
Georgia State University
ScholarWorks @ Georgia State University

Chemistry Dissertations Department of Chemistry

Summer 8-2012

Calcium Modulates MGLUR1 Folding in ER in
the Trafficking Process and Regulates the Drug
Activity Upon the Receptor Expressing on the Cell
Membrane
Yusheng Jiang
Georgia state university

Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_diss

This Dissertation is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Chemistry Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Jiang, Yusheng, "Calcium Modulates MGLUR1 Folding in ER in the Trafficking Process and Regulates the Drug Activity Upon the
Receptor Expressing on the Cell Membrane." Dissertation, Georgia State University, 2012.
https://scholarworks.gsu.edu/chemistry_diss/71

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fchemistry_diss%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/chemistry_diss?utm_source=scholarworks.gsu.edu%2Fchemistry_diss%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/chemistry?utm_source=scholarworks.gsu.edu%2Fchemistry_diss%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/chemistry_diss?utm_source=scholarworks.gsu.edu%2Fchemistry_diss%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu
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Under the Direction of Dr. JENNY J. YANG 

 

ABSTRACT 

Metabotropic glutamate receptor 1α (mGluR1α) exerts important effects on nu-

merous neurological processes. Although mGluR1α is known to respond to extracellular 

Ca2+ ([Ca2+]o) and the crystal structures of the extracellular domains (ECDs) of several 

mGluRs have been determined, the calcium-binding site(s) and structural determinants 

of Ca2+-modulated signaling in the Glu receptor family remain elusive. Here, we identify 

a novel Ca2+-binding site (Site 1) in the ECD-mGluR1α using a recently developed 

computational algorithm. This predicted site (D318, E325, D322 and the bound L-Glu) is 

situated in the hinge region in the ECD-mGluR1α adjacent to the reported Glu-binding 

site. Mutagenesis studies indicated that binding of L-Glu and Ca2+ to their distinct but 

partially overlapping binding sites synergistically modulated mGluR1α activation of 



intracellular Ca2+ ([Ca2+]i) signaling. Mutating the Glu-binding site completely abolished 

Glu signaling while leaving its Ca2+-sensing capability largely intact. Mutating the pre-

dicted Ca2+-binding residues abolished or significantly reduced the sensitivity of 

mGluR1α not only to [Ca2+]o and [Gd3+]o but also, in some cases, to Glu. In addition, the 

Ca2+ effects on drugs targeting mGluR1α were investigated. Ca2+ enhances L-Quis re-

sponse of the receptor by increasing L-Quis binding to ECD-mGluR1α and promotes the 

potency of Ro 67-4853, a positive allosteric modulator of mGluR1α. Increasing Ca2+ 

concentration, the inhibitory effects of a competitive antagonist ((s)-MCPG) and a non-

competitive negative allosteric modulator (CPCCOEt), were eliminated. Furthermore, 

we also identified another potential Ca2+ binding pocket (Site 2) consists of S165, D208, 

Y236 and D318, which completely overlapped with L-Glu. Thapsigargin (TG) induced 

ER Ca2+ depletion reduced surface expression of mGluR1α, and D208I and Y236I also 

decreased the receptor trafficking to plasma membrane suggesting the role of Ca2+ 

binding in protein folding and trafficking in the ER. Further, to measure ER Ca2+, a se-

ries of genetically encoded biosensors were designed by placing a Ca2+ binding pocket 

at the chromophore sensitive region of red florescent protein mCherry. The designed 

sensors are able to bind Ca2+ and monitor Ca2+ concentration change both in vitro and 

in cells. The findings in this dissertation open up new avenues for developing allosteric 

modulators of mGluR function that target related human diseases. 

INDEX WORDS: Metabotropic glutamate receptor 1, GPCR, Calcium, Drug, Trafficking, 
Folding, MCherry, Calcium sensor 
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1 INTRODUCTION  

Ca2+ is a versatile ion functioning as a first or second messenger in many signaling 

and metabolic pathways (1-4). It maintains blood Ca2+ homeostasis by regulating the 

extracellular Ca2+ sensing receptor coupled PTH secretion and calcitonin (5,6). It also 

mediates intracellular Ca2+ homeostasis through modulating the Ryanodine receptor 

and gap junction with the assistance of calmodulin (CaM) (7-10), and controlling chan-

nel gating by interacting with Ca2+ sensors, i.e. STIM1 on the ER membrane (11). In 

addition, Ca2+ is also known to facilitate cell adhesion by interacting with cadherins (12-

14). In the blood system, Ca2+ is taken up from gut fluid with the assistance of vitamin D, 

and then secreted into urine in the kidney or deposited into the bones. Low gut Ca2+ ab-

sorption or high urine Ca2+ breaks the blood Ca2+ balance, which in turn changes the 

PTH or calcitonin level, thereby regulating bone resorption or Ca2+ absorption and Ca2+ 

secretion in the kidney (2,5,15,16).  In cells, the Ca2+ homeostasis is primarily main-

tained by Ca2+ pumps and channels. Redundant Ca2+ in cytosol is either pumped out of 

the cells through Ca2+-ATPase on the cell membrane or mobilized into the ER/SR lu-

mens by SERCA pumps (Ca2+-ATPase on ER/SR membranes) (17). The skeletal mus-

cle ryanodine receptor, stated as RyR1, resides on the SR membrane, mediating Ca2+ 

release from the SR lumen, thereby leading to muscle contraction. Low cytosolic Ca2+ 

activates RyR1 while high Ca2+ concentration inhibits the channel activity (18). CaM 

was proved to be involved in switching the channel gating while in the presence of high 

or low concentrations of cytosolic Ca2+. Mutants of CaM with reduced Ca2+ binding re-

mains active to open RyR1, but fails to close the channel in the presence of high Ca2+ 



2 

concentration. This suggests Ca2+ is the key factor for regulating the RyR1 channel 

property through binding to CaM or directly binding to RyR1 (19). Similarly, the gating of 

the gap junction is coupled with CaM and dependent on Ca2+. CaM binding sites were 

discovered at C-termini of Cx32, Cx35 and C36 (20,21). Increasing cytosolic Ca2+ con-

centration abolishes cell-cell communication by shutting down gap junctions, which can 

be converted by CaM inhibitor (22,23). In other words, the resource of intracellular Ca2+ 

depends on Ca2+ store-release; or extracellular influx through the TRP channel, voltage-

gated Ca2+ channel; or store-open Ca2+ entry (SOCE). STIM1, expressing in ER, has an 

EF-hand in ER lumen side and can sense the ER Ca2+ depletion (24). STIM1 then ag-

gregates to the ER membrane, thereby activating the Orai channel and inhibiting 

Cav1.2 channels (25). 

Cadherins are single transmembrane proteins with three to five random, repeated, 

extracellular domains. The Ca2+ binding sites were revealed in the repeated motifs, 

which were suggested to be vital in cell-cell adhesion (13). Removal of extracellular 

Ca2+ abolishes the adhesive properties of cells while making cadherins to be easily di-

gested by proteases (26). 

1.1 Common features of GPCRs 

G protein coupled receptors (GPCRs) are a huge family of cell surface receptors 

correlated to G proteins, with characteristic seven transmembrane domains. So far, 359 

genes of GPCRs have been discovered according to the information from the IUPHAR 

database (http://www.iuphar.org/) and all the members are known to couple with hetero-

trimeric G proteins formed by Gα, Gβ and Gγ subunits. Basically, there are four classes 

of Gα (Gαs, Gαi/Gαo, Gαq/Gα11 and Gα12/Gα13) and the type of Gα decides the  



3 

A

  

B

 

C

 

Figure 1-1 Families of G-protein coupled receptor (27). (A) Model structure of family 
A GPCRs. The N-terminal is very short, and the conserved Proline in the transmem-
brane domain bent the helical structures within the membrane. (B) Scheme structure of 
family B GPCRs. It has a relative long N-terminal which includes several pairs of disul-
fate bonds. (C) Model structure of family C GPCRs. Family C GPCRs has a long N-
terminal functioning as ligand binding domain, a cysteine rich domain containing several 
pairs of anti-parallel beta-strands interacting through disulphate bonds, a transmem-
brane domain and a very long C-tail. 
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subsequent signaling pathway. In principle, binding of ligands releases GDP from Gα 

protein, which in turn associates with GTP. Upon binding with GTP, Gβ/γ complex dis-

sociates from Gα protein, and subsequently, the downstream signaling pathway is acti-

vated. After GTP is hydrolyzed into GDP, G proteins cluster back into a heterotrimer 

(28). Based on their structural and genetic features, GPCRs fall into three major catego-

ries: family A, family B, and family C as shown in Fig. 1-1. Family A has a very short N-

terminal and owns several highly conserved residues in the transmembrane helices. 

Some helices were bent due to the presence of Proline. Lots of members in family A 

have no endogenous ligands discovered, so they were named as orphan receptors. 

Rhodopsin expressing in rod photoreceptor cells belongs to family A GPCR, and it is a 

light sensitive receptor (29). Its inactive state consists of an apo-form opsin and a cova-

lently bound 11-cis-retinal in the binding pocket. Determining the crystal structure of 

rhodopsin is the first time uncovering the seven-time transmembrane domain (7TM) in 

GPCRs (30). The structure has been widely applied to homological modeling especially 

in GPCRs. Family B has a relatively long amino terminal with several disulfate bridges 

which are conserved in almost all the members in the family. The ligands of family B are 

mainly hormones, including secretin, glucagon and parathyroid hormone. Family C is 

characterized with a large extracellular ligand binding domain (ECD), following a cystine 

rich domain which contains four pairs of disulfate bridges, a seven transmembrane do-

main, and a long C-tail (Fig. 1-2). They play vital roles in sensing vision, taste, and 

smell; and they couple to the signaling pathway initiated by numerous hormones, neuro-

transmitters, ions, photons, lipids and designed drugs (31,32). Family C contains the 

calcium sensing receptor (CaSR), the mGluRs, GABAb receptor, GPRC6, taste recep-



5 

tors and some orphan receptors. All the members in family C have a Venus fly-trap like 

endogenous ligand binding domain, and some synthesized compounds were also re-

vealed to bind to extracellular loops on transmembrane domains (33). ECD structures 

from four members of mGluRs have been delineated with the presence or absence of 

ligands, but little is known on the transmembrane domain.  

1.1.1 Structural features of family C GPCRs 

As shown in Fig. 1-2, the structure of family C GPCRs consist of a large extracel-

lular domain, following with a cysteine rich domain, a seven transmembrane domain 

and a long C-tail. Most of the orthosteric and allosteric modulators bind to the extracellu-

lar domain while the transmembrane domain is also a target for a few allosteric modula-

tors. Through forming a disulfate bond by two cysteines on the top of the protomers, the 

receptors function as a dimer. A cysteine rich domain contains three pairs of short anti-

parallel β strands. This domain is suggested to be the connection between the extracel-

lular domain and the transmembrane domain. The three dimensional structure of a 

transmembrane domain is conserved in all the members in GPCRs, and even contains 

orthosteric modulator binding pockets in family A and B. So far, only allosteric modula-

tors were discovered targeting the transmembrane domain. C tail along with intracellular 

loops interacts with signaling proteins inside of the cells, thereby coupling the activation 

signal to the downstream signaling pathways.  
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Figure 1-2 Common structural features of family C GPCRs (34). Family C GPCRs 
functions as dimmer. It consists of a large ligand binding domain, also known as extra-
cellular domain (ECD) or Venus flytrap structure (VFT), a cysteine rich domain (CRD), a 
seven transmembrane domain (7TM) and a relative long C-tail (CT). Extracellular do-
main looks like a Venus flytrap structure, forming a dimmer through a disulfate bond 
generated by C140 in each protomer. The protomer has two lobes forming a cram-shell 
like structure, and the orthosteric ligand binding site resides at hinge region formed by 
two lobes. Following the ECD, there is a cysteine rich domain with three pairs of anti-
parallel β-strands. Transmembrane domain is seven helical structures connected by 
three extracellular loops and three intracellular loops. These loops are important for 
binding of G-proteins and other coupled proteins. They are also good targets for some 
allosteric modulators. C-tail is pretty long comparing to the members in other family of 
GPCR. It mainly provides targets for binding of some signaling and scaffold proteins. 
 

 

 



7 

1.1.2 Folding and trafficking of family C GPCRs 

Family C GPCRs, same as the whole family of GPCRs, are folded in ER facili-

tated by chaperones. Misfolded proteins are tagged with ubiquitin and transported to 

lysosome for degradation. The nascent proteins properly folded with the assistance of 

chaperones and quality control systems, exiting ER as homo- or hetero-dimers in ex-

ocytic vesicles and translocating to Golgi complex for further modification (Figure 1-4). 

During the transportation, the extracellular domain is buried inside of the vesicles. Once 

the extracellular domain arrives at the cell membrane, the whole structure flips over and 

anchors to the membrane. For example, correctly targeting of HSJ1b (HSP40) to the ER 

membrane enhances formation of rhodopsin inclusion (35), which suggests overexpres-

sion of chaperone, HSJ1b, and increases rhodopsin folding in the ER. 

1.1.3 Ligand binding of family C GPCRs 

As mentioned, family C GPCRs have a large extracellular ligand binding domain 

which likes a cram-shell forming by two lobes (Fig. 1-1C and Fig. 1-2). Binding pockets 

were classified as orthosteric and allosteric (36).The orthosteric binding pocket resides 

in the hinge region which allows the agonists or antagonists wedging in the pocket by 

interacting with the residues in both lobes. Except the orthosteric binding site, lots of al-

losteric binding pockets were discovered in the past decade (23,31,33,37-41) and even 

two drugs are available in market (22,42). Especially, only allosteric drugs binding sites 

were found on transmembrane domain in family C GPCRs. CaSR was cloned in 1983 

by ED Brown, and it plays a very important role to keep Ca2+  in homeostasis and is 

able to sense Ca2+, other poly-cations, and most of the amino acids (31). The challenge 

in that era was to illustrate where the Ca2+ bound in order to determine how to tune the 
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Ca2+ binding of the receptor through interference with the binding pockets, thereby re-

lieving the syndrome induced by abnormal CaSR. In addition, a profile of amino acids 

was found to bind to extracellular domain of CaSR as well. As reported in Conigrave’s 

article, lots of amino acids could allosterically activate CaSR, and CaSR prefers the 

amino acids with aromatic side chain (43). By aligning with the glutamate binding site in 

mGluR1, Silve C et al. found the corresponding residues in CaSR were highly con-

served in both CaSR and all subtypes of mGluRs (44). This led them to test Ca2+ sensi-

tivity while the conserved residues were knocked away using site-directed mutagenesis. 

The results came out that E297K, Q193A, F270A and S296A reduced Ca2+ sensitivity, 

which indicated these residues were important for Ca2+ sensing. Later on, Huang Y et 

al. used a Metal-finder (revised version of Dezymer, plus surface charge analysis) to 

determine five more Ca2+ binding sites on CaSR. The predicted sites were confirmed by 

using grafting and subdomain approaches in vitro and cell population assay in vivo 

(45,46).  

The metal binding of CaSR triggered the search for metal sensitivity of mGluRs, 

which soon extended to other members in family C GPCR. Due to the high sequence 

identity, it was very likely mGluRs would be able to sense metals. Kubo Y’s group 

pushed forward to demonstrate that group I mGluRs, including mGluR1 and mGluR5, 

could sense Ca2+, Mg2+, Ba2+, Gd3+ and other metals, while group II mGluRs, including 

mGluR2 and mGluR3, also could respond to Ca2+ although mGluR2 needed a relatively 

higher Ca2+ concentration than physiological level (32). Mg2+ and Gd3+ were revealed in 

later crystallization work by Jingami’s group in mGluR1 (47). In addition to mGluR1, 

Mg2+ was found to bind to mGluR5 in crystals (PDB bank, no publication).  Moreover, 
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GABABR and GRPR6A were also found to sense extracellular Ca2+. Interestingly, GA-

BAB receptor functions as a heterodimer by interacting with mGluR1 through C-termini 

of these two receptors. Based on the accumulating evidence, we can conclude that 

most of the members in GPCR family can sense extracellular Ca2+.  

1.1.4 Coupled signaling pathways of family C GPCRs 

One criterion to categorize mGluRs is the signaling pathway of the receptors 

coupled. Group I mGluRs, including mGluR1 and mGluR5, couple to Gαq/11 protein 

which forms complex with GTP and hydrolyzes GTP into GDP. The following PLC then 

is activated and hydrolyzed PIP2 into DAG and IP3. IP3 binds to IP3 receptor on ER 

membrane, triggering Ca2+ mobilization from ER lumen to cytosol. Increasing cytosolic 

Ca2+ will further open ion channel on the cell membrane. DAG also can activate PKCβ. 

In the meantime, group I mGluRs also can activate adenyl cyclase by coupling to Gαs 

(Fig. 1-3). Differently, Group II and III couple to a G protein (Gαi/o) with opposite function. 

Activation of this group of receptor, the potency of adenyl cyclase is decreased. Group II 

mGluRs are suggested to control the L-Glu level in synaptic cleft. High concentration of 

L-Glu in synaptic cleft applies to group II mGluRs inhibits L-Glu release from pre-

synapses. Excitatory CaSR also associates with Gαq/11 and releases ER Ca2+ as group I 

mGluRs. But CaSR also the other two classes of G proteins, Gαi/o and Gα12/13. This 

makes the signaling of CaSR more versatile and complicated. The mechanism of CaSR 

selectively activates certain signaling pathway is still unclear. Additionally, GRPC6A is 

also related to Gαq/11, while taste receptors forms heterodimers (T1R1/T1R3, 
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Figure 1-3 Modulators and signaling pathway of mGluR1α. MGluR1α can be acti-
vated by orthosteric modulators independently or be triggered by positive allosteric 
modulators in absence of agonists, for example L-Glu or Ca2+. Activation of mGluR1α 
recruits G-proteins, thereby activating PLC which subsequently protelyzing PIP2 into 
DAG and IP3. IP3 then opens IP3R on ER membrane to release Ca2+ into cytosol, thus 
opening Ca2+ channel on cell membrane. At the same time, mGluR1α also can couple 
to cAMP pathway by activating AC which catalyzes ATP to circlize into cAMP, thereby 
activating PKA.
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T1R2/T1R3) coupling to Gα-gustducin also results in PI-PLC activation (48). 

1.1.5 Drug development targeting family C GPCRs 

In the past decades, drug discoveries focused on GPCR were very successful, 

and even today, GPCRs are still very hot drug targets. As investigated by Flower DR, 

more than 50% of modern drugs target these receptors. In the 100 top-selling drugs, 

around 26% are suggested to target GPCRs, while another 13% are indirectly targeting 

these receptors (49).     

1.2 Distribution, functions and drug development of mGluRs 

1.2.1 Distribution and function of mGluRs. 

MGluRs were discovered in mid-1980s. In 1987, Kano and Kato et al. demon-

strated that activation of mGluRs expressed on Purkinje cells was the causes of long 

term depression (LTD) (50). The functions of mGluRs were then illustrated for the first 

time. Four years later, two independent labs cloned the gene of one of the members of 

mGluRs, which were named mGluR1 (51,52). In the following four years, overall eight 

members were discovered. According to their coupled signaling pathway, drug selectivi-

ty and sequence homology, mGluRs were categorized into three sub-groups. MGluRs 

mainly express in central neuronal system. Group I distributes around the iGluR core to 

form an annulus on the surface of post-synapses. Group II prefers to express on the ac-

tive zone on pre-synapses. Group III has no preference but mGluR6 majorly expressed 

on glial cells. MGluR6 is related to retinal, and mutation in mGluR6 leads to night blind-

ness. iGluRs are ligand gated ion channels. After receiving the ligand (L-Glu) released 

from pre-synapses, the channels were opened by ligand binding, thereby resulting in 
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Na+ ions influx. Depolarization of post-synapses further removes the physiological inhi-

bitor Mg2+, which blocks AMPAR in resting state, and Ca2+ in synaptic cleft also enters 

into post-synapses. These events were shown as fast phase of action potential. How-

ever, the functions of mGluRs are different. Group I mGluRs can respond L-Glu, so that 

the coupled signaling pathway is triggered and which in turn also can open Ca2+ chan-

nel due to the Ca2+ depletion of ER lumen. But the current is relatively slow than the one 

generated by iGluRs, which corresponds to the slow phase in action potential. Because 

of this, group I mGluRs were related to neuronal plasticity, therefore, lots of physiologi-

cal and pathophysiological possesses were related to group I mGluRs. As mentioned, 

Group II and III coupled to Gi protein, and Group II mostly expressed on pre-synapses. 

Activation of Group II mGluRs can inhibit L-Glu release from pre-synapses. Somehow, 

the high concentration of L-Glu in synaptic cleft could be feedback to pre-synapses by 

Group II or Group III mGluRs, thereby reducing L-Glu level and preventing over-exciting 

of the neurons. As described in Fig. 1-5, the rest of L-Glu can be pumped back to Glial 

cells or pre-synapses through L-Glu transporters, and finally the L-Glu recycled back to 

pre-synpses or Glial cells was re-packed into vesciles. Upon receiving action potential, 

the L-Glu will be released to synaptic cleft again by exocytosis. So, developing drugs 

targeting specific subtype of mGluRs is very important. Drugs targeting the orthosteric 

sites always activate or inhibit the whole family of mGluRs. To some extent, certain un-

expected side effects could happen. In the past decade, lots of efforts were turned to 

discover allosteric modulators, but allosteric drug targeting site always not highly con-

served in different species. This brought difficulty to perform pre-clinical trial. 
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1.2.2 Structural studies of mGluRs 

Metabotropic glutamate receptors belong to family C GPCR, which has common 

features with a large extracellular domain (ECD) functioning as an endogenous agonist 

binding region, cystein rich (CR) domain, seven time transmembrane domain, (7-TM) 

and C-terminal. The receptor functions as a dimer linked by a disulfate bridge through 

C140 onto the ECD (53). An extracellular domain consists of two lobes which form a 

venus flytrap-like structure, which has a 3-dimensional structure very similar to bacterial 

leucine/isoleucine/valine-binding protein (LIVBP). Thus, the first homologous model was 

generated by O’Hara’s group using LIVBP as a template. In this model structure, sever-

al key residues (T188, D208, Y236 and D318) for agonist binding, which were highly 

conserved in different species, were determined (54). In 2000, Kunishima N et al. re-

ported several ECD structures, including two apo forms and one holo form with L-Glu 

and potential Mg2+,  using X-ray crystallography (47). Two years later, two additional 

forms bound with L-Glu, Gd3+, and (s)-MCPG were reported. In L-Glu bound structures, 

the L-Glu binding pocket was sketched out confirming the model study on this receptor 

(55).  These structures revealed 3 different kinds of conformations upon the bound li-

gands which were estimated as the activation mechanism of mGluR1α. Upon L-Glu 

binding, the receptor was stated to be a closed-open form, as LB1 and LB2 in the same 

protomer were closed even though two LB2 domains were kept open due to the charge 

repulsion in the interface (E238 and D242). In the presence of Gd3+, the negative 

charge could be neutralized and two LB2 domains moved toward each other, forming a 

close-close form. Whether the LB2 domains were closed or open, the conformational 

change could still lead to a rearrangement of the transmembrane domain with the assis-
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tance of a cysteine rich domain. The free form or antagonist bound form was known as 

a resting form, also called an open-open form. Similar to a free form, the receptor bound 

with s-MCPG or LY341495 shows as a relax state (Fig. 1-6). Although the constitutive 

activation was reported in mGluR1 due to the function of Homer1b binding to the C ter-

minal, the activation of the receptor was ascribed to the predominance of a close form in 

dynamic equilibrium. This hypothesis was further improved by Tateyama et al. using the 

FRET technique. In brief, two intracellular loop 2 (i2) were brought closer upon the 

agonists stimulation (L-Glu and Ca2+), while the antagonists increased the space be-

tween the loops (56).  

 

1.2.3 mGluRs related diseases 

Mebotropic glutamate receptor 1 (mGluR1) is widely expressed on the surface of 

post synapses in the central neuronal system.  It senses glutamate following recruitment 

of hetero-trimeric G proteins, and the accumulation of DAG and IP3 which further mod-

ulates protein kinases involved cascade response and intracellular Ca2+ mobilization, 

respectively. This consequently leads to nonselective inward cation current. Shortly af-

ter the receptor was cloned, its versatility was revealed to respond to not only glutamate 

but also Ca2+ and other polyvalent ions. The activity of mGluR1α has been proved to be 

related to some important physiological and pathological processes, such as breast 

cancer, melanoma, and neuronal degenerative diseases. Down regulation of mGluR1α 

was detected in neurons of substantia nigra in Parkinson monkey models, suggesting 

mGluR1α plays an important role in the process of Parkinson disease. In addition, pre-

pulse inhibition (PPI) was disrupted in mGluR1 knockout mice (57). PPI deficiency 
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usually appeared in patients with schizophrenia, this indicates mGluR1 is also involved 

in the process of schizophrenia. MGluR5 was suggested to be involved in Fragile X 

syndrome (58). Down regulating group I mGluRs could relieve Fragile X symptoms, 

while especially the antagonist of mGluR5, MPEP, can suppress the seizure pheno-

types. MGluR4 were previously reported as a target to relieve pain. More recent, an 

original antagonist (PHCCC) of group I mGluRs was found to enhance the potency of 

an agonist of mGluR4 (L-AP4). Moreover, treating Parkinsonian rat model with PHCCC, 

the movement activity was reduced (59). This also suggests mGluR4 could be a thera-

peutic target for Parkinson’s diseases. Furthermore, the agonist of mGluR2/3 

(LY2140023) has shown to improve both positive and negative symptoms in patients 

with schizophrenia, and this drug has entered phase II clinical trial (60).  
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Figure 1-4 Folding and trafficking of GPCRs (61). Family C GPCRs could form ho-
mo- or heterodimer after synthesized in ER with the facilitation of chaperones and other 
quality control system. The well folded proteins were translocated to Golgi complex for 
further modification or directly anchored on the cell membrane through exocytic vesicles 
while abnormal proteins were ubiquitinated and delivered to lysosomes for degradation.  
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1.2.4 Trafficking of mGluRs 

The activity of mGluRs is dependent of the receptor expression on cell surface. 

For instance, surface expression of mGluR7 plays an important role to control the neu-

ronal plasticity (62). Decrease of surface mGluR5 by exposing to cocaine lead to loss of 

endocannabinoid retrograde LTD (63). MGluRs, like other members of GPCRs, are 

folded in ER lumen with the facilitation of chaperones and quality control system. The 

properly folded proteins were further modified in Golgi complex, and finally reached cell 

membrane. The misfolded receptors are usually uquibinated and protelyzed by proteas-

es. In presence of agonists, the surface receptors will be desensitized and internalized 

with the assistance of lipid raft and caveolin. Mutants of mGluR1 lacking of caveolin 

binding motif were demonstrated to attenuate mGluR1 coupled ERK-MAPK signaling 

pathway (64). Several members of mGluRs have been proved to interact with calmodu-

lin (CaM), including mGluR1, mGluR5 and mGluR7. A PKC phosphorylation site (S901) 

was found in mGluR5. Phosphorylation of this site eliminated CaM binding, thus reduc-

ing surface expression of mGluR5 (65). On the other hand, preventing S901 from phos-

phorylation enhances mGluR5 activity (65). However, the role of CaM binding in 

mGluR1 is not decided yet. MGluR7 also contains CaM binding site, which is highly 

conserved in mGluR4A and mGluR8 (66). Similarly, phosphorylation of mGluR7 also 

prevents CaM binding (67). The accumulating evidence suggests that CaM is the com-

mon factor of mGluRs serving as switch of internalization of the receptors.  
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1.2.5 Drug effects of mGluRs 

Up to date, four classes of drugs have been developed targeting mGluRs. Drugs 

targeting the endogenous ligand binding pocket were called orthosteric modulators, 

including agonists and antagonists. Usually, orthosteric drugs compete with 

endogenous ligand for the binding pocket. As discussed before, L-Glu binds to the 

hinge region of extracellular domain of mGluRs, so the designed orthosteric drugs also 

target L-Glu binding pocket. Therefore, most of the drugs are modified from L-Glu, we 

also can call them L-Glu analogs. L-Quis is non-selective agonist of mGluRs, but has 

strongest potency upon mGluR1. L-Quis can activate mGluRs in absence of 

extracellular Ca2+. (s)-MCPG is an antagonist applied to Group I mGluRs, which can 

inhibit L-Glu and Ca2+ induced Cl--Ca2+ current (32).  Drugs targeting the locations other 

than orthosteric pocket are called allosteric modulators, containing positive (PAM) and 

negative modulators (NAM). The allosteric modulators can target to extracellular 

domain, transmembrane domain or sometimes C tail. Ro 67-4863 is a positive allosteric 

modulator which binds to transmembrane domain. Ro 67-4863 is unable to activate 

mGluR1 without Ca2+ (68,69). CPCCOEt, known as a negative allosteric modulator, 

inhibits mGluR1 activity also by binding to transmembrane domain (). However, it’s not 

clear if Ca2+ can modulate all these drugs or not.
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Figure 1-5 The Glutamate cycle in the synaptic cleft.  L-Glu was released into syn-
aptic by exocytosis when the presynapse received action potential. The release of L-
Glutamate from pre-synapses results in the activation of mGluRs and iGluRs. The li-
gand-gated ion channels, iGluRs, are opened, leading to an influx of ions such as Ca2+ 
and Na+. Subsequently, the voltage gated Ca2+ channel was also opened, thereby re-
sulting in more Ca2+ influx. The remaining L-Glu is pumped back to presynapses or glial 
cells in which L-Glu was converted into L-Gln by L-Gln synthetase. The L-Gln is trans-
ported into presynapses, and L-Gln is then oxydased by glutaminase, forming L-Glu 
which will be packed into vesicles releasing back to synaptic cleft.
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Figure 1-6 Model structure of mGluR1α (97). 

 
 

The structure of mGluRs consists of a large ligand binding domain (ECD), cysteine rich 
domain (CR), seven-transmembrane domain (7TM) and C-tail (CT). The receptors were 
in equilibrium between free and liganding binding form in presence of agonists. Ligand-
free or bound with antagonists, the receptors were stated as resting state. While bound 
with agonists in both protomers in the dimeric receptors, the receptors coupled signaling 
pathway will be activated due to the conformational change induced by ligand binding.  
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1.3 Ca2+ sensitivity of mGluRs 

Ca2+ was known to activate mGluR1 independent of glutamate on the physiologi-

cal level (32). 20 mM Ca2+ could induce inward current with the condition that mGluR1α 

was saturated with 200 µM glutamate, and vice versa. By increasing ex Ca2+ from 0.5 

mM to 1.5 mM, a transient inward current was detected (32). This suggests Ca2+ does 

activate the process of mGluR1α expressing on oocytes in absent of glutamate. Fran-

sesconi et al. claimed that mGluR1α expressed on HEK cells could sense extracellular 

Ca2+ in absence of glutamate, which was inhibited by Mg2+ (70). By removing the extra-

cellular Ca2+, intracellular Ca2+ oscillation induced by glutamate through mGluR1α was 

abolished, while on the HEK293 cells expressing mGluR5, the oscillatory frequency was 

obviously reduced (71). Another mGluR1 splicing variant, mGluR1d, shares the same 

ECD as mGluR1α, displaying the extracellular Ca2+ dependence for responding to L-

Quis, L-Glu, ACPD and DHPG. In the absence of extracellular Ca2+, the potential of 

mGluR1α to respond to L-Quis was decreased (72). Additionally, mGluR1b displayed 

the Ca2+ sensing property, suggesting the intracellular carboxyl-tail is not related to Ca2+ 

sensing in mGluR1 (70). Native mGluR1α in Pukinje’s cells (PCs) shows responses 

when exposed to Ca2+, but the PCs with mGluR1α knock-out entirely shut down the 

Ca2+ responses. MGluRs were profoundly expressed on synapses with its extracellular 

domain (ECD) extruding to the synaptic cleft, when the Ca2+ concentration in the synap-

tic cleft has been simulated to around 1.7 mM,  the level needed to activate mGluR1α 

(Ed Brown). To address where the Ca2+ could bind to mGluR1, Kubo Y compared the 

sequences in mGluR subtypes, and found the residue Ser166 was conserved in 

mGluR1, 3 and 5. However, the residue in mGluR2 was replaced by Asp. The reduction 
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of Cl- induced inward current by a patch clamp on S166D suggested Ser166 was a key 

residue for the function of mGluR1 to sense Ca2+, and the cell morphology was affected 

by this mutant (32). The Ser269 close to the corresponding residue in GABABR was 

studied, which similarly displayed a key role in Ca2+ potential (73). However, when 

mGluR2 was co-expressed with the chimeric G protein alpha subunit (GqGi3), the IP 

accumulation was detected when the cells expose to glutamate or Ca2+, and this sug-

gests that some other residues are sensitive to Ca2+ besides S166 (74). Silve C also 

postulated there could be one Ca2+ binding site in a hinge region similar to CaSR (44).  

On the other hand, Nash et al. raised another consideration, concluding that Ca2+ 

had no effect on an L-quisqualte induced response upon mGluR1 (75). To this point, the 

reason could be that L-Quis has strong potential to activate the receptor due to its 

strong binding affinity, around 30 nM, so that Ca2+ only contributes a little to the re-

sponse because of its low binding affinity (3 mM). Simultaneously, using fluorescent mi-

croscopy to measure such tiny changes of intracellular Ca2+ release is not reliable, and 

1.3 mM (or 4 mM) of additional extracellular Ca2+ is too low to allow us to see the ef-

fects. In addition, the author didn’t give evidence for the mGluR1α expression level, al-

though the mGluR1α expression level is related to the response of the receptor. It’s 

risky to compare the responses of two independent cells without seriously considering 

their expression level of the receptor. All in all, this paper is not solid enough to con-

clude mGluR1α cannot sense extracellular Ca2+. To further determine the effects of 

Ca2+ upon the functions of the agonists and antagonists of mGluR1α, Selkirk JV et al. 

expressed ECD-mGluR1α and measured (3H)-L-Quis binding in the presence of 1.3 

mM Ca2+. The Ca2+ didn’t display any effects on L-Quis binding although it showed a 
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little potential on glutamate binding (76). However, Jingami’s group revealed Ca2+ 

showed positive effects on the binding potential of the agonists L-quis and L-glutamate, 

but negatively modulated the antagonists (s)-MCPG and LY367385 to the purified ECD-

mGluR1α by using tryptophan fluorescence and a ligand binding assay (77). To address 

this controversy, it’s important to show more direct evidence for Ca2+ binding on this re-

ceptor, such as where the Ca2+ binds and what is the relationship between Ca2+ and the 

bound ligands. Although S166D was shown as a Ca2+ sensitive mutation, introducing 

the charged residue to the hinge joint closing to the dimer interface in order to influence 

the Ca2+ sensitivity of the receptor is very risky, because the mutations (L116A, I120A 

and L174A) residing at the dimeric interface of lobe 2 also display the reduction of the 

Ca2+ sensing property (32,78).  

With the assistance of computational algorithms developed by our lab, we first 

found a Ca2+ binding site constituted of D318, D322, E325, and the ligand glutamate.  

Ca2+ binding to this site was believed to function as a co-activator of glutamate since 

Ca2+ could enhance the responsiveness of mGluR1 to glutamate and its analogs. Ca2+ 

and glutamate share a common residue, D318. Mutations E325I and D318I almost elim-

inated the responses of mGluR1α to Ca2+, while D322I significantly attenuated its Ca2+ 

potential. By observing the combination indices, Ca2+ and glutamate were found to syn-

ergistically activate mGluR1. The Ca2+ binding site and co-activation model were further 

confirmed by a (3H)-L-Quis binding assay. Ca2+ enhanced L-Quis binding to the cell pel-

let with transiently expressed mGluR1α, while D322I eliminated the Ca2+ effects. This 

suggests the Ca2+ binds to the Ca2+ binding site adjacent to the L-Quis binding pocket to 
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facilitate L-Quis binding. In spite of the controversy in the past, it’s clear that mGluR1 

does display as a Ca2+ sensing receptor based on the accumulated evidence to date. 

1.4 The function of Ca2+ in the neuronal system when coupling with mGluRs 

Ca2+ was known as a versatile ion working as both a first and second messengers. 

In a synaptic crevice in the central nervous system, the Ca2+ concentration was esti-

mated to reach 1.7 mM by computational simulation, while the Ca2+ change from 0.5 

mM or 1 mM to 1.5 mM could increase the inward Ca2+ coupled Cl- current on mGluR1α 

expressed Xenopus oocytes (32,79). The Ca2+ ions in the synaptic cleft were believed 

to modulate the neurotransmitter releasing from pre-synapses and the plasticity of post-

synapses (80). The Ca2+ depletion in the synaptic cleft not only suppresses the exocy-

tosis of the neurotransmitter from pre-synapses, but it also leads to a lowering of the 

post-synaptic efficacy as shown by quantal analysis and mEPSP analysis upon layer 

2/3 of a rat visual cortex (80). Furthermore, the Ca2+ induced quantal size change of 

post-synapses was proved to be modulated by mGluR1, because mGluR1 specific al-

losteric antagonist—CPCCOEt—reduced the quantal size as well as the AP3 (group I 

mGluR specific antagonist) which was similar to the quantal size reduction caused by 

decreasing Ca2+ from 2.5 mM to 1 mM. On the other hand, the group I mGluR agonist 

(DHPG) displayed similar quantal size enhancement to the effects by increasing Ca2+ 

from 1 mM to 2.5 mM (80). MGluR1 was known to be widely expressed in the central 

nervous system, especially in neurons of the globus pallidus, substantia nigra, hippo-

campus, and lots of the thalamic nuclei which are the foci of chronic neuronal degenera-

tive diseases like Parkinson’s and Huntington’s. Down-regulation of mGluR1 in globus 

pallidus and substantia nigra was found in a Parkinsonian monkey model, indicating the 
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function of mGluR1α in the process of Parkinson’s disease is indispensable (81). The 

mGluR1 antagonist AIDA was suggested to reverse the muscle rigidity and catalepsy in 

a Parkinsonian model (2,11). Considering if the Ca2+ can function as an agonist of 

mGluR1α which could then neutralize the inhibitory effects of the antagonist, Ca2+ will 

be a very promising co-factor to relieve the severe side effects brought by the antagon-

ists.  

1.5 The impact of the Ca2+ binding site and co-activation model on drug 

development  

As we noticed, the drug industry put tremendous effort into developing drugs 

which targeted mGluR1 for treatment of chronic, neuronal, degenerative diseases, but 

the drugs showed severe side effects. To date, there is no effective drug with light side 

effects available in the medicine market. As mentioned in Bräuner-Osborne’s review, 

the highly conserved glutamate binding pocket hindered the development of subtype, 

specific, orthosteric modulators to some extent (82). Thus, the allosteric modulators at-

tracted more and more attention with several, selective, allosteric candidates showing 

great promise, and thus are entering clinical trials. However, Ca2+ as a natural nutrient 

has its own advantage with low side effects. The molecular basis for Ca2+ modulating 

mGluR1α will open a new avenue for drug development. Firstly, the identified Ca2+ bind-

ing site can work as a complement for allosteric modulator discovery. Secondly, the ef-

fects of Ca2+ upon current agonists or antagonists binding to mGluR1α will bring forth 

new information useful for revising present drugs so that they are more effective or have 

lower toxicity. Thirdly, because the Ca2+ binding site residing at the hinge region which 
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partially overlapped the glutamate binding pocket is only conserved in group I mGluRs, 

interest in generating subtype selectively orthosteric modulators will be re-ignited. 

1.6 Challenges to the study of metal effects on mGluR1α  

Up to now, although seven structures of mGluR1 and mGluR5 were determined by 

x-ray crystallography, and mGluR1 and mGluR5 were suggested to be Ca2+ sensing re-

ceptors, no Ca2+ was visible in all of the crystals. This is because of the fast on and off-

rate of Ca2+ due to its low binding affinity. Even if the Ca2+ binding sites are addressed, 

it’s difficult to directly measure Ca2+ binding affinity, and it’s difficult to study how Ca2+ 

plays a role in modulating mGluR1α. The Ca2+ binding affinity was estimated to be more 

than 3 mM.  This hindered the ability to obtain binding affinity using direct binding expe-

riments. In the meantime, multiple Ca2+ binding sites on the receptor could have coope-

rativity, thus disturbing the measurement of the function of a single Ca2+ binding pocket. 

Additionally, lots of orthosteric and allosteric drugs were developed to elevate or reduce 

mGluR1α activity, but the effects of the popular physiological Ca2+ ion upon them re-

main unknown. However, our lab uses a grafting approach coupled with Tb3+ LRET to 

study a continuous Ca2+ binding site.  This allows us to delve into the intrinsic metal 

binding property of a single binding site. Tb3+, as an analog of Ca2+, allows us to capture 

its fluorescence once it binds to the protein along with a potential energy donor. Our lab 

also developed subdomain and ECD expression, and through the biophysical study on 

the purified subdomain and ECD could help us understand the Ca2+ binding capability of 

the whole protein. We also use site-mutagenesis and Ca2+ dye (fura-2 AM) to determine 

the effects of mutants on the predicted Ca2+ binding sites. Ca2+ image and radioactive 
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labeled L-quis binding assay allow us to measure the effects of Ca2+ upon the drugs 

modulating mGluR1α. 

1.7 Hypothesis in this dissertation 

Ca2+ and L-Glu synergistically activate mGluR1a, and Ca2+ can modulate drug ef-

fects of mGluR1a by enhancing the potency of agonists and positive allosteric modula-

tors and attenuating the inhibitory effects of antagonists and negative allosteric modula-

tors. In addition, Ca2+ also plays a role in receptor folding in ER.  

1.8 Approaches and strategies 

1.8.1 Prediction of Ca2+ binding site using a computational algorithm 

The geometry of a Ca2+ binding site is known as bipyramidal pentagon. It is 

known that Ca2+ prefers the oxygen atoms from the carbonyl group of the main chain 

and the side chains of Asp, Glu, Asn, Gln, Ser, Thr and Tyr. Our lab developed compu-

tational methods to predict the location of the Ca2+ binding site based on the oxygen or 

carbon cluster extracted from reading X-rays, NMRs, or model structures. The three-

dimensional coordinates of the crystal structures of the ECD of mGluR1α were obtained 

from the Protein Data Bank (PDB) [PDB entries: 1EWT, 1EWK (47), and 1ISR (55)]. 

Hydrogen atoms were added using the Sybyl 7.2 package (Tripos Inc., St. Louis, USA). 

The identification of putative Ca2+-binding sites in the ECD of mGluR1α was performed 

using MUG, a graph theory-based algorithm (83) developed by our laboratory. The Ca-

O distance in the software was set to 1.6 – 3.1 Å with a set average cut-off of 2.4 Å 

(84,85), and the O-O distance was set to 6.0 Å (83). Side chain atoms were rotated to 

accommodate Ca2+-induced local conformational changes (Wang et al., submitted). Fur-
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thermore, electrostatic surface potential maps were constructed using Delphi (86), and 

GRASP (87) was then used to render and modify the image.  

1.8.2 Grafting approach 

The continuous fragment containing the predicted Ca2+ binding site was grafted 

into a host protein, CD2. CD2 can tolerate pH change and insertion of foreign proteins. 

CD2 itself has no metal binding capability. The distance between Trp in CD2 and the 

inserted putative Ca2+ is around 12 Å, which allows the bound Tb3+ to accept the energy 

emitted from the excited Trp. Thus, the Tb3+ binding affinity on the engineered protein 

could be determined by measuring the emission intensity at 545 nm. By using Ca2+ 

competition assay, the Ca2+ binding affinity also could be measured. To find out which 

residues are involved in Ca2+ or metal binding, we mutated all the possible oxygen do-

nors (from the side chain) into apolar residues. The residues with lower binding affinity 

were further tested by in vivo study. 

1.8.3 Individual cell image 

Intracellular Ca2+ mobilization could reflect the activity of mGluR1α, which could 

be monitored in real time. The ratiometric intensity of fura-2 (F340/F380) indicated Ca2+ 

concentration in the cytoplasm. HEK293 cells transiently expressed mGluR1α, and its 

mutants were seeded on the cover slip and mounted onto a chamber. The expression of 

mCherry tagged at the C-terminal of mGluR1α suggests the mGluR1α expression level. 

The Ca2+ increase in cytosol ascribes to the sensitivity of mGluR1α and its mutants to 

extracellular agonists or antagonists. Thus, the potential of drugs, Ca2+, and mutant ef-

fects can be determined by Ca2+ imaging.  
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1.8.4 Radioactive binding assay 

Owing to the low binding affinity of the Ca2+ of mGluR1α, a direct binding assay 

using 45Ca was not feasible. To determine the effects of Ca2+ upon agonist binding; L-

Quis, labeled with tritium, an L-Glu analog with strongest binding affinity, was applied. 

The radioactive signals, in the presence or absence of Ca2+, were compared. Thus, the 

Ca2+ effects upon L-quis binding can be easily sketched out. 

1.8.5 Developing an ER Ca2+ sensor using mCherry as a scaffold protein 

 Small organic dyes such as fura-2 AM and fluo-x were widely applied to monitor 

the intracellular Ca2+ release from ER (22). However, the small dyes usually diffuse to 

unexpected loci or were rejected by living cells, and therefore were pumped out over the 

long term. Thus, the sensitivity and resolution of Ca2+ change measured by small organ-

ic dyes is low.  To specifically monitor the Ca2+ release in ER, we use mCherry as the 

scaffold protein in order to design a Ca2+ sensor which can be anchored in the ER lu-

men. A Ca2+ binding pocket will be constructed at a chromophore sensitive site using 

site-directed mutagenesis. 

1.9 Objectives of this study 

The objectives of this work are: to illustrate the roles of Ca2+ on mGluR1α, includ-

ing the Ca2+ binding sites determination, to show the effects of Ca2+ on drug binding and 

modulation, and to show the effects of Ca2+ on mGluR1α trafficking. 

1.9.1 Predicting and studying Ca2+ binding sites of mGluR1α 

Using computational algorithms developed by our lab, four Ca2+ binding sites 

were predicted in the ECD of mGluR1α based on several crystal structures. Site 1 is a 
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continuous site adjacent to an L-Glu binding pocket and was investigated using a graft-

ing approach and individual cell image assay using computational algorithms developed 

by our lab associated with site-mutagenesis. Site 2 and Site 3 was also studied using a 

grafting protein. As for Site 4, the residues contributing to Ca2+ binding are not conti-

nuous, so its Ca2+ sensing property is determined using an individual cell image. 

1.9.2 Studying the co-activation of mGluR1α by Ca2+ and L-Glu 

It’s well known that L-Glu and Ca2+ can respectively activate mGluR1α, but little 

was understood how L-Glu and Ca2+ function when both are present. In our work, we 

measured the activation of L-Glu and Ca2+ in relation to mGluR1α. We also determined 

the L-Glu potential in the presence of different Ca2+ concentrations. In addition, the Ca2+ 

sensitivity of mGluR1α in the presence of L-Glu was observed. The co-activation model 

was developed by analyzing the relationship of L-Glu and Ca2+ in activating mGluR1α. 

1.9.3 Investigating the effects of Ca2+ upon drugs modulating mGluR1α 

The role of Ca2+ on three classes of drugs was investigated. L-Quis (orthosteric 

agonist), (s)-MCPG (orthosteric antagonist) and CPCCOEt (allosteric modulator) in-

duced intracellular Ca2+ increases were measured in the presence or absence of extra-

cellular Ca2+. 

1.9.4 Investigating the function of Ca2+ in the process of mGluR1α trafficking 

We used thapsigargin to deplete ER Ca2+ and detected mGluR1α surface ex-

pression using flow cytometry. The role of Ca2+ in the stability of the receptor was stu-

died by measuring the thermal stability of purified ECD-mGluR1α using circular dich-

roism (CD). 
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1.9.5 Developing an ER Ca2+ sensor using mCherry as the scaffold protein 

Two Ca2+ binding sites were engineered to the chromophore sensitive sites. By 

tagging them with KDEL and ER targeting sequence of calreticulin (CRsig), the sensor 

could be specifically expressed in the ER lumen. The Ca2+ binding results in a fluores-

cence change so that ER Ca2+ could be monitored in real time. 

1.10 Summary of variants generated in this dissertation 

Table 1-1 Summary of variants created in terms of mGluR1α 
Variants Vector Tag Role 

pcDNA-mGluR1-

mCherry 

pcDNA1.1 Flag mGluR1 with mCherry reporter 

Y74A pcDNA1.1 Flag Mutation of L-Glu binding site 

D92I pcDNA1.1 Flag Mutation of Ca2+ binding site 2 

S165A pcDNA1.1 Flag Mutation of L-Glu binding site 

S166A pcDNA1.1 Flag Mutation of reported Ca2+ sensitive site 

S166D pcDNA1.1 Flag Mutation of reported in Kubo’s science 

paper 

T188A pcDNA1.1 Flag Mutation of L-Glu binding site 

S186A pcDNA1.1 Flag Mutation of L-Glu binding site 

Y236F pcDNA1.1 Flag Mutation of L-Glu binding site 

D318I pcDNA1.1 Flag Mutation on both Ca2+ binding site and L-

Glu binding site 

D322I pcDNA1.1 Flag Mutation of Ca2+ binding site 1 
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E324I pcDNA1.1 Flag Mutation adjacent to Ca2+ binding site 1 

E325I pcDNA1.1 Flag Mutation of Ca2+ binding site 1 

E328I pcDNA1.1 Flag Mutation adjacent to Ca2+ binding site 1 

N335I pcDNA1.1 Flag Mutation adjacent to Ca2+ binding site 1 

K409A pcDNA1.1 Flag Mutation of L-Glu binding site 

CD2.D1 pGEX-2T  CD2 with grafted Ca2+ binding site 1 

CD2.D1-1 pGEX-2T  CD2.D1 with E331I/E333I 

CD2.D1-2 pGEX-2T  CD2.D1 with D324I/E325I 

CD2.D1-3 pGEX-2T  CD2.D1 with D318I/D322I 

CD2.D1-4 pGEX-2T  CD2.D1 with E328I/N335I 
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Table 1-2 Summary of generated other variants  
Variants Vector Role 
pGEM-172C2 pGEM-4Z Recombined with EGFP grafting sen-

sor using Spe I for CPFP screening 
WT-ER pcDNA3.1(+) WT mCherry with ER signal peptide 
WT-Ct pcDNA3.1(+) WT mCherry expressing in cytosol 
MC-D1ER pcDNA3.1(+) MC-D1 with ER signal peptide 
MC-D1Ct pcDNA3.1(+) MC-D1 expressing in cytosol 
MC-D2ER pcDNA3.1(+) MC-D2 with ER signal peptide 
MC-D2Ct pcDNA3.1(+) MC-D2 expressing in cytosol 
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2 MATERIALS AND EXPERIMENTS 

2.1 Materials and supplies 

L-Quis, (s)-MCPG and CPCCOEt were purchased from Tocris, UK.  (3H)-L-

quisqualae was bought from PerkinElmer. L-Glutamate was ordered from Sigma. Alexa 

488 secondary antibody was purchased from Invitrogen. PcDNA1.1-mGluR1α tagged 

with Flag was provided by Dr. Randy Hall at Emory University. A site-directed mutage-

nesis kit and a miniprep plasmid extraction kit were bought from Strategene. A IP1 ELI-

SA kit was purchased 0from Cisbio. 
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2.2 Materials and Methods  

2.2.1 Structural modeling, autodocking, and Ca2+-binding sites prediction 

2.2.1.1 Dock L-Quis to ECD-mGluR1α using Autodock-vina and hinge motion analysis.  

To elucidate L-Quis’s binding on the extracellular domain of mGluR1α, L-Quis 

was docked into the crystal structure (1EWK). After removing the coordinates of the 

bound ligand, glutamate, the pdb file was loaded into Autodock tools to add polar 

hydrogen atoms and decide the docking center and grid box. The docking work was 

carried out by the newest version Autodock tool – Vina. The binding residues were 

analyzed by measuring the atoms within 6 Å of L-Quis. The hinge region of the 

glutamate and the (s)-MCPG binding were analyzed using Dymdon. The dihedral 

angles of the residues residing at the hinge joint were calculated using xxx. 

2.2.1.2 Computational Prediction of Ca2+-binding Sites in mGluR1  and Molecular 

Modeling 

The three-dimensional coordinates of the crystal structures of the ECD of 

mGluR1  were obtained from the PDB (PDB entry codes: 1EWT, 1EWK (15), and 1ISR 

(14)). Hydrogen atoms were added using the Sybyl7.2 package (Tripos Inc., St. Louis, 

MO). The identification of putative Ca2+-binding sites in the ECD of mGluR1  was per-

formed using MUG, a graph theory-based algorithm (21) developed by our laboratory. 

The Ca–O distance in the software was set to 1.6–3.1 Å with a set average cutoff of 

2.4 Å (26, 27), and the O–O distance was set to 6.0 Å (21). Side chain atoms were ro-

tated to accommodate Ca2+-induced local conformational changes (48). Furthermore, 

electrostatic surface potential maps were constructed using Delphi (28), and GRASP 
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(29) was then used to render and modify the image. The linear, putative Ca2+-binding 

site was added into the scaffold protein CD2 between Ser-52 and Gly-53 with triple Gly 

linkers at both ends, and the combined grafting model was generated by Modeler 9v4 

(30). 

2.2.2 Protein expression and purification 

2.2.2.1 Express and purify ECD-mGluR1 using E. coli (C43).  

The cDNA of ECD-mGluR1 was subcloned into the pRsetB vector. The C43 cell 

strain was used to express ECD-mGluR1. Protein expression was induced by 200 µM 

ITPG as soon as the OD value reached approximately 1.2. After a four hour expression, 

the bacteria were collected and broken using a cell disrupter. The filtered supernatant 

was purified using Histag beads as described above. 

2.2.2.2 The Expression and Purification of of Engineered Proteins—CD2.D1 and its 

variants with double mutations 

The predicted linear Ca2+-binding site, termed mGluR1-1, resides between Gly-

316 and Gly-337 (GSDGWADRDEVIEGYEVEANGG). This sequence, grafted into CD2 

between Ser-52 and Gly-53 in the plasmid pGEX-2T-CD2 (31), was named CD2.D1. 

The engineered protein was expressed as a GST fusion protein and purified using 

GS4B resin as described (32). Site-directed mutagenesis was performed using the mul-

tisite-directed mutagenesis kit (Stratagene, Cedar Creek, TX). 
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2.2.3 Determine biophysical properties of purified proteins using circular 

dichroism, fluorimetry and NMR 

2.2.3.1 Determine Trp fluorescence of ECD-mGluR1 upon binding L-Glu, Ca2+ or (s)-

MCPG.  

The intrinsic Trp fluorescence change reflects the environmental change of Trp 

buried in the protein. The conformational change induced by ligand binding usually 

influences the local environment of certain Trp residues. The purified ECD-mGluR1α 

was resolved in a buffer with 20 mM HEPES, 50 mM NaCl (pH 7.4). The final protein 

concentration was 2 µM. The emission ranging from 300 to 400 nm was collected while 

Trp was excited at 280 nm. 

2.2.3.2 Conformational analysis of engineered protein CD2.D1 and its variants using 

circular dichroism, Trp fluorescence, and NMR.  

Far UV CD spectra were acquired from 190 to 260nm on a JASCO-810 circular 

dichroism spectropolarimeter. All spectra were the average of ten scans with a scan 

rate of 100 nm/min. All the measurements were carried out in a buffer consisting of 10 

mM Tris-HCl. The secondary structural content of each sample was calculated using the 

program DICHROWEB (88). 

Fluorescence spectra were acquired using a PTI lifetime fluorimeter at ambient 

temperature with a 1 cm path-length quartz cuvette. Intrinsic tryptophan emission spec-

tra of protein samples were recorded from 300 to 400 nm with excitation set at 282 nm. 

The slit widths were set at 3.5 and 5 nm for excitation and emission, respectively. Pro-

tein samples (3.0 µM) were prepared in 20 mM PIPES-10 mM KCl at pH 6.8. 
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1D 1H NMR experiments were performed using a Varian Inova 500-MHz spectrometer. 

Spectra were acquired with a spectral width of about 13 ppm at 25 °C. NMR samples 

were prepared by dissolving 0.1 mM of protein in a Tris buffer at pH 7.4. NMR data 

were processed using FELIX 98 (Accelrys). The metal binding characteristics of 

CD2.D1 were examined using the same settings and conditions, titrating with 1 mM and 

2 mM La3+. 
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2.2.4 Tb3+ Titration and Ca2+ Competition 

In Trp-sensitized Tb3+-LRET experiments, emission spectra from 500 to 580 nm 

were recorded with excitation set at 282 nm; slit widths were set at 8 nm for excitation 

and 12 nm for emission. A glass filter with a cutoff of 320 nm was utilized to 

circumvent secondary Rayleigh scattering. Tb3+ titration and metal competition assays 

were performed as described previously (24). 500 mM K+, 10 µM La3+, 10 µM Gd3+, 1 

mM Mg2+, and 1 mM Ca2+, respectively, were used to selectively compete with Tb3+. 

Each experiment was carried out independently in triplicate. 

2.2.5 Constructs, site mutagenesis, and expression of mGluR1α variants.  

The red fluorescent protein, mCherry, was genetically tagged to the C-terminal of 

mGluR1α by a flexible linker—GGNSGG.(89) The point mutations were carried out 

using a site-directed mutagenesis kit (Strategene). HEK293 cells were seeded and 

cultured on glass coverslips. MGluR1α and its mutants were transfected into cells 

utilizing lipofectamine 2000 (Invitrogen). The cells then were incubated for two 

additional days, so that mGluR1α and its mutants were expressed at sufficient levels. 

Cells were fixed on the coverslips with 4% formaldehyde, and nuclei were stained with 

DAPI. The expression of mGluR1α and its variants were detected by measuring red 

fluorescence using confocal microscopy.  
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2.2.6 Quantitatively Determined Membrane Expression of the mGluR1  Mutants 

Using Flow Cytometry 

PcDNA-mGluR1  (donated by Dr. Randy Hall's laboratory) contained a FLAG tag 

at the N terminus of the receptor, and mCherry was genetically fused to the C terminus 

with a linker, GGNSGG. After 2 days of transient expression of mGluR1  and its 

mutants (D318I, D322I, E325I, and N335I) in HEK293 cells grown on polylysine-

coated dishes, cells were incubated in 1x phosphate-buffered saline (PBS) 

supplemented with 1/1000 anti-FLAG and 1/100 fetal bovine serum (FBS) at 4 °C. The 

cells were then washed three times with 1x Tris-buffered saline (TBS) and fixed using 

4% formaldehyde at room temperature for 15 min. After being washed three times with 

1x TBS, the receptors on the cell surface were then labeled with Alexa Fluor® 488 goat 

anti-mouse IgG (Invitrogen) for 30 min at 37 °C. The cells were then collected in 

1x PBS, and the intensities of green and red fluorescence were measured using 

LSRFortessa (BD Biosciences). The ratios of green and red fluorescence from 

mGluR1  and the mutated receptors were normalized to the amount of receptors 

expressing on the cell surface relative to the total receptors (total cellular expression of 

receptor). Data were collected from three dishes. 
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2.2.7 Measurement of [Ca2+]i Responses of mGluR1  and Its Mutants using Ca2+ 

indicator—Fura-2 AM 

2.2.7.1 Measurement of [Ca2+]i Responses of mGluR1  and Its Mutants with or without 

[Ca2+]o or Glu 

Measurement of [Ca2+]i was performed as described (24). In brief, wild type 

mGluR1  and its mutants (D318I, D322I, D324I, E325I, and E328I) were transiently 

transfected into HEK293 cells and cultured for 2 additional days. The cells on the 

coverslips were subsequently loaded using 4 µM Fura-2 AM in 2 ml of physiological 

saline buffer (10 mM HEPES, 140 mM NaCl, 5 mM KCl, 0.55 mM MgCl2, and 1 

mM CaCl2, pH 7.4). The coverslips were mounted in a bathing chamber on the stage of 

a fluorescence microscope. Fura-2 emission signals from single cells excited at 340 or 

380 nm were collected utilizing a Leica DM6000 fluorescence microscope in real time 

as the concentration of extracellular Ca2+ was increased in a stepwise manner. The 

ratio of emitted fluorescence at 510 nm resulting from excitation at 340 or 380 nm was 

further analyzed to obtain the intracellular Ca2+response as a function of changes in 

[Ca2+]o. Then, the sensitivity of mGluR1  and its mutants (D322I, D324I, E325I, and 

E328I) to extracellular glutamate was measured by increasing the extracellular 

glutamate concentration in the presence of 1.8 mM Ca2+. The glutamate concentrations 

at which the intracellular Ca2+ responses of mGluR1  and its mutants were first 

observed, and subsequently saturated, were determined. Moreover, to further 

characterize the influence of [Ca2+]o to Glu-induced [Ca2+]i release through wild type 

mGluR1 , an additional 5 or 10 mM Ca2+ was added to the perfusate. [Ca2+]i was 

measured as described above during changes in [Ca2+]o and/or Glu. 
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2.2.7.2 Measurement of Intracellular Ca2+ Release Mediated by mGluR1  and Its 

Mutants in the Presence of Extracellular Gd3+ 

Changes in [Ca2+]i in response to the addition of Gd3+ were determined as just 

described. Specifically, cells were incubated in an incubation buffer (140 mM NaCl, 4 

mM KOH, 10 mM HEPES, 1.5 mM CaCl2, 1 mM MgCl2, 10 mM glucose, pH 7.4) for up 

to 1.5 h, and Gd3+ (made up in 140 mM NaCl, 4 mM KOH, 10 mM HEPES, and 0.3 

mM MgCl2, pH 7.4) was added at the concentrations described under "Results." The 

[Ca2+]i responses of mGluR1  after the introduction of mutations in the Glu-binding site 

were measured similarly. 
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2.2.7.3 Determining the effect of [Ca2+]o on activation of mGluR1α and its mutants by L-

Quis.  

Measurement of [Ca2+]i was performed as described (46). In brief, wild type 

mGluR1α was transiently transfected into the cells and cultured for two additional days. 

The cells on the coverslips were subsequently loaded using 4 µM Fura-2 AM in 2 mL 

physiological saline buffer (10 mM HEPES, 140 mM NaCl, 5 mM KCl, 0.55 mM MgCl2, 1 

mM CaCl2 and pH 7.4) for 30 mins. The coverslips then were mounted in a bathing 

chamber on the stage of a fluorescence microscope. Fura-2 emission signals from 

single cells excited at 340 or 380 nm were collected utilizing a Leica DM6000 

fluorescence microscope in real time as the concentration of L-Quis was progressively 

increased in the presence or absence of extracellular Ca2+. The ratio of emitted 

fluorescence resulting from excitation at 340 or 380 nm was further analyzed to obtain 

the intracellular Ca2+ response as a function of changes in L-Quis. Only the individual 

cells with mCherry expressed were selected for analysis. 
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2.2.7.4 Measurement of [Ca2+]i responses  of mGluR1α to [Ca2+]o or Glu in presence of 

0.5 mM s-MCPG.  

 The methods to measure intracellular Ca2+ mobilization were described above. In 

the presence of (s)-MCPG, the cells were incubated with 0.5 mM (s)-MCPG in a saline 

buffer for 30 more minutes after Fura-2 loading. Then, the sensitivity of mGluR1α to 

extracellular Ca2+ or glutamate was measured either by increasing the extracellular Ca2+ 

or the glutamate concentration in the presence of 1.8 mM Ca2+, or by increasing 

extracellular Ca2+ in a saline buffer with or without 0.5 mM (s)-MCPG. The glutamate 

concentrations at which the intracellular Ca2+ responses of mGluR1α were measured 

when first observed and then when saturated. 

2.2.7.5 Determining the effects of [Ca2+]o on the potency of Ro 67-4853 to mGluR1α. 

As described above, Fura-2AM was used for monitoring cytosolic Ca2+ in real 

time. Ro 67-4853 was unable to potentiate mGluR1α in absence of L-Glu (ref, jeff conn). 

To obtain intracellular Ca2+ readout, HEK293 cells expressing mGluR1α were pre-

incubated with 0.5 mM Ca2+ and 5 nM Ro 67-4853 for more than 10 minutes. Cells 

loaded with Fura-2AM were mounted onto a chamber perfused with saline buffer. By 

increasing concentration of Ro 67-4853 in presence of 0.5 mM and 1.8 mM Ca2+, re-

spectively, cytosolic Ca2+ was record by ratiometric change of fura-2AM upon binding 

with Ca2+. The effect of Ca2+ was analyzed by comparing the intracellular Ca2+ release 

by Ro 67-4853 in different concentration of Ca2+ in perfusion buffer. 
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2.2.7.6 Measurement of [Ca2+]i responses of mGluR1α to [Ca2+]o or Glu in presence of 

CPCCOEt.  

The methods to measure intracellular Ca2+ release were mentioned above. After 

the coverslip was mounted to the microscope, the cells were perfused with a saline 

buffer containing 0, 5 or 40 µM CPCCOEt for more than 10 mins.  Increasing 

concentrations of extracellular Ca2+ or Glu were added into the chamber in the presence 

of a varying concentration of CPCCOEt. 

2.2.8 Determining the effect of [Ca2+]o on (3H)-L-Quis binding to mGluR1α and its 

mutants.  

HEK293 cells transiently transfected with wild type mGluR1α and its mutants 

were maintained in a 5% CO2 37oC incubator for an additional 48 hours. Cells then were 

collected in ice cold hypotonic buffer (20 mM HEPES, 100 mM NaCl, 5 mM MgCl2, 5 

mM KCl, 0.5 mM EDTA, 1% protease inhibitor at pH 7.0-7.5). The cell pellet was further 

washed twice using hypotonic buffer to remove the glutamate in the cell debris. The 

crude membrane protein (100 µg) was mixed with 30 nM (3H)-L-Quis in 100 µL of 

hypotonic buffer. The nonspecific binding was determined with addition of 200 µM 

glutamate. To study the effects of Ca2+ on L-Quis binding to mGluR1α, increasing 

concentrations of Ca2+ were applied. The reaction mixtures were incubated on ice for 

more than 1 hour, and the membrane bound with (3H)-L-Quis was captured on the filter 

paper when flowing through a Brandel cell harvestor by vacuum. The filter paper was 

transferred to scintillation fluid and the radioactive signal was detected using a Beckman 

LS 6500 multi-purpose scintillation counter.  
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2.2.9 Measurement of IP one accumulation using an IP ONE kit.  

To normalize the IP one readout, cells which were transfected with the receptors 

were re-seeded in a 24-well plate with the density of 80,000 cells per well. The 

transfection rate was measured using flow cytometry on parallel prepared dishes. The 

procedure followed the protocol provided by the IP one ELISA kit. In brief, the cells in 

the wells were treated with Ca2+, Glu in the presence or absence of 0.5 mM (s)-MCPG. 

After one hour stimulation, the cells were lysed and the lysate was transferred onto a 

pre-coated ELISA plate. The plate was then treated with the reagents in the kit and 

washed for the plate reader. To minimize the effect of the proliferation rate on different 

mutations, the IP1 concentration was normalized by whole protein concentration of the 

cell lysate. 
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2.2.10 Data Analysis and Curve Fitting 

At each agonist concentration, all of the transfected cells in the microscopic field 

from three independent experiments were selected for analysis, and at least 60% of the 

cells displaying normal responses were analyzed. The cells that did not respond to the 

agonists or displayed a sigmoidal curve with a stable plateau after treatment with high 

[Ca2+]o were excluded. These latter cells exhibited a constant, high plateau of the 

intracellular Ca2+ concentration, perhaps because the plasma membrane 

was excessively permeable to Ca2+. To normalize the concentration response curves for 

the responses to [Ca2+]o, the maximal response of wild type mGluR1  to extracellular 

Glu was set at 100% so that the maximal responses of mutant receptors to 

[Ca2+]o or Glu were transformed into percentages relative to the response of WT 

mGluR1  to Glu. Data were fitted using the Hill equation as described previously (23).  

2.2.11 Analysis of the electrostatic potential of mCherry  

Our lab uses Delphi and GRASP to calculate the electrostatic potential of mCher-

ry. A PDB file (2H5Q) of mCherry was downloaded from a protein data bank, and hy-

drogen was adding onto it by Sybyl7.2. Delphi respectively defines the salt concentra-

tion, interior and exterior dielectric constants as 0, 2, and 80, and the Poisson 

Boltzmann equation was imposed until convergence was reached. Then GRASP con-

structed the electron surface of the protein in the presence of hydrogen. 

2.2.12 Screening mutations without losing fluorescence of mCherry  

 Some residues of mCherry are not essential to its protein folding and chromo-

phore maturation. Mutations on these residues could change the fluorescent features 
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but not eliminate the fluorescence of the protein. The residues away from the chromo-

phore interacting sites were selected to either add or remove charges in order to disturb 

the local electrostability. All the mutations were randomly picked. 

2.2.13 Design of Ca2+-binding pockets on chomophore sensitive locations of 

mCherry 

As described in Shen Tang’s article, Ca2+-binding to the chomophore interactive 

residues have a high potential to produce fluorescence change. By analyzing the crystal 

structure (2H5Q), it can be seen that R95, S146, Y181, and E215 directly interact with 

the chromophore of mCherry, and E144 and L199 contact the chromophore through a 

water molecule. W143-S146 is a short loop with high solvent accessibility which can to-

lerate mutations. In our previous studies, we designed a series of variants with Ca2+-

binding properties on CD2. The rationale of designing a Ca2+-binding site on CD2 was 

applied to mCherry. The mutations were performed using a Quickchange, multiple site-

directed, mutagenesis kit (Stratagene). 

2.2.14 Expression and Purification of mCherry and its mutants 

Mutants were made by using a multi-site directed mutagenesis kit, which can 

make more than 5 mutants in one step in only one day. mCherry and its mutants in the 

pRsetB was transformed into BL21plys competent cells, and then a single round-

shaped clone was chosen to incubate in LB medium with ampicillin. After shaking over-

night in 37oC, the medium was transferred into 4L of LB with ampicillin. When the 

OD600 reached around 1.2, ITPG was used to induce expression of mCherry proteins. 

The bacteria were collected and pressed using a French Press. The proteins were puri-
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fied using a nickel column by FPLC. Purified proteins were dialyzed in a Tris buffer for 

more than 12 hours. 

2.2.15  pH profiles of mutants K198D of mCherry 

A new putative Ca2+-binding pocket, which contains E144, K198D, D200, Y214E, 

and R216E, was designed by mimicking the pocket on a CD2 variant 7E15. Purified 

protein was solubilized in sodium citrate (pH=4.5), sodium acetate (pH=5), tris-HCl (pH= 

6.5, 7.4, 8.5 and 9), and CAPSO (pH=10). The excitation maximum and emission max-

imum of protein in the above buffers were measured under λex=587 nm and λem=608 

nm. 

2.2.16 Ca2+ titration of MC-D1 

The protein was prepared in Tris-HCl with a pH= 7.11 and 8.44 which belong to 

the pH independent range. The emission spectrum and excitation spectrum were 

scanned with progressively increasing Ca2+ concentrations in the buffer. The Ca2+ was 

prepared in a 10 mM Tris-HCl buffer with a pH=7.4, eliminating any pH effect on the ti-

tration experiments. 

2.2.17 Ca2+ sensing properties of mCherry sensor candidates 

The excitation maximum and emission maximum were scanned by Felix fluore-

metry. The emission scan was excited at 587 nm, while the emission was set to 610 nm 

for the excitation spectrum scanning. The secondary structure of mCherry protein was 

assessed by its CD spectrum. The corresponding responses of MC-D1 and MC-D2 

upon addition of Ca2+ were measured by assessing the excitation or emission peaks in 

the presence of Ca2+. 
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3 ELUCIDATION OF A NOVEL EXTRACELLULAR CALCIUM-BINDING SITE ON 

METABOTROPIC GLUTAMATE RECEPTOR 1  (MGLUR1 ) THAT CONTROLS 

RECEPTOR ACTIVATION 

3.1 Introduction 

Metabotropic glutamate receptors (mGluRs) have key functions in a variety of dif-

ferent neurological processes, including memory, learning, pain, synaptic plasticity, and 

the control of the activity of various circuits throughout the brain (50). The mGluRs be-

long to family C of the large superfamily of G protein-coupled receptors (GPCRs). Fami-

ly C GPCRs (also referred to as family 3 GPCRs, the nomenclature that will be utilized 

here) also include the Ca2+-sensing receptor (CaSR), GABAB receptors, taste recep-

tors, and putative pheromone receptors (90). All members of the family 3 GPCRs share 

similar domain architecture, including venus flytrap-like extracellular domains (ECD), 

heptahelical transmembrane domains, and intracellular C-terminal C-tails. The mGluRs 

fall into three groups and eight subtypes. Group I comprises mGluR1 and mGluR5 (91).  

MGluR1 is expressed mainly around a core of ionotropic glutamate receptors in the 

postsynaptic densities of neurons and functions as a disulfide-linked homodimer (52). 

Upon activation by its agonists, the intracellular domains of the group I mGluRs asso-

ciate with the G protein Gq/11 to activate phospholipase C, which subsequently con-

verts phosphatidylinositol bisphosphate (PIP2) to diacylglycerol and inositol trisphos-

phate (IP3), thereby releasing Ca2+ from the endoplasmic reticulum, as well as activating 

protein kinase C (PKC) and other downstream effectors (92).  
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The issues of whether mGluRs respond to extracellular calcium ([Ca2+]o) and how 

calcium binding modulates the family 3 GPCRs have attracted extensive investigation. 

On the basis of sequence homology to CaSR, mGluRs were postulated to be capable of 

responding to [Ca2+]o. [Ca2+]o has been proposed to either activate mGluR1 directly or to 

act as a positive mGluR1 modulator (32,93). Kubo et al. (32,94) reported that [Ca2+]o, as 

well as Glu, can trigger intracellular responses elicited by mGluR1, mGluR3, and 

mGluR5. [Ca2+]o or Gd3+ further stimulate the activity of mGluR1  even after saturation 

of the Glu response and vice versa (32). In addition, mGluR1  responds to 5 mM [Ca2+]o 

in Purkinje cells prepared from global mGluR1  knock-out mice in which the receptor 

has been specifically knocked into Purkinje cells, whereas the Purkinje cells from the 

mGluR1  global knock-out mice themselves cannot sense [Ca2+]o (95,96). On the basis 

of these studies, [Ca2+]o is postulated to mediate postsynaptic efficacy through its action 

on mGluR1 (80). Moreover, Glu triggers [Ca2+]i oscillations in a manner that is mod-

ulated by [Ca2+]o (71), as R, 5-3, 5-Dihydroxylphenylglycine, an agonist of group I 

mGluRs, generated inward currents that were enhanced by [Ca2+]o (95). In contrast, 

Nash et al. (75) concluded that mGluR1  is not a calcium-sensing receptor because its 

response to the agonist L-Quis is not sensitive to [Ca2+]o. However, the effect of [Ca2+]o 

on the EC50 for L-Quis was not examined. Any putative Ca2+-binding sites capable of 

regulating mGluR signaling remain "invisible" in six crystal structures of the ECD of 

mGluR1  determined to date (47,55), as well as the ECDs and cysteine-rich domains of 

mGluR3 and mGluR7 (47,97). One Gd3+ ion binds to mGluR1 between the helices of 

lobe 2 (LB2) at the dimer interface of the ECD, far from the Glu-binding site (55,98). 

Removing the Gd3+-binding residue, E238Q, eliminated sensitivity to Gd3+ but not sensi-
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tivity to [Ca2+]o and Glu (56,98). Two Gd3+ ions visible in the crystal structure were ig-

nored by these authors, although one of them is located near the critical hinge region 

coordinated by Asp-322, Asp-324, and Asp-493 (55). This observation also suggests 

strongly that a Ca2+ ion could bind to this region of the protein. The invisibility of Ca2+-

binding sites in the x-ray structures of the mGluRs represents a major challenge shared 

among other Ca2+-modulated proteins functioning at high Ca2+ concentrations, like 

those in the extracellular fluids, due to their low Ca2+-binding affinities (Kd, 0.1–1.5 

mM) and irregular binding geometries (99). Our understanding of the role of Ca2+ as an 

extracellular signal acting via family 3 GPCRs beyond CaSR is severely hampered by 

the lack of adequate information about the location and properties of the Ca2+-binding 

sites of this class of proteins.  

We report herein the identification of a novel Ca2+-binding site adjacent to the Glu-

binding site in the hinge region of the ECD of mGluR1  (47,55), which was found by us-

ing our recently developed the MUG (multiple geometries) algorithm (83,100,101). MUG 

is a graphic geometry-based Ca2+-binding site prediction software. It extracts oxygen 

clusters from Protein Data Bank (PDB) files and assumes a Ca2+ center for each cluster. 

The clusters then are verified by setting parameters for geometric filters that define the 

range of distance between oxygen atoms and Ca2+. The clusters satisfying the parame-

ter setting were considered candidates for Ca2+-binding pockets. The putative Ca2+-

binding pockets of lower quality were further modified by allowing rotation of the side 

chains of predicted liganding residues. To investigate a single Ca2+-binding site present 

within a short stretch of amino acids, normally less than 30 residues, we engineered the 

short loop into a scaffold protein, CD2. Intact CD2 does not bind Ca2+ and is tolerant of 
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site-directed mutagenesis without undergoing changes in its overall structure. Then the 

metal-binding capabilities of the key predicted Ca2+-binding residues were further cha-

racterized using luminescence energy transfer (LRET) and site-directed mutagenesis 

(45,46). Finally, we investigated the intracellular Ca2+ responses resulting from the bind-

ing of [Ca2+]o, [Gd3+]o, or Glu individually or of both [Ca2+]o and Glu together by express-

ing wild type and mGluR1  variants with predicted ligand residues mutated. Our studies 

suggest that Asp-318, Asp-322, and Glu-325 at the predicted site are involved in Ca2+-

binding and that mutation at Asp-318 and Glu-325 also abolishes responsiveness of the 

receptor to [Gd3+]o. The ligands for Glu binding, in contrast, although also including Asp-

318, are otherwise distinct (47,55,78). Notably, the carboxylate group of the side chain 

of Glu also contributes to the binding site for Ca2+. We propose a dual activation me-

chanism whereby the simultaneous binding of Glu and Ca2+, at their separate but par-

tially overlapping binding sites, potentiates one another's actions to yield maximal acti-

vation of mGluR1 

3.2 Results 

3.2.1 Prediction of a Novel Ca2+-binding Site Adjacent to the Glu-binding Site in 

the ECD of mGluR1  

         We recently developed the computational algorithm MUG, which predicts Ca2+-

binding sites using graph theory by identifying all possible liganding oxygen clusters and 

finding maximal cliques. The positions of Ca2+ and its liganding groups in 144 calcium-

binding proteins can be predicted with 0.22–0.49 Å accuracy by geometric filters estab-

lished on the basis of an extensive survey of known Ca2+-binding sites in the Protein 
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Data Bank (99). To accommodate Ca2+-induced conformational changes, the side 

chains of putative Ca2+-binding ligand residues were subjected to rotation using a rota-

mer library (MUGSR) (102). Fig. 3-1 shows one predicted Ca2+-binding site identified 

here in the crystal structure of the mGluR1  ECD (PDB entry code: 1EWK) using the 

MUG algorithm. Two other predicted sites not included in this report were also revealed 

by MUG, one of them (site 2) residing in the Mg2+-binding pocket (Leu-86—Gly-102) in-

ferred from the crystal structure and the other one located within a long loop (Asp-125—

Lys-153) that was invisible in the crystal structure because of its high flexibility and was 

repaired using Modeler (103). The third predicted Ca2+-binding site (site 3), encompass-

ing Ser-129 to Gly-144, was present within this missing loop.  

The predicted Ca2+-binding site studied in detail here comprises the carboxyl side 

chains of Asp-318 and Glu-325, the main chain carbonyl Asp-322 in a flexible loop of 

mGluR1 , and the carboxyl side chain of Glu-701 (a ligand for glutamate). This pre-

dicted Ca2+-binding site is located at the hinge region in the ECD adjacent to the re-

ported Glu-binding site (Arg-74, Ser-165, Thr-188, Asp-208, Tyr-236, Asp-318, and Lys-

409) (15, 25), with Asp-318 predicted to be involved in both Glu and Ca2+-binding. Thus, 

Ca2+ and Glu, when bound to the receptor, both bind to Asp-318. Asp-318 and Asp-322 

can be identified in the Glu-free form (PDB entry code: 1EWT), whereas the direct bind-

ing of Ca2+ to the carboxyl side chain of the agonist Glu-701 is visualized only in the 

Glu-loaded form (PDB entry code: 1EWK). Thus, the agonist Glu provides an additional 

ligand for Ca2+ when the former is bound to the receptor, which is very different from 

intracellular Ca2+-binding trigger proteins such as calmodulin that lack any additional 

chelating groups from molecules other than the residues within the Ca2+-binding protein 
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itself, except for water. Fig. 3-1B shows that the predicted Ca2+-binding pocket has a 

highly negatively charged surface as revealed by Delphi in the structures of three solved 

forms of the ECD within mGluR1  (Fig. 3-1B).  

3.2.2 Conformational effect of grafted CD2 mutant (CD2.D1).  

In our previous study, grafting of EF-hand loops from CaM (104,105) and a viral 

protease from the rubella virus (106), or continuous Ca2+-binding sites from a calcium-

sensing receptor into CD2 (46), did not significantly affect the secondary structure of the 

host protein. (46,104-106). To ensure that the structural integrity of the host protein was 

not disrupted, we used far UV CD, Trp fluorescence and 1D 1H NMR to monitor any 

structural changes in the host protein after grafting the predicted Ca2+-binding sequence 

from mGluR1α. As shown in Fig. 3-2A, the engineered proteins and wild type CD2.D1 

have a common negative peak at around 216 nm, which suggests that these engi-

neered proteins did not modify the β sheet characteristic of intact CD2. Extra negative 

signals at around 201 nm for CD2.D1 could be contributed to by the inserted loop, 

which increases the amount of random coil in the grafted proteins (Fig. 3-2A, Table 3-1). 

1D 1H NMR studies further confirmed this point by demonstrating the similar spectra of 

CD2 and CD2.D1 (Fig. 3-2C).  

3.2.3 Membrane expression of wild type mGluR1α and its mutants.  

We first examined the expression and membrane targeting of WT and mutant 

mGluR1α using confocal microscopy by attaching mCherry, a monomeric variant of red  
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Figure 3-1 Predicted Ca2+-binding pocket in ECD of mGluR1α. (A) Location of the 
predicted Ca2+-binding site in the ECD (PDB entry code: 1EWK). The proposed key 
residues are indicated and highlighted in red (model generated by PyMOL). (B) Elec-
trostatic potential map of ECD. The predicted Ca2+-binding site is in the hinge region 
and shares residue Asp-318 with the Glu-binding site. (C) Alignment of the grafted 
fragment in mGluRs and CaSR. Asp-318 is conserved in all of the receptors; Glu-325 
is conserved in group I and II mGluRs; Asp-322 is conserved in group I mGluRs.  
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Figure 3-2 Secondary structure and folding of engineered proteins. (A) Far UV CD 
spectra of wild type CD2 and CD2.D1. All spectra were performed in 10 mM Tirs buffer, 
and were the average of ten scan at a rate of 100 nm/min. (B) Trp fluorescence spectra 
of wild type CD2 and CD2.D1. The sample contained 3 µM proteins in 20 mM PIPES 
and 10 mM KCL with pH at 6.8. The slit widths for excitation and emission were 3.5 and 
5 nm, respectively. (C) 1H-1D NMR spectra of CD2 and CD2.D1. The samples were 
prepared with 0.1 mM protein in 10 mM Tris buffer with pH at 7.4. 
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Table 3-1 Spectra fit of CD data of CD2 and grafting protein, CD2.D1 
 α-Helix  β-Sheet  Turn  

CD2 

CD2.D1 

0.057 ± 0.049 

0.079 ± 0.013 

0.384 ± 0.014 

0.362 ± 0.023 

0.553 ± 0.037 

0.553 ± 0.034 
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Figure 3-3 Membrane Expression of wt-mGluR1α, D318I-mGluR1α, D322I- 

mGluR1α, D324I-mGluR1α, E325I-mGluR1α, and E328I-mGluR1α using a gene re-

porter at HEK293 cells. MGluR1α were genetically tagged with red fluorescent protein,  

mCherry, at the C-terminal by linker GGNSGG. Wt-mGluR1α, D322I, D324I, E325I, 

E328I express well on the membrane of cells, and the nucleus is stained by DAPI 

(blue); D318I-mGluR1α also expresses on the membrane but is partially clustered in cy-

tosol.
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fluorescent protein, to the C-termini of these proteins (Fig. 3-3). Both WT mGluR1α and 

its mutated variants were successfully expressed with the respective receptor targeted 

to the HEK293 cell membrane. The mutant D318I-mGluR1α displayed some clusters of 

fluorescence in the cytosol, possibly due to retention of mutant receptors in the ER lu-

men. However, the receptor level on the membrane is close to that of WT-mGluR1α. 

3.2.2 Obtaining Site-specific Ca2+/Ln3+-binding Affinities by a Grafting Approach 

         To probe the Ca2+-binding capability of the predicted Ca2+-binding site in 

mGluR1 , we utilized our grafting approach by inserting the protein sequence encom-

passing the putative mGluR1  Ca2+-binding site into the host protein, CD2.D1 (denoted 

as CD2-mGluR1-1). The inserted sequence contains all predicted Ca2+-binding residues 

except Glu-701. This approach had previously enabled us to obtain site-specific Ca2+-

binding affinities of the EF-hand motifs from calmodulin and linear Ca2+-binding se-

quences, free from the limitations of working with membrane proteins (32, 33). The put-

ative mGluR1  Ca2+-binding site was flanked by flexible triple-Gly linkers and inserted 

between Ser-52 and Gly-53 of CD2.D1 (Fig. 3-4A) to ensure a native-like conformation 

and close proximity (<15 20 Å) to Trp-32 in order to enhance the Tb3+-LRET signal. In-

deed, grafting the putative Ca2+-binding loop from mGluR1  did not significantly change 

the secondary and tertiary structures of CD2, as revealed by circular dichroism, Trp flu-

orescence, and NMR chemical shifts (supplemental Fig. 3-2). Fig. 3-4B shows that Tb3+ 

(which has the same coordination chemistry as Ca2+) elicits an increase in fluorescence 

of CD2.D1 at 550 nm when excited at 280 nm due to Tb3+- LRET. CD2.D1 had a Tb3+ 

binding affinity of 49 ± 9 µM (Fig. 3-4B and Table 3-2). Ca2+ displaced bound Tb3+ (Fig. 
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3-4B), thereby decreasing the Tb3+-LRET signal. CD2.D1 has a Ca2+ dissociation con-

stant of 1.80 ± 0.12 mM determined in this manner (Table 3-2). 

Because mGluR1  is modulated by various polyvalent cations, including Ca2+, 

Gd3+, Tb3+, La3+, Mn2+, and Mg2+ (6), we tested the metal binding selectivity of CD2.D1 

by applying K+, Mg2+, La3+, or Gd3+ to compete with prebound Tb3+. Fig. 3-4C shows 

that the luminescence intensity of Tb3+ decreased significantly upon adding trivalent 

La3+ or Gd3+, indicating that Tb3+ bound to the pocket was replaced by these metal ions. 

Gd3+ had the strongest capacity to displace Tb3+. Similarly, adding La3+ to CD2.D1 pro-

duced a split in the resonance of CD2.D1 at 10 ppm (Fig. 3-4D). Ca2+ competed more 

effectively than Mg2+, whereas K+ failed to compete with Tb3+.  

Next, we utilized mutagenesis studies to examine the contribution of proposed li-

gand-binding residues to metal-binding capability. Double substitutions of negatively 

charged residues by Ile to delete negative charges but preserve bulky side chains in the 

proposed binding pocket, as seen in the mutants D324I/E325I, D318I/D322I, and 

E328I/N335I, produced 2.3-, 6.1-, or 98-fold increases in the respective dissociation 

constant values (Fig. 3-4, B and E). However, removing the negative charges from the 

non-Ca2+-binding residues, Glu-331 and Glu-333 (E331I/E333I) (Fig. 3-4, B and E) pro-

duced a less than 2-fold change in the Kd, with a modest alteration in Tb3+ binding to 

the predicted binding pocket.  

3.2.3 Membrane Expression of mGluR1  and Its Mutants 

         WT mGluR1  and its mutant forms (D318I, D322I, and E325I) were expressed he-

terogeneously in HEK293 cells. The receptors expressed on the cell membrane were  
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Figure 3-4 Metal binding properties of the grafted Ca2+-binding site. A, three-
dimensional illustration of the modeled structure of the engineered protein CD2.D1, 
based on the crystal structures of CD2 (PDB entry code: 1HNG (35)) and the mGluR1α 
ECD (PDB entry code: 1EWT (8)). B, Tb3+ titration and Ca2+ competition (shown as in-
set) of CD2.D1. The engineered protein bound Tb3+ and Ca2+ with dissociation con-
stants of 49 ± 9 µm and 1.8 ± 0.1 mm, respectively. Substitution of putative metal-
binding ligand residues with Ile decreases Tb3+ binding affinity. Tb3+ binding curves of a 
series of CD2-mGluR1 double mutants, E331I/E333I, D324I/E325I, D318I/D322I, and 
E328I/N335I. All measurements were carried out in a buffer containing 20 mm PIPES 
and 10 mm KCl, pH 6.8. C, Tb3+ binding curves of a series of CD2-mGluR1 double mu-
tants: CD2.D1-1 (E331I/E333I), CD2.D1-2 (D324I/E325I), CD2.D1-3 (D318I/D322I), and 
CD2.D1-4 (E328I/N335I). All of the measurements were carried out in a buffer contain-
ing 20 mm PIPES and 10 mm KCl, pH 6.8. D318I/D322I obviously decreased Tb3+ bind-
ing affinity, whereas D324I/E325I displays two phases. The Tb3+ binding affinity of the 
engineered protein was clearly impaired by these two pairs of mutations (n = 3). D, La3+ 
binding to the engineered protein CD2.D1 monitored by 1D1H NMR. 1 or 2 mm La3+ re-
sults in the peak split at the aromatic group region. E, metal selectivity of CD2.D1. The 
addition of 500 mm K+, 1 mm Ca2+, 1 mm Mg2+, 100 µm Gd3+, or 100 µm La3+ to the 
pre-equilibrated Tb3+ (30 µm) and protein (3 µm) solution was carried out independently. 
The resultant changes in the Tb3+ luminescence signal were monitored at 545 nm (*, p < 
0.05; **, p < 0.01).  
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Table 3-2 Tb3+ binding affinities of the engineered protein CD2.D1 and its double 
mutants (n=3) 

 



64 

visualized by confocal microscopy (supplemental Fig. 3-3) and flow cytometry (Fig. 3-5). Sup-

plemental Fig. 3-3 shows that the mutations did not affect the distribution of the receptors on 

the membrane. We calculated the ratio of intensities of green and red fluorescence 

measured using flow cytometry (LSRFortessa, BD Biosciences); the mutant receptors 

displayed expression levels on the cell membrane comparable with that of the wild type 

receptor, although E325I displayed a somewhat lower membrane expression level (Fig. 

3-5; n = 3). Thus, the mutations involving the predicted Ca2+-binding site had little effect 

on the surface expression of the respective mutant receptors. 

3.2.4 Extracellular Ca2+ Triggers mGluR1 -mediated Intracellular Responses 

We next examined the mGluR-mediated intracellular Ca2+ responses in HEK293 

cells transfected with mGluR1 -mCherry. The fluorescent protein mCherry was fused to 

mGluR1  to correlate cellular responses with the expression of mGluR1 . We chose 

HEK293 cells as a model because this cell line lacks endogenous mGluR1  (34). 

mGluR1 -mCherry was well expressed and correctly targeted to the cell membrane 

(Figs. 3-5 and 3-6A and supplemental Fig. 3-3), and Fura-2 was efficiently loaded (Fig. 

3-6B). Single cell, real time imaging was performed using fluorescence microscopy. To 

minimize receptor desensitization by agonists, the responses to each concentration of 

added Ca2+ or Glu were examined using separate coverslips. 

In the absence of exogenous Glu, the addition of [Ca2+]o at less than 1.8 mM did 

not induce any [Ca2+]i response in HEK293 cells transfected with WT mGluR1 . Adding 

3.0 mM Ca2+ to the medium elicited a transient [Ca2+]i increase followed by a long last-

ing plateau (Fig. 3-6C); this response was maximal at 5.0 mM [Ca2+]o, with an EC50 of  
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Figure 3-5 Surface expression of WT mGluR1α and its mutants. mGluR1α carries a 
FLAG tag at its N terminus and mCherry at its C terminus. mGluR1α and its mutants 
were transiently expressed in HEK293 cells seeded on 50-mm dishes coated with poly-
lysine. After incubation with anti-FLAG, the receptors on the membrane could be visua-
lized using a secondary antibody, Alexa 488-anti-mouse IgG (Invitrogen). Emissions at 
520 and 610 nm were collected by flow cytometry (LSRFortessa, BD Biosciences); 
these represent receptors present on the cell membrane and overall, respectively. Ra-
tios of fluorescence at 520–610 nm indicate the membrane expression levels of WT 
mGluR1α and its mutants. Emission at 520 nm (green signal) reflects the membrane 
expressed receptors, whereas the red signal at 610 nm from mCherry is a measure of 
total expression of the receptor. NT indicates non-transfected cells, which display no 
fluorescence. Although E325I displays a relatively lower surface expression, the other 
mutants have membrane expression levels comparable with that of WT mGluR1α (n = 
3). The buffer used in this experiment is 1X PBS. 
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Figure 3-6 Intracellular Ca2+ responses of WT mGluR1α and its mutants. WT 
mGluR1α and D318I-mGluR1α were overexpressed in HEK293 cells. Fura-2 was then 
loaded into the cells, and the [Ca2+]i level was measured by monitoring emission at 510 
nm with excitation at 340 or 380 nm. A, red fluorescence of mCherry on the C terminus 
of mGluR1α indicates the presence of the receptor or its mutants. B, cells were loaded 
with Fura-2-AM to measure [Ca2+]i level. C, [Ca2+]i release triggered by [Ca2+]o in WT 
mGluR1α and its mutants. D318I and E325I eliminate the [Ca2+]i response, whereas 
D322I and S166A reduce it. All the buffers used in this experiment are 10 mM HEPES, 
140 mM NaCl, 5 mM KCl, 0.55 mM MgCl2 and various Ca2+ concentration (pH 7.4). NT, 
non-transfected cells.  
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Figure 3-7 Intracellular Ca2+ responses of WT mGluR1α and its mutants (D322I-
mGluR1α, D324I-mGluR1α, E325I-mGluR1α, and E328I-mGluR1α) to [Ca2+]o in the 
presence of Glu. Shown are the additional Glu-enhanced responses of WT mGluR1α 
and all of its mutants to [Ca2+]o. The Glu concentrations that were added were deter-
mined by the responses of the wild type receptor or its mutants to Glu. That is, the Glu 
concentrations that evoked initial activation of or saturated the receptors were utilized 
for the [Ca2+]o-induced responses of the wild type receptor and its mutants. [Ca2+]i levels 
were measured by the same methods described above. Notably, E325I loses sensitivity 
to [Ca2+]o but can still sense [Glu]o. However, its responsiveness to [Ca2+]o in the pres-
ence of high concentration [Glu]o was not affected by increasing [Ca2+]o (n = 3). The buf-
fer used in this set of experiments is 10 mM HEPES, 140 mM NaCl, 5 mM KCl, 0.55 
mM MgCl2 and various L-Glu and Ca2+ concentration (pH 7.4). 
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Figure 3-8 Intracellular Ca2+ responses to extracellular Glu in HEK293 cells trans-
fected with WT mGluR1α or its mutants. Three negatively charged residues in the 
predicted Ca2+-binding pocket (Asp-318, Asp-322, and Glu-325) were mutated into Ile. 
Along with WT mGluR1α, the mutants were transiently expressed in HEK293 cells. In 
the presence of 1.8 mm Ca2+, extracellular Glu-induced intracellular Ca2+ release was 
measured by recording emission intensities at 510 nm excited at 340 and 380 nm, re-
spectively. A, responses to Glu of mutations on Ca2+-binding site. Except for mutant 
D318I, two other mutants, D322I, E325I, and WT mGluR1α display responsiveness to 
Glu. B, maximal response of WT mGluR1α and its mutants to Glu at a saturating con-
centration. The buffer used in this set of experiments is 10 mM HEPES, 140 mM NaCl, 
5 mM KCl, 0.55 mM MgCl2 and 1.8 mM Ca2+ concentration (pH 7.4). Each single data 
point was performed in an individual dish, and the cells expressing mGluR1α and show-
ing responses to Glu were selected for analysis (n = 3). 
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Table 3-3 [Ca2+]i responses of WT mGluR1α and its mutants to [Ca2+]o and Glu 
(n=3) 
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3.0 mM. Furthermore, adding 0.5 or 30 µM Glu significantly enhanced the maximal re-

sponse of mGluR1  to [Ca2+]o by 1.3- and 1.7-fold, respectively (Fig. 3-7). The EC50 val-

ue for [Ca2+]o decreased from 3.0 to 2.8 and 0.1 mM, respectively (Fig. 3-7 and Table 3-

3). The response of wild type mGluR1  to Glu was investigated in a physiological saline 

buffer with 1.8 mM Ca2+. Wild type mGluR1  only responded at 0.5 µM Glu, and this 

response was saturated at 30 µM Glu. Fig. 3-8A shows that at 1.8 mM Ca2+, the addi-

tion of >30 µM Glu evoked large [Ca2+]i responses. On the other hand, when [Ca2+]o was 

reduced from 1.8 mM to close to zero (no Ca2+ added to the medium), 30 µM Glu still 

activated mGluR1  (Fig. 3-7). There was, however, a reduced maximal response (29%) 

(Fig. 3-7), possibly because of the depletion of intracellular calcium stores. This result 

suggests that Glu triggers the activation of mGluR1  and that this effect can be en-

hanced by [Ca2+]o. 

To study the synergy of [Ca2+]o and Glu binding to mGluR1 , the combination in-

dices for quantitative evaluation of synergism were calculated using Calcusyn (35). With 

0.5 or 30 µM Glu, the combination indices were <1 when [Ca2+]o reached a physiological 

level (>0.5 mM) (supplemental Table 3-5), suggesting that Glu and Ca2+ synergistically 

modulate mGluR1 -mediated signaling.  
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3.2.5 Effects of [Ca2+]o on a Glu-induced [Ca2+]i Release by Wild Type mGluR1  

          To determine the role of [Ca2+]o on Glu-mediated activation of wild type mGluR1 , 

5 and 10 mM [Ca2+]o were added to the perfusion system in addition to the 1.8 mM 

already present in the perfusate. As shown in Fig. 3-9, compared with the response in 

1.8 mM [Ca2+] o o, both 5 and 10 mM [Ca2+]o enhanced the responses of WT mGluR1  

to Glu by reducing the EC50 values from 1.7 to 0.9 and 0.4 µM, respectively (Table 3-3), 

although the maximal responses remained comparable with those at 1.8 mM [Ca2+]o. 

This indicates that [Ca2+] o potentiates the sensitivity of mGluR1  to Glu and that this 

effect increases at higher levels of [Ca2+]o. 
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3.2.6 Effects of Mutating Proposed Ca2+-binding Residues on [Ca2+]o - or Glu-

evoked [Ca2+]i Responses 

          To further understand the potential physiological role of this proposed Ca2+-

binding site, we compared the mGluR-mediated [Ca2+]i responses in HEK293 cells 

transfected with the WT or mutated versions of mGluR1 . Fig. 3-6C shows that without 

Glu, substituting the predicted Ca2+-binding residues Asp-318 and Glu-325 with Ile 

eliminates the transient [Ca2+]i response toward [Ca2+]o. In addition, the mutation D322I 

also reduced the transient [Ca2+]i response by 16–20% while increasing the EC50 from 

3.0 mM [Ca2+]o for the wild type receptor to 4.2 mM for D322I (Fig. 3-7 and Table 3-3), 

although all mutants were expressed at levels comparable with the WT receptor, as 

assessed by immunofluorescence and flow cytometry (Fig. 3-3 and Fig. 3-5). These 

results suggest that the predicted Ca2+-binding residues, Asp-318, Glu-325, and Asp-

322 (especially the first two), are important for the sensitivity of mGluR1  to modulation 

by [Ca2+]o. However, S166A maintains Ca2+ sensitivity with a lower maximal response 

(Fig. 3-6C), although Ser-166 was previously reported to be a potential Ca2+-binding 

residue (6).  
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Figure 3-9 Extracellular Ca2+ enhanced mGluR1α to sense extracellular Glu. Res-
ponses of WT mGluR1α to extracellular Glu were assessed in buffers containing addi-
tional [Ca2+]o (1.8, 5, and 10 mm). The maximal responses of the receptor to [Glu]o in 
1.8, 5, and 10 mm [Ca2+]o are comparable, but the EC50 values for the responses in the 
presence of 5 and 10 mm [Ca2+]o are significantly decreased. Clearly, higher [Ca2+]o re-
duces the EC50 of the receptor for [Glu]o (n = 3). The buffer used in this set of experi-
ments is 10 mM HEPES, 140 mM NaCl, 5 mM KCl, 0.55 mM MgCl2 and various L-Glu 
and Ca2+ concentration (pH 7.4). 
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3.2.7 Effects of Mutating Predicted Ca2+-binding Residues on Glu-potentiated 

[Ca2+]i Responses 

 The Ca2+-binding site identified here is adjacent to the previously defined Glu-

binding site (Arg-78, Ser-165, Thr-188, Asp-208, Tyr-236, Asp-318, and Lys-409) (15, 

25) (Fig. 3-1B). Asp-318 is the lone residue used in both the Glu- and Ca2+-binding 

sites. Figs. 3-6 and 3-8 show that the mutation D318I completely eliminates the [Ca2+]i 

response of mGluR1  to both [Ca2+]o and Glu, even at concentrations of the latter as 

high as 30 µM. In contrast, the mutant E325I completely abolishes [Ca2+]o-mediated 

[Ca2+]i responses without the agonist Glu (Figs. 3-6C and 3-7 and Table 3-3) but retains 

Glu-mediated [Ca2+]i responses (Fig. 3-8A). 

However, its EC50 value for Glu-mediated responses is increased by 18-fold (Fig. 

3-8B and Table 3-3). These results further confirm that Glu-325 contributes to Ca2+-

binding without directly liganding Glu (as shown by earlier studies of the binding site for 

Glu, which did not identify Glu-325 as a Glu ligand). However, the proximity of the Ca2+- 

and Glu-binding sites may produce indirect, conformational effects of mutating residue 

325 on Glu binding. Furthermore, D322I exhibited a reduction in EC50 for [Ca2+]o by only 

33%, consistent with it making a relatively minor contribution as a ligand for Ca2+-

binding. In contrast to the marked impact of D318I and E325I on the EC50 for [Ca2+]o, 

removal of other charged residues, such as D324I and E328I, did not alter either the 

EC50 (3 and 8% changes, respectively) or the magnitude of the response to [Ca2+]o sig-

nificantly in the absence of Glu (104 ± 10 and 102 ± 5, respectively, of the control level) 

(Fig. 3-7 and Table 3-3).  
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Table 3-4 [Ca2+]i response of mutants in L-Glu binding site (n=3) 
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3.2.8 Effect of Mutating the Glu-binding Site on [Ca2+]i Responses to Glu and 

Ca2+ 

To further explore the synergistic interaction between the predicted Ca2+- and 

Glu-binding sites, four mutations at Glu ligand residues (S165A, T188A, D208I, and 

Y236F) were generated. Consistent with studies reported previously (25), T188A and 

D208I entirely eliminated Glu sensitivity, whereas S165A and Y236F could be activated 

only by high concentrations (100 µM) of Glu (3-10A). Interestingly, all receptors with 

mutated Glu-binding ligand residues (with the exception of Asp-318) retained a 

sensitivity to [Ca2+]o (Fig. 3-10B and Table 3-4), although their EC50 values were 

increased compared with that of wild type mGluR1  (Table 3-4). This again may be due 

to local conformational effects of mutating the Glu-binding site on Ca2+-binding. S165A 

and D208I increased the EC50 of the wild type receptor for [Ca2+]o from 3.0 to 8.1 and 

4.6 mM, respectively, although their maximal responses were comparable to that of the 

wild type receptor (Fig. 3-10B and Table 3-4). Conversely, T188A and D208I exhibited 

much reduced maximal responses (26 and 66%, respectively), whereas their EC50 

values were comparable with that of the wild type receptor (Table 3-4). Taken together, 

the data shows that it is possible to generate mGluR1  variants responding to either Glu 

or Ca2+ alone. Thus mGluR1  can function as a true [Ca2+]o- sensing receptor, (no 

comma) as certain mutants, such as S165A and D208I, do not respond to Glu but 

maintain their Ca2+-sensing capability with only a modest increase in the EC50 for 

[Ca2+]o.  
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3.2.9 Effects of Mutations in the Predicted Ca2+-binding Site on Gd3+-induced 

[Ca2+]i Responses 

Gd3+ is also revealed at the hinge region in the Fourier map, where it shares residues 

Asp-322 and Asp-324 from the loop that contributes to Ca2+-binding (14). Because of 

the low resolution of this crystal structure (4 Å), the highly flexible loop that binds Gd3+ in 

the crystal structure, and the similarity of the binding geometries of Gd3+ and Ca2+, 

these two cations probably share, at least in part, the same residues. To address this 

possibility, the responses to [Gd3+]o of D318I and E325I were compared with that of the 

wild type receptor. Consistent with results reported by Abe et al. (17, 36), the dose-

response profiles of wild type mGluR1  display a bell-shaped curve, this could be high 

concentration of Gd3+ blocked some types of Ca2+ channels on membrane. However, 

the introduction of the mutation D318I or E325I completely eliminated the receptor 

sensitivity to [Gd3+]o (Fig. 3-11). 

3.2.10 Glutamate and [Ca2+]o synergistically modulate mGluR1α coupled 

signaling.  

The synergistic effect of Glu and [Ca2+]o was quantitatively described by combi-

nation indices. As shown in Table 3-5, in the presence of 5 or 30 µM Glu, the combina-

tion index values became significantly smaller than 1, suggesting that Glu and [Ca2+]o 

regulate mGluR1α synergistically. 
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Table 3-5 Combination indices of glutamate and Ca2+ on mGluR1α 
 

[C

a2+], 

(mM) 

Combination Indices 

0.5 µM 

Glutamate 

30 µM 

Glutamate 

0.5 

1 

3 

5 

10 

20 

4.751 

0.402 

0.363 

0.151 

0.177 

0.294 

0.968 

0.244 

0.078 

0.368 

0.261 

0.011 
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Figure 3-10 Receptors with mutations in the Glu-binding pocket can sense Ca2+ 
but not Glu in a physiological buffer. Four residues from the reported Glu-binding 
pocket were selected to mutate into non-polar residues. Intracellular Ca2+ levels indi-
cated by Fura-2 were recorded using fluorescence microscopy, which detected the ratio 
of the emission at 510 nm with excitation at 340 and 380 nm. A, T188A and D208I ab-
olish sensitivity to Glu, but S165A and Y236F still respond to 100 µm Glu. B, mutants 
S165A, T188A, D208I, and Y236F remain capable of responding to [Ca2+]o; the maximal 
responses of S165A, T188A, and D208I are comparable with that of WT mGluR1α, 
whereas Y236F decreases the sensitivity of the receptor to [Ca2+]o (n = 3). The buffer 
used in this set of experiments is 10 mM HEPES, 140 mM NaCl, 5 mM KCl, 0.55 mM 
MgCl2 and various Ca2+ concentration (pH 7.4). 
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Figure 3-11 Mutations D318I and E325I in the predicted Ca2+-binding site abolish 
[Ca2+]i responses of the receptor to [Gd3+]o. HEK293 cells expressing D318I, E325I, 
and WT mGluR1α were preincubated in 140 mm NaCl, 4 mm KOH, 10 mm HEPES, 1.5 
mm Ca2+, 1 mm MgCl2, and 10 mm glucose, pH 7.5, for up to 1.5 h before fluorescence 
microscopy was carried out. Gd3+ was added into the loading buffer (140 mm NaCl, 4 
mm KOH, 10 mm HEPES, and 0.3 MgCl2, pH 7.4) in the perfusion system. [Ca2+]i levels 
indicated by Fura-2 are presented by the ratio of the fluorescence at 510 nm when ex-
cited at 340 and 380 nm as above. The [Ca2+]i response of wild type mGluR1α displays 
a bell-shape curve, but D318I and E325I completely abolish [Ca2+]i release to [Gd3+]o (n 
= 3).  

  

. 
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3.3 Discussion 

We utilized the computational algorithm MUG (22) to predict a novel Ca2+-binding 

site in mGluR1  adjacent to the Glu-binding site shown in Fig. 3-1. This predicted Ca2+-

binding site (comprising Asp-318, Glu-325, Asp-322, and the carboxylate side chain of 

Glu-701) does not completely overlap the Glu-binding site (15, 25). However, both sites 

include Asp-318, which our data suggests is involved in both Glu and Ca2+-binding. The 

metal-binding capability of the predicted Ca2+-binding residues in mGluR1  was verified 

by a grafting approach. Like wild type mGluR1 , the predicted Ca2+-binding site grafted 

into a scaffold protein (CD2) exhibited metal selectivity for Ca2+ and its trivalent analogs, 

Gd3+, Tb3+, and La3+, in contrast to the physiological monovalent cation, K+, which exhi-

bited no measurable affinity for the predicted site. The metal-binding capability of the 

predicted metal-binding ligand residues in mGluR1  was further verified by replacing 

negatively charged residues with Ile. The Ca2+-binding affinity of mGluR1  determined 

by the grafting approach ( 1.8 mM) is within the physiological concentration of [Ca2+]o in 

the nervous system (0.8–1.5 mM) (37), although this Ca2+-binding constant may be 

changed slightly in vivo by the local microenvironment and/or the presence of Glu re-

leased by nearby cells.  

We further demonstrated that mGluR1  could be activated by either Glu or [Ca2+]o. 

Indeed, Glu and [Ca2+]o act synergistically to elicit the maximal [Ca2+]i responses ob-

served here (Table 3-3). Mutating the Glu-binding site, such as T188A and D208I, in 

mGluR1  (Fig. 3-10A and Table 3-4), completely abolished the Glu-signaling capability 

of the receptor while leaving its Ca2+-sensing capability largely intact with only modest 
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increases in EC50 for [Ca2+]o. These results suggest that mGluR1  can function as a 

true [Ca2+]o-sensing receptor, i.e. exhibiting robust activation by [Ca2+]o in the absence 

of added Glu. Although we cannot rule out release of low concentrations of Glu by the 

HEK293 cells, it should be noted that some mutants of the receptor retained respon-

siveness to [Ca2+]o despite complete loss of responsiveness to Glu. Moreover, even the 

addition of high exogenous concentrations of Glu failed to activate these mutants.  

We have also shown that mutating predicted Ca2+-binding residues abolishes, but 

it also significantly reduces [Ca2+]o sensitivity and, in some cases, affects Glu-mediated 

responses. For example, E325I completely abolished [Ca2+]o-mediated [Ca2+]i res-

ponses in the absence of Glu (Fig. 3-5C and Table 3-3). At the same time, this mutant 

retained sensitivity to Glu, albeit with an 18-fold reduction in EC50 (without any de-

crease in maximal response) (Fig. 3-7 and Table 3-3). Thus, despite its not being a Glu-

binding residue, the presence of an intact Ca2+-binding ligand at Glu-325 considerably 

enhanced the affinity of mGluR1  for Glu. How could this take place? These results, in 

fact, are consistent with separate but overlapping Ca2+- and Glu-binding sites (Figs. 3-1 

and 3-12). As noted, positively charged Arg-323 is also very close to Ca2+ in the model, 

but it might not affect Ca2+-binding because of the flexible backbone in the loop. Glu-

325 is predicted to be a ligand for binding Ca2+ and not Glu. Glu-325 could be identified 

only in the x-ray structure of Glu-complexed mGluR1  (PDB entry code: 1EWK), indicat-

ing that 1) the binding of Glu could stabilize the side chain of Glu-325 in a conformation 

favorable for it to serve as a ligand for Ca2+, and/or 2) the bound Glu could then further 

enhance [Ca2+]o binding by contributing an additional Ca2+-binding ligand. Conversely, 

binding of Ca2+ to mGluR1  could increase the affinity of the Glu-binding site for its li-
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gand by providing Ca2+ as an additional Glu ligand (Glu-701). Overall, mutating residues 

involved only in binding [Ca2+]o (with the exception of Asp-318) had less dramatic effects 

than mutations at the Glu-binding site. Most of these mutants can be fully activated on 

binding Glu, because the addition of high levels of Glu restores their EC50 and maximal 

responses to [Ca2+]o to levels close to those of the wild type receptor. Additionally, a 

Gd3+ ion is also revealed in the crystal structure adjacent to the predicted Ca2+-binding 

site, and it shares the same loop that contributes to Ca2+-binding. Mutations in the Ca2+-

binding residues in the loop, D318I and E325I, entirely eliminated Gd3+-induced [Ca2+]i 

release (Fig. 3-11). Although Glu-238, located at the interface of the two protomers, has 

been reported as a functional Gd3+ site, I120A, another mutation located at the interface 

of the receptor loses sensitivity to [Ca2+]o (25). This indicates that the mutations at the 

interface of the two monomers cause markedly reduced activation of the receptor by ei-

ther [Gd3+]o or [Ca2+]o and that the site at the hinge region is a true Gd3+-binding site. 

This also highly suggests that our predicted Ca2+-binding site can likewise bind Gd3+. 

In view of these findings, we propose a working model of dual activation of 

mGluR1  by the two physiological activators, [Ca2+]o and Glu, via their overlapping and 

interacting binding pockets at the hinge region of the ECD (Fig. 3-12). Increased con-

centrations of either Glu or [Ca2+]o partially activate mGluR1 . However, full activation of 

mGluR1  with maximal sensitivity and maximal amplitude of the response to Glu re-

quires simultaneous binding of both Glu and Ca2+, with Asp-318 playing a key role in the 

synergy between the two agonists. In this sense, mGluR1  can be viewed as a "coinci-

dence detector," requiring the binding of both ligands for maximal intracellular signaling.  
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Figure 3-12 A dual activation model for mGluR1α involving both extracellular Ca2+ 
and Glu via the overlapping and interacting binding pockets for the two ligands at 
the hinge region of the ECD. Increasing either Glu or [Ca2+]o partially activates 
mGluR1α. However, full activation of intracellular Ca2+ signaling by mGluR1α requires 
the simultaneous binding of both Glu and Ca2+; Asp-318 plays a key role in the synergy 
between the two agonists. In this sense, mGluR1α can be viewed as a coincidence de-
tector, requiring the binding of both ligands for maximal intracellular signaling.  
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Our proposed working model of mGluR1  is supported by previous studies from a num-

ber of groups working on both cultured cells and native brain tissue (6). Francesconi and Duvoi-

sin (38) reported that mGluR1  in transfected cells is activated by [Ca2+]o in the absence of Glu, 

indicating that mGluR1  is a Ca2+-sensing receptor. Kubo et al. (6) showed that [Ca2+]o, as well 

as Glu, triggers intracellular responses in cultured cells and oocytes expressing mGluR1, 

mGluR3, and mGluR5. In terms of studies on endogenous mGluRs in native neurons, Tabata et 

al. (10) showed that [Ca2+]o fails to induce [Ca2+]i mobilization in the Purkinje cells from mGluR1 

knock-out mice, whereas [Ca2+]i is elevated by [Ca2+]o in Purkinje cells from mGluR1  rescued 

mice. Furthermore, brain slice experiments from Hardingham et al. (11) demonstrated that 

[Ca2+]o mediates postsynaptic efficacy via activation of group I mGluRs. Taken together, these 

studies represent strong evidence that [Ca2+]o is a physiologically relevant modulator of 

mGluR1  activity in the central nervous system. Based on mutational analyses, the Ca2+- and 

Glu-binding sites were postulated to be close to one another but not completely overlapping (6). 

For example, S166D decreases [Ca2+]i responses (6) and lowers sensitivity to Glu (39). Our da-

ta show that S166A maintains sensitivity to [Ca2+]o, albeit with reduced responsiveness (Fig. 3-

6C). This residue is located at the ECD hinge joint but away from our predicted site in the flexi-

ble hinge region (Fig. 3-1B). The observed decrease in mGluR1  sensitivity observed with 

S166D could be a result of tuning the Ca2+-binding affinity and Ca2+-induced conformational 

change by altering electrostatic interactions around the predicted Ca2+-binding site (40).  

As shown in Fig. 3-1C, the predicted Ca2+-binding residue Asp-322 is conserved 

in group I mGluRs. Glu-325 is highly conserved in group I (mGluR1 and mGluR5) and 

group II (mGluR2 and mGluR3) mGluRs (Fig. 3-1C). Interestingly, mGluR5 in group I 

and mGluR3 in group II sense [Ca2+]o at physiological levels, whereas mGluR2 is acti-

vated only when [Ca2+]o is more than 10 mM (6). On the basis of our observation that 

E325I abolished Ca2+-induced responses for mGluR1  but retained responsiveness to 
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Glu, we concluded that Glu-325 might be very important for Ca2+-binding in the mGluR 

family generally. Analysis by the Contacts of Structural Units server indicates that Glu-

325 interacts electrostatically with Arg-297 and Arg-323 in the Glu-bound structures of 

mGluR1  (41), suggesting that Glu-325 stabilizes the local structure through an elec-

trostatic interaction. As revealed by the grafting approach (Fig. 3-4A), E325I significantly 

reduces the Ca2+-binding ability in mGluR1 , possibly by disturbing the favorable local 

charge environment.  

Fig. 3-1C shows that Asp-318 in mGluR1 , located at the hinge region, is con-

served in all members of the three GPCRs, corresponding to Asp-295 of mGluR2, Asp-

301 of mGluR3, Asp-309 of mGluR8, and Glu-297 of CaSR (23, 24, 42). Figs. 3-6 and 

3-8 clearly demonstrate that Asp-318 contributes not only to Ca2+- but also Glu-

triggered [Ca2+]i responses. This residue seems to play an essential role in the activa-

tion of mGluRs. Consistent with this finding, a D318A mutation was shown previously to 

reduce receptor expression on the membrane and abolish Glu-triggered [Ca2+]i and in-

ositol trisphosphate responses (25).  

Our findings also appear to be applicable to other members of the three GPCRs, 

especially CaSR. The mutation E297I in CaSR, equivalent to D318I in mGluR1 , im-

pairs receptor activation (23, 24, 42). Glu-297 is an important residue in our reported 

Ca2+-binding site in the CaSR hinge region (23, 24); the mutant E297I significantly im-

pairs sensitivity to [Ca2+]o with an EC50 of 9.6 ± 0.2 mM [Ca2+]o. Mutations at or around 

this Ca2+-binding site are also associated with clinical syndromes (autosomal dominant 

hypocalcemia and familial hypocalciuric hypercalcemia) because of either an increase 
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or a decrease in the sensitivity of the respective receptors to [Ca2+]o. Zhang et al. (43) 

and others (44, 45) have also reported that mutations around this site, Ser-147, Ser-170, 

Asp-190, Tyr-218, and E297K, impair the activation of human CaSR by [Ca2+]o. Recent-

ly Silve et al. (42) have shown that the missense mutations E297K and Y218S signifi-

cantly reduce the maximal response of the CaSR. Although E297K was considered a 

key factor in impairing protein folding, thus leading to lower expression on the cell sur-

face and impaired responsiveness to [Ca2+]o, our unpublished data show that E297I has 

a membrane expression level comparable with that of the wild type CaSR. Therefore, 

the low expression level of E297K could be, at least in part, the result of the substitution 

of an unfavorable positive charge, which modifies the local charge balance, leading to 

reduced folding efficiency. Furthermore, our assessment of the surface expression of 

D318I by flow cytometry showed that it was at the same level as a wild type; this echoes 

the impact of mutating the equivalent residue in CaSR (e.g. Glu-297). It has been post-

ulated that residues Ser-170, Asp-190, Gln-193, Ser-296, and Glu-297 are critical for 

Ca2+-binding to CaSR and functionality of the receptor (42), which is in excellent 

agreement with our prediction. In addition, CaSR functions primarily as a [Ca2+]o-

sensing receptor but can also integrate information about protein metabolism (i.e. amino 

acids) with that of divalent cations (e.g. calcium) (46). CaSR displays sensitivity to ami-

no acids, especially phenylalanine and other aromatic amino acids, likely via three se-

rine residues (Ser-169—Ser-171) at a site corresponding to the Glu-binding pocket in 

mGluR1 . The double mutation T145A/S170T specifically abolishes CaSR responsive-

ness to amino acids while leaving [Ca2+]o sensing intact (47). Our unpublished data 
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show that Ca2+ and phenylalanine also synergistically modulate the signaling functions 

of CaSR.  

In summary, we have predicted and confirmed experimentally a calcium-binding 

site in the extracellular domain of mGluR1 . We have also shed new light on the co-

activation of mGluR1  by Glu and [Ca2+]o. These findings provide novel perspectives on 

mGluR1 , which may be viewed as capable of integrating information from two very dif-

ferent types of ligands (an amino acid neurotransmitter and a divalent cation). The le-

vels of [Ca2+]o in the brain are highly dynamic (37), and the affinity constants that we 

have determined in our studies on calcium binding to mGluR1  are well within the dy-

namic, physiological range of [Ca2+]o in the brain. For family 3 GPCRs other than CaSR, 

the physiological importance of [Ca2+]o binding has been uncertain; but the findings re-

ported here may be useful in resolving this mystery by allowing for the development of 

knock-in mutations to mGluR1 , and resultant mouse models, that disrupt the ability of 

the receptor to bind [Ca2+]o while leaving Glu binding intact. Moreover, because many of 

the key calcium-binding residues defined in our studies are conserved for other family 3 

GPCRs, our findings may have relevance for a host of other receptors beyond just 

mGluR1  (6, 7). Family 3 GPCRs have tremendous potential as therapeutic targets, and 

therefore the advances described here may facilitate the development of novel family 3 

GPCR-targeted drugs for use in the treatment of many different diseases. 
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4 EFFECTS OF EXTRACELLULAR CA2+ ON THE MODULATION OF  

METABOTROPIC GLUTAMATE RECEPTOR 1 ALPHA (MGLUR1Α) BY L-QUIS, 

(S)-MCPG, CPCCOET AND RO 67-4853 

4.1 Introduction 

Group I metabotropic glutamate receptors (mGluRs) belong to family C of the su-

perfamily of GPCRs, which activate phospholipase C (PLC) and subsequent IP3 accu-

mulation followed by Ca2+ release from intracellular stores in the ER. These receptors 

are critical for neuronal plasticity related to long term potentiation (LTP) and long term 

depression (LTD), in addition to their involvement in chronic neuronal degenerative dis-

eases, such as Parkinson’s, Huntington’s, and Alzheimer’s diseases (81). MGluRs are 

involved in the activation of PKC, PKB and PKA, and intracellular Ca2+ mobilization, the-

reby inhibiting caspase-coupled apoptosis, and, therefore represent one of as the main 

protective processes against neuronal injury in stroke, trauma, and Alzheimer’s disease. 

They also slow down the progression of Parkinson’s disease.  In addition, mGluR1 has 

also been detected in melanoma and breast cancers, and it was proposed to be a po-

tential therapeutic target for both cancers (4,8,9,107-109). MGluR1 inhibitors have been 

shown to effectively reduce the proliferation of breast cancer cells. However, the role of 

glutamatergic modulation in the development of chronic neuronal degenerative diseases 

remains elusive.  

Glutamate receptors are mainly present in central neuronal system, and fall into 

two categories: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate re-

ceptors (mGluRs). iGluRs are a group of ion channels activated by glutamate, which 

mediate fast excitatory responses. It’s very difficult to tune the modulation of this group 
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of receptors, and blocking these receptors results in severe side effects, such as memo-

ry loss and hallucinations. In contrast, mGluRs display relatively slow response rates to 

changes in extracellular glutamate. Thus, the attention of drug discovery research has 

increasingly turned to mGluRs as targets to reduce the side effects seen in the central 

nervous system with iGluRs-based therapeutics, or to decrease the growth of cancer 

cells. The drugs targeting mGluRs can be classified into orthosteric modulators and al-

losteric modulators. Orthosteric modulators, including agonists and antagonists, induce 

and attenuate the activity of the receptor by competitively binding to the L-glutamate 

binding pocket, respectively, while allosteric modulators bind to sites other than the or-

thosteric center to affect the activity of the receptor. 

L-Quis (L-Quis), the most potent agonist reported to date, with a KD of around 30 

nM (7,110), shares the same binding pocket with L-glutamate. Replacement of T188, 

D208, Y236 and D318 with Ala, results in loss of the receptor’s sensitivity to both L-Glu 

and L-Quis, while the mutants R78E and R78L exhibit clearly impaired L-Quis binding 

(16,78). However, the effects of Ca2+ upon L-Quis’ activation of and binding to mGluR1 

are still controversial. Nash and Skirkel et al. claimed that mGluR1α is not a Ca2+ sens-

ing receptor, because its initial responsiveness to the agonist is independent of the 

extracellular Ca2+ concentration.  

(s)-MCPG is an analog of glutamate, known as a non-selective competitive anta-

gonist that, by occupying the glutamate binding pocket, blocks not only the function of 

iGluRs, but also those of all the members in the mGluR family (55). Jingami et al. re-

ported that (s)-MCPG could displace tightly bound 3H-quasqulate (111).  By wedging 

into the crevice between the two lobes in the protomer, (s)-MCPG interacts with Y74, 
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W110, S165, T188, and K409 in lobe one (LB1) and D208, Y236 and D318 in lobe two 

(LB2). Thus the receptor is stabilized in the resting state, which is referred to as the 

open/open state (55). (s)-MCPG, also named t-MCPG, partially inhibited the sensitivity 

of mGluR1α to 5 mM [Ca2+]o and completely eliminated the response of the receptor to 

5 µM [Glu]o (32). After fusing CFP and YFP to intracellular loops of mGluR1α, 30 µM L-

Glu induced increases in the FRET signals were impaired in the presence of 0.5 mM 

(s)-MCPG (56). In brain slices experiments, (s)-MCPG was shown to reverse DHPG-

induced long-term depression (LTD) (112). Thus accumulating evidence supports the 

antagonism of  Glu- or Ca2+-induced activation of mGluR1α by (s)-MCPG.  

Ro 67-4853 is positive allosteric modulator of mGluR1, which enhanced the po-

tency of L-Glu by interacting with transmembrane domain of the receptor. Ro 67-4853 

has very strong potency upon L-Glu but has no activity to mGluR1 in presence of L-Glu 

in Ca2+ free buffer (38,68). The binding site of Ro 67-4853 along with other positive al-

losteric modulators (including Ro 01-6128, Ro 67-7476 and CDPPB analogs) were also 

investigated by Jeff Conn’s group, and none of them was capable of replacing 

[3H]R214127 (68). The mutation V757L abolished the activity of Ro 67-7476, VU-48 and 

VU-71, but mutations T815M and A818S doesn’t affect their potencies (38,68).  This 

suggests that the positive allosteric modulators have different binding pocket as alloster-

ic negative modulators. VU-71 and Ro 67-7476 are proved to be inactive in human, 

however, VU-48 was interestingly shown activity in human mGluR1 (68). This brought 

forth a new hope to develop subtype specific drugs which could be applied to clinic trial. 

The effects of Ro 67-4853 on modulating Ca2+ induced response of mGluR1 remains 

unclear.  
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Additionally, the Ca2+ effect upon another non-competitive drug, CPCCOEt, was 

also examined. CPCCOEt was known as a negative allosteric modulator that inhibits the 

activation of mGluR1 by L-glutamate by specifically binding to the third extracellular loop 

of mGluR1a. In brain slices from mice models with arthritis, 10 µM CPCCOEt effectively 

inhibited EPSCs recorded using the whole-cell patch technique, indicating that 

CPCCOEt could relieve arthritis pain (13). When working together with MPEP, the se-

lective mGluR5 antagonist, CPCCOEt, inhibits the long-lasting disinhibition (DLL) in-

duced by low frequency stimulation of the dorsolateral striatum (14). In addition, 

CPCCOEt was suggested to reduce the somatodendritic dopamine level by inhibiting 

the intracellular Ca2+ release through mGluR1α (36). 

MGluR1α has been demonstrated to be a Ca2+ sensing receptor. Kubo Y at al. 

transiently transfected mGluR1α into oocytes, and studies of its activation of Cl- coupled 

channels showed that mGluR1 senses Ca2+ as well as glutamate. Ca2+ can activate 

mGluR1, even when the receptor was saturated with glutamate (32). The Purkinje cells 

from mGluR1 knockout mice lose sensitivity to Ca2+, while their response to Ca2+ was 

restored after mGluR1 was rescued by knocking in the receptor (95). Furthermore, a 

Ca2+ induced rearrangement of the transmembrane domain was identified using the 

NFRET technique, which involved fusing CFP and YFP to the intracellular loops of the 

protomers. Ca2+ was found to increase the NFRET signal by bringing the two second 

intracellular loops closer together in the same dimeric receptor (56). However, Nash and 

Skirkel at al. claimed mGluR1α is not a Ca2+ sensing receptor, because its initial re-

sponse to the agonist was independent of the extracellular Ca2+ concentration (75,76). 
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Therefore, at this time the role of Ca2+ in modulating the actions of drugs on mGluR1 is 

unclear. 

In this article, the effects of Ca2+ on the actions of L-Quis (agonist), (s)-MCPG (an-

tagonist), Ro 67-4853 (PAM) and CPCCOEt (NAM) on mGluR1α were investigated. 

Extracellular Ca2+ enhanced an (3H)-L-Quis binding to wild type mGluR1α and D322I, 

and E325I reduced Ca2+ effect upon the agonist. Mutants D318I abolished the L-Quis 

binding, while D322I and E325I still could bind L-Quis although E325I relatively de-

creased the binding capability of the receptor to L-Quis. In addition, Ca2+ consistently 

enhanced L-quis-induced intracellular Ca2+ release, which further confirms the Ca2+ ef-

fects on the activation of mGluR1α by its agonists. Obviously, extracellular Ca2+ in-

creases the action of the agonist on the receptor by enhancing its binding affinity to our 

previously reported Ca2+ binding site (D318, D322 and E325). Furthermore, the role of 

Ca2+ in the inhibition of the receptor by the antagonists was studied by measuring the 

action of (s)-MCPG on mGluR1α in the absence or presence of Ca2+. (s)-MCPG not on-

ly inhibits glutamate-induced intracellular Ca2+ release and IP1 accumulation mediated 

by mGluR1α, but it also partially reduces the likelihood of Ca2+ activating the receptor. 

(s)-MCPG efficiently antagonizes both glutamate and Ca2+ at low concentrations, but 

increasing the concentration of glutamate or Ca2+ could overcome the inhibition of the 

receptor. Utilizing Lineweaver-Burke (LB)-plot analysis, we concluded that Ca2+ could 

attenuate the function of (s)-MCPG by competitively replacing this compound’s binding 

to the receptor. In addition, CPCCOEt non-competitively inhibits the activation of 

mGluR1α by L-glutamate and also attenuates the Ca2+ response of the receptor. The 

documentation that Ca2+ modulates the sensitivity of mGluR1α to its agonists, antagon-
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ists and allosteric modulators opens a new avenue for developing subtype-specific 

drugs targeting Group I mGluRs. 
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4.2 Results 

4.2.1 An L-Quis binding pocket predicted by Autodock-Vina.  

To understand the molecular basis of mGluR1α activation by L-Quis, both Ca2+ 

and L-Quis were docked into the crystal structure (1EWK, closed-open form) of the 

receptor. The coordinates of L-glu were removed before docking. The contacts of L-

Quis within 6 Å were analyzed using an LPC server. As suggested in Fig. 4-1A, the L-

Quis binding pocket corresponds well with the glutamate-binding residues suggested in 

the crystal structure. Ca2+ that resides at our reported Ca2+-binding site containing 

D318, D322 and E325 (89), appeared to bind to L-Quis. This suggests that L-Quis 

possibly associates with Ca2+ to modulate mGluR1α, mimicking the synergistic function 

of L-glutamate and Ca2+ on this receptor. 



96 

4.2.2 Glutamate or (s)-MCPG induced hinge motion by binding to ECD-mGluR1α.    

The crystal structure of mGluR1α bound with (s)-MCPG was determined in 2002 (55). 

By looking at the structure, we see that the (s)-MCPG binding pocket is markedly similar 

to that for glutamate, involving Y74, R78, W110, S165, S186, T188, D208, D318, R323, 

K409 (Fig. 4-1B). The glutamate-binding pocket has been further confirmed by our 

previous work and that of Jingami’s group (78). Basically, the binding of agonist to 

mGluR1α was believed to activate the receptor by closing the two lobes in the both 

protomers, while antagonist binding would keep the receptor in its resting state. As 

suggested in table 1, compared to the free form of the receptor, the two lobes in the 

protomer were relatively rigid upon binding to L-glutamate (agonist) or (s)-MCPG 

(antagonist). This result indicated the ligand binding induced closure of the two lobes 

but did not affect intra-lobe conformation. L-Glu closed the two lobes more than 20 

degrees, while (s)-MCPG only around 6 degrees. 

4.2.3 Mutational effects on the correlated motion in ECD-mGluR1α 

Three mutations of Ca2+ binding site 1, including D318I, D322I and E325I, were 

introduced into the model structure of ECD-mGluR1α. All the model structures were 

loaded with L-Glu and Ca2+, and molecular dynamics simulation was performed.  To 

understand the effects of mutations on correlated motion of the receptor, the assembles 

of MD simulation were collected for correlation calculation. As shown in Fig. 4-2, com-

paring to WT, the overall intensities of red and blue color of D318I were increased. As 

we showed in chapter 3, D318I abolished both the L-Glu and Ca2+ sensitivity of 

mGluR1. The MD calculation also indicates that D318 plays a vital role in mGluR1α, 

which is consistent with our previous imaging data. In addition, both D322I and E325I 
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decreased the correlation, suggesting that these two mutants could impair the corre-

lated motion induced by L-Glu and Ca2+. D322I and E325I are known to reduce both the 

Ca2+ and L-Glu responses of the receptor, although the maximal responses of these two 

mutations were increased. Thus, the correlation calculation of D322I and E325I also 

clearly supported our imaging data. In particular, the correlation of the region around 

Ca2+ binding site 1 was obviously changed by mutations, D318I, D322I and E325I. 

D318I has higher intensity in the Ca2+ binding site region, but that of D322I and E325I 

decreased. This brought forth the conclusion that the Ca2+ binding site 1 plays a very 

important role in the correlation of the ECD-mGluR1α. 
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4.2.4 Ca2+ enhances [3H]-L-Quis binding to mGluR1α through binding to Ca2+ 

binding site 1 of the receptor.  

Up to now, L-Quis is the strongest orthosteric agonist of mGluR1α with an EC50 

of 30 nM. However, the role of Ca2+ in enhancing L-Quis binding to mGluR1α is still 

controversial. In our previous work, Ca2+ and glutamate were suggested to modulate 

mGluR1α synergistically, and a novel Ca2+-binding pocket adjacent to the glutamate 

binding site was investigated. To determine the impact of Ca2+ upon agonist-induced 

activation of mGluR1α, the binding of the radioactive compound ([3H]-L-Quis) to 

mGluR1α was tested in the absence or presence of Ca2+. Ca2+ significantly enhanced L-

Quis binding to the receptor (Fig 4-2B). A mutation in the Ca2+-binding pocket, D318I 

abolished L-Quis binding, while D322I and E325I retained the binding property of the 

wild type receptor (Fig 4-2A). D322I and E325I were proven to enhance the maximal 

responses of the receptor to L-Glu but reduced the EC50, while D322I still had a com-

parable EC50 (89). To investigate the role of the Ca2+ binding site in the Ca2+ modulation 

of drugs binding to mGluR1, the Ca2+ effects on L-Quis binding to D322I and E325I 

were also studied. D322I relatively increased the effects of Ca2+, while E325I obviously 

reduced Ca2+ effects on L-Quis binding to the receptor (Fig 4-2). This suggests that 

Ca2+ modulates the drug binding to mGluR1 by interacting with the predicted Ca2+-

binding site 1 in hinge region. 

Intracellular Ca2+ mobilization is believed to be linked to an ECD conformational 

change induced by L-Quis binding. To further confirm the role of Ca2+ in the activation of 

mGluR1α by L-Quis, a single  cell imaging assay was then performed measuring 

changes in [Ca2+]i. HEK293 cells transiently transfected with mGluR1α were 
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Figure 4-1 Structural models of mGluR1α bound with orthosteric ligands, L-Quis 
and (s)-MCPG. (A) Docking model of mGluR1α with L-Quis. The residues within 6 Å 
were highlighted. Similar as to the L-Glu binding pocket, Y74, R78, S165, T188, D208, 
Y236, D318, and K409 form the L-Quis binding pocket. The oxygen on the ring of L-quis 
was suggested to bind to Ca2+. (B) Crystal structure of mGluR1α bound with (s)-MCPG. 
(s)-MCPG wedges into the LBD and maintaining the model structure of the receptor in 
its resting form.  
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Table 4-1 Hinge motion analysis using DynDom

PDB codes  Two‐domain arrangement Backbone 
RMSD (Å) 

Hinge Motion 
Free Form  Bound Form  Rotation Angle (deg) Translation (Å)  Closure (%)
1EWT  1EWK  D1 (38‐209; 344‐474; 476‐476) 0.62 21.0 0.6  97.8

D2 (210‐343; 475‐475; 477‐510) 0.67
1EWT  1ISR  D1 (38‐209; 344‐477)  0.66 22.3 0.7  99.7

D2 (210‐343; 478‐510)  0.60
1EWT  1ISS  D1 (38‐208; 343‐481; 501‐506) 0.56 6.5 0.1  61.6

D2 (209‐232;482‐500; 507‐510) 0.62
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Figure 4-2 The effects of mutations of Ca2+ binding site 1 on correlated motion of 
ECD-mGluR1α. Model structures of mGluR1a and Ca2+ binding site 1 mutants were 
loaded with L-Glu and Ca2+, and molecular dynamics was performed. The intensity of 
the red color represents the extent of positive correlation, and blue color stands for neg-
ative correlation. The correlated motions of the structures were analyzed by correlation 
map. D318I significantly changed the correlations of the residues within the receptor, 
while E325I and D322I diminished the correlations. Compared to D322I, E325I has 
larger effects on the correlation of the receptor. (A) Correlation map of wild type 
mGluR1. (B) Correlation map of D318I. (C) Correlation map of D322I. (D) Correlation 
map of E325I.  
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Figure 4-3 [3H]-L-Quis binding to mGluR1α and its variants. (A) [3H]-L-Quis binds to 
wild type mGluR1α in the absence of Ca2+, but mutations in the Ca2+-binding site de-
creased L-Quis binding. D318I and E325I eliminate L-Quis binding, while D322I still re-
tains L-Quis binding. (B) Effect of Ca2+ on L-Quis binding to wild type mGluR1α, D322I 
and E325I.  Increasing Ca2+ enhances L-Quis binding to wild type mGluR1α and D322I, 
whereas Ca2+ effects were abolished in E325I. The binding buffer used is hypotonic buf-
fer with 20 mM HEPES, 100 mM NaCl, 5 mM MgCl2, 5 mM KCl, 0.5 mM EDTA, 1% pro-
tease inhibitor and pH 7.0-7.5. (n=3)
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Table 4-2 [Ca2+]o enhances L-Quis induced activation of mGluR1α 

 

Ca2+ Concentration EC50 nHill Maximal Respon-
sea 

mM nM  % 
0 14.8 0.4 42 ± 1 

1.8 2.4 1.6 70 ± 1 
a. The maximal responses are normalized to the maximal response of wild type 

mGluR1α to Glu. 
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           grown on coverslips and perfused with saline buffer in the perfusion chamber of a 

fluorescent microscope. The cytosolic free Ca2+ was monitored using cells pre-loaded 

with fura-2. In a nominal Ca2+-free buffer (less than 2 µM), mGluR1α first starts to 

respond to L-Quis at 3 nM, while the addition of 1.8 mM Ca2+ reduces the EC50 to 

around 16%.  The maximal response was increased from 42 ± 1 to 70 ± 1 (Fig. 4-3A 

and Table 4-2). These [Ca2+]i imaging data further support the idea that Ca2+ plays a 

key role in causing L-Quis to activate the receptor by competitively binding to the L-Glu-

binding pocket. 

4.2.5  (s)-MCPG inhibits the sensitivity of mGluR1α to extracellular glutamate 

and Ca2+.  

(s)-MCPG is a non-selective competitive antagonist of glutamate for group I mGluRs 

and iGluRs. (s)-MCPG has been reported to completely inhibit the Cl- current induced 

by glutamate, while the current triggered by Ca2+ was partially reduced (32).  Consistent 

results were obtained in our experiments utilizing single cell imaging. Fig. 4-5 shows 

that 1.0 mM (s)-MCPG completely eliminates the sensitivity of mGluR1α to L-Glu, but 

the receptor still can sense Ca2+ even in the presence of 1.5 mM (s)-MCPG (Fig 4-6D). 

As revealed in the crystal structure (PDBID: 1ISS), (s)-MCPG shares most of the resi-

dues of the glutamate-binding pocket (55), which are adjacent to the Ca2+-binding site. 

As shown in figure 4-5 and 4-6, intracellular Ca2+ mobilization (Fig. 4-4A, 4-5A) and IP1 

accumulation (Fig. 4-4C, 4-5C), which are modulated by both glutamate and Ca2+ were 

obviously attenuated in the presence of 0.5 mM (s)-MCPG.  In addition, the EC50 value 

for [Ca2+]o increased by ~1.7 fold (Fig.4-4A, table 4-3). When the receptor was saturated 

with Ca2+ or glutamate, the maximal responses were not affected by 0.5 mM MCPG, 
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Table 4-3 Addition of 0.5 mM (s)-MCPG decreases the responses of mGluR1α to 
Ca2+ and L-Glu 

(s)‐MCPG 
(mM) 

5 mM Ca2+  5 uM L‐Glu

EC50  nHill  Maximal 
responsea 

EC50 Maximal responsea 

0 
0.5 

3.5  6.4  85 ± 2 1.7 100 ± 2 

6.0  2.6  67 ± 2 0.8 94 ± 6 

a. The maximal responses are normalized to the maximal response of wild type mGluR1α to Glu. 
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Figure 4-4 Extracellular Ca2+ enhances L-Quis activation of mGluR1α variants. (A) 
Addition of 1.8 mM Ca2+ increases the L-Quis-induced intracellular Ca2+ release from 
the ER mediated by activation of mGluR1α. (B) In the presence of 1.8 mM Ca2+, the L-
Quis sensitivity of D322I was increased. (C) 1.8 mM Ca2+ enhances L-Quis potency 
upon E325I. All the experiments were performed in the buffer with 10 mM HEPES, 140 
mM NaCl, 5 mM KCl, 0.55 mM MgCl2, 1 mM CaCl2 and pH 7.4. (n=3)
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Figure 4-5 (s)-MCPG competitively inhibits the response of wild type mGluR1α to 
extracellular L-glutamate.  (A) 0.5 mM (s)-MCPG competitively inhibits L-glutamate 
induced intracellular Ca2+ mobilization. (B) An L-B plot shows that (s)-MCPG can com-
pete with L-glutamate. (C) An ELISA assay measuring intracellular IP1 accumulation 
suggests that (s)-MCPG antagonizes mGluR1α by competing with L-glutamate. (D) In-
creasing the concentration of (s)-MCPG inhibits mGluR1α in the presence of 5 µM L-
glutamate, and 1.5 mM (s)-MCPG entirely blocks the activation of the receptor by L-
glutamate. All the experiments were performed in the buffer with 10 mM HEPES, 140 
mM NaCl, 5 mM KCl, 0.55 mM MgCl2, 1 mM CaCl2 and pH 7.4. (n=3) 
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Figure 4-6 (s)-MCPG competitively inhibits the potentiation of mGluR1α poten-
tiated by [Ca2+]o in L-Glu free buffer. (A) 0.5 mM (s)-MCPG inhibits low [Ca2+]o-
induced intracellular Ca2+ release, but high [Ca2+]o restores the response of the recep-
tor. (B) An L-B plot suggests that (s)-MCPG competitively inhibits [Ca2+]o-induced res-
ponses of mGluR1α. (C) ELISA results measuring intracellular IP1 accumulation indi-
cate that (s)-MCPG reduces the sensitivity of mGluR1α to low but not to high concentra-
tions of [Ca2+]o. (D) (s)-MCPG attenuates the responsiveness of mGluR1α to 5 mM 
[Ca2+]o, and 1.5 mM MCPG cannot completely inhibit the capacity of the receptor to 
sense [Ca2+]o. 
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which indicates that a high concentration of Ca2+ or glutamate could overcome the an-

tagonism of (s)-MCPG. The curves plotted using the L-B equation confirmed that gluta-

mate or Ca2+ do compete with (s)-MCPG (Fig. 4-5B, 4-6B). Increasing concentrations of 

(s)-MCPG entirely eliminated the 5 µM glutamate-induced activation of mGluR1α, while 

mGluR1 still could sense Ca2+ even in presence of 1.5 mM MCPG (Fig.4-5D, Fig. 4-6D). 

This may suggest that (s)-MCPG antagonizes the capacity of glutamate to activate 

mGluR1 by competing with glutamate at the binding pocket and interfering with Ca2+-

binding to its nearby site.  However, it couldn’t abolish all Ca2+-binding pockets on this 

receptor. 

4.2.6 Ca2+ enhances the potency of Ro 67-4853 to mGluR1α. 

Ro 67-4853 is a positive allosteric modulator binding to the extracellular loops of 

the transmembrane domain of mGluR1α, but its binding pocket is different from several 

known negative allosteric modulators, such as CPCCOEt and R214127 (23,113). In the 

absence of L-Glu, Ro 67-4853 was unable to activate mGluR1α (68,69). To successfully 

obtain functional readout of Ro 67-4853 upon mGluR1α, HEK293 cells transiently ex-

pressing mGluR1α were pre-incubated with 0.5 mM Ca2+ and 5 nM Ro 67-4853 for 

more than 10 minutes. In the presence of 0.5 mM Ca2+, Ro 67-4853 is capable of acti-

vating mGluR1α, translocating Ca2+ from the ER lumen to the cytoplasm. Increasing 

Ca2+ to 1.8 mM increased the maximal response induced by Ro 67-4853 through 

mGluR1α (Figure 4-7). At the same time, the EC50 value was reduced from 21.6 nM to 

8.1 nM (Figure 4-7, table 4-6). Interestingly, intracellular Ca2+ oscillations were observed 

while the cells were treated with Ro 67-4853. Similar to the Ca2+ sensing receptor, three 

different patterns of response were discovered. As shown in figure 4-8A, most of the 
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cells displayed a transient spike. Some cells started oscillating after the first peak, while 

others had a transient peak and oscillation first appeared a few minutes later. By ana-

lyzing the number of cells oscillating out of the responsive cells, 1.8 mM Ca2+ signifi-

cantly increases the number of oscillatory cells comparing to the cells in 0.5 mM Ca2+. 

The starting point of oscillation was also shifted leftward (figure 4-8B). This suggests 

that extracellular Ca2+ enhances the potency of Ro 67-4853 to mGluR1α. 

4.2.7  CPCCOEt noncompetitively inhibits L-glutamate induced responses, but 

only slightly affects Ca2+-mediated responses of mGluR1α.  

Most orthosteric drugs targeting mGluRs are known to lack subtype selectivity, 

which could lead to severe side effects due to the highly conserved endogenous agonist 

binding pockets on the other receptors. Because of this, a great deal of effort has been 

directed at developing drugs targeting sites other than the orthosteric center. CPCCOEt 

is known as a selective non-competitive antagonist of mGluR1 that binds to residues 

T815 and A818 in the 7th transmembrane domain (TM) of the receptor (42). CPCCOEt 

depressed IP3 accumulation induced by the orthosteric agonists, L-Glu, L-Quis, DHPG, 

and ACPD, but the 3H-glutamate binding capacity of mGluR1α remained intact (33). As 

shown in Fig. 4-9A, L-glutamate-triggered intracellular Ca2+ release was significantly 

depressed in the presence of 5 and 40 uM CPCCOEt. In the presence of 40 µM 

CPCCOEt, the maximal response decreased to only about half of the control level while 

the EC50 value was increased from 1.5 to 6.7 µM (Fig. 4-9A, table 4-5). By plotting using 

the L-B equation, the inhibition pattern displays as non-competitive behavior (Fig. 4-9B).  

To determine the effects of CPCCOEt on the activation of mGluR1α by Ca2+, we next 

examined the Ca2+-induced intracellular Ca2+ mobilization observed while gradually in-
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creasing the CPCCOEt concentration. Fig. 4-10A reveals that CPCCOEt significantly 

reduced the Ca2+ sensitivity of mGluR1α. In the presence of 5 uM CPCCOEt, the EC50 

of mGluR1α to Ca2+ was increased from 3.0 mM to 16.7 mM, while 40 uM CPCCOEt 

resulted in an even higher EC50 value of 28.7 mM (Fig. 4-10, Table 4-5). The maximal 

response was also significantly decreased by 40 uM CPCCOEt, although the maximal 

response with 5 uM CPCCOEt was still comparable.  This indicates that 30 mM Ca2+ 

could not completely reverse the antagonism induced by CPCCOEt, so the inhibition 

pattern of CPCCOEt to Ca2+ on mGluR1α is non-competitive (Fig. 4-10, Table 4-5). 
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Figure 4-7 Extracellular Ca2+ enhances the potency of Ro 67-4853 on mGluR1α. 
HEK293 cells growing on coverslip were transiently expressed wild type mGluR1α. After 
dye loading, the cells were pre-incubated in 10 mM HEPES, 140 mM NaCl, 5 mM KCl, 
0.55 mM MgCl2, 0.5 mM CaCl2 and 5 nM Ro 67-4853 (pH 7.4) for 10 mins. Then, addi-
tion Ca2+ and Ro 67-4853 were applied to the cells. Ro 67-4853 displays activity to 
mGluR1α in presence of 0.5 mM Ca2+ (empty circle), while 1.8 mM enhances its poten-
cy (solid dots). 
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Table 4-4 Ca2+ effects on Ro 67-4853 modulating mGluR1α 

 EC50 (nM) Maximal response 

0.5 mM Ca2+ 21.6 74.9 ± 3.7 

1.8 mM Ca2+ 8.1 79.5 ± 4.0 
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Figure 4-8 Extracellular Ca2+ increases oscillatory events induced by Ro 67-4853. 
(A) Three different oscillation patterns were observed in HEK293 cells transiently ex-
pressing mGluR1a. HEK293 cells were perfused with medium containing 0.5 mM Ca2+ 
and 5 nM Ro 67-4853 in 10 mM HEPES, 140 mM NaCl, 5 mM KCl, 0.55 mM MgCl2 for 
more than 10 mins in saline buffer, and an additional 1.8 mM Ca2+ and 100 nM Ro 67-
4853 induced transient peak and oscillatory responses. More than half of the respond-
ing cells showed a transient peak, while the cells with oscillation fell into two categories: 
cells with constant oscillation and those starting with oscillations but diminishing later. 
(B) Ca2+ effects on Ro 67-4853 induced oscillation. Oscillation was observed in HEK 
cells expressing mGluR1a. Ro 67-4853 triggered intracellular Ca2+ release with 0.5 mM 
extracellular Ca2+, and numerous cells display oscillatory behavior. In presence of 1.8 
mM extracellular Ca2+, the number of cells showing oscillations increases relative to the 
total number of responsive cells. At the same time, oscillatory cells appear at lower con-
centration of Ro 67-4853 when 1.8 mM Ca2+ was added. 
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Figure 4-9 CPCCOEt non-competitively reduces L-Glu sensitivity of mGluR1α. (A) 
In the presence of 5 or 40 µM CPCCOEt, the sensitivity of mGluR1α to extracellular L-
Glu was inhibited. The maximal response was reduced to about 50% in the presence of 
40 µM CPCCOEt. (B) L-B plot analysis of the inhibition pattern of CPCCOEt displayed 
as non-competitive. The HEK293 cells transiently expressing wild type mGluR1α were 
mounted on the coverslip, and Ca2+ change indicated by fura-2AM was collected. All the 
image work was performed in the saline buffer with 10 mM HEPES, 140 mM NaCl, 5 
mM KCl, 0.55 mM MgCl2, 1.8 mM CaCl2 and pH 7.4. (n=3)  
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Table 4-5 CPCCOEt inhibits the L-Glu sensitivity of mGluR1α 

CPCCOEt Concentration   EC50   nHill Maximal Responsea 

µM  mM  %
0  3.0  1.7 90 ± 2
5  16.7  1.0 88 ± 4
40  28.7  1.0 70 ± 2

a. The maximal responses are normalized to the maximal response of wild type mGluR1α to Glu. 
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Figure 4-10 Effects of CPCCOEt upon the responses of wild type mGluR1α to 
Ca2+. (A) The Ca2+ sensitivity of wild type mGluR1a was reduced by the addition of 5 or 
40 µM CPCCOEt. Cytosolic Ca2+ was measured using Fura-2 AM in the absence (solid 
dots) or presence of 5 µM (solid square) and 40 µM (empty circle) CPCCOEt. In the 
cells inhibited by CPCCOEt (5 or 40 µM), increasing extracellular Ca2+ counteracted the 
inhibitory effects of CPCCOEt. (B) L-B plot suggests the CPCCOEt non-competitively 
inhibits the Ca2+ response of mGluR1. This work was done in the saline buffer with 10 
mM HEPES, 140 mM NaCl, 5 mM KCl, 0.55 mM MgCl2, 1.8 mM CaCl2 and pH 7.4. 
(n=3)   
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4.3 Discussion 

As described in our previous paper, a novel Ca2+-binding pocket, which resides 

adjacent to the glutamate binding pocket (Chapter 3), was identified by site-directed mu-

tagenesis and an intracellular Ca2+ readout. The mutations D318I and E325I were 

shown to lose their sensitivity to extracellular Ca2+, while D318I also eliminated the re-

sponse to glutamate. D322I impaired both the Ca2+ and glutamate sensitivity of the re-

ceptor. Ca2+ was proven to synergistically enhance the capacity of glutamate to mod-

ulate mGluR1α (89). However, the effects of Ca2+ in modulating the actions of the drugs 

upon mGluR1α remain controversial. In this chapter, we studied the effects of Ca2+ on 

the modulation of mGluR1α by the agonist L-Quis, the antagonist (s)-MCPG, the posi-

tive allosteric modulator Ro 67-4853 and the negative allosteric modulator CPCCOEt. 

As suggested by the AutoDock model, the L-Quis binding pocket overlapped extensive-

ly with the L-glutamate binding pocket in the reported crystal structure.  At the same 

time, L-Quis could serve as a Ca2+-binding ligand that closely mimics the behavior of L-

glutamate.  

 To date, besides allosteric modulators, the orthosteric modulators include agon-

ists and antagonists that are analogs of L-glutamate and share the same binding resi-

dues in the hinge region. Upon agonist binding, LB1 (lobe 1) and LB2 (lobe 2) in the 

extracellular domain move toward each other, and the whole dimeric ECD twists in a 

clockwise manner. Conversely, the receptors bound to the antagonists are regarded as 

being in the resting form. MGluR1α bound to (s)-MCPG was visualized by X-ray crystal-

lography, which showed that the (s)-MCPG is wedged into the hinge region, thereby 

preventing the two lobes from closing and locking the receptor in its inactive form (55). 
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The function of L-Quis has been well studied. Activation of glutamate receptors 

triggered by L-Quis is known as Quis-effects. In mGluR1α, L-Quis is believed to function 

as an orthosteric modulator binding to the glutamate binding site, because the mutants 

T188A, D208A, Y236A and D318A, which have been determined to be specifically 

bound to the α-amino group, abolished the sensitivity of the receptor to both L-Quis and 

L-glutamate (78). MGluR1α is known to sense not only L-glutamate, and L-Quis, but al-

so extracellular Ca2+ (32,89). To determine the effects of Ca2+ on the agonists, Nash et 

al. assessed intracellular Ca2+ mobilization and IP3 accumulation in mGluR1α over-

expressing CHO cells stimulated by L-Quis in the presence of 1.3 mM Ca2+. Both IP3 

and intracellular Ca2+ readouts indicated that the response of the receptor to L-Quis was 

not altered with regard to the peak amplitude of the response curve, but the plateau was 

higher when Ca2+ was present (75). This suggests extracellular Ca2+ did enhance the 

increase in the cytosolic Ca2+ concentration although the transient increase was not af-

fected. Moreover, another group (76) measured L-Quis binding using the purified ECD 

of mGluR1α, and they also claimed that Ca2+ had no effect on L-Quis binding to the re-

ceptor (76). Because C -terminal of mGluR1α can form a complex with the C-terminal of 

the GABAB receptor (GABABR), and GABABR was suggested to respond to Ca2+, Taba-

ta et al. suspected that the intracellular Ca2+ response mediated by mGluR1α was the 

consequence of the GABABR responding to extracellular Ca2+ (114). To clarify the am-

biguity of the Ca2+-sensing properties of mGluR1α, we performed (3H)-L-Quis binding 

assays to confirm the role of the Ca2+-binding site described in our previous paper. Our 

binding data support the contention that Ca2+ enhances L-Quis binding to mGluR1α. In-

creasing the extracellular Ca2+ concentration enhanced L-Quis binding to HEK293 cells 
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over-expressing mGluR1α, while E325I abolished this effect of Ca2+ (Fig 4-3). Moreo-

ver, we can see the obvious difference in L-quisqulate binding in the presence of a very 

low Ca2+ concentration. This caused us to suggest that concentrations of 4 mM Ca2+ 

and below might not be high enough to observe the difference owing to the strong bind-

ing affinity of L-Quis and the low sensitivity of Ca2+ imaging and the IP1 readout. Refer-

ring to our previous work, with lower than 3 mM Ca2+, it is difficult for us to observe the 

effects of Ca2+ on the function of the receptor. However, Nash et al. never provided the 

surface expression level in their study, so the receptor expression level in the cells they 

chose for analysis could be questioned. In our binding data, low Ca2+ (0.1 mM) caused 

a significant increase in L-Quis binding. Additionally, for efficient binding with L-quis, the 

cysteine-rich domain or transmembrane domain is indispensable, but Selkirk’s group 

only purified the ECD-mGluR1α for L-Quis binding. 

Another glutamate analog, (s)-MCPG, also called t-MCPG, is known as a competi-

tive antagonist of mGluR1α, which completely inhibits L-glutamate-potentiated Ca2+-

activated Cl- currents in Xenopus Laevis oocytes transiently expressing mGluR1 (32). 

By respectively tagging the FRET pair YFP/CFP to the two intracellular loops 2 (i2) of 

the dimeric mGluR1α, Muto et al. observed that the re-arrangement of the transmem-

brane domain induced by glutamate was reversed by (s)-MCPG (56).  MGluR1 bound to 

(s)-MCPG was proposed to be in the resting state. This was determined by X-ray crys-

tallography (PDBID: 1ISS), suggesting that (s)-MCPG wedges in the hinge region of the 

clam shell-like structure by occupying most of the residues involved in glutamate bind-

ing (55). In the meantime, Ca2+-induced responses mediated by mGluR1α were found 

to be partially antagonized by (s)-MCPG, but the mechanism of (s)-MCPG on the bind-
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ing of Ca2+ is not clear (32). We first tested the Ca2+ responses by gradually increasing 

the (s)-MCPG concentration. These experiments suggested that (s)-MCPG did impair 

the Ca2+ sensitivity of mGluR1α, although it couldn’t completely reverse it (Fig. 4-6D). 

With increases in the Ca2+ concentration, the inhibition of (s)-MCPG was reversed by 

Ca2+, as well as by L-glutamate (Fig. 4-6A-C). Thus, we can postulate that Ca2+ may 

share the residues involved in L-glutamate and (s)-MCPG binding, or (s)-MCPG at least 

disturbed the binding of Ca2+ to the extracellular domain of mGluR1α. 

In the past decade, allosteric modulators drew more and more research interests 

due to their subtype specificities, and numerous positive and negative allosteric modula-

tors have been developed. Mainly, the allosteric modulators target to the transmem-

brane domain of mGluR1, but the binding sites of positive and negative modulators are 

distinct (68). The allosteric modulators effectively modulate the receptor activity by L-

Glu and other agonists. However, little is known about the effects of the endogenous 

mineral ion, Ca2+, on these modulators. In this study, the Ca2+ effects on Ro 67-4853 

(PAM) and CPCCOEt (NAM) were identified. Ca2+ in physiological level (1.8 mM) en-

hanced the potency of Ro 67-4853 in modulating mGluR1α, while increasing Ca2+ dimi-

nished the inhibitory effects of CPCCOEt (Figures 4-7, 4-8, 4-9 and 4-10, Table 4-4 and 

4-5). This further proves that Ca2+ is capable of modulating mGluR1α. Because both Ro 

67-4853 and CPCCOEt were proved to interact with the transmembrane domain of the 

receptor, these data suggest that the activation signal of mGluR1α is transferred to 

downstream signaling pathways through the transmembrane domain. Thus Ca2+ has 

the potential to even more widely modulate the profile of drugs acting on mGluR1α, in-

cluding agonists, antagonists or allosteric modulators. 
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In conclusion, we investigated the effects of Ca2+ on agonist, antagonist, and allos-

teric modulators of mGluR1α, and found that Ca2+ enhances the functions of agonists 

and positive allosteric modulators, but attenuates the action of antagonists and negative 

allosteric modulators. Given the severe side effects of the drugs currently available for 

diseases of the nervous system, our findings could potentially provide new options for 

the drug industry. In the present studies, we further confirmed our reported Ca2+-binding 

site adjacent to the ligand, glutamate. This will be very exciting information for the de-

velopment of new orthosteric drugs for mGluR1α. 
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5 THE FUNCTION OF CALCIUM ON MGLUR1 FOLDING IN THE ER 

5.1 Introduction 

Metabotropic glutamate receptor 1 (mGluR1), a member of family C GPCR, 

senses extracellular ligands by virtue of its expression on the membrane of the post-

synapstic neurons. Poor expression of mGluR1 attenuates the capacity of these neu-

rons to respond to the extracellular environment, thus reducing their functional capabili-

ties. The possibilities underlying a low expression level could be a low overall expres-

sion, poor forward trafficking from the ER, or poor recycling to the plasma membrane 

flowing internalization of the receptors. One of the reasons for poor forward trafficking is 

anchor proteins. For example, Homer 1b was reported to retain mGluR5 in the ER by 

interacting with the C-terminal of the receptor, while a point mutation that disturbed this 

interaction released the receptor to the membrane (115). Another reason could be mis-

folding of the receptor in the ER, so that the receptor is degraded pathway rather than 

trafficking to the membrane. Chaperone proteins and the ionic environment are believed 

to determine the fate of receptors during their biosynthesis. Kelly et al. stated that a 

chaperone facilitates protein folding in the presence of high Ca2+ in the ER (116). The 

proteostasis of the mutant glucocerebrosidase (GC) was enhanced when the ER Ca2+ 

level was increased by reducing Ca2+ efflux and increasing Ca2+ influx. There is also a 

evidence showing that depletion of Ca2+ in the ER using thapsigargin reduced VSVG 

(Vesicular stomatitis virus G protein) folding, but its trafficking to the membrane was on-

ly slightly impaired (117). Since mGluR1 itself contains several Ca2+-binding sites and 

the ER has a very high Ca2+ concentration in the millimolar range, we hypothesized that 

Ca2+ ions could also contribute to protein folding. 
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In the experiments described in this chapter, we investigated a novel Ca2+-binding 

site in the ECD of mGluR1α, which resides right at the L-Glu binding pocket. This Ca2+-

binding pocket was confirmed using a single cell imaging assay and site-directed muta-

genesis. Mutations of the novel Ca2+-binding site attenuated the Ca2+ sensitivity of the 

receptor, although several of them also eliminated L-glutamate responses, reflecting the 

extensive overlap of the calcium and glu-binding sites. Reducing ER Ca2+ using thapsi-

gargin (TG) inhibited wild type mGluR1α trafficking to the cell surface. TG is known as a 

non-competitive inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA)(118), 

which irreversibly inhibits Ca2+ refill of SR/ER. A thermal stability assay using purified 

ECD-mGluR1α suggests that Ca2+ is important to the protein stability. This may indicate 

that Ca2+ is a key factor in the process of mGluR1α folding in the ER, potentially, at 

least in part, by binding to the calcium-binding site identified in our studies described in 

chapter 3. 

5.2 Results 

5.2.1 Determine surface expression of WT-mGluR1α and its mutants 

The surface expression levels of wild type mGluR1α or its mutants are likely to 

be very important for the response of cells to the agonists. To detect the number of 

membrane receptors, mCherry was engineered to the C-terminal of the receptor, which 

could enable assessment of the overall expression of the mGluR1, while a green, sec-

ondary antibody to stain the surface expressing receptors on HEK293 cells were 

seeded onto the coverslips. The ratio of the fluorescence of FITC over mCherry indi-

cates the proportion of the receptor expressing on the cell membrane. As suggested in 
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Fig. 5-1, wild type mGluR1α, S165A, T188A, and N335I were comparably expressed, 

when D208I, Y236F and E325I expression levels were decreased to ~ 50% of wild type. 

5.2.2 Effects of mutations of Ca2+-binding site 2 to extracellular Ca2+ 

As suggested by the MUG algorithm and the alignment with Ca+ binding site 1 of 

the Calcium sensing receptor (46), S165, T188, D208, Y236, and D318 could form 

another Ca2+-binding site. Combined with Ca2+-binding site 1, including D318, D322 and 

E325, these two Ca2+-binding sites reside at the hinge region side by side, sharing a 

common residue D318. To determine if these residues are critical for mGluR1α to sense 

extracellular Ca2+, the proposed residues in the Ca2+-binding site were replaced by apo-

lar residues using site-directed mutagenesis. As shown in Figure 5-2, all mutants re-

duced the response of mGluR1α to extracellular Ca2+, either the maximal responses or 

the EC50. Herein, the maximal intensities of the transient peak on T188A and D208I 

were decreased to only half of wild type mGluR1. The EC50 values of T188A, Y236F, 

and D208I were slightly increased, while S165A increased by 2-fold over that of the wild 

type (Table 3-4). As previously described, D318I eliminated the capacity of both L-Glu 

and Ca2+ to activate mGluR1α.  

Thapsigargin reduces the membrane expression of mGluR1α. To determine the 

role of Ca2+ in the ER in mGluR1α folding and trafficking, thapsigargin (TG), which 

blocks the pumping of calcium into the ER, was applied to the cells to reduce the Ca2+ 

concentration in the ER lumen. After mGluR1α was well expressed on the membrane of 

HEK293 cells, an additional 300 nM TG was added to the cell culture medium for over 

24 hours. The receptors expressed on the cell surface were stained using antiFlag pri-

mary antibody and 488 Alexa-tagged secondary antibody. The overall level of mGluR1α  
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Figure 5-1 Surface expression of mutants in Ca2+-binding site 2 determined by 
FACS. Surface expression of mGluR1α and its variants are determined by the ratio of 
surface receptors and overall expression of mGluR1α in HEK293 cells. Overall expres-
sion of mGluR1 was measured by the tagged mCherry while surface receptors were 
stained by Flag tag which can be labeled by secondary antibody conjugated with green 
fluorescence. The ratio of readout of green fluorescence and red fluorescence suggests 
the proportion of surface expression of the receptors. The mutations on the predicted 
Ca2+ binding site obviously reduced surface expression (D208I, Y236F and E325I). 
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EC50
WT: 3.6 mM (3.0 mM)
S165A: 8.1 mM (8.1 mM)
T188A: 5.0 mM  (3.4 mM)
D208I: 4.0 mM  (4.6 mM)
Y236F: 4.0 mM (3.3 mM)

 

Figure 5-2 Mutations on the predicted Ca2+-binding site 2 reduced intracellular 
Ca2+ mobilization triggered by extracellular Ca2+. Ca2+ response of wild type 
mGluR1a and its mutants on Ca2+ binding site 4 were measured by pre-loaded Fura-
2AM. Despite of the attenuation of surface expression, S165A, T188A, D208I and 
Y236F reduced Ca2+ response by decreasing maximal response and increasing EC50 
value.  
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Figure 5-3 Treatment of 300 nM thapsigagin reduces the surface expression of 
wild type mGluR1α. (A) Transfection of wild type mGluR1α impaired cell proliferation 
but didn’t influence cell morphology. (B) The surface expression of mGluR1α was re-
duced with 300 nM Thapsigargin for 24 hours. 
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expression was revealed by mCherry tagged to its C-terminal. As shown in Fig. 5-3, 300 

nM TG effectively attenuated the surface expression of mGluR1α on HEK293 cells. The 

percentage of overall surface expression of mGluR1α in the TG-treated cells was re-

duced to 22% of the non-treated group. However, when looking at cell proliferation, cell 

numbers were dramatically decreased when 300 nM TG was included in the medium. 

5.3 Discussion 

Using our computational algorithm, we previously reported three Ca2+-binding sites 

on ECD-mGluR1α. Of special interest is when Ca2+-binding to the Ca2+-binding site re-

siding at the hinge region synergistically co-activate mGluR1α along with its endogen-

ous agonist, L-Glu (89).  Mutations in this Ca2+-binding pocket eliminate or reduce the 

Ca2+ sensitivity of the receptor. A radioactive binding assay using [3H]-L-Quis further 

confirmed that mGluR1α is a Ca2+-sensing receptor. In the presence of Ca2+, [3H]-L-

Quis binding was significantly enhanced (Fig. 4-3). By applying our newest prediction 

algorithm, which includes more subtle filters and a rotation library, a novel Ca2+-binding 

site was discovered. The Ca2+-binding site consists of S165, D208, Y236, and D318, 

which completely overlaps the L-Glu binding pocket. The L-Glu binding pocket was re-

vealed by X-ray crystallography. It contained Y74, S165, S186, T188, D208, Y236, 

G293, D318, R323, and K409 (47). As shown in the electron density map of crystal 

structure, the amino group of L-Glu and the aromatic ring of Y236 form a π-cation inte-

raction. Amino group of L-Glu could be regarded as a cation ion. This suggests that a 

Ca2+ ion could replace the location which occupied by amino group in crystal structure if 

L-Glu is removed. The ER serves as a Ca2+ store with high concentrations of Ca2+, but if 

it’s not clear that ER contains substantial concentrations of L-Glu. Thus, we hypothesize 
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that Ca2+-binding to this novel Ca2+-binding site might contribute to mGluR1α folding in 

the ER. 

Protein folding is well regulated or assisted in the ER or other organelles by the 

ionic concentration, enzymes, and chaperones (119-121). These chaperones include 

heat shock proteins in the (HSPs) family, such as HSP40, HSP70, HSP90 and HSP100, 

along with some small HSPs and co-chaperones. In some cases, the protein folding as-

sisted by HSPs is ATP-driven and coupled with metals  (122). As reported by Kelly, in 

the presence of EGTA or EDTA, the interaction between calnexin and L444P GC was 

markedly impaired (116). Therefore, the author concluded that calnexin, interacting with 

GC, was dependent on the ER Ca2+. However, at this time there is no direct evidence to 

conclude that the protein folding in the ER or other subcompartments in the cells is Ca2+ 

independent. TG was known as an irreversible inhibitor of SERCA pump. By inhibiting 

SERCA pump, the ER Ca2+ could be released out to cytosol. Considering low Ca2+ may 

lead to cell death or low proliferation, the endurance and dosage of TG need be well 

screened. In our study, 300 nM TG was applied to the cells for around 24 hours, and 

both cell surface expression and proliferation were reduced, but no cell death was ob-

served. 

As suggested by the MUGSR algorithm and structural analysis, S165, T188, 

Y236, and D318 form a novel Ca2+-binding site. This site completely overlaps the L-Glu 

binding site. By looking at the electronic map of the crystal structure associated with L-

Glu (PDBID: 1EWK), it can be seen that the amine group, which carries a positive 

charge, forms a cation-π interaction with the aromatic ring of Y236. In the absence of L-

Glu, the positively charged Ca2+ might occupy the site instead of the amine group of L-
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Glu. Considering the possibility of a low L-Glu concentration in the ER lumen, the high 

level of Ca2+ may contribute to mGluR1α folding by interacting with this Ca2+-binding 

pocket. In an in vitro folding study, the proteins are usually less than 60 amino acids, 

because the folding of large proteins is far more complicated than small proteins. De-

termining the Ca2+ effect on the folding process of ECD-mGluR1α by using a re-folding 

assay is not feasible. The purified ECD has more than 520 amino acids with very slow 

folding kinetics, and it is too huge to handle in a refolding system. As we know, opposite 

to the folding process is unfolding. Increasing the temperature of the system denatures 

the proteins, so the thermostability of the proteins could be presented by the melting 

temperature. The Ca2+ effects on purified protein were determined by circular dichroism 

(CD). 
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6 DEVELOPING an ER CALCIUM SENSOR USING MCHERRY 

6.1 Introduction 

Ca2+, which is involved in almost all of the cellular processes, plays important roles 

in embryogenesis, bone formation, growth, and proliferation of cells. Outside of the 

cells, Ca2+ works as a first messenger. Inside the cells, there are different concentra-

tions of Ca2+ in different compartments where calcium serves as a Ca2+ store, second 

messenger, or co-factor. A change in theCa2+ concentration(s) in these sites can disturb 

signaling pathways in the cells, thereby causing diseases.  

In order to dynamically monitor the change in the concentration of Ca2+ in different 

organelles in real time, our lab designed Ca2+ biosensors based on mCherry. MCherry 

was developed from DsRed by random PCR screening (123). More than ten mutations 

were made to the protein to disturb the hydrophobic interface, thereby reducing the ag-

gregation of the protein (Figure 6-1). MCherry has the highest photostability, fastest ma-

turation, and excellent pH resistance among the mFruits family (124).  Therefore, 

mCherry is a good candidate for sensor development. By adding special signal pep-

tides, the sensor can be anchored to the target organelles. To date, several Ca2+ indica-

tors have been developed, including small organic dyes and genetically encoded fluo-

rescent proteins. However, the small organic dyes cannot be specifically targeted to the 

cellular compartments, and the small dynamic range of genetically encoded sensors, to 

date, limit their application. In addition to these limitations, current genetically encoded 

sensors utilize the FRET technique by fusing the fluorescent protein with a Ca2+-binding 

protein, calmodulin (CaM). Overexpression of CaM can disturb the signaling pathways 

in cells. Our previous EGFP based sensor Ca-G1 can successfully detect the change of  
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Figure 6-1 The Chromophore environment of mCherry (124). The crystal structure 

(PDBID: 2H5Q) indicates the mature chromophore is interacting with some residues on 

the barrel. R95, S146, and E215 directly form H-bonds with the chormophore while, 

E144 and L199 interact with chromophore through a water molecule.
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Ca2+ concentration in vitro, but it is a pH sensitive sensor which can only be applied in 

the endoplasmic reticulum.  

Our lab uses two strategies to develop Ca2+ sensor. Jin Zou et al. grafted a Ca2+-

binding loop III of calmodulin into EGFP with two additional mutations (M153T and 

V163A), and the sensor successfully senses changes in ER Ca2+. In addition to the 

grafting approach, our lab also uses site-directed mutagenesis to construct a Ca2+-

binding pocket at the chromophore-sensitive location of EGFP. Using this technique, 

our lab developed the EGFP-based sensor, CatchER, which experiences a Ca2+-

induced fluorescence change upon binding Ca2+ thereby facilitating quantitative mea-

surement both in vitro and in vivo (125). In this study, we used the same design strategy 

as that used with CatchER to create a Ca2+-binding site at the chromophore-sensitive 

loci of mCherry. Two sensor candidates (MC-D1 and MC-D2) respond to Ca2+ in vitro, 

but the dynamic ranges were relatively low when expressing the sensors in the ER by 

adding CRsig and KDEL signal peptides to the protein.  

6.2 Results 

6.2.1 Mutation effects on mCherry 

To investigate which residues on mCherry could be mutated without affecting its 

fluorescent properties, more than ten mutations were generated to disturb the local 

charge balance. As shown in Figure 6-2 and Table 6-1, mutations made to residues on 

the β-sheets of the protein, including H17N, H17Q, H17D, S21E, K50N, R36D, T41E, 

K121L, K123L, R125L, R216E, and R220L, which retained fluorescence, while mutants 

on the loops located at the lid of the barrel eliminated the fluorescence.  
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Table 6-1 Mutation effects on the fluorescence of mCherry 
 

With fluorescence Lose fluorescence 

H17N 

S21E  

R36D 

H17Q, S21E 

S21E, K50N  

R36D, T41E 

S21E, K50N, K123L, R125L 

S21E, K50N, K121L, K123L, R125L 

R36D, T41E, R216E, R220L  

K74D 

Y82E, S86D 
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Figure 6-2 Mutation effects on mCherry. (A) MCherry remains fluorescent when the 
red residues were replaced by apolar or charged residues. (B) The substitution of the 
highlighted residues by negative charged residues results in fluorescence loss. 
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Bacterium grew well in the LB medium, and expressed and purified proteins showed the 

expected sizes. Excitation maximum at 587 nm and emission maximum at 610 nm were 

detected to determine their optical properties. 

6.2.2 Designing a Ca2+-binding pocket on mCherry 

In our previous study, the variants of CD2 with designed Ca2+-binding pockets 

sense Ca2+ very well by performing Tb3+ binding and Ca2+ competition assay. Later on, 

our lab successfully constructed CatchER using EGFP. The rationale for designing this 

sensor was the creation of a Ca2+-binding pocket at the locations with residues interact-

ing with chromophore.  The creation of the binding site was done by mimicking the 

pocket of a CD2 variant named 7E15. As shown in figure 6-2., a short loop comprising 

from W143 to S146 displays high solvent accessibility, and in the crystal structure, S146 

and E215 directly contact the chromophore, while E144 links to it through a water mole-

cule. In addition to these residues, L199 and E215, residing at the adjacent β-sheet, al-

so have interaction with the chromophore. We created two mCherry variants with a 

Ca2+-binding site at this sensitive location. The sensor candidates were named MCD1 

(A145E, N196D, K198D, R216E, E218) and MCD2 (E144, K198D, D200, Y214E, 

R216E). As shown in Figure 6-3, both candidates retain fluorescence. 

6.2.3 Determining the Ca2+ sensing properties of MC-D1 and MC-D2 in vitro 

Both sensor candidates were expressed in E. coli (BL21-DE3) and purified using 

a nickel-Histag column. To determine the pH preference of the proteins, an emission 

scan was performed in a profile of pH buffers excited at 587 nm. Figure 6-3 and table 6-

2 reveal that MC-D2 has a pKa of 5.5, and at a range of pH 7.0 to pH 8.0, the fluores-

cence of the sensors is not affected. The pH independence of fluorescence in this range 
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suggests the sensors are not sensitive to pH under physiological conditions, and are 

applicable to the organelles with physiological pH, for example ER has pH at 7.2 ± 0.2 

(74,126). Next, we measured the Ca2+ responses of MC-D2 at pH 7.0. MC-D2 

shows a dose-dependent response to Ca2+ and was saturated with the addition of 6 mM 

Ca2+. MC-D2 has a KD value around 200 µM and a dynamic range around 17%.  

6.2.4 Determining the Ca2+ sensing properties of MC-D1 and MC-D2 in vivo 

To determine if MC-D1 and MC-D2 were sensitive to Ca2+, WT-mCherry, MC-D1, 

and MC-D2 were subcloned into pcDNA 3.1(+). The mCherry variants were expressed 

in the cytoplasm of HeLa and BHK cells. Both MC-D1 and MC-D2 have no response to 

extracellular Ca2+, TG, or ionomycin, even though they expressed well in these cells. 

Since the KD values of MC-D1 and MC-D2 are close to the submillimolar level, the dy-

namic change of cytoplasmic Ca2+ could be too small. Next, the signal peptides, calreti-

culin signal sequence and KDEL, were added to WT-mCherry, MC-D1, and MC-D2. As 

shown in figure 6-5 and 6-6, MC-D1 can sense increasing concentrations of extracellu-

lar Ca2+ in the presence of intracellular buffer. MC-D1 in HeLa cells is less sensitive to 

Ca2+ then in BHK cells. 
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Table 6-2 Fluorescent properties of MC-D1 and MC-D2 

 Excitation (nm) Emission (nm) pKa 

MC-D1 590 608 ND 

MC-D2 586 606 5.5 
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Figure 6-3 pH profile of MC-D2. The pH effects observed with 2 µM purified MC-D2 
were measured using various buffer systems with different pH values  
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Figure 6-4 Ca2+ response of MC-D2. (A) The additional of Ca2+ increases the fluores-
cence of MC-D2. (B) Fluorescence of MC-D2 at 608 nm was measured in 10 mM 
HEPES, 50 nM NaCl. The pH value was fluctuated in the range of 7.04 to 7.11 
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6.3 Discussion 

Ca2+ indicators were tremendously needed to quantitatively and dynamically 

monitor the Ca2+ change in a variety of subcellular compartments. Small organic dyes, 

such as fura-2 AM, Mag-fura-2, and the fluo family can be loaded into the specific orga-

nelles to some extent. However, these foreign organic compounds either have no speci-

ficity for the organelles in the cells due to their diffusion, or they are easily pumped out 

by living cells, thereby impairing the resolution of the Ca2+ concentration measurement. 

Fluorescent protein-based Ca2+ sensors were also engineered by fusing a FRET pair to 

the Ca2+-binding protein, CaM, namely GCaMP. CaM is a substantial signaling protein 

in living cells, and overexpressing a sensor utilizing this protein will disturb related sig-

naling pathways. As described in previous chapters, monitoring ER Ca2+ is important in 

understanding the functions of mGluR1α. We utilized fura-2 AM as a Ca2+ indicator to 

measure Ca2+ release from the ER. Although fura-2 AM can be efficiently loaded into 

the cytosol, its specificity for various organelles inside the cell remains unknown. After 

half an hour, fura-2 AM was pumped out of the cells. This lack of targeting ability leads 

to low sensitivity and resolution while detecting the Ca2+ change for long periods of time. 

As mentioned previously, genetically encoded fluorescent proteins were used in metal 

sensor development. In our previous work, we successfully engineered two sets of Ca2+ 

sensors which have been applied to ER/SR Ca2+ measurement. CatchER has been ap-

plied to monitor SR lumen Ca2+ in muscle fibers (125).  

First, we tested some residues away from the sensitive region of the molecule, 

as we also tried to form a local Ca2+-binding site. MCherry was developed from DsRed, 

and a few residues were suggested to be tolerant to mutations. As described by Camp-
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bell et al, in the process of constructing monomeric RFP from DsRed, about 33 muta-

tions (R2A, K5E, N6D, T21S, H41T, N42Q, V44A, V71A, K83L, C117E, F124L, I125R, 

V127T, L150M, R153E, V156A, H162K, K163M, A164R, L174D, V175A, F177V, 

S179T, I180T, Y192A, Y194A, V195T, S197I, T217A, H222S, L223T, F224G, and 

L225A) were made, and most of them were located at the wall of the β-barrel (127). In 

our study, we also mutated S21, T41, and R125, with all the substitutions maintaining 

fluorescence. Furthermore, our other mutations, R36D, K50N, K121L, K123L, R125L, 

R215E, and R220E also sustained fluorescence. However, the mutations on the lid of 

the beta barrel, including K74D, Y82D, and S86D, eliminated the fluorescence (Figure 

6-2, Table 6-1). These findings suggest that most of the residues on the β-sheets are 

tolerant of mutations, while the residues on the lid are chromophore-sensitive. In par-

ticular, K74 is adjacent to the chromophore in the primary sequence, and it might be im-

portant for the maturation of the chromophore. 

Next, Palmer A. et al. modified the interacting interface of CaM and M13, and the 

new sensor was claimed to overcome the effects of CaM (128,129). However, this sen-

sor still has some limitations that hinder its ability to quantitatively monitor the fast kinet-

ics of Ca2+ in the SR of muscle cells (130). CatchER overcomes this shortcoming. By 

targeting the ER/SR of the cells, it could dynamically and quantitatively reflect the Ca2+ 

change due to its fast Ca2+ off-rate (125). As mentioned, EGFP is sensitive to pH in the 

physiological environment, and does not mature well at 37oC. As for the mCherry-based 

sensors, they are stable at pH value ranging from 6.5 to 8.0, and fold well in situ. Al-

though the dynamic range of the mCherry sensors needs to be improved, this scaffold 

protein shows more promise than EGFP. 
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Figure 6-5 Ca2+ response of MC-D1 expressing in BHK cells. (A) BHK cells express-
ing MC-D1.  (B) Treatment of intracellular buffer. After permeating the cell membranes, 
the cells containing the intracellular buffer were loaded into chamber. The fluorescence 
was congregated due to the intracellular buffer. (C) Fluorescence change upon extracel-
lular environment change. TG depleted ER Ca2+ reduces fluorescence of MC-D1, while 
increasing Ca2+ enhances MC-D1 fluorescent intensity. 
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Figure 6-6 Ca2+ response of MC-D1-expressing in HeLa cells. (A) MC-D1 expressed 
well in HeLa cells. (B) In the presence of intracellular buffer, cells decreased in size, and 
the distribution of MC-D1 in cells was clustered. (C) MC-D1 in HeLa cells slightly re-
sponds to Ca2+. 
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7 SIGNIFICANCE OF THIS WORK 

In this dissertation, we first illustrated Ca2+-binding sites not previously identified 

on ECD-mGluR1α, clarifying the controversial question of whether mGluR1α is a Ca2+ 

sensing receptor. Based on our understanding of Ca2+-binding sites, we demonstrated 

the synergism of Ca2+ and L-Glu on mGluR1α. For the first time, we also illustrated how 

two endogenous signaling molecules co-activate mGluR1α in the central nervous sys-

tem. Second, the effect of Ca2+ on three categories of drugs was investigated. Evidence 

for the effectiveness of Ca2+ in modulating the actions of some antagonists of mGluR1 

will open a new avenue for targeting mGluR1α by drug development. Third, the function 

of Ca2+ in the process of mGluR1 trafficking provides the possibility of regulating mem-

brane expression of the receptor by adjusting the ER Ca2+. This could be an alternative 

way to rescue the function of neurons with deficient cell surface expression of 

mGluR1α. 

7.1 The impact of determination of Ca2+-binding sites.  

Ca2+ was known to be an activator of mGluR1α, but it is invisible in the crystal 

structure that was determined of the extracellular domain of the receptor. The fast off-

rate of Ca2+ in the setting of its low binding affinity presumably makes the protein unable 

to retain the ions at the time of crystal formation. However, the geometry of Ca2+-binding 

sites is mostly generated in the absence of Ca2+ ion. Using a computational algorithm 

based on the geometry of known Ca2+-binding sites, we successfully predicted four put-

ative Ca2+-binding pockets on ECD-mGluR1α. Site-directed mutagenesis and intracellu-

lar Ca2+ imaging of [Ca2+]i further confirmed the functions of the predicted Ca2+-binding 
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sites. The discovery of Ca2+-binding sites on the one hand clarified the controversy re-

garding whether mGluR1 is a Ca2+-sensing receptor. At the same time, the roles of the 

Ca2+-binding sites were identified and the mechanism of the regulation of the receptor 

by Ca2+ was also demonstrated.  On the other hand, new drugs could be designed to 

target Ca2+-binding sites that could offer new opportunities for drug development. Due 

to the severe side effects of orthosteric modulators, the interest of drug discovery target-

ing mGluRs has turned away from the L-Glu-binding pocket, which could lead to the de-

velopment of high subtype-selective drugs. However, the allosteric drugs also have 

another problem. Their targeted locations are not conserved in different species; thus, 

the drugs developed in animal models usually failed to be applicable to humans. As we 

described, the Ca2+-binding site adjacent to L-Glu-binding pocket was only conserved in 

Group I mGluRs, which could play a central role in the Ca2+-sensing properties of 

mGluR1 and mGluR5. Drugs targeting Ca2+-binding sites could display subtype specific-

ity, while the L-Glu-binding pocket is highly conserved in most of species, which will fa-

cilitates drug development. 

7.2 The importance of discovery on Ca2+ effects on the developed drugs. 

In this dissertation, Ca2+ was demonstrated to be a co-factor for four different 

classes of drugs targeting mGluR1a. Ca2+ and L-Glu synergistically activate mGluR1a, 

while Ca2+ enhances L-Quis activity by increasing its binding to ECD-mGluR1a. In addi-

tion, Ca2+ also enhances the sensitivity of the receptor to a positive allosteric modulator 

binding to the transmembrane domain. Intracellular Ca2+ oscillations and the maximal 

response of mGluR1a to Ro 87-4853 were clearly enhanced by extracellular Ca2+. 

Meanwhile, the inhibitory effects of both (s)-MCPG and CPCCOEt were attenuated by 
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Ca2+. In rats, the physiological level of Ca2+ ranges from 1.5 to 3.0 mM (131). As shown 

in Kubo’s work, upon exposure to extracellular Ca2+ fluctuations in the range of 0 to 1.5 

mM Ca2+, mGluR1 was activated (32). Our results indicate that 1.8 mM Ca2+ is sufficient 

to modulate the activities of the drugs on the receptors. Understanding the role of Ca2+ 

on these drugs will allow us to tune drug potency by the local Ca2+ level. Moreover, tak-

ing drugs with Ca2+ will be a way to reduce side effects or enhance drug effects. 

7.3 The role of Ca2+ in the process of protein folding and trafficking. 

Dysfunction of proteins causes many diseases. Normally, the loss of function of 

proteins is due to mutation-related misfolding, which prevents proteins from trafficking to 

their appropriate cellular destinations. For receptors to be expressed on the cell surface, 

for example mGluR1α, there must be a sufficient expression level and a normally folded 

protein. In our study, mutations on Ca2+ binding sites (Y236F, D208I and E325I) re-

duced surface expression of mGluR1α. Depletion of ER Ca2+ by TG significantly de-

creased receptor trafficking to cell surface. The accumulating evidence supports the 

conclusion that Ca2+ plays a vital role in modulating mGluR1α either by affecting its fold-

ing in ER or trafficking to the cell surface. Elucidating the Ca2+ dependency of protein 

folding and trafficking will help us to control protein function by tuning its surface ex-

pression using Ca2+. This will open a new strategy for drug development. 

7.4 The significance of development of genetically encoded biosensor 

Monitoring Ca2+ or other metals in specific organelles is still a challenge. The or-

ganic dyes are unable to target to the expected location and can be extruded by living 

cells. Our engineered sensor used red fluorescence protein as a host, which has good 

pH tolerance and brightness. Especially, by adding different tags or signal peptides, the 
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sensor could be targeted the locations we interested in, even in living animals. By utiliz-

ing this sensor, it allowed us to track the Ca2+ change in a disease model, which will 

help us to discover the role of Ca2+ in the disease process so that some appropriate 

drugs could be designed. Furthermore, by modifying the Ca2+ binding pocket, the KD of 

the sensor can be tuned. Even more, the sensor could be developed into a sensor of 

other metal, like Zn2+, Mg2+, and so forth. All in all, this work will open a brand new field 

for metal related study. 
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APPENDIX 

Optimizing EGFP-based Ca2+ sensor by circular permutation 
 

1. Introduction 
Ca2+ is very important in biological and physiological process, and functions as 

first and second messaeger in signaling transduction. Ca2+ is also involved in pathologi-

cal processes in organisms. Therefore, it is significant to develop the sensors or tech-

niques to observe or monitor the change of Ca2+ in cells. Our lab has successfully de-

veloped a Ca2+ sensor based on EGFP using grafting strategy, but it is pH sensitive and 

has small dynamic change. Protein can be introduced in new ends by opening a certain 

site other than initial ends after joining the old termini with peptide linker. The properties 

of re-organized protein were changed in most cases. Through screening the new circu-

lar permutated variants, the re-constructed protein could retain Ca2+ sensing property as 

well as fluorescence. In this research, we joined two initial termini of EGFP172C2 by SG 

linker which was encoded by restriction endonulease, Spe I. The circular DNA of 

EGFP172C2 was randomly cleaved by DNase I. Relineared DNA was repaired by T4 

ligase and T4 PNK, and the random re-organized EGFP172C2 fragment library was in-

serted into pRsetB vector with pre-engineered triple stop codon. The new permutated 

variants of EGFP172C2 were screened using UV light. 

 

2. Methods: 
2.1 Primer design and PCR 

Spe I recognized sequence, which encodes SG, was introduced into two primers 

of EGFP172C2. Spe I recognized sequence was protected by extra three bases. Frag-

ments with Spe I recognition sites were obtained by running PCR.  

 

2.2 Construct recombinant plasmid with pGEM-4Z  

PGEM-4Z was digested by Sma I following the protocol in SmaI kit. The blunt 

PCR fragments then were inserted into pGEM-4Z, and the ratio of inserted fragments 

over vector in the reaction was set to 1:1, 2:1 or 10:1. After the ligation products were 
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transformed into DH5a, the plate was sorted by Blue-White Screening by mixing X-gal 

and ITPG in bacteria solution. pGEM-4Z contain LAZ gene which will give out blue color 

induced by ITPG with the performance of X-gal. White colonies then were picked, se-

quenced and then duplicated by Maxiprep. 

 
2.3 Constructing circular EGFP172C2-Spe I 

Recombinant plasmid was digested by Spe I, and the linear fragments were puri-

fied by gel extraction. 5 µg digested DNA was circularized at a conc. of 2.5 ng/ µl with 

90 weiss units T4 DNA ligase 16oC overnight. According to the concentration of DNA, 

dilute to final concentration of 2.5ng/µl, 10µl T4 DNA ligase.  

 
2.4 Ethanol Precipitation 

Transfer DNA to a container which can contain 4 times of DNA solution. 1/10 vo-

lume of Sodium Acetate to equalize ion concentrations. At least 2 volumes (3 volumes) 

of -20 oC 100% ethanol, let stand in -80 oC at least one hour. Centrifuge in 4 oC with 15 

mins at highest speed. Remove all supernatant. 200 µl (or more, 600 µl) 70% ethanol 

for washing DNA; centrifuge for 5mins in 4 oC at highest speed. Remove supernatant, 

evaporate remaining ethanol in room temperature. Resuspend DNA in desired volume 

of water or TE buffer. Circular DNA was collected by gel extraction. 

 

2.5 Relinearization of circularized DNA with DNase I 
Digest DNA at a conc. 5milliunits/ µg DNase I in 50mM Tris.HCl, pH7.5, 1mM 

MnCl2, DNA 5 µg/ml at room temperature for 15mins. This reaction is stopped by 10 µl 

0.5M EDTA, and desalted by QIA quick columns into EB or collected by gel extraction 

(10mM Tris.HCl, pH8.5). 10X reaction buffer can be stored in -80 oC.  

2.6 Repair by T4 DNA polymerase 
T4 DNA polymerase: 1unit/ µg DNA 

T4 ligase           : 2 Weiss units/ µg DNA 

dNTPs Final Conc.   : 150 µM (use KOD dNTPs mixture) 

In T4 ligase buffer at room temperature for 1hour, and collect repaired DNA by Gel Ex-

traction 



165 

2.7 Preparation of pRsetB-V 
The vector was digested by EcoR V, dephosphorylated and collected by gel elec-

trophoresis. 
2.8 Ligation and Transformation 

Random circularly permutated EGFP172C2 DNA fragments were connected to 

pRsetB-V. The recombinant library then was introduced into expression strain—

BL21DE3. 
2.9 Library Screening 

The colonies can be screened through their fluorescence by treating with UV 

light. 

 

3. Results 

 
Figure 1 Circularized EGFP172C2-Spe I 

 
Figure 2 Random relinearized EGFP172C2 

 
Figure 3 Repair of DNase I treated EGFP172C2 

As shown in figure 1, the circularized fragments moved faster than linear PCR 

products. In figure 2, the DNase I digested DNA band shows wide and diffusive due to 

loss of nucleotide of some DNA fragments. After repair, the gaps and nicks were fulfilled 

by dNTPs, DNA bands look thinner. 
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