS-based CDSs with LBAD, noted by MIS-A.

• MIS-based CDSs with the smallest ID dominator selection scheme, which is the work

in [44], noted by MIS-ID.

We compare them in terms of the p-norm value, network lifetime, which is defined as the

time duration till the first dominator’s energy is depleted.

3.5.1 Simulation Environment

We build our own simulator where all nodes have the same transmission range (10m).

n nodes are randomly deployed in a fixed area of 100m× 100m. n is incremented from 200

to 450 by 100. For a certain n, 100 instances are generated. The results are averaged among

100 instances. Moreover, we use the CDS-based broadcasting as the communication mode.

3.5.2 Simulation Results

Fig. 3.7 shows the p-norm values of the four schemes. With the increase of the number

of the sensor nodes, the p-norm values increase correspondingly. This is because when

the number of the nodes increases, we need more nodes to build an LBCDS. According to

Definition 3.2.1, more nodes imply more sum subitems, so the p-norm values increase. As

mentioned in Section 3.2.1, the smaller the p-norm value is, the more load-balanced the

scheme is. From Fig. 3.7, we know that the MIS-ID scheme has the largest p-norm values

while the LB-A scheme has the smallest p-norm values. This is because the MIS-ID scheme
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Figure 3.7. p-Norm value.
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Figure 3.8. Simulation Results: (a) Network Lifetime; (b) SD of Remaining Energy.



32

did not consider the load-balance factor when building a CDS and allocating dominatees to

dominators. For clearly to see the p-norm values of the LB-A scheme, we redraw the curve

using smaller scale in Fig. 3.7(b) for LB-A. Additionally, Fig. 3.7 demonstrates that the

LBAD algorithm fits for any type of CDSs. The MIS-A scheme still has smaller p-norm

values than the other two schemes using smallest ID allocation scheme, namely LB-ID and

MIS-ID.

Fig. 3.8(a) shows the network lifetime of the four schemes. The simulated energy

consumption model is that every node has the same initial 100 units energy. Receiving a

packet consumes 1 unit energy, while transmitting a packet consumes 2 units energy. From

Fig. 3.8(a), we can see the load-balanced schemes (LB-A and MIS-A) prolong network

lifetime by 80% compared to non-balanced schemes (LB-ID and MIS-ID). With the number

of the node increases, there is no obvious increase or decrease trend of network lifetime ,

since the locality of the network topology mainly decides the network lifetime. A network

topology is generated randomly, so we cannot control the locality of the network. From Fig.

3.8(a), we also find the network lifetime of imbalanced schemes (LB-ID and MIS-ID) are close

to 1, 2 or 3. This is because some critical smaller ID dominators are connected to many

dominatees. They deplete energy very quickly, then the whole network is disconnected.

Fig. 3.8(b) shows the standard derivation of the remaining energy of the four schemes.

The X -axis represents the number of the nodes. The Y -axis represents the standard deriva-

tion of the average remaining energy of all the nodes. We use the standard derivation here

to observe whether the remaining energy is balanced or not. From Fig. 3.8(b), we know

the balanced schemes (LB-A and MIS-A) have more balanced remaining energy than im-

balanced schemes (LB-ID and MIS-ID). This is because we consider the load-balance factor

when building a CDS and allocating dominatees to dominators.

The simulation results can be summarized as follows:

• The LB-A scheme always has the best performance according to the p-norm value,

network lifetime and the standard derivation of remaining energy. The results demon-

strate building a load-balanced CDS and then load-balancedly allocating dominatees
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can increase network lifetime significantly.

• The load-balanced dominatee allocation algorithm can be applied to not only load-

balanced CDSs but also imbalanced CDSs to achieve good performances. The LB-A

and MIS-A schemes have better performances over the LB-ID and MIS-ID schemes

among all measures, namely the p-norm value, network lifetime and the standard

derivation of remaining energy.

• The balanced schemes (LB-A and MIS-A) have better scalability than the imbalanced

schemes (LB-ID and MIS-ID).

3.6 Summary

In this chapter, we propose a new LBCDS concept, which is a CDS with the minimum

p-norm value in order to assure that the workload among each dominator is balanced. We

also propose an LBAD problem. It aims to load-balancedly allocate each dominatee to

a dominator. We use EAP value to represent the expected probability of the allocation

between each dominatee and dominator pair. An optimal centralized algorithm and an

efficient distributed algorithm for the LBAD problem are proposed in the chapter. The

lower bound and upper bound of the approximation ratio is proved in the chapter. The

extensive simulation results demonstrate that compared to Wan’s work [44], using an LBCDS

as a virtual backbone and EAP values to load-balancedly allocate dominatees can prolong

network lifetime significantly.
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CHAPTER 4

GENETIC-ALGORITHM-BASED CONSTRUCTION OF LOAD-BALANCED

CDSS IN WIRELESS SENSOR NETWORKS

4.1 Motivation

As mentioned in Section 3.1, all the related works did not consider the load-balance

factor when they construct a CDS. If the workloads on each dominator in a CDS are not

balanced, some heavy-duty dominators deplete their energy quickly. Then, the whole network

might be disconnected. Hence, intuitively, we not only have to consider to construct an

MCDS, but also need to consider to construct a load-balanced CDS (LBCDS). An illustration

of an LBCDS is depicted in Fig. 4.1, in which dominators are marked as black nodes, while

white nodes represent dominatees; solid lines represent that the dominatees are allocated

to the neighboring dominators, while the dashed lines represent the communication links

in the original graph. For convenience, the set of neighboring dominatees of a dominator

vi ∈ B is denoted by U(vi). The set of dominatees allocated to a dominator vi is denoted

by A(vi) = {vj|vj ∈ W, vj forwards its data only to vi}. According to the traditional

MCDS construction algorithms, a CDS {v4, v7} with size 2 is obtained for the network

shown in Fig. 4.1(a). However, There are two severe drawbacks of the CDS shown in Fig.

4.1(a). First, U(v4) = {v1, v2, v3, v5, v6}, which represents that dominator v4 connects to

5 different dominatees, and U(v7) = {v6, v8}. If every dominatee has the same amount of

data to be transferred through the neighboring dominator at a fixed data rate, dominator v4

must deplete its energy much faster than dominator v7, since dominator v4 has to forward

the data collected from 5 neighboring dominatees. Second, dominatee v6 connects to both

dominators. If v6 is allocated to dominator v4, shown in Fig. 4.1(a), obviously, only one

dominatee v8 forwards its data to dominator v7. In this situation, the workload imbalance

in the CDS is further amplified. Consequently, the entire network lifetime is shortened. We
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show a counter-example in Fig. 4.1(b), where the constructed CDS is {v3, v6, v7}. According

to the topology shown in Fig. 4.1(b), we can get the dominatee sets of each dominator:

U(v3) = {v1, v2, v4}, U(v6) = {v4, v5}, and U(v7) = {v4, v8}. Compared with the MCDS

constructed in Fig. 4.1(a), the numbers of neighboring dominatees of all the dominators in

Fig. 4.1(b) are very similar. On the other hand, we have two different dominatee allocation

schemes shown in Fig. 4.1(b) and Fig. 4.1(c) respectively. One is: A(v3) = {v1, v2, v4},

A(v6) = {v5}, and A(v7) = {v8}. The other one is: A(v3) = {v1, v2}, A(v6) = {v4, v5}, and

A(v7) = {v8}. Apparently, the workload on each dominator is almost evenly distributed in

the CDS constructed in Fig. 4.1(c). Intuitively, the construction algorithm and dominatee

allocation scheme shown in Fig. 4.1(c) can extend network lifetime notably. Obviously,

constructing an LBCDS and then load-balancedly allocate dominatees to dominators are

equally important when considering the load-balance factor to construct a CDS. Neither of

these two aspects can be ignored.

(a) (b) (c)

Figure 4.1. Illustration of a regular CDS and an LBCDS.

To solve the workload imbalance problem of an MCDS, in this chapter, we investigate

how to construct an LBCDS and how to load-balancedly allocate dominatees to dominators

simultaneously. To address this problem, we explore the Genetic Algorithm (GA) optimiza-

tion approach. GAs are numerical search tools which operate according to the procedures

that resemble the principles of nature selection and genetics [61]. Because of their flexibility

and widespread applicability, GAs have been successfully used in a wide variety of problems

in several areas of WSNs [28], and [29].



36

4.2 LBCDS Problem Definition

In this section, we give an overview of the LBCDS problem. We first present the

assumptions and introduce the network model. Then, we give the problem definition. Finally,

we point out the key issues and main challenges we are facing when solving the problem.

4.2.1 Network Model

We assume a static WSN and all the nodes in the WSN have the same transmission

range. Hence, we model a WSN as an undirected graph G(V,E), where V is the set of n

sensor nodes, denoted by v1, v2, . . . , vn; E represents the link set, ∀ u, v ∈ V, there exists an

link (u, v) in E if and only if u and v are in each other’s transmission range. In this chapter,

we assume edges are undirected (bidirectional), which means two linked nodes are able to

transmit and receive data from each other.

4.2.2 Terminologies

The load-balance factor is our major concern in this work. Thus, finding an appropriate

measurement to evaluate load-balance is the key to solve the LBCDS problem. We use

p-norm (Definition 3.2.1) to measure load-balance.

In this chapter, we use node degree, denoted by di, as the feature vector Θ in Equation

3.1 to measure the load-balance of a CDS, since the degree of each node is a potential

indicator of traffic load. Thus, the definition of CDS p-norm is given as follows:

Definition 4.2.1. CDS p-norm (|B|p). For a WSN represented by graph G(V,E), and a

CDS B = {v1, v2, · · · , vm}. The CDS p-norm of an m× 1 vector D = (d1, d2, · · · , dm) is:

|B|p = (
m∑
i=1

|di − d̄|p)
1
p (4.1)

where m is the number of dominators in the set B, di represents the node degree of each

dominator in the set B, and d̄ is the mean degree of G.
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We use the WSN shown in Fig. 4.1 to illustrate how to calculate the CDS p-norm.

For simplicity, we use p = 2 in this chapter. Without specific explanation, p and 2 are

interchangeable in this chapter. Two different CDSs for the same network are identified in

Fig. 4.1. The degree of node vi is denoted by di in Fig. 4.1. From the topology shown in

Fig. 4.1, we can get d̄ = 3. Therefore, the CDS p-norm of the CDS shown in Fig. 4.1(a)

is
√
9. Similarly, in Fig. 4.1(b), the CDS p-norm value is

√
2. Clearly,

√
2 <

√
9, which

implies that the CDS in Fig. 4.1(b) is more load-balanced than the CDS in Fig. 4.1(a).

When constructing an LBCDS, it is considerably important to allocate dominatees to

each dominator. In a traditional/naive way, such as the work in [44], each dominatee is

allocated to the neighboring dominator with the smallest ID. Obviously, the load-balance

factor is not taken into account. In some environment, the dominator with the smallest

ID, which is chosen by majority dominatees, tends to have heavier workload than the other

dominators. Therefore, neither node ID nor node degree can reflect workload precisely. In a

WSN with a CDS as the VB, only the dominator and dominatee links contribute to workload.

Based on this observation, we define the following concepts:

Definition 4.2.2. Dominatee Allocation Scheme (A ). For a WSN represented by graph

G(V,E) and a CDS B = {v1, v2, · · · , vm}, we need to find m disjoint sets on V, i.e,

A(v1),A(v2), · · · ,A(vm), such that:

1. Each set A(vi) (1 ≤ i ≤ m) contains exactly one dominator vi.

2.
∪m

i=1A(vi) = V, and A(vi)
∩
A(vj) = ∅ (1 ≤ i ̸= j ≤ m).

3. ∀vu ∈ A(vi) (1 ≤ i ≤ m) and vu ̸= vi, such that (vu, vi) ∈ E.

A Dominatee Allocation Scheme is:

A = {A(vi) | ∀vi ∈ B, 1 ≤ i ≤ m} (4.2)

Definition 4.2.3. Valid Degree (d′). The V alid Degree of dominator vi is the number of

its allocated dominatees, i.e., ∀vi ∈ B, d′i = |A(vi)|, where |A(vi)| represents the number of
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dominatees in the set A(vi).

In this chapter, we use the Allocation Scheme p-norm to measure the load-balance of

different dominatee allocation schemes, in which, the Valid Degree of each dominator is used

as the information vector Θ. The definition of the Allocation Scheme p-norm is given as

follows:

Definition 4.2.4. Allocation Scheme p-norm (|A |p). For a WSN represented by graph

G(V,E), a CDS B = {v1, v2, · · · , vm}, and a dominatee allocation scheme A , the Allocation

Scheme p-norm is:

|A |p = (
m∑
i=1

|d′i − E|p)
1
p (4.3)

where d′i represents the valid degree of each dominator in the set B, and E = n−m
m

is the

expected allocated dominatees on each dominator.

Fig. 4.1(b) and Fig. 4.1(c) illustrate an imbalanced and a balanced dominatee allocation

scheme respectively. The valid Degree of dominator vi is denoted by d′i in Fig. 4.1. From the

topology shown in Fig. 4.1 (b) and (c), we can get E = 5
3
. Therefore, the Allocation Scheme

p-norm of the dominatee allocation scheme shown in Fig. 4.1(b) is
√
2.67. Similarly, in Fig.

4.1(c), the Allocation Scheme p-norm is
√
0.67. Clearly,

√
0.67 <

√
2.67, which implies the

dominatee allocation scheme shown in Fig. 4.1(c) is more load-balanced than the scheme

shown in Fig. 4.1(b). The result further confirms the observation we mentioned in Section

4.1.

4.2.3 Definition of LBCDS

Definition 4.2.5. Load-balanced CDS (LBCDS) Problem. For a WSN represented by graph

G(V,E), the LBCDS problem is to find a minimum-sized node set B ⊆ V and a dominatee

allocation scheme A , such that:

1. G[B] = (B,E′), where E′ = {e| e = (u, v), u ∈ B, v ∈ B, (u, v) ∈ E)}, is connected.

2. ∀u ∈ V and u /∈ B, ∃v ∈ B, such that (u, v) ∈ E.
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3. min{|B|p, |A |p}.

We claim that the LBCDS problem is NP-Hard, since it still belongs to the MCDS prob-

lem. Based on Definition 4.2.5, the key issue of the LBCDS problem is to seek a tradeoff

between the minimum-sized CDS, the load-balance of a constructed CDS, and a dominatee

allocation scheme. GAs are population-based search algorithms, which simulate biological

evolution processes and have successfully solved a wide range of NP-Hard optimization prob-

lems [28, 29]. Additionally, GAs have shown themselves to be very good at discovering good

solutions with a reasonable amount of time and computation effort. In the following, a novel

GA algorithm, named LBCDS-GA, is proposed to solve the LBCDS problem.

4.3 LBCDS-GA Algorithm

In the following sections, we first provide some basics of the GA optimization approach,

and then present the detailed design of the RMCDS-GA algorithm for the RMCDS problem.

4.3.1 Genetic Algorithm (GA) Overview

GAs are adaptive heuristic search algorithms based on the evolutionary ideas of nat-

ural selection and genetics. In nature, over many generations, natural populations evolve

according to the principles of natural selection and survival of the fittest. By mimicking this

process, GAs work with a population of chromosomes, each representing a possible solution

to a given problem. Each chromosome is assigned a fitness score according to how good

a solution to the problem it is. The highly fittest chromosomes are given opportunities to

reproduce, by crossover with other chromosomes in the population. This produces new chro-

mosomes as offsprings, which share some features taken from each parent. The least fittest

chromosomes of the population are less likely to be selected for reproduction, and so they

die out. A whole new population of possible solutions is thus produced by selecting the best

chromosomes from the current generation, and mating them to produce a new set of chromo-

somes. This new generation contains a higher proportion of the characteristics possessed by

the good chromosomes of the previous generation. In this way, over many generations, good
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characteristics are spread throughout the population. If the GA has been designed well, the

population will converge to an optimal solution to the problem. In the following part of this

section, we will design and explain LBCDS-GA step by step.

4.3.2 Representation of Chromosomes

A chromosome is a possible solution of the LBCDS problem. Hence, when design-

ing the encoding scheme of chromosomes, we need to identify dominators and domina-

tees in a chromosome and a dominatee allocation scheme in a chromosome as well. For

convenience, the set of neighboring dominators of each dominatee vs ∈ W is denoted by

H(vs) = {vr|vr ∈ B, (vr, vs) ∈ E}. In the proposed LBCDS-GA, each node is mapped to

a gene in the chromosome. A gene value gi indicates whether the sensor represented by

this gene is a dominator or not. If the sensor is a dominatee, the corresponding gene value

represents the allocated dominator. Hence, a generation of chromosomes with gene values is

denoted as: Cg = {Cg
j | 1 ≤ j ≤ k, Cg

j = (g1, g2, · · · , gi, · · · , gn)}, where k is the number of

the chromosomes in each generation of population, and for 1 ≤ i ≤ n,

gi =


1, vi ∈ B.

∀vt ∈ H(vi), vi ∈ W.

Additionally, beyond the aforementioned gene value, there is a meta-gene value Gi to

store H(vs), ∀vs ∈ W. Thus, a generation of chromosomes with meta-gene values is denoted

as: CG = {CG
j | 1 ≤ j ≤ k, CG

j = (G1, G2, · · · , Gi, · · · , Gn)}, and for 1 ≤ i ≤ n,

Gi =


1, vi ∈ B.

H(vi), vi ∈ W.

Through the above description we know, as long as choosing a specific node from each

node set H(vi),∀vi ∈ W, we can easily generate Cg
j from CG

j . Additionally, all the nodes

with gi/Gi = 1 form a CDS B = {vi | gi/Gi = 1, 1 ≤ i ≤ n}. An example WSN is
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shown in Fig.4.1(c) to illustrate the encoding scheme. There are 8 nodes and the CDS is

B = {v3, v6, v7}. Moreover, according to the topology shown in Fig. 4.1, ∀vi ∈ W, we can get

H(vi) easily. Thus, the 8 nodes can be encoded using 8 meta-genes in a chromosome, e.g.,

CG = ({v3}, {v3}, 1, {v3, v6, v7}, {v6}, 1, 1, {v7}) shown in Fig. 4.2. Based on the dominatee

allocation scheme shown in Fig. 4.1(c), i.e., dominatee v4 is allocated to dominator v6, the

chromosome with 8 genes is Cg = ({v3}, {v3}, 1, {v6}, {v6}, 1, 1, {v7}). In conclusion, CG
j

stores all neighboring dominators of each dominatee, while the corresponding Cg
j records

one CDS and one specific dominatee allocation scheme.

Figure 4.2. A chromosome with meta-genes and genes.

4.3.3 Population Initialization

GAs differ from most optimization techniques because of their global searching effec-

tuated by one population of solutions rather than from one single solution. Hence, a GA

search starts with the creation of the first generation, i.e., a population with k chromosomes

denoted by P1. This step is called population initialization. A general method to initialize

the population is to explore the genetic diversity. That is, for each chromosome, all domina-

tors are randomly generated. However, the dominators must form a CDS. Therefore we start

to create the first chromosome C1 by running an existing MCDS method, e.g., the latest

MCDS construction algorithm [44], and then generate the population with k chromosomes

by modifying C1. We call the procedure, generating the whole population by modifying

one specific chromosome, Inheritance Population Initialization (IPI). The IPI algorithm is

summarized as follows:

If the number of the generated chromosomes in P1 is less than k, run the following steps

till k non-duplicated chromosomes are generated.
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1) Let t = 1.

2) In the CDS Bt represented by the chromosome Ct, start from node vu with the smallest

ID (ID used here is only to create a sequence for generating new chromosomes. Any other

features who can rank the nodes also can be applied here.) in Bt, and add one neighboring

dominatee by the order of its ID into the CDS each time. i.e., Bs = Bt

∪
{vi | ∀vi ∈ U(vu), vi

has the smallest ID among the nodes in the set U(vu)}. Encoding Bs as a chromosome, and

add it into P1. Repeat the procedure, till all nodes in the set U(vu) are added into B. For

example, in Fig.4.1(a), the CDS B1 = {v4, v7} of the shown WSN is given. Thus, the encoded

chromosome with meta-genes is CG
1 = ({v4}, {v4}, {v4}, 1, {v4}, {v4, v7}, 1, {v7}). The node

with the smallest ID is v4 in B1. Therefore, the chromosomes from CG
2 to CG

6 are generated

by adding one node from the set U(v4) = {v1, v2, v3, v5, v6} each time.

3) Move to the node with the second smallest ID in CDS Bt, doing the same procedure

as described in step 2), till every node in Bt are checked. As shown in Fig. 4.1(a), U(v7) =

{v6, v8}. By eliminating the duplicates, the chromosome CG
7 is created by adding v8.

4) If all the dominators in the current Bt are checked, move to the next CDS by setting

t = t+ 1, and repeat steps from 2) to 4).

Since each dominatee has two choices: to change to a dominator or to remain as a

dominatee, consequently, there are 2n−|B| possible ways to create new chromosomes. Usually,

k is much smaller than 2n−|B|. Hence, the first population P1 can be easily generated.

There are several merits that need to be pointed out here when using the IPI algorithm

to generate P1. First, we can guarantee that each chromosome in P1 is a feasible solution

(i.e., a CDS) of the LBCDS problem. Second, the critical nodes (cut nodes) are chosen to

be dominators. When reproducing new offsprings, the critical nodes are still dominators

in the new chromosomes in the successive generations, which can help for guaranteeing the

connectivity of a CDS.
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4.3.4 Fitness Function

Given a solution, its quality should be accurately evaluated by the fitness score, which

is determined by the fitness function. In our algorithm, we aim to find a minimum-sized

CDS B with minimum |B|p and |A |p values. Therefore, the fitness function of a chromosome

Cg
i is defined as: 

f(Cg
i ) =

n− |B|
w1|B|p + w2|A |p

w1 + w2 = 1, 0 < w1, w2 < 1

(4.4)

The purpose of doing a linear combination of |B|p and |A |p values in Equation 5.1 is that a

user can change the weight of |B|p and |A |p values dynamically and easily. The denominator

in Equation 5.1 needs to be minimized (the smaller the p-norm value, the more load-balanced

the interested feature vector), while the numerator needs to be maximized (since we seek an

MCDS). As a result, the fitness function value needs to be maximized.

4.3.5 Selection Scheme

During the evolutionary process, election plays an important role in improving the

average quality of the population by passing the high quality chromosomes to the next

generation. Therefore, the selection operator needs to be carefully formulated to ensure

that better chromosomes (higher fitness scores) of the population have a greater probability

of being selected for mating, but that worse chromosomes of the population still have a

small probability of being selected. Having some probability of choosing worse members is

important to ensure that the search process is global and does not simply converge to the

nearest local optimum. We adopt Rank Selection (RS) to select parent chromosomes. In

order to prevent very fit chromosomes from gaining dominance early at the expense of less

fit ones, which would reduce the population’s genetic diversity, we set the rank value of each

chromosome to be Ri = log(1 + f(Cg
i )). Thus, RS stochastically selects chromosomes based

on Ri. A real-valued interval, S, is determined as the sum of the chromosomes’ expected

selection probabilities Pi =
Ri∑k

j=1 Rj
, thus, S =

k∑
i=1

Pi. Chromosomes are then mapped one-to-
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one into contiguous intervals in the range [0, S]. To select a chromosome, a random number

is generated in the interval [0, S] and the chromosome whose segment spans the random

number is selected. This process is repeated until a desired number of chromosomes have

been selected.

4.3.6 Genetic Operations

The performance of a GA relies heavily on two basic genetic operators, crossover and

mutation. Crossover exchanges parts of the current solutions (the parent chromosomes se-

lected by the RS scheme) in order to find better ones. Mutation flips the values of genes,

which helps a GA keep away from local optimum. The type and implementation of these

two operators depend on the encoding scheme and also on the application. In the LBCDS

problem, we can adopt classical operations, however, the new obtained solutions may not

be valid (the dominator set represented by the chromosome is not a CDS) after implement-

ing the crossover and mutation operations. Therefore, a correction mechanism needs to be

preformed to guarantee the validity of all the new generated offspring solutions.

Crossover The purpose of crossover operations is to produce more valid CDSs repre-

sented by the new generated chromosomes. At this stage, we do not need to care dominatee

allocations. Therefore, when performing crossover operations, we can logically assume all

gene values of dominatees are 0, i.e., gi = 0,∀vi ∈ W. After the new CDS is created, we can

easily fill in all meta-gene values based on its original topology.

In the LBCDS-GA algorithm, we adopt three crossover operators called single-point

crossover, two-point crossover, and uniform crossover respectively. With a crossover proba-

bility pc, each time we use the RS scheme to select two chromosomes Cg
i and Cg

j as parents to

perform one of the three crossover operators randomly. We use Fig. 4.3 to illustrate the three

crossover operations. Suppose that two parent chromosomes (00010011) and (00100110) are

selected by the RS scheme from the population. By the single-point crossover (shown in

Fig.4.3(a)), the genes from the randomly generated crossover point P = 6 to the end of
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(a)

(b)

(c)

Figure 4.3. Illustration of Crossover Operations: (a) single-point crossover; (b) two-point
crossover; (c) uniform crossover.

the two chromosomes exchange with each other to get (00010110) and (00010111). After

crossing, the first offspring (00010110) is a valid solution. However, the other one (00100011)

is not valid, thus we need to perform the correction mechanism. The mechanism starts with

scanning each gene on the offspring chromosome, denoted by Cg
o , till the end of the chromo-

some. If the value of the current scanned gene is 0, i.e., gi = 0 and the gene value is different

from the original chromosome, denoted by Cg
s , without doing crossover and mutation op-

erations, then change the gene value to 1. Whenever the DS represented by the corrected

chromosome is a CDS, stop the mechanism. Otherwise, keep repeating the process till the

end of Cg
o is reached. The idea behind the correction mechanism is that the DS represented

by Cg
s is a CDS. If Cg

o is not valid, then add the dominators represented by Cg
s into the

DS represented by Cg
o one by one. Finally, the corrected chromosome must be valid. For

example, for the specific invalid offspring chromosome (00100011), when scanning the gene

at position P , i.e. g6 = 0, we find the value of g6 is different after crossing. Therefore,

we correct it by setting g6 = 1. Then the corrected chromosome (00010111) is now a valid

solution. Consequently, the correction mechanism stops and we get two valid offspring chro-
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mosomes (00010110) and (00010111). The correction mechanism is the same for crossover

and mutation operations.

By the two-point crossover (shown in Fig.4.3(b)), the two crossover points are randomly

generated which are PL = 3 and PR = 6; and then the genes between PL and PR of the two

parent chromosomes are exchanged with each other. The two offsprings are (00100111) and

(00010010) respectively. Since both of the offspring chromosomes are valid, we do not need

to do any correction.

For the uniform crossover (shown in Fig.4.3(c)), a vector of uniform crossover PU is

randomly generated, which is PU = (01010100), indicating that g2, g4, and g6 of the two

parent chromosomes exchange with each other. Hence the two offsprings are (00000111) and

(00110010). Since the first offspring is not a valid solution, we need to perform the correction

mechanism mentioned before, and the corrected chromosome becomes to (00110010), which

is a valid solution.

Gene Mutation The population undergoes the gene mutation operation after the

crossover operation is performed. With a mutation probability pm, we scan each gene gi on

the offspring chromosomes. If the mutation operation needs to be implemented, the value of

the gene flips, i.e. 0 becomes to 1, and 1 becomes to 0. The correction mechanism mentioned

before needs to be preformed if the mutated chromosomes are not valid.

4.3.7 Meta-gene Mutation

Differed from traditional GAs, in LBCDS-GA, we perform an additional operation

named meta-gene mutation on k chromosomes in each generation. As mentioned before,

the purpose of crossover operations is to produce more valid CDSs represented by the new

offspring chromosomes. Moreover, the gene mutation operation after the crossover operation

helps a GA keep away from local optimum. In summary, The aforementioned crossover and

gene mutation operations only provide the chance to increase diversity of possible CDSs,

however, till now nothing is aimed to create the diversity of dominatee allocation schemes.



47

In fact, to address the LBCDS problem, we need to find a load-balanced CDS and load-

balancedly allocate dominatees to dominators. Therefore, Meta-gene mutation is proposed

in LBCDS-GA to generate more possible dominatee allocation schemes.

As known, as long as choosing a specific node from each node set H(vi),∀vi ∈ W,

we can easily generate Cg
j from CG

j . Thus, the procedure to determine gene values from

meta-gene values is the procedure to specify a dominatee allocation scheme. According

to the observation, we design the following described meta-gene mutation. The original

population without doing crossover and gene mutation operations will undergo the meta-gene

mutation operation. If the number of neighboring dominators of a dominatee vi is greater

than 1, i.e., |H(vi)| ≥ 2, then randomly pick a node from the set H(vi) with a probability

pi. For example, the CDS shown in Fig. 4.1(b), and (c) is encoded as the chromosome

with meta-genes ({v3}, {v3}, 1, {v3, v6, v7}, {v6}, 1, 1, {v7}), which is shown in Fig. 4.2. Since

G4 = H(v4) = {v3, v6, v7}, which means |H(v4)| ≥ 2. We then randomly pick one dominator

from the set H(v4) with a probability pi. If v3 is selected from H(v4), it means dominatee

v4 is allocated to dominator v3. The dominatee allocation scheme is shown in Fig. 4.1(b),

encoding as the chromosome with genes ({v3}, {v3}, 1, {v3}, {v6}, 1, 1, {v7}). Similarly, if

dominatee v4 is allocated to dominator v6, the dominatee allocation scheme is shown in Fig.

4.1(c), encoding as the chromosome with genes ({v3}, {v3}, 1, {v6}, {v6}, 1, 1, {v7}).

To easily understand the traditional gene mutation and our proposed meta-gene muta-

tion on chromosomes, we conclude the differences as follows:

1) The gene mutation operation is bit-wised, while the meta-gene mutation is performed

at some positions i satisfying the condition |H(vi)| ≥ 2, and vi ∈ W.

2) The gene mutation flips the logic gene values, i.e., 0 becomes to 1, and 1 becomes to

0. In contrast, the meta-gene mutation only flips meta-gene values at some specific positions

i, i.e., randomly pick one node from the set Gi = H(vi).

3) The purpose of gene mutation is to create diversity of all possible CDSs, while the

purpose of meta-gene mutation is to provide more different dominatee allocation schemes.

Since constructing a load-balanced CDS and load-balancedly allocating diminatees to domi-
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nators are two critical challenges to solve the LBCDS problem, neither of the gene mutations

and meta-gene mutations can be ignored in LBCDS-GA.

4.3.8 Replacement Policy

The last step of LBCDS-GA is to create a new population using an appropriate re-

placement policy. From crossover and gene mutation operations, we can get k offspring

chromosomes. In addition, we can get another k chromosomes from the meta-gene mutation

operation. In LBCDS-GA, we utilize the best k chromosomes (i.e., the chromosome with the

highest fitness score) among those 2k chromosomes to generate a new population. However,

when creating new population by crossover, gene mutation, and meta-gene mutation, there

is a chance to lose the fittest chromosome. Therefore, an elitism strategy, in which the best

chromosome (or a few best chromosomes) is retained in the next generation’s population,

is used to avoid losing the best candidates. The LBCDS-GA stops and returns the cur-

Figure 4.4. Procedure of LBCDS-GA

rent fittest solution until the number of total generations K is reached or the best fitness
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score does not change for continuous l generations. Figure 5.2 shows the flow chart of the

LBCDS-GA algorithm.

4.4 Performance Evaluation

In the simulations, the results of LBCDS-GA are compared with the MCDS construction

algorithm in [44] denoted by MIS, which is the latest and best MIS-based CDS construction

algorithm. We compare the two algorithms in terms of the size of the constructed CDS, CDS

p-norm, Allocation Scheme p-norm, the fitness score, network lifetime (which is defined as

the time duration until the first dominator runs out of energy), and the average remaining

energy over the whole network.

4.4.1 Simulation Environment

We build our own simulator where all nodes have the same transmission range of 50m

and all nodes are deployed uniformly and randomly in a square area of 300m× 300m. n is

incremented from 100 to 1000 by 100. For a certain n, 100 instances are generated. The

results are averaged over 100 instances. Moreover, we use the CDS-based data aggregation

as the communication mode. The simulated energy consumption model is that every node

has the same initial 1000 unit energy. Receiving and transmitting a packet both consume 1

unit energy. Additionally, the particular GA rules and control parameters are listed in Table

5.2.

Table 4.1. GA Parameters and Rules
Population size (k) 50

Number of total generations (K) 100
Selection scheme Rank Selection

Replacement policy Elitism
Crossover probability (pc) 1

Gene mutation probability (pm) 0.2
Meta-gene mutation probability (pi) 1
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4.4.2 Simulation Results and Analysis

In Fig. 4.5, the X -axis represents the number of the sensor nodes n, while the Y -axis

represents the evaluated factors, i.e., the size of the constructed CDS |B|, CDS p-norm |B|p,

Allocation Scheme p-norm |A |p, the fitness score f , network lifetime T , and the average

remaining energy E over the whole network respectively.

Fig. 4.5(a) shows the number of dominators |B| of the constructed CDSs by using

LBCDS-GA and MIS. From Fig. 4.5(a), we can see that, with the increase of the number

of the sensor nodes n, |B| almost keeps stable for the MIS scheme. This is because MIS

aims to find a minimum-sized CDS and the area covered by the deployed sensors does

not change. On the other hand, for LBCDS-GA, |B| increases when n increses. This is

because the objective of LBCDS-GA is to balance energy consumption on each dominator.

If more nodes are chosen as dominators, the energy consumption can be distributed to

more components. More importantly, the more dominators, the more possibilities to create

diversity of dominatee allocation schemes. Therefore, the load-balanced objective can be

achieved.

Fig. 4.5(b) shows the CDS p-norm |B|p values of the constructed CDSs by using LBCDS-

GA and MIS. With the increase of n, |B|p increases correspondingly for both schemes. This

is because when n increases, the area covered by the deployed sensors does not change.

Therefore, the density of sensors increases, which means the degree of each dominator in-

creases correspondingly. According to Definition 4.2.1, larger degrees of dominators imply

larger subitem, thus |B|p of both shemes increase. Moreover, the |B|p of LBCDS-GA is larger

than that of MIS. This is because we need more nodes to build an LBCDS (shown in Fig.

4.5(a)). More dominators imply more sum subitems based on Definition 4.2.1, thus, the |B|p

of LBCDS-GA is larger.

Fig. 4.5(c) shows the Allocation Scheme p-norm |A |p values of the constructed CDSs

by using LBCDS-GA and MIS. As mentioned before, the smaller the |A |p value, the more

load-balanced the dominatee allocation scheme A . With the increase of n, |A |p increases

quickly for the MIS scheme. This is because, in MIS, dominatees are always allocated to
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the dominator with the smallest ID. The results also imply that A of MIS becomes more

and more imbalance when n is getting larger. Nevertheless, for LBCDS-GA, |A |p keeps

almost the same, which means no matter how large the size of the set B is, LBCDS-GA

always can find a load-balanced A . Additionally, with the increase of n, the difference

of |A |p values between the two schemes becomes more and more obvious. This indicates

LBCDS-GA becomes more and more effective to find an LBCDS in large scale WSNs.

Fig. 4.5(d) shows fitness scores f of the constructed CDSs by using LBCDS-GA and

MIS. As mentioned before, the higher the fitness score is, the better quality the solution

has. From Fig. 4.5(d), we can see that, with the increase of n, f does not change too much

for MIS. However, for LBCDS-GA, f increases quickly. The results imply LBCDS-GA can

find a more load-balanced CDS than MIS. This is because the MIS scheme does not consider

the load-balance factor when building a CDS and allocating dominatees to dominators.

Additionally, it is apparent that LBCDS-GA has more benefits when n becomes large.

Fig. 4.5(e) shows network lifetime of the two schemes. From Fig. 4.5(e), we know

that the network lifetime decreases for both schemes with n increasing, since the WSN

becomes denser and denser. Additionally, we can see LBCDS-GA prolongs network lifetime

by 65% on average compared with MIS. In some extreme cases, such as n = 1000, network

lifetime is extended by 100% compared with MIS. The result demonstrates that constructing

an LBCDS and load-balancedly allocating dominatees to dominators can improve network

lifetime significantly.

Fig. 4.5(f) shows the average remaining energy E over the whole network of the two

schemes. With the increase of n, E increases for both schemes. As the WSN becomes denser

and denser, a lot of redundant sensors exist in the WSN. From Fig. 4.5(f), we know that

LBCDS-GA has less remaining energy than MIS. This is because LBCDS-GA considers the

load-balance factor when building a CDS and allocating dominatees to dominators. Thus,

the lifetime of the whole network is extended, which means the remaining energy of each node

is less than MIS. This also indicates that constructing an LBCDS can balance the energy

comsumption on each sensor node, making the lifetime of the whole network prolonged
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Figure 4.5. Simulation results: (a) fitness score; (b) CDS p-norm; (c) Allocation Scheme
p-norm; (d) the number of dominators; (e) network lifetime; (f) average remaining energy.
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considerably.

4.5 Summary

In this chapter, we propose a novel concept — load-balanced CDS (LBCDS), which is an

MCDS with the minimum |B|p and |A |p values in order to assure that the workload among

each dominator is balanced and load-balancedly allocate dominatees to each dominator. We

claim that constructing an LBCDS is an NP-Hard problem and propose an effective algorithm

named LBCDS-GA to address the problem. The extensive simulation results demonstrate

that using an LBCDS as a virtual backbone can balance the energy consumption among

dominators. Consequently network lifetime is extended significantly. Particularly, when the

node number changes from 100 to 1000, our proposed method prolong network lifetime by

65% on average compared with the latest MCDS construction algorithm [44].
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CHAPTER 5

A GENETIC ALGORITHM WITH IMMIGRANTS SCHEMES FOR

CONSTRUCTING A RELIABLE MCDS IN STOCHASTIC WIRELESS

SENSOR NETWORKS

5.1 Motivation

WSNs are usually modeled using the Deterministic Network Model (DNM). Under this

model, there is a transmission radius of each node. According to this radius, any specific

pair of nodes are always connected to be neighbors if their physical distance is less than

this radius, while the rest of the pairs are always disconnected. The Unit Disk Graph

(UDG) model is a special case of the DNM model if all nodes have the same transmission

radius. When all nodes are connected to each other, via a single-hop or multi-hop path,

a WSN is said to have full connectivity. In most real applications, however, the DNM

model cannot fully characterize the behavior of wireless links. This is mainly due to the

transitional region phenomenon which has been revealed by many empirical studies [1, 4, 67].

Beyond the “always connected” region, there is a transitional region where a pair of nodes

are probabilistically connected. Such pairs of nodes are not fully connected but reachable

via the so called lossy links [1, 4]. As reported in [1, 4], there are often much more lossy links

than fully connected links in a WSN. Additionally, in a specific setup [5], more than 90% of

the network links are lossy links. Therefore, their impact can hardly be neglected.

In order to well characterize a WSN with lossy links, we propose a new network model

called the Stochastic Network Model (SNM). Under this model, in addition to transmission

radius, there is a Transmission Success Ratio (TSR) associated with each link connecting

a pair of nodes, which is used to indicate the probability that one node can successfully

directly deliver a package to another. Obviously, the core issue under the SNM model is

how to guarantee the node-to-node delivery ratio of all possible node pairs satisfying the
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user requirement, in other words, how to guarantee the Transmission Quality (TQ). For

constructing a MCDS under the SNM model, we propose CDS reliability to measure its TQ.

Given a SNM model, CDS reliability is defined as the minimum node-to-node delivery ratio

between any pair of dominators. Thus, how to find a reliable MCDS under the SNM model is

the major concern of this chapter. The objective is to seek a MCDS whose reliability satisfies

a certain application-dependent threshold denoted by σ (e.g., σ = 80%). If σ = 100%, finding

a reliable MCDS under the SNM model is the same as the traditional MCDS problem under

the DNM model. However, a traditional MCDS algorithm may not find a reliable MCDS

under the SNM mode. A counter-example is depicted in Fig. 5.1. By the latest algorithm

proposed in [44], a spanning tree rooted at a specified initiator is first constructed, and then

Maximal Independent Sets (MISs) are identified layer by layer. Finally a set of connectors

to connect the MISs is ascertained to form a CDS. According to the topology shown in

Fig. 5.1, the constructed CDS by [44] using s4 as the initiator is D = {s4, s7, s8}, whose

reliability is 0.1. If the threshold σ = 0.7, the CDS D does not satisfy the constraint at

all. The objective of our work is to find a MCDS whose reliability is greater than or equal

to σ. One example of the satisfied reliable MCDS is D′ = {s3, s6, s7} in Fig. 5.1. The
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Figure 5.1. A WSN under the SNM model.

key challenge finding a reliable MCDS under the SNM model is the computation of the

CDS reliability. It is known that given a network topology, the calculation of the node-to-

node delivery ratio is NP-Hard when network broadcast is used. Indeed, according to the

reliability theory [68], the node-to-node delivery ratio is not practically computable unless
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the network topology is basically series-parallel, namely, the graph representing a WSN can

be reduced to a single edge by series and parallel replacements. Nevertheless, most network

topologies are not series-parallel structures. Thus, instead of computing the accurate CDS

reliability, we design a greedy based algorithm to approximate the CDS reliability. Another

challenge is to find a minimum-sized CDS, which is also a NP-Hard problem [45]. Intuitively,

the smaller the CDS is, the lower the reliability of the CDS is. The key issue then becomes

how to find a proper trade-off between the minimum-sized CDS and the CDS reliability while

satisfying the optimization constraint (i.e. the CDS reliability is no less than the threshold

σ). To address this problem, we explore the Genetic Algorithm (GA) optimization approach.

GAs are numerical search tools which operate according to the procedures that resemble the

principles of nature selection and genetics [61]. Because of their flexibility and widespread

applicability, GAs have been successfully used in a wide variety of problems in several areas

of WSNs [26–29].

To the best of our knowledge, this work is the first one attempting to construct a MCDS

under the SNM model for WSNs.

5.2 RMCDS Problem Statement

In this section, we give an overview of the reliable MCDS problem under the SNM

model. We first present the assumptions, and then introduce the SNM model. Finally, we

give the problem definition and make some remarks for the problem.

5.2.1 Assumptions

We assume a static WSN and all nodes in the WSN have the same transmission range.

The Transmission Success Ratio (TSR) associated with each link connecting a pair of nodes

is available, which can be obtained by periodic Hello messages, or be predicted using Link

Quality Index (LQI) [69]. We also assume that the TSR values are fixed. This assumption

is reasonable as many empirical studies have shown that LQI is pretty stable in a static

environment [70]. Furthermore, no node failure is considered since it is equivalent to a link
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failure case. No duty cycle is considered either. We do not consider packet collisions or

transmission congestion, which are left to the MAC layer. The degradation of the node-to-

node delivery ratio is thus only due to the failure of wireless links.

5.2.2 Network Model

Under the Stochastic Network Model (SNM), we model a WSN as an undirected graph

G(V,E, P (E)), where V is the set of n sensor nodes, denoted by s1, s2, . . . , sn; E is the set

of m lossy links, ∀ u, v ∈ V , there exists an edge (u, v) in G if and only if: 1) u and v are

in each other’s transmission range, 2) TSR(e = {u, v}) > 0, for each link e = {u, v} ∈ E,

where TSR(e) indicates the probability that node u can successfully directly deliver a packet

to node v; and P (E) = {< e, TSR(e) > |e ∈ E, 0 ≤ TSR(e) ≤ 1}. We assume edges are

undirected (bidirectional), which means two linked nodes are able to transmit and receive

information from each other with the same TSR value.

Because of the introduction of TSR(e), the traditional definition of the node neighbor-

hood has changed. Hence, we first give the definition of the 1-hop neighborhood and then

extend it to the r-Hop neighborhood.

Definition 5.2.1. 1-Hop Neighborhood. ∀ u ∈ V , the 1-Hop Neighborhood of node u is

defined as:

N1(u) = {v|v ∈ V, TSR(e = {u, v}) > 0}

The physical meaning of 1-Hop Neighborhood is the set of the nodes that can be directly

reached from node u.

Definition 5.2.2. r-Hop Neighborhood. ∀ u ∈ V , the r-Hop Neighborhood of node u is

defined as:

Nr(u) = Nr−1(u) ∪ {v|∃w ∈ Nr−1(u), v ∈ N1(w), v /∈
r−1∪
i=1

Ni(u)}
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The physical meaning of the r-Hop Neighborhood is that the set of the nodes that can

be reached from node u by passing maximum r number of edges.

Definition 5.2.3. Node-to-Node Delivery Ratio. Given a source node u and a desti-

nation node v, one path between the node pair can be denoted by the edge permutation

θ(u, v) = (e1, e2, . . . , em), and the delivery ratio of the path is denoted by DRθ =
m∏
i=1

ei.

Furthermore, we use Θ(u, v) to denote the set of all the possible ways by which node v can

be reached from node u. The Node-to-Node Delivery Ratio from node u to node v is then

defined as:

DR∗(u, v) = max{DRθ, ∀ θ(u, v) ∈ Θ(u, v)}

Clearly, DR∗(u, v) is equivalent to DR∗(v, u).

Definition 5.2.4. CDS Reliability. Given a WSN represented by G(V,E, P (E)) under

the SNM model, and its CDS denoted by D, the reliability of D R∗
D is the minimum Node-

to-Node Delivery Ratio between any pair of the nodes in the CDS, i.e.,

R∗
D = min{DR∗(u, v), ∀ u, v ∈ D, u ̸= v}

We use CDS Reliability to measure the quality of a CDS constructed under the SNM

model. By this definition, when a CDS D has a reliability R∗
D satisfying a threshold σ (i.e.

R∗
D ≥ σ), we can state that for any pair of the nodes in the CDS the probability that they

are connected is no less than the threshold.

According to the reliability theory [68], we know that the computation of the Node-to-

Node Delivery Ratio is NP-Hard. Therefore, the computation of the CDS reliability is also

NP-Hard. In summary, we claim that, given a WSN represented by G(V,E, P (E)) under

the SNM model, a CDS for G denoted by D, and a pre-defined threshold σ ∈ 0, 1], it is

NP-Hard to verify whether R∗
D ≥ σ.

Theorem 2. Given a WSN represented by G(V,E, P (E)) under the SNM model, a CDS

for G denoted by D, and a pre-defined threshold σ ∈ (0, 1], it is NP-Hard to verify whether
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R∗
D ≥ σ.

Proof: According to the reliability theory [68], we know that the computation of the

Node-to-Node Delivery Ratio is NP-Hard. Therefore the computation of the CDS Reliability

is also NP-Hard. �

5.2.3 Definition of RMCDS

After we introduce how to measure the quality of CDSs under the SNM model, we will

give the formal definition of the problem we investigate in this chapter.

Definition 5.2.5. Reliable MCDS (RMCDS). Given a WSN represented by G(V,E, P (E))

under the SNM model, and a pre-defined threshold σ ∈ (0, 1], the RMCDS problem is to

find a minimum-sized node set D ⊆ V , such that

1. The induced graph G[D] = (D,E ′), where E ′ = {e |e = (u, v), u ∈ D, v ∈ D, (u, v) ∈

E)}, is connected.

2. ∀ u ∈ V and u /∈ D, ∃ v ∈ D, such that (u, v) ∈ E.

3. R∗
D ≥ σ.

We claim that the problem to construct a RMCDS for a WSN under the SNM model

is NP-Hard. It is easy to see that the traditional MCDS problem under the DNM model

is a special case of the RMCDS problem. By setting the TSR values on all edges to 1, we

are able to convert the RMCDS problem to the traditional MCDS problem under the DNM

model. Thus the RMCDS problem belongs to NP. The verification of the RMCDS problem

needs to calculate the CDS Reliability. It is an NP-Hard problem, which is mentioned in

Subsection 5.2.2. Therefore, the problem to construct a RMCDS for a WSN under the SNM

model is NP-Hard.

Theorem 3. The problem to construct an RMCDS for a WSN under the SNM model is

NP-Hard.
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Proof: It is easy to see that the traditional MCDS problem under the DNM model is a

special case of the RMCDS problem. By setting the TSR values on all edges to 1, we are able

to convert the RMCDS problem to the traditional MCDS problem under the DNM model.

Thus the RMCDS problem belongs to NP. The verification of the RMCDS problem needs

to calculate the CDS Reliability. It is an NP-Hard problem, which is proved in Theorem

2. Therefore, the problem to construct an RMCDS for a WSN under the SNM model is

NP-Hard. �

5.2.4 Remarks

As we already know, computing the Node-to-Node Delivery Ratio and the CDS relia-

bility are NP-Hard problems. Therefore, instead of computing the accurate Node-to-Node

Delivery Ratio, we design a greedy based algorithm to approximate the ratio denoted by

DR(u, v). Based on the approximate Node-to-Node Delivery Ratio, we then calculate the

approximate CDS Reliability denoted by RD. When there is no confusion, DR∗(u, v) and

DR(u, v), R∗
D and RD are interchangeable in the chapter.

Based on Definition 5.2.5, the key issue of the RMCDS problem is to seek a tradeoff

between the minimum-sized CDS and the CDS reliability. GAs are population-based search

algorithms, which simulate biological evolution processes and have successfully solved a wide

range of NP-Hard optimization problems [26–29]. In the following, algorithm RMCDS-GA

is proposed to solve the RMCDS problem to search the feasible domain more effectively and

reduce the computation time.

5.3 RMCDS-GA Algorithm

In the following sections, we first provide some basics of the GA optimization approach,

and then present the detailed design of the RMCDS-GA algorithm for the RMCDS problem.
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5.3.1 GA Overview

GAs, first formalized as an optimization method by Holland [71], are search tools mod-

eled after the genetic evolution of natural species. GAs encode a potential solution to a

vector of independent variables, called chromosomes. The independent variables consisting

of chromosomes are called genes. Each gene encodes one component of the target problem.

A binary coding is widely used nowadays. GAs differ from most optimization techniques

because of their global searching effectuated by one population of solutions rather than from

one single solution. Hence, a GA search starts with the creation of the first generation, a

random initial population of chromosomes, i.e., potential solutions to the problem. Then,

these individuals in the first generation are evaluated in terms of their “fitness” values, i.e.,

their corresponding objective function values. Based on their fitness values, a ranking of the

individuals in the first generation is dynamically updated. Subsequently, the first generation

is allowed to evolve in successive generations through the following steps:

1. Reproduction: selection of a pair of individuals in the current generation as parents.

The ranking of individual in the current generation is used in the selection procedure

so that in the long run, the best individuals will have a greater probability of being

selected as parents.

2. Recombination: crossover operation and mutation operation;

(a) Crossover is performed with a crossover probability Pc by selecting a random

gene along the length of the parent chromosomes and swapping all the genes of

the selected parents chromosomes after that point. The operation generates two

new children chromosomes.

(b) Mutation is performed with a mutation probability Pm by flipping the value of

one gene in the chromosomes (e.g., 0 becomes 1, and 1 becomes 0, if binary coding

is used).

3. Replacement: utilization of the fittest individual to replace the worst individual of
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the current generation to create a new generation, so as to maintain the population

number k a constant. Every time new children are generated by a GA, the fitness

function is evaluated. And then a ranking of the individuals in the current generation

is dynamically updated. The ranking is used in the replacement procedures to decide

who, among the parents and the children chromosomes, should survive in the next

population. This is to resemble the natural principles of the “survival of the fittest”.

GAs usually stop when a certain number of total generations denoted by G are reached.

Figure 5.2 shows the overview of the RMCDS-GA algorithm.

G

Return the fittest


Recombination


RMCDS
-GA


yes
no


Evolution Process


P

m


P

c


k


Decide
k
,
P

c

,P


m

, G


Population
Initialization


Evaluate fitness of each

chromosome in the population


Reproduction
: choose two

parents chromosomes


Replacement
: replace the

worst chromosome


Evaluate fitness of each

chromosome in the population


Stop?


Crossover


Mutation


Figure 5.2. Procedure of RMCDS-GA

One important feature of GAs need to be emphasized here is that the optimization

performance of GAs depends mainly on the convergence time of the algorithm. When using

GAs, sufficient genetic diversity among solutions in the population should be guaranteed.

Lack of such diversity would lead to a reduction of the search space spanned by the GA.

Consequently, the GA may prematurely converge to a local minimum because mediocre
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individuals are selected in the final generation. Alternatively, an excess of genetic diversity,

especially at later generations, may lead to a degradation of the optimization performance.

In other words, excess genetic diversity may result in very late or even no convergence.

In this chapter, genetic diversity is maintained by the crossover, mutation operations and

immigrants schemes. In the following part of this section, we will explain RMCDS-GA step

by step.

5.3.2 Representation of Chromosomes

In the proposed RMCDS-GA, each sensor is mapped to a gene in the chromosome.

A gene value indicates whether the sensor represented by this gene is a dominator or not.

Hence, a chromosome is denoted as: Ci = (g1, g2, · · · , gj, · · · , gn), where 1 ≤ i ≤ k and k is

the number of the chromosomes in the population; 1 ≤ j ≤ n and n is the total number of

the sensors in a WSN.  gj = 1, node sj is a dominator

gj = 0, node sj is a dominatee

All the sensors with gj = 1 form a CDS denoted by D = {sj|gj = 1, 1 ≤ j ≤ n}.

An example WSN under the SNM model is shown in Fig.5.1 to illustrate the encoding

scheme. There are 8 sensors and the CDS isD = {s4, s7}. Thus, the 8 sensors can be encoded

using 8 genes in a chromosome, e.g. C1 = (g1, g2, · · · , g8), and then set the values of genes rep-

resenting the dominators to 1. Finally, the encoded chromosome is C1 = (0, 0, 0, 1, 0, 0, 1, 0).
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5.3.3 Population Initialization

According to the flowchart of the proposed RMCDS-GA shown in Figure 5.2, after we

decide the encoding scheme of the RMCDS problem, the first generation (a population with

k chromosomes) should be created. This step is called population initialization in Figure

5.2. A general method to initialize the population is to explore the genetic diversity. That

is, for each chromosome, all dominators are randomly generated. However, the dominators

must form a CDS. Therefore we start to create the first chromosome by running an existing

MCDS method, e.g., Wan’s work [44], and then generate the population with k chromosomes

by modifying the first chromosome. We call the procedure, generating the whole population

by modifying one specific chromosome, Inheritance Population Initialization (IPI) (see detail

in 4.3.3).

An example is shown in Fig.5.1 to illustrate the IPI process. In Fig.5.1, the WSN and

its CDS D1 = {s4, s7} are given. The values on the edges are TSR values and black nodes are

dominators. Furthermore, we assume the CDS is constructed by a traditional MCDS method.

According to the encoding scheme mentioned in subsection 5.3.2, C1 = (0, 0, 0, 1, 0, 0, 1, 0)

represents the CDS generated by Wan’s work [44] shown in Fig.5.1. Subsequently, we need to

generate more chromosomes based on the first chromosome. The IPI algorithm is summarized

as follows:

1. Start from the node with the smallest ID, reduce one dominator each time from the

original CDS D1 represented by C1. If the new obtained node set is still a CDS Di, then

encode it as a chromosome Ci and add it into the initial population. Otherwise, remove

the node with the second smallest ID from the original CDS D1 and make the same

checking process as for the node with the smallest ID. Repeating the process till no

more new chromosome can be created. The CDS shown in Fig.5.1 is a minimum-sized

CDS, i.e., we cannot further reduce its size. Thus we go to step 2.

2. If the size of the original CDS D1 cannot be reduced, and the number of the generated

chromosomes is less than k, then for all the existing chromosomes C1, C2, · · · , Ci doing
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the following steps till k non-duplicated chromosomes are generated.

(a) Let t = 1.

(b) In the CDS Dt represented by the chromosome Ct, start from node u with the

smallest ID, and add one dominatee node in its 1-hop neighborhood N1(u) by

the order of its ID into the CDS each time. If the new obtained node sets

form CDSs, then encode them as chromosomes, and add them into the initial

population. In Figure 5.3(b), the node with the smallest ID is s4 in D. There-

fore, the chromosomes from C2 to C6 are generated by adding one node from set

N1(s4) = {s1, s2, s3, s5, s6} each time.

(c) Move to the node with the second smallest ID in CDS Dt till every node in Dt

are checked. In Figure 5.3(b), the 1-Hop neighborhood of the node with the

second smallest ID s7 is N1(s7) = {s6, s8}. Since s6 has already been marked as a

dominator, we cannot add it to create a new CDS. By eliminating the duplicates,

the chromosome C7 is created.

(d) If all the dominators in the current Dt are checked, move to the next CDS by

setting t = t+ 1, repeat the step from 2b) to 2d).

Since each sensor has two choices: to be a dominator or a dominatee, consequently,

there are 2n−|D| possible ways to create new chromosomes, where |D| is the size of the CDS

denoted by D under the SNM model. Usually, k is much smaller than 2n−|D|. Hence the

initial population C1, C2, · · · , Ck can be easily generated.

There are several merits that need to be pointed out here when using the above IPI

algorithm to generate the initial population. First, we can guarantee every dominator set

represented by a chromosome in the first generation is a CDS, i.e. each chromosome in

the initial population is a feasible solution of the RMCDS problem. Second, the critical

nodes (cut nodes), are dominators encoded in each chromosome of the initial population.

When performing crossover operations, the critical nodes are still dominators in the new

offspring chromosome in the successive generations. The illustration examples will be shown
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in Subsection 5.3.6. Finally, The IPI stops when k chromosomes are generated. Actually, we

can obtain more valid solutions by continuously running the IPI algorithm. As we already

know, the population diversity plays an important role on the optimization performance of

GAs. Therefore, the extra valid solutions generated by keeping running the IPI algorithm

can be used in the replacement process to bring more population diversity in new generations.

We will give more detailed description of the replacement scheme in Section 5.4.

5.3.4 Fitness Function

Given a solution, its quality should be accurately evaluated by the fitness value, which

is determined by the fitness function. In our algorithm, we aim to find a minimum-sized CDS

D whose reliability RD should be greater than or equal to a preset threshold σ. Therefore,

the fitness function of a chromosome Ci in the population is defined as:

f(Ci) =
R2

D

|D|2
(5.1)

The purpose of raising |D| and RD to the power of 2 in Equation 5.1 is to enlarge the weight

of the size of the CDS D. The denominator in Equation 5.1 needs to be minimized while the

numerator needs to be maximized. As a result, the fitness function value will be maximized.

As mentioned in the previous section, precisely calculating the CDS reliability is an NP-

Hard problem. According to Definition 5.2.4, we can easily compute the CDS reliability based

on the Node-to-Node Delivery Ratio of all possible dominator pairs in the CDS. Therefore, we

propose a greedy based approximate algorithm to calculate the Node-to-Node Delivery Ratio.

We adopt a greedy based routing protocol, Greedy Perimeter Stateless Routing (GPSR) [72],

to find the path between all possible dominator pairs. In this work, we modified the greedy

criterion to be the largest TSR values greater than or equal to σ based on GPSR, then we

can guarantee that Node-to-Node Delivery Ratios between all possible dominator pairs are

greater than or equal to σ.

For easier to understand, we first illustrate the idea by an example and then summa-
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rize the whole process. For the chromosome C2 shown in Figure 5.3(b), the CDS repre-

sented by C2 is D = {s1, s4, s7}, in which there are three possible dominator pairs, i.e.

(s1, s4), (s1, s7), (s4, s7). Assume the reliability threshold is σ = 60%. Clearly, the TSRs

associated with the edges (s1, s4) and (s4, s7) are both greater than 60% in Figure 5.3,

i.e. TSR(e1 = {s1, s4}) = 0.9, and TSR(e2 = {s4, s7}) = 0.95. According to the Definition

5.2.3, we know that DR(s1, s4) = 0.9 and DR(s4, s7) = 0.95 respectively. Therefore, the first

greedy criterion comes out: the direct edges between sources and destinations with TSR val-

ues greater than δ have the highest priority to be chosen as the path between sources and

destinations. For dominator pair (s1, s7), Obviously, there is no direct edge between them.

Thus we need to find a multi-hop path between them. The search process starts from the

destination s7. The greedy criterion is based on the TSR values on the edges between s7 and

all its 1-hop neighborhood N1(s7) = {s4, s6, s8}. Since TSR(e2 = {s4, s7}) = 0.95 > 0.6 is

the largest TSR values among all the nodes in N1(s7), the edge e2 = {s4, s7} is chosen. Subse-

quently, we keep searching from s4. Apparently, TSR(e3 = {s2, s4}) = 0.99 > 0.6 is the high-

est TSR values on the edges from s4 to all the nodes in N1(s4). However, based on the direct

edge greedy criterion, i.e. there is a direct edge between the source s1 and the current search

node s4, therefore e1 = {s1, s4} is chosen. According to Definition 5.2.3, θ(s1, s7) = {e1, e2},

DR(s1, s7) = DRθ =
2∏

i=1

TSR(ei) = 0.9 ∗ 0.95 = 0.855. Finally, based on Definition 5.2.4,

we know R(D) = min{DR(s1, s4), DR(s1, s7), DR(s4, s7)} = min{0.9, 0.855, 0.95} = 0.855.

The fitness of C2 can then be calculated using Equation 5.1, f(C2) =
0.8552

32
= 0.081225.

5.3.5 Selection (Reproduction) Scheme

During the evolutionary process, election plays an important role in improving the

average quality of the population by passing the high quality chromosomes to the next

generation. The selection operator is carefully formulated to ensure that better chromosomes

of the population (with higher fitness values) have a greater probability of being selected for

mating, but that worse chromosomes of the population still have a small probability of being

selected. Having some probability of choosing worse members is important to ensure that the
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search process is global and does not simply converge to the nearest local optimum. We adopt

Roulette Wheel Selection (RWS) since it is simple and effective. RWS stochastically selects

individuals based on their fitness values f(Ci). A real-valued interval, S, is determined as the

sum of the individuals’ expected selection probabilities, i.e. S =
k∑

i=1

Pi, where Pi =
f(Ci)

k∑
j=1

f(Cj)

.

Individuals are then mapped one-to-one into contiguous intervals in the range [0, S]. The size

of each individual interval corresponds to the fitness value of the associated individual. The

circumference of the roulette wheel is the sum of all fitness values of the individuals. The

fittest chromosome occupies the largest interval, whereas the least fit has correspondingly

smaller interval within the roulette wheel. To select an individual, a random number is

generated in the interval [0, S] and the individual whose segment spans the random number

is selected. This process is repeated until a desired number of individuals have been selected.

The pseudo-code is shown in Algorithm 4.

Algorithm 4 : Roulette Wheel Selection

Require: Population number k, each chromosome’s fitness value f(Ci).

1: S =
k∑

i=1

f(Ci);

2: Generate random number r from interval (0, S);
3: Initialize curS = 0;
4: for i = 1 to k do
5: curS + = f(Ci);
6: if curS >= r then
7: return Ci;
8: end if
9: end for

We still use the WSN shown in Figure 5.3(a) to illustrate the RWAS scheme. The

following Table 5.1 lists a sample population of 7 individuals (shown in Figure 5.3(b)).

These individuals consist of 8 bit chromosomes. The fitness values are calculate by Equation

5.1. We can see from the table: C1 is the fittest and C7 is the weakest. Summing these fitness

values we can apportion a percentage total of fitness. This gives the strongest individual

a value of 35% and the weakest 6%. These percentage fitness values can then be used to
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configure the roulette wheel (shown in Figure 5.4). The number of times the roulette wheel

is spun is equal to size of the population (i.e. k). As can be seen from the way the wheel is

now divided, each time the wheel stops this gives the fitter individuals the greatest chance of

being selected for the next generation and subsequent mating pool. According to the survival

of the fittest in nature selection, individual C1 = (00010010) will become more prevalent in

the general population because it is the fittest, and more apt to the environment we have

put it in.

Table 5.1. Fitness of 7 chromosomes
No. Chromosome f(Ci) % of total

C1 00010010 0.952

22
= 0.226 35

C2 10010010 0.8552

32
= 0.081 12

C3 01010010 0.94052

32
= 0.098 15

C4 00110010 0.71252

32
= 0.056 9

C5 000110101 0.84552

32
= 0.079 12

C6 00010110 0.807252

32
= 0.072 11

C7 00010011 0.61752

32
= 0.042 6

Totals 0.654 100
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Figure 5.4. Roulette Wheel Selection
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5.3.6 Genetic Operations

The performance of a GA relies heavily on two basic genetic operators, crossover and

mutation. Crossover exchanges parts of the current solutions (the parent chromosomes se-

lected by the RWS scheme) in order to find better ones. Mutation flips the values of genes,

which helps a GA keep away from local optimum. The type and implementation of these

two operators depend on the encoding scheme and also on the application. In the RMCDS

problem, we use the binary coding scheme and all potential solutions must be CDSs. For

crossover, we can adopt all classical operations, however, the new obtained solutions may

not be valid (the dominator set represented by the chromosome is not a CDS) after imple-

menting the crossover operations. Therefore, a correction mechanism needs to be preformed

to guarantee validity of all the new generated solutions. Similarly, all traditional mutation

operations can be adopted to the RMCDS problem, followed by a correction mechanism.

In this subsection, we introduce three crossover operators and their correction mecha-

nism, followed by a mutation operator and its correction scheme.

Crossover In our algorithm, since a chromosome is expressed by binary codes, we

adopt three crossover operators called single-point crossover, two-point crossover, and u-

niform crossover respectively. With a crossover probability Pc, each time we use the RWS

scheme to select two chromosomes Ci and Cj as parents to perform one of the three crossover

operators randomly. We use Fig.5.5 to illustrate the three crossover operations. Suppose

that two parent chromosomes C7 = (00010011) and C8 = (00100110) are selected from the

population. By the single-point crossover (shown in Fig.5.5(a)), the genes from the crossover

point to the end of the two chromosomes exchange with each other to get C6 = (00010110)

and C9 = (00010111). The crossover point denoted by O = 6 is generated randomly. After

crossing, the first offspring C6 = (00010110) is a valid solution. However, the other one

C9 = (00100011) is not valid, thus we need to perform the correction mechanism. The cor-

rection starts from the gene in the position of the crossover point O, i.e. g6. Since g6 is 1 in

the parent chromosome C8, it changes to 0 after crossing. We correct it by setting g6 = 1.
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Figure 5.5. Illustration of Crossover Operations: (a) single-point crossover; (b) two-point
crossover; (c) uniform crossover.
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Then C9 = (00010111) is now a valid solution. In general, we can keep correcting the genes

till the end of the chromosome. By the two-point crossover (shown in Fig.5.5(b)), the two

crossover points are randomly generated which are OL = 3 and OR = 6; and then the genes

between OL and OR of the two parent chromosomes are exchanged with each other. The

two offsprings are C10 = (00100111) and C1 = (00010010) respectively. Since both of the

offspring chromosomes are valid, we do not need to do any correction. As we already know,

C1 is the fittest in the population. This is a good illustration, we can obtain a fitter solu-

tion during the evolutionary process through genetic operations. For the uniform crossover

(shown in Fig.5.5(c)), the vector of uniform crossover OU is randomly generated which is

OU = (01010100), indicating that g2, g4, and g6 of the two parent chromosomes exchange

with each other. Hence the two offsprings are C11 = (00000111) and C4 = (00110010). Since

C11 is not a valid solution, we need to perform the correction scheme, and the corrected

chromosome becomes to C10 = (00110010), which is a valid solution.

Mutation The population will undergo the mutation operation after the crossover

operation is performed. With a mutation probability Pm, we scan each gene gi on the parent

chromosomes. If the mutation operation needs to be implemented, the value of the gene

flips, i.e. 0 becomes to 1 and 1 becomes to 0.

An example shown in Figure 5.6, assume g3 is mutated in chromosome C7. The offspring

C11 = (00110011) is a valid solution, thus no correction needed. While g6, g8 are mutated

in chromosome C8, the offspring C12 = (00100011) is not a valid solution. Therefore, we

perform the similar correction mechanism mentioned in the crossover subsection to make the

offspring C12 valid by correcting g6 = 1.

Replacement Policy The last step of RMCDS-GA is to create a new population us-

ing an appropriate replacement policy. Usually, two chromosomes from the evolution process

are utilized to replace the two worst chromosomes in the original population for generating a

new population. However, when creating new population by crossover and mutation, we have

a big chance to lose the fittest chromosome. Therefore, an elitism strategy, in which the best
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Figure 5.6. Illustration of Mutation operation

chromosome (or a few best chromosomes) is retained in the next generation’s population, is

used to avoid losing the best candidates.

The RMCDS-GA stops and returns the current fittest solution until the number of

total generations G is achieved or the best fitness value does not change for continuous 10

generations. In the RMCDS-GA algorithm, we use G to stop the algorithm.

5.4 Genetic Algorithms with Immigrants Schemes

As mentioned in Section 5.3.1, the optimization performance of GAs depends mainly

on the convergence time of the algorithm and appropriate population diversity may result

in fast convergence time. In this section we investigate how the immigrants schemes affect

the convergence time of the proposed RMCDS-GA algorithm.

In general, to converge at a proper pace is usually what we expect for GAs to find the

optimal solutions for many optimization problems. However, for the RMCDS problem, the

convergence becomes a challenge. GAs usually require to keep a certain population diversity

level to maintain their adaptability. The crossover and mutation correction mechanisms in

RMCDS-GA may reduce the population diversity. Thus it slows down the speed of conver-

gence. To address this problem, the random immigrants approach is a quite natural and

simple way [73–76], which is proposed with the inspiration from the flux of immigrants that

wander in and out of a population between two generations in the nature. It maintains the

diversity level of the population through replacing some individuals of the current popula-

tion with random individuals, called random immigrants, in every generation. As to which

individuals in the population should be replaced, usually there are two strategies: replac-
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ing random individuals or replacing the worst ones. In this chapter, GA with the random

immigrants (GARI) uses the second replacement strategy, i.e., utilize random immigrants

to replace the worst individuals of the current population. The random immigrants can be

obtained by keeping running the IPI algorithm or by randomly running another existing

MCDS algorithm. In order to avoid significant disruption of the ongoing search progress by

random immigrants, the ratio of the number of random immigrants to the population size

denoted by Pri is set to a small value, e.g., Pri = 0.1.

However, in some cases, random immigrants may not have any actual effect because

individuals in the previous population may still be quite fit in the new population. In

this case, random immigrants may thus degrade the performance. Based on the above

consideration, GA with the elitism-based immigrants (GAEI), which uses elitism, i.e., the

best chromosome (or a few best chromosomes), to create immigrants and replace the worst

individuals in the current population, is also used to address the RMCDS problem. The IPI

algorithm can be performed to create immigrants from the elitism.

To further investigate the performance of GARI and GAEI, we propose the GA with

hybrid immigrants (GAHI). In GAHI, in addition to the Pri × k immigrants which are

randomly created, Pei × k immigrants are created from the elite of the previous generation,

where Pei is the ratio of the number of elitism-based immigrants to the population size. These

two sets of immigrants will then replace the worst individuals in the current population.

The pseudo-code for GAEI and GAHI is shown in Algorithm 5.

5.5 Performance Evaluation

In the simulations, we implement the traditional GAs without immigrants and the

three GAs with immigrants (GARI, GAEI, GAHI) to solve the RMCDS problem. These

algorithms are compared with Wan’s work [44] denoted by MIS, which is the latest and best

MIS-based CDS construction algorithm.
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Algorithm 5 : RMCDS-GA with Immigrants Schemes

Require: k, Pri, Pei, G.
1: g = 0; {g represents the current generation number}
2: Initialize population P (0) using IPI Algorithm;
3: while g > G do
4: Calculate the fitness of each chromosome in population P (g);
5: Select two parents chromosomes in P (g) using RWS selection;
6: Crossover with Pc

7: Mutation with Pm

8: Calculate the fitness of each chromosome in interim population P
′
(g)

{perform elitism-based immigrants}
9: generate Pei×k immigrants by modify E(g−1); {E(g−1) denotes the elite in P (g−1)}
10: calculate the fitness of these immigrants;

{perform hybrid immigrants}
11: if GAHI is used then
12: generate Pri × k immigrants by modify E(g − 1);
13: calculate the fitness of these immigrants;
14: end if
15: replace the worst individuals in P

′
(g) with the immigrants;

16: P (g + 1) = P
′
(g);

17: g++;
18: end while
19: return the fittest individual in population P (G).

5.5.1 Simulation Environment

We build our own simulator where all nodes have the same transmission range (10m)

and all nodes are deployed uniformly in a square area. Moreover, a random value between

[0.9, 0.98] is assigned to the TSR value associated to a pair of nodes inside the transmission

range, otherwise, a random value between (0, 0.8] is assigned to the TSR value associated to

a pair of nodes beyond the transmission range. For a certain n, 100 instances are generated.

The results are averaged among 100 instances. Additionally, the particular GA rules and

control parameters are listed in Table 5.2.
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Table 5.2. GA Parameters and Rules
Population size (k) 20

Number of total generations (G) 100
Selection scheme Roulette Wheel Selection

Replacement policy Elitism
Immigrants schemes RI, EI, HI

Pri 0.1
Pei 0.1

Crossover probability (Pc) 1
Mutation probability (Pm) 0.001

5.5.2 Simulation Results

In Table 5.3, we show that traditional MCDS construction algorithms cannot solve the

RMCDS problem under the SNM model, especially for large scale WSNs. In Table 5.3, we

list the number of times that MIS and RMCDS-GA can find a CDS with a reliability greater

than or equal to σ by running 100 simulations separately. σ is decreased from 0.6 to 0.4 by

0.1. From Table 5.3, we find that, with increasing n, the number of the times of satisfied

CDSs for MIS and RMCDS-GA both decrease. This is because the sizes of CDSs increase

which leads to a lower Node-to-Node Delivery Ratio. Moreover, RMCDS-GA can guarantee

more satisfied CDSs than MIS, especially when n ≥ 200. In other words, for large scale

WSNs, it is hard to construct a satisfied CDS for MIS since the MIS algorithm does not

consider reliability. Additionally, both MIS and RMCDS-GA can find more satisfied CDSs

when σ decreases. In conclusion, traditional MCDS construction algorithms do not take

reliability into consideration, while RMCDS-GA can find a satisfied reliable MCDS which is

more practical in real environments.

In Table 5.4, RMIS and RGA represent the reliability of a CDS generated by MIS and

RMCDS-GA, respectively. |DMIS| and |DGA| represent the size of the CDS constructed

by MIS and RMCDS-GA, respectively. In Table 5.4, the reliability of CDSs decreases when

the area size increases, since the number of the dominators increases. RMCDS-GA can
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Table 5.3. MIS-based CDSs and RMCDS-GA generated CDSs

n
σ = 0.6 σ = 0.5 σ = 0.4

MIS GA MIS GA MIS GA
50 100 100 100 100 100 100
80 94 100 100 100 100 100
120 57 100 98 100 100 100
160 21 100 90 100 100 100
200 5 96 44 100 88 100
250 2 91 12 93 56 100
400 1 90 4 17 10 100

guarantee to find a more reliable CDS than MIS, i.e., RGA > RMIS. More importantly,

the sizes of the CDSs obtained by MIS and RMCDS-GA are almost the same. On average,

RMCDS-GA can find a CDS with 10% more reliability without increasing the size of a CDS

than MIS. In summary, RMCDS-GA does not trade CDS size for CDS reliability.

Table 5.4. R & |D| results of MIS and RMCDS-GA algorithms
Area (m2) n RMIS RGA |DMIS| |DGA|
40× 40 50 0.65 0.77 17 18
50× 50 80 0.59 0.72 24 26
60× 60 120 0.51 0.68 33 33
70× 70 160 0.46 0.62 40 44
80× 80 200 0.44 0.58 51 51
90× 90 250 0.39 0.53 63 62
100× 100 400 0.32 0.49 78 78

5.6 Summary

In this chapter, we have investigated the RMCDS problem using a new network model

called SNM. The SNM model is based on empirical studies show that most wireless links are

lossy links which only probabilistically connect pairs of nodes. Different from the traditional

DNM model which assumes that links are either connected or disconnected, the SNM model

enable the employment of lossy links by introducing the TSR value on each lossy link. In
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this chapter we focus on constructing a minimum-sized CDS while its reliability satisfies a

preset application-dependent threshold. We prove that RMCDS is an NP-Hard problem and

propose a GA with immigrants schemes to address the problem. The simulation results show

that compared to the traditional MCDS algorithm, RMCDS-GA can find a more reliable

CDS without increasing the size of a CDS.
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CHAPTER 6

THEORETIC ANALYSIS OF LOAD-BALANCED VIRTUAL BACKBONE

CONSTRUCTION ALGORITHM FOR WIRELESS SENSOR NETWORKS

6.1 Introduction

As mentioned in Section 3.1, all the aforementioned works did not consider the load-

balance factor when they construct a VB. For instance, when the MCDS-based VB is used in

the network shown in Fig. 6.1(a), backbone node v4 is adjacent to 5 different non backbone

nodes, whereas, backbone node v7 only connects to 2 non backbone nodes. If every non

backbone node has the same amount of data to be transferred through the neighboring

backbone node at a fixed data rate, then the number of neighboring non backbone nodes of

each backbone node is a potential indicator of the traffic load on each backbone node. Hence,

backbone nodes v4 must deplete its energy much faster than backbone node v7. A counter-

example is shown in Fig. 6.1(b), the set {v3, v6, v7} is served as a VB. Compared with the

VB constructed in Fig. 6.1(a), the numbers of neighboring non backbone nodes of all the

backbone nodes in Fig. 6.1(b) are very similar. On the other hand, the criterion to allocate

a non backbone node to a neighboring backbone node is also critical to balance traffic load

on each backbone node. An illustration of the allocation schemes for non backbone nodes is

depicted in Fig. 6.2, in which arrow lines represent that the non backbone nodes are allocated

to the arrow pointed backbone nodes, while the dashed lines represent the communication

links in the original network topological graph. Although the potential traffic load on each

backbone node are evenly distributed in the VB constructed in Fig. 6.2 (as depicted in

Fig. 6.1), different allocation schemes for non backbone nodes might break the balance.

In Fig. 6.2, only the gray non backbone node v4 is adjacent to more than one backbone

node. Allocating v4 to different backbone nodes leads to distinct traffic load on the allocated

backbone node. In Fig. 6.2(a), v4 is allocated to backbone node v3, while in Fig. 6.2(b), v4
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is allocated to backbone node v6. Apparently, backbone node v3 has more traffic load than

backbone nodes v6 and v7 in Fig. 6.2(a). However, traffic loads are balanced among backbone

nodes in Fig. 6.2(b). Moreover, if the workloads on each backbone node are not balanced,

some heavy-duty backbone nodes will deplete their energy quickly. Then, the whole network

might be disconnected. Intuitively, compared with the WSN shown in Fig. 6.2(a), the

VB and the allocation scheme for non backbone node v4 shown in Fig. 6.2(b) can extend

network lifetime notably. In summary, constructing a Load-Balanced VB (LBVB) and then

load-balancedly allocate non backbone nodes to backbone nodes are equally important when

considering the load-balance factor to form a VB in WSNs. Neither of these two aspects can

be ignored.

(a) (b)

Figure 6.1. Illustration of a regular VB and a load balanced VB.

(a) (b)

Figure 6.2. Illustration of a regular Allocation and a load balanced allocation.
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To benefit from the CDS-based VB in WSNs and also take the load-balance factor into

consideration, few attempts have been carried out to construct a VB in this manner [37].

In our previous work [37], we proposed a genetic-algorithm based method to build a load-

balanced CDS (LBCDS) in WSNs. However, there is no performance ratio analysis in that

chapter. In this research, we first investigate how to construct an LBVB. It is well known

that in graph theory, a Maximal Independent Set (MIS) is also a DS. MIS can be defined

formally as follows: given a graph G = (V,E), an Independent Set (IS) is a subset I ⊂ V

such that for any two vertex v1, v2 ∈ I, they are not adjacent, i.e., (v1, v2) /∈ E. An IS is

called an MIS if we add one more arbitrary node to this subset, the new subset will not

be an IS any more. Therefore, we construct an LBVB with two steps. The first step is to

find a MinMax Degree MIS (MDMIS), and the second step is to make this MIS connected.

Subsequently, we explore how to load-balancedly allocate non backbone nodes to backbone

nodes, followed by comprehensive performance ratio analysis.

Particularly, our contributions mainly include three aspects as follows:

1. We claim that the LBVB problem is an NP-Complete problem and therefore can not

be solved in polynomial time unless P = NP. Hence, we solve the LBVB problem with

two steps. First, we propose an approximation algorithm by using linear relaxation and

random rounding techniques to solve the MinMax Degree Maximal Independent Set

(MDMIS) problem. It is shown that this algorithm yields a solution upper bounded

by O(∆ ln(n))OPTMDMIS, where OPTMDMIS is the optimal result of MDMIS, ∆ is

the maximum node degree in the network, and n is number of sensors in a WSN. Sub-

sequently, the minimum-sized set of nodes are found to make the MDMIS connected.

The theoretical upper bound of the size of the constructed LBVB is analyzed in this

chapter as well.

2. We claim that the load-balancedly allocate non backbone nodes to backbone n-

odes problem is NP-Hard by formulating it as an equivalent binary programming.

Consequently, we present a randomized approximation algorithm, which produces

a solution in which the traffic load on each backbone node is upper bounded by
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O(log2(n))(OPTMVBA + 1
α2 ) with probability 7

8
, where α = log(n) + 3, OPTMVBA

is the optimal result.

3. We also conduct extensive simulations to validate our proposed algorithms. The sim-

ulation results show that the constructed LBVB and the allocation scheme for non

backbone nodes can extend network lifetime significantly compared with the stat-of-

art algorithms. Particularly, when all nodes with the same transmission range 50m

are deployed uniformly and randomly in a fixed square area 300m × 300m, and the

number of nodes is incremented from 50 to 100 by 10, our proposed algorithms prolong

network lifetime by 69% on average compared with the latest and best MCDS-based

VB [44], by 47% on average compared with LBCDS [37].

6.2 LBVB Problem Formulation

6.2.1 Network Model

We assume a static connected WSN and all the nodes in the WSN have the same

transmission range. Hence, we model a WSN as an undirected graph G = (V,E), where V

is the set of n sensor nodes, denoted by vi, where 1 ≤ i ≤ n, i is called the node ID of vi in

the chapter; E represents the link set ∀ u, v ∈ V, u ̸= v, there exists a link (u, v) in E if and

only if u and v are in each other’s transmission range. In this chapter, we assume links are

undirected (bidirectional), which means two linked nodes are able to transmit and receive

data from each other. Moreover, the degree of a node vi is denoted by di, whereas ∆ denotes

the maximum degree in the network graph G.

6.2.2 LBVB Problem Definition

As we mentioned in Section 6.1, we will solve the LBVB problem in two steps. The first

step constructs a MinMax Degree Maximal Independent Set (MDMIS), and the second step

selects additional nodes which together with the nodes in the MDMIS induce a connected

topology LBVB. In this subsection, we first formally define the MDMIS problem, followed
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by the problem definition of LBVB.

Definition 6.2.1. MinMax Degree Maximal Independent Set (MDMIS) Problem. For a

WSN represented by graph G(V,E), the MDMIS problem is to find a node set D ⊆ V such

that:

1. ∀u ∈ V and u /∈ D, ∃ v ∈ D, such that (u, v) ∈ E.

2. ∀u ∈ D, ∀v ∈ D, and u ̸= v, such that (u, v) /∈ E.

3. There exists no proper subset or superset of D satisfying the above two conditions.

4. Minimize max{di | ∀vi ∈ D}.

Taking the load-balance factor into consideration, we are seeking an MIS in which the

maximum degree of the nodes in the constructed MIS is minimized. In other words, the

potential traffic load on each node in the MIS is as balance as possible. Now, we are ready

to define the LBVB problem.

Definition 6.2.2. Load-Balanced Virtual Backbone (LBVB) Problem. For a WSN represent-

ed by graph G(V,E) and an MDMIS D, the LBVB problem is to find a node set C ⊆ V\D

such that:

1. The induced graph G[D
∪

C] on G is connected.

2. Minimize |C|, where |C| is the size of set C.

For convenience, the nodes in the set D are called independent nodes, whereas, the nodes

in the set C are called MIS connectors. Moreover, B = D
∪

C is an LBVB of G. Specifically

speaking, ∀vi ∈ B, vi is a backbone node.

Constructing an LBVB is a part of the work to balance traffic load on each backbone

node. One more important task needs to be resolved is how to allocate non backbone nodes to

its neighboring backbone nodes. The formal definition of the non backbone node allocation

scheme are given as follows:
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Definition 6.2.3. Non Backbone Node Allocation Scheme (A ). For a WSN represented by

graph G(V,E) and a VB B = {v1, v2, · · · , vm}, we need to find m disjoint sets on V, denoted

by A(v1),A(v2), · · · ,A(vm), such that:

1. Each set A(vi) (1 ≤ i ≤ m) contains exactly one backbone node vi.

2.
∪m

i=1A(vi) = V, and A(vi)
∩
A(vj) = ∅ (1 ≤ i ̸= j ≤ m).

3. ∀vu ∈ A(vi) (1 ≤ i ≤ m) and vu ̸= vi, such that (vu, vi) ∈ E.

A Non Backbone Node Allocation Scheme is:

A = {A(vi) | ∀vi ∈ B, 1 ≤ i ≤ m}

As we mentioned in Section 6.1, the potential traffic load indicator on each backbone

node is the degree of the node, i.e., di, for ∀vi ∈ B. However, di is not the actual traffic load.

The actual traffic load only can be determined when a non backbone node allocation scheme

A is decided. In other words, the number of allocated non backbone nodes is an indicator

of the actual traffic load on each backbone node. According to this observation, we give the

following definition:

Definition 6.2.4. Valid Degree (d′). The Valid Degree of a backbone node vi is the number

of its allocated non backbone nodes, i.e., ∀vi ∈ B, d′i = |A(vi)| − 1, where |A(vi)| represents

the cardinality of the set A(vi).

Finally, we are dedicated to find a load-balanced non backbone node allocation scheme

A , namely, the maximum valid degree of all the backbone nodes is minimized under A .

Definition 6.2.5. MinMax Valid-Degree non Backbone node Allocation (MVBA) Problem.

For a WSN represented by graph G(V,E) and an LBVB B = {v1, v2, · · · , vm}, the MVBA

problem is to find a backbone allocation scheme A ∗, such that: the max{d′i | ∀vi ∈ B)} is

minimized under A ∗.
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6.3 Load Balanced Virtual Backbone Problem

In this section, we first introduce how to solve the MinMax Degree Maximal Indepen-

dent Set (MDMIS) Problem. Since finding an MIS is a well-known NP-complete problem

[77] in graph theory, we claim the LBVB is NP-complete as well. Next, we formulate the

MDMIS problem as an Integer Nonlinear Programming (INP). Subsequently, we show how

to obtain an O(∆ ln(n)) approximation solution by using Linear Programming (LP) relax-

ation techniques. Finally, we present how to find a minimum-sized set of MIS connectors to

form an LBVB B.

6.3.1 INP Formulation of MDMIS

Consider a WSN described by graph G = (V,E). First we define the 1-Hop Neighbor-

hood of a node vi and then extend it to the r-Hop Neighborhood.

Definition 6.3.1. 1-Hop Neighborhood (N1(vi)). ∀vi ∈ V, the 1-Hop Neighborhood of node

vi is defined as:

N1(vi) = {vj | vj ∈ V, eij = (vi, vj) ∈ E}

The physical meaning of 1-Hop Neighborhood is the set of the nodes that can be directly

reached from node vi.

Definition 6.3.2. r-Hop Neighborhood. ∀vi ∈ V, the r-Hop Neighborhood of node vi is

defined as:

Nr(vi) = Nr−1(vi) ∪ {vk | ∃vj ∈ Nr−1(vi),

vk ∈ N1(vj), vk /∈
r−1∪
i=1

Ni(vi)}

The physical meaning of the r-Hop Neighborhood is that the set of the nodes that can

be reached from node vi by passing maximum r number of links.

Next we formally model the MDMIS problem as an Integer Nonlinear Program (INP).

DS property constraint. As we mentioned early, an MIS is also a DS. Hence, we

should formulate the DS constraint for the MDMIS problem. For convenience, we assign a
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decision variable xi for each sensor vi ∈ V, which is allowed to be 0/1 value. This variable

sets to 1 iff the node is an independent node, i.e., ∀vi ∈ D, xi = 1. Otherwise, it sets to

0. The DS property states that each non independent node must reside within the 1-hop

neighborhood of at least one independent node. We therefore have

xi +
∑

vj∈N1(vi)

xj ≥ 1, ∀vi ∈ V (6.1)

IS property constraint. Since the solution of the MDMIS problem is at least an

IS, the IS property is also a constraint of MDMIS. The IS property indicates that no two

independent nodes are adjacent, i.e., ∀vi, vj ∈ D, (vi, vj) /∈ E. In other words, we have

∑
vj∈N1(vi)

xi · xj = 0,∀vi ∈ V (6.2)

Consequently, the objective of the MDMIS problem is to minimize the maximum degree

of all the independent nodes. We denote z as the objective of the MDMIS problem, i.e.,

z = max
vi∈D

(di). Mathematically, the MDMIS problem can be formulated as an integer nonlinear

programming INPMDMIS as follows:

min z = max{di | ∀vi ∈ D}

s.t. xi +
∑

vj∈N1(vi)

xj ≥ 1∑
vj∈N1(vi)

xi · xj = 0

xi, xj ∈ {0, 1}, ∀vi, vj ∈ V

(INPMDMIS)

Since the IS property constraint (formulated in Equation 6.2) is quadratic, the formulat-

ed integer programming INPMDMIS is not linear. To linearize INPMDMIS, the quadratic

constraint is eliminated by applying the techniques proposed in [78]. More specifically, the

product xi·xj is replaced by a new binary variable χij, on which several additional constraints

are imposed. As a consequence, we can reformulate INPMDMIS exactly to an Integer Linear
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Programming ILPMDMIS by introducing the following linear constraints:

∑
vj∈N1(vi)

χij = 0

xi ≥ χij

xj ≥ χij

xi + xj − 1 ≤ χij

χij ∈ {0, 1}, ∀vi, vj ∈ V

(6.3)

For convenience, we assign a random variable lij for each edge in the graph G modeled

from a WSN, i.e.,

lij =


1, if (vi, vj) ∈ E.

0, otherwise.

Thus, we obtain that di =
∑

vj∈N1(vi)

xilij, ∀vi ∈ V. Moreover, by relaxing the conditions

xj ∈ {0, 1}, and χij ∈ {0, 1} to xj ∈ [0, 1], and χij ∈ [0, 1], correspondingly, we obtain the

following relaxed linear programming LP ∗
MDMIS:

min z = max{1,max{di =
∑

vj∈N1(vi)

xilij | ∀vi ∈ V}}

s.t. xi +
∑

vj∈N1(vi)

xj ≥ 1∑
vj∈N1(vi)

χij = 0

xi ≥ χij

xj ≥ χij

xi + xj − 1 ≤ χij

xi, xj, χij ∈ [0, 1], ∀vi, vj ∈ V

(LP ∗
MDMIS)

6.3.2 Approximation Algorithm

Due to the relaxation enlarged the optimization space, the solution of LP ∗
MDMIS cor-

responds to a lower bound to the objective of INPMDMIS. Given an instance of MDMIS
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modeled by the integer nonlinear programming INPMDMIS, the sketch of the proposed ap-

proximation algorithm (see Algorithm 6) is summarized as follows: first, solve the relaxed

Algorithm 6 : Approximation Algorithm for MDMIS

Require: A WSN represented by graph G = (V,E); Node degree di.
1: Solve LP ∗

MDMIS. Let (x∗, z∗) be the optimum solution, where x∗ =< x∗
1, x

∗
2, · · · , x∗

n >,
z∗ = max(1,

∑
vj∈N1(vi)

x∗
i lij).

2: Sort all the sensor nodes by the x∗
i value in the decreasing order. The sorted node ID i

is stored in the array denoted by A[n].
3: for i = 1 to n do
4: x̂i = 0.
5: end for
6: counter = 0.
7: while counter ≤ β, where β = 3(∆ + 1) ln(n) do
8: k = 0.
9: while k < n do
10: i = A[k].
11: if ∀vj ∈ N1(vi), x̂j = 0, then
12: x̂i = 1 with probability pi = max(x∗

i ,
1
di
).

13: end if
14: k = k + 1.
15: end while
16: counter = counter + 1.
17: end while
18: return (x̂, ẑ = max(1, di =

∑
vj∈N1(vi)

x̂ilij)).

linear programming LP ∗
MDMIS to get an optimal fractional solution, denoted by (x∗, z∗),

where x∗ =< x∗
1, x

∗
2, · · · , x∗

n >, and then round x∗
i to integers x̂i according to the following

five steps:

1. Sort sensor nodes by the x∗
i value (where 1 ≤ i ≤ n) in the decreasing order (line 2).

2. Set all x̂i to be 0 (line 3-5).

3. Start from the first node in the sorted node array A (line 8). If there is no node been

selected as an independent node in vi’s 1-hop neighborhood (line 11), then let x̂i = 1

with probability pi = max(x∗
i ,

1
di
) (line 12).
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4. Repeat step 3) till reaching the end of array A (line 9 - 15).

5. Repeat step 3) and 4) for 3(∆ + 1) ln(n) times (line 7 - 17).

Next the correctness of our proposed approximation algorithm (Algorithm 6) is proven,

followed by the performance ratio analysis. Before showing the correctness of Algorithm 6,

two important lemmas are derived as follows:

Lemma 2. For a WSN represented by G = (V,E), if a subset S ⊆ V is a DS and meanwhile

S is also an IS, then this subset S is an MIS of G.

Proof: If S ⊆ V is a DS of G, it implies that ∀vi ∈ V\S, there exists at least one node

vj ∈ S in vi’s 1-hop neighborhood. Moreover, if S is also an IS, it implies that no two nodes

in S are adjacent, i.e., ∀vs, vt ∈ S, (vs, vt) /∈ E.

Suppose S is not an MIS. In other words, we can find at least one more node, that does

not violate the DS property and the IS property of S, to be added into S. Suppose vk is

such a node. Based on the DS property, we know that ∃vj ∈ S and vj ∈ N1(vk). According

to the hypothesis, vk ∈ S, and considering the fact that vj ∈ N1(vk), we conclude there are

two nodes (vj and vk) are adjacent in S (i.e., (vj, vk) ∈ E), which is contradicted to the IS

property. Hence, the hypothesis is false and Lemma 4 is true. �

Lemma 3. The set D = {vi | x̂i = 1, 1 ≤ i ≤ n}, where x̂i is derived from Algorithm 6, is a

DS almost surely.

Proof: Suppose ∀vi ∈ V, |N1(vi)| = ki, where |N1(vi)| is the size of set N1(vi). Let the

random variable Xi denote the event that no node in the set N1(vi)
∪

{vi} is selected as

an independent node. Additionally, we denote X = max{ 1
∆
,max{x∗

j |vj ∈ N1(vi)
∪

{vi}}},

i.e., X is the maximum {x∗
j ,

1
∆
} value, for vj ∈ N1(vi)

∪
{vi}. For the probability of Xi
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happening, we have

P (Xi) = (1− p1)
β(1− p2)

β · · · (1− pki)
β (6.4)

= [(1− p1)(1− p2) · · · (1− pki)]
β (6.5)

≤ (1− X )β (6.6)

≤ (1− 1

∆ + 1
)β (6.7)

≤ (e−
1

∆+1 )β (6.8)

≤ e−
3(∆+1) ln(n)

∆+1 = e−3 ln(n) (6.9)

=
1

n3
(6.10)

Inequality 6.7 follows the fact that X ≥ 1
∆+1

. Inequality 6.8 results from the inequality

1 − x ≤ e−x, ∀x ∈ [0, 1]. Since
∑
n>0

1
n3 is a particular case of the Riemann Zeta function,

then
∑
n>0

1
n3 is bound, i.e.,

∑
n>0

1
n3 < ∞ by the result of the Basel problem. Thus, according

to the Borel-Cantelli Lemma, P (Xi) ∼ 0, it implies there exist one independent node in

the set N1(vi)
∪

{vi} almost surely. From Lemma 5, it is almost surely that the set

D = {vi | x̂i = 1, 1 ≤ i ≤ n} derived from Algorithm 6 is a DS. Then, it is reasonable that

we consider D is a DS of G in the following 1. Hence D holds the DS property almost surely.

�

Theorem 4. The set D = {vi|x̂i = 1, 1 ≤ i ≤ n}, where x̂i is derived from Algorithm 6, is

an MIS.

Proof: According to line 11- 13 of Algorithm 6, no two nodes can both be set as

independent nodes in the 1-hop neighborhood. This guarantees the IS property of D, i.e.,

∀vi, vj ∈ D, (vi, vj) /∈ E. Moreover, D is a DS as proven in Lemma 5. Hence, based on

Lemma 4, we conclude that D is an MIS. �

From Theorem 4, the solution of our proposed approximation Algorithm 6 is an MIS.

Subsequently, we analyze the approximation factor of Algorithm 6 in Theorem 5.

1It is almost impossible that D is not a DS of G. If not, we repeat the entire rounding process.
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Theorem 5. Let OPTMDMIS denote the optimal solution of the MDMIS problem. The

proposed algorithm yields a solution of O(∆ ln(n))OPTMDMIS.

Proof: The expected di of the independent node vi found by Algorithm 6 is as follows:

E[
∑

vj∈N1(vi)

x̂ilij] ≤
∑

vj∈N1(vi)

E[x̂i]E[lij] (6.11)

≤
∑

vj∈N1(vi)

(βx∗
i )E[lij] (6.12)

= β
∑

vj∈N1(vi)

x∗
iE[lij] (6.13)

≤ βz∗ (6.14)

Inequality 6.11 holds because x̂i and lij are independent. Inequality 6.12 holds because

the procedure, setting x̂i = 1 with probability pi, is repeated β times. By the union bound,

we get Pr[x̂i = 1] = Pr[
∪

t≤β x̂i = 1 at round t] ≤ βx∗
i . This implies E(x̂i) ≤ βx∗

i . Inequality

6.14 follows from the fact that
∑

vj∈N1(vi)

x∗
i · E[lij] ≤ max{di | vi ∈ D} = z∗.

Applying the Chernoff bound, we obtain the following bound:

Pr[
∑

vj∈N1(vi)

x̂ilij ≥ (1 + µ)βz∗] ≤ (
eµ

(1 + µ)1+µ
)βz

∗
(6.15)

for arbitrary µ > 0. To simplify this bound, let µ = e− 1, we get

Pr[
∑

vj∈N1(vi)

x̂ilij ≥ (1 + µ)βz∗] ≤ (
ee−1

ee
)βz

∗
(6.16)

≤ e−β (6.17)

= e−3(∆+1) ln(n) (6.18)

≤ e−3 ln(n) =
1

n3
(6.19)

Inequality 6.17 holds since z∗ = max{1,max{di =
∑

vj∈N1(vi)

xilij | ∀vi ∈ V}} ≥ 1. Apply-

ing the union bound, we get the probability that some independent node has a degree larger
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than (1 + µ)βz∗,

Pr[ẑ ≥ (1 + µ)βz∗] ≤ n
1

n3
=

1

n2
(6.20)

Again, since
∑
n>0

1
n2 is a particular case of the Riemann Zeta function, then

∑
n>0

1
n2 is

bound, i.e.,
∑
n>0

1
n2 < ∞ by the result of the Basel problem. Thus, according to the Borel-

Cantelli Lemma, P [ẑ ≥ (1 + µ)βz∗] ∼ 0.

According to the probability of Inequality 6.10 and 6.20, we get

Pr[some node is selected to be an independent node

in 1-hop neighborhood
∩

ẑ ≤ (1 + µ)βz∗]

= 1 · (1− 1
n2 ) ∼ 1, when n ∼ ∞

(6.21)

where µ = e− 1. �

6.3.3 Connected Virtual Backbone
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Figure 6.3. Illustration of LBVB construction process.

To solve the LBVB problem, one more step is needed after constructing an MDMIS,

which is to make the MDMIS connected. Next, we introduce how to find a minimum-sized

set of MIS connectors to connect the MDMIS.
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We first divide the MDMIS D into disjoint node sets according to the following criterion:

D0 = {vi | ∀vi ∈ D and vi has the minimized node ID among all the nodess in D}

Dι = {vi | vi ∈ D, ∃vj ∈ Dι−1, vi ∈ N2(vj), vi /∈
ι−1∪
k=0

Dk}

The independent node with smallest node ID is put into D0. Clearly, |D0| = 1. All the

independent nodes in the 2-Hop Neighborhood of the nodes in Dι−1 are put into Dι. Hence,

ι is called the level of an independent node. Dι represents the set of independent nodes of

level ι in G with respect to the node in D0. Additionally, suppose the maximum level of an

independent node is L. For each 0 ≤ i ≤ L− 1, let Si be the set of the nodes adjacent to at

least one node in Di and at least one node in Di+1. Subsequently, compute a minimum-sized

set of nodes Ci ⊆ Si cover node set Di+1. Let C =
L−1∪
i=0

Ci and therefore B = D
∪

C is a Load

Balanced Virtual Backbone of the original graph G.

We use the WSN shown in Fig. 6.3 (a) as an example to explain the construction process

of an LBVB. In Fig. 6.3 (a), each circle represents a sensor node. As we mentioned early, the

construction process consists of two steps. In the first step, it solves the MDMIS problem

by Algorithm 6 to obtain D which is shown in Fig. 6.3 (b) by black circles. In D, suppose

vi is the node with the smallest node ID. Then, the number besides each independent node

is the level of that node with respect to vi. In the second phase, we choose the appropriate

MIS connectors (C), shown by gray nodes in Fig. 6.3 (c), to connect all the nodes in D to

form an LBVB (B).

Next, we analyze the number of backbone nodes |B| produced by our algorithm.

Theorem 6. The number of backbone nodes |B| ≤ 2|D|.

Proof: According to the above proposed algorithm, each MIS connector connects the

independent nodes in Di and Di+1. Hence, |C| = |
L−1∪
i=0

Ci| ≤
L−1∑
i=0

max{|Di|, |Di+1|} ≤ |D|.

Finally, we get |B| = |D
∪
C| ≤ 2|D|. �
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6.4 MinMax Valid-Degree non Backbone node Allocation

In this section, we first claim that the MVBA problem is NP-Hard. Subsequently, we

formulate the MVBA problem as an Integer Linear Programming (ILP). Then, we present an

approximation algorithm by applying the linear relaxation and random rounding technique.

6.4.1 ILP Formulation of MVBA

According to Definition 6.2.5, the MVBA problem can be modeled by a binary problem

with an linear objective functions, which is a known NP-Hard problem. In this subsection,

we first model the MVBA problem as an ILP.

We define a binary variable bi to indicate whether the sensor vi is a backbone node or

not. bi sets to be 1 iff the sensor vi is a backbone node. Otherwise, bi sets to be 0 iff the

sensor vi is a non backbone node. Additionally, we assign a random variable aij for each

edge connecting a backbone node vi and a non backbone node vj on the graph G modeled

from a WSN, i.e.,

aij =


1, if non backbone node vj is allocated to backbone node vi.

0, otherwise.

Consequently, the MVBA problem can be formulated as an Integer Linear Programming

ILPMVBA as follows:

min y = max{d′i | ∀vi ∈ B}

s.t.
∑

vi∈N1(vj)

biaij = 1, ∀vj /∈ B

aij ∈ {0, 1}

(ILPMVBA)

The objective function y is the maximum valid degree (d′) of all the backbone nodes. The

first constraint states that each non backbone node can be allocated to only one backbone

node, whereas the second constraint indicates that aij is a binary variable. By relaxing

variable aij ∈ {0, 1} to aij ∈ [0, 1], we get the relaxed formulation which falls into a standard
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Linear Programming (LP) problem, denoted by LP ∗
MVBA as follows:

min y = max{1,max{
∑

vj∈N1(vi)

biaij | ∀vi ∈ B}}

s.t.
∑

vi∈N1(vj)

biaij = 1, ∀vj /∈ B

aij ∈ [0, 1]

(LP ∗
MVBA)

Due to the relaxation enlarged the optimization space, the solution of LP ∗
MVBA corre-

sponds to a lower bound to the objective of ILPMVBA.

6.4.2 Randomized Approximation Algorithm

Given an instance of MVBA modeled by the integer linear programming ILPMVBA,

the sketch of the randomized approximation algorithm (see Algorithm 7) is summarized as

follows: first, solve the relaxed linear programming LP ∗
MVBA to get an optimal fractional

Algorithm 7 : Approximation Algorithm for MVBA

Require: A WSN represented by graph G = (V,E).
1: Solve LP ∗

MVBA. Let (a
∗, y∗) be the optimum solution.

2: âij = 0.
3: while k ≤ α2, where α = log(n) + 3 do
4: âij = 1 with probability a∗ij
5: k = k + 1
6: end while
7: if ((vi, vj) ∈ E) and (vi ∈ B or vj ∈ B) then
8: âij = 1 with probability 1

∆
.

9: end if
10: repeat
11: line 3 - 6
12: until

∑
vi∈N1(vj)

biâij = 1

13: return (â, ŷ = max(1,
∑

vj∈N1(vi)

biâij)).

solution, denoted by (a∗, y∗), where a∗ =< a∗11, · · · , a∗1n, a∗21, · · · , a∗2n, · · · , a∗m1, · · · , a∗mn >,

and then round a∗ij to integers âij by a random rounding procedure, which consists of four

steps:
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1. Set all âij to be 0 (line 2).

2. Let âij = 1 with probability a∗ij and execute this step for α2 times (line 3 - 6), where

α = log(n) + 3.

3. Let âij = 1 with probability 1
∆

(line 7).

4. To ensure (âij, ŷ) is a feasible solution to ILPMVBA, repeat steps 2) and 3) until every

non backbone node is assigned a backbone node.

Subsequently, we analyze the approximation factor of Algorithm 7 in Theorem 7.

Theorem 7. Let OPTMVBA denote the optimal solution of the MVBA problem. The

proposed algorithm yields an optimal fractional solution of O(log2(n))(OPTMVBA+
1
α2 ) with

probability 7
8
, when α = log(n) + 3.

Proof: Considering any backbone node vi and non backbone node vj, the expected valid

degree of vi is as follows:

E[
∑

vj∈N1(vi)

biâij] (6.22)

=
∑

vj∈N1(vi)

biE[âij] (6.23)

≤
∑

vj∈N1(vi)

bi(α
2a∗ij +

1

∆
) (6.24)

= α2
∑

vj∈N1(vi)

bia
∗
ij +

1

∆

∑
vj∈N1(vi)

bi (6.25)

≤ α2y∗ +
∆

∆
(6.26)

= α2(y∗ + φ),where φ =
1

α2
(6.27)

Equation 6.23 holds because bi and âij are independent. Inequality 6.24 holds since the

random rounding technique used in Algorithm 7. Applying the union bound, we have the
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probability, that a non backbone node vj is allocated to a backbone node vi (i.e., âij = 1)

when the random rounding shown in Algorithm 7 is done, is: Pr[âij = 1] = Pr[
∪

k≤α2+1 âij =

1 at iteration k] ≤ α2a∗ij +
1
∆
. This implies E[âij] ≤ α2a∗ij +

1
∆
. Inequality 6.26 holds because

there is at most ∆ non backbone nodes in a backbone node’s 1-Hop Neighborhood.

Applying the Chernoff bound, we obtain the following bound:

Pr[
∑

vj∈N1(vi)

biâij ≥ (1 + µ)α2(y∗ + φ)]

≤ ( eµ

(1+µ)1+µ )
α2(y∗+φ)

(6.28)

for arbitrary µ > 0. To simplify this bound, suppose µ ≥ 2e− 1, then

Pr[
∑

vj∈N1(vi)

biâij ≥ (1 + µ)α2(y∗ + φ)]

≤ ( eµ

(1+µ)1+µ )
α2(y∗+φ)

≤ ( eµ

(2e)1+µ )
α2(y∗+φ)

= 2−(1+µ)e−α2(y∗+φ)

≤ 2−(1+µ)α2(y∗+φ)

≤ 2−µα2(y∗+φ)

(6.29)

Since y∗ = max{1,max{
∑

vj∈N1(vi)

biaij | ∀vi ∈ B}} ≥ 1, we have

Pr[
∑

vj∈N1(vi)

biâij ≥ (1 + µ)α2(y∗ + φ)]

≤ 2−µα2(y∗+φ)

≤ 2−α2 ≤ e−α

≤ 1
eln(n)+3 ≤ 1

16n

(6.30)



98

For arbitrary 0 < µ < 2e− 1, we let µ = e− 1

Pr[
∑

vj∈N1(vi)

biâij ≥ (1 + µ)α2(y∗ + φ)]

≤ ( eµ

(1+µ)1+µ )
α2(y∗+φ) = ( e

e−1

ee
)α

2(y∗+φ)

= e−α2(y∗+φ)

(6.31)

Similarly, since y∗ ≥ 1, we get

Pr[
∑

vj∈N1(vi)

biâij ≥ (1 + µ)α2(y∗ + φ)]

≤ e−α2(y∗+φ) ≤ e−α2 ≤ e−α

≤ 1
eln(n)+3 ≤ 1

16n

(6.32)

In both of the above cases (Inequality 6.30 and 6.32), summing over all backbone nodes

vi ∈ B, we obtain the probability that some backbone node has a valid degree larger than

(1 + µ)α2(y∗ + φ) as follows:

Pr[ŷ ≥ (1 + µ)α2(y∗ + φ)] = n
1

16n
=

1

16
(6.33)

Subsequently, we consider the probability that a non backbone node vj ∈ V\B is not allocated

to a backbone node in its 1-hop neighborhood at iteration j. That is,

∏
vi∈N1(vj), vi∈B

Pr[biâij = 0 at iteration j] (6.34)

=
∏

vi∈N1(vj), vi∈B

(1− bia
∗
ij) (6.35)

≤
∏

vi∈N1(vj), vi∈B

e−bia
∗
ij (6.36)

= e
−

∑
vi∈N1(vj), vi∈B

bia
∗
ij

=
1

e
(6.37)

Inequality 6.36 results from the inequality (1− x) ≤ e−x, ∀x ∈ [0, 1]. Equation 6.37 follows

the fact that each non backbone node can be allocated to only one backbone node, i.e.,
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∑
vi∈N1(vj)

bia
∗
ij = 1, ∀vj /∈ B, ∀vi ∈ B. Now, the probability that any non backbone node is

not allocated to a backbone node in its 1-hop neighborhood after the random rounding is

e−α2
.

Pr[Some non backbone node

has no neighboring backbone node]

≤ ne−α2
= n 1

16n
= 1

16

(6.38)

Based on the probability in Inequality 6.33 and Inequality 6.38, we have

Pr[each non backbone node is allocated to a

backbone node
∩

ŷ ≤ (1 + µ)α2(y∗ + φ)]

≥ (1− 1
16
)(1− 1

16
) ≥ 7

8

(6.39)

for arbitrary µ > 0 �

From theorem 7, the solution of our proposed random approximation Algorithm 7 yields

a solution upper bounded byO(log2 n)(OPTMVBA+
1
α2 ). Moreover, this bound can be verified

in polynomial time. If not, we repeat the entire rounding process. The expected number of

repetitions is at most ⌈8
7
⌉ = 2, when α = log(n) + 3.

6.5 Performance Evaluation

In the simulations, the results of LBVB are compared with the latest and best MCDS

construction algorithm [44] denoted by MCDS, and the LBCDS-GA algorithm proposed in

[37] denoted by GA. We compare the three algorithms in terms of the number of backbone

nodes, network lifetime, which is defined as the time duration until the first backbone node

runs out of energy, and the remaining energy over the whole network.

6.5.1 Simulation Environment

We build our own simulator where all the nodes have the same transmission range and

all the nodes are deployed uniformly and randomly in a square area. For each specific setting,
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100 instances are generated. The results are averaged over these 100 instances (all results are

rounded to integers). Moreover, we use the VB-based data aggregation as the communication

mode. The simulated energy consumption model is that every node has the same initial 1000

units of energy. Receiving and transmitting a packet both consume 1 unit of energy. In the

simulation, we consider the following tunable parameters: the node transmission range, the

total number of nodes deployed in the square area, and the side length of the square area.

Subsequently, we show the simulation results in three different scenarios.

6.5.2 Scenario 1: Change the total number of nodes

In this scenario, all nodes have the same transmission range of 50m and all nodes are

deployed uniformly and randomly in a square area of 300m× 300m. The number of nodes is

incremented from 50 to 100 by 10. The simulation results are shown in Fig. 6.4, where the

X -axis represents the number of nodes, while the Y -axis represents the number of backbone

nodes, network lifetime, and the remaining energy over the whole network respectively.
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Figure 6.4. Simulation results for a square area of 300m x 300m, the node transmission range
is 50m, and the number of nodes changes from 50 to 100 : (a) The number of backbone nodes;
(b) Network Lifetime; (c) Remaining Energy.

From Fig. 6.4(a), we can see that, with the increase of the number of the sensor nodes,

the number of backbone nodes keeps stable (from 34 to 39) for all the three algorithms

(MCDS, LBVB, and GA). This is because the area of the network deployed region keeps
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Figure 6.5. Simulation results for the node transmission range is 20m, the number of nodes is
100, and the side length of the deployed area changes from 100m to 150m: (a) The number
of backbone nodes; (b) Network Lifetime; (c) Remaining Energy.
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Figure 6.6. Simulation results for a square area of 300m x 300m, the number of nodes is 100,
and the node transmission range changes from 40m to 65m: (a) The number of backbone
nodes; (b) Network Lifetime; (c) Remaining Energy.
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fixed. The results implies that, if the network deployed area keeps unchanged, the density

of the WSN does not affect too much on the size of the constructed VB.

Though few changes in the number of backbone nodes, different non backbone node

allocation schemes do affect network lifetime as shown in Fig. 6.4(b). From Fig. 6.4(b),

we know that the network lifetime decreases for all algorithms with the number of nodes

increasing. This is because we use data aggregation communication mode in a more and

more crowded network. Intuitively, the denser the network is, the more number of neighbors

of each backbone node. With the number of neighbors increasing, the aggregated data on

each backbone node becomes more and more heavier. Hence, the network lifetime decreases

for all the three algorithms. Additionally, we can see both LBVB and GA outperform than

MCDS. Furthermore, LBVB prolongs network lifetime by 69% on average compared with

MCDS, and by 47% on average compared with GA. The results demonstrate that load-

balancedly allocating non backbone nodes to backbone nodes can improve network lifetime

significantly. On the other hand, LBVB outperforms than GA, since GA takes constructing

an LBVB and finding a load-balancedly allocation scheme into consideration simultaneously,

whereas our proposed algorithm formulate the whole process as two separate optimization

problems. Moreover, GA searches the best solution in a limited searching space. The local

optimal solution found by GA might not be the same as the global optimal solution. The

results shown in Fig. 6.4(b) indicate our proposed algorithms can find a solution which is

closer to the optimal solution than GA.

Fig. 6.4(c) shows the remaining energy over the whole network of the three algorithms.

With the increase of the number of nodes, the remaining energy increases for all algorithms.

As the WSN becomes denser and denser, a lot of redundant sensor nodes exist in the WSN.

From Fig. 6.4(c), we know that LBVB and GA have less remaining energy than MCDS.

Additionally, LBVB has less remaining energy than GA. This is because both LBVB and

GA consider the load-balance factor when building a VB and allocating non backbone nodes

to backbone nodes. Thus, the lifetime of the whole network is extended, which means the

remaining energy of the network is less than MCDS. On the other hand, LBVB has more
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network lifetime than GA as shown in Fig. 6.4(b), hence LBVB has less remaining energy

than GA. In summary, Fig. 6.4 indicates that constructing an LBVB can balance the energy

consumption on each backbone node, and make the lifetime of the whole network prolonged

considerably.

6.5.3 Scenario 2: Change the side length of the square area

In this scenario, all nodes have the same transmission range of 20m and 100 nodes

are deployed uniformly and randomly in a square area. The side length of the square area

is incremented from 100 to 150 by 10. The simulation results are presented in Fig. 6.5,

where the X -axis represents the side length of the square area, while the Y -axis represents

the number of backbone nodes, network lifetime, and the remaining energy over the whole

network respectively.

From Fig. 6.5(a), we can see that, with the increase of the area of the network deployed

region, the number of backbone nodes increases for all the three algorithms (MCDS, LBVB,

and GA). This is because the WSN becomes more and more thinner, more backbone nodes

are needed to maintain the connectivity of the constructed VB. There is no obvious trend that

which algorithm might produce more backbone nodes when constructing a VB. It implies

that the sizes of the constructed VBs are all considered for all the three algorithms.

Though no obvious trend in the number of backbone nodes, different non backbone node

allocation schemes still affect network lifetime as shown in Fig. 6.5(b). From Fig. 6.5(b),

we know that the network lifetime increases for all algorithms with the side length of the

deployed area increasing. It is obvious that the density of the network becomes more thinner

with the side length of the deployed area increasing. As to a data aggregation communication

mode, the thinner the network is the less number of neighbors of each backbone node. In

other words, the aggregated data are less on each backbone node when the network becomes

more and more thinner. Hence, network lifetime is increasing for all the three algorithms.

Additionally, we can see both LBVB and GA outperform than MCDS. More specifically,

LBVB prolongs network lifetime by 42% on average compared with MCDS, and by 20% on
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average compared with GA. The reasons are the same as analyzed in Scenario 1.

Fig. 6.5(c) shows the remaining energy over the whole network of the three algorithms.

With the increase of the side length of the deployed area, the remaining energy decreases

for all algorithms. As the WSN becomes thinner and thinner, more nodes are selected as

backbone nodes to maintain the connectivity of the constructed VB. Additionally, the traffic

load on each backbone node is less as mentioned early, hence, the remaining energy decreases

with the area of the deployed area increasing. From Fig. 6.5(c), we know that LBVB and

GA has less remaining energy than MCDS. Furthermore, LBVB has less remaining energy

than GA. The reasons are the same as analyzed in Scenario 1.

6.5.4 Scenario 3: Change the node transmission range

In this scenario, 100 nodes are deployed uniformly and randomly in a square area of

300m × 300m. The node transmission range is incremented from 40 to 65 by 5. The

simulation results are recorded in Fig. 6.6, where the X -axis represents the node transmission

range, while the Y -axis represents the number of backbone nodes, network lifetime, and the

remaining energy over the whole network respectively.

From Fig. 6.6(a), we can see that, with the increase of the node transmission range, the

number of backbone nodes decreases for all the three algorithms (MCDS, LBVB, and GA).

This is because there are more and more nodes in the circle with the node transmission range

as the radius, when the node transmission range increasing. This is equivalent to the network

become more denser. Hence, the connectivity of the constructed VB can still be maintained

even using less backbone nodes. There is still no obvious trend that which algorithm might

produce more backbone nodes when constructing a VB.

From Fig. 6.6(b), we know that the network lifetime decreases for all algorithms with

the node transmission range increasing. The fact is that the network becomes denser with

the node transmission range increasing. The denser the network is, the more number of

neighbors on each backbone node. Since we use data aggregation as the communication

mode in the simulations, the aggregated data are increasing on each backbone nodes when
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the network becomes more and more denser. Hence, network lifetime is decreasing for all the

three algorithms. Similar results we can derive that both LBVB and GA outperform than

MCDS. To be specific, LBVB prolongs network lifetime by 25% on average compared with

MCDS, and by 6% on average compared with GA. The reasons are the same as analyzed in

Scenario 1.

Fig. 6.6(c) shows the remaining energy over the whole network of the three algorithms.

With the increase of the node transmission range, the remaining energy increases for all

algorithms. A bunch of redundant sensors exist in the more and more crowded network,

thus the remaining energy increases for all the three algorithms. From Fig. 6.6(c), we know

that LBVB and GA have less remaining energy than MCDS. Furthermore, LBVB has less

remaining energy than GA. The reasons are the same as analyzed in Scenario 1.

6.6 Summary

In this chapter, we address three fundamental problems of constructing a load-balanced

VB in a WSN. More specifically, we solve the LBVB problem which is claimed to a NP-

Complete problem with two steps. First, the MDMIS problem aims to find the optimal MIS

such that the maximum degree of all the independent nodes is minimized. To solve this

problem, a near optimal approximation algorithm is proposed, which yields an O(∆ ln(n))

approximation factor. Subsequently, the minimum-sized set of MIS connectors are found

to make the MDMIS connected. The theoretical upper bound of the number of backbone

nodes is analyzed in this chapter as well. In the end, the MVBA problem is dedicated to

allocate non backbone nodes to proper backbone nodes with an objective to minimize the

maximum valid degree of all the backbone nodes, which is a NP-Hard problem. To solve

this problem, we propose an approximation algorithm by using linear relaxing and random

rounding techniques, which yields a solution of O(log2(n)) approximation factor of traffic

load on each backbone node. Simulations show that the proposed algorithms can extend

network lifetime significantly.
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CHAPTER 7

CONSTRUCTING LOAD-BALANCED DATA AGGREGATION TREES IN

STOCHASTIC WIRELESS SENSOR NETWORKS

7.1 Introduction

Wireless Sensor Networks (WSNs) are emerging as the desired environment for in-

creasing numbers of military and civilian applications. In such applications, sensor nodes

periodically sense their monitored environment and send the information to the sink (or base

station), at which the gathered/collected information can be further processed for end-user

queries. In this data gathering process, data aggregation can be used to fuse data from differ-

ent sensors to eliminate redundant transmissions, since the data sensed by different sensors

are spatially correlated to some extent [79]. Hence, through this in-network data aggregation

technique, the amount of data that needs to be transmitted by a sensor is reduced, which

in turn decreases each sensor’s energy consumption so that the whole network lifetime is ex-

tended. For continuous monitoring applications with a periodic traffic pattern, a tree-based

topology is often adopted to gather and aggregate sensing data because of its simplicity.

Compared with an arbitrary network topology, a tree-based topology conserves the cost of

maintaining a routing table at each node, which is computationally expensive for the sensor

nodes with limited resources. For clarification, data gathering trees with aggregation are

also referred to as Data Aggregation Trees (DATs), which are directed trees rooted at the

sink and have a unique directed path from each node to the sink. Additionally, in a DAT,

sensing data from different sensors are combined at intermediate sensors according to certain

aggregation functions including COUNT, MIN, MAX, SUM, and AVERAGE [80].

Due to the dense sensor deployment, many different DATs can be constructed to relay

data from the monitored area to the sink. According to the diverse requirements of different

applications, the DAT related works can be roughly classified into three categories: Energy-
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Efficient Aggregation Scheduling [81, 82], Minimum-Latency Aggregation Scheduling [44,

83], and Maximum-Lifetime Aggregation Scheduling[86, 87]. It is worth mentioning that

aggregation scheduling attracts a lot of interests in the current literatures. However, unlike

most of the existing works which put lots of efforts on aggregation scheduling, we mainly

focus on the DAT construction problem.

Furthermore, most of the existing DAT construction works are based on the ideal De-

terministic Network Model (DNM), where any pair of nodes in a WSN is either connected

or disconnected. Under this model, any specific pair of nodes are neighbors if their physical

distance is less than the transmission range, while the rest of the pairs are always discon-

nected. However, in most real applications, the DNM cannot fully characterize the behavior

of wireless links due to the existence of the transitional region phenomenon [4]. It is re-

vealed by many empirical studies [1, 4] that, beyond the “always connected” region, there is

a transitional region where a pair of nodes are probabilistically connected via the so called

lossy links [4]. Even without collisions, data transmissions over the lossy links cannot be

guaranteed. Moreover, as reported in [4], there are often much more lossy links (sometimes

[5], 90% more) than fully connected links in a WSN. Therefore, in order to well characterize

WSNs with lossy links, a more practical network model is the Stochastic Network Mod-

el(SNM). Under this model, there is a transmission success ratio (ιij) associated with each

link connecting a pair of nodes vi, vj, which is used to indicate the probability that one node

can successfully deliver a package to another. An example is shown in Fig.7.2(a), in which

the number over each link represents its corresponding transmission success ratio, and s0 is

the sink. For convenience, the WSNs considered under the DNM are called Deterministic

WSNs, whereas, the WSNs considered under the SNM are called Stochastic WSNs. Clearly,

DNM is only a specific case of SNM, when ιij = 1.

On the other hand, all the aforementioned works did not consider the load-balance factor

when they construct a DAT. Without considering balancing the traffic load among the nodes

on a DAT, some heavy loaded nodes may quickly exhaust their energy, which might cause

network partitions or malfunctions. For instance, for aggregating the sensing data from
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Figure 7.1. A Stochastic WSN

8 different nodes to the sink node v0, a shortest-path-based DAT for the stochastic WSN

(Fig.7.1) is shown in Fig.7.2(a). The intermediate node v4 aggregates the sensing data from

four different nodes, whereas, v7 only aggregates one sensing data from v8. For simplicity, if

every link shown in Fig.7.1 is always connect and every node has the same amount of data

to be transferred through the intermediate nodes at a fixed data rate, heavy loaded v4 must

deplete its energy much faster than v7. From Fig.7.2(a), we know that the intermediate nodes

usually aggregate the sensing data from neighboring nodes in a shortest-path-based DAT.

Actually, the number of neighboring nodes of an intermediate node is a potential indicator

of the traffic load on each intermediate node. However, it is not the only factor to impact

the traffic load on each intermediate node. The criterion to assign a parent node, to which

data is aggregated for each node on a DAT, is also critical to balance traffic load on each

intermediate node. We refer the procedure, that assign a unique parent node for each node

in the network, to as the Parent Node Assignment (PNA) in this chapter. An illustration

of a PNA differed from Fig.7.2(a) is depicted in Fig.7.2(b). Instead of assigning v4 as v3

and v6’s parent, assigning v2 as v3’s parent and v7 as v6’s parent, a more load-balanced DAT

is shown in Fig.7.2(b). Apparently, the traffic loads on the intermediate nodes v2, v4, and

v7 shown in Fig.7.2(a) are much more balanced than Fig.7.2(a). Therefore, constructing

a Load-Balanced DAT (LBDAT) and then seeking a Load-Balanced PNA (LBPNA) are

equally important when considering the load-balance factor to form an LBDAT under the

SNM. Neither of these two aspects can be ignored. Finally, a perfect LBDAT is shown in

Fig.7.2(c). Intuitively, compared with the DATs shown in Fig.7.2(a), and Fig.7.2(b), the
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LBDAT shown in Fig.7.2(c) can extend network lifetime notably, since the traffic load are

evenly distributed over all the intermediate nodes on the LBDAT.

(a) (b) (c)

Figure 7.2. A Stochastic WSN, DATs and an LBDAT.

In summary, our research problem in this chapter is distinguished from all the prior

researches in three aspects. First, most of the current literatures investigated the DAT

construction problem under the DNM, whereas ours work is suitable for both DNM and

SNM. Second, the load-balance factor is not considered when constructing a DAT in most

of the aforementioned works. Finally, the DAT construction problem is our major concern,

whereas the prior researches were focused on the aggregation scheduling problem. Therefore,

in this chapter, we explore the DAT construction problem under the SNM with balancing

the traffic load among all the nodes on a DAT. To be specific, in this chapter, we construct

a Load-Balanced DAT (LBDAT) under the SNM in three phases. We first investigate how

to construct a Load-Balanced Maximal Independent Set (LBMIS). A MIS can be defined

formally as follows: given a graph G = (V,E), an Independent Set (IS) is a subset I ⊆ V such

that for any two vertex v1, v2 ∈ I, they are not adjacent, i.e., (v1, v2) /∈ E. An IS is called an

MIS if we add one more arbitrary node to this subset, the new subset will not be an IS any

more. After obtaining an LBMIS, we attempt to find a minimum-sized set of nodes called

LBMIS connector set C to make this LBMIS M connected, which is called the Connected

MIS (CMIS) problem. Finally, we seek a Load-Balanced Parent Node Assignment (LBPNA).
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After an LBPNA is decided, by assigning a direction to each link in the constructed tree

structure, we obtain an LBDAT. Comprehensive performance ratio analysis are given in the

chapter as well.

The main contributions of this chapter are summarized as follows:

• We identify and highlight the use of lossy links when constructing a DAT. Moreover,

in order to measure the load-balance of the nodes on a DAT under the SNM, we define

two new metrics potential load, and actual load.

• The LBDAT construction problem is an NP-Hard problem. Then, we solve the LB-

DAT construction problem with three phases. First, we propose an approximation

algorithm by using linear relaxation and random rounding techniques to solve the LB-

MIS problem, which is an NP-Complete problem. Theoretical analysis shows that this

algorithm yields a solution upper bounded by O(∆ ln(n))optLBMIS, where optLBMIS is

the optimal result of LBMIS, ∆ is the maximum node degree of the network, and n is

number of sensors in a WSN. Subsequently, the minimum-sized set of nodes are found

to make the LBMIS connected. Finally, to solve LBDAT, we present a randomized

approximation algorithm to find a Load-Balanced Parent Node Assignment (LBPNA).

The approximation algorithm produces a solution in which the actual traffic load on

each intermediate node is upper bounded by O(∆ log(n))(optLBPNA + ⌈B
R⌉), where

optLBPNA is the optimal result, B is the data package size, and R is the maximum

data receiving rate of all the n nodes.

• We also conduct simulations to validate our proposed algorithms. The simulation

results demonstrate that the constructed LBDAT can extend network lifetime signifi-

cantly compared with the stat-of-the-art algorithms.

7.2 Related Work

The problem of data gathering and aggregation in WSNs has been extensively investi-

gated in the literatures. Moreover, a tree-based topology to periodically aggregate collected
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data in WSNs is widely adopted because of its simplicity. However, most of existing works

concentrated on the aggregation scheduling problem in deterministic WSNs, which is very

different from our research problem. To be specific, we focus on constructing an LBDAT to

perform data aggregation in stochastic WSNs in this paper. Therefore, in this section, we

review the most related works to our work. Based on the different user requirements, the

existing DAT related works can be roughly divided into three categories: Energy-Efficient

Aggregation Scheduling [46, 81, 82], Minimum-Latency Aggregation Scheduling [18, 44, 83–

85], and Maximum-Lifetime Aggregation Scheduling [86–90].

7.2.1 Energy-Efficient Aggregation Scheduling

As to battery powered sensors in WSNs, energy-effici-ent is always the major concern.

Hence, it is important to minimize the total energy consumed by a WSN when designing

a DAT. The authors proposed a Power Efficient Data Gathering and Aggregation Protocol

(PEDAP) in [81], in which a near optimal minimum energy cost spanning tree is constructed

for data aggregation. At first, only the sink node is included in the tree. Then, it keeps

selecting nodes not in the tree one by one to join the current tree iteratively. The selected

node is the one that can transmit packets to one of the nodes in the current tree with the

minimum energy cost. However, PEDAP does not consider each node’s energy and cannot

achieve energy-awareness. Therefore, PEDAP - Power Aware (PEDAP-PA) is proposed

in [81] to improve PEDAP by considering the remaining energy of the sender. Later, the

authors tried to construct an energy-balanced Minimum Degree Spanning Tree (MDST) in

[46]. It starts from an arbitrary tree and tries to balance degree of nodes in the tree according

to their energy. However, a node with fewer children in a DAT does not mean it can relay

fewer data. Differed from the previous centralized algorithms, in [82], the authors proposed

a localized, self organizing, robust, and energy-efficient DAT for a WSN called Localized

Power-Efficient Data Aggregation Protocol (L-PEDAP). The proposed approach consists of

two phases. In the first phase, it computes a sparse topology over the original graph of the

WSN using the one-hop neighborhood information. In the second phase, it constructs a DAT
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over the edges of the computed sparse topology. Moreover, L-PEDAP is adaptive since it

considers the dynamic changes when constructing a routing tree.

7.2.2 Minimum-Latency Aggregation Scheduling

The minimum data aggregation time problem was proved to be an NP-Hard problem

in [83]. Moreover, Chen et al. [83] designed a (∆− 1)R-approximation algorithm based on a

shortest path tree for data aggregation, where ∆ is the maximum degree of the network graph

and R is the network radius. Subsequently, the First-Fit algorithm is proposed by Huang

[84], in which a Connected Dominating Set (CDS) based tree is first constructed, and then

maximal interference-free set of links is scheduled in each time slot. The latency of Huang’s

approach is bounded by 23R+∆− 18. However, the already scheduled transmissions could

also interference with the candidate links which is neglected in [84]. Hence, as a successor,

Wan [44] developed a 15R +∆− 4 approximation algorithm called Sequential Aggregation

Scheduling (SAS) to solve the Minimum-Latency Aggregation Schedule (MLAS) problem.

Similar to Huang’s work, Wan et al. in [44] also divided the aggregation process into the

tree construction phase and the scheduling phase. The main difference is that the parents of

leaf nodes are dynamically determined during the scheduling process. Subsequently, Xu et

al. [85] developed an approximation algorithm with bound 16R′ + ∆ − 14, where R′ is the

inferior network radius which is smaller than R. Recently, Li et al. proposes a distributed

scheduling algorithm named Clu-DDAS based on a novel cluster-based aggregation tree in

[18] whose latency bound is 4R′ + 2∆− 2.

All the above works devoted efforts to find a data aggregation schedule for each link on

the constructed DAT which leads to the minimum data aggregation latency. Hence, all these

researches are differed than our work in this paper. We mainly focus on the load-balanced

tree construction in stochastic WSNs.
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7.2.3 Maximum-Lifetime Aggregation Scheduling

Wu et al. [46] proved that constructing an arbitrary aggregation tree with the maximum

lifetime is NP-Hard. Hence, huge amount of approximation algorithms are proposed to

construct a DAT with maximum lifetime. Xue et al. in [86], using linear programming

formulation, modeled this problem as a multi-commodity flow problem, where a commodity

represents the data generated from a sensor node and delivered to a base station. A fast

approximate algorithm is presented, which is able to compute (1− ϵ)-approximation to the

optimal lifetime for any ϵ > 0. Lin et al. considered a more general network model in

which the transmission power levels of sensors are heterogeneous and adjustable in [87].

The proposed algorithm starts from an arbitrary spanning tree rooted at the base station.

Subsequently, one of the heavily loaded nodes is reduced to normalized load by partially

rearranging the current tree to create a new tree. The upper bound on the lifetime of the

constructed DAT is also presented in [87]. The authors in [88] proposed a combinatorial

iterative algorithm for finding an optimal continuous solution to the Maximum Lifetime

Data Gathering with Aggregation (MLDA) problem that consists of up to n− 1 aggregation

trees and achieves lifetime T0. They obtained an α-approximate optimal integral solution,

where α = T0−n+1
T0

, and n is the number of sensors in a WSN. The Decentralized Lifetime

Maximizing Tree (DLMT) with energy consideration is proposed in [89]. Recently, Luo et

al. proposed a distributed shortest-path based DAT in [30]. The authors transformed the

problem of maximizing the lifetime of DATs into a general version of semi-matching problem,

and showed that the problem can be solved by a min-cost max-flow approach in polynomial

time.

7.2.4 Remarks

All the above mentioned existing works consider to construct a DAT under the DNM.

To the best knowledge of us, however, none of them attempt to construct a load-balanced

DAT under the SNM, which is more realistic. This is the major motivation of this research

work. Moreover, all the aforementioned works were focused on constructing energy-efficient
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aggregation scheduling, minimum-latency aggregation scheduling, or maximum-lifetime ag-

gregation scheduling. Unfortunately, they do not consider the load-balance factor when

constructing a DAT. In contrast, in this paper, we first show an example to illustrate that

an imbalanced DAT cannot prolong network lifetime by reducing the communication cost.

Instead, it actually leads to the reduction of network lifetime. Based on this observation,

we then study to build an LBDAT for more practical stochastic WSNs. Approximation

algorithms are proposed in the paper followed by comprehensive theoretical analysis.

7.3 Network Model and LBDAT Problem Definition

In this section, we give an overview of the LBDAT construction problem under the

SNM. We first present the assumptions, and then introduce the SNM. Finally, we give the

problem definitions and make some remarks for the proposed problems.

7.3.1 Assumptions

We assume a static connected WSN with the set of n nodes Vs = {v1, v2, · · · , vn} and

one sink node v0. All the nodes have the same transmission range. The transmission success

ratio ιij associated with each link connecting a pair of nodes vi, vj is available, which can be

obtained by periodic Hello messages, or be predicted using Link Quality Index (LQI) [69]. We

also assume that the ιij values are fixed. This assumption is reasonable as many empirical

studies have shown that LQI is pretty stable in a static environment [70]. Furthermore,

no node failure is considered since it is equivalent to a link failure case. No duty cycle is

considered either. We do not consider packet collisions or transmission congestion, which

are left to the MAC layer.

We further assume that the n nodes monitor the environment in the deployed area

and periodically report the collected data to the sink node v0 along the LBDAT T (the

formal definition of LBDAT will be given later). Every node produces a data package of

B bits during each report interval. Moreover, an intermediate node can aggregate multiple

incoming B-bit packets, together with its own package into a single outgoing B-bit package.
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Furthermore, we assume the data receiving rate of each node vi is γi, and R denotes the

maximum data receiving rate of all n nodes. Finally, the degree of a node vi is denoted by

di, whereas δ/∆ denotes the minimum/maximum degree in the network.

7.3.2 Network Model

Under the Stochastic Network Model (SNM), we model a WSN as an undirected graph

G(V,E,P(E)), where V = Vs

∪
{v0} is the set of n + 1 nodes, denoted by vi, where

0 ≤ i ≤ n. i is called the node ID of vi in the chapter. E is the set of lossy links. ∀ vi, vj ∈ V,

there exists a link (vi, vj) in G if and only if: 1) vi and vj are in each other’s transmission

range, and 2) ιij > 0. For each link (vi, vj) ∈ E, ιij indicates the probability that node vi can

successfully directly deliver a packet to node vj; and P(E) = {ιij | (vi, vj) ∈ E, 0 ≤ ιij ≤ 1}.

We assume the links are undirected (bidirectional), which means two linked nodes are able

to transmit and receive information from each other with the same ιij value.

7.3.3 Definition of LBDAT

Since the load-balance is the major concern of this work, the measurement of the traffic

load balance under the SNM is critical to solve the LBDAT construction problem. Hence, in

this subsection, we first define a novel metric called potential load to measure the potential

traffic load on each node.

As we mentioned in Section 7.1, the number of neighboring nodes of a node (i.e., |N1(vi)|)

is a potential indicator of the traffic load on each node. However, it is not the only factor

to indicate the potential traffic load on each node in stochastic WSNs. For example, if

ιij = 0.5, then the expected number of transmissions to guarantee vi to deliver one packet to

vj is
1
0.5

= 2. The less the ιij value, the more potential traffic load on vj from vi. Therefore,

a more reasonable and formal definition of the potential load is given as follows:

Definition 7.3.1. Potential Load (ρi). ∀vi ∈ Vs, the potential load of vi is defined as:

ρi =
∑

vj∈N1(vi)

⌈B
γi
⌉ 1
ιij
.
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We solve the LBDAT construction problem in three phases in this chapter. First, we

construct a Load-Balanced Maximal Independent Set (LBMIS), and then we select additional

nodes to connect the nodes in LBMIS, denoted by the Connected MIS (CMIS) problem.

Finally, we acquire a Load-Balanced Parent Node Assignment (LBPNA). After LBPNA is

decided, by assigning a direction of each link in the constructed tree structure, we obtain

an LBDAT. In this subsection, we formally define the LBMIS, CMIS, LBPNA, and LBDAT

construction problems sequentially.

Definition 7.3.2. Load-Balanced Maximal Independent Set (LBMIS) Problem. For a s-

tochastic WSN represented by graph G(V,E,P(E)), the LBMIS problem is to find a node

set M ⊆ V such that:

1. v0 ∈ M.

2. ∀u ∈ V and u /∈ M, ∃ v ∈ M, such that (u, v) ∈ E.

3. ∀u ∈ M, ∀v ∈ M, and u ̸= v, such that (u, v) /∈ E.

4. There exists no proper subset or superset of M satisfying the conditions 1, 2, and 3.

5. Maximize min{ρi | ∀vi ∈ M}1.

Taking the load-balance factor into consideration, we are seeking an MIS in which the

minimum potential load of the nodes in the constructed LBMIS is maximized. In other

words, the potential traffic load on each node in the LBMIS is as balance as possible. Now,

we are ready to define the CMIS problem.

Definition 7.3.3. Connected Maximal Independent Set (CMIS) Problem. For a probablistic

WSN represented by graph G(V,E,P(E)) and an LBMIS M, the CMIS problem is to find

a node set C ⊆ V\M such that:

1. The induced graph G[M
∪
C] on G is connected.

1MaxMin and MinMax can achieve the load-balance objective similarly according to [?]. In this chapter,
MinMax is also applicable.
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2. Minimize |C|, where|C| is the cardinality of set C.

For convenience, the nodes in set M are called independent nodes, whereas, the nodes

in set C are called LBMIS connectors. Moreover, the nodes in the set G\(M
∪
C) are called

leaf nodes. Furthermore, ∀vi ∈ M
∪

C, vi is also called a non-leaf node. Hence, the set of

non-leaf nodes are denoted by D = M
∪
C.

Constructing a load-balanced connected topology is just one part of the work to build

an LBDAT. In order to measure the actual traffic load, one more important task needed to

be resolved is how to do parent node assignment for leaf nodes in the network. Since the

actual traffic load of each node in a DAT is depended on the number of its children, which

are composed of leaf nodes and non-leaf nodes, we give the formal definition of the parent

node assignment for leaf nodes to non-leaf nodes as follows:

Definition 7.3.4. Parent Node Assignment for leaf nodes (AL). For a stochastic WSN

represented by graph G(V,E,P(E)) and a CMIS D = {v1, v2, · · · , vm}, we need to find m

disjoint sets on V, denoted by L(v1),L(v2), · · · ,L(vm), such that:

1. Each set L(vi) (1 ≤ i ≤ m) contains exactly one non-leaf node vi.

2.
∪m

i=1 L(vi) = V, and L(vi)
∩

L(vj) = ∅ (1 ≤ i ̸= j ≤ m).

3. ∀vu ∈ L(vi) (1 ≤ i ≤ m) and vu ̸= vi, such that (vu, vi) ∈ E.

4. Assign vi (1 ≤ i ≤ m) as the parent node of the nodes in L(vi)\{vi}.

A Parent Node Assignment for leaf nodes is: AL = {L(vi) | ∀vi ∈ D, 1 ≤ i ≤ m}.

Definition 7.3.5. Parent Node Assignment for non-leaf nodes (AI). For a stochastic WSN

represented by graph G(V,E,P(E)) and a CMIS D = {v1, v2, · · · , vm}, we need to find m

sets on D, denoted by I(v1), I(v2), · · · , I(vm), such that:

1. ∀vi ∈ M, the set I(vi) contains exactly one independent node vi.

2. ∀vj ∈ C, the set I(vj) contains exactly one LBMIS connector vj.
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3. ∀vi ∈ D, 1 ≤ |{I(vj) | vi ∈ I(vj), j = 1, 2, · · · ,m}| ≤ 2.

4.
∪m

i=1 I(vi) = D.

5. ∀vu ∈ I(vi) (1 ≤ i ≤ m) and vu ̸= vi, such that (vu, vi) ∈ E.

6. Assign vi (1 ≤ i ≤ m) as the parent node of the nodes in I(vi)\{vi}.

A Parent Node Assignment for non-leaf nodes is: AI = {I(vi) | ∀vi ∈ D, 1 ≤ i ≤ m}.

AL and AI together is called a Parent Node Assignment (PNA) A. According to the

above definitions, as to each set L(vi) in AL, vi is the parent node of the nodes in set

L(vi)\{vi}, whereas, the nodes in set L(vi)\{vi} are called the leaf children nodes of vi.

Similarly, as to each set I(vi) in AI , vi is the parent node of the nodes in set I(vi)\{vi},

whereas, the nodes in set I(vi)\{vi} are called the non-leaf children nodes of vi. As we have

already known, ρi is only the indicator of the potential traffic load on each non-leaf node.

The actual traffic load only can be determined when a PNA, i.e., A = {AL, AI}, is decided.

In other words, the number of leaf children and non-leaf children nodes (i.e., |L(vi)| − 1 and

I(vi) − 1) along with the corresponding ιij are the indicators of the actual traffic load on

each non-leaf node vi. According to this observation, we give the following definition:

Definition 7.3.6. Actual Load (αi). The actual load of a non-leaf node vi is: ∀vi ∈ D, αi =∑
vj∈{L(vi)

∪
I(vi) | i ̸=j}

⌈B
γi
⌉ 1
ιij
.

Load-Balance is our major concern, hence, when doing parent node assignment, we

still need taking it into consideration. The formal definition of Load-Balanced Parent Node

Assignment is as follows:

Definition 7.3.7. Load-Balanced Parent Node Assignment (LBPNA A∗). For a stochastic

WSN represented by graph G(V,E,P(E)) and a CMIS D = {v1, v2, · · · , vm}, the LBPNA

problem is to find a Parent Node Assignment A∗ for V, such that: min{αi | ∀vi ∈ D} is

maximized under A∗.
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After a A∗ is decided, every node in the network has a unique parent node. Hence, a

tree structure is established. The physical meaning of A∗ is the minimum actual load among

all the non-leaf nodes is maximized in the constructed DAT. Finally, we are dedicated to

construct a load-balanced DAT. The formal definition of an LBDAT is:

Definition 7.3.8. Load-Balanced Data Aggregation Tree (LBDAT T). For a stochastic

WSN represented by graph G(V,E,P(E)), a CMIS D = {v1, v2, · · · , vm}, and a A∗, LBDAT

T is such that:

1. T is rooted at v0.

2. For each link in A∗, assigning its direction from the children node to the parent node.

Since finding an MIS is a well-known NP-Complete problem [77] in graph theory, CMIS

is NP-Complete as well. Therefore CMIS cannot be solved in polynomial time unless P

= NP. Consequently, we propose an approximation algorithm by using linear relaxation

and random rounding technique to obtain an approximate solution. Additionally, the key

aspect to solve the LBDAT construction problem is to find an LBPNA A∗. We claim that

obtaining an LBPNA is NP-Hard by formulating it as an equivalent binary programming.

Consequently, we present a randomized approximation algorithm to find the approximate

solution to A∗. After specifying the direction of each link in A∗, we obtain an LBDAT T.

7.4 Connected Maximal Independent Set

In this section, we first introduce how to solve the Load-Balanced Maximal Independent

Set (LBMIS) Problem. We formulate the LBMIS problem as an Integer Nonlinear Program-

ming (INP). Subsequently, we show how to obtain an O(∆ ln(n)) approximation solution by

using Linear Programming (LP) relaxation techniques. Finally, we present how to find a

minimum-sized set of LBMIS connectors to form a CMIS D.
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7.4.1 INP Formulation of LBMIS

For convenience, we assign a decision variable ωi for each sensor vi ∈ V, which is allowed

to be 0/1 value. This variable sets to 1 if and only if the node is an independent node, i.e.,

∀vi ∈ M, ωi = 1. Otherwise, it sets to 0.

It is well known that in graph theory, an MIS is also a Dominating Set (DS). A DS is

defined as a subset of nodes in a WSN such that each node in the network is either in the

set or adjacent to some node in the set. Hence, we formally model the LBMIS problem as

an Integer Nonlinear Programming (INP) as follows:

Sink node constraint. All aggregated data are reported to the sink node, hence the

sink node is deliberately set to be an independent node, i.e., ω0 = 1.

DS property constraint. Since an MIS is also a DS, we should formulate the DS

constraint for the LBMIS problem first. The DS property states that each non independent

node must reside within the 1-hop neighborhood of at least one independent node. We

therefore have

ωi +
∑

vj∈N1(vi)

ωj ≥ 1,∀vi ∈ V. (7.1)

IS property constraint. Since the solution of the LBMIS problem is at least an

IS, the IS property is also a constraint of LBMIS. The IS property indicates that no two

independent nodes are adjacent, i.e., ∀vi, vj ∈ M, (vi, vj) /∈ E. In other words, we have

∑
vj∈N1(vi)

ωi · ωj = 0,∀vi ∈ V. (7.2)

Consequently, the objective of the LBMIS problem is to maximize the minimum poten-

tial load (ρi) of all the independent nodes (∀vi ∈ M). We denote ν as the objective of the

LBMIS problem, i.e., ν = min
vi∈M

(ρi). Mathematically, the LBMIS problem can be formulated
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as an integer nonlinear programming INPLBMIS as follows:

max ν = min{ρi | ∀vi ∈ M}

s.t. ω0 = 1;

ωi +
∑

vj∈N1(vi)

ωj ≥ 1;∑
vj∈N1(vi)

ωi · ωj = 0;

ωi, ωj ∈ {0, 1}, ∀vi, vj ∈ V.

(INPLBMIS)

Since the IS property constraint (formulated in Equation (7.2)) is quadratic, the formu-

lated integer programming INPLBMIS is not linear. To linearize INPLBMIS, the quadratic

constraint is eliminated by applying the techniques proposed in [78]. More specifically, the

product ωi · ωj is replaced by a new binary variable ϖij, on which several additional con-

straints are imposed. As a consequence, we can reformulate INPLBMIS exactly to an Integer

Linear Programming ILPLBMIS by introducing the following linear constraints:

∑
vj∈N1(vi)

ϖij = 0

ωi ≥ ϖij;ωj ≥ ϖij

ωi + ωj − 1 ≤ ϖij;ϖij ∈ {0, 1}, ∀vi, vj ∈ V.

(7.3)

According to Definition 7.3.1, we obtain that the potential load of an independent

node vi is ρi =
∑

j:ωiιij>0

⌈B
γi
⌉ 1
ιij
. Moreover, by relaxing the conditions ωj ∈ {0, 1} and ϖij ∈

{0, 1} to ωj ∈ [0, 1] and ϖij ∈ [0, 1], correspondingly, we obtain the following relaxed linear
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programming LP ∗
LBMIS:

max ν = min{ ρi =
∑

j:ωiιij>0

⌈B
γi
⌉ 1
ιij
| ∀vi ∈ Vs}

s.t. ω0 = 1;

ωi +
∑

vj∈N1(vi)

ωj ≥ 1;∑
vj∈N1(vi)

ϖij = 0;

ωi ≥ ϖij; ωj ≥ ϖij;

ωi + ωj − 1 ≤ ϖij;

ωi, ωj, ϖij ∈ [0, 1], ∀vi, vj ∈ Vs.

(LP ∗
LBMIS)

7.4.2 Approximation Algorithm

Due to the relaxation enlarged the optimization space, the solution of LP ∗
LBMIS cor-

responds to an upper bound to the objective of INPLBMIS. Given an instance of LBMIS

modeled by the integer nonlinear programming INPLBMIS, we propose an approximation

algorithm as shown in Algorithm 8 to search for an LBMIS.

The sketch of Algorithm 8 is summarized as follows: first, solve the relaxed linear

programming LP ∗
LBMIS to get an optimal fractional solution, denoted by (ω∗, ν∗), where

ω∗ =< ω∗
1, ω

∗
2, · · · , ω∗

n >, and then round ω∗
i to integer ω̂i according to the following six

steps:

1. Sort sensor nodes by the ω∗
i value (where 1 ≤ i ≤ n) in the decreasing order (line 2).

2. Set the sink node to be the independent node, i.e., ω̂0 = 1 (line 3).

3. Set all ω̂i to be 0 (line 4 - 6).

4. Start from the first node in the sorted node array A (line 9). If there is no node been

selected as an independent node in vi’s 1-hop neighborhood (line 12), then let ω̂i = 1

with probability pi = max(ω∗
i ,

1
di
) (line 13).

5. Repeat step 4 till reach the end of array A (line 10 - 16).



123

Algorithm 8 : Approximation Algorithm for LBMIS

Require: A stochastic WSN represented by graph G = (V,E,P(E)).
1: Solve LP ∗

LBMIS. Let (ω∗, ν∗) be the optimum solution, where ω∗ =< ω∗
1, ω

∗
2, · · · , ω∗

n >,
ν∗ = min{

∑
j:ω∗

i ιij>0

⌈B
γi
⌉ 1
ιij

| ∀vi ∈ V}.

2: Sort all the sensor nodes by the ω∗
i value in the decreasing order. The sorted node ID i

is stored in the array denoted by A[n].
3: ω̂0 = 1.
4: for i = 1 to n do
5: ω̂i = 0.
6: end for
7: counter = 0.
8: while counter ≤ τ , where τ = 3(∆ + 1) ln(n) do
9: k = 0.
10: while k < n do
11: i = A[k].
12: if ∀vj ∈ N1(vi), ω̂j = 0, then
13: ω̂i = 1 with probability pi = max(ω∗

i ,
1
di
).

14: end if
15: k = k + 1.
16: end while
17: counter = counter + 1.
18: end while
19: return (ω̂, ν̂ = min{

∑
j:ω̂iιij>0

⌈B
γi
⌉ 1
ιij

| ∀vi ∈ V}).

6. Repeat step 4 and 5 for 3(∆ + 1) ln(n) times (line 8 - 18).

Next the correctness of our proposed approximation algorithm (Algorithm 8) is proven,

followed by the performance ratio analysis. Before showing the correctness of Algorithm 8,

two important lemmas are given as follows.

Lemma 4. For a stochastic WSN represented by G = (V,E,P(E)), if a subset S ⊆ V is a

DS and meanwhile S is also an IS, then this subset S is an MIS of G.

Proof. If S ⊆ V is a DS of G, it implies that ∀vi ∈ V\S, there exists at least one node vj ∈ S

in vi’s 1-hop neighborhood. Moreover, if S is also an IS, it implies that no two nodes in S

are adjacent, i.e., ∀vs, vt ∈ S, (vs, vt) /∈ E.

Suppose S is not an MIS. In other words, we can find at least one more node, that does

not violate the DS property and the IS property of S, to be added into S. Suppose vi is
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such a node. Based on the DS property, we know that ∃vj ∈ S and vj ∈ N1(vi). According

to the hypothesis, vi ∈ S, and considering the fact that vj ∈ N1(vi), we conclude there are

two nodes (vi and vj) are adjacent in S (i.e., (vi, vj) ∈ E), which is contradicted to the IS

property. Hence, the hypothesis is false and Lemma 4 is true. �

Lemma 5. The set M = {vi | ω̂i = 1, 0 ≤ i ≤ n}, where ω̂i is derived from Algorithm 8, is

a DS almost surely.

Proof. Suppose ∀vi ∈ V, |N1(vi)| = ki, where |N1(vi)| is the cardinality of the set N1(vi). Let

the random variable Wi denote the event that no node in the set N1(vi)
∪

{vi} is selected as

an independent node. Additionally, we denote W = max{ 1
∆
,max{ω∗

j | vj ∈ N1(vi)
∪

{vi}}},

i.e., W is the maximum {ω∗
j ,

1
∆
} value, for vj ∈ N1(vi)

∪
{vi}. For the probability of Wi

happening, we have

P (Wi) = [(1− ω1)(1− ω2) · · · (1− ωki)(1− ωi)]
τ (7.4)

≤ (1− W )τ ≤ (1− 1

∆ + 1
)τ ≤ (e−

1
∆+1 )τ (7.5)

≤ e−
3(∆+1) ln(n)

∆+1 = e−3 ln(n) =
1

n3
. (7.6)

Thus, according to the Borel-Cantelli Lemma, P (Wi) ∼ 0, it implies there exists one inde-

pendent node in the set N1(vi)
∪

{vi} almost surely, i.e., it is almost surely that the set

M = {vi | ω̂i = 1, 0 ≤ i ≤ n} derived from Algorithm 8 is a DS. Then, it is reasonable that

we consider M is a DS of G in the following2. �

Theorem 8. The set M = {vi|ω̂i = 1, 0 ≤ i ≤ n}, where ω̂i is derived from Algorithm 8, is

an MIS.

Proof. According to line 11- 13 of Algorithm 8, no two nodes can both be set as independent

nodes in the 1-hop neighborhood. This guarantees the IS property of M, i.e., ∀vi, vj ∈

M, (vi, vj) /∈ E. Moreover, M is a DS as proven in Lemma 5. Hence, based on Lemma 4, we

conclude that M is an MIS. �

2It is almost impossible that M is not a DS of G. If not, we repeat the entire rounding process.
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From Theorem 8, we know that the solution of Algorithm 8 is an MIS. Subsequently,

we analyze the approximation factor of Algorithm 8 in Theorem 9.

Theorem 9. Let optLBMIS denote the optimal solution of the LBMIS problem. The pro-

posed algorithm yields a solution of O(∆ ln(n))optLBMIS.

Proof. The expected ρi of the independent node vi found by Algorithm 8 is as follows:

E[
∑

j:ω̂iιij>0

⌈B
γi
⌉ 1

ιij
] ≥ E[

∑
j:ω̂iιij>0

⌈B
γi
⌉]. (7.7)

Inequality (7.7) holds because 0 ≤ ιij ≤ 1. From the above formula, we know the

expected ρi of the independent node vi mainly depends on the number of the neighboring

nodes of vi. Hence, we obtain:

E[
∑

j:ω̂iιij>0

⌈B
γi
⌉ 1

ιij
] ≥ E[⌈B

γi
⌉

∑
vj∈N1(vi)

ω̂iιij] (7.8)

≥ ⌈B
γi
⌉

∑
vj∈N1(vi)

E[ω̂i]E[ιij] (7.9)

≥ ⌈B
γi
⌉

∑
vj∈N1(vi)

(ω∗
i )E[ιij] ≥ ⌈B

γi
⌉ν∗ ≥ ⌈B

R
⌉ν∗. (7.10)

Since 0 ≤ ιij ≤ 1, we get Inequality (7.8). Inequality (7.9) holds because ω̂i and ιij are

independent. The first inequality of (7.10) holds because the procedure, setting ω̂i = 1 with

probability pi, is repeated τ times. This implies E(ω̂i) ≥ ω∗
i . The second Inequality of (7.10)

follows from the fact that
∑

vj∈N1(vi)

ω∗
iE[ιij] ≥ ν∗.

Applying the Chernoff bound, we obtain the following bound:

Pr[
∑

j:ω̂iιij>0

⌈B
γi
⌉ 1

ιij
≤ (1− σ)τ⌈B

R
⌉ν∗] ≤ (

e−σ

(1− σ)1−σ
)τ⌈

B
R ⌉ν∗ .
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for arbitrary 0 < σ < 1. To simplify this bound, let σ = 1
∆+1

, we get

Pr[
∑

j:ω̂iιij>0

⌈B
γi
⌉ 1

ιij
≤ (1− σ)τ⌈B

R
⌉ν∗] (7.11)

≤ (e−σ(1− σ)σ−1)τ⌈
B
R ⌉ν∗ (7.12)

= e−στν∗(1− σ)(σ−1)τ⌈B
R ⌉ν∗ (7.13)

≃ e−στν∗ ≤ e−
1

∆+1
3(∆+1) ln(n) = e−3 ln(n) =

1

n3
. (7.14)

The first approximate equal of (7.14) holds since when ∆ → ∞ (i.e., n → ∞), σ =

1
∆+1

→ 0. It implies 1 − σ = 1. The second Inequality of (7.14) holds because ν∗ =

min{
∑

j:ω∗
i ιij>0

⌈B
γi
⌉ 1
ιij

| ∀vi ∈ V} > 1. Applying the union bound, we get the probability that

some independent node has the potential load ν̂ less than (1− σ)τν∗,

Pr[ν̂ ≤ (1− σ)τν∗] ≤ n
1

n3
=

1

n2
. (7.15)

Again, since
∑
n>0

1
n2 is a particular case of the Riemann Zeta function, then

∑
n>0

1
n2 is

bounded, i.e.,
∑
n>0

1
n2 < ∞ by the result of the Basel problem. Thus, according to the

Borel-Cantelli Lemma, P [ν̂ ≤ (1− σ)τν∗] ∼ 0.

According to the probability of Inequality (7.6) and (7.15), we get

Pr[a node is selected to be an independent node

in 1-hop neighborhood
∩

ν̂ ≥ (1− σ)τν∗]

= 1 · (1− 1
n2 ) ∼ 1, when n ∼ ∞,

(7.16)

where σ = 1
∆+1

, and τ = 3(∆ + 1) ln(n).

Based on Inequality (7.16), the minimum potential load on all the independent nodes

produced by Algorithm 8 is upper bounded by (1 − σ)τν∗ with probability 1, where ν∗ is

the solution of LP ∗
LBMIS, and τ = 3(∆ + 1) ln(n). Hence, Theorem 9 is proven. �
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Figure 7.3. Illustration of a CMIS construction process.

7.4.3 Connecting LBMIS

To solve the CMIS problem, one more step is needed after constructing an LBMIS,

which is making the LBMIS connected. Next, we introduce how to find a minimum-sized

set of LBMIS connectors to connect the constructed LBMIS.

We first divide the LBMIS M into disjoint node sets according to the following criterion:

M0 = {v0} and Ml = {vi | vi ∈ M, ∃vj ∈ Ml−1, vi ∈ N2(vj), vi /∈
l−1∪
k=0

Mk}. The sink node

is put into M0. Clearly, |M0| = 1. All the independent nodes in the 2-Hop Neighborhood

of the nodes in Ml−1 are put into Ml. Hence, l is called the level of an independent node.

Ml represents the set of independent nodes of level l in G with respect to the node in M0.

Additionally, suppose the maximum level of an independent node is L. For each 0 ≤ i ≤ L−1,

let Si be the set of the nodes adjacent to at least one node in Mi and at least one node in

Mi+1. Subsequently, compute a minimum-sized set of nodes Ci ⊆ Si cover the nodes in set

Mi+1. Let C =
L−1∪
i=0

Ci and therefore D = M
∪

C is a CMIS of the original graph G.

We use the WSN shown in Fig.7.3 (a) as an example to explain the construction process

of a CMIS. In Fig.7.3 (a), each circle represents a sensor node. As we mentioned early, the

construction process consists of two phases. In the first phase, it solves the LBMIS problem

by Algorithm 8 to obtain M which is shown in Fig.7.3 (b) by black circles. The number

besides each independent node is the level of that node with respect to the sink node v0. In

the second phase, we choose the appropriate LBMIS connectors (C), shown by gray nodes

in Fig.7.3 (c), to connect all the nodes in M to form a CMIS (D).
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Next, we analyze the number of non-leaf nodes |D| produced by our proposed algorithms.

The Lemma below presents some additional properties of the constructed CMIS [44]:

Lemma 6. The following statements are true.

1. For each 0 ≤ i < L, each LBMIS connector in Ci is adjacent to at most 4 independent

nodes in Mi+1.

2. For each 1 ≤ i < L− 1, each independent node in Mi is adjacent to at most 11 LBMIS

connector in Ci.

3. |C0| ≤ 12.

Based on Lemma 6, we have the following theorem.

Theorem 10. The number of non-leaf nodes satisfies |M|+ ⌈M
4
⌉ ≤ |D| ≤ 2|M|.

Proof. According to the above proposed algorithm, each LBMIS connector connects the

independent nodes in Mi and Mi+1. Hence, |C| = |
L−1∪
i=0

Ci| ≤
L−1∑
i=0

max{|Mi|, |Mi+1|} ≤ |M|.

Moreover, according to Lemma 6, |C| ≥ ⌈M
4
⌉. Finally, we get |M|+ ⌈M

4
⌉ ≤ |M

∪
C| = |D| ≤

|M|+ |C| ≤ 2|M|. �

7.5 Load-Balanced Data Aggregation Tree

A tree structure is decided after the Load-Balanced Parent Node Assignment (LBPNA)

A∗ is produced. By assigning a direction of each link in the constructed tree from the

children node to the parent node, we obtain an LBDAT. Hence, in this section, we first

formulate the LBPNA problem as an Integer Linear Programming (ILP). Then, we present an

approximation algorithm by applying the linear relaxation and random rounding technique.

Finally, we use an example to illustrate how to build an LBDAT.

7.5.1 ILP Formulation of Load-Balanced Parent Node Assignment

Finding an LBPNA can be modeled by a binary problem with a linear objective func-

tions, which is a known NP-Hard problem. Hence, according to Definition 7.3.8, the LBDAT
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construction problem is a NP-Hard problem. In this subsection, we first model LBPNA as

an ILP.

We define a binary variable βi to indicate whether the sensor vi is a non-leaf node or not.

βi sets to be 1 iff the sensor vi is a non-leaf node. Otherwise, βi sets to be 0. Additionally,

we assign a random variable ξij for each link connecting a non-leaf node vi and a leaf node vj

on the graph G modeled from a stochastic WSN, i.e., ξij = 1, if non-leaf node vi is assigned

to be the parent of leaf node vj; or ξij = 0, otherwise.

Consequently, LBPNA can be formulated as an Integer Linear Programming ILPLBPNA

as follows:

max ϑ = min{αi =
∑

vj∈{L(vi)
∪

I(vi) | i̸=j}
⌈B
γi
⌉ 1
ιij

| ∀vi ∈ D}

s.t.
∑

vi∈N1(vj)

βiξij = 1, ∀vj /∈ D

ξij ∈ {0, 1}.

(ILPLBPNA)

The objective function ϑ is the minimum actual load (αi) among all the non-leaf nodes.

The first constraint states that each leaf node can be allocated to only one non-leaf node,

whereas the second constraint indicates that ξij is a binary variable. According to Definition

7.3.6, the number of leaf children nodes and the number of non-leaf children nodes are both

contributed to the actual load of a non-leaf node. The leaf children nodes of parent node vi

can be represented by vj : βiξij > 0. Moreover, as stated in Lemma 6, the number of non-

leaf children nodes of a independent parent node ∀vi ∈ M is no more than 12, whereas, the

number of non-leaf children nodes of an LBMIS connector parent node ∀vi ∈ C is no more

than 4. For simplicity, we consider the total actual load of leaf children nodes is approximated

to 12⌈B
R⌉, (i.e.,

∑
vj∈{I(vi) | i ̸=j}

⌈B
γi
⌉ 1
ιij

≃ 12⌈B
R⌉)

3. Therefore, by relaxing variable ξij ∈ {0, 1} to

ξij ∈ [0, 1], we get the relaxed formulation which falls into a standard Linear Programming

3It loses only a constant factor.
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(LP) problem, denoted by LP ∗
LBPNA as follows:

max ϑ = min{αi =
∑

j:βiξij>0

⌈B
γi
⌉ 1
ιij

+ 12⌈B
R⌉ | ∀vi ∈ D}}

s.t.
∑

vi∈N1(vj)

βiξij = 1, ∀vj /∈ D

ξij ∈ [0, 1].

(LP ∗
LBPNA)

Due to the relaxation enlarged the optimization space, the solution of LP ∗
LBPNA corre-

sponds to a upper bound of the objective of ILPLBPNA.

Algorithm 9 : Approximation Algorithm for LBPNA

Require: A stochastic WSN represented by graph G = (V,E,P(E)), a CMIS D.
1: Solve LP ∗

LBPNA. Let (ξ
∗, ϑ∗) be the optimum solution.

2: ξ̂ij = 0, k = 0.
3: while k ≤ κ, where κ = 3∆ log(n) do

4: ξ̂ij = 1 with probability ξ∗ij
5: k = k + 1
6: end while
7: if ((vi, vj) ∈ E) and (vi ∈ D or vj ∈ D) then
8: ξ̂ij = 1 with probability 1

δ
.

9: end if
10: repeat
11: line 3 - 6
12: until

∑
vi∈N1(vj)

βiξ̂ij = 1

13: return (̂ξ, ϑ̂ = min(
∑

j:βiξ̂ij>0

⌈B
γi
⌉ 1
ιij

+ 12⌈B
R⌉)).

7.5.2 Randomized Approximation Algorithm

Given an instance of LBPNAmodeled by the integer linear programming ILPLBPNA, the

sketch of the randomized approximation algorithm is shown in Algorithm 9. We summarize

Algorithm 9 as follows: first, solve the relaxed linear programming LP ∗
LBPNA to get an opti-

mal fractional solution, denoted by (ξ∗, ϑ∗), where ξ∗ =< ξ∗11, · · · , ξ∗1n, ξ∗21, · · · , ξ∗2n, · · · , ξ∗m1, · · ·

, ξ∗mn >, and then round ξ∗ij to integers ξ̂ij by a random rounding procedure, which consists
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of four steps:

1. Set all ξ̂ij to be 0 (line 2).

2. Let ξ̂ij = 1 with probability ξ∗ij and execute this step for κ times (line 3 - 6), where

κ = 3∆ log(n).

3. Let ξ̂ij = 1 with probability 1
δ
(line 7).

4. To ensure (ξ̂ij, ŷ) is a feasible solution to ILPLBPNA, repeat steps 2 and 3 until every

leaf node is assigned a non-leaf node.

Subsequently, we analyze the approximation factor of Algorithm 9 in Theorem 11.

Theorem 11. Let optLBPNA denote the optimal solution of LBPNA. Algorithm 9 yields an

optimal fractional solution of O(∆ log(n))(optLBPNA + ⌈B
R⌉) with probability 1.

Proof. Considering any non-leaf node vi and leaf node vj, the expected actual load of vi is

as follows:

E[
∑

j:βiξ̂ij>0

⌈B
γi
⌉ 1
ιij

+ 12⌈B
R⌉] ≥ E[

∑
j:βiξ̂ij>0

⌈B
γi
⌉] + 12⌈B

R⌉. (7.17)

Inequality (7.17) holds because 0 ≤ ιij ≤ 1. From the above formula, we know the

expected αi of the non-leaf node vi mainly depends on the number of the children nodes of

vi. Hence, we have:
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E[
∑

j:βiξ̂ij>0

⌈B
γi
⌉ 1

ιij
+ 12⌈B

R
⌉] (7.18)

≥ ⌈B
γi
⌉E[

∑
vj∈N1(vi)

βiξ̂ij] + 12⌈B
R
⌉ (7.19)

= ⌈B
γi
⌉

∑
vj∈N1(vi)

βiE[ξ̂ij] + 12⌈B
R
⌉ (7.20)

≥ ⌈B
γi
⌉

∑
vj∈N1(vi)

βi(ξ
∗
ij +

1

δ
) + 12⌈B

R
⌉ (7.21)

= ⌈B
γi
⌉

∑
vj∈N1(vi)

βiξ
∗
ij + ⌈B

γi
⌉1
δ

∑
vj∈N1(vi)

βi + 12⌈B
R
⌉ (7.22)

≥ ϑ∗ + ⌈B
γi
⌉δ
δ
≥ ϑ∗ + ⌈B

R
⌉ (7.23)

= ϑ∗ + φ, where φ = ⌈B
R
⌉. (7.24)

Since 0 ≤ ιij ≤ 1, we obtain the Inequality (7.18). Equation (7.20) holds because βi and

ξ̂ij are independent. Inequality (7.21) holds since the random rounding technique used in

Algorithm 9. More specifically, the procedure, a non-leaf node vi is assigned to be the parent

node of a leaf node vj (i.e., ξ̂ij = 1) with probability ξ∗ij, is repeated κ times. Moreover,

the same procedure is run one more time with probability 1
δ
. This implies E[ξ̂ij] ≥ ξ∗ij +

1
δ
.

Inequality (7.23) holds because there is at least δ leaf nodes in a non-leaf node’s 1-Hop

Neighborhood.

Applying the Chernoff bound, we obtain the following bound:

Pr[
∑

j:βiξ̂ij>0

⌈B
γi
⌉ 1

ιij
+ 12⌈B

R
⌉ ≤ (1− λ)κ(ϑ∗ + φ)] ≤ (

e−λ

(1− λ)1−λ
)κ(ϑ

∗+φ)
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for arbitrary 0 < λ < 1. To simplify this bound, suppose λ = 1
∆
, then

Pr[
∑

j:βiξ̂ij>0

⌈B
γi
⌉ 1

ιij
+ 12⌈B

R
⌉ ≤ (1− λ)κ(ϑ∗ + φ)] (7.25)

≤ [e−λ(1− λ)λ−1]κ(ϑ
∗+φ) (7.26)

≤ e−λκ(ϑ∗+φ)(1− λ)(λ−1)κ(ϑ∗+φ) (7.27)

≤ e−λκ(ϑ∗+φ). (7.28)

Since ϑ∗ = min{
∑

j:βiξ∗ij>0

⌈B
γi
⌉ 1
ιij

+ 12⌈B
R⌉ | ∀vi ∈ D} ≥ 1, we have

Pr[
∑

j:βiξ̂ij>0

⌈B
γi
⌉ 1

ιij
+ 12⌈B

R
⌉ ≤ (1− λ)κ(ϑ∗ + φ)] ≤ e−λκ(ϑ∗+φ) (7.29)

≤ e−λκ = e−
3∆ log(n)

∆ (7.30)

≤ 1

e3 ln(n)
≤ 1

n3
. (7.31)

Summing over all non-leaf nodes vi ∈ D, we obtain the probability that some non-leaf

node has the actual load less than (1− λ)κ(ϑ∗ + φ) as follows:

Pr[ϑ̂ ≤ (1− λ)κ(ϑ∗ + φ)] = n
1

n3
=

1

n2
. (7.32)

Subsequently, we consider the probability that a leaf node vj ∈ V\D is not assigned a

parent non-leaf node in its 1-hop neighborhood at iteration j. That is,

∏
vi∈N1(vj), vi∈D

Pr[βiξ̂ij = 0 at iteration j] (7.33)

=
∏

vi∈N1(vj), vi∈D

(1− βiξ
∗
ij) (7.34)

≤
∏

vi∈N1(vj), vi∈D

e−βiξ
∗
ij (7.35)

= e
−

∑
vi∈N1(vj), vi∈D

βiξ
∗
ij

=
1

e
. (7.36)
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Inequality (7.35) results from the inequality (1 − x) ≤ e−x, ∀x ∈ [0, 1]. Equation

(7.36) follows the fact that each leaf node can be allocated to only one non-leaf node, i.e.,∑
vi∈N1(vj)

βiξ
∗
ij = 1, ∀vj /∈ D, ∀vi ∈ D. Now, the probability that a leaf node is not assigned

a parent non-leaf node in its 1-hop neighborhood after the random rounding is e−κ, which

implies Pr[a leaf node has no neighboring non-leaf node] ≤ ne−κ = n 1
n3 = 1

n2 . Then,

considering Inequality (7.32), we have Pr[each leaf node is assigned to a parent non-leaf

node
∩
ŷ ≥ (1 − λ)κ(ϑ∗ + φ)] ≥ (1 − 1

n2 )(1 − 1
n2 ) ∼ 1, when n ∼ ∞, for λ = 1

∆
, and

κ = 3∆ log(n). �

From theorem 11, the solution of our proposed random approximation Algorithm 9

yields an solution upper bounded by O(∆)(optLBPNA + ⌈B
R⌉). Moreover, this bound can be

verified in polynomial time.

After A∗ is decided, a tree can be obtained by assigning each link a direction from the

children to the parent.

7.6 Performance Evaluation

Since there are no existing works studying the LBDAT construction problem for s-

tochastic WSNs currently, in the simulations, the results of LBDAT are compared with the

recently published DS-based data aggregation algorithm [44] denoted by DAT. We compare

both algorithms in terms of the number of non-leaf nodes, and network lifetime, which is

defined as the time duration until the first non-leaf node runs out of energy.

We build our own simulator where all the nodes have the same transmission range and

all the nodes are deployed uniformly and randomly in a square area. For each specific setting,

100 instances are generated. The results are averaged over these 100 instances (all results

are rounded to integers). Moreover, a random value between [0.5, 0.98] is assigned to the

Transmission Success Ratio (ιij) value associated to a pair of nodes (vi and vj) inside the

transmission range. Otherwise, a random value between (0, 0.5] is assigned to ιij associated

to a pair of nodes beyond the transmission range. Furthermore, every sensor node produces
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Figure 7.4. Simulation results: (a) The number of non-leaf node; (b) Network Lifetime.

a packet with size one (i.e., B = 1) during each report time interval. The data receiving

rate γi of each node vi is randomly generated from the value between (0, 10]. The energy

consumption model is that every node has the same initial 1000 units of energy. Receiving

and transmitting a packet both consume 1 unit of energy. Additionally, all nodes have the

same transmission range of 20m and 100 nodes are deployed uniformly and randomly in a

square area. The side length of the square area is incremented from 100 to 150 by 10. The

simulation results are presented in Fig.7.4.

From Fig.7.4 (a), we can see that, with the increase of the area of the network deployed

region, the number of non-leaf nodes increases for both algorithms (DAT, and LBDAT). This

is because the stochastic WSN becomes thinner, more non-leaf nodes are needed to maintain

the connectivity of the constructed CMIS. There is no obvious trend that which algorithm

might produce more non-leaf nodes when constructing a DAT.

From Fig.7.4 (b), we know that the network lifetime increases for both algorithms with

the side length of the deployed area increasing. It is obvious that the density of the network

becomes more thinner with the side length of the deployed area increasing. As to data

aggregation, the thinner the network is, the less number of neighbors of each non-leaf node.

In other words, the aggregated data are less on each non-leaf node when the network becomes
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thinner. Hence, network lifetime is increasing for both algorithms. Additionally, LBDAT

prolongs network lifetime by 32% on average compared with DAT. The results demonstrate

that load-balanced parent node assignments can improve network lifetime significantly.

7.7 Summary

In this chapter, we address fundamental problems of constructing a load-balanced DAT

in stochastic WSNs. We first solve the CMIS problem, which is NP-Complete, with two

phases. In the first phase, we aim to find the optimal MIS such that the minimum potential

load of all the independent nodes is maximized. To this end, a near optimal approximation

algorithm is proposed, which yields an O(∆ ln(n)) approximation factor. In the second phase,

the minimum-sized set of LBMIS connectors are found to make the LBMIS connected. The

theoretical lower and upper bounds of the number of non-leaf nodes are analyzed as well.

Subsequently, we study the LBDAT construction problem which is to find a load-balanced

Parent Node Assignment (LBPNA) with an objective to maximize the minimum actual load

of all the non-leaf nodes. Since this problem is NP-hard, we propose an approximation

algorithm by using linear relaxing and random rounding techniques, which yields a solution

of O(∆ log(n)) approximation factor of actual traffic load on each non-leaf node. After

LBPNA is decided, by assigning a direction to each link, we obtain an LBDAT. Simulations

show that the proposed algorithms can extend network lifetime significantly.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusions

In this dissertation, we first briefly introduce the background knowledge of WSNs and

the topology control techniques in WSNs. Since sensor nodes are tightly constrained in terms

of energy, processing, and storage capacities, restricting topology in WSNs is very challeng-

ing due to these inherent characteristics that distinguish WSNs from other wireless networks.

Due to such difference, many new algorithms have been proposed for controlling topology

in WSNs. Connected Dominating Set (CDS) based topology control which is one kind of

hierarchical methods has received more attention to reduce redundant and unnecessary com-

munication overhead. Having such a CDS reduces network topology by restricting the main

communication tasks to the dominators only. Then, we summarize the CDS constructing

algorithms in Chapter 2.

Unfortunately, to the best of our knowledge, all the related work did not consider the

load-balance factor when they construct a CDS. In chapter 3, we propose a new concept the

Load-Balanced CDS (LBCDS) and a new problem the Load-Balanced Allocate Dominatee

(LBAD) problem. Consequently, a greedy-based approximation algorithm is proposed to

construct an LBCDS in a WSN. Moreover, we propose an optimal centralized algorithm

and an efficient probability-based distributed algorithm to solve the LBAD problem. If

there is a given CDS constructed by any method, the upper bound and lower bound of the

performance ratio of the distributed algorithm are analyzed in the dissertation. Through

extensive simulations, we demonstrate that our proposed methods extend network lifetime

by 80% compared with the best and latest CDS construction algorithm.

In chapter 4, we investigate constructing an LBCDS and load-balancedly allocating

dominatees to dominators simultaneously. A Genetic Algorithm (GA) based strategy called
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LBCDS-GA is proposed to construct an LBCDS in a WSN. As a matter of fact, constructing

a CDS as a virtual backbone in a WSN is an efficient way to extend network lifetime through

reducing the number of the nodes involved in communication, while building an LBCDS and

load-balancedly allocating dominatees to dominators can further prolong network lifetime

through balancing the workloads of all the dominators. We also demonstrate by simulation

that our proposed method extend network lifetime by 65% on average compared with the

best and latest MCDS construction algorithm. On the other hand, in the current relat-

ed literature, network are deterministic where two nodes are assumed either connected or

disconnected. In most real applications, however, there are many intermittently connected

wireless links called lossy links, which only provide probabilistic connectivity. For WSNs

with lossy links, we propose a Stochastic Network Model (SNM). Under this model, we mea-

sure the quality of CDSs using CDS reliability defined as the minimum upper limit of the

node-to-node delivery ratio between any pair of dominators in a CDS.

In chapter 5, we attempt to construct a MCDS while its reliability is above a preset

application-specified threshold, called Reliable MCDS (RMCDS). We claim that constructing

a RMCDS is NP-Hard under the SNM model. We propose a novel Genetic Algorithm (GA)

with immigrants schemes called RMCDS-GA to solve the RMCDS problem. To evaluate the

performance of RMCDS-GA, we conduct comprehensive simulations. The simulation results

show that compared with the traditional MCDS algorithms, RMCDS-GA can construct a

more reliable CDS without increasing the size of a CDS.

In chapter 6, we perform comprehensive performance ratio analysis of the Load-Balanced

Virtual Backbone (LBVB) construction algorithms. To be specific, the MinMax Degree Max-

imal Independent Set (MDMIS) problem, the Load-Balanced Virtual Backbone (LBVB)

problem, and the MinMax Valid-Degree non Backbone node Allocation (MVBA) problem

are investigated and analyzed. We claim that MDMIS and LBVB are NP-Complete problems

and MVBA is an NP-Hard problem. Approximation algorithms and comprehensive theo-

retical analysis of the approximation factors are presented in the chapter. Moreover, our

theoretical analysis and simulation results show that the proposed algorithms outperform
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the existing state-of-the-art approaches.

In chapter 7, we apply the constructed LBCDS to a practical application under the

realistic SNM model, namely data gathering. Data Gathering is a fundamental task in

WSNs. For applications where each sensor continuously monitors the environment and

periodically reports to the sink, a tree-based topology is often used to gather and aggregate

sensing data from sensor nodes. Thus, data gathering trees with aggregation are also referred

to as Data Aggregation Trees (DATs). To be specific, a new problem, Load-Balanced Data

Aggregation Tree (LBDAT), is introduced finally. Our simulation results show that the

proposed algorithms outperform the existing state-of-the-art approaches significantly.

8.2 Future Works

There are several directions for our next step works.

• Consider mobility when constructing an LBVB.

• Design distributed algorithms for LBVB construction.

• Consider different packages arriving on each node, which is more realistic than our

current single package assumption, when constructing an LBVB.

• Consider Linear Fractional Programming to get a tighter performance ratio.

• Consider not only network lifetime, but also time delay, and other performances simul-

taneously.
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