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ABSTRACT 

The automatic prediction of protein three dimensional structures from its amino acid sequence 

has become one of the most important and researched fields in bioinformatics. As models are not experi-

mental structures determined with known accuracy but rather with prediction it’s vital to determine esti-

mates of models quality.  We attempt to solve this problem using machine learning techniques and infor-

mation from both the sequence and structure of the protein. The goal is to generate a machine that under-

stands structures from PDB and when given a new model, predicts whether it belongs to the same class as 

the PDB structures (correct or incorrect protein models). Different subsets of PDB (protein data bank) are 

considered for evaluating the prediction potential of the machine learning methods. Here we show two 

such machines, one using SVM (support vector machines) and another using fuzzy decision trees (FDT).  

First using a preliminary encoding style SVM could get around 70% in protein model quality assessment 

accuracy, and improved Fuzzy Decision Tree (IFDT) could reach above 80% accuracy. For the purpose 



of reducing computational overhead multiprocessor environment and basic feature selection method is 

used in machine learning algorithm using SVM. 

Next an enhanced scheme is introduced using new encoding style.  In the new style, information 

like amino acid substitution matrix, polarity, secondary structure information and relative distance be-

tween alpha carbon atoms etc is collected through spatial traversing of the 3D structure to form training 

vectors. This guarantees that the properties of alpha carbon atoms that are close together in 3D space and 

thus interacting are used in vector formation. With the use of fuzzy decision tree, we obtained a training 

accuracy around 90%. There is significant improvement compared to previous encoding technique in pre-

diction accuracy and execution time. This outcome motivates to continue to explore effective machine 

learning algorithms for accurate protein model quality assessment.   

Finally these machines are tested using CASP8 and CASP9 templates and compared with other 

CASP competitors, with promising results. We further discuss the importance of model quality assess-

ment and other information from proteins that could be considered for the same. 

 

 

INDEX WORDS:  Protein 3D Structures, Protein model assessment, Feature selection, Support 

vector machines, Decision tree, Fuzzy ID3 and Machine learning. 
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CHAPTER 1. INTRODUCTION 

Proteins are large polypeptides constructed from same set of twenty different amino ac-

ids. The primary structure is the specific sequence of amino acids specified by the genes. This 

linear string folds into an intricate three-dimensional structure that is unique to each protein. It is 

this three-dimensional structure that allows proteins to function. Thus in order to understand the 

details of protein function at a molecular level, one must understand protein structure and hence 

it is necessary to determine the three-dimensional structure. In structure biology protein struc-

tures are often determines by techniques like X-ray crystallography, NMR spectroscopy and 

electron microscope.   A repository of these experimentally determined structures is organized as 

a data bank called Protein Data Bank (PDB). This data bank is freely accessible on the internet 

[1].  

Around 90% of protein structures available in PDB have been determined by X-ray crys-

tallography. X-ray crystallography can provide very detailed atomic information, showing every 

atom in a protein or nucleic acid along with atomic details of ligands, inhibitors, ions, and other 

molecules that are incorporated into the crystal. However, the process of crystallization is diffi-

cult and can impose limitations on the types of proteins that may be studied by this method. For 

example, X-ray crystallography is an excellent method for determining the structures of rigid 

proteins that form nice, ordered crystals. Flexible proteins, on the other hand, are far more diffi-

cult to study by this method because crystallography relies on having many, many molecules 

aligned in exactly the same orientation, like a repeated pattern in wallpaper. NMR spectroscopy 
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may also be used to determine the structure of proteins. The protein is purified, placed in a strong 

magnetic field, and then probed with radio waves. The major advantage of NMR spectroscopy is 

that it provides information on proteins in solution, as opposed to those locked in a crystal or 

bound to a microscope grid, and thus, NMR spectroscopy is the premier method for studying the 

atomic structures of flexible proteins. The technique is currently limited to small or medium pro-

teins, since large proteins present problems with overlapping peaks in the NMR spectra. Electron 

microscopy is also used to determine structures of large macromolecular complexes. A beam of 

electrons is used to image the molecule directly. For a few particularly well-behaved systems, 

electron diffraction produces atomic-level data, but typically, electron micrographic experiments 

do not allow the researcher to see each atom. Overall predicting protein structure by experiment 

alone is not feasible in every case [2].  

The success of genome sequencing program resulted in massive amounts of protein se-

quence data (that are produces by DNA sequencing) [HUMAN GENOME PROJECT]. The gen-

eration of a protein sequence is much easier than the determination of protein structure. The 

structure of the protein gives much more insight about its function that its sequence. Therefore 

computational methods for the prediction of protein structure from its sequence have been devel-

oped. These methods aim to predict protein three-dimensional structure from its primary se-

quence. Ab initio prediction methods use just the sequence of the protein based on the physical 

principles governing any molecular structure. These techniques usually requires vast computa-

tionally capabilities and have been tried on only small proteins sequence. Threading and Homol-

ogy Modeling methods can build a 3D model for a protein of unknown structure from experi-

mental structures of evolutionary related proteins. The theory behind this being, even though the 
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number of proteins is vast, there are limited number of tertiary structure motifs to which most 

proteins belong. Homology modeling is based on the assumption that two homologous proteins 

will share similar structure. Sequence alignment algorithms are used to search for homologous 

protein, the structure hence predicted is more accurate if the alignment between target and tem-

plate proteins is good.  In protein threading algorithms scans amino acid sequence of unknown 

structure against database of solved structure. As long as a detailed physicochemical description 

of protein folding principles does not exist, structure prediction is the only method available to 

see the structure of some proteins. Experts agree it is possible to construct high quality full 

length models for almost all single domain proteins by using best possible template structure in 

PDB and state-of-the-art modeling algorithm [1] [2] [3]. This suggests that the current PDB 

structure universe may be approaching completion.  So it all comes down to selecting that model 

in a pool of models. 

Protein structure prediction has been an important conundrum in field of bioinformatics 

and theoretical chemistry due to its importance in medicine, drug design, biotechnology, etc. 

Critical Assessment of Techniques for Protein Structure Prediction (CASP) is a worldwide com-

petition for protein structure prediction conducted every two years [4]. The primary goal of 

CASP is to establish the capabilities and limitation of current methods of modeling protein struc-

ture from sequence. Methods are assessed on the basis of the analysis of a large number of blind 

predictions of protein structure. The targets for this competition are proteins where the experi-

mental structure is not yet public, but will be available shortly. The accuracy of three-

dimensional structure models are primarily evaluated using two metric. One is GDT_TS [5], a 

multi threshold measure related to difference in position of main chain Cα atoms between a 
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model and corresponding experimental structure. The other is the alignment accuracy AL0 [6] 

[7], showing how well the assigned amino acid positions accord with those in the experimental 

structure. Other user methods are also considered. Model quality prediction has always been in-

cluded in CASP, but has received much attention only recently. If structure modeling field is to 

be taken seriously, it is critical that we develop for reliably informing users how accurate these 

models are or are not [3] [4] [5].  

How to assess a complex protein model quality is a long-term problem. Usually model 

quality assessment (considered in CASP and other user algorithms) is done by comparison of the 

model to true structure of protein. Recently there are methods that aim at determining a scoring 

function with no knowledge of the true structure.  Over the past two decades, several approaches 

have been developed to analyze correctness of protein structures and models. These methods use 

techniques like stereochemistry checks, molecular mechanics energy based functions, statistical 

potentials and machine-learning approaches to tackle the problem. Typically, the features taken 

into account are the molecular environment, hydrogen bonding, secondary structure, solvent ex-

posure, pair-wise residue interactions and molecular packing. A rapid development of new meth-

ods in model quality assessment is taking place, the necessity of an unbiased evaluation of these 

methods led to their inclusion as a separate category in CASP. Very few methods and techniques 

aim at determining the model quality without the experimental structure [2] [3].  

As models are not experimental structures determined with known accuracy but predic-

tions its vital to present the user with corresponding estimates of model quality. We aim to obtain 

a learning algorithm that studies known structures from PDB and when given a protein model 

predicts whether it is belongs to the same class as PDB structures. Since using a whole primary 
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protein sequence to determine a 3D protein structure is very difficult, it is necessary to design 

new intelligent algorithms to find key features from a large pool of relevant features in biology 

and geometry to effectively evaluate 3D protein models. The central focus of this study is to de-

velop and implement new granular decision machines to find biologically meaningful features 

for assessing 3D protein structures accurately and efficiently. The methodology for the new 

granular decision machines is that multiple intelligent decision making methods are systematical-

ly organized in an integrated algorithm with accurate performance and high efficiency. Some 

traditional machine learning methods are black-box methods (such as neural networks, and sup-

port vector machines). Biologist and chemists really want to know how a decision is made (i.e., 

meaning, reasons). To solve the black-box problem, we aim to develop the granular decision ma-

chines that can perform meaningful knowledge discovery of protein structures. The important 

innovation is that the granular knowledge discovery algorithms can automatically generate pro-

tein structure assessment rules with both key sequence features and important geometrical fea-

tures.  This effort will lead to a better understanding of internal mechanism governing 3D protein 

structures such as how and why the key biological features and geometrical features can domi-

nate a 3D protein structure, and what these critical sequence features and geometrical features 

are.  

The amount and nature of information given to the machine learning system will have an 

impact on the final output regarding the quality measure of given 3D structure.  There are vari-

ous ways of representing a protein three dimensional structure, like backbone sketch of the pro-

tein, the entire distance matrix of alpha carbon atoms, a fractal dimension of the structure, 3D 

information with its sequence data etc. These methods of representing protein structure are most-
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ly used in comparison and classification problems and they are well studied and researched 

fields. In order to be useful the decision model will have to be both accurate and efficient, it will 

be required to rank as many as 100 models in reasonable amounts of time. While the fuzzy deci-

sion tree algorithms developed will likely achieve the accuracy required, they may be too slow 

when run in a single process. Therefore it will be a necessity to develop parallel or granular algo-

rithms that can scale effectively for high performance.   

Next area of exploration will be in active learning. Machine learning requires training da-

ta, and active learning is a strategy for choosing training data to give the most accurate decision 

model. Current approaches use sequence identity to try to form a set of non-redundant proteins. 

Active learning would identify a non-redundant set by eliminating those proteins that do not add 

information to the decision model, and therefore should be much more rigorous. 

Solving this problem will help study problems from different domains that have the same 

intensity of information. There are many complex and important application problems with huge 

geometric factors. A short list of common problems where geometry is a critical factor would 

include: social and computer network structure, traffic analysis, computer vision. Biomedical 

examples include 3D structural features of a protein that are directly related to basic functionality 

and are crucial for drug design. 

The next chapters (chapter 2) gives back ground information on protein three dimensional 

structure prediction using experimental techniques and computational techniques. It also has a 

brief discussion on prediction errors and application of protein models and it gives overview on 

current model assessment technique as well. Chapter 3 gives back ground on machine learning 

techniques, in particular about Support Vector Machines and Fuzzy Decision Tress. Chapter 4 
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introduces a preliminary encoding scheme, its methodology, implementation and results using 

SVM and IFDT are discussed.  Chapter 5 introduces enhanced encoding scheme with its descrip-

tion and results. Chapter 6 has a brief introduction on CASP, on conduction of competition, on 

current trends in CASP, on model quality assessment and few prominent competitors in CASP. 

Finally the chapter shows results of using CASP templates as testing data. Chapter 7 discusses 

future development in this research study and chapter 8 has the final concluding remarks.      
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CHAPTER 2.  PROTEIN STRUCTURE PREDICTION AND MODEL ASSESSMENT –- 

A REVIEW 

Modern experimental methods for determining protein structure through X-ray crystal-

lography or NMR spectroscopy can solve only a small fraction of proteins sequenced by the 

large-scale genome sequencing projects, because of technology limitations and time constraints. 

Currently, there are more than seven million protein sequences accumulated in the nonredundant 

protein sequence database (NR; accessible through the national Center for Biotechnology Infor-

mation: ftp://ftp.ncbi.nlm.nih.gov/blast/db/) and fewer than eighty thousand protein structures in 

the Protein Data Bank  (PDB; http://www.rcsb.org.pdb/). With these numbers at hand, it seems 

that the only way to bridge the ever growing gap between protein sequence and structure is com-

putational structure modeling. The Figure 2.1 shows the growth of biological databases like 

Swiss-Prot, TrEMBL and PDB. The number of genes whoes function we are determining using 

experiments is but a drop in the ocean compared to number of genes we have sequences and 

whose function is not known. The red line is the growth of protein sequences deposited in 

TrEMBL, a comprehensive protein sequence database. The blue line illustrates the growth pro-

teins in TrEMBL whose function is know, or at least can be predicted with some reasonable ac-

curacy. The green line is the growth in the proteins whose 3D structure has been solved. Note the 

logarithmically increasing gap between what we know (blue) and what we do not know (red). 

(Image courtesy of Predrag Radivojac ). Swiss-Prot stands for Swiss Institute of Bioinformatics 

containing non-redundant protein sequence database. These data base is manually annotated. 

TrEMBL contains high quality computationally analyzed records. 
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FIGURE 2.1 GROWTH OF BIOLOGICAL DATABASE 

With improvement of prediction technique, protein models are becoming genuinely use-

ful in biology and medicine, including drug design. There are numerous examples where in silico 

models were used to infer protein functions, hint at protein interaction partners and binding site 

locations, design or improve novel enzymes or antibodies, create mutants to alter specific pheno-

types or explain phenotypes of existing mutants. Current available template-based methods can 

reliably generate accurate high-resolution models, comparable in quality to the structure solved 

by low resolution X-ray crystallography, when sequence similarity of a homolog to an already 

solved structure is high( 50 % or greater). As alignment problems are rare in these cases, the 
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main focus shifts to accurate modeling of structurally variable regions (insertions and deletions 

relative to known homology) and side chains, as well as to structure refinement. The high-quality 

comparative models often present a level of detail that is sufficient for drug design, detecting 

sites of protein-protein interactions, understanding enzyme reaction mechanisms, interpretation 

of disease-causing mutations and molecular replacement in solvent crystal structures [8] [9] [10] 

[11].      

2.1 Protein Structure Prediction -- Overview 

According to Anfinsen’s (1973) [12] thermodynamic hypothesis, proteins are not assem-

bled into their native structures by a biological process. Protein folding is a purely physical pro-

cess that depends only on the specific amino acid sequence of the protein and the surrounding 

solvent [12]. This would suggest that one should be able to predict, at least theoretically, the 

three-dimensional (3D) conformation of a protein from its sequence alone. Since then, many ef-

forts have been devoted to this fascinating and challenging problem, attempting to tackle this 

problem from different angles including biophysics, chemistry, and biological evolution. Solving 

the problem of predicting a protein’s 3D structure from its amino acid sequence has been called 

the “holy grail of molecular biology” and is considered as equivalent to deciphering “the second 

half of the genetic code” [13]. The study of the principles that dictate the 3D structure of natural 

proteins can be approached either through the laws of physics or the theory of evolution. Each of 

these approaches provides the foundation for a class of protein structure prediction methods [14]. 

Accordingly, theoretical structure prediction can be divided into two extreme camps: homology 

modeling and ab initio methods [15]. The boundaries between these two extreme classes of pre-
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diction techniques have started to become blurred as scientists have started to integrate the 

strengths of different methods to make their prediction methods more effective and more gener-

ally applicable. Also, a third class of protein structure prediction methods has appeared: protein 

threading. Homology modeling makes structure predictions based primarily on its sequence simi-

larity to one or more proteins of known structures. Ab initio methods predict the three-

dimensional structure of a given protein sequence without using any structural information of 

previously solved protein structures; instead, methods belonging to this group are entirely based 

on the first principles of physics [16]. Protein threading, sometimes referred as fold recognition 

(FR) is an approach between the two extremes which uses both sequence similarity information 

when it exists, and structural fitness information between the query protein and the template 

structure [17]. Below is a brief discussion of each of these methods, which emphasizes their ad-

vantages and disadvantages from a user’s point of view.  

2.1.1 Homology Modeling 

Homology modeling, also referred to as comparative modeling (CM), is a class of meth-

ods based on the fact that proteins with similar sequences adopt similar structures, as most pro-

tein pairs with more than 30 out of 100 identical residues were found to be structurally similar 

[18]. Homology modeling is facilitated by the fact that the 3D structure of proteins from the 

same family is more conserved than their amino acid sequences [19]. When the structure of one 

protein in a family has been determined by experimentation, other members of the same family 

can be modeled based on their alignment to the known structure. This high robustness of struc-

tures with respect to residue exchanges explains partly the robustness of organisms with respect 

to gene-replication errors, and it allows for the variety in evolution. Comparative modeling con-
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sists of five main stages: (a) identification of evolutionary related sequences of known structure; 

(b) aligning of the target sequence to the template structures; (c) modeling of structurally con-

served regions using known templates; (d) modeling side chains and loops which are different 

than the templates; (e) refining and evaluating the quality of the model through conformational 

sampling [20]. The accuracy of predictions by homology modeling depends on the degree of se-

quence similarity between the target sequence and the template structures. When the sequence 

identity is above 40%, the alignment is straightforward, there are not many gaps, and 90% of 

main-chain atoms could be modeled with an RMSD (root-mean-square distance) error of about 1 

A [15]. In this range of sequence identity, predictions are of very good to high quality, and have 

been shown to be as accurate as low-resolution X-ray predictions [11]. When the sequence iden-

tity is about 30-40%, obtaining correct alignment becomes difficult where insertions and dele-

tions are frequent. For sequence similarity in this range, 80% of main-chain backbone atoms can 

be predicted to RMSD 3.5 A, while the rest of the residues are modeled with larger errors [15]. 

When the sequence identity is below 30%, the main problem becomes the identification 

of the homolog structures, and alignment becomes questionable, thereby giving rise to the name 

of the 20 -30 % zone – the twilight zone of protein sequence alignments [18]. From a user point 

of view, the main difficulty in homology modeling is finding the target sequence to be used as a 

template. Approximately 57% of all known sequences have at least one domain that is related to 

at least one protein of known structure [21]. The probability of finding a related known structure 

for a randomly selected sequence from a genome ranges from 30% to 65% [15]. The percentage 

is steadily increasing because projects like Protein Structure Initiative promise to fulfill within 
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the next decade [22] the task of experimentally determining the 16 000 optimally selected new 

structures needed so that homology modeling can cover 90% of protein domains [23]. 

2.1.2 Protein threading 

Also known as fold recognition (FR), protein threading is a class of methods that aims at 

fitting a target sequence to a known structure in a library of folds. Generally, similar sequence 

implies similar structure but the converse is not true: similar structures are often found for pro-

teins for which no sequence similarity to any known structure can be detected [24]. This means 

that the actual number of different folded protein structures is significantly smaller than the 

number of different sequences generated by the large scale genome projects [20]. An optimistic 

view is that the number of existing folds is a few orders of magnitudes smaller than the number 

of different sequences, possibly ranging from a few hundred to a few thousand. The basic idea of 

protein threading is to literally “thread” the amino acids of a query protein, following their se-

quential order and allowing for insertions and gaps, into the structural positions of a template 

structure in an optimal way measured by a scoring function. This procedure is repeated for each 

template structure in a database of protein folds. The quality of a sequence-structure alignment is 

typically assessed using statistical-based energy and the “best” sequence-structure alignment 

provides a prediction of the backbone atoms of the query protein. The main drawback of this 

class of methods is the fact that it is very demanding on the computing power and also, that there 

is still a need for target identification. Currently, the Protein Data Bank contains enough struc-

tures to cover small singleton main protein structures up to a length of about 100 residues, so the 

method has the best chances of success with proteins within this limit [25] [26].  
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2.1.3 Ab initio methods 

Also known as de novo methods, “first principle” methods or “free modeling” [27], these 

methods assume that the native structure corresponds to the global free energy minimum acces-

sible during the lifespan of the protein, and attempt to find this minimum by an exploration of 

many conceivable protein conformations [14]. The term ab initio methods referred initially to 

methods for structure prediction that do not use experimentally known structures [24]. Lately, 

this term has become vaguer since the introduction of novel fragment based methods. These 

methods primarily utilize the fact that, although we are far from observing all folds used in biol-

ogy [28], we probably have seen nearly all substructures [29]. Structure fragments are chosen on 

the basis of the compatibility of the substructure with the local target sequence and assembled 

into one new structure. The field of ab initio prediction methods is thereby divided into two main 

classes: ab initio methods with database information and ab initio methods without database in-

formation [24]. Even though the methods from this last class are computationally very demand-

ing and still lack accuracy [14], they are continuously used and developed for several reasons. 

Firstly, in some cases, even a remotely related structural homolog may not be available. In these 

cases, ab initio methods are the only alternative. Secondly, new structures continue to be discov-

ered which could not have been identified by methods which rely on comparison to known struc-

tures. Thirdly, knowledge-based methods have been criticized for predicting protein structures 

without having to obtain a fundamental understanding of the mechanisms and driving forces of 

structure formation. First principle structure prediction methods, in contrast, base their predic-

tions on physical models for these mechanisms. As such, they can therefore help to deepen the 

understanding of the mechanisms of protein folding [24]. From a user point of view the main 
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bottlenecks of ab initio methods are the resolution of generated models and the computing power 

required to generate these models. The low resolution of ab initio generated models resides in 

our limited understanding of the protein folding problem and despite significant progress in this 

direction [30], it remains applicable to a limited number of sequences of less than approximately 

100 residues [14]. 

2.1.4 Prediction Errors 

Flowchart of protein structure prediction methods is shown in Figure 2.2, the figure also 

highlights the occurrence of error in each phase. If an appropriate template structure for a target 

sequence is found in a template database by a threading method, a structure model will be built 

on the template structure (the left branch of the chart). If not, an ab initio method can be em-

ployed (the right branch). Most of the current ab initio methods use fragment structure taken 

from template database. Errors can occur at each step of this procedure. In template recognition 

step, wrong templates with a different fold but in correct fold class are often recognized in 

threading (template recognition level error). A severe template level error can occur when the 

template database does not contain exactly correct structures. In that case, a threading program 

still ranks templates in the database according to their scores, and the top ranking structure which 

has a similar, but not exactly correct fold, may gain a statistically significant score. In template-

based structure prediction, it is almost impossible to fix a template level error if the template is 

considerable different from the correct one. When a recognized template does not share suffi-

cient sequence similarity to the target sequence, it is not easy to align the template and the target 

correctly (alignment level error). Finally, each procedure in the full-atom model construction i.e. 
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loop modeling and side-chain building, and the refinement step will cause errors (tertiary struc-

ture level error) [2] [31].  

 

 

 

FIGURE 2.2 FLOWCHART OF PROTEIN STRUCTURE PREDICTION (PICTURE ADOPTED FROM 

[31]) 

 

It is desired that model quality assessment programs that predict the real quality value of 

a model and give the output as a single score be developed. These tools will then become the key 

for bridging computational and experimental biology, bringing the structure prediction tools into 

experimental biology labs.  These tools could also significantly broaden the applicability of pro-

tein structure models of a moderate resolution. For protein structure prediction methods to enable 
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fruitful research exploration together with experimental methods, error estimation and quality 

assessment are indispensable research focus [27]  [31] [32] .  

2.1.5 Application of Structure Prediction 

A 3-D model does not have to be absolutely perfect to be helpful in biology, but the type 

of question that can be addressed with a particular model does depend on its accuracy. Depend-

ing on the prediction approach applied [14]  the accuracy of a model differs. Comparative model-

ing generates structures that have a root mean square deviation (RMSD) of 1–2 A from the ex-

perimental structure, achieving the accuracy of medium resolution NMR or low-resolution X-ray 

structures [33] . Threading provides models with an RMSD of 2–6 A, with errors mainly occur-

ring in the loop regions [34]. For target proteins without solved template structures, ab initio 

methods are limited to small proteins (<120 residues) with an accuracy in the range of 4–8 A. 

For low accuracy models (RMSD >3 A) RMSD is no longer a meaningful measure of modeling 

quality [14] and TMscore is preferred. By definition, TM-score lies in a 0.1 interval. A TM value 

of 1 indicates a very accurate model (equivalent of RMSD 0 A), a value >0.5 indicates a model 

with a roughly correct topology, and a value 0.17 indicates a random prediction regardless of the 

protein size [22]. High-resolution models obtained by homology modeling at more than 50% se-

quence identity can usually meet the highest structural requirements in the case of single-domain 

proteins and have been use in a wide range of applications, as docking, designing and improving 

ligands for a given binding site [35], designing mutants to test hypotheses about a protein’s func-

tion [36] [37], identifying active and binding sites [38], simulating protein protein docking [39], 

facilitating molecular replacement in X-ray structure determination [40], refining models based 

on NMR constraints [41] and rationalizing known experimental observations [42]. For models of 
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medium-resolution, with an RMSD between 2.5-5 A, typically generated by comparative model-

ing from distantly homologous templates or by fold recognition, the structural predictions are 

useful for identification of the spatial locations of functionally important residues, such as active 

sites and the sites of disease-associated mutations. Arakaki et al. [43] assessed the possibility of 

assigning the biological function of enzyme proteins by matching the structural patterns (or de-

scriptors) of the active sites with structure decoys of various resolutions. Boyd et al. [44] used 

structural models generated by the automated I-TASSER server to help interpret mutagenesis 

experiments with the Sec1/Munc18 (SM) proteins on the basis of the spatial clustering of the 

mutated residues. Models with the lowest resolution from free modeling approaches or based on 

weak hits from threading, have a number of uses including protein domain boundary identifica-

tion [45], topology recognition, or family/superfamily assignment. For example, the TASSER 

structural predictions placed the RDC1 receptor in the family of chemokine receptors because 

the predicted RDC1 structure is closest to the predicted structure of the CXCR4 chemokine re-

ceptor [46]. This finding was later confirmed by binding experiments [47]. 

Protein structure prediction has been thought of as a “grand challenge” for some time 

now. As more and more researchers need and use the protein prediction tools, rapid progress has 

been made in recent years in this field. The massive amounts of sequence and structural data be-

coming available and the low cost and accessibility of computing power has led to an explosion 

of available tools and methods for protein prediction. The choice of one or another method still 

depends on the protein sequence, as well as the expected quality of the result. The rapid growth 

of automated servers means that protein prediction is no longer only for only a handful of re-

searchers, but is available for the masses. The process in not completely automated, the feedback 
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of the user is still required when deciding on the most trustful method and the usefulness of the 

result. 

2.2 Literary Review of Current Model Assessment Techniques 

An important task in both structure prediction and application is to evaluate the quality of 

a structure model. Half a century has passed since it was shown that an amino acid sequence of a 

protein determines its shape, but a method to translate reliably into the 3D structure still remains 

to be developed. So it is important to develop methods that determine the quality of a model. 

Over the past two decades, a number of approaches have been developed to analyze correctness 

of protein structures and models. Traditional model evaluation methods use stereochemistry 

checks, molecular mechanics energy-based functions and statistical potentials to tackle the prob-

lem. As a server or a program will almost always return an answer, using two or more of such 

tools means that one will get more than just one computer generated model. This becomes hard 

to know which model to choose. As opposed to experimental structure evaluation, there are not 

too many reliable procedures to assess the quality of a computer-generated model [48]. Before 

tackling with any in silico protein prediction problem, a non-bioinformatician has to check the 

CASP website. Choosing a tool from most highly ranked in the latest CASP experiment will as-

sure the best possible start in terms of reliability of the results. Beside the CASP rank, another 

important factor in choosing the right tool is the protein to be modeled. Figure 2.3: Protein struc-

ture prediction software – trends in the number of citations per year for some of the most com-

mon docking programs and servers, analyzed from the ISI Web of Science (2009). The figure 

has been adopted from reference [49]. 
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FIGURE 2.3 PROTEIN STRUCTURE PREDICTION SOFTWARE TRENDS 

 

There is a basic rule to follow. If your protein has at least 40% similarity with a known 

structure, comparative modeling is the method to use. For lower similarities, protein threading is 

preferred. When the target sequence has no similarities with known structure, ab initio methods 

are the last resort. Two types of evaluation of the computer-generated models can be carried out. 

Internal evaluation of self consistency checks whether or not a model satisfies the restraints used 

to calculate it. Generally, each of the tools used in the construction of a model, template selec-
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tion, alignment, model building, and refinement has its own internal measures of quality [48]. 

Nevertheless, assessment of the stereochemistry of a model (e.g.,bonds, bond angles, dihedral 

angles and nonbonded atom-atom distances) can be additionally checked with programs such as 

PROCHECK [50], WHAT-IF [51] and WHAT-CHECK [52]. External evaluation relies on in-

formation that was not used in the calculation of the model, like the calculation of the pseudo 

energy profile of a model performed by tools like PROSA [53], Verify3D [54] and QMEAN 

[55]. Finally, a model should be consistent with any existing experimental observations, such as 

site directed mutagenesis, cross-linking data and ligand binding [14]. 

Recently machine learning methods using algorithms like neural networks and support 

vector machines that are trained on structure models to predict model quality are introduced [33]. 

There are various techniques available to determine the quality of a predicted model, either by 

comparing it with the native structure or with no knowledge of known structure. In the following 

paragraphs, the most familiar assessment techniques are categorized and importance of each cat-

egory is discussed.  

These techniques can be divided into several categories based on their scoring strategy – 

local vs. global, absolute vs. relative or single vs. multiple (consensus or ranking methods). 

There are methods that predict the quality of local regions such as distance between the position 

of a residue in a protein model and its native structure as suppose to predicting an overall score 

of a model. Some methods predict both local and global quality like Pcons [56].  Wallner and 

Elofsson's Pcons is a consensus-based method capable of a quite reliable ranking of model sets 

for both easy and hard targets. Pcons uses a meta-server approach (i.e. combines results from 

several available well-established QA methods) to calculate a quality score reflecting the average 
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similarity of a model to the model ensemble, under the assumption that recurring structural pat-

terns are more likely to be correct than those observed only rarely. It should be underscored that, 

while the consensus-based methods are useful in model ranking, they can be biased by the com-

position of the set and, in principle, are incapable of assessing the quality of a single model. This 

brings us to another category based on scoring that is absolute score vs. relative score.  Relative 

scoring methods discriminate near-native structure from decoys; these methods are different 

from methods which produce absolute score. A relative score can only select or rank models but 

does not tell how good a model is, which is critical for using the model.  The techniques could 

also be grouped according to the information needed to make judgment. In prominent assessment 

approaches 3D co-ordinates, sequence information, sequence alignment, alignment information, 

template, secondary structure information, etc are generally used to make judgment on quality. 

Model evaluation methods can be classified into single-model approach such as ProQ, Proq-LG, 

ProQ-MX and MODCHECK and multiple model approaches such as clustering methods whose 

output depends on number of input models.  We can also group based on prediction techniques, 

machine learning tools like neural networks and SVM, clustering and consensus approach, etc.  

Some of these methods are used in CASP (Critical Assessment of Structure Prediction), as one of 

many analysis involved in assessment phase [5] [6] [57]. There are many methods that aim at 

finding the model quality but very few come up with an absolute score using a single model and 

information from only its primary sequence and 3D co-ordinates [57] [58] [59].  

In the two years following CASP7, a considerable increase in method development in the 

area of model quality assessment can be observed. More than a dozen papers have been pub-

lished on the subject, and 45 quality assessment methods, almost double the CASP7 number, 
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have been submitted for evaluation to CASP 8 [34]. CASP evaluation is based on comparison of 

each model with the corresponding experimental structure. GDT_TS [5] score is used in several 

CASP competitions, which is defined as average coverage of the target sequence of the substruc-

ture with four different distance threshold.     

TABLE 2.1 OVERVIEW OF CURRENT MODEL ASSESSMENT METHODS 

Method Year Scoring Remark 

GDT_TS [5]  1999 Single Score Compares to native struc-

ture ProQ [56]  2003 Single Score Uses Neural networks 

3D-Jury [64] 2003 Ranking Consensus method 

SPICKER [62] 2004 Ranking By clustering 

MODCHECK [60] 2005 Single Score Classical threading poten-

tials Undertaker [63] 2005 Single Score Uses full 3D information 

ProSa- Web [73] 2007 Single Score Uses evolutionary infor-

mation ModFOLD [65] 2008 Single Score TM score is used 

ModelEvaluators [59] 2008 Single Score Support Vector Regression 

using GDT_TS Tasser [66] 2008 Ranking Structure feature and statis-

tical potential  

There are other similar techniques that obtain an absolute scoring by comparing the mod-

el to its experimental structure.  A strikingly different domain is assessing the models with no 

known structure. There are several methods proposed in recent years to solve this problem. Sin-

gle-model approaches like ProQ [56], ProQ-LG, ProQ-MX [58], and MODCHECK [60] assign a 
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score to a single model, whereas, multiple-model approaches, such as clustering and consensus 

methods, require a large pool of models as inputs to rank them. These methods cannot be used to 

assess the quality of a single model. They may not reliably evaluate the quality of a small num-

ber of input models [32] [31]. Machine learning methods such as neural networks and SVM that 

are trained on structure models predict model quality [59] Zhou and Skolnick  [61] [62] differ by 

including the consensus-based features (i.e. incorporating in the analysis information from mul-

tiple models on the same target).  

MODCHECK [60] places emphasis on benchmarking individual methods and also offers 

neural network-based meta techniques that combine them. Modfold merges four orginal ap-

proaches in a program. Some of the recent methods that make use of single model, 3D co-

ordinate information and primary sequence to evaluate an absolute score for model quality as-

sessment are ModelEvaluator [59] and Undertaker [63]. In ModelEvaluator [59] they use normal-

ized GDT_TS score with SVM regression to train SVM to learn a function that accurately maps 

input features. To get a general overview of available techniques please refer TABLE 2.1. 

Since models are not experimental structures determined with known accuracy but pre-

dictions, it is vital to present the user with the corresponding estimates of model quality. Much is 

being done in this area but further development of tools to assess model quality reliably is need-

ed. Our approach is quite different from any recent study; we aim to classify the models into two 

classes, a protein or not a protein. With thousands of protein structures  available in Protein Data 

Bank is it possible to train a machine learning algorithm to study protein structure and predict 

when given a model whether it closely resembles these structures or not. From initial results we 

can say with some assurance that it is possible to achieve such a learning curve.     
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The amount and nature of information given to the machine learning system will have an 

impact on the final output regarding the quality measure of given 3D structure.  There are vari-

ous ways of representing a protein three dimensional structure, like backbone sketch of the pro-

tein, the entire distance matrix of alpha carbon atoms, a fractal dimension of the structure, 3D 

information with its sequence data etc. These methods of representing protein structure are most-

ly used in comparison and classification problems and they are well studied and researched fields 

[75] [76] [79].   
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CHAPTER 3. MACHINE LEARNING TECHNIQUES 

Machine learning refers to a system capable of the autonomous acquisition and integra-

tion of knowledge. This capacity to learn from experience, analytical observation, and other 

means, results in a system that can improve its own speed or performance, i.e., its efficiency 

and/or effectiveness. Machine-learning techniques have been used to create self-improving soft-

ware for decades, but recent advances are bringing these tools into the mainstream. The exponen-

tial growth of the amount of biological data available raises two problems: on one hand, efficient 

information storage and management and, on the other hand, the extraction of useful information 

from these data. The second problem is one of the main challenges in computational biology, 

which requires the development of tools and methods capable of transforming all these heteroge-

neous data into biological knowledge about the underlying mechanism. These tools and methods 

should allow us to go beyond a mere description of the data and provide knowledge in the form 

of testable models. By this simplifying abstraction that constitutes a model, we will be able to 

obtain predictions of the system. Machine learning algorithms are widely used in many biologi-

cal fields to name a few – genomics, proteomics, microarrays, system biology, evolution and text 

mining. The main purpose of a machine learning algorithm is to make intelligent decisions based 

on available knowledge from some database. For this research we have considered the following 

algorithms [76] [79].   



27 

3.1 Support Vector Machines 

Support Vector Machines (SVM) are learning systems that use a hypothesis space of lin-

ear function in a high dimensional feature space, trained with a learning algorithm from optimi-

zation theory that implements a learning bias derived from statistical learning theory. This learn-

ing strategy introduced by Vapnik and co-workers is a principled and very powerful method that 

in the recent years since its introduction has already outperformed most other systems in a wide 

variety of applications. In supervised learning the learning machine is given a training set of ex-

amples (or inputs) with associated labels (or output values). Once the attributes vectors are avail-

able, a number of sets of hypotheses could be chosen for the problem. Among these, linear func-

tions are best understood and simplest to apply. The development of learning algorithm became 

an important sub field of artificial intelligence, eventually forming the separate subject area of 

machine learning [80].  

Kernel representations offer an alternative solution by projecting the data into a high di-

mensional feature space to increase the computational power of the linear learning machines. 

Another attraction of kernel methods is that the learning algorithms as theory can largely be de-

coupled from the specifics of the application area, which must simply be encoded into the design 

of an appropriate kernel function. Hence the problem of choosing architecture for a neural net-

work application is replaced by the problem of choosing a suitable kernel for a Support Vector 

Machines. The introduction of kernel greatly increases the expressive power of the learning ma-

chines while retraining the underlying linearity that will ensure that learning remains tractable. 

The increased flexibility however, increases the risk of over fitting as the choice of separating 

hyperplane becomes increasingly ill-posted due to the number of degrees of freedom. Success-
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fully controlling the increased flexibility of kernel-induced feature spaces requires a sophisticat-

ed theory of generalization, which is able to precisely describe which factors have to be con-

trolled in the learning machines in order to guarantee good generalization. There is a remarkable 

family of bounds governing the relation between the capacity of a learning machines and its per-

formance. The theory grew out of consideration of under what circumstances and how quickly, 

the mean of some empirical quantities converges uniformly, as the number of data points in-

creases, to the true mean [75] [80] [81]. 

Since SVM approach has a number of superior values such as effective avoidance of over 

fitting, the ability to handle large feature spaces, information condensing of the given data set 

etc. It has been successfully applied to a wide range of pattern recognition problems, including 

isolated handwritten digit recognition, objective recognition, speaker identification, and text cat-

egorization, etc [82]. 

Binary classifier is frequently implemented by using a real-valued function 

 nXf :  in the following way: the input  ',....,1 nxxx   is assigned to the posi-

tive class, if   0xf , and otherwise to the negative class. If we consider the case where  

 xf  is a linear function of Xx  , so that it can be written as 

  bxwxf          (2.1) 

  

     (2.2) 
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Where,     nbw,  are the parameters that control the function and the decision 

rule given by sgn   xf . And these parameters must be learned from the data. 

If we interpret this hypothesis geometrically, input space X is split into two parts by the 

hyperplane defined by the equation w • x + b = 0. For example, in Figure 3.1, the hyper plane is 

the dark line, with the positive region above and the negative region below. The vector w defines 

a direction perpendicular to the hyperplane, while varying the value of b moves the hyperplane 

parallel to itself. And these quantities are referred as the weight vector and bias which are the 

terms borrowed from the neural networks literature [82]. 

 

FIGURE 3.1 A SEPARATING HYPER PLANE FOR A 2-D TRAINING SET [82]. 

The above algorithm for separable data, when applied to non-separable data, will find no 

feasible solution: this will be evidenced by the objective function) i.e. the dual Langrangian) 

growing arbitrarily large. To extend these ideas to handle non-separable data, the constraints 

(2.1) and (2.2) are relaxed, but only when necessary, that is, a further cost (i.e. an increase in the 
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primal objective function) is introduced. This can be done by introducing positive slack variables 

1,...1, ii  in the constraints, which then become:  

11  iii yforbwx             (2.3) 

11  iii yforbwx              (2.4) 

Thus, for an error to occur the corresponding ξi must exceed unity, so     is an upper 

bound on the number of training errors. Hence a natural way to assign an extra cost for error is to 

change the objective function to be minimized from ||w||
2
/2 to ||w||

2
/2 + C(∑I ξi)

k
 , where C is a 

parameter to be chosen by the user, a larger C corresponding to assigning a higher penalty to er-

ror [81] [82].  

The soft margin classifier is an extension of linear SVM. The kernel method is a scheme 

to find the nonlinear boundaries. The concept of the kernel method is transformation of the vec-

tor space to a higher dimensional space. By transforming the vector space from two-dimensional 

to three-dimensional space, the non-separable vectors can be separated. 
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FIGURE 3.2  LINEAR SEPARATING HYPER PLANE FOR NON-SEPARABLE CASE 

 

3.1.1 Nonlinear SVM - Kernel Method 

The soft margin classifier is an extension of linear SVM. The kernel method is a scheme 

to find the nonlinear boundaries. The concept of the kernel method is transformation of the vec-

tor space to a higher dimensional space. As can be seen from Figure 3.3, by transforming the 

vector space from two-dimensional to three-dimensional space, the non-separable vectors can be 

separated [80] [82] . 
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FIGURE 3.3 TRANSFORMATION TO HIGHER DIMENSIONAL SPACE 

 

3.1.2 SVM Software 

The prediction of protein secondary structure is done using SVM
light 

software. SVM
light

 

software is the implementation of Vapnik’s Support Vector Machine (Vapnik 1995) for the prob-

lem of pattern recognition, regression and ranking function. SVM
light 

software consists of two 

parts, the first part i.e. is the svm_learn part takes care of the learning module and the second part 

svm_classify part does the classification of the data after training. 

The input data to both the parts should be given in the following format 

<line> .=. <target> <feature>:<value> <feature>:<value> … 

<target> .=. +1 | -1 | 0 | <float> 

<feature> .=. <integer> | “qid” 

<value> .=. <float> 

The target value and each of the feature/value pairs are separated by space character. Fea-

ture/value pairs must be ordered by increasing feature number. Features with value zero can be 
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skipped. For classification, the target value denotes the class of the example +1 as the target val-

ue marks a positive example, -1 negative example respectively. So, for example, the line 

-1 1:0.43 3:0.12 2345:0.9 

Specifies a negative example for which feature number 1 has value o.43 feature number 3 

has value 0.12 feature number 2345 has the value 0.9 and all the other features have value 0. The 

order of the predictions is the same as in the training data [81]. 

3.2 Decision Trees 

Decision trees are one of the most popular machine‐learning techniques. They are known 

for their ability to represent the decision support information in a human comprehensible form, 

however, they are recognized as a highly unstable classifier with respect to small changes in 

training data [86] [87]. One of the most popular algorithms for building decision trees is Interac-

tive Dichotomizer3 (ID3) algorithm proposed by Quinlan in 1979 [88] [89]. Generally trees pro-

duced by ID3  known as crisp decision trees are sensitive to small changes in feature values, 

cannot handle data uncertainties caused by noise and/or measurement errors  [86] [87]. To over-

come these problems, several ID3 extensions were proposed to handle continuous and multi-

valued data [86] [87]. Some statistical approaches and tree pruning are used to overcome the 

problem of over fitting the training data and to improve the generalization of the decision model 

produced by decision trees. Trees produced by ID3 – known as crisp decision trees- cannot han-

dle data uncertainties and spurious precision in the data. Fuzzy ID3 (FID3) is an extension of 

ID3 algorithm. It integrates ID3 and fuzzy set theory [89] to overcome some of the deficiencies 

in ID3. Trees produced by the FID3 algorithm are known as fuzzy decision trees ( FDTs); and 
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they are more immune to data uncertainties caused by measurement errors, noise, missing and/or 

inconsistent information. 

The fuzzy decision tree building procedure is very similar to that of ID3 ; the fuzzified 

training dataset is partitioned recursively based on the value of a selected splitting (also called 

branching or test) feature (attribute). The splitting feature is selected such that a certain infor-

mation measure of separating data belonging to different classes is maximized. Several infor-

mation measures exist in the literature, typical information measures used include: Information 

gain (IG) [90], classification ambiguity (CA) [91] and gini‐index [92][92]. Existing fuzzy ID3 

algorithms use either information gain or classification ambiguity to select a branching feature. A 

gini‐index based fuzzy decision tree algorithm was proposed recently in [89]. A node in the tree 

is considered a leaf node, when all the objects at the node belong to the same class, the number 

of objects in the node is less than a certain threshold, the ratio between objects’ memberships in 

different classes is greater than a given threshold, or no more features are available. Tuning these 

thresholds is crucial to the performance and the quality of the produced fuzzy decision trees. A 

feature can appear only once on any path from the root node to a leaf node in the tree. Unlike 

crisp decision trees where an object can propagate only to one child node, fuzzy decision trees 

allow a data item or an object to propagate to more than a child node. 

Nael Abu-halaweh and team proposed an improved FID3 algorithm (IFID3) [93]. The 

IFID3 integrates classification ambiguity and fuzzy information gain to select the branching at-

tribute. The IFID3 algorithm outperformed the existing FID3 algorithm on a wide range of da-

tasets. They also introduce an extended version of the IFID3 algorithm (EIFD3). EIFID3 extends 

IFID3 by introducing a new threshold on the membership value of a data instance to propagate 
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down the decision tree from a parent node to any of its children nodes during the tree construc-

tion phase. Using the new threshold significant reduction in the number of rules produced, an 

improved accuracy and a huge reduction in execution time is achieved.  They automate the gen-

eration of the membership functions, by two simple approaches, in the first approach the ranges 

of all numerical features in a dataset are divided evenly into an equal number of fuzzy sets. In the 

second one, the dataset is clustered and the resulted cluster centers are used to generate fuzzy 

membership functions. These fuzzy decision trees were applied to the microRNA prediction 

problem, their results showed that fuzzy decision trees achieved a better accuracy than other ma-

chine learning approaches such as Support Vector Machines (SVM) and Random Forest (RF) 

[93].  

3.2.1 Improved Fuzzy ID3 Algorithm 

Improved fuzzy ID3 (IFID3) uses the same fuzzy decision tree building procedure as that 

of ID3 and Fuzzy ID3 algorithm. It uses the classification ambiguity measure introduced in  to 

extend the Fuzzy ID3 algorithm presented in [87]. As mentioned earlier, IFID3 uses attribute 

classification ambiguity to select the branching attribute at the root node, and fuzzy information 

gain elsewhere. Given a data set D, with attributes A1, A2, …, AL and a classified class C = 

{C1, C2, …, Cn} and fuzzy sets Fi1, Fi2, …, Fim for the attribute Ai (each attribute may have a 

different value of m). Let     be a fuzzy subset in D with class Ck, and let |D| be the sum of 

membership values in a fuzzy set of data D. IFID3 works as follows:  
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1. Generate the root node with a fuzzy set of all training data with membership value of 1 (This 

not necessary the case, membership values can be initialized manually, for example instances 

in the training dataset can be associated with weights) [93]. 

2. The node is a leaf node, if the fuzzy set of the data at that node satisfies any of the following 

conditions: 

a. The number of objects in the node data set D is less than a given threshold; this thresh-

old is cold leaf control threshold θn. that is: 

|D| < θn. 

b. The proportion of a data set of any class Ck |    | in the node data set D is greater than 

or equal to a given threshold. This threshold is called fuzziness control threshold θr. 

That is: 

     

   
      

c. No more attributes are available for classification. 

3. The class name assigned to a leaf node depends on the inference method and is either the name 

of the class with the greatest membership value, or the node is assigned all class names along 

with membership values. 

4. If the node does not satisfy any of the above conditions then do the following:  

a. If this node is the root node of the decision tree, then calculate the Attribute classifica-

tion Ambiguity for all attributes in the dataset and select the attribute with the minimum 

attribute classification ambiguity as the test attribute. 
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b. Else, the node is not the root node of the decision tree, calculate the fuzzy information 

gain for all attributes; and select the attribute that has greatest fuzzy information gain as 

the test attribute. 

c. Divide the fuzzy data set at the node into fuzzy subsets using the selected test attribute, 

with the membership value of an object in a subset set to the product of its’ membership 

value in parent node dataset and the value of the selected attribute fuzzy term. 

d. For each of the subsets, generate new node with the branch labeled with the fuzzy term 

of the selected attribute. 

5. For each new generated node repeat recursively from step 2. 

This modified fuzzy ID3 algorithm presents a simple approach to integrate two infor-

mation measures. It is shown that such integration can lead to better performance by experi-

mental results using several standard datasets [93]. This algorithm makes use of attribute classi-

fication ambiguity to select the branching attribute at the root node of the decision tree, and 

fuzzy information gain to select the branching attribute at all the other non-leaf nodes in the tree. 

One of the drawbacks of our method is the huge number of generated fuzzy rules. Reducing the 

number of rules required for a decision is very important, both because it increases the computa-

tional performance of the fuzzy decision tree induction process and for the more fundamental 

reason that it improves the falsifiability of decision model and improves its interpretability and 

its applicability to real time applications.  
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3.2.2  Extended Improved Fuzzy ID3 Algorithm 

Rule set reduction refers to the process of generating a smaller set of rules from a larger 

set of rules. This is achieved mainly by removing redundant rules and/or by merging adjacent 

rules leading to same decision. The main purpose of rule reduction is improving the human in-

terpretability of the decision model by reducing its complexity. In addition, rule set reduction 

makes the process of validating the resulting decision model easier and improves the applicabil-

ity of the resulting models to real time applications and can improve the system accuracy. To re-

duce the number of generated fuzzy rules, they introduce a modified version of improved Fuzzy 

ID3 algorithm [93]. This modified version introduces a new threshold on the membership value 

of a given data item to propagate down a fuzzy decision tree from parent node to any of its child 

nodes during the fuzzy decision tree generation step. The propagation threshold is not used as 

data-partitioning-stopping criteria, but is used as a filter that prevents data instances with mem-

bership values less than this threshold to propagate down to child nodes. The algorithm for Ex-

tended Fuzzy ID3 method is same as the one in the previous section except step 4 is as follows 

 4. If the node does not satisfy any of the above conditions then do the following:  

a. If this node is the root node of the decision tree, then calculate the Attribute classifica-

tion Ambiguity for all attributes in the dataset and select the attribute with the minimum 

attribute classification ambiguity as the test attribute. 

b. Else, the node is not the root node of the decision tree, calculate the fuzzy information 

gain for all attributes; and select the attribute that has greatest fuzzy information gain as 

the test attribute. 
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c. Divide the fuzzy data set at the node into fuzzy subsets using the selected test attribute, 

with the membership value of an object in a subset set to the product of its’ membership 

value in parent node dataset and the value of the selected attribute fuzzy term. 

d. For each of the fuzzy subsets produced in c do: 

i) For each data instance in the fuzzy subset If the membership of this data instance < 

object propagation threshold then remove this instance from the fuzzy set. 

e. For each of the subsets, generate a new node with the branch labeled with the 

fuzzy term of the selected attribute. 

With experimental results they show that the modified version of IFID3 produces better 

accuracy and achieves significant reduction in the number of resulting fuzzy rules [94] [95]. 

Overall with their new fuzzy decision tree they have improved the accuracy and execution time 

of induction algorithms by integrating fuzzy information gain and classification ambiguity to se-

lect the branching feature.  By introducing a new threshold on the membership value of a data 

object to propagate down the decision tree from parent node to any of its child nodes they have 

significantly reduced number of fuzzy rules generated [94] [95].  

Both these features appeal to our data set and objective of assessing models. The rules 

generated will also help us understand the concept/rules governing protein structure formation.  

The main reason for using this machine learning technique is the rule set it generates. Using the-

se rules, we could be able to map out the path for correct protein structure models. 
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In the initial part of the chapter, we discussed many methods available in literature to val-

idate protein models. Our approach is quite different from any recent study; we aim to classify 

the models into two classes, a protein or not a protein. With thousands of protein structures  

available in Protein Data Bank is it possible to train a machine learning algorithm to study pro-

tein structure and predict when given a model whether it closely resembles these structures or 

not. From initial results we can say with some assurance that it is possible to achieve such a 

learning curve.     

The amount and nature of information given to the machine learning system will have an 

impact on the final output regarding the quality measure of given 3D structure.  There are vari-

ous ways of representing a protein three dimensional structure, like backbone sketch of the pro-

tein, the entire distance matrix of alpha carbon atoms, a fractal dimension of the structure, 3D 

information with its sequence data etc. These methods of representing protein structure are most-

ly used in comparison and classification problems and they are well studied and researched 

fields. Our proposal is to study these various structure representations and machine learning tools 

and eventually produce a well trained machine that is capable of determining the correctness of 

any protein structure model.  
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CHAPTER 4. PRELIMINARY ENCODING SCHEME 

In order to classify whether a three dimensional object is a protein structure or not, the 

structure should be represented in machine understandable format. In this methodology we rep-

resent each protein as one data vector. Each data vector should contain both structural infor-

mation as well as sequence information of that protein structure. For training and testing cycles 

with machine learning algorithm, both positive and negative data vectors are needed. Positive 

vectors can be structures from PDB (protein data bank) data base, as these structures are experi-

mentally determined ones. Negative vectors are generated by misaligning the sequence and 

structure information, so that we have wrong structure for a particular sequence. Different kernel 

methods and encoding schemes are used to observe their effectiveness in classifying proteins as 

correct or wrong. The goal here is to encode protein information in numerical form understanda-

ble by machine learning technique. The encoding is done in the following order. 

Sequence Information + Structure Information 

In the following section, different methods for representing sequence and structure in-

formation are discussed. These are not the only methods for encoding protein information but 

they are made popular in other research domains like structure alignment, protein function classi-

fication, protein secondary structure classification etc [75] [76] [77].  
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FIGURE 4.1 FEATURE VECTOR FORMATION 

4.1 Enumeration of Protein Structure  

Protein sequence is a one dimensional string of 20 different amino acids. To represent 

each amino acid we can use one of the two very popular matrices. BLOSUM (BLOcks of 

AminoAcid Substitution Matrix) is a substitution matrix. The scores measure the logarithm for 

the ratio of the likelihood of two amino acids appearing with a biological sense and the likeli-

hood of the same amino acids appearing by chance. A positive score is given to the more likely 

substitutions while a negative score is given to the less likely substitutions. The elements in this 
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matrix are used as features for data vectors. For each amino acid there are 20 features to be con-

sidered. Profile is a table that lists the frequencies of each amino acid in each position of protein 

sequence. Highly conserved positions receive high scores and weakly conserved positions re-

ceive scores near zero. Similar to BLOSUM matrix we have 20 features per amino acid. In pre-

liminary studies both methods were used to encode sequence information. For IFID3 only 

BLOSUM matrix is used. This method is further illustrated in the Figure 4.1. 

The distance matrix containing all pair wise distances between Cα atoms, is one com-

monly used rotationally and translationally invariant representation of protein structure. This 

technique is used in DALI [77] for protein structure comparison by detecting spatial similarities. 

The major difficulty with distance matrices is that they cannot distinguish between right-handed 

and left-handed structures. Other evident problem with this method is computability, as there too 

many parameters or attributes to optimize in the case of feature selection or optimization, which 

are important steps in machine learning process. Two different simulations are done for imple-

mentation purpose of the design. The first simulation is the direct implementation of a larger da-

taset done using support vectors technique. Due to some short comings in computational domain 

and poor prediction accuracy the second simulation is considered. The second simulation uses 

fuzzy decision tree to obtain better prediction accuracy. 

4.2 Vector Formation  

Single Positive Vector is a single protein with its sequence information followed by its 

own structure information. Single Negative Vectors has one protein’s sequence information fol-

lowed by another protein’s structure information. For initial implementation we have considered 
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two kernels linear and Gaussian. Sequence information is represented using both BLOSUM as 

well as profiles to observe their individual performance. In case of structural information only 

distance matrix is considered to represent protein 3D structure. For example to encode protein 

chain 1M56D of sequence length 51 using profile + distance matrix encoding scheme, its com-

plete sequence and structure information has to be included. For every amino acid in the se-

quence we need to input 20 features corresponding to its position specific score (PSSM or pro-

files), so the example protein will have 1020 (51 * 20) features to represent its sequence. For 

structure information we have to consider (upper or lower) half of distance matrix, this will result 

in 1275 (51*50/2) features to represent its structure. Total of 2295 features are used to represent 

the protein chain. (Note the entire sequence and structure details are considered .i.e. for a protein 

of length 200 we will 4000 features for sequence information and 19900 for structure.) This will 

be a positive vector as it’s from the PDB data base. Negative vectors are generated by choosing 

sequence and structure information of two random proteins in similar manner. For BLOSUM 

matrix + Distance matrix encoding scheme BLOSUM matrix is used instead of profiles. 

The PDB entries are culled based on their sequence length and relative homology using 

PISCES server [32] [78]. The culled list has no more than 25% homology among different pro-

tein sequences. This will ensure that negative vectors are not false negative with highest proba-

bility. 

4.3 Implementation Using SVM 

In this chapter, implementation of the proposed method using support vector machines is 

shown. Different simulations are done to study the effectiveness of the selected machine learning 
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technique in this data scenario. A specific set of PDB entries are culled based on sequence length 

(200) and homology. Positive and negative data are obtained from the same set as discussed in 

the previous chapter.  

4.3.1 Simulation I 

For this simulation about two thousand PDB entries are culled from the entire PDB data 

bank. These entries form the positive vectors for the learning system. The same number of nega-

tive vectors is generated by randomly selecting two PDB entries, one for sequence and other for 

structure information. Number of training vectors hence obtained is 4670 and number of testing 

vectors is 780. Results after the implementation are shown in Table 4.1 and Table 4.2, results 

show seven fold testing.  

From the tables we see BLOSUM matrix to be better in accuracy than profiles. Thought 

with BLOSUM matrix for encoding we see Gaussian kernels unable to give comparable results 

to that of liner kernel. This might be due to incorrect optimization parameters. The above results 

are not sufficient to agree upon any one encoding scheme or kernel, more simulations are re-

quired. Simulation two is done to determine the effect of using all features as suppose to some 

randomly selected ones.  
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TABLE 4.1 ENCODING SCHEME: PROFILE + DISTANCE MATRIX 

Linear Kernel RBF Kernel 

Test Case Accuracy Test Case Accuracy 

1 70.52% 1 50.58% 

2 64.74% 2 50.43% 

3 63.29% 3 50.58% 

4 64.45% 4 50.00% 

5 66.18% 5 50.72% 

6 65.32% 6 50.87% 

7 71.82% 7 50.29% 

Average 66.62% Average 50.50% 

 

TABLE 4.2 ENCODING SCHEME: BLOSUM MATRIX + DISTANCE MATRIX 

Linear Kernel RBF Kernel 

Test Case Accuracy Test Case Accuracy 

1 71.11% 1 53.08% 

2 63.59% 2 52.95% 

3 70.77% 3 53.95% 

4 72.31% 4 52.18% 

5 73.21% 5 52.44% 

6 71.41% 6 52.82% 

7 75.51% 7 53.08% 

Average 71.13% Average 52.93% 
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4.3.2 Simulation II 

From the simulation one results it is noted that the machine learning algorithm suffers 

from curse of dimensionality which affects computational efficiency and final accuracy. This 

could be due to the huge number of features considered in representing protein 3D structure. Fea-

ture reduction and selection techniques like redesigning the feature, selecting appropriate subset 

of features or combining features could be considered to solve this problem. The training and 

testing datasets are constructed similar to simulation one. 

TABLE 4.3  ACCURACY BEFORE FEATURE SELECTION 

Test Case 
BLOSUM Matrix 

Encoding 
Profile Encoding 

1 58.24% 59.72% 

2 65.29% 66.67% 

3 59.41% 63.89% 

4 60.59% 63.19% 

5 60.00% 52.78% 

6 62.94% 66.67% 

7 64.12% 58.33% 

Average 61.51% 61.60% 

 

 

To obtain this we will adopt a static scheduling algorithm that will schedule each training 

vector in a different processor. This scheduling will continue until the desired accuracy (equal or 

greater than linear kernel accuracy with all features) or maximum number of tries is attained.  
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For effective analysis of the feature selection procedure a different dataset was culled 

similar to one shown in section 4.1 but with only 600 PDB entries. Number of training vectors 

hence obtained is 1030 and number of testing vectors is 170.The results show the effectiveness 

of feature selection. The accuracies have also increased after feature selection.  

Since dataset considered here is different from simulation one, we have calculated the 

seven fold accuracy for this dataset. These results are shown in Table 4.3. There is a drop in av-

erage percentage accuracies; this might be due to lesser number of training vectors.    

4.3.3 Feature Selection Algorithm 

A simple algorithm is devised for feature selection purpose. On number of features to be 

selected several percentage of features were tested to compare their performance with vectors 

that have all the features. After several trails 2 % was proved to be sufficient to obtain the same 

accuracy. For improving the speed of the algorithm we use multiple processors. Each processor 

is scheduled to perform first the feature selection then SVM training then SVM testing. Once 

completed it will do the same task over until the desired accuracy is obtained or for maximum 

number of tries. The algorithm has the following steps 

1. Select 2 % of features from the training set 

2. Schedule a processor to train this training set using SVM light software 

3. Repeat step 1 & 2 for generating 10 such training sets 

4. Schedule the processors that have completed the training with testing 

5. Check testing accuracy of each set with the testing accuracy of set with 100 % features 

(previous result from Table 4.3).  
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 if the testing accuracy is better than previous results then record the feature num-

bers used and quit 

 Else repeat step 1 to 5 until desired results is obtained or a maximum number of 

tries is reached. 

TABLE 4.4  ACCURACY AFTER FEATURE SELECTION 

Test Case 
BLOSUM Matrix 

Encoding 
Profile Encoding 

1 60.50% 64.58% 

2 66.47% 68.75% 

3 62.55% 66.67% 

4 65.29% 65.28% 

5 63.53% 58.33% 

6 65.29% 69.44% 

7 67.06% 63.89% 

Average 64.37% 64.69% 

 

Table 4.4 shows the results obtained by using the above algorithm. The average has im-

proved in both encoding schemes. Table 4.5 clearly shows the average accuracies of both encod-

ing schemes before and after feature selection. This emphasizes the fact that all that features are 

not needed to make the binary decision. This leads us to look into other encoding schemes and 

representations of protein sequence and structure information. Other novel kernels should also be 

considered as so far only linear kernel has shown any real prediction ability [40]. 
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TABLE 4.5  COMPARISON OF ACCURACIES BEFORE AND AFTER FEATURE SELECTION 

Encoding Scheme 
Before Feature 

Selection 

After Feature 

Selection 

BLOSUM Matrix  61.51% 64.37% 

Profile  61.60% 64.69% 

 

4.4 Implementation Using IFID3 

Three different datasets are considered. Each is a subset of the same dataset with different 

number of proteins. Proteins from PDB are culled as discussed in section III. The proteins within 

a specific length range (150-200) are considered. Since there is a length variation among differ-

ent proteins, smaller proteins have “?” as attribute value for positions where is no amino acid. 

This kind of attribute definition is acceptable with IFID3 algorithm.  This representation just 

means the attribute has no value or no meaning in our case.  

As mentioned earlier, IFID3 uses attribute classification ambiguity to select the branching 

attribute at the root node, and fuzzy information gain elsewhere. Given a data set D with attrib-

utes A1, A2,…, An, based on the given parameter values  different fuzzy sets are formed for each 

attribute. Fuzzy ID3 algorithm requires the given dataset to be in a fuzzy form. In our case the 

data set is not in fuzzy form but in continuous numerical form, so it needs to be fuzzified first. 

To obtain the optimal number of fuzzy sets, the number of fuzzy sets can be given as a parameter 

that needs to be tuned.  The tree is build according to the given conditional parameters and each 

node becomes a leaf node if number of dataset is less than a given threshold, if proportion of any 
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class in the node is greater than the given fuzziness condition threshold or no more attributes are 

available for classification [93] [94]. 

TABLE 4.6 SEVEN FOLD RESULTS USING IFID3 

Test Case 100 Proteins 200 Proteins 700 Proteins 

1 82.14% 87.72% 80.50% 

2 78.57% 78.95% 82.50% 

3 85.71% 80.70% 77.50% 

4 75.43% 78.95% 81.50% 

5 82.14% 85.96% 85.00% 

6 78.57% 85.96% 80.50% 

7 78.12% 84.48% 79.50% 

Average 80.10% 83.25% 81.00% 

 

 

For our dataset we considered ten fuzzy sets and triangular membership function for each 

attribute.  The performance of the tests is shown in Table 4.6. About 20 rules are generated for 

these data sets. There are three datasets, each with different number of proteins. The first one has 

100 proteins and hence 100 positive vectors and 100 negative vectors. Similarly data set 200 and 

700 proteins has 200/700 positive vectors and negative vectors respectively. For sequence infor-

mation only BLOSUM matrix encoding used. The table shows seven fold test results and aver-

age of these seven folds [85].   
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The prediction accuracy of IFID3 is much better when compared to SVM results. More 

simulations can be done with increased number of proteins to check if there is any improvement 

to prediction results.   
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CHAPTER 5.  ENHANCED ENCODING SCHEME 

This chapter introduces enhanced encoding of protein structure data to effectively distinguish a 

well formed model from poorly formed model. The initial encoding scheme (explained in the 

previous chapter) used in this study for protein structure assessment has numerous concerns.  

The number one issue encountered while using the preliminary encoding scheme is the number 

of features required in representing the model.  This results in enormous computational overload 

on the algorithm. The sequence length becomes primary factor in coding the protein because of 

this, proteins of varying sequence lengths transformed into vectors of varying features. This re-

quires a necessary tuning step while implementing with fuzzy decision tree algorithm. The tun-

ing of the vectors is done in order to get uniform lengths along the entire data set.  This makes 

rule understanding and inference very hard and cumbersome, despite excellent prediction accu-

racy. For the above reason and to increase the prediction accuracy more enhanced spatial encod-

ing technique is considered. This encoding scheme is explained elaborately in this chapter 

As in previous studies each protein three dimensional structure is considered as a single 

vector. For the training phase we generate both positive and negative vectors from PDB struc-

tures. For positive vectors both sequence and structure details are collected from the same struc-

ture. For negative vectors sequence information comes from one structure and structural infor-

mation from another (similar to previous work). We follow a different methodology in generat-

ing these vectors when compared to previous studies.  

In previous study, only structure information taken into consideration is the distance ma-

trix along with substitution matrix to represent amino acids. In this research, different factors of 
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alpha carbon atoms like polarity, secondary structure information are also considered as features 

along with distance matrix and substitution matrix see Figure 5.1. 

 

 

FIGURE 5.1 DATA STRUCTURE OF ALPHA CARBON ATOM 

 

 To obtain uniform vector length throughout the data set containing proteins of varying 

sequence lengths, fixed number of alpha carbon atoms is selected from different local areas of 

the model. The local areas are generated as spheres of fixed diameter. Throughout the data set 

number of spheres per model is fixed as well. These constants are generated as functions of cer-

tain geometric factors of the model and are explained further below.  Alpha carbon atom features 

are selected within a fixed diameter by traversing the protein back born and after finishing with 

one diameter we move to the next. This is illustrated diagrammatically in the Figure 5.2 and Fig-

ure 5.3 
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FIGURE 5.2 ENHANCED ENCODING SCHEME ILLUSTRATION I 

 

FIGURE 5.3 ENHANCED ENCODING ILLUSTRATION II 
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 Before we begin building protein vectors, we need to effectively describe each alpha 

carbon atom and then calculate two constants that are based on the geometric structure of the 

protein model. The first   constant is a point called Structure center, this is calculated to further 

estimate distance of every alpha carbon atom to this point and relative to each other. The second 

constant is called delta (δ) this is the fixed distance that determines the groups.   

Once we extract all information in the data format shown in Figure 5.1, we calculate the 

two constants as follows 

 

Structure center is calculated as 

 
                   

 
 

                   

 
 

                   

 
  

 

 

Distance Delta is calculated as  

   
                                          

   
 

 

Where N is number of amino acid in the structure and c is a fixed constant  
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5.1 Methodology  

1. All alpha carbon atom information is extracted in the described data format by 

traversing the primary structure. 

2. The features are extracted in groups. Each group has one alpha carbon atom con-

sidered as the center CA. This atom is selected to be the center, if it satisfy the 

following two conditions 

 

i. No other center CA within a fixed distance  delta(δ) 

ii. At least 5 alpha carbon atoms that are within distance delta(δ) to the center 

CA , that do not belong to any other group.  

 

2. Once the center CA is selected for the group then group is formed with 5 other al-

pha carbon atom that are within distance delta(δ) and don’t belong to any other 

group. 

3. This process is repeated for 10 groups. 

 

{Selecting five neighboring atoms and ten groups is for pure information extraction pur-

pose. More groups could be selected if it enhances the overall machine performance. For the par-

ticular data set with the sequence length in the rage of 150 and 200, it is determined ten groups 

and six alpha carbon atoms per group to be optimal after several simulations. We need to select 

atoms from different structural zones, this is enforced by not selecting other group members and 
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group centers. Also after number of iterations number five is considered to be an optimum num-

ber of group members so we do not have scenarios like   

Two group centers too close (< than delta distance) 

Partially filled groups (< than 5 atoms within delta distance). 

Over lapping groups (once an atom is selected to be in one group, it can't be 

in any other group)} 

  The picture shows the method figuratively. 

5.2 Enumeration of Features  

 Before going into details of vector formation, the following two sections explain briefly 

the fundamental concepts of polarity and secondary structures in amino acids. This is of signifi-

cance as these features of amino acid are used in the feature space to provide maximum infor-

mation about the considered alpha carbon atom. 

5.2.1 Principle of Polarity 

 Amino acids are classified into different ways based on polarity, structure, nutritional re-

quirement, metabolic fate, etc. Generally used classification is based on polarity. Amino acid po-

larity chart in APPENDIX section shows the polarity of amino acids.  

Based on polarity, amino acids are classified into four groups as follows, 

 Non-polar amino acids 

 Polar amino acids with no charge 
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 Polar amino acids with positive charge 

 Polar amino acids with negative charge 

Each amino acid has at least one amine and one acid functional group as the name im-

plies. The different properties result from variations in the structures of different R groups. The 

R group is often referred to as the amino acid side chain. The greater the electro negativity dif-

ferences between atoms in a bond, the more polar the bond. Partial negative charges are found on 

the most electronegative atoms, the others are partially positive. 

Non-Polar Side Chains: 

Side chains which have pure hydrocarbon alkyl groups (alkane branches) or aromatic 

(benzene rings) are non-polar. Examples include valine, alanine, leucine, isoleucine, phenylala-

nine. The number of alkyl groups also influences the polarity. The more alkyl groups present, the 

more non-polar the amino acid will be. This effect makes valine more non-polar than alanine; 

leucine is more non-polar than valine. 

Polar Side Chains: 

Side chains which have various functional groups such as acids, amides, alcohols, and 

amines will impart a more polar character to the amino acid. The ranking of polarity will depend 

on the relative ranking of polarity for various functional groups as determined in functional 

groups. In addition, the number of carbon-hydrogens in the alkane or aromatic portion of the side 

chain should be considered along with the functional group. 
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i. Acidic Side Chains: 

If the side chain contains an acid functional group, the whole amino acid produces an 

acidic solution. Normally, an amino acid produces a nearly neutral solution since the acid group 

and the basic amine group on the root amino acid neutralize each other in the zwitterion. If the 

amino acid structure contains two acid groups and one amine group, there is a net acid producing 

effect. The two acidic amino acids are aspartic and glutamic. 

ii. Basic Side Chains: 

If the side chain contains an amine functional group, the amino acid produces a basic so-

lution because the extra amine group is not neutralized by the acid group. Amino acids which 

have basic side chains include: lysine, arginine, and histidine. 

iii. Neutral Side Chains: 

Since an amino acid has both an amine and acid group which have been neutralized in the 

zwitterion, the amino acid is neutral unless there is an extra acid or base on the side chain. If nei-

ther is present then the whole amino acid is neutral. 

Based on fact that how much polarity of an amino acid matters on where the amino acid 

is placed in protein three dimensional structure, we incorporate this crucial information into our 

feature space. The information is enumerated as follows 

 1 --> Neutral Non-Polar 
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 2 --> Neutral Polar 

 3 --> Basic Polar 

 4 --> Acidic Polar 

The complete list of amino acids and their three letters and single letter abbreviations, 

their structure and their polarity information is given in the table in the appendix.  

5.2.2 Secondary Structure of Proteins 

In biochemistry and structural biology, secondary structure is the general three-

dimensional form of local segments of biopolymers such as proteins and nucleic acids 

(DNA/RNA). It does not, however, describe specific atomic positions in three-dimensional 

space, which are considered to be tertiary structure. 

Secondary structure can be formally defined by the hydrogen bonds of the biopolymer, as 

observed in an atomic-resolution structure. In proteins, the secondary structure is defined by the 

patterns of hydrogen bonds between backbone amide and carboxyl groups. In nucleic acids, the 

secondary structure is defined by the hydrogen bonding between the nitrogenous bases. The hy-

drogen bonding patterns may be significantly distorted, which makes an automatic determination 

of secondary structure difficult [75]. 

The secondary structure may be also defined based on the regular pattern of backbone di-

hedral angles in a particular region of the Ramachandran plot; thus, a segment of residues with 

such dihedral angles may be called a helix, regardless of whether it has the correct hydrogen 

bonds. The secondary structure may be also provided by crystallographers in the corresponding 

PDB file [75]. 
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The rough secondary-structure content of a biopolymer (e.g., "this protein is 40% α-helix 

and 20% β-sheet.") can often be estimated spectroscopically. For proteins, a common method is 

far-ultraviolet (far-UV, 170-250 nm) circular dichroism. A pronounced double minimum at 208 

and 222 nm indicate α-helical structure, whereas a single minimum at 204 nm or 217 nm reflects 

random-coil or β-sheet structure, respectively. A less common method is infrared spectroscopy, 

which detects differences in the bond oscillations of amide groups due to hydrogen-bonding. Fi-

nally, secondary-structure contents may be estimated accurately using the chemical shifts of an 

unassigned NMR spectrum [75]. 

The DSSP algorithm is the standard method for assigning secondary structure to the ami-

no acids of a protein, given the atomic-resolution coordinates of the protein. DSSP begins by 

identifying the hydrogen bonds of the protein using a purely electrostatic definition, assuming 

partial charges of -0.42 e and +0.20 e to the carbonyl oxygen and amide hydrogen respectively, 

their opposites assigned to the carbonyl carbon and amide nitrogen. A hydrogen bond is identi-

fied if E in the following equation is less than -0.5 kcal/mol: 

 

Based on this, eight types of secondary structure are assigned. The 310 helix, α helix and π 

helix have symbols G, H and I and are recognized by having a repetitive sequence of hydrogen 

bonds in which the residues are three, four, or five residues apart respectively. Two types of beta 

sheet structures exist; a beta bridge has symbol B while longer sets of hydrogen bonds and beta 

bulges have symbol E. T is used for turns, featuring hydrogen bonds typical of helices, S is used 

http://en.wikipedia.org/wiki/E.T._the_Extra-Terrestrial
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for regions of high curvature (where the angle between and is less than 70°), 

and a blank (or space) is used if no other rule applies, referring to loops. These eight types are 

usually grouped into three larger classes: helix (G, H and I), strand (E and B) and loop (all oth-

ers). This classification is shown in the Table 5.1 (partially adopted from [75]). 

 

TABLE 5.1 8-TO-3 STATE REDUCTION METHOD IN SECONDARY STRUCTURE ASSIGNMENT 

DSSP Class 8-state Symbol 3 – state Symbol Class Name Enumeration 

310 helix 

α helix 

π helix 

G 

H 

I 

H Helix 1 

β strand E E Sheet 2 

Isolated β- bridge 

Bend 

Turn 

Rest 

B 

S 

T 

- 

C Loop 3 

 

For showing each amino acid to belong to one of the three classes in the algorithm, these 

values are enumerated as 1 for helix, 2 for Sheets and 3 for coil. In most cases the PDB files 

downloaded from protein data bank website, contains the secondary structure information. In 

certain case if that is not available, the proper enumeration is done by calculating the secondary 

structure as explained in the above paragraphs. For CASP templates only coordinate information 

is provided and secondary structure in calculated in every case using the DSSP algorithm,  
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5.3 Vector Formation 

This section describes the vector formation procedure. For each group first the center CA 

details are included followed by group members. There are 23 features to describe each alpha 

carbon atom. First 20 represents the BLOSUM matrix sequence corresponding to the amino acid 

residue 21
st
 is to represent polarity 22

nd
 for secondary structure 23

rd
 for distance (to structure 

center for center CA and to center CA for other group members). There are 23 features to repre-

sent one alpha carbon atom, 6 members in a group, so 138 to represent a group and with ten 

groups we have a total of 1380 features to represent a single protein. This vector formation 

methodology enforces that proteins of different sequence length will all have same number of 

features, unlike previous method  which ended with different number features for very vector 

and needed certain tweaking to manage the flaw. The concept is diagrammatically illustrated in 

the Figure 5.4. Due to this format of representing the features, each feature number has a special 

significance, like feature numbers 21, 44, 67 etc represent the polarity of amino acids that are 

within delta distance, correspondingly feature numbers 22, 45, 68 etc represent secondary struc-

tures of the same amino acids and feature number 23, 46, 69 etc represent distance either to cen-

ter CA or the structure center.  This way of representation helps during understanding of rules in 

the process of knowledge inference from the rules. 
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FIGURE 5.4 VECTOR FORMATION 

 

The PDB entries are culled based on their sequence length and relative homology.  The 

culled list has no more than 25% homology among different protein sequences.  This will ensure 

that negative vectors are not false negative with highest probability. Only structures obtained by 

X-ray crystallography are selected as they offer better resolutions. We sub selected these proteins 

to form idle training phase. 

5.4 Implemeantation Results 

For implementation purpose five subsets of protiens are selected, to determine the 

optimal number of training data required for obtaining the highest accuracy.  These five subsets 

have 100, 350, 500, 600 and 700 proteins respectivily. The table shows the seven fold cross 

validation results of these subsets. There is a significant improvement in accuracy compared to 

previous encoding technique. Overall subset suggestion containing 500 proteins is seen to 
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perform better campared to other ones. Different dataset are considered to analyzise the rule tree 

generated by fuzzy decision tree algorithm.   

TABLE 5.2 PRELIMINARY ENCODING SEVEN FOLD RESULTS 

Test Case 100 Proteins 350 Proteins 500 Proteins 600 Proteins 700 Proteins 

1 82.14% 82.35% 88.00% 82.56% 80.50% 

2 78.57% 75.49% 78.67% 81.39% 82.50% 

3 85.71% 86.27% 80.67% 84.30% 77.50% 

4 75.43% 79.41% 79.33% 79.65% 81.50% 

5 82.14% 78.43% 85.96% 80.23% 85.00% 

6 78.57% 78.43% 86.00% 77.32% 80.50% 

7 78.12% 85.29% 84.66% 79.65% 79.50% 

Average 80.10% 80.81% 83.33% 80.73% 81.00% 

 

 

This camparison is made in Table 5.4. There are also other improvements like 

considerable reduction in terms of computational time and number of features considered in 

spatial encoding.  Different dataset are considered to analyzise the rule tree generated by fuzzy 

decision tree algorithm. 
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TABLE 5.3 ENHANCED SPATIAL ENCODING SEVEN FOLD RESULTS 

Test Case 100 Proteins 350 Proteins 500 Proteins 600 Proteins 700 Proteins 

1 86.67% 88.24% 98.72% 89.53% 89.00% 

2 80.00% 85.30% 97.44% 97.10% 95.00% 

3 83.33% 86.27% 99.36% 94.77% 94.50% 

4 86.66% 89.22% 92.31% 96.51% 88.00% 

5 90.00% 88.24% 91.66% 90.11% 96.00% 

6 86.67% 87.25% 95.51% 95.35% 89.00% 

7 86.66% 83.33% 100.00% 92.44% 97.00% 

Average 85.71% 86.84% 96.43% 93.69% 92.64% 

 

TABLE 5.4 COMPARISON OF TWO ENCODING SCHEMES 

Subset Preliminary Encoding Enhanced Encoding 

100 Proteins 80.10% 85.71% 

350 Proteins 80.81% 86.84% 

500 Proteins 83.33% 96.43% 

600 Proteins 80.73% 93.69% 

700 Proteins 81.00% 92.64% 

Average 81.2% 91.1% 

 

Implementation using SVM was considered but the results are not shown as they were 

sub optimal compared to the above results. 
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5.5 Meaningful Rules and Inference 

The rules are analyzed to deduce any association to known knowledge.  The number of 

rules for subset 1 and 2 with 100 and 350 proteins were around 20, but in the third subset the 

number of rules spiked to be around 60. The accuracy in the subset 3 has also increased. In the 

subsets 4 and 5 the number of rules continued to increase but the accuracy dropped slightly. The 

average numbers of rules in all subsets are shown in Table 5.5. These rules are further studied to 

underscore any meaningful information, as well as to see if they correlate to already known 

knowledge about these structure.  

TABLE 5.5  AVERAGE NUMBER OF RULES 

Subset Average No. Of Rules 

100 Proteins 15 

350 Proteins 18 

500 Proteins 67 

600 Proteins 81 

700 Proteins 84 

 

Most of these rules are based on checking the polarity of nearby atoms. The next degree 

of checks is performed on their amino acid sequence information followed by the distance be-

tween atoms. Mostly secondary structure information is least considered in forming the judg-

ment. This correlates directly with well known factor that amino acid properties like charge, 

hydrophilicy or hydrophobicity, are important to protein 3D structure formation.  
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FIGURE 5.5 FUZZY DECISION TREE-I 

 

 

Figure 5.5 shows one such fuzzy decision tree partially. It is noticed that polarity features 

are used more often than any other features. The outline of the rules seems to follow a particular 

style, always checking polarity of atoms belonging to same spatial group. Those are the atoms 

that are placed within delta (δ) distance in the three dimensional structure.  In different trees dif-

ferent spatial groups are seen to determine the outcome, but the overall style remains the same in 

trees of all test cases.  
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Figure 5.6 shows a similar tree but the structure is slightly different compared to first one. 

Here the first feature considered to classify is a one containing sequence information and then 

polarity of several atoms all within the same group are considered to make the final decision.   

 

 

 

FIGURE 5.6 FUZZY DECISION TREE-II 
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Overall the results look promising and we can further test the system against CASP data 

set.  This is done and explained in the next chapter.  By using enhanced encoding results show 

that, we can distinguish a badly formed model that has no association with structure in PDB from 

the good ones that belong to PDB.  In next few chapters, this novel technique is called using the 

abbreviation EE_IFDT. It stands for Enhanced Encoding with Improved Fuzzy Decision Tree. 
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CHAPTER 6. TESTING USING CASP TEMPLATES  

 Every other year since 1994, protein structure modelers from around the world dedicate 

their late spring and summer to testing their methods in the worldwide modeling experiment 

called CASP (Critical Assessment of Structure Prediction) [100] . CASP meetings have become 

one of the most influential venues for assessing protein structure modeling methods Predictors 

with expertise in applied mathematics, computer science, biology, physics and chemistry in well 

over 100 scientific centers around the world work for approximately three months to generate 

structure models for the set of several tens of protein sequences selected by the experiment or-

ganizers. The proteins suggested for prediction (in the CASP jargon – ‘targets’) are either struc-

tures soon-to-be solved or structures already solved and deposited at the PDB but kept inaccessi-

ble to the general public until the end of the CASP season. The prediction center has been orga-

nized to provide the means of objective testing of these methods via the process of blind predic-

tion. These experiments aim at establishing the current state of the art in protein structure predic-

tion, identifying what progress has been made, and highlighting where future effort may be most 

productively focused. There have been nine previous CASP experiments. The tenth experiment 

is planned to start in April 2012. Description of these experiments and the full data (targets, pre-

dictions, interactive tables with numerical evaluation results, dynamic graphs and prediction vis-

ualization tools) can be accessed through CASP website http://predictioncenter.org. Details of 

the experiments have been published in a scientific journal Proteins: Structure, Function and 

Bioinformatics. These journals include papers describing the structure and conduct of the exper-

iments, the numerical evaluation measures, reports from the assessment teams highlighting state 

of the art in different prediction categories, methods from some of the most successful prediction 
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teams, and progress in various aspects of the modeling. Prediction methods are assessed on the 

basis of the analysis of a large number of blind predictions of protein structure. Summary of nu-

merical evaluation of the methods tested in the latest CASP experiment can be found on their 

website. Some of the best performing methods are implemented as fully automated servers and 

therefore can be used by public for protein structure modeling [100] [101]. 

This chapter contains a detailed overview on CASP experiments, with explanation on 

procedures followed during the course of the competition. There is also a section on template 

based modeling and methods that perform near perfection using this technique. Then, the chapter 

gives a comprehensive description on model quality assessment part of CASP and the methods 

of evaluating the MQA programs. Finally the chapter shows the Enhances encoding technique’s 

(EE_IFDT) performance with CASP templates in comparison with other prominent techniques 

that have been shown to give good results in CASP9 and CASP8.    

6.1 Synopsis on CASP Experiments   

The main goal of CASP is to obtain an in-depth and objective assessment of our current 

abilities and inabilities in the area of protein structure prediction. To this end, participants will 

predict as much as possible about a set of soon to be known structures. These will be true predic-

tions, not ‘post-dictions’ made on already known structures.  

The results of CASP (Critical Assessment of Structure Prediction) are published as arti-

cles in special issue of journal PROTEINS. The experiment is dedicated to assess the state of the 

art in protein structure modeling. The following paragraphs explain the conduct of experiment, 

the categories of prediction and assessment procedure. There have been nine previous CASP ex-
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periments, at two year intervals from 1994 through 2010, and these were reported in respective 

special issues of PROTEINS [100][101].  The specific challenges in constructing the best possi-

ble model of a particular protein depend on a number of factors. To reflect these considerations, 

CASP modeling targets are divided into categories. The categories have evolved over the course 

of the experiments, as the capabilities of the methods have changed. This time, as in CASP8, tar-

gets were divided into two primary categories – TBM, where a relationship to one or more ex-

perimentally determined structure could be identifies, providing at least one modeling template 

and often more [100]. The second category - template-free modeling, where there are either no 

usefully related structures or the relationship is so distant that it cannot be detected.  In addition 

to evaluating the overall accuracy of three dimensional structure models, CASP also examines 

other key aspects of structure modeling. There are four different articles published in PROTEINS 

journal, assessing major aspects in the following areas: prediction of the accuracy of a model, 

critical to determining whether it is suitable for a particular purpose; prediction of the presence 

of structural disorder, important since some parts of proteins do not exhibit a single three-

dimensional structure under all circumstances; intramolecular contact identification, a source of 

auxiliary information for template-free modeling; and the identification of ligand binding sites, a 

central application of models.  

The structure of the experiment has three main steps [100]: 

1. Participants are required to register for the experiment in one or both of two categories: 

as human teams, where a combination of computational methods and investigator expertise may 

be used, and as servers, where methods are only computational and fully automated, so that a 

target sequence is sent directly to a machine.  
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2. Information about ‘‘soon to be solved’’ structures is collected from the experimental commu-

nity and passed on to the modeling community. The trend in recent CASPs has been, nearly all 

targets were obtained from the structural genomics community, particularly the NIH Protein 

Structure Initiative Centers(the PSI, http://www.nigms.nih.gov/Research/FeaturedPrograms/PSI).  

3. Models are collected in accordance with predefined deadlines. Groups are limited to a 

maximum of five models per target and are instructed that most emphasis in assessment would 

be placed on the model they designated as the most accurate (referred to as ‘‘model 1’’). This 

self-ranking of model quality is also used as part of the evaluation of the state of the art in as-

signing relative accuracy to models. The models were compared with experiment, using numeri-

cal evaluation techniques and expert assessment and a meeting is held to discuss the significance 

of the results [100] [101]. 

Early CASP experiments saw dramatic improvements from round to round. Recently, 

progress has been more gradual, but nevertheless, steady and cumulatively very significant [100]. 

The CASP web site (http://predictioncenter.org) provides extensive details of the targets, the 

predictions, and the numerical analyses. A CASP10 experiment is planned, beginning in the 

spring of 2012 and culminating in a meeting in December of that year. The meeting is planned to 

take place in Italy. 

6.2 Template Based Modeling in light of CASP 

Assessment of the template-based predictions in the recently completed CASP (CASP 9 

[100]) identified the top two teams achieving particularly promising results: groups of Yang 

Zhang (University of Kansas) [102] and David Baker (University of Washington) [103]. Both 
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groups used highly automated computational approaches and, while Baker’s group utilized hun-

dreds of thousands of CPUs distributed worldwide to build the optimal model 

(http://boinc.bakerlab.org/rosetta/), Zhang’s methodology necessitated considerably less CPU 

time. Zhang’s approach is based on the improved I-TASSER methodology [102] that threads tar-

gets through the PDB library structures, uses continuous fragments in the alignments to assemble 

the global structure, fills in the unaligned regions by means of ab initio simulations and finally 

refines the assembly by an iterative lowest energy conformational search. Baker’s TBM ap-

proach uses three different strategies depending on the target length and target–template se-

quence similarity [103], and in general relies on computationally demanding sampling of con-

formational space coupled with an iterative all-atom refinement. The predictions from both 

groups improved over the best existing templates for the majority of template-based targets in 

CASP9. 

Analyzing the progress of server performance in successive CASPs, it is evident that the 

gap between the best servers and the best human-expert groups is narrowing over time [104]. Es-

pecially in the case of easy TBM, the progress of automated servers is impressive, with the frac-

tion of targets where at least one server model is among the best six submitted models – increas-

ing from 35% in CASP5 to 65% in CASP6, and to over 90% in CASP7. This also confirms the 

notion that the impact of human expertise on modeling of easy comparative targets is now mar-

ginal. In general, in CASP7 servers were at least on par with humans (three or more models in 

the best six) for about 20% of targets; and significantly worse than the best human model for on-

ly very few targets. In CASP7 special attention was dedicated to the assessment of model details 

in high accuracy TBM. Conceptually, the TBM procedure starts from identifying and selecting 

the appropriate templates and follows with the target– template sequence alignment. And, after 
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years of development, the level of target–template structural conservation and the accuracy of the 

alignment still remain the two issues having the major impact on the quality of resulting models.  

Summarizing, currently available template-based methods can reliably generate accurate 

high resolution models, comparable in quality to the structures solved by low resolution X-ray 

crystallography, when sequence similarity of a homolog to an already solved structure is high 

(50% or greater) [104] [105]. As alignment problems are rare in these cases, the main focus 

shifts to accurate modeling of structurally variable regions (insertions and deletions relative to 

known homology) and side chains, as well as to structure refinement. The high-quality compara-

tive models often present a level of detail that is sufficient for drug design, detecting sites of pro-

tein–protein interactions, understanding enzyme reaction mechanisms, interpretation of disease-

causing mutations and molecular replacement in solving crystal structures [8] [9] [10]. 

6.3 Testing EE_IFDT Algorithm with CASP Dataset 

Human predictors and assessors are not likely to be able to handle many more test se-

quences than at the past CASP meetings. Predictors only have a few months to generate their 

models, and an assessor only has about 2 months to examine approximately 1000 models calcu-

lated by 100 methods; a rigorous examination that goes beyond the use of a single model quality 

criterion must depend on consideration of tens of quantitative assessment criteria and visual in-

spection of each model. It appears that testing with hundreds of sequences can be achieved only 

by automating both the modeling and assessment methods. Although the CAFASP section of 

CASP [104], already evaluates automated prediction methods, this assessment is the same as that 

of the other models and is thus exposed to the same problems. Two research groups, Pcons 
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(Sweden) [106] and LEE (Korea) [104], outperformed other CASP7 participants in a statistically 

significant manner based on the results of the paired t-test assessment. Wallner and Elofsson’s 

Pcons [106] is a consensus-based method shown in CASP7 that is capable of a quite reliable 

ranking of model sets for both easy and hard targets. Pcons uses a meta-server approach (i.e. 

combines results from several available well-established QA methods) to calculate a quality 

score reflecting the average similarity of a model to the model ensemble, under the assumption 

that recurring structural patterns are more likely to be correct than those observed only rarely. 

The LEE group, by contrast, based their technique on a comparison of query models with their 

own, and assigned rank in accordance with the distance between the models. There are several 

other groups that follow the same method for ranking the models. Although both methods could 

provide a ranking significantly correlated with the one derived from CASP data, they were not 

able to select the best model consistently from the entire collection of models, indicating that 

considerable additional effort is needed in this area. 

6.3.1 Testing Using CASP8 and CASP9 Templates –Testing Phase I 

We aim to establish effectiveness of our assessment methods by testing our fuzzy deci-

sion trees using CASP data. The templates selected from CASP are used only in the testing 

phase, training data comes from PDB (Protein Data Bank).  The vector formation is explained in 

detail in the previous chapter (Chapter 5). In the model template files are similar to the PDB files 

with few missing details like secondary structure information and other meta data. 

Secondary structures are explicitly given in most PDB files. Templates files only contain 

the coordinates of atoms and the corresponding secondary structure is calculated using popular 

DSSP algorithm. 
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 Templates are selected from CASP9 and CASP8 conducted in years 2010 and 2008 re-

spectively. Other CASP data are not selected due to incomplete data in the CASP official website 

(like missing results summary table etc.). Our algorithm does not rank model, it classifies them 

in to two classes, similar to protein structure and not similar to protein structure found in PDB. In 

order to pick only models that are either good or bad and not to pick the ones that fall on the 

middle grey area, templates are selected based on their GDT_TS scores. Only good and bad 

scored templates are selected average scores are avoided.  

TABLE 6.1 RESULTS USING CASP TEMPLATES AS TEST DATA 

 CASP 9 CASP8 

Number of Positive Templates 243 187 

Number of Negative Templates 85 83 

Protein 500 79.13 % 72.22 % 

Protein 700 79.61 % 67.78 % 

Protein 1000 77.18 % 69.63 % 

 

First only templates that have residue range of 150 to 200 are chosen since the training 

proteins fall in same range. Among these models, positive and negative data are separated based 

on their GDT_TS scores. A score of above 90 is considered as positive data point and a score of 

less than 10 is selected as negative point, other templates are voided. The data is formatted simi-

lar to the training data using spatial feature extraction 79technique (explained in previous chap-

ter). Among thousands of template, only few hundred satisfy these constraints, the results of the-

se test data are shown in the Table 6.1. Different subsets of the initial culled structures compris-

ing 1000 proteins are used and their individual results are recorded. The subsets are the same that 
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was used for training phase. In the training phase they were divided into seven folds to check 

their performance using extended fuzzy decision trees. Now they are not divided into any fold 

the entire set is considered to check their performance against CASP templates.  

The results are used to further emphasis how effective machine learning techniques are 

for assessing protein models. To obtain a direct comparison of our model assessment technique 

with other CASP MQAPs , we have to design a scoring method for each test case. Since the 

fuzzy decision tree used here only classifies each test case and does not explicitly score them  

(but it does give the rule with maximum weight and the distance between the rule and the data 

point), we might either deduce a unique scoring mechanism or use entirely a different machine 

learning algorithm like SVM to score as well as classify the test cases.   

6.3.2 Comparison with other Model Assessment Techniques -Testing Phase II and III 

Our technique is different from most of the methods shown in CASP competitions. First 

most of these techniques are structure alignment techniques that measure the accuracy of the 

model by comparing it with the native structure. Some techniques do not use the native structure 

to assess the model, but they are consensus or clustering methods that need a whole lot of models 

to rank the models. These methods do not give reliable results when number of models is less. 

Very few methods that use only the single model and its own structure to give assessment on the 

model are available.   These techniques most definitely underperform the consensus methods.  In 

CASP9, targets that were difficult for structure prediction also appeared to be difficult for model 

quality prediction [107]. This fact can be explained, in part, by the observation that the best per-

forming methods are consensus methods, which work better for the TBM targets for which the 

cluster center is dominated by the presence of structurally similar templates, while for hard mod-
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eling cases, there is usually no consensus or, in some cases, a wrong one. As results from struc-

ture comparison programs become less meaningful below some cut-off (e.g., a model with a 

GDT_TS score of 20 does not superimpose with a target significantly better than a model with a 

GDT_TS score of 15), the relationship between model quality estimates and structure similarity 

scores for difficult targets can be misleading. In CASP, model quality predictions are evaluated 

by comparing submitted estimates of global reliability and per-residue accuracy of structural 

models with the values obtained from the sequence-dependent LGA superpositions of models 

with experimental structures. There two prediction techniques in CASP are called QA1 and 

QA2. In QA1, the model assessor are required to give a single score for the entire model and 

rank the models (global) and in QA2 they are required to provide per –residue scores(local)  In 

both prediction modes, estimated and observed data are compared on a target-by-target basis and 

by pooling all models together. The first approach rewards methods that are able to correctly 

rank models regardless of their absolute GDT-TS values, while the second accentuates how well 

the method is able to assign different scores to models of different quality regardless of their 

ranking within the set of models for the specific target [107]. Correlation between the predicted 

accuracy scores and the corresponding GDT_TS values for the submitted server models are used 

as a main evaluation measure for assessing the QA1 results.  
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TABLE 6.2 MQA METHODS CLASSIFICATION 

Method 

Consensus 

/Single Model 

Local/Global 

Score 

Scoring function 

QMEANclust 

[108] 
Consensus Local +Global 

QMEAN-weighted mean GDT_TS de-

viation of the model to all models in the 

subset 

Multicom-

cluster [110]  
Consensus Local + Global 

Average GDT-TS between the model 

and all other models in a decoy set 

(similar to the NAÏVE_CONSENSUS 

method - see Materials) 

Distill_NNPIF 

[107] 
Single Local + Global 

An artificial neural network based on 

Cα-Cα contact interactions 

ProQ2 

 [109] 
Single Local + Global 

A successor of ProQ54; combines evo-

lutionary information, multiple se-

quence alignment and structural fea-

tures of a model using an SVM 

  

Several top performing groups obtained very similar results. This visual conclusion is 

confirmed by the results of the statistical significance tests on the common set of predicted tar-

gets. According to the paired Student's t-test, the top-ranked eight predictors (MuFOLD-WQA, 

MuFOLD-QA, QMEANClust , United3D, Multicom-cluster, Mufold, MetaMQAPclust, and 

MQAPmulti—all using clustering techniques) [107] appear to be indistinguishable from each 
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other and perform better than the rest of the groups at the P = 0.01 significance level. It should 

be noted that not all groups submitted quality estimates for all models, and therefore correlation 

coefficients for different groups on a specific target might be calculated on slightly different sub-

sets of models. This may raise a question of reliability of direct comparisons of the scores for 

different groups. 

Comparison of the QA1 results from the latest CASPs points to clear though modest pro-

gress in the area: all assessment scores have improved since CASP8 and correlation coefficients 

for the best groups have nearly reached saturation (0.97), and so it may seem that the QA1 prob-

lem has been solved. But a closer look reveals hidden problems and issues that need attention. As 

in two previous CASPs, all top performing methods in CASP9 relied on a consensus technique to 

assess model quality. However, for real-life applications, researches may want to obtain esti-

mates for single models downloaded from one of the many widely used model databases. There-

fore, there is an urgent need for methods that can assign a quality score to a single model without 

requiring the availability of tens of models from diverse servers. Unfortunately, these methods 

lag behind the best consensus-based techniques: the best quasi-single model method in CASP9 

was ranked 18th, while the best “pure” single-model method was ranked only 28
th

 [107]. 

So far our technique does not explicitly score the models, so it poses a problem of com-

paring our technique with other best performing methods submitted in CASP. We still need to 

make some comparison to make a reliable statement about our technique. So to do this we se-

lected few methods among the ones submitted for CASP. They are QMeanClust [108], ProQ2 

[109], Multicom_Cluster [110] and Distill_NNPIF [107]. Classification and a brief description 

about these methods can be found in the  
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Table 6.2. These particular methods are selected because of their performance in CASP9.  

QMeanClust and Multicom_Cluster are consensus techniques that give both local and global 

score for the model they among the top performing methods in CASP9. ProQ2 and Dis-

till_NNPIF are techniques that give both local and global score by using only a single model and 

they are among top performers in this category (single model category). Also Distill_NNPIF uses 

neural networks and ProQ2 uses SVM, these can also be categorized under machine learning al-

gorithms, similar to our approach to the problem.  

6.3.2.1 Results using classification – Testing Phase II 

To implement our technique specific targets are selected from CASP9 data archives. Tar-

gets T0635 and T0578 are selected because they have residues in the range 150-200 and all the 

above selected methods have submitted their score files for the templates.  

TABLE 6.3 POSITIVE TEMPLATE RESULTS 

Method 

Total number of 

Positive Tem-

plates 

Templates with 

available results 
True Positive 

False Nega-

tive 

QMEANclust 162 115 115 0 

Multicom-

Cluster 
162 115 52 0 

Distill_NNPIF 162 115 13 102 

ProQ2 162 111 107 4 

EE_IFDT 162 162 162 0 



85 

 

Among the templates only positive and negative templates are selected based on their 

GDT_TS scores. For a GDT_TS score of above 90 is considered as positive and GDT_TS below 

10 is considered as negative data value.  

 

TABLE 6.4 NEGATIVE TEMPLATE RESULTS 

Method 

Total number of 

Negative Tem-

plates 

Templates with 

available re-

sults 

True Nega-

tive 
False Positive 

QMEANclust 45 44 44 0 

Multicom-

Cluster 
45 45 45 0 

Distill_NNPIF 45 45 45 0 

ProQ2 45 40 40 0 

EE_IFDT 45 45 11 34 

 

In the target T0635 all score were above 10 GDT_TS, so this target is used to generate 

only positive values and T0578 which had no templates with score above 90 is used to generate 

only negative values.    Their performances are shown in the table and table.  

The consensus methods that have similar score to that of GDT_TS and they have flawless 

performance. The single model techniques are not perfect in their performance. Our technique is 

good in finding the true positives and not that well in finding true negatives. This could be due to 

the fact we judge the structure on its sequence and how close it is to other pdb structures. Most of 
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models are derived from PDB structures and hence might have some of the same features as the 

pdb structure. We do not penalize the models for missing residues and other obvious mistakes in 

template based modeling technique. The other major improvement in our technique should be in 

deducing a scoring function. This will enable us to check its performance among all models to 

GDT_TS as well as other model quality assessment techniques in the literature.  These results 

shows how effective our technique is when compared to others. It is noted that how insignificant 

our technique is when used to classify negative values.  

6.3.2.2 Results Using Scoring Methodology – Testing Phase III 

For comparing EE_IFDT technique with other CASP competitors, deducing a scoring 

mechanism is necessary. Fuzzy decision tree algorithm does not explicitly score each data point. 

It does however; give the rules that are fired with their individual weights. The rule with maxi-

mum weight is used for classification of the data point. It is possible to calculate the distance be-

tween the rule with maximum weight and the data point. This distance can be used as a parame-

ter for providing a confidence on the classification itself. This gives us a neat gave of scoring 

each model using IFDT. 

Each data point is scored as  

 

       
              

                                    
    

 

After normalizing this score between 0 and 1, the final score is given for positive and 

negative data points as. 

For positive data points, the final score (FS) is calculated as  
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For negative data points, the final score (FS) is calculated as  

                           

The final score will always be between 0 and 100. For positive vector it will be more than 50 and 

for negative it will be less than 50.  

To compare this score of each data point with GDT_TS score given in CASP, Pearson’s correla-

tion is calculated for both scores. In statistics, the Pearson product-moment correlation coeffi-

cient (sometimes referred to as the PPMCC or PCCs, and typically denoted by r) is a measure of 

the correlation (linear dependence) between two variables X and Y, giving a value between +1 

and −1 inclusive. The correlation coefficient ranges from −1 to 1. A value of 1 implies that a lin-

ear equation describes the relationship between X and Y perfectly, with all data points lying on a 

line for which Y increases as X increases. A value of −1 implies that all data points lie on a line 

for which Y decreases as X increases. A value of 0 implies that there is no linear correlation be-

tween the variables. Suppose we have two variables X and Y, with means   and    respectively 

and standard deviations    and    respectively. The correlation is computed as  

    
                 
 
   

         
 

This correlation is calculated for every method submitted to CASP per target. In following tables 

the correlation between the few selected techniques from CASP 9 and GDT_TS score is given 

along with EE_IFDT’s correlation with GDT_TS.  
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TABLE 6.5 PEARSON'S CORRELATION FOR TARGET T0635 

Method 
Total number of 

Templates 

Templates with 

available results 

Pearson’s Correla-

tion 

QMEANclust 387 324 0.998 

Multicom-Cluster 387 325 0.998 

Distill_NNPIF 387 325 0.937 

ProQ2 387 314 0.728 

EE_IFDT 387 387 0.678 

  

 

TABLE 6.6 PEARSON'S CORRELATION FOR TARGET T0578 

Method 
Total number of 

Templates 

Templates with 

available results 

Pearson’s Correla-

tion 

QMEANclust 625 321 0.814 

Multicom-Cluster 625 322 0.794 

Distill_NNPIF 625 322 0.498 

ProQ2 625 314 0.572 

EE_IFDT 625 625 0.050 

 

 

From the tables it is seen that Enhanced encoding scheme using improved fuzzy decision trees 

has the least correlation with GDT_TS. On closer look, it is seen that EE_IFDT provides results 

for all models whereas other give only for selected few. The scoring technique used with 
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EE_IFDT certainly needs more refinement as it does not consider parameters unique to model 

prediction techniques.  Even though direct comparison results in a conclusion that EE_IFDT is 

not a good classifier or evaluator when it comes to CASP templates, we still have to look at the 

methodology used here to make any judgment. EE_IFDT does not use parameters from other 

scoring techniques. It uses only the coordinate information from the 3Dstructure itself to make 

the decision.  Even though the EE_IFDT performance is not good in above tables, in case of 

Target T0635 it does perform better than some of submitted methods in CASP like (Baltymas, 

Splicer, Splice_QA, PconsR, PconsD etc.) 

TABLE 6.7 PEARSON'S CORRELATION FOR TARGET T0635 

Method 
Total number of 

Templates 

Templates with 

available results 

Pearson’s Correla-

tion 

Baltymus 387 325 0.000 

Splicer_QA 387 313 0.000 

PconsR 387 137 0.338 

PconsD 377 325 0.040 

EE_IFDT 387 387 0.678 

 

 In this chapter we use EE_IFDT to examine the templates submitted to recent 

CASP competitions. First we selected only templates that are classified as either good or bad and 

used it as test data set to evaluate (around 10 % of all templates in CASP 8 and 9 since we only 

chose model 1 of all groups). The training data set is the same ones from training phase of 

EE_IFDT algorithm (results given in previous chapter). The prediction accuracy using CASP 
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template is around 70%, (refer Table 6.1) in testing phase I. To get a better understanding and to 

compare EE_IFDT with other methods two targets from CASP 9 are selected for further investi-

gation in testing phases II and III. All templates in this target are used not just the model number 

1 of every group, as in testing phase I. These templates are classified as positive and negative 

based on their GDT_TS scores similar to phase I of testing. These results are recorded in Table 

6.3 and Table 6.4. So far no scoring scheme has been used, since the only way to compare 

EE_IFDT with other CASP competitors is to score each model. For this purpose a rudimentary 

scoring scheme is introduced and its performance in comparison to other prominent CASP com-

petitors is recorded in Table 6.5 and  

Table 6.6. In tables EE_IFDT is seen to have less correlation score compared to others 

but it is also noted that EE_IFDT scores all models whereas other have not given scores to few 

templates. In CASP competitors are not required to score every model and this makes any com-

parison difficult. Even then, it is noted that the performance of EE_IFDT is not up to the mark. 

In the final table, Table 6.7, EE_IFDT is shown to be better compared to some other competitors 

of CASP.       
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CHAPTER 7. FUTURE RESEARCH AVENUES 

The main purpose of this research is to identify factors that distinguish between a well 

formed protein structure and a poorly shaped structure. The first challenge in this scenario is to 

design a fast and accurate system that classifies the protein models. Secondly we would like to 

know the features/factors in the learning system that distinguishes a well defined model from low 

scoring models. Thirdly we would want to study common protein folds that span the protein 

three dimensional structure space.  

7.1 Scoring Technique 

For our technique to compete in CASP, we need to deduce a more refined scoring scheme 

along with classification of templates. The scoring scheme should consider the structure correct-

ness with respective to the sequence as well as other flaws like missing residues etc while evalu-

ating the overall score of the model or CASP templates. This will enable our technique to partic-

ipate in future CASP competitions. The goal is to design a scoring mechanism that will have a 

better performance in comparison with other techniques. Along with global score given to the 

model, a local, per-residue scoring methodology will further enhance the usefulness of the tech-

nique. This will also be useful to compare its performance with other techniques that give local 

score to the models. This will require more knowledge on other features governing the protein 

space.  We try to accomplish something that most other model assessment programs in literature 

don’t. We try to judge a protein model using only information from its own structure and se-



92 

quence and without considering other scoring techniques or consensus methods.  The Fuzzy ID3 

used could be a phase in a pipeline designed to evaluate models. 

7.2 Future enhancements in current methodology 

The following algorithm explains new methodologies discussed in previous sections to be 

undertaken in each step of the design.  

Algorithm 

Step 1: Data Selection:  

Currently data is culled using DunBrack lab  

New methodology would include active learning, other algorithm to                          

include proteins from different families and classifications 

 

 

Step2: Data Encoding: 

            Step 2.1: Encoding of Protein Sequence 

                              Current Method: BLOSUM Matrix                                

                                                            Profiles 

                     New Method: String Kernel 

            Step 2.2: Encoding of Protein Structure 

                  Current Method: Distance Matrix 

 New Method: Atom interactions, Hydrogen bonds and other features 

from mentioned feature pool 

Step 3: Learning System: 

   Current Technique: Support Vector Machines 

Fuzzy Decision Trees 

                                    New Techniques:  Type-2 Fuzzy Decision Tree Algorithm 

                                                                   New Random Fuzzy Forest 
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Some of these methods like type-2 fuzzy decision trees, fuzzy random forest, use of 

string kernel for sequence information encoding, use of structure related features for structure 

information encoding etc. are included to enhance the accuracy of the learning system and others 

like active learning, ball traverse of the structure etc. are available to improve the speed.  

It has been noted that initial encoding method used is not effective especially for the se-

quence information. Use of string kernels to encode information regarding the protein sequence 

will result in more efficient data vectors. This will require one more stage of kernel method us-

age before decision trees. Methods like type-2 fuzzy decision trees, granular neural networks, 

data clustering etc could be explored. Features other than geometry could also affect the learning 

capabilities.   

7.2.1 Type-2 Fuzzy Decision Tree Algorithm  

This technique would be employed to improve accuracy. Type-1 FDT algorithm got 

above 80% protein model quality assessment accuracy. Since Type-2 fuzzy sets have more pa-

rameters to be optimized, we will design a new Type-2 FDT algorithm and hope to improve pro-

tein model quality assessment accuracy by optimizing relevant parameters. 

7.3 Extracting features distinguishing good protein models from bad ones 

  It is expected for the decision tree to produce large amount of rules depending on the da-

ta vectors. Rules generated by the decision tree should make sense in terms of biology, chemistry 

and structural dynamics of the protein. This might not be true for all rules but there should be 
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few rules that relate to formerly deduced information. This will ensure the process used for rule 

formation tally with protein structure formation. 

7.3.1 Feature Pool 

We try to expand our feature pool to extract as much information about the protein as 

possible. Any combination of attributes shown in Figure 7.1 could be combined to generate 

unique representation of protein structures. In our preliminary and enhanced encoding schemes 

we do make use of some of the feature combinations like sequence information using matrixes,  

distance matrix, secondary structure information and polarity. 

 

Figure 7.1 Feature Pool 

7.3.2 New Random Fuzzy Forest  

Many rule-based machine learning methods explicitly use features to build classifiers, so 

positions and frequencies of using these features in classifiers can be considered as ranking crite-

ria. The key is to build numerous accurate rule-based classifiers from original datasets. Random 

forest can be altered for our feature selection purpose.   
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Random forest for imbalanced data learning has already been studied. However, most re-

searchers only focus on prediction performance and ignore the features that have been used in 

trees. Our approach is to calculate the frequencies and the positions of each biomarker used in 

these decision trees. Based on its importance in the random forest, each biomarker can be ranked. 

More importantly, we can find coupling gene markers (i.e., two markers together correlate well 

with the class label).  
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CHAPTER 8. CONCLUSIONS 

Most aspects of experimental protein structure predictions process are difficult, time con-

suming, expensive, labor intensive and problematic. Scientists have agreed it is an impossible 

task to determine a complete set of all protein structures found in nature, since the number of 

proteins is much larger than the number of genes in an organism.  On the other hand, scientists 

also believe that there is but a limited number of single domain topologies such that at some 

point the library of solved protein structure in PDB would be sufficiently complete that the like-

lihood of finding a new fold is minimal.  Earlier even though there were several thousand struc-

tures in PDB, most of these structures were not unique instead they were many variant of same 

structure and sequence. So these did not significantly expand our knowledge of protein structure 

space. Now experts believe we have sufficient knowledge of protein structure space. This infor-

mation is critical because it suggest that PDB structures provide a set from which other proteins 

can be modeled using computational techniques [99]. These fact leads to important task of esti-

mating correctness of the prediction techniques and quality of protein models. 

The role of protein structure modeling in biomedical research is steadily increasing. 

Models are routinely used to address various problems in biology and medicine. Contrary to ex-

perimentally derived structures, where accuracy can be deduced from experimental data and typ-

ically falls within a narrow range, theoretical models are usually unannotated with quality esti-

mates and can span a broad range of the accuracy spectrum. Thus, reliable a priori estimates of 

global and local accuracy of models are critical in determining the usefulness of a model to ad-

dress a specific problem. For example, high-resolution models (GDT_TS > 80) often are suffi-

ciently accurate for detecting sites of protein-ligand interactions, understanding enzyme reaction 



97 

mechanisms, interpreting the molecular basis of disease-causing mutations, solving crystal struc-

tures by molecular replacement and even for drug discovery. A model of medium accuracy 

(GDT_TS > 50) can still be useful for detecting putative active sites in proteins, virtual screen-

ing, or predicting the effect of disease-related mutations. Low resolution models can be useful 

for providing structural characterization of macromolecular ensembles, recognizing approximate 

domain boundaries, helping choose residues for mutation experiments, or formulating hypothe-

ses on the protein molecular function. In response to these needs, the computational biology 

community has focused on the model quality assessment (MQA) problem, that is, on the possi-

bility of predicting the accuracy of structural models when experimental structural data are not 

available [107].  

Evaluating the accuracy of predicted models is critical for assessing structure prediction 

methods. This problem is not trivial, a large number of assessment measures have been proposed 

by various groups and has already become an active subfield of research. Most of these methods 

are normalized scoring functions that compare the given model to experimental structure. In this 

research we aim to obtain a binary classifier that studies structures from protein data bank and 

classifies models as good or bad. 

The sheer volume of known structures available makes it possible to develop a machine 

learning system that studies protein structures and eventually predicts the quality of any new 

structure model. The most important task in this approach is representing the protein 3D struc-

ture in best possible manner and using appropriate machine learning algorithm to get good as-

sessment accuracy. The machine learning techniques considered in this paper are support vector 

machines and fuzzy decision tree. To solve protein model assessment problem we employed at-

tributes from both protein’s sequence and structure.  
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First a preliminary encoding scheme is employed to achieve this task. The encoding 

scheme attempts to incorporate number of features to represent the structure and sequence effec-

tively. Two different machine learning technique namely SVM (Support vector machines) and 

Fuzzy Decision Trees are used to show their individual performance with this selected dataset. 

SVM did not show any good performance and suffered due to huge number of features involved. 

To reduce the computational complexity of the program we employ feature selection and parallel 

processing to be used with SVM. We have implemented kernels to understand a complex 3D ob-

ject and to judge if the object represents a protein structure and got accuracy at nearly 70%. By 

the use of improved fuzzy decision tree (IFID3) we could get prediction accuracy above 80%. 

The accuracy is borderline satisfactory but the main drawback is the uneven feature space and 

the inconvenience in rule inference. Numerous other concerns arise from this encoding scheme, 

primarily the number of features required in representing the model and consequent computa-

tional overload on the algorithm. Also since sequence length becomes primary factor in coding, 

proteins of varying sequence length resulted in vectors of varying features. This required further 

tuning of the vectors to get uniform lengths. This made rule understanding and inference very 

hard and cumbersome. For the above reason and to increase the prediction accuracy more en-

hanced spatial encoding technique is considered. 

As stated the preliminary encoding scheme is seen to be less efficient in representing the 

protein structure and due to heavy computational overhead, both machine learning algorithms 

were limited in their overall performance. This led to an enhanced encoding scheme, which gives 

prediction accuracy above 95% using certain subsets. The features considered in this scheme are 

more refined and also contains additional information like polarity of amino acid and secondary 

structure. This further enhances the overall performance. The vector space is uniform due to 
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novel spatial feature extraction technique and good data representation. The most important ben-

efit is the inference from the rule tree obtained after classification. The classification is done 

based on rules that show some correlation to how the protein structure folds.  The rules could be 

further studied to deduce more information on folding of protein structures.  

At the end this method is shown to judge the results of previous CASP competitions. The 

templates from CASP are classified as good or bad (positive or negative) based on their individ-

ual GDT_TS scores. These templates are used only in the testing phase and they are not included 

in any form in the training data. The tests are performed in several styles to get overall estimate 

about the newly introduced protein model evaluation technique.  First only good and bad models 

from CASP8 and CASP9 are selected based on GDT_TS scores. The prediction accuracy for this 

test is recorded around 70% using fuzzy decision tree and enhanced encoding scheme 

(EE_IFDT) for CASP8 and CASP9 templates respectively. Since the methodology studied so far 

in this research only classifies the data and does not score them, it was hard to compare it with 

other MQA programs. Still to get some estimate, two targets from CASP9 and few MQA pro-

grams that have shown to perform well in CASPs are selected to chart out their performance. 

The performance of fuzzy decision tree algorithm with enhanced encoding was shown to per-

form comparable to other MQAP. A rudimentary scoring method is introduced and its correla-

tion with GDT_TS scores is compared with other CASP competitors. The main drawback is not 

having the scoring mechanism that is tailored to score models especially the ones predicted using 

template based modeling technique. Template based modeling is a technique in which PDB 

structures are used to construct as many parts of the model as possible and then few unaligned 

residues positions are predicted based on some energy function. Since this methodology will 
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mostly result in a structure that loosely resembles any PDB structure, the classifier using fuzzy 

decision tree (EE_IFDT) is not that sensitive to correct and incorrect models from CASP. Free 

modeling technique in which no template is used are much harder to evaluate and EE_IFDT 

method could be used in this category. Also other important evaluation requirement is to provide 

score for every residue position and in future this should also be made possible. Both local and 

global scoring technique and implementation will be the biggest part of future enhancements.    

Overall the results look promising, but improvements in data set and parameters could 

further improve the accuracy of prediction. Improvements like making use of graph kernels, 

string kernels and kernel fusion methods, decision fusion methods could further enhance the 

learning system. Deducing a novel scoring technique to effectively score models will be a major 

focus of future additions.   
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APPENDIX 

Structure of Amino Acids 

Amino 

Acid 

Name 

A 

b 

r 

e 

v. 

A 

b 

r 

e 

v. 

 

Structure 

of R group (red) 

Polarity Information 

Alanine ala A 

 

Neutral 

Non-polar 

Arginine arg R 

 

Basic 

Polar 

Asparagine asn N 

 

Neutral 

Polar 

Aspartic 

Acid 
asp D 

 

Acidic 

Polar 

Cysteine cys C 

 

Neutral 

Slightly 

Polar 

Glutamic 

Acid 
glu E 

 

Acidic 

Polar 

Glutamine gln Q 

 

Neutral 

Polar 



113 

Glycine gly G 

 

Neutral 

Non-polar 

Histidine his H 

 

Basic 

Polar 

Isoleucine ile I 

 

Neutral 

Non-polar 

Leucine leu L 

 

Neutral 

Non-polar 

Lysine lys K 

 

Basic 

Polar 

Methionine met M 

 

Neutral 

Non-polar 

Phenyl- 

alanine 
phe F 

 

Neutral 

Non-polar 

Proline pro P 

 

Neutral 

Non-polar 

Serine ser S 

 

Neutral 

Polar 



114 

Threonine thr T 

 

Neutral 

Polar 

Trypto- 

phan 
trp W 

 

Neutral 

Slightly 

polar 

Tyrosine tyr Y 

 

Neutral 

Polar 

Valine Val V 

 

Neutral 

Non-polar 

 

 



115 

BLOSUM62 MATRIX 

 

A R N D C Q E G H I L K M F P S T W Y V *  

4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -4 A 

 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -4 R 

  6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 -4 N 

   6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 -4 D 

    9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -4 C 

     5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 -4 Q 

      5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 -4 E 

       6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -4 G 

        8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 -4 H 

         4 2 -3 1 0 -3 -2 -1 -3 -1 3 -4 I 

          4 -2 2 0 -3 -2 -1 -2 -1 1 -4 L 

           5 -1 -3 -1 0 -1 -3 -2 -2 -4 K 

            5 0 -2 -1 -1 -1 -1 1 -4 M 

             6 -4 -2 -2 1 3 -1 -4 F 

              7 -1 -1 -4 -3 -2 -4 P 

               4 1 -3 -2 -2 -4 S 

                5 -2 -2 0 -4 T 

                 11 2 -3 -4 W 

                  7 -1 -4 Y 

                   4 -4 V 

                    1 * 
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