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ABSTRACT 

 

Brain injury is a serious clinical problem.  The success of recovery from brain injury 

involves functional compensation in the affected brain area. We are interested in general 

mechanisms that underlie compensatory plasticity after brain damage, particularly when multiple 

brain areas or multiple modalities are included. In this thesis, I studied the function of auditory 

cortex after recovery from neonatal midbrain damage as a model system that resembles patients 

with brain damage or sensory dysfunction. I addressed maladaptive changes of auditory cortex 

after invasion by ectopic visual inputs. I found that auditory cortex contained auditory, visual, 



 

 

and multisensory neurons after it recovered from neonatal midbrain damage (Mao et al. 2011). 

The distribution of these different neuronal responses did not show any clustering or segregation. 

As might be predicted from the fact that auditory neurons and visual neurons were intermingled 

throughout the entire auditory cortex, I found that residual auditory tuning and tonotopy in the 

rewired auditory cortex were compromised. Auditory tuning curves were broader and tonotopic 

maps were disrupted in the experimental animals. Because lateral inhibition is proposed to 

contribute to refinement of sensory maps and tuning of receptive fields, I tested whether loss of 

inhibition is responsible for the compromised auditory function in my experimental animals. I 

found an increase rather than a decrease of inhibition in the rewired auditory cortex, suggesting 

that broader tuning curves in the experimental animals are not caused by loss of lateral inhibition.  

These results suggest that compensatory plasticity can be maladaptive and thus impair the 

recovery of the original sensory cortical function. The reorganization of brain areas after 

recovery from brain damage may require stronger inhibition in order to process multiple sensory 

modalities simultaneously. These findings provide insight into compensatory plasticity after 

sensory dysfunction and brain damage and new information about the role of inhibition in cross-

modal plasticity. This study can guide further research on design of therapeutic strategies to 

encourage adaptive changes and discourage maladaptive changes after brain damage, 

sensory/motor dysfunction, and deafferentation. 

INDEX WORDS: Cross-modal Plasticity, Inhibitory plasticity, Multisensory, GABA, Cortical 
development, Brain evolution, Stroke, Traumatic brain injury, Tinnitus 
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CHAPTER 1:  INTRODUCTION 

Brain dysfunction caused by brain injury, sensory deprivation, or motor disability can severely 

affect human life. Neuroplasticity is the ability of the brain to adapt to environmental changes or 

brain damage. This plasticity helps the brain to restore the loss of function and operates in 

sensory, motor, and higher cognitive brain areas. The success of recovery involves the rebuilding 

of function by sprouting or rewiring of neural connections, and the reorganization of excitatory 

and inhibitory circuitry. These changes may be limited to a single modality, but research is 

beginning to reveal that recovery from loss of inputs involves multiple modalities. Sensory 

deprivation or deafferentation can cause the spared sensory region to be taken over by other 

sensory modalities (Frasnelli et al. 2011; Kral and Sharma 2012). Traumatic brain injury (TBI) 

can also cause cross-modal (XM) projections, which affect the reaction time for cognitive tasks 

in TBI patients (Sarno et al. 2003). Sometimes cross-modal projection can be beneficial 

(Frassinetti et al. 2005), whereas at other times cross-modal plasticity can be harmful (Lee et al. 

2001). Therefore, understanding the mechanisms behind cross-modal plasticity is important for 

understanding brain development and recovery of brain regions from damage. 

 In this project, I studied the reorganization of auditory cortex after invasion by visual 

inputs. I use ferrets with neonatal midbrain damage in which retinal projections are redirected to 

auditory thalamus (medial geniculate nucleus, MGN), then to auditory cortex. Because of the 

coexistence of auditory, visual and multisensory neurons in the reorganized auditory cortex 

(XMAC), this model system allows us to study the effect of cross-modal plasticity without 

elimination of inputs from any sensory modalities, in contrast to studies employing complete 

removal of sensory inputs. I investigated the functional changes in XMAC and the mechanisms 
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by which auditory function is compromised. Brain plasticity exists throughout life. In addition to  

providing important insights into recovery of sensory systems from sensory dysfunction and 

neonatal brain damage, results from this study may also help us to understand adult brain injury 

and sensory/motor deficits. 

 Because plasticity affects both excitation and inhibition, the following introduction 

discusses the changes in both excitatory and inhibitory circuits during recovery from sensory 

deafferentation and deprivation. I first discuss changes in excitation from macro to micro level 

within single modality, then recovery of brain across modalities. The third part of the 

introduction discusses changes in inhibition from physiology-level to receptor-level. Lastly, the 

introduction talks about the advantage of animal models and specific aims.  

1. Changes in excitatory networks  

a) Changes in size of brain structures 

Sensory deprivation, deafferentation, and brain damage can result in shrunken subcortical target 

nuclei due to loss of their inputs. This can be illustrated using several examples. Olfactory 

deprivation by unilateral cauterization of the olfactory epithelium results in a smaller olfactory 

bulb on the deprived side (Benson et al. 1984). After destruction of vibrissal follicles, the nucleus 

interpolaris of the trigeminal nuclear complex is shrunken in mice (Hamori et al. 1986). A 

reduction in the volume of cochlear nuclei also occurs in the brainstem of ferrets with cochlear 

lesions (Moore and Kowalchuk 1988). In the visual system, neonatal monocular enucleation 

causes significant reductions in the volume of the dorsal lateral geniculate nucleus (dLGN), the 

visual cortex, and the number and average soma radius of geniculate neurons (Dehay et al. 1996; 

Trevelyan and Thompson 1995). Lesion of the occipital cortex can also cause reductions in the 
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volume of LGN and the lateral posterior nuclei of the thalamus (Restrepo et al. 2002). In contrast 

to the effects of loss of sensory input, sensory experience can increase the volume of related 

brain regions. Hippocampus is associated with spatial navigation. A study using Magnetic 

Resonance Imaging (MRI) on London taxi drivers found that their posterior hippocampi were 

significantly larger than those of normal subjects, indicating an experience-dependent increase in 

the size of the affected brain regions (Maguire et al. 2000).  

b) Changes in topographic representation  

In addition to shrinkage of subcortical nuclei, sensory deprivation, deafferentation, and brain 

damage can induce cortical reorganization. Much of sensory cortex is topographically organized 

(Kaas 1997). The topographic occupation of sensory inputs can be modified by experience and 

sensory deprivation. Loss of sensory inputs can cause cortical areas to respond to adjacent inputs 

that represent surrounding regions at receptor sheets or to contralateral inputs. These activity-

dependent reductions in topographic area have been found in somatosensory cortex (Merzenich 

et al. 1983), visual cortex (Shatz and Stryker 1978), and auditory cortex (Robertson and Irvine 

1989). In contrast to sensory deprivation and deafferentation, sensory experience can expand 

cortex that responds to certain stimuli.  The cortical representation of musical scales in the 

auditory cortex of skilled musicians is much larger than that of normal subjects (Pantev et al. 

2003). These expansions of auditory representations also occur in animal models with 

overexposure to selected tone frequencies since birth (Zhang et al. 2001). 

c) Sprouting in the central nervous system after loss of inputs  

After loss of inputs, the axons of nerve cells in the central nervous system normally degenerate. 

Because damaged nerves generally cannot regenerate in the central nervous system, sprouting of 
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remaining afferents to the deafferented brain area is a way to compensate for the loss of 

excitatory drive. Sprouting can come from the perilesional area, ipsilateral subcortical or cortical 

areas, and/or contralateral areas. Chronic peripheral nerve injuries can cause central 

somatosensory neurons to respond to afferents from undamaged peripheral axons (Kalaska and 

Pomeranz 1982), which reflects the sprouting or expansion of remaining afferents (Florence and 

Kaas 1995).  In the visual system, after monocular enucleation, retinogeniculate inputs from the 

remaining eye sprout to LGN and the commissural connection is strengthened (Toldi et al. 1996). 

Corticothalamic inputs are also elevated after visual deafferentation (Somogyi et al. 1987). In 

addition, sprouting can occur within cortical areas. Binocular retinal lesions induce axon 

sprouting of long-range neurons that project laterally to non-deprived visual cortex (Darian-

Smith and Gilbert 1994; Obata et al. 1999). An increase in intracortical connectivity was 

reported in the somatosensory cortex of macaque monkeys who had undergone trauma to a 

forelimb (Florence et al. 1998). Many times, sprouting is accompanied with change of 

topographic representation after sensory deprivation or deafferentation (Jones 2000). 

d)  Changes in synaptic density  

At the cellular level, one effect of sensory deprivation and deafferentation is a decrease in 

synaptic density. Binocular deprivation decreases synaptic density of subcortical afferents in cat 

visual cortex (Turlejski and Kossut 1985). Whisker trimming from birth decreases symmetrical 

synapses and thalamocortical synapses (Sadaka et al. 2003) and dendritic spine density in layers 

1 and 2/3 of barrel cortex (Briner et al. 2010). A decrease in dendritic spine density has also been 

found in visual cortex of visually-deprived animals (Montey and Quinlan 2011). In some cases, a 

decrease in axon and bouton density results from sensory deafferentation (Wimmer et al. 2010).  
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e)  Modulation of synaptic strength (LTP, LTD) 

At the synaptic level, the adaption of the brain to a changing environment can be reflected by 

strengthening or weakening connections between synapses. Carla Shatz famously described this 

phenomenon as “cells that fire together, wire together” (Katz and Shatz 1996; Shatz 1990). Long 

term potentiation (LTP) represents an increase in synaptic strength following a brief but strong 

stimulation. Long term depression (LTD) represents a decrease in synaptic strength following a 

weak stimulation. Because synaptic strength relies on activity, loss of sensory inputs by sensory 

deprivation, deafferentation, or brain damage can significantly affect LTP and LTD.  

i) LTP 

Sensory deprivation can result in the reduction in size of target cortical areas and the expansion 

of neighboring cortical areas. Whisker deprivation alters short-term synaptic dynamics in barrel 

cortex (Finnerty et al. 1999; Fox 2002), increases the probability of inducing LTP, and decreases 

the probability of inducing LTD in barrel cortex (Hardingham et al. 2011). In visual cortex, 

visual deprivation facilitates LTP (Philpot et al. 2003) and depresses LTD (Kirkwood et al. 1996). 

ii) Neurotransmitter systems involved in plasticity 

N-methyl-D-aspartate (NMDA) type of glutamate receptors play an important role in LTP (Bear 

and Colman 1990; Bear et al. 1990).  The ratio of two subunits, NR2A and NR2B, is subject to 

change during the critical period and this ratio affects synaptic plasticity. Insertion of NR2A in 

the membrane can shorten NMDA receptor currents, thereby decreasing excitation (Fagiolini et 

al. 2003), whereas NR2B has the opposite effect. Visual deprivation by dark rearing in rats 

induces an upregulation of NMDA receptor function in visual cortex (Philpot et al. 2003), which 
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contains a higher proportion of NR2B and a longer duration of NMDA current than in light-

reared rats (Philpot et al. 2001). In contrast, visual experience increases the ratio of NR2A/2B in 

visual cortex. As little as one hour of exposure reverses the effect of dark-rearing (Quinlan et al. 

1999).  

2. Cross-modal plasticity  

In addition to the post-injury compensation that occurs within brain areas responding to a single 

modality, compensation from cross-modal plasticity may help sensory-deprived and –

deafferented animals and human subjects to overcome the loss of one sense. 

a) Blindness 

Long-term visual deprivation leads to cross-modal plasticity.  

i) Human subjects 

Numerous studies have reported that auditory ability in blind people is better than sighted people. 

Blind humans exhibit supra-normal abilities in locating auditory targets  (Voss et al. 2004) and 

respond to auditory tasks faster than normal subjects (Collignon and De Volder 2009). Magnetic 

resonance imaging (MRI) studies have shown that the visual cortex of blind patients is activated 

when sounds are presented (Kujala et al. 1995). Furthermore, when blind users wear a device 

that translates visual stimuli into auditory sensations, transcranial magnetic stimulation (TMS) in 

visual cortex impairs object recognition, further suggesting that visual cortex is recruited for 

decoding images by sound (Merabet et al. 2009).   

 Improved tactile ability also occurs in blind humans (Wittenberg et al. 2004). Primary 

visual cortex in blind patients can be activated by Braille reading, suggesting that visual cortex is 

recruited by somatosensory processing (Sadato 1996). Applying TMS in visual cortex disrupts 
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tactile perceptions in blind subjects but not in normal-sighted subjects (Cohen et al. 1997; 

Kupers et al. 2006). Some research argues that cross-modal projections can only be found in 

early-onset blindness (Cohen et al. 1999), whereas other research suggests that cross-modal 

plasticity can also occur in a mature brain (Kujala et al. 1997; Kujala et al. 2000).  

ii) Animal studies 

Animal studies use both enucleated/eye-sutured animals and congenitally blind animals. As seen 

in studies of blind humans, both somatosensory and auditory functions are improved in blind 

animals. Behaviorally, visually-deprived cats can locate sound more precisely than normal cats 

(Rauschecker 1995b; Rauschecker and Kniepert 1994). Physiologically, visual cortical areas 

(Heil 1991; Kahn and Krubitzer 2002; Newton et al. 2002; Piché et al. 2007) and cortical regions 

along the anterior ectosylvian sulcus (Rauschecker 1996) are taken over by auditory and/or 

somatosensory systems after visual deprivation. Anatomically, visual cortex in blind animals 

receives both somatosensory and auditory inputs (Kahn and Krubitzer 2002; Karlen et al. 2006). 

Using c-Fos immunohistochemistry, it has been shown that auditory stimulation activates 

thalamic and cortical visual areas in congenitally anophthalmic mice (Piche et al. 2004). Where 

do these auditory inputs originate? Anatomical research shows that inferior colliculus can project 

directly to LGN or visual cortex in blind mole rats (Bronchti et al. 2002; Doron and Wollberg 

1994), enucleated hamsters (Izraeli et al. 2002), and anophthalmic mice (Laemle et al. 2006). An 

increase in the proportion of auditory neurons is also found in multisensory areas such as the 

superior colliculus after enucleation (Rauschecker 1984). In addition to changes in visual cortex 

and LGN, visual deprivation also affects somatosensory cortex and auditory cortex. 

Electrophysiological recordings show an expansion of somatosensory cortical areas in enucleated 
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rats (Toldi et al. 1994), blind mole rats (Necker et al. 1992), and eyelid-sutured cats (Bronchti et 

al. 1992; Rauschecker et al. 1992).  Compared to normal animals, neuronal density in auditory 

cortex of enucleated animals is increased (Ryugo 1975) and auditory spatial tuning is sharper 

(Rauschecker 1995b)  

b) Deafness 

Long-term auditory deprivation leads to cross-modal plasticity.  

i) Human subjects 

Although it has been widely accepted that blind patients have supranormal auditory and 

somatosensory perception, it remains unknown whether deaf people can see better than sighted 

people.  Some research shows that auditory cortex in deaf patients can be activated by visual 

signals (Finney et al. 2001), whereas other research argues that not all aspects of vision are 

changed (see Bavelier et al. 2006 for review). Specifically, deaf patients show enhanced 

peripheral but not central (foveal) visual processing (Dye et al. 2007). Furthermore, visual 

activation of primary auditory cortex occurred only in deaf subjects with total hearing loss and 

not in subjects with residual hearing ability (Lambertz et al. 2005), suggesting a competition 

between sensory inputs from different modalities. The critical period for sensory plasticity is 

very important for recovery from sensory loss. Early deaf people are more likely to have cross-

modal activity than late deaf people (Buckley and Tobey 2011). 

ii) Animal studies 

Congenitally deaf cats have superior visual ability compared to normal cats (Lomber et al. 2011; 

Lomber et al. 2010). Electrophysiological recordings in auditory cortex of congenitally deaf mice 

revealed visual and somatosensory-responsive neurons and an expansion of the primary visual 
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cortical area (Hunt et al. 2006). Using positron emission tomography, researchers found that 

glucose metabolism in the primary visual cortex of deaf cats was significantly higher, and 

glucose metabolism in the primary auditory cortex was significantly lower than that in normal 

cats (Park et al. 2010). A recent study reported considerable somatosensory rewiring to auditory 

cortices in animals that were deafened as adults (Allman et al. 2009a). Other auditory cortical 

areas (auditory field of the anterior ectosylvian sulcus, FAES, and anterior auditory field, AAF) 

were also found to be visually-responsive in deaf cats (Meredith et al. 2011; Meredith and 

Lomber 2011).  

c) Maladaptive plasticity 

Cross-modal interaction can be responsible for abnormal signals, sometimes referred to as 

phantom perceptions. Tinnitus can be triggered by cross modal sensory inputs (Cacace 2003). In 

patients who have acute unilateral deafferentation of the auditory system after removing a tumor 

in the posterior fossal region, tinnitus can be modulated by somatosensory cues such as skin 

movement (Herraiz et al. 2003). Intracortical facilitation has also been found in tinnitus patients 

(Langguth et al. 2005). This cross-modal interaction suggests that a maladaptive cortical 

reorganization underlies some phantom perceptions. 

 Cross-modal plasticity can have negative effects on auditory performance during 

rehabilitation of cochlear implant users (Champoux et al. 2009). Cochlear implants are auditory 

prostheses that are designed for restoring speech perception. In prelingually deaf children with 

cochlear implants, auditory cortex often cannot respond to auditory signals because it has been 

permanently taken over by cross-modal inputs (Lee et al. 2001).  As a result of this maladaptive 
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cross-modal plasticity, deaf patients with cochlear implants may exhibit poorer than expected 

performance in auditory speech  recognition tasks (Doucet et al. 2006).  

d) Cross-modal plasticity under normal conditions  

Cross-modal activity also occurs in people with normal sensory function. Long-term training in a 

sensory or motor task can induce cross-modal projections in sensory and motor systems. 

Musicians demonstrate great plasticity in cortical organization. When the lips of trumpet players 

are stimulated at the same time as a trumpet tone, activation in the somatosensory cortex is 

increased more than it is during the sum of the separate lip and tone stimulation (Pantev et al. 

2003).When musicians listen to a rehearsed music piece, their motor cortex shows an increase in 

excitability than when listening to a non-rehearsed piece (D'Ausilio et al. 2006). Interestingly, 

skilled Mah-Jong players can “see” visual images by touching Mah-Jong tiles, suggesting that 

their primary visual cortex is activated by somatosensory cues (Saito et al. 2006). 

3.   Changes in inhibition 

The classical literature on sensory physiology proposes that lateral inhibition from neighboring 

neurons sharpens excitatory responses to sensory stimuli. Blockade of inhibition enlarges visual 

receptive fields (Sillito 1975) and decreases orientation selectivity (Sillito 1979; Sillito et al. 

1980; Tsumoto et al. 1979; Worgotter and Eysel 1991) in visual cortex. During development, 

refinement of synaptic connections involves suppression of some responses by increasing 

inhibition. Following brain damage, sensory deprivation, or deafferentation, in order to maintain 

the balance between excitation and inhibition, the strength of inhibition is decreased to 

compensate for the loss of inputs (Murphy 1985; Turrigiano 2011; Turrigiano 1999; Vale and 

Sanes 2002). 
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a) Physiological changes 

After somatosensory deafferentation, the spared sensory cortex begins to respond to stimuli 

carried by inputs to the surrounding brain tissue (Kaas et al. 1983; Merzenich et al. 1983b; Wall 

et al. 1983). After focal retinal lesions, receptive fields in visual cortex are expanded and axonal 

sprouting of laterally- projecting neurons is activated (Chino et al. 1992; Gilbert and Wiesel 

1992).  One mechanism underlying this expansion of representational area is removal of the 

lateral inhibition that normally suppresses the responses to other stimuli.  Applying antagonists 

of GABAA receptors to the sensory cortex can alter spike number and receptive fields of neurons, 

revealing the strength of inhibition.  The effect of GABAA receptor antagonists is decreased in 

sensory-deprived and deafferented animals as a result of loss of inhibition (Carrasco et al. 2011; 

Jung and Shin 2002).  

b) Changes in expression of receptors, transmitters, and enzymes 

Changes in inhibition at the molecular level involve inhibitory neurotransmitter receptors, the 

transmitters themselves, and enzymes involved in producing them. γ-aminobutyric acid (GABA) 

is the main inhibitory neurotransmitter in mammalian central nervous systems. Glutamic acid 

decarboxylase (GAD) is the synthetic enzyme for producing GABA in neurons. GAD has two 

isoforms, GAD67 and GAD65, which are universally expressed in the brain.  Considerable 

evidence exists that the expression of GABA, GABAA receptors, and GAD are decreased in 

target tissue after deafferentation. For example, peripheral nerve transection in monkeys induces 

cortical reorganization and a decrease in GABA expression in somatosensory cortex (Garraghty 

et al. 1991). Whisker trimming causes a loss of GABAergic neurons (Micheva and Beaulieu 

1995b), GABAA receptors (Fuchs and Salazar 1998), and both density and proportion of 
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GABAergic synapses (Micheva and Beaulieu 1995a) in the whisker barrel field of primary 

somatosensory cortex. In the visual system, monocular deprivation in Old World monkeys 

(Hendry and Jones 1986; Hendry and Miller 1996) and rats (Ribak and Robertson 1986) reduces 

expression of GABA and GAD within ocular dominance columns associated with the deprived 

eye. A decrease in GAD mRNA levels has also been found in deafferented dLGN of cats 

(Arckens et al. 1998). 

4.   Choice of Model System 

Many studies have shown that auditory inputs are introduced to LGN and carried to visual cortex 

in blind animals (Chabot et al. 2008; Chabot et al. 2007; Doron and Wollberg 1994; Piche et al. 

2004).   Retinal inputs invade MGN in deaf mice (Hunt et al. 2005).  The disadvantage of 

studying deaf and blind animal models is that because the sensory organs are eliminated, it is 

impossible to study cross-modal plasticity unless a sensory prosthesis is installed. During 

recovery from sensory dysfunction, cross-modal inputs can interfere with processing of the 

original sensory modality. Users of artificial cochleae may have undergone invasion of visual 

inputs to auditory cortex prior to installation of the prosthesis, and it is then more difficult for 

them to regain auditory ability (Kral and Sharma 2012; Lee et al. 2001). Our model system can 

address this cross-modal plasticity in a manner that deaf/blind animal models cannot. Research 

on cross-modal central plasticity can provide important information for understanding the 

mechanism by which the original function is affected by cross-modal invasion and for design of 

rehabilitative strategies after recovery from sensory dysfunction and brain injury. 

Ferrets are an advantageous model for studying plasticity. The species of pigmented ferret we 

use has been domesticated for centuries and has been tested as a good model for auditory and 
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visual research (Kelly et al. 1986; Linden et al, 1981. Moore et al. 1983; Stryker and Zahs 1983). 

Ferrets are born with a more immature brain than many other mammalian species, including 

monkeys and cats (Clancy et al. 2001; Gao and Pallas 1999; Herrmann et al. 1994), but in 

adulthood they have well developed sensory pathways similar to those of cats (Law et al. 1988; 

Zahs and Stryker 1988; Moore et al. 1983). Their thalamocortical projections do not reach cortex 

until two weeks after they are born (Herrmann et al. 1994; Linden et al. 1981). The auditory 

afferents reach the inferior colliculus but have not yet segregated into frequency bands at birth 

(Brunso-Bechtold and Henkel 2005; Henkel et al. 2007). The eyelids and the ear canals of ferrets 

open at 4 to 5 weeks after birth, providing an extended postnatal period for manipulating 

development of the visual and auditory system. This long postnatal period of immaturity 

provides an opportunity to create cross-modal rewiring. In our model system, neonatal dorsal 

midbrain lesions on the day of birth cause visual afferents to project anomalously to MGN. The 

recovered auditory cortex receives both residual auditory inputs and novel visual inputs. This 

animal model is thus useful for studying cross-modal plasticity.  

5.   Specific aims of dissertation  

Specific Aim 1 (Chapter 2):  Do the residual auditory inputs and the ectopic visual 

projections compete for limited auditory territory? After introducing anomalous visual inputs, 

neurons in AC of cross-modal animals can respond to visual, auditory, or multisensory stimuli. 

This implies that a cortical area originally representing one modality can be induced to process 

information from two modalities. Previous anatomical research found that interhemispheric 

projections between AC on the lesioned side and AC on the unlesioned side were shifted 

laterally (Pallas et al. 1999), whereas intra-AC connections on the lesioned side were shifted 
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medially. I hypothesize that the residual auditory and the ectopic visual inputs compete for 

auditory cortical territory and that neurons within cross-modal AC are segregated by 

modality.  

Specific Aim 2 (Chapter 3):  How is auditory function in auditory cortex affected by ectopic 

visual invasion?  I am also interested in how residual auditory function is affected by 

reorganization and incorporation of visual processing circuitry. Given that visual inputs occupy 

part of the originally auditory regions, and that visual neurons are intermingled with auditory 

neurons, it is possible that the auditory function in cross-modal auditory cortex is impaired by 

visual invasion. Therefore, I hypothesize that competition from ectopic visual inputs 

compromises auditory function in cross-modal AC.   

Specific Aim 3 (Chapter 4): What are the mechanisms underlying reorganization of cross-

modal auditory cortex?  Inhibition plays an important role in establishing response properties 

in neocortex (Allison et al. 1996; Sillito 1975; Sillito and Versiani 1977). Numerous studies have 

shown that loss of inhibition is responsible for broadened tuning in sensory-deprived or –

deafferented animals. It is possible that inhibition is decreased in the cross-modal AC after 

recovery from auditory deafferentation by midbrain damage. Alternatively, the coexistence of 

auditory and visual neurons in cross-modal AC may result in an increase in inhibition in order to 

prevent possible disruption by one modality of another. Therefore, I hypothesize that invasion 

by visual inputs alters inhibition in cross-modal auditory cortex compared to normal AC. 
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1.  Abstract 

Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to 

input pathways, especially early in development.  Although plasticity can often be restorative, 

sometimes novel, ectopic inputs invade the affected cortical area.  Invading inputs from other 

sensory modalities may compromise the original function or even take over, imposing a new 

function and preventing recovery.  Using ferrets whose retinal axons were rerouted into auditory 

thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-

modal input on reorganization of developing auditory cortex.  In particular, we assayed whether 

the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic 

targets, and whether the convergence of input modalities would induce multisensory processing.  

We demonstrate that although the cross-modal inputs create new visual neurons in auditory 

cortex, some auditory processing remains.  The degree of loss of auditory input to MGN was 

directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual 

and residual auditory inputs compete for cortical territory. Visual neurons were not segregated 

from auditory neurons, but shared target space even on individual target cells, substantially 

increasing the proportion of multisensory neurons.  Thus spatial convergence of visual and 

auditory input modalities may be sufficient to expand multisensory representations.  Together 

these findings argue that early, patterned visual activity does not drive segregation of visual and 

auditory afferents, and suggest that auditory function might be compromised by converging 

visual inputs. These results inform possible ways in which multisensory cortical areas may form 

during development and evolution.  They also suggest that rehabilitative strategies designed to 

promote recovery of function after sensory deprivation or damage need to take into account that 
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sensory cortex may become substantially more multisensory after alteration of its input during 

development. 

Keywords: cross-modal plasticity, sensory substitution, cortical development, traumatic brain 

injury, stroke 

2.  Introduction 

It is well-documented that loss of sensory drive, whether as a result of sensory deprivation or 

brain damage, can result in cortical plasticity, especially early in development.  The changes in 

circuitry that occur as a result of this reactive plasticity may help to restore function or may 

instead prevent restoration of normal function.  Although cortical plasticity can involve either 

intra-modal or cross-modal plasticity, interference with normal function seems more likely to 

occur as a result of ectopic, cross-modal invasion of the deafferented structure.  For example, 

loss of visual input can lead to auditory activation of visual cortex (Yaka et al. 2000) and loss of 

auditory input can lead to cross-modal activation of the understimulated auditory cortex by 

somatosensory or visual inputs (Bavelier and Neville 2002; Fine et al. 2005; Finney et al. 2001; 

Hunt et al. 2006; Lomber et al. 2010; Neville 1990; Neville et al. 1983; Nishimura et al. 2000; 

Sharma et al. 2007; Sterr et al. 2003). Cross-modal plasticity is known to interfere with the 

effectiveness of subsequently implanted cochlear prostheses in humans (Lee et al. 2001; see 

Sharma et al. 2009, for review).  In order to promote restorative plasticity after sensory inputs are 

compromised and to minimize interference from cross-modal inputs,it would be advantageous to 

understand how information from existing and ectopic inputs is coordinated, and in particular 

how cross-modal inputs affect the amount of territory devoted to the processing of the normal 

inputs. 
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  Previous studies of sensory deafferentation or deprivation using animal models have 

examined cross-modal plasticity mainly from the perspective of a complete loss of normal input, 

such as bilateral enucleation or deafening by cochlear ablation.  The disadvantage of using blind 

or deaf animals to study reactive plasticity in sensory cortex is that the original sensory modality 

can no longer be activated, preventing examination of how ectopic, cross-modal input affects 

recovery of the original function, whether through natural means or by implantation of a sensory 

prosthesis.   

  In this study, we instead employ an approach that brings both normal and cross-modal 

information to sensory cortex from birth.  We tested the hypothesis that cross-modal inputs 

compete with normal inputs for cortical space.  One possible outcome of competition is that the 

smaller or less active input modality could be suppressed or taken over by the other Alternatively, 

segregation of neurons with different response modalities could occur, reducing cortical space 

available to each. A third possible outcome is that the cross-modal and the normal functions 

could coexist within the same cortical territory, expanding multisensory processing, or perhaps 

even converging onto single, multisensory neurons. 

Using partial deafferentation of auditory thalamus in neonatal ferrets to examine how 

establishment of auditory cortical territory is affected by invasion of cross-modal, visual 

information, we find that, in addition to visual and auditory responses, multisensory responses 

are present at a rate much higher than that seen in normal auditory cortex.  These three response 

types were not spatially segregated, suggesting that information carried by ectopic visual inputs 

is not sufficient to induce segregation. Our results demonstrate that primary auditory cortex can 

support both the original auditory and the novel visual function after recovery from damage to 
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afferent pathways, and that multisensory function can be induced simply by experimental 

convergence of two unisensory inputs.  They provide insight into how multisensory cortex is 

created on developmental and evolutionary time scales.  Additionally, our findings provide a 

more thorough understanding of the reorganization of an affected brain area after recovery from 

sensory damage or deprivation, and have important implications for rehabilitative strategies in 

patients with damage to sensory pathways. 

       Preliminary results from some of these experiments have been published previously in 

abstract form (Mao et al. 2007). 

3.  Materials and Methods 

Partial deafferentation of auditory cortex (AC) and invasion of ectopic visual inputs can be 

produced in ferret kits if retinal axons are induced to invade auditory thalamus (MGN) (Sur et al. 

1988) as a result of neonatal midbrain lesions.  The cross-modal auditory cortex (XMAC) in 

similarly-manipulated animals contains functional visual neurons (Roe et al. 1992; Sur et al. 

1988; von Melchner et al. 2000). Auditory and multisensory responses were not reported in these 

previous studies, perhaps because the aim was a complete deafferentation of MGN. 

a)  Animals 

Data were obtained from 25 pigmented ferrets (Mustela putorius furo) aged 4 months or more 

(ferrets reach full brain and body size at 16 weeks (Fox and Bell 1998)).  Timed pregnant ferrets 

were obtained from Marshall Farms (North Rose, NY) two weeks prior to parturition.  Nursing 

dams and kits were fed a high fat diet and kept on a 14h/10h light/dark cycle.  Kits were weaned 

at 6-8 weeks of age.  Normal ferrets were obtained either from Marshall Farms as adults or bred 
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in our colony.  Non-lactating ferrets were fed Marshall Farms ferret diet and kept on a 12/12 

light/dark cycle.  Both male and female ferrets were included in the study. All protocols were 

approved by the Institutional Animal Care and Use Committee (IACUC) at Georgia State 

University and met or exceeded standards of care established by the USDA and the Society for 

Neuroscience. 

b)  Neonatal surgery 

Surgical procedures were similar to those described previously (Pallas et al. 1999). Ferret kits 

were manipulated within 24 hr after birth. They were anesthetized by isoflurane (1-4%). All 

surgeries were performed under sterile conditions. After a kit was anesthetized, the skull over the 

midbrain was exposed and removed with a scalpel. The left superior colliculus and one or both 

inferior colliculi were then lesioned to varying extents with a heat cautery, and the brachium of 

the left inferior colliculus was severed with a scalpel blade. The incision was closed using either 

6-0 prolene or surgical adhesive (VetBond, 3M, St. Paul, MN).  After surgery, the kits were 

given subcutaneous fluids and a respiratory stimulant (doxapram, 2 mg/kg, SQ) and warmed 

under an incandescent lamp. Kits were observed carefully until they recovered from anesthesia, 

and were returned to their dam after they became ambulatory. Analgesics (buprenorphine 0.05–

0.1 mg/kg bid) were given as needed to prevent postoperative pain.   

c)  Preparation for Electrophysiology 

Electrophysiology experiments were done once ferrets reached adult size (>4 months of age).  

Before induction of anesthesia, atropine (0.4 mg/kg SQ,) and doxapram (2 mg/kg, SQ) were 

given to counteract bradycardia and to reduce mucosal secretions.  Anesthesia was induced by 

ketamine (40 mg/kg, IM) and diazepam (2mg/kg, IM) or by ketamine (40 mg/kg, IM) and 
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medetomidine (0.08 mg/kg IM).  Dexamethasone (1mg/kg, IM) was given every 24 hr to prevent 

brain swelling.  Animals were intubated and the cephalic or femoral vein was cannulated. 

Anesthesia was maintained with an IV solution of medetomidine (0.022 mg/kg/hr) and ketamine 

(5 mg/kg/hr) in lactated Ringer’s with 5% dextrose (Bizley and King 2008; Bizley et al. 2005). 

Atropine (0.06 mg/kg/hr, SQ) was given as necessary to counteract the bradycardia caused by 

medetomidine. Animals were artificially respired using a small animal ventilator (SAR 830/P 

ventilator, CWE Inc, Ardmore, PA). Vital signs including EKG, respiration rate, muscle tone, 

withdrawal reflexes, end-tidal CO2, and SpO2 were monitored during the surgery and recordings 

to ensure maintenance of adequate anesthesia.  Body temperature was maintained at 38º C with a 

heating pad. Pupils were dilated with atropine ophthalmic drops. Eyes were kept moist with 

commercial artificial tears solution and protected with custom plano contact lenses (Conforma 

Inc, Norfolk, VA).  The head was stabilized in a stereotaxic device. After the scalp overlying 

auditory cortex was incised and the muscle was retracted from the skull, two burr holes (at 

coordinates A5.5 ±L1.5) were drilled for optic chiasm recording/stimulation electrodes. Two 

tungsten rods with Teflon insulation (0.008 bare, 0.011 coated, A-M Systems, Inc., Carlsborg, 

WA) connected to a preamplifier were lowered (8~10 mm) while recording responses to strobe 

light stimulation until a depth yielding strong visual responses was reached. These tungsten rods 

were then cemented to the skull and connected to a stimulus isolation unit (BAK Electronics, Inc, 

Mount Airy, MD).  A 0.8~1.0 cm diameter craniotomy was drilled over the auditory cortex and 

the suprasylvian and pseudosylvian sulci were exposed.  

  Recording sites:  The ferret AC is located on the middle ectosylvian gyrus, bounded 

above by the anterior and posterior arms of the suprasylvian sulcus (sss) and below by the 

pseudosylvian sulcus (pss) (Kelly et al. 1986). In this study, recording penetrations were targeted 
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Once the first unit in each electrode pass was isolated and characterized, another recording 

location was selected.  Most units were isolated within 800 um of the pial surface.   

  Sensory stimuli:  For each penetration, bars of light from a pantoscope and white noise 

from a loudspeaker were used to search for responsive neurons. The loudspeaker was placed at a 

45° angle between the right side and the front of the animal at a distance of approximately 10 cm.  

Auditory searching stimuli were white noise bursts (5 ms ramp, 40-100 ms duration) with a 

sound intensity of 60-80 dB SPL, as measured by a sound level meter (model 407764, Extech 

Instruments, Waltham, MA). After a responsive neuron was found, computer-generated auditory 

(noise or tones) and visual stimuli (moving or flashing bars of light) were used for testing 

responses. The speaker was replaced with a calibrated earphone. The earphone was placed in the 

pinna at the entrance to the ear canal and used to generate noise bursts or pure tone sounds in 

closed field. (ER-2 insert earphone, Etymotic Research, IL).  The earphone was calibrated with a 

microphone (ER-7C probe microphone system, Etymotic Research, IL) via Sigcal software 

(Tucker-Davis Technologies, Alachua, FL). The normalized file generated by Sigcal was used to 

correct any non-linearities in the earphone output when sound was given.  For assessing the 

responses of single units isolated in each penetration, auditory stimuli were generated by TDT 

System II hard- and software (Tucker-Davis Technologies, Alachua, FL) and visual stimuli were 

synthesized and delivered by a VSG card (Cambridge Research Systems Ltd, Kent, England).  

Light stimuli included moving bars or gratings at eight orientations moving in either direction, 

presented on a computer screen ~ 40 cm distances from the eyes. Bipolar electrical stimulation of 

the optic chiasm was applied (single pulses at 0.5-1 mA, 60 µs duration) in addition to light 

stimuli.    
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e)  Electrophysiological data analysis 

Neural responses were amplified (BAK Electronics, Inc, Mount Airy, MD), filtered (500 Hz to 5 

kHz), and monitored on a digital oscilloscope (Hameg Instruments, Mainhausen, Germany). 

Responses to 10-15 stimulus presentations were gathered from each recording site and digitized 

at 25 kHz. The evoked responses were averaged and normalized to a sample of spontaneous 

activity recorded 50 ms before each trial. The recording continued for 1-2 days, after which the 

animal was deeply anesthetized with sodium pentobarbital (65 mg/kg) for humane euthanasia 

and harvesting of brain tissue for histological examination.  

  For each electrophysiological data point, Brainware software (Tucker-Davis 

Technologies Inc., Alachua, FL) was used off-line to isolate extracellularly recorded spikes 

derived from single neurons by their waveform. Artifact rejection was set in Brainware to extract 

biphasic action potential candidates with both peaks exceeding background noise level.  Spikes 

with similar shape and duration were shown as clusters in the data-sorting window. Post-stimulus 

time histograms (PSTHs) of the selected single units were generated using the same software 

package.  The mean and standard error of the number of spikes to each stimulus presentation 

were calculated after subtracting spontaneous activity.  Response latencies were determined by 

the time between stimulus presentation and the time of the first bin in the PSTH that reached at 

least 20% above background firing rate.  Multisensory units were defined either as neurons that 

responded both to visual and auditory stimuli or as neurons that only responded to one modality 

but could be significantly modulated by stimulation with the other modality (Stein et al. 1993). 

Statistically significant differences were determined by comparing the number of spikes per 
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sweep (obtained from the PSTHs) as a response to different stimulus modalities using Student’s 

t-test (p<0.05).  The proportion of response types was compared across groups.  

  For calculating the spatial distribution of response types, the area of each AC was 

normalized to a standard circle with a radius of 1. The locations of recorded units were 

reconstructed on this normalized AC.  In order to analyze the distribution of different neuron 

types in AC, we divided AC into four quadrants numbered 1 to 4 as seen in Figure 2.1.  The 

quadrants were not intended to correspond to particular auditory cortical areas, although 

quadrants 2 and 3 overlap more with the anterior auditory field (AAF) and quadrants 1 and 4 

overlap more with primary auditory cortex (A1).  Two lines were drawn along the anterior and 

posterior arms of the suprasylvian sulcus to form angle A. The third line was drawn just above 

the tip of the pseudosylvian sulcus and perpendicular to the dividing line of angle A. The center 

of the internally tangent circle (point 0) was defined as the intersection of the dividing lines of 

angle A and angle B. 

  Because the shape of the AC in each individual is unique, and the location of recording 

sites differed somewhat across animals, we examined whether pooling data from different 

animals into one polar plot would bias the data.  We performed a heterogeneity Chi-square 

analysis to test the homogeneity of data from each group. Heterogeneity Chi-square is a 

statistical test based on the premise that if the samples are homogeneous, then the value of χ2
sum 

should be close to the value of χ2
pooled. Therefore, the heterogeneity Chi-square value is 

designated (χ2
het= χ2

sum -χ2
pooled). The null hypothesis should be rejected if there is a large χ2

het 

(for details, see Sheskin 2004). If the value of the sum of Chi-squares from each sample is not 

significantly different from the value of the pooled Chi-squares (p >0.05), χ2
het will be small and 



26 

 

the data can be grouped. Applied to our data, the test showed that the electrode penetrations in 

the four quadrants of normal AC were homogenously distributed (p>0.05).  The same was true 

for small lesion and large lesion groups (p>0.05). Therefore, data from all ACs in each group 

were pooled into one polar plot. A Chi-square analysis was then applied to determine whether 

recorded neurons were randomly distributed across quadrants independent of their response type.  

In cases where the distribution was not random (p<0.05), an Analysis of Residuals (R value) was 

calculated to show which quadrant(s) contained the unexpected distribution.  

  To examine whether neurons with similar responses were clustered, we calculated the 

average distance between recording sites by translating X and Y values obtained from 

normalizing AC to polar coordinates on the standard circle using Microsoft Access database 

software. The distance between each pair of single units was calculated and exported to a 

spreadsheet. The average distances from each single unit to other auditory, visual or 

multisensory units were calculated. Then we compared the mean of average distance between 

pairs across groups.   

  Electrophysiological data were statistically analyzed using Sigmastat software (Systat 

Software Inc, Chicago, IL) and plotted with Sigmaplot (Systat Software Inc, Chicago, IL). A one 

way ANOVA for multiple groups was used. A Tukey post hoc test was used for groups that had 

uneven numbers, and a Fisher’s LSD post hoc test was used for groups that had even numbers of 

members. A Mann-Whitney U test for non-normally distributed data was used for two group 

comparisons. Means are given with standard errors of the mean (± SEM) throughout. 

f)  Assessment of lesion size 

i) MRI Scanning:  
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Magnetic Resonance Imaging (MRI) was performed in some lesioned ferrets to obtain an 

assessment of the midbrain lesions prior to electrophysiological recording. Atropine (0.4 mg/kg 

SQ) and doxapram (2 mg/kg SQ) were given 5 min prior to sedation. Then, medetomidine (1 

mg/kg, IM) and diazepam (2 mg/kg, IM) were given to sedate the animal. Animals were put into 

an MRI cradle with a heating pad underneath to maintain body temperature.  End-tidal CO2, 

SpO2, pulse rate, respiration rate, and body temperature were monitored during the entire process. 

MRI scanning of the midbrain was normally finished within 30 min. Animals were taken out of 

the cradle and given atipamezole (0.5 mg/kg, IM) to reverse the effects of the medetomidine. 

Animals were then continuously monitored over the next 1 to 2 hr before being returned to the 

colony to ensure that they were completely recovered from the drugs.  

ii) Histology:  

After electrophysiology, animals were deeply anesthetized with sodium pentobarbital (65 mg/kg) 

for euthanization and perfusion with phosphate-buffered saline (PBS) followed by 2-4% 

paraformaldehyde in 0.1 M PB.  Brains were extracted, postfixed in 4% paraformaldehyde in 0.1 

M phosphate buffer (PB) for 24 hr, and stored in 30% sucrose in 0.1 M PB at 4º C.  After the 

tissue was infiltrated by the sucrose solution, it was sectioned frozen at 50 µm in the coronal 

plane for reconstruction of lesions.  A series of sections at 200 µm intervals was stained for Nissl 

substance using cresyl echt violet.  

iii) Analysis:   

The size of the residual central nucleus of the inferior colliculus (ICc) and the superficial layers 

of the superior colliculus (sSC) in each animal’s midbrain was measured from Nissl stained 

sections with a Zeiss microscope using Zeiss Axon Vision 3.1 software (Carl Zeiss 



28 

 

MicroImaging, Inc., Thornwood, NY). The borders of ICc and sSC (areas indicted by the dashed 

line in Figure 2A, B, and dark areas in Figure 2C) were very clear on our Nissl stained sections.  

The volume of sSC and ICc was calculated as the sum of each measured areas multiplied by 200 

µm. Proportions of residual midbrain area and volume in the lesioned animals were calculated by 

comparison with an average midbrain volume derived from five normal animals.  Lesioned 

animals were sorted into small and large lesion groups as determined by these measurements 

(Figure 2.2).  

4.  Results  

Twenty-five ferrets in total were used in this study.  Ten were entered in the normal group and 

15 received neonatal lesions leading to cross-modal plasticity.  Below we characterize and 

compare the response properties of the 401 AC neurons recorded in the normal group and the 

573 AC neurons recorded in the lesioned group. 

a)  Normal AC contains primarily auditory responses plus rare multisensory responses 

Normal animals were used in the experiments as a negative control for the effects of the 

midbrain lesion. Although primary sensory cortices are traditionally defined as brain areas that 

respond only to a single sensory modality, recent research has challenged this view by reporting 

the existence of multisensory  neurons and neurons responding to other modalities in primary 

sensory cortices. Bizley and colleagues have reported that primary auditory cortex in ferrets does 

contain some auditory/visual bisensory and some visual neurons (Bizley et al. 2007). In order to 

investigate whether and to what extent primary auditory cortices (A1 and AAF) in normal ferrets 

can respond to visual stimuli under our experimental conditions and methods of analysis, we 

characterized the response modality of 401 single neurons in AC of 10 normal animals using in 
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vivo extracellular recording.  We defined auditory neurons and visual neurons as those that 

responded to only one modality.  Multisensory neurons were defined as those that either 

responded to both modalities or responded to one modality but were significantly modulated by 

stimulation from the other modality (criterion of p<0.05, t-test on number of spikes to single vs. 

bimodal stimuli, 10 trials or in some cases 15 trials, data obtained from PSTHs) (see Meredith 

and Stein 1986). We found that 11% of the 401 neurons recorded in AC of normal ferrets were 

multisensory. These multisensory neurons responded both to sound stimuli and to electrical 

stimulation of the optic chiasm (n=45, Fig 2.3A), but not to stimulation by light. No visual-only 

neurons were found in our sample of normal animals.  

b)  XMAC contains visual, auditory, and multisensory response types 

We next tested whether auditory responses remain in AC of lesioned animals and whether the 

ectopic visual inputs to MGN were associated with an increased proportion of multisensory or 

visual-only units.  We predicted that XMAC’s residual inputs from auditory areas would 

preserve auditory responsiveness, despite earlier reports to the contrary (Roe et al. 1992; Sur et al. 

1988). Callosal connections between XMAC and AC in the unlesioned hemisphere exist (Pallas 

et al. 1999), and the inferior colliculi are incompletely lesioned in many cases.  These inputs 

could confer auditory responses on XMAC.  In support of this prediction, our data showed a high 

proportion of auditory neurons in XMAC despite the presence of ectopic visual responses.  

Multisensory neurons were also found. In all of the lesioned animals considered together, the 

relative proportion of auditory-only neurons was 56%, the proportion of multisensory neurons 

was 32%, and the proportion of visual-only neurons (optic chiasm and/or light driven) was 12% 

(Fig 2.3B).  Post-stimulus histograms are shown for each response type in Fig 2.3C-F.  The 
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existence of auditory neurons in XMAC reveals that the neonatal midbrain lesions and ectopic 

visual inputs do not eliminate or suppress the auditory function of AC.  The presence of a higher 

than normal proportion of multisensory neurons in XMAC suggests that auditory and visual 

inputs are more likely to converge in XMAC than in normal AC. 

c)  Continuous and categorical differences in response type occurred by altering the extent 

of midbrain sparing 

The above finding that auditory and visual responses can be made to coexist in XMAC allowed 

us to address the relationship between the two response types in more detail, and in particular to 

examine how the induction of visually-responsive areas in auditory cortex would affect normal 

auditory processing.  In patients with a sensory deficit or damage that deafferents a brain area, 

invasion of cross-modal inputs often occurs to varying extents, and at some point may become 

maladaptive.  We wished to determine whether progressively increasing the extent of visual 

invasion of XMAC would result in competition (intermodal suppression) or cooperation 

(multimodal convergence) between modalities.  Given previous reports that auditory responses 

are absent in XMAC (Roe et al., 1992), we wanted to test whether increasing levels of visual 

input activity would suppress or eliminate auditory responses.  Such a finding could explain why 

we observed auditory responses in our data set whereas none were found in the Roe et al. (1992) 

study in which very large lesions were made.  

  In order to investigate the effect that increasing degrees of invasion of ectopic visual 

inputs would have on auditory responsiveness in AC, we measured the midbrain lesion size in 

each ferret using histological techniques, and compared this measure with the relative 

proportions of each response type in a systematic fashion.  We quantified midbrain size of the 
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lesioned animals by comparing the volume of the left and right central nucleus of the inferior 

colliculus (ICc) and the left and right superficial superior colliculus (sSC) in each lesioned 

animal to that averaged across five normal animals used as a standard of comparison (cf. Figure 

2.2, Table 2.1).   

  Next, it was necessary to demonstrate that increasing the lesion size would affect the 

relative proportions of auditory, visual, and multisensory neurons in XMAC.  We found that 

midbrain lesion size was correlated with the proportion of auditory and visual response types in 

an interesting way.  In general, overall lesion size was correlated with the proportion of visual 

units and inversely correlated with the proportion of auditory units (Fig 2.4A, D).  There was a 

tight relationship between spared sSC size and visual responsiveness (r = -0.7, p = 0.006)  and a 

correlation between spared ICc size and visual responsiveness (r = -0.48, p= 0.085; compare Figs 

2.4B and C).  These results suggest that establishment of visual neurons in XMAC relies more 

on damage to visual midbrain than to auditory midbrain.  For auditory responsiveness, the 

correlations with total midbrain size, sSC size, and ICc size were similar to each other (Figs 

2.4D-F).  These data show that residual sSC volume predicts the relative proportions of visual 

and auditory neurons, whereas ICc volume is predictive only of the proportion of auditory 

neurons, demonstrating that the amount of retinal target area lost (SC lesion) is crucial for 

determination of neuron types in XMAC when both ICc and sSC are lesioned. It was also 

notable that even complete ablation of left IC did not eliminate auditory responses in XMAC 

(Table 2.1). We did not find any correlation between the proportion of multisensory units and the 

amount of spared auditory or visual midbrain. 
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  The relationship between lesion size and proportion of auditory units (Fig 2.4D) appeared 

roughly linear, with increasing lesion size correlating with a decreasing proportion of auditory 

responses. In terms of visual responsiveness, however, as may be predicted by examination of 

Figure 2.4A and 2.4B, there was evidence of an exponentially decreasing relationship (Fig  2.4A, 

r=0.8, p=0.0007; Fig 2.4B, r=0.88, p<0.0001, exponential fit) or perhaps a categorical response 

to lesion size rather than a progressive, linear response. 

  XMAC contained light-responsive neurons (that is, neurons that responded to light as 

well as to optic chiasm stimulation) only in animals in which most of the left midbrain was 

ablated (less than 10% residual left midbrain).  In animals with more than 10% residual left 

midbrain there were no light-responsive neurons.  We used this categorical distinction to divide 

the cases into a large lesion or small lesion group, respectively, and conducted further analyses 

according to these categories. We performed statistical analysis to examine whether small vs. 

large lesion groups have significantly different residual midbrain sizes. We found that the spared 

left midbrain size of animals in both the large (5.4± 1.76%, n=5) and small lesion groups (43.7± 

5.34%, n=10) was significantly smaller than that of the normal group (ANOVA, p<0.001, Fig 2. 

5).  The spared midbrain size in the large lesion group was also significantly reduced compared 

to that in the small lesion group (Tukey post hoc test, p<0.001), allowing us to consider these 

groups along with the unlesioned group as distinct categories for statistical analyses. 

i) Responsiveness to light requires minimal sparing of visual midbrain 

In order to determine the relationship between lesion group membership and distribution of 

response types, we calculated the relative proportions of auditory, visual, and multisensory 

responders in each group.  This analysis allows us to compare the proportion of neuronal 
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responses among groups, including the proportion of multisensory neurons that has not been 

shown in the correlation analysis.  

 Animals in the small lesion group had few visual neurons in XMAC (1.8%± 0.96%, n=8 of 

414 neurons from 10 animals) and those neurons responded to electrical stimulation of the optic 

chiasm (OX) but not to light.  The low proportion likely results from the minimal redirection of 

retinal axons to MGN in small-lesion cases (Angelucci et al. 1998). In contrast, 33.8 ± 7.92% of 

recorded neurons in the large lesion group were visual neurons (n=61of 159 neurons from 5 

animals, Fig 2.6A).  Of the 61 visual neurons, 48 of them (78.7%) responded to light in addition 

to optic chiasm stimulation.  This is a significant increase (Mann-Whitney U-test, p=0.003) and 

represents a categorical difference between the large and small lesion groups.  These results 

indicate that considerable visual information was reaching AC in the large lesion animals. 

ii) Auditory neurons become visual rather than converting to multisensory neurons 

Although auditory neurons were found in all groups, the proportion of auditory neurons to total 

recorded neurons in both groups of lesioned animals varied with lesion size (large lesion group: 

43.8± 6.47%, n=65 of 159; small lesion group: 60.0± 3.22%, n=256 of 414, normal group: 88.6± 

1.65%, n=356 of 401, ANOVA, p<0.001, Fig 2.6B).  Furthermore, the proportion of auditory 

neurons in large lesion groups was less than that in the small lesion group (p=0.003, Tukey post-

hoc).  These results suggest that increasing lesion size resulted in an increase in visual neurons 

largely at the expense of auditory neurons, rather than a conversion of auditory neurons into 

multisensory neurons.  
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iii) Multisensory neurons were found in all groups 

We found that neurons in AC of all three groups responded to both auditory and optic chiasm 

stimulation (multisensory neurons in the large-lesion group: mean 22.4± 5.60%, n=33 of 159; in 

the small-lesion group: mean 38.3± 3.51%, n=150 of 414, in the normal group: mean 11.5± 

1.65%, n=45 of 401, ANOVA, p<0.001, Fig 2.6C), but interestingly that the proportion of 

multisensory neurons in the small-lesion group was significantly higher than the proportion of 

multisensory neurons in the normal group (Tukey post hoc test, p<0.001) and in the large lesion 

group (Tukey post hoc test, p<0.05). Although the large-lesion group contained more 

multisensory neurons than did the normal group, statistical analysis indicated that there was no 

significant difference (large vs. normal, p=0.11). This probably results from the large proportion 

of purely visual neurons in the large lesion group, and suggests that the response of XMAC to 

minimal invasion of visual activity (making multisensory neurons) is different from its response 

to substantial visual influence (making purely visual neurons).  This result has interesting 

implications for rehabilitation strategies for patients with sensory loss or brain damage that cause 

cross-modal redirection of afferent inputs.  Selective stimulation of the original modality would 

be expected to produce very different results depending on the amount of redirection.  

d) Auditory and multisensory neurons have distinct spatial distributions in normal animals 

To determine whether neuronal responses to different modalities are preferentially located in one 

or multiple regions of AC, we calculated the distribution of recorded neurons in the normal AC 

across the four quadrants (cf. Fig 2.2). Figure 2.7 shows examples of the penetration locations 

and neuronal response types in recordings of normal AC from 8 of the 10 normal animals. We 

found that auditory neurons were distributed randomly across the entire AC, but most 
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multisensory neurons were located laterally. Using statistical analysis, we found that auditory 

neurons were evenly distributed (Chi-square, p>0.05).  However, the distribution of multisensory 

neurons was skewed to one of the four quadrants (Chi-square, p<0.001, analysis of residuals, 

R=6.93> R0.001=3.29) (Figure 2.8). The polar plot (Fig 2.8A) shows that the population of 

multisensory neurons was preferentially located in the lateroposterior (quadrant 4; see Fig 2.2), 

in normal animals. The observed incidence of multisensory neurons in quadrant 4 was 

significantly higher than the expected value of 25% (Fig 2.8B).  These data show that auditory 

responses in normal animals are distributed evenly across the AC, whereas multisensory neurons 

are preferentially located lateroposteriorly.  

e)  The spatial distribution of auditory, visual, and multisensory neurons in lesioned 

animals was different from normal 

i) Spatial distribution of neuronal response types in small-lesion cases 

We next investigated whether neurons with auditory and visual responses in AC of small lesion 

animals would be segregated as seen for multisensory neurons in normal auditory cortex.  Such 

clustering would likely facilitate efficient processing of visual information separately from 

auditory information after the midbrain injury.  Eight examples of raw data are presented in 

Figure 2.9 to indicate recording locations and neuronal response types in each small lesion 

animal. Pooled data from all 10 small lesion animals showed that auditory neurons in small 

lesion AC were randomly distributed across the four quadrants (Chi-square, p>0.05, Fig 2.10). 

Multisensory neurons could also be found in any of the quadrants in XMAC of small-lesion 

animals, but were more likely to be found in Q4.  The number of multisensory neurons in the 

anteromedial quadrant Q1 was below the expected value for a random distribution (Chi-square, 
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p<0.01, analysis of residuals, R=2.79>R0.01=2.58, Fig. 2.10B), and the number in the 

lateroposterior quadrant Q4 was above the expected value (Chi-square, p<0.001, analysis of 

residuals, R=3.61>R0.001=3.29, Fig. 2.10B). In addition to auditory and multisensory neurons, we 

recorded some purely visual neurons (8 out of 414 neurons) that were located exclusively in 

lateral AC (dark triangles in Fig. 2.10). These results suggest that ectopic visual inputs can 

invade the entire AC, even though they are concentrated in the lateroposterior quadrant. This is 

interesting given the result that quadrant Q4 already contains multisensory neurons in normal 

animals (Fig. 2.8). Although the multisensory neurons were preferentially located in the 

lateroposterior quadrant of both normal and small lesion animals, the extent of clustering in 

small lesion animals was reduced compared to that in normal animals. These findings imply that 

the random distribution of ectopic visual inputs to XMAC may weaken the tendency of visually-

responsive neurons in normal AC to cluster. 

  In addition to the analysis of distribution of neuronal responses in the four quadrants, we 

measured the distance between each single unit and its neighbors in order to further test the 

segregation hypothesis.  We found that the average distance between pairs of sound-responsive 

neurons was significantly shorter than the average distance between auditory and multisensory 

neurons (ANOVA, p<0.05, A-A vs. A-M, Fisher LSD method, Fig 2.10C). This finding suggests 

that auditory neurons are more likely to cluster with each other than with multisensory neurons. 

This result may be attributable to the smaller number of multisensory responses compared to 

auditory responses in XMAC of small lesion animals. We were prevented from including visual 

responses in the analysis because some animals had only one visual neuron in the entire AC. 
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ii) Spatial distribution of neuronal response types in large lesion cases 

Because some clustering of neuronal response types was seen in AC of small lesion cases, we 

wondered if the more extensive visual inputs resulting from larger lesions would either promote 

or reduce clustering of neuronal response types in XMAC.  Note that it is difficult to generate 

animals with large midbrain lesions, thus there is a smaller number (n=5) of large lesion cases 

compared to small lesion cases (Fig 2.11). We found that auditory, visual, and multisensory 

neurons were evenly distributed across the four quadrants of AC in large lesion cases (Chi-

square, p>0.05, Fig 2.12). This was different from normal and small lesion cases, in which the 

multisensory and visual neurons were preferentially located in the lateroposterior quadrant Q4. 

Although there was variation in the sample, there was no significant degree of segregation of 

neuronal response types in XMAC of the large lesion group.  These results suggest that the 

ectopic visual inputs introduced by the large neonatal midbrain lesions projected evenly across 

the entire AC rather than being more strictly segregated as we expected. 

  As with the small lesion group, we measured the distance between pairs of auditory, 

visual, and multisensory neurons in the large lesion group to test the hypothesis that neurons with 

similar response properties would be clustered together.  We compared the average distance 

between pairs of auditory neurons to the average distance between auditory-visual pairs and 

auditory- multisensory pairs of neurons.  We did not find any significant tendency to cluster 

(ANOVA, p>0.05, A-A vs. A-M or A-V, Fisher LSD method, Fig 2.12C), nor did we find any 

significant clustering when we compared average distance between pairs of visual neurons to the 

average distance between visual-auditory and visual- multisensory pairs (ANOVA, p>0.05, V-V 

vs. V-A or V-M, Fisher LSD method,  Fig 2.12C).  We did find that the average distance 
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between pairs of multisensory neurons was significantly shorter than the average distance 

between multisensory -visual pairs (ANOVA, p<0.05, M-M vs. M-V, Fisher LSD method, Fig 2. 

12C), but found no significant difference between M-M and A-M pairs.  These results suggest 

that multisensory neurons are closer to each other than to visual neurons.  Overall, these results 

are in agreement with our polar plot data and further suggest that auditory and visual inputs to 

AC of large lesion animals do not segregate. 

f)  The latency of visually-responsive neurons to optic chiasm stimulation differed between 

normal and lesioned animals 

Previous research demonstrated that ectopic visual inputs to XMAC originate from the retino-

MGN-AC projection (Pallas et al. 1990; Sur et al. 1988), whereas visual inputs to normal AC 

come from corticocortical projections (Bizley et al. 2007).  We found clustering of multisensory 

neurons lateroposteriorly in normal AC, whereas in AC of large lesion animals, multisensory 

neurons were randomly distributed.  To investigate whether visual inputs to multisensory and 

visual neurons in lesioned animals came from expanded corticocortical projections or from 

retino-MGN-AC afferents, we compared the latency of responses to optic chiasm stimulation. 

The latency to optic chiasm stimulation of the multisensory neurons recorded in normal animals 

(n=40) was 13.4 ± 1.75 ms whereas the latency to optic chiasm stimulation of multisensory and 

visual neurons from lesioned animals was 8.76 ±1.03 ms (n=86) in the small lesion group and 

5.72 ± 0.65 ms (n=65) the large lesion group, which was significantly shorter (ANOVA, small vs. 

normal p=0.015, large vs. normal, p<0.001, Fig 2.13).  No significant difference was found 

between small and large lesion groups.  The comparison between latency of response to optic 

chiasm in normal visual cortex and Xmodal auditory cortex was reported in a previous study in 
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which the authors showed that visual neurons in Xmodal AC have longer latencies than visual 

neurons in visual cortex (Roe et al. 1992).  Taken together, these results provide further evidence 

to support the contention that normal AC receives its visual inputs indirectly, perhaps from other 

cortical areas, but not directly from thalamus, whereas XMAC receives visual inputs more 

directly, probably from the retina to MGN to AC pathway.  

5. Discussion  

Early lesions to sensory structures in one sensory modality can result in profound reorganization 

across multiple sensory pathways, due to the many interconnections between structures (Karlen 

et al. 2006; Kingsbury et al. 2000; Kingsbury et al. 2002; Pallas et al. 1990; Pallas and Sur 1993).  

The fact that such reorganization can result in cross-modal connections has important clinical 

implications for recovery from perinatal brain damage because the different modalities could 

either cooperate or compete with each other.  We found that auditory neurons and multisensory 

neurons coexist with visual neurons in XMAC after recovery from neonatal midbrain damage.  

The existence of multisensory neurons indicates that the two modalities can converge and 

cooperate to activate individual target neurons, rather than competitive suppression of one input 

by the other.  The proportions of auditory and visual neurons were directly related to the amount 

of residual midbrain tissue.  Rather than being segregated from visual neurons, auditory neurons 

were evenly distributed across XMAC of lesioned animals, and an increase in the number and a 

broadening of the distribution of multisensory neurons was observed.  These findings are 

reminiscent of phenomena such as acquired auditory-tactile synesthesia, which was reported in a 

patient following recovery from a thalamic infarct.  In this patient, sound induced BOLD 

responses in somatosensory cortices (Beauchamp and Ro 2008; Ro et al. 2007).  Collectively, 
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these results suggest that both cooperation and competition between the two input modalities are 

involved in the reorganization of sensory areas after damage to sensory inputs.  

a)  Auditory function is retained in core auditory cortical regions despite visual inputs  

Previous studies using neonatal midbrain lesions in ferret kits focused on visual responses in 

XMAC (Roe et al. 1990; Roe et al. 1992; Sur et al. 1988; von Melchner et al. 2000).  Those 

studies, which used very large midbrain lesions, reported that there was no residual auditory 

function in cross-modal AC.  We used lesions of varying size, and find that considerable 

auditory function is retained despite the visual input, especially in animals with smaller lesions. 

This fortuitous finding allowed us to examine the effect of different degrees of cross-modal input 

on development and plasticity of auditory cortex in response to deafferentation. 

  Our finding that a large proportion of the neurons in XMAC retain auditory 

responsiveness supports the hypothesis that residual auditory afferents can compensate even for 

complete loss of the ipsilesional inferior colliculus, but raise the question of where the auditory 

information derives from. The most likely sources of auditory input to XMAC are the ipsilateral 

MGN (as a conduit of input from spared contralateral ICc (Angelucci et al. 1998; Moore et al. 

1998) and the contralateral auditory cortex (via the corpus callosum (Pallas et al. 1999)) (Fig 2. 

14). Whether the auditory neurons in XMAC function as they would in normal animals is an 

important question and is the subject of a current study.  Preliminary results suggest that function 

is somewhat compromised (Mao and Pallas 2010).   
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b) Competition between visual and auditory inputs may determine response type 

Our results show that with decreasing size of IC and SC, the percentage of recorded neurons 

responding to sound went down, and the percentage of visual neurons went up.  These results are 

consistent with competition as an explanatory mechanism (Crair et al. 1997; Hubel and Wiesel 

1962; Stryker 1982; Stryker and Harris 1986). During recovery, when the normal sensory drive 

may be maximally compromised, activity-dependent processes may allow invading, cross-modal 

inputs to out-compete preserved inputs from the normal pathway.  These findings suggest that 

optimizing rehabilitation of patients suffering from sensory dysfunction or brain damage will 

require not only increasing the activity of the original inputs but also decreasing activity in the 

ectopic inputs. For example, rearrangement of somatosensory circuits in early blind humans can 

degrade somatosensory representations (see Sathian and Stilla 2010 for review; Sterr et al. 2003) 

and cross-modal changes in deaf patients can interfere with the success of cochlear implants (Lee 

et al. 2001).   

  Our findings may also be of relevance to studies on recovery from partial deafness 

following cochlear damage.  Fallon et al (2009), using neonatally deafened cats, found that large 

portions of A1 were non-responsive to sound activation of cochlear implants.  These non-

responsive regions may actually be visually responsive, perhaps interfering with the efficacy of 

cochlear implants due to loss of territory for sound processing.  Similar loss of auditory cortical 

territory for sound processing may result from damage to IC due to disease or injury (Bognar et 

al. 1994; Hoistad and Hain 2003; Kimiskidis et al. 2004; Lee et al. 2009; Masuda et al. 2000; 

Meyer et al. 1996; Musiek et al. 2004).  Understanding how to manipulate competition between 
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sensory modalities converging on a cortical territory would be helpful in designing clinical 

therapies.  

c) Unisensory auditory or visual neurons are intermingled within cross-modal AC 

In contrast to research on cortical plasticity within one modality, this study addressed how 

ectopic, cross-modal inputs that invade a deafferented cortex affect normal function. We 

examined the possibility that both modalities could function independently through the 

segregation of their representations in XMAC.  Neurons with similar response properties tend to 

be clustered together in unisensory sensory cortex (Hubel and Wiesel 1962; 1963; see 

Mountcastle 1997 for review) and in multisensory cortex (Dahl et al. 2009).  Activity-dependent 

sorting of inputs can drive spatial segregation of different response types (Miller et al. 1989; Reh 

and Constantine-Paton 1985).  As in other mammals, primary auditory cortex in ferrets maps 

sound frequency in one-dimension (Kelly et al. 1986; Phillips et al. 1988), whereas primary 

visual cortex maps visual space in two-dimensions (Law et al. 1988).  If this remains the case in 

XMAC, it seems unlikely that visual and auditory neurons would be simultaneously active.  It 

has been suggested that evolutionary pressure causes neurons with similar response properties to 

group together in order to reduce axon length and connection distance (Chklovskii and Koulakov 

2004; Chklovskii et al. 2002; Kaas 2006; Ringo 1991).  Such a tendency would also reduce the 

difficulty of wiring developing circuits appropriately. We reasoned that this economic pressure 

along with activity-dependent sorting could induce clustering of neurons with similar responses 

on an acute basis after brain damage and reorganization.  For this reason, and because we found 

previously that callosal, auditory connections between the non-lesioned hemisphere and the ipsi-

lesional AC were shifted laterally in AC (Pallas et al. 1999), we expected that neurons with 
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auditory responses in cross-modal AC would be segregated from those with visual responses.  

Instead, visual and auditory responses were intermingled throughout the entire AC.  It is 

interesting that the competitive interaction between auditory and visual inputs in terms of 

proportion of response types did not also affect their spatial distribution within AC. It is possible 

that microclusters of similarly-responding neurons escaped our detection, or that processes that 

cause segregation are not operational in cross-modal auditory cortex.  At any rate, these results 

imply that differences in the modality of information carried by the auditory and visual inputs 

from MGN during postnatal development are not sufficient to induce segregation or splitting of 

the cortical target areas.  

d) Multisensory neurons in Normal AC  

In addition to auditory neurons, we found multisensory neurons both in normal AC and XMAC. 

Previous studies in ferrets and other species have also reported the existence of multisensory 

responses in primary auditory cortex, and several investigators have thus begun to question the 

degree of modality-specificity in the primary sensory cortices (e.g. Bizley and King 2009; 

Ghazanfar and Schroeder 2006).  Research on primates (de la Mothe et al. 2006; Lakatos et al. 

2007; Smiley et al. 2007) and on rodents and carnivores (Bizley et al. 2007; Campi et al. 2010; 

Cappe and Barone 2005; Wallace et al. 2004) has shown that multisensory responses exist in 

traditionally-defined primary sensory cortices (cortices with direct thalamic input, which would 

include A1 and AAF, defined here as AC). In normal ferrets, King and colleagues reported that 

15% of recorded units in A1 and AAF had non-auditory inputs, and these were located primarily 

along the outer edges of AC (Bizley and King 2008; Bizley et al. 2007). We encountered a 

similar proportion of multisensory to total neurons in normal ferret AC. The multisensory 
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neurons we recorded in the present study were primarily located at the margins of normal AC, 

but particularly in lateroposterior AC, near the border between A1 and the posterior 

pseudosylvian and posterior suprasylvian fields. They responded to direct stimulation of the 

optic chiasm but not to light, suggesting that they receive only weak visual input.  Bizley et al. 

(2007) used a more sensitive method of response analysis that included spike timing information, 

which may explain why they found greater sensitivity to light.  Although we cannot completely 

rule out the possibility that some visual units that we recorded were located in non-primary AC, 

similarly-placed recordings using pure tone stimuli indicate to the contrary. 

e) Multisensory neurons in XMAC 

In XMAC the proportion of multisensory neurons was much higher than in normal AC, but it 

was lower in large lesion animals than in the small lesion group.  This was contrary to 

expectation, because the large-lesion group had more visual input to AC than the small-lesion 

group, leading to more potential interaction between auditory and visual afferents.  One possible 

explanation is that sensory cortical neurons are more likely to be multisensory when they have 

weaker cross-modal inputs, perhaps because stronger inputs would outcompete and displace the 

original modality.  Another possibility is that multimodal responsiveness represents an 

intermediate state between an auditory-dominated normal AC and a visual-dominated XMAC in 

cases with large lesions.   

  It is possible that multisensory responses are first created in MGN before reaching 

XMAC, although previous investigation of retino-MGN projections reported that they were 

clustered and segregated in small subregions of the ventral MGN, arguing against convergence at 

the thalamic level (Angelucci et al. 1997; Angelucci et al. 1998; Roe et al. 1993).  We propose 
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that the most likely explanation for our data, then, is that new convergences between auditory 

and visual inputs are made at the level of AC in the lesioned animals.  

  Although normal AC and XMAC both contain multisensory neurons, our latency data 

suggest that the origin of visual inputs to these neurons is different in the two cases.  The 

response latency of multisensory neurons to optic chiasm stimulation in XMAC was much 

shorter than that in normal AC, suggesting that AC in normal animals receives its visual inputs 

indirectly from other cortical areas, but that XMAC receives them more directly.  Tracer 

injections made by Bizley and colleagues (2007) in AC of normal ferrets revealed projections 

from visual cortical regions to AC that may contribute to the multisensory responses seen there.  

In XMAC however, additional visual inputs come from the retina via the medial geniculate 

nucleus (MGN) (Sur et al. 1988), and these would be expected to exhibit the shorter latencies 

that we have seen. The connectional differences between multisensory neurons in normal AC 

and multisensory neurons in AC of lesioned animals are likely to account for the latency 

difference, and may result in different response properties as well. 

  The expanded proportion of multisensory neurons in XMAC is intriguing.  Previous 

perceptual studies on lesioned ferrets with cross-modal visual input to AC argued that they could 

“see” rather than “hear” visual cues in the rewired auditory cortex (von Melchner et al. 2000).  

Recent clinical studies showing that thalamic lesions can produce synesthesia (Beauchamp and 

Ro 2008; Ro et al. 2007) imply that subjects may not be able to identify sensory modalities 

accurately after cross modal plasticity, however. 
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  In conclusion, the data from this study provide information about the recovery of sensory 

function after damage to afferent pathways, and suggest a mechanism whereby visual takeover of 

auditory cortex during cross-modal plasticity might interfere with auditory function through 

competition for cortical territory.  Appropriate and inappropriate inputs can coexist in the 

affected cortex without strict segregation, and this may not only interfere with efficient 

processing, but also create barriers to rehabilitation of the compromised modality. Understanding 

the processes leading to the coexistence of neurons with different functional roles in the affected 

cortical areas would be important for designing effective rehabilitation strategies for patients 

during recovery. 
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Table 2.1. The proportion of neuronal types and residual midbrain volumes in lesioned animals. 

The midbrain volumes were normalized to average midbrain volumes of normal animals. IC 

represents inferior colliculus, SC represents superior colliculus. L- Represents left. R- Represents 

right. 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

 

 Auditory 
(%) 

Multisensory 
(%) 

Visual 
(%) 

L-IC 
(%) 

R-IC 
(%) 

L-SC 
(%) 

R-SC 
(%) 

Small lesion 

07-40 52.73 47.27 0 42.78 66.48 17.93 31.12 

07-52 68.75 29.69 1.56 62.55 57.5 50.62 74.87 

07-176 69.09 29.09 1.82 43.07 21.14 54.71 72.86 

08-09 67.39 23.91 8.7 35.5 39.78 63.51 67.39 

08-240 37.5 62.5 0 0 12.66 38.19 70.12 

08-253 60 40 0 1.06 15.47 51.12 20.72 

09-15 51.43 42.86 5.71 11 73.36 64.36 42.43 

09-172 60 40 0 51.38 26.95 23.79 59.83 

09-203 68.42 31.58 0 47.86 66.59 62.90 77.31 

Large lesion 

07-61 35 10 55 0 55.36 3.89 69.59 

07-107 26.33 28.95 44.74 21.38 63.78 0 35.48 

08-201 45.45 40.91 13.64 0 34.69 5.44 93.59 

09-21 47.62 14.29 38.14 0 37.70 6.26 82.54 

09-191 64.71 17.65 17.65 5.62 23.59 11.48 55.65 
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Figure 2.1.  Method for quantifying the distribution of neuronal response types in auditory 

cortex.  Based on the location of AC on the middle ectosylvian gyrus, we drew an equilateral 

triangle along the anterior and posterior suprasylvian sulcus and across the tip of the 

pseudosylvian sulcus (pss) (* indicates the tip of pss).  An internally tangent circle was drawn 

and divided into four quadrants numbered from one to four as shown.  Neurons in these four 

quadrants were counted and identified by response type (see methods for detail).  
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Figure 2.2.  Assessment of midbrain damage.  A. An example of a section through the IC.  The 

central nucleus of the inferior colliculus (ICc) was more darkly stained than the surrounding 

areas (dashed line).  B. An example of a section through the SC.  The superficial layers of SC are 

marked by a boundary (arrow) that can be recognized under the microscope.  C. Sketches 

showing examples of midbrains from one normal and two lesioned animals.  Darkened areas 

show the residual, post-lesion inferior colliculi (IC, top) and superficial layers of the superior 

colliculi (SC, bottom).  The animal with the smaller lesion (center) has some residual SC and IC 

bilaterally, whereas the animal with the larger lesion (right) is missing left SC and IC entirely. 
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Figure 2.3.  Neuronal response types.  A-D.  Representative post-stimulus response histograms 

for the different neuronal response types in cross-modal AC. The letter A in the top traces 

indicates the time course of the auditory stimulus, OX indicates the time of optic chiasm 

stimulation, and V indicates the timing of the light stimulation. A. Auditory neurons respond to 

sound but not optic chiasm stimulation.  B. Multisensory neurons respond to both sound and 

optic chiasm stimulation.  C. This visual neuron responded to optic chiasm stimulation but not 

sound.  D. This visual neuron was also responsive to light.  E-F.  The relative proportions of 

neuronal response types in AC of E. all normal and F. all lesioned ferrets.  A: Auditory neurons.  

M: Multisensory neurons.  V: Visual neurons. 
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Figure 2.4.  Relationship between midbrain lesion type and size and neuronal response type in 

AC of experimental animals.  A. The proportion of visual neurons was negatively correlated with 

midbrain size.  B. The proportion of visual neurons was negatively correlated with left SC size.  

C. The proportion of visual neurons was not correlated with left IC size.  D. The proportion of 

auditory neurons was positively correlated with midbrain size.  E. The proportion of auditory 

neurons was positively correlated with left SC size.  F. The proportion of auditory neuron was 

positively correlated with left IC size.  Each symbol corresponds to one animal (n=14). 
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Figure 2.5.  Statistical comparison of midbrain size between normal and lesioned animals.  

Cases were divided into groups of small and large lesions according to whether they contained 

AC neurons that responded to light.  The ipsilesional (left) midbrain sizes of lesioned animals in 

both the small and large lesion groups were significantly smaller than those of normal animals.  

(*** represents p<0.001, ** represents p<0.01 (ANOVA)). 
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Figure 2.6.  Neuronal response types in the three groups.  A. The large-lesion group contained 

more visual neurons than the small-lesion group.  B. The proportion of auditory neurons 

decreased with lesion size.  C. The proportion of multisensory neurons in the small-lesion group 

was significantly higher than that in the normal and large-lesion groups.  (*** represents p<0.001, 

** represents p<0.01, * represents p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

 

Figure 2.7.  Reconstruction of locations of recorded neurons in normal AC.  Each figure exhibits 

data from one animal (8 of the 10 cases are shown).  Each circle represents one unit with 

response types as shown in the legend.  A indicates auditory stimulation, OX indicates optic 

chiasm stimulation. The + symbol represents neurons that were responsive to the stimulus, 

whereas – represents neurons that were not responsive to that modality.  A+/OX- indicates 

responsiveness to auditory stimulation but not to optic chiasm stimulation, A+/OX+ indicates 

responsiveness to both auditory and optic chiasm stimulation.  x indicates a non-responsive site.  

Scale bar: 1 mm.  Arrows at lower right show orientation.  M, medial, L, lateral, R, rostral, C, 

caudal. 
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Figure 2.8.  Distribution of neuronal response types in Normal AC.  A. Pooled data from all 10 

normal cases.  Each open circle represents one auditory unit.  Each gray circle represents one 

multisensory unit.  Acronyms and abbreviations as in Figure 7.  B. The proportion of neurons in 

each of the four quadrants (pooled data).  Auditory stimulus-responsive neurons were uniformly 

distributed across quadrants but visually responsive neurons were clustered in Q4, in the 

lateroposterior portion of AC (Chi-square, * indicates p<0.05, *** indicates p<0.001).  The 

dashed line at 25% indicates the value to be expected if response types were evenly distributed. 

 

 

 

 

 



61 

 

 

Figure 2.9.  Reconstruction of locations of recorded neurons in AC of the small-lesion group (8 

examples from 10 animals are shown).  Acronyms and abbreviations as in Figure 7.  V+ 

indicates responsiveness to light stimulation.  AOX indicates auditory and OX stimuli were 

given simultaneously.  A+/OX-/AOX- indicates multisensory neurons that did not respond to OX 

stimulation alone but whose auditory response could be modulated by it in a suppressive way.  

Multisensory neurons increased in frequency in this group but none could be driven by light.  

Neurons in the small lesion group defined as visual (A-/OX+/V-) did not respond to sound and 

responded to electrical stimulation of the optic chiasm but not to light. 
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Figure 2.10.  Distribution of neuronal response types in AC across the population of small lesion 

cases.  Acronyms and abbreviations as defined previously.  A. Pooled data from all 10 animals.  

Open circles represent auditory neurons.  Gray circles or triangles represent multisensory 

neurons.  Dark triangles represent visual neurons.  B. The proportion of neurons in each quadrant 

(pooled data).  The distribution of auditory neurons was even across quadrants (Chi-square, 

p>0.05), but the numbers of multisensory neurons in Q1 and Q4 were significantly different from 

expected values (Chi-square, ** indicates p<0.01, *** indicates p<0.001), with the numbers 

significantly higher in Q4 and lower in Q1.  Visual neurons were located only in Q3 and Q4.  

The proportion of visual neurons in Q4 was significantly higher than expected (p<0.01).  The 

dashed line at 25% indicates the value expected if response types were evenly distributed.  C. 

The average distance between single units of each response type in AC. A-A is the average 

distance between all pairs of auditory neurons.  A-M is the average distance between all auditory 

and multisensory pairs of neurons.  M-M is the average distance between all pairs of 

multisensory neurons.  Each symbol represents the mean of average distances for each 

comparison type from one animal.  The average distance between auditory neurons was less than 

that between multisensory neurons or between auditory and multisensory neurons (ANOVA, * 

indicates p<0.05). 
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Figure 2.11.  Reconstruction of locations of recorded neurons in AC of large lesion cases (5 

examples from 5 animals are shown).  Neurons responsive to light (A-/OX+/V+) were seen in 

this group (dark circles).  Four multisensory neurons (A+/V+) that responded to both sound and 

light stimuli were recorded in 2 of the animals (F08-201, F09-191) (dark circles with white dot in 

center indicate A+/V+ neurons; other conventions as in Figs. 2.7 and 2.9). 
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Figure 2.12.  Distribution of neuronal responses in AC of large lesion cases.  A. Pooled data 

from 5 animals.  Acronyms and abbreviations as defined previously.  B. The proportion of 

neurons in each quadrant in relation to total recorded auditory, multisensory or visual neurons in 

AC. Auditory, multisensory and visual neurons are randomly distributed across quadrants (Chi-

square, p>0.05).  The dashed line at 25% indicates the value to be expected if response types 

were evenly distributed.  C. The average distance between pairs of single units of each response 

type in AC. V indicates light responsiveness.  Each symbol represents the mean of average 

distances for each comparison type from one animal.  The average distance between 

multisensory and visual neurons was significantly greater than that between pairs of multisensory 

neurons and between pairs of multisensory and auditory neurons (ANOVA, * indicates p<0.05). 
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Figure 2.13.  Latencies of responses to optic chiasm stimulation in normal AC and cross-modal 

AC.  The response latency in AC of the small-lesion group (8.76 ±1.03 ms) and in AC of the 

large-lesion group (5.72 ± 0.65 ms) was significantly shorter than that in normal AC (13.4 ± 1.75 

ms).  No significant difference was found between small and large-lesion groups. * indicates 

p<0.05 and *** indicates p<0.001 (ANOVA). 
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Figure 2.14.  Schematic of possible inputs to normal AC, to XMAC of small-lesion animals, and 

to XMAC of large-lesion animals.  The gray scale to the right provides the key to the gray levels 

used in lines and structures in the drawings.  The letter A represents auditory and V represents 

visual, with intermediate gray levels corresponding to degrees of multisensory responsiveness.  

A.  Normal connectivity pattern.  B. The small, dark circle in this left side lateral view of Normal 

AC represents a cluster of multisensory neurons in the auditory field (large light gray circle).  C.  

Dashed line indicates the rewiring of retinal axons to the left MGN.  The left AC then receives 

reduced auditory input and ectopic visual input from MGN.  White ovals in left and right IC and 

left SC indicate neonatal, partial lesion of these midbrain structures.  The spared right IC may 

provide auditory input to the left MGN after the lesion.  The narrow lines from left ear to spared 

IC indicate preserved auditory projections.  D.  The AC of small-lesion animals has increased 

visual responsiveness and decreased auditory processing.  The darker, small circle in AC 

represents clustered multisensory neurons.  The extent of clustering is smaller in XMAC than in 

normal AC.  E.  The XMAC of large lesion animals has the highest proportion of visual neurons 

in the three groups of animals.  No clustering of multisensory neurons was seen in AC of large-

lesion animals.  
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1. Abstract 

Brain damage resulting in loss of sensory stimulation can induce reorganization of sensory and 

motor maps in cerebral cortex.  Previous research on recovery from brain damage has focused 

primarily on adaptive plasticity within the affected modality.  Less attention has been paid to 

maladaptive plasticity that may arise due to ectopic innervation from other modalities.  Using 

animals in which neonatal midbrain damage results in diversion of retinal projections to the 

auditory thalamus, we investigated how auditory cortical function is impacted by the resulting 

ectopic visual activation.  We found that although auditory neurons in cross-modal auditory 

cortex (XMAC) retained sound frequency tuning, their thresholds were increased, their tuning 

was broader, and tonotopic order in their frequency maps was disturbed.  Multisensory neurons 

in XMAC, unlike those in normal AC, also exhibited frequency tuning, but they had longer 

latencies than normal auditory neurons, suggesting they arise from multi-synaptic, non-

geniculocortical sources.  In a control group of animals with neonatal deafferentation of auditory 

thalamus but without redirection of retinal axons, tonotopic order and sharp tuning curves were 

seen, indicating that auditory function had largely recovered.  This result suggests that the 

compromised auditory tuning and tonotopy in XMAC results from invasion by ectopic visual 

inputs but not from deafferentation.  These findings suggest that the cross-modal plasticity that 

commonly occurs after loss of sensory input can significantly interfere with recovery from brain 

damage, and suggest that mitigation of maladaptive effects is critical to maximizing the potential 

for recovery.  

Keywords: cross-modal plasticity, sensory substitution, cortical development, traumatic brain 

injury, stroke 
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2. Introduction  

Alterations of sensory inputs can result in plastic changes to sensory pathways. Research on 

within-modality plasticity following sensory manipulations has provided important information 

about how sensory systems compensate for a loss of input (see Buonomano and Merzenich 1998, 

for review). Recovery can involve multiple brain areas and sensory modalities, however (see 

Kral and Sharma 2012, for review).  Visual areas can become responsive to sound stimulation in 

blind animals (Izraeli et al. 2002; Piche et al. 2004; Rauschecker 1995a), and recordings from 

deaf animals show visual responses in auditory regions (Kral 2007; Lomber et al. 2010).  Thus, 

although cross-modal plasticity is a common outcome of sensory loss, it has received 

considerably less study than unimodal plasticity.   

The success of clinical interventions after damage to sensory pathways can be negatively 

affected by cross-modal plasticity.  Research on deaf patients (e.g. Sharma et al. 2007; Sharma et 

al. 2009) shows that auditory cortices have often received cross-modal projections by the time 

that cochlear prostheses can be implanted, interfering with the success of the implants (Lee et al. 

2001). These findings point out the importance of studying cross-modal interactions for purposes 

of optimizing rehabilitation. Animal models employing deafness have yielded crucial 

information (Kral 2007; Lomber et al. 2010) but do not allow study of competitive interactions 

between auditory and cross-modal visual inputs to auditory cortex.  Our approach of partial 

midbrain damage reroutes retinal axons to auditory thalamus, placing visual and auditory inputs 

in a controlled state of competition (Mao et al. 2011; Pallas et al. 1999; Sur et al. 1988), while 

still allowing sensory activation of both modalities, thus enabling study of the effects of different 

degrees of cross-modal plasticity on residual auditory function. 
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We reported previously that auditory cortex (AC) of ferrets after unilateral neonatal 

midbrain damage contains neurons that respond to a single modality (auditory and visual neurons) 

and to both modalities.  Because these different response types are randomly distributed within 

XMAC rather than in a segregated fashion, communication between unimodal neurons might be 

disrupted by adjacent cross-modal neighbors.  We tested whether competition from ectopic 

visual inputs compromises auditory tuning and topography in XMAC using in vivo single unit 

recordings in anesthetized ferrets.  

We found that auditory tuning and tonotopic mapping in auditory cortex are impaired 

after cross-modal plasticity.  Because the same neonatal midbrain lesions coupled with 

enucleation of both eyes did not produce the effects, we argue that the compromised function 

results specifically from the ectopic visual inputs.  Interestingly, early enucleation by itself 

increased auditory sensitivity.  These results provide support for the hypothesis that competition 

between auditory and visual inputs after cross-modal plasticity underlies the compromised 

auditory function in patients with partial hearing loss, and they also provide a potential 

explanation for the improved auditory function often observed in blind humans (Bavelier and 

Neville 2002).  

 Preliminary results from some of these experiments have been published previously in 

abstract form (Mao and Pallas 2010). 

3. Materials and Methods   

a) Animals 
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In total, 26 adult pigmented ferrets (Mustela putorius furo) were included in this study.  Timed 

pregnant ferrets were either obtained from Marshall Farms (North Rose, NY) two weeks prior to 

parturition or bred in the GSU facility, and were kept on a 14h/10h light/dark cycle.  Kits were 

weaned at 6-8 weeks of age.  Non-lactating adults were fed Marshall Farms ferret diet and kept 

on a 12/12 light/dark cycle.  Animals were divided into normal (n=8), cross-modal (n=9), blind 

(n=3) and blind-lesioned groups (n=6).  Both cross-modal and blind-lesioned groups were 

subjected to neonatal surgeries.  All animals were treated in accordance with protocols approved 

by the Institutional Animal Care and Use Committee (IACUC) at Georgia State University and 

met or exceeded standards of care established by the USDA and the Society for Neuroscience. 

b) Neonatal surgery 

Surgical procedures to induce cross-modal plasticity were similar to those described previously 

(Mao et al. 2011; Pallas et al. 1999).  All invasive procedures were performed under sterile 

conditions.  Within 12 hours after birth, ferret kits were anesthetized by isoflurane (1-4% prn).  

The skull overlying the midbrain was exposed and removed through an incision in the skin.  The 

superficial, retinorecipient layers of the superior colliculus (sSC) primarily on the left side and 

the central nucleus of the inferior colliculi (ICc) on both sides were then cauterized to varying 

extents, and the brachium of the left inferior colliculus was severed. The incision was closed 

using surgical adhesive (VetBond, 3M, St. Paul, MN). For generating blind animals, both eyes 

were enucleated within the first postnatal week (the eyes open at ~P30 in ferrets). The surgical 

site was cleaned and draped. The lids were opened along the future eyelid margin (visible at this 

age) by a scalpel or a microscissor. The orbits were separated from the surrounding conjunctiva 

and were completely removed, taking care to eliminate all pigmented epithelium that could 
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conceivably regenerate photoreceptors. Typically there was no bleeding during this procedure. 

The eyelids were reclosed with tissue glue.  To generate blind-lesioned animals, the two 

procedures were combined.  After surgery, the kits were given subcutaneous fluids and a 

respiratory stimulant (doxapram, 2 mg/kg, SQ) and warmed on a heating pad. Kits were returned 

to their dam after they recovered from anesthesia.  Analgesics (buprenorphine 0.01 mg/kg bid) 

were given if warranted to eliminate postoperative pain.  Note that enucleation results in 

degeneration of the optic nerve, preventing any subsequent activation of the peripheral visual 

pathway by light or by optic nerve stimulation. 

c) Preparation for Adult Electrophysiology  

Animals were prepared for electrophysiology experiments as described previously (Mao et al, 

2011). The ear canals of each ferret were examined before surgery with an otoscope and cleaned 

if necessary. Atropine (0.4 mg/kg SQ,) and doxapram (2 mg/kg, SQ) were given as a pre-

anesthetic to counteract bradycardia and to reduce mucosal secretions.  Animals were 

anesthetized with ketamine (40mg/kg, IM) and diazepam (2mg/kg, IM) during the craniotomy 

procedure.  Dexamethasone (1mg/kg, IM) was given every 24 hours to prevent cerebral edema.  

For the recording session, the cephalic or femoral vein was cannulated and an IV solution 

containing a combination of medetomidine (0.022 mg/kg/hr) and ketamine (5 mg/kg/hr) in 

lactated Ringer’s with 5% dextrose (Bizley and King 2008; Bizley et al. 2005) was continuously 

infused at a rate sufficient to maintain a state of unconsciousness (2-5 ml/h). Atropine (0.4 mg/kg, 

SQ) was given as necessary to counteract the bradycardia caused by medetomidine. The animal 

was intubated and artificially ventilated using a small animal ventilator (SAR 830/P ventilator, 

CWE Inc, Ardmore, PA). Body temperature was maintained at 38º C with a heating pad. EKG, 
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respiration rate, muscle tone, withdrawal reflexes, and end-tidal CO2 were monitored and 

recorded every 30 min at the beginning of surgery and every hour after surgery.  Eyes were kept 

moist with commercial artificial tears solution and protected with custom plano contact lenses 

(Conforma Inc, Norfolk, VA).  The animal was placed in a stereotaxic device and an incision 

was made on the top of the head with a scalpel. The temporal muscles were retracted from the 

skull and two burr holes (at coordinates A5.5 ±L1.5) were drilled for optic chiasm 

recording/stimulation electrodes. To protect the brain from overheating during the drilling, saline 

was frequently dripped on the surface.  Two tungsten rods with Teflon insulation (0.008 inch 

bare, 0.011 inch coated, A-M systems, Inc., Carlsborg, WA) were advanced in the two holes to a 

depth (8~10 mm) that yielded strong visual responses. These tungsten rods were then connected 

to a stimulus isolation unit (BAK Electronics, Mount Airy, MD).  A 0.8~1.0 cm diameter 

craniotomy was made over the left auditory cortex. After removing the skull, the ferret auditory 

cortex (AC, defined as primary auditory cortex (A1) and the anterior auditory field (AAF)) was 

exposed (Fig. 2) (Kelly et al. 1986). The dura was removed carefully and the AC was covered 

with sterile saline. The skull on the right side was cleaned and a metal bracket was cemented on 

the surface to stabilize the head.  The right ear bar was then released to allow access to the ear 

for auditory stimulation.  

d) Acoustic stimuli and optic chiasm stimuli 

Acoustic stimuli were generated using TDT system II or TDT system III hard- and software 

(Tucker-Davis Technologies, Alachua, FL). A calibrated earphone (ER-2 insert earphone, 

Etymotic Research, IL) was placed in the pinna at the entrance to the right ear canal. All auditory 

stimuli were presented contralateral to the recording site. White noise bursts (5 ms ramp, 40-100 
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  Neural responses were bandpass filtered (500 Hz to 5 kHz), amplified (10,000 times, 

BAK Electronics, Inc, Mount Airy, MD), and monitored on a digital oscilloscope (Hameg 

Instruments, Mainhausen, Germany). Responses to 5-10 stimulus presentations were gathered 

from each recording site and digitized at 25 kHz using TDT systems. Spontaneous activity was 

recorded for 50 ms before each trial in order to normalize the evoked response levels. Digitized 

data were acquired by Brainware software (Tucker-Davis Technologies Inc., Alachua, FL). The 

recording continued for 1-2 days, after which the animal was deeply anesthetized for perfusion 

and the brain was extracted for histological examination.  

f) Electrophysiological data analysis 

Brainware software (Tucker-Davis Technologies Inc., Alachua, FL) was used for off-line spike 

sorting. Biphasic action potentials were extracted by artifact rejection set in Brainware. Single 

units were isolated according to their waveform, amplitude, and width.  Post-stimulus time 

histograms (PSTHs) of the selected single units were generated using the same software package.  

Response latencies were determined by the time between stimulus presentation and the time of 

the first bin in the PSTH that reached at least 20% above background firing rate. For isolated 

single units, a frequency response area (FRA) was reconstructed by summing the responses to 

each pure tone across 5-10 trials. The response threshold was defined as 20% above the mean 

spontaneous firing rate (Bizley et al. 2005; Sutter and Schreiner 1991). The boundaries of the 

frequency tuning curve were defined by the stimuli yielding excitatory responses above this 

threshold (Moore et al. 1983; Sutter and Schreiner 1991). The best frequency (BF) of each unit 

was defined as the frequency at which the lowest threshold responses were elicited. Some 

neurons responded similarly to two contiguous frequencies, in which case their BF was defined 
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as the mean of these two frequencies. If neurons responded at a low threshold to two contiguous 

frequencies, BF was defined as the frequency that induced the larger response. Neurons were 

defined as tuned if they had single peaked or double peaked tuning curves. Neurons that 

responded to at least 3 contiguous frequencies at the same threshold level were defined as 

untuned neurons. Bandwidth was determined by the width of the tuning curve at 10 dB above 

this minimum threshold. Multisensory units were defined either as neurons that responded both 

to visual and auditory stimuli or as neurons that only responded to one modality but could be 

significantly modulated by stimulation with the other modality (Stein and Meredith 1993). 

Statistical significance was determined by comparing the number of spikes per sweep (counted 

from PSTHs) as a response to the different stimulus modalities using Student’s t-test (p<0.05).  

For calculating the spatial distribution of frequency-tuned neurons, the area of each AC was 

normalized to a standard circle with a radius of 1 (Fig 3.1) (see Mao et al. 2011). The locations 

of recorded units were reconstructed on this normalized AC.  .  

  Electrophysiological data were statistically analyzed using Sigmastat software (Systat 

Software Inc, Chicago, IL) and PASW statistic 18 (SPSS Inc, Chicago, IL) and plotted using 

Sigmaplot (Systat Software Inc, Chicago, IL). A one way ANOVA was used for multiple 

comparisons of normally distributed data. A one way ANOVA on ranks (Kruskal-Wallis test) 

was used for multiple comparisons of non-normally distributed data. A Student‘s t- test was used 

for normally distributed data.  For two group comparison of ranks on non-normally distributed 

data, a Mann-Whitney U test was used. Means are given with standard errors of the mean (± 

SEM) throughout.  
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g) Assessment of lesion size 

 After electrophysiological recordings were completed, animals were deeply anesthetized with 

sodium pentobarbital (65 mg/kg, IP) and perfused with phosphate-buffered saline (PBS) 

followed by 4% paraformaldehyde in 0.1M PB. Brains were extracted and postfixed in 4% 

paraformaldehyde in 0.1M phosphate buffer (PB) for 24 hr at 4º C. The brains were transferred 

to 30% sucrose in 0.1M PB at 4º C after postfixation.  After the tissue was infiltrated by the 

sucrose solution, it was sectioned frozen at 50µm in the coronal plane for reconstruction of 

lesions. A series of sections at 200 µm intervals was mounted on gelatin-subbed slides and 

stained for Nissl substance with cresyl echt violet. The volumes of the residual auditory midbrain 

(central nucleus of the inferior colliculus (ICc)) and the residual visual midbrain (superficial 

layers of the superior colliculus (sSC)) were measured from Nissl-stained sections with a Zeiss 

microscope using Zeiss Axio Vision 3.1 software (Carl Zeiss MicroImaging, Inc., Thornwood, 

NY). The borders of ICc and sSC were very clear on our Nissl stained sections (Mao et al. 2011).  

The volumes of sSC and ICc were calculated as the sum of the size of each measured area 

multiplied by the length of the interval between assayed sections of 200 µm (Fig 3.2).  

Proportions of residual midbrain volume in the lesioned animals were calculated by comparison 

with an average midbrain volume derived from five normal animals (as in Mao et al., 2011).  

4. Results 

The goal of this study was to investigate the mechanism through which the cross-modal plasticity 

that results from neonatal, partial deafferentation of auditory thalamus impairs eventual recovery 

of auditory function. It is well-accepted that auditory cortex is subject to unimodal, experience-

dependent modification (Insanally et al. 2009; Popescu and Polley 2010; Zhang et al. 2002; 
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2001), but how it might be negatively or positively affected by cross-modal modification is less 

clear.  The cross-modal group had neonatal damage to auditory and visual midbrain, redirecting 

retinal inputs to auditory thalamus (MGN) and thus providing visual activation of auditory cortex 

(Sur et al., 1988).  In a previous study we showed that after recovery from surgery, XMAC can 

respond to both auditory and visual stimuli (Mao et al. 2011). We were interested in whether that 

residual auditory function is compromised by invasion of the ectopic visual inputs.  Because 

damage to both auditory and visual midbrain is necessary to induce cross-modal plasticity, it was 

important to establish whether auditory cortical function was impaired by anomalous visual 

inputs, loss of auditory inputs, or both.  In order to distinguish between these two possibilities, 

we designed a blind-lesioned group that had the same neonatal midbrain lesions as XM animals 

but no visual inputs, as a control for the effects of the visual activation of XMAC. Because this 

group introduces enucleation as another experimental variable, in order to rule out the effect of 

enucleation on recovery of auditory function, we added a group of blind-only animals. The study 

thus contained four groups: normal, cross modal, blind-lesioned, and blind animals.  

  Twenty-six ferrets in total were used.  Eight were in the normal group, 9 were in the cross 

modal group, 6 were in the blind-lesioned group, and 3 were in the blind group.  XM ferrets were 

lesioned on the day of birth (P1). Blind ferrets were enucleated on P1-7. Enucleation on P7 

increased the survival rate of kits and would be expected to have the same effect as enucleation 

on P1 because the thalamocortical projection does not reach cortex until P14.  Blind-lesioned 

ferrets were enucleated and lesioned on the same day (P1) to avoid multiple survival surgeries.  

Statistical analyses included both parametric and non-parametric methods depending on the 

normality of the sample distribution, but in all cases we present error bars as standard error of the 

mean (SEM). 
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a) The residual midbrain volume of Xmodal animals was not significantly different from 

the residual midbrain volume of blind-lesioned animals 

The blind-lesioned animals were introduced as a control for the alternative hypothesis that the 

changes in XMAC are caused by auditory deafferentation rather than visual activation.  Because 

variable lesion sizes between groups could potentially affect the interpretation of results, we 

examined whether the lesions in these two groups were similar in size. We compared the 

volumes of residual midbrain components from these two groups against midbrain volumes from 

a reference set of normal animals (Mao et al. 2011). We found that the volumes of residual left 

midbrain (sSC plus ICc) were not significantly different between the Xmodal (24 ± 5.9%, n=9) 

and the blind-lesioned groups (22 ± 3.6%, n=6, p=0.78, t-test). In particular, the average volume 

of residual IC in Xmodal animals was not significantly different from that of the blind-lesioned 

animals (Xmodal 27± 6.0%, n=9, Blind-lesioned 32± 3.5%, n=6, p=0.58, t-test) (Fig 3.3, Table 

3.1). Because the majority of projections to left auditory cortex come from ipsilateral inferior 

colliculus via the left MGN, we also compared the residual volume of left IC between the 

Xmodal and the blind-lesioned groups.  We did not find a significant difference between these 

two groups (Xmodal 17± 7.2%, n=9, Blind-lesioned 25± 5.4%, n=6, p=0.41, t-test) (Fig 3, Table 

1).  These results show that the extent of neonatal midbrain damage was similar in lesioned 

animals with or without enucleation.  Therefore it is unlikely that different response 

characteristics in auditory cortex can be attributed to differences in neonatal lesion size in the 

Xmodal compared to the blind-lesioned animals. 
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b) Auditory and multisensory neurons in AC of Xmodal animals were tuned to pure tones 

The majority of sound-responsive neurons in the primary auditory areas of normal adult ferrets 

have a single best frequency (BF) between 1 kHz and 18 kHz (Kelly et al. 1986; Phillips et al. 

1988). To test the hypothesis that auditory function in XMAC is impaired by invasion of visual 

inputs, we first asked whether neurons in XMAC exhibit normal tuning to pure tones. Neurons 

that had a single peak in their sound frequency tuning curves were considered to be tuned to a 

single Best Frequency (BF) (see Methods for detail).  Neurons that responded to frequencies 

above 12 kHz (≥ 12 kHz) were defined as high-frequency neurons, neurons that responded to 

frequencies between 6 to 12 kHz (≥ 6 kHz, <12 kHz) were defined as mid-frequency neurons, 

and neurons that responded to frequencies below 6 kHz (<6 kHz) were defined as low-frequency 

neurons. We found that nearly all of the recorded neurons from normal, blind, blind-lesioned, 

and XM ferrets were tuned to pure tones in these ranges (Figure 3.4). This was true of auditory-

only neurons in XMAC (Aud-XM neurons) and of multisensory neurons in XMAC (Multi-XM 

neurons).  Thus neurons in XMAC and AC of blind-lesioned animals retain selectivity for sound 

frequency despite the significant early damage to the auditory midbrain (IC).   

In addition to the single peak neurons, we encountered a small proportion of multipeaked 

auditory neurons in the lesioned animals only (XM group: 3.4%, n=8 from 235 neurons; Blind-

lesioned group: 12%, n=18 from 152 neurons) (Fig  3.4F). These multipeaked neurons had two 

BFs, either at 4 kHz and 12 kHz or at 8 kHz and 16 kHz, etc, with 1 to 2 octaves between peaks, 

distinct from typical multipeaked neurons that have been described in normal auditory cortex 

(Sutter and Schreiner 1991). The proportion of auditory neurons that were not tuned to pure 

tones was 2% for the Normal group (n=4 from 192 neurons), 1% for the XM group (n=2 from 
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235 neurons), 1.3% for the Blind-lesioned group (n=2 from 152 neurons), and 3.3% for the Blind 

group (n=3 from 89 neurons) (Fig 3.4E). 

c) Visual inputs affect the threshold of auditory and multisensory cortical neurons to sound 

We also examined whether the ectopic visual inputs reduced the responsiveness of XMAC 

neurons to sound.  We did not find any significant differences between groups in the proportion 

of non-responsive recording sites (Figure 3.5A). For the responsive sites, because our intention 

was to compare the differences in auditory response thresholds between groups rather than 

determine absolute threshold values, we normalized all auditory threshold measurements to the 

average threshold of the set of normal auditory neurons, which was 51±0.7 dB (n=154). We 

found significant differences in thresholds of sound-responsive neurons between the normal, 

blind, blind-lesioned, and XM groups (ANOVA, p<0.001, Fig 3.5B).  First, the normalized 

thresholds of auditory neurons in blind-lesioned animals were significantly higher than those of 

normal auditory neurons (Normal: 1.01±0.015, n=154, Blind-lesioned: 1.08±0.016, n=108, 

p<0.001, Fisher LSD). These results suggest that the sensitivity to sound in the AC was impaired 

by IC lesion, as would be expected.  Second, we found that the thresholds in XMAC were 

significantly higher than those in the AC of blind-lesioned animals (Aud-XM neurons: 

1.15±0.021, n=121, Multi-XM neurons: 1.17±0.03, n=22, Aud-XM vs Blind-lesioned, Multi-XM 

vs Blind-lesioned, p<0.05, Fisher LSD). These findings suggest that the ectopic visual invasion 

of XMAC further decreases auditory sensitivity, in addition to the impairment brought by IC 

lesion.  Third, we did not find any significant difference in normalized thresholds between the 

multisensory neurons and the auditory neurons in XMAC (Aud-XM vs Multi-XM, Fisher LSD, 

p=0.6). Finally, the normalized thresholds of auditory neurons in blind animals were 
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significantly lower than those of normal auditory neurons (Blind: 0.89±0.023, n=84, p<0.001, 

Fisher LSD). These data imply that neonatal visual deafferentation increases the sensitivity of 

auditory neurons to sound, a finding that has been reported by others in several model systems 

(see Discussion).  

d) Auditory neurons in AC of Xmodal animals had broader tuning to sound frequency 

than auditory neurons in normal AC 

The width of the tuning curves of sound- responsive neurons has been used as an important 

metric for the sensitivity of auditory responses (see Aitkin et al. 1984 for review). We expected 

that auditory deafferentation would result in broader tuning of auditory responses in the AC. In 

support of this prediction, we found that the bandwidths of sound-responsive neurons were 

significantly different between normal, blind, blind-lesioned, and Xmodal animal groups (Aud-

XM and Multi-XM groups) (Kruskal-Wallis test, p<0.05) (Fig. 3.5C).  On the one hand, we 

found that the bandwidths of auditory and multisensory neurons in XMAC were significantly 

broader than those of auditory and multisensory neurons in normal animals (Normal: 0.87 ±0.04, 

n=154, Aud-XM: 1.09±0.06, n=121, Normal vs. Aud-XM, p=0.008, Mann-Whitney U; Multi-

XM: 1.18±0.13, n=22, Normal vs. Multi-XM, p<0.05, Mann-Whitney U). These data suggest 

that visual invasion of XMAC decreases the sharpness of auditory tuning. On the other hand, we 

did not find any significant differences in sharpness of tuning between the normal group and the 

two control groups (blind and blind-lesioned groups) (Blind: 0.87±0.07, n=84, Blind-lesioned: 

0.76±0.05, n=108, Normal vs. Blind and Normal vs. Blind-lesioned, p>0.05, Mann-Whitney U 

test). These data demonstrate that although auditory cortical neurons in the XM animals have 

broader tuning, the sharpness of tuning is not affected in the blind-lesioned animals, suggesting 
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that possible circuitry underlying tuning such as thalamocortical convergence or lateral inhibition 

in adult AC is not altered by neonatal IC damage.  Thus cross-modal visual input decreases the 

specificity of auditory responses in XMAC, suggesting that cross-modal plasticity could interfere 

with auditory perception. 

e) Multisensory neurons in AC of Xmodal animals had a longer latency response to sound 

stimuli than unisensory auditory neurons in either normal AC or Xmodal AC 

In previous research, we measured response latencies to visual stimuli and found that 

multisensory neurons in XMAC had longer than normal latencies (Mao et al. 2011).  Here we 

calculated the latencies of auditory responses to gain insight into whether the multisensory 

neurons obtain their auditory inputs directly from thalamus or from cortical sources. We found 

that the latencies of sound-responsive neurons were significantly different between groups 

(Kruskal-Wallis test, p<0.05) (Fig. 3.5D). Latencies of auditory responses in the multisensory 

neurons of XMAC were nearly three times longer than those of normal auditory responses 

(Normal: 13±0.6 ms, n=136, Multi-XM: 36±10 ms, n=22 p=0.001, Mann-Whitney U), whereas 

latencies of auditory neurons in XMAC were not significantly different from those of normal 

auditory neurons (Normal: 13±0.6 ms, n=136, Aud-XM: 18±2.0 ms, n=121 p=0.66, Mann-

Whitney U). These results suggest that auditory neurons in XMAC receive direct thalamocortical 

projections whereas multisensory neurons are more likely to obtain their auditory inputs from 

other cortical sources. As expected, we did not find significant differences in latency between the 

normal and the two control groups (Blind-lesioned: 19±1.8 ms, n=126, p=0.366, Mann-Whitney 

U, Blind: 19.6±2.4 ms, n=84, p=0.24, Mann-Whitney U). For comparison we also measured the 

auditory latencies of the small proportion of multisensory neurons seen in normal AC. The 
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auditory latencies of the multisensory neurons in normal AC were not significantly different 

from those of normal auditory neurons (Multi-normal: 19±9.4, n=10, Mann-Whitney U,  p=0.18), 

supporting the idea that multisensory neurons in normal AC may receive direct projections from 

thalamus and function in auditory processing as do typical auditory-only neurons. 

f) The tonotopic arrangement of auditory and multisensory neurons was altered by cross-

modal plasticity 

Tonotopic arrangement is an essential characteristic of neurons in primary auditory areas. We 

found auditory and visual neurons to be intermingled in XMAC in our previous study (Mao et al., 

2011), leading us to hypothesize that invasion of ectopic, cross-modal visual inputs to auditory 

thalamus disrupts tonotopic order.  In order to examine whether IC lesion affects the distribution 

and proportion of neurons tuned to each part of the sound frequency scale, we divided the scale 

into 3 bins (low-frequency <6 kHz, mid-frequency 6-12 kHz, high-frequency >12 kHz) and 

plotted the topographic locations of units responding in these ranges.  

i) The tonotopic map of auditory neurons in normal AC   

We first mapped the spatial distribution of low- mid-, and high-frequency neurons across the 

primary auditory areas in normal animals, using in vivo extracellular recording, for comparison 

to the other groups. Figure 3.6 shows examples of the electrode penetration locations and 

neuronal response types from recordings in normal AC. In each case, the circles represent a 

single responsive unit.  Generally we could isolate two neurons from each penetration using 

offline spike sorting.  As reported in previous research (Kelly et al. 1986; Phillips et al. 1988), 

we found that the tonotopic map of auditory neurons in normal ferrets showed a high-to-low 

frequency trend approximately along the mediolateral axis of AC.  
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ii) Tonotopic arrangement of auditory neurons in XMAC  

To determine whether cross-modal visual inputs can disrupt topography of auditory neurons, we 

plotted the tonotopic maps in the AC of XM cases. We found that high-, mid-, and low- 

frequency auditory neurons in XMAC were scattered, rather than being arrayed along the medio-

lateral axis as observed in normal animals (Fig 3.7). These results suggest that auditory tonotopy 

was severely disrupted by the visual invasion into AC of Xmodal animals.  

iii) Tonotopic arrangement of multisensory neurons in XMAC   

In addition to assaying the tonotopic arrangement of auditory neurons, we also reconstructed the 

tonotopic map of multisensory neurons in XMAC (Fig 3.8). The sample size of multisensory 

neurons was smaller than that of auditory neurons in XMAC because they are rarely encountered. 

In some cases (Fig 3.8B, C), we recorded only high- and mid-frequency neurons. In others (Fig 

3.8A, F), we almost recorded only middle-and low-frequency neurons. Quantified distributions 

of frequency-tuned neurons in pooled data from this group are compared to those of the normal 

group below.  

iv) Tonotopic arrangement of auditory neurons in AC of blind-lesioned animals  

 To test the hypothesis that the ectopic visual inputs and not the deafferentation of MGN are 

responsible for disrupting the tonotopic map in the XMAC, we recorded neurons from AC of the 

blind-lesioned group.  These cases had deafferentation of MGN but no retinal input and thus no 

visual activation of AC. In support of our hypothesis, we found that the tonotopy of AC in the 

blind-lesioned animals was quite normal. Neurons responding from high to low best frequencies 

were aligned along the medio-lateral axis as in normal AC (Fig 3.9). These data argue that 
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neonatal IC damage (MGN deafferentation) did not disrupt tonotopy of auditory neurons in AC 

of the blind-lesioned animals.  

v) Tonotopic arrangement of auditory neurons in AC of blind animals  

To rule out the alternative hypothesis that the recovery of tonotopy in the blind-lesioned animals 

results from removal of the eyes, we also mapped the distributions of auditory neurons in AC of 

the blind animals. Figure 3.10 shows the penetration locations and the neuronal response types 

from three cases. We found that the tonotopic maps in AC of blind animals were arranged with 

high-to-low best frequencies along the mediolateral axis, as in normal tonotopic maps.  

g) Quantitative comparison of tonotopic maps between groups  

In order to analyze tonotopy between groups statistically, we pooled data within each group (Fig 

3.11), using methods similar to those used in a previous study (Mao et al. 2011). The recorded 

primary auditory areas were normalized with respect to their area and were fit to a circle that 

standardized their orientation with respect to the posterior suprasylvian sulcus and the 

pseudosylvian sulcus (cf. Fig 3.2).  Although the tonotopic map in ferrets is oriented roughly 

along the mediolateral axis, it is important to consider that the exact orientation of tonotopic 

maps varies between ferrets (Kelly et al. 1986; Phillips et al. 1988), as can be seen in Figure 6. 

Therefore, the combined plots are useful for comparing between groups but in themselves will 

blur the map detail somewhat.  Our pooled data from normal AC are consistent with the results 

from previous ferret research, with high frequencies represented medially and low frequencies 

laterally (Fig 3.11A). The insets in Figure 3.11A and in the other panels show the center of 

spatial distribution of the units tuned to low-, mid-, and high-frequency stimuli, with error bars 
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showing the standard error of the mean of these distributions.  In Normal AC there is a 

mediolateral progression in the spatial distribution centers in each frequency tuning category.    

We also plotted the distribution of the group of multisensory neurons recorded in normal 

AC (Fig 3.11B).  As we shown in a previous study (Mao et al. 2011), multisensory neurons in 

normal AC were preferentially located laterally. Consistent with this location in the tonotopic 

map, most were tuned to low- and mid-frequencies.  

 In contrast to the tonotopic arrangement seen in normal AC, auditory neurons in XMAC 

were distributed diffusely across the entire AC (Figure 3.11C). As a result, the distribution 

centers of the different frequency tuning classes were overlapped (inset, Fig 3.11C), further 

reflecting the lack of tonotopy. Interestingly, the distribution centers of the frequency classes of 

multisensory neurons in XMAC retained some tonotopic order along the mediolateral axis, with 

the distribution center of the high-frequency neurons separated from the distribution centers of 

low- and mid-frequency neurons (see below for quantification).  On the other hand, the mid- and 

low-frequency multisensory neurons were more diffusely distributed in XMAC (Fig 3.11D). The 

long latencies of Multi-XM neurons (cf. Fig 3.5C) suggest that they receive indirect 

corticocortical inputs rather than direct thalamocortical inputs. Taken together, these results 

suggest that visual invasion may affect the thalamocortical pathway more severely. However, we 

cannot rule out the possibility that the no-overlapped location of high-frequency neurons results 

from sampling error due to the low proportion of high-frequency neurons in this group (8 out of 

61, Fig 3.11D).  

The tonotopic organization of auditory neurons in AC of blind-lesioned animals and in 

the blind animals was very similar to the tonotopy in the normal group (Figs 3.11E, F).  The 
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tuning progressed from high to low along the mediolateral axis, as reflected by the distribution 

centers seen in the insets.   

Overall, these results suggest that the ectopic visual inputs led to a disrupted topography 

of frequency-tuned neurons in XMAC. In combination with the higher thresholds and broader 

tuning, it is clear that auditory function of XMAC is compromised.  The tonotopic organization 

of AC in each group will be analyzed and discussed below. 

 h) The spatial distribution of high- and low-frequency neurons were altered in X-modal 

animals 

Because the tonotopic map in normal ferret AC is oriented along the mediolateral axis, we 

quantified the mediolateral location of frequency-tuned neurons across groups (Fig 3.12; smaller 

numbers represent more lateral locations). We found that high-frequency auditory neurons in 

XMAC were located significantly more laterally than those in normal AC (p<0.001, ANOVA, 

Fig 3.12A, D), whereas low-frequency auditory neurons in XMAC were located significantly 

more medially than those in normal AC (p<0.05, t-test, Fig 3.12C, D). No significant difference 

was found with respect to the location of mid-frequency neurons across the five groups (p>0.05, 

t-test, Fig 3.12B, D). These data suggest that high- and low-frequency neurons are more 

overlapped in XMAC than in normal AC, as suggested by the insets in Fig 3.11C. We did not 

observe any significant difference between normal and blind-lesioned groups or normal and 

blind groups (p>0.05, t-test, Fig 3.12A-C), suggesting that in the blind-lesioned animals the 

auditory pathway can largely compensate for early damage to IC and contribute normally to 

auditory tonotopy in AC.  Because the enucleation did not affect tonotopy in ferret AC, the data 
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imply that the disruption of tonotopy in the Xmodal group was caused by the ectopic visual 

invasion.  

i) The frequency distribution of tuned neurons was not altered by cross-modal plasticity 

We showed in a previous study that an increasing degree of damage to IC is associated with a 

decrease in the proportion of auditory neurons and an increase in the proportion of visual and 

multisensory neurons in XMAC (Mao et al. 2011). In ferrets and cat IC is arranged from low to 

high frequency along its dorso-ventral axis (Merzenich and Reid 1974; Moore et al. 1983). 

Because we use a dorsal approach to lesion the IC of Xmodal and blind-lesioned ferrets, the 

dorsal aspect of IC is preferentially damaged. Therefore, we asked in the current study whether 

all frequencies were represented in XMAC. We hypothesized that low-frequency neurons would 

be lost in the lesioned ferrets.  Alternatively, neonatal, partial damage to IC could trigger a 

compression of IC’s tonotopic map, similar to what occurs with neonatal, partial lesions of SC 

(Finlay et al. 1979; Pallas and Finlay 1989).  In that case we would expect all frequencies to be 

represented.  We did not find any significant difference in the proportions of mid- and high-

frequency neurons between groups (p>0.05, ANOVA, Fig 3.13). The proportion of low-

frequency neurons in the Aud-XM group was significantly lower than that in the normal group 

(p=0.005, t-test, Fig 3.13C), suggesting a failure of the IC tonotopic map to compress.  This 

interpretation does not consider the fact that many of the sound-responsive neurons in XMAC 

are bisensory, however.  When we included all low-frequency-tuned neurons (Aud-XM plus 

Multi-XM) in the analysis, we found that the proportion of low-frequency neurons was not 

significantly different from that in the normal group (p>0.05, t-test, Fig 3.13C). Taken together, 

these results suggest that dorsal midbrain lesions do not eliminate low-frequency-tuned neurons 
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from the pathway between IC and AC.  The apparent compression of the tonotopic map in IC is 

an interesting finding that we hope to follow up in future studies.  

5. Discussion  

In a previous study (Mao et al. 2011) we demonstrated that, contrary to previous reports, 

auditory cortex retains its ability to respond to sound stimuli after invasion of  cross-modal visual 

inputs.  In the present study we tested the hypothesis that such cross-modal plasticity negatively 

affects residual auditory cortical function.  We found that considerable auditory function remains 

in XMAC after recovery, in that most neurons respond to sound and have a preferred frequency.  

The sensitivity to sound, the sharpness of tuning, and the organization of the tonotopic map in 

XMAC are impaired, however.  These results imply that sound discrimination ability is still 

compromised after several months of recovery.  The results from the blind-lesioned control 

group show that it is the anomalous visual input to auditory cortex and not simply 

deafferentation of the auditory pathway that is responsible for the impairments of auditory 

function, suggesting that loss of input to auditory thalamus can be compensated during recovery. 

In the blind group, the auditory map was normal but the sensitivity of auditory neurons to sound 

was increased, suggesting that visual impairment can boost auditory processing ability, as seen in 

blind humans (Roder et al. 1999). 

a) Auditory tuning and tonotopy are impaired by invasion of ectopic visual inputs  

Cross modal plasticity has been widely studied in auditory, visual, and somatosensory systems. 

For example, auditory cortex of early-deaf cats is recruited for somatosensory and visual 

functions (Lomber et al. 2010; Meredith and Lomber 2011). Auditory prostheses can rescue 

auditory function to some extent in deaf patients and animal models (Klinke et al. 2001; Kral 



94 

 

2007; Middlebrooks et al. 2005).  The success of cochlear implants can be compromised if 

auditory cortex exhibits cross-modal activation before implantation is performed, however (Lee 

et al. 2001).  The basis for this effect is unknown.  Here, using a model system in which the 

degree of cross-modal contamination of auditory cortex can be varied experimentally, we 

addressed whether visual input can negatively impact residual function in the auditory pathway.  

We found that tonotopy was disrupted by cross-modal inputs. We also found that response 

thresholds and sharpness of auditory tuning were degraded in the XMAC group compared to the 

control groups.  These results demonstrate that after recovery from neonatal midbrain damage, 

ectopic visual inputs to the auditory pathway impair auditory function in several ways, providing 

a possible explanation for the deficits remaining after cochlear prostheses are provided to early-

deaf patients.  They may also provide insight into the phenomenon of tinnitus that can occur after 

hearing loss.  As in patients who can perceive their amputated limb after surgery, tinnitus 

patients may hear phantom tones or noise in a quiet environment (Jastreboff 1990). Tinnitus may 

be triggered or modulated by cross-modal somatosensory, somatomotor or visuomotor inputs 

(Cacace 2003). We show that many new multisensory neurons are created in XMAC, and that 

they can respond to optic nerve stimulation while simultaneously being tuned to particular sound 

frequencies.  These novel multisensory neurons provide a possible way to explain how visual 

activity may express itself as auditory stimulation, creating perceptual confusion and thus 

phantom sounds. These results suggest avenues for further study of tinnitus patients with 

peripheral auditory damage, and may also help to guide a general understanding of how 

maladaptive plasticity can occur after brain damage, interfering with rehabilitation. 
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b) Auditory tuning and tonotopy of multisensory neurons 

In addition to the classically multisensory brain areas such as the superior colliculus and anterior 

ectosylvian sulcus (AES) (Meredith and Stein 1983; Wallace et al. 1992), primary sensory 

cortices exhibit multisensory responses, although to a lesser extent (Ghazanfar and Schroeder 

2006; Schroeder et al. 2003; Wallace et al. 2004).  Experiments on normal ferrets show that 

multisensory neurons in primary auditory cortex have frequency tuning similar to that seen in 

auditory-only neurons (Bizley et al. 2007). Consistent with these results, we found that bisensory 

neurons in XMAC exhibited normal auditory characteristics. They were not only tuned to pure 

tones, but were arranged in tonotopic fashion.  This frequency selectivity and tonotopic 

arrangement of multisensory neurons in XMAC suggests that their dominant functions are 

auditory, even though they receive visual input. We also found that multisensory neurons in 

XMAC had longer response latencies to sound stimuli than multisensory neurons in normal AC.  

It is possible that auditory neurons receiving direct thalamocortical auditory input are less likely 

to receive cross-modal visual inputs than are auditory neurons receiving longer latency auditory 

inputs. The competition between afferents may push visual afferents to innervate neurons that 

receive corticocortical auditory connections, giving those neurons longer auditory latencies.  

c) Multipeaked auditory neurons appear in XM and blind-lesioned animals 

Most auditory neurons recorded in normal primary auditory cortex of ferrets are single-peaked 

with very narrow tuning curves (Kelly et al. 1986; Phillips et al. 1988). We observed some 

neurons in AC of XM animals and the blind-lesioned animals, but not in normal AC, that had 

more than one best frequency, creating multiple peaks in their tuning curves.  Unlike multipeak 

neurons reported by others in normal AC (Sutter and Schreiner 1991), the two peaks were 
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widespread in frequency, making it unlikely that unmasking of surround inhibition (Rajan 2001; 

1998) could provide an explanation.  Alternatively, residual auditory inputs from subcortical 

auditory nuclei may sprout and project to adjacent areas in MGN or auditory cortex. Whatever 

the explanation, the creation of multipeaked tuning curves in XMAC implies that auditory 

neurons in XMAC have lost considerable frequency specificity as a result of the loss of some 

auditory input and gain of visual input.  Our finding that tuning curves in XMAC were broader 

than those in normal AC supports this idea. 

d) Auditory tuning and tonotopy are largely normal in blind-lesioned animals 

Research on peripheral deafferentation in the somatosensory system (Kaas 1991; Merzenich et al. 

1983), auditory system (Irvine 2000), and visual system (Lund and Lund 1976) shows that 

sensory responsiveness can largely recover in the denervated areas. For example, in animals with 

partial cochlear lesions, an area of expanded representation corresponding to the lesion-edge 

frequencies is found in inferior colliculus (Harrison et al. 1998; Harrison et al. 1993; Irvine et al. 

2003), medial geniculate body (Kamke et al. 2003), and auditory cortex (Irvine et al. 2001; 

Kakigi et al. 2000; Rajan et al. 1993). In this study, we ablated the dorsal aspect of the inferior 

colliculi of neonatal ferrets (see Figure 1), which may have resulted in loss of sensory drive from 

low to mid-frequency channels (Merzenich and Reid 1974; Moore et al. 1983; Serviere et al. 

1984). We found that auditory tuning and tonotopy in the blind-lesioned animals were not 

significantly different from those in normal AC.  These results suggest that the auditory 

tonotopic map is compressed rather than incomplete after recovery from IC damage, as occurs in 

visual midbrain superior colliculi after neonatal damage (Finlay et al. 1979), and thus that the 

inferior colliculus has the potential to rearrange its connections when it is damaged. This may 
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have been facilitated by the late onset of hearing (about P30 in ferrets) (Moore and Hine 1992) 

and the fact that the auditory afferents reach the inferior colliculus but have not yet segregated 

into frequency bands at birth when lesions are made (Brunso-Bechtold and Henkel 2005; Henkel 

et al. 2007). 

 Overall, our results show that auditory function in the IC-lesioned, blind animals is 

largely recovered, independent of any contribution from the visual pathway. These results 

suggest that compensatory plasticity can substantially rebuild auditory function after 

deafferentation.  

e) Auditory tuning is improved in blind ferrets 

Many behavioral studies in humans and in animal models have demonstrated that perceptual 

ability in the spared sensory modality is improved after blindness or deafness (King and Parsons 

1999; Rauschecker and Korte 1993), perhaps as a result of cross-modal plasticity.  Auditory 

cortex in deaf humans is recruited during visual processing (Finney et al. 2001), and the cortical 

area activated by sound is expanded in blind humans (Elbert et al. 2002).  Auditory response 

thresholds are also reduced in the auditory cortex of the early blind, suggesting that their auditory 

processing is more efficient (Stevens and Weaver 2009). Auditory spatial tuning of neurons in 

the anterior ectosylvian cortical region of early-blind cats is sharpened (Korte and Rauschecker 

1993). Here we show that auditory tuning characteristics in primary auditory cortex of blind 

animals are improved compared to normal, perhaps leading to improved perceptual ability as 

seen in blind and deaf patients. Thus, cross-modal ferrets may be a useful animal model for study 

of sensory substitution after deafness. 
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In conclusion, these findings provide further evidence that although auditory cortex can 

recover from neonatal deafferentation in some respects, its function is impaired by ectopic cross-

modal visual inputs, suggesting that minimization of cross-modal activity may improve recovery.  

Understanding the mechanism that underlies the compromise of auditory function will be 

important for facilitating recovery from brain damage, sensory/motor deafferentation, and 

sensory dysfunction, and is the subject of a current study (Mao and Pallas 2011).  
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Table 3.1. The proportion of low-frequency neurons and residual midbrain volumes in lesioned 

animals. The midbrain volumes were normalized to average midbrain volumes of normal 

animals. IC represents inferior colliculus, SC represents superior colliculus. L- Represents left. 

R- Represents right. 
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 Low-frequency 
neuron (%) 

L-IC (%) R-IC (%) Ave IC (%) L-SC (%) 
Ave left 

midbrain (%) 

       

Xmodal 

08-240 12.5 0 12.66 6.33 38.19 19.10 

09-21 0 0 37.70 18.85 6.26 3.13 

08-201 0 0 34.69 17.34 5.44 2.72 

08-253 0 1.06 15.47 8.26 51.12 26.09 

09-191 3.86 5.62 23.59 14.61 11.48 8.55 

09-15 0 11.00 73.36 42.18 64.36 37.68 

11-01 12.5 35.96 46.29 41.12 19.84 27.90 

09-203 9.76 47.86 66.59 57.23 62.90 55.38 

09-172 33.33 51.38 26.95 39.17 23.79 37.58 

Average  24 ± 5.9  27± 6.0  17± 7.2 

       

Blind-Lesioned 

10-119 12.5 10.41 64.53 37.47 13.69 12.05 

11-36 8.70 15.90 30.07 22.99 11.87 13.89 

10-104 16.67 20.28 47.83 34.05 19.00 19.64 

10-98 45 29.20 11.10 20.15 39.98 34.59 

10-110 47.37 29.20 37.74 33.47 16.30 22.75 

10-116 8.7 47.54 37.01 42.27 10.50 29.02 

Average  22 ± 3.6  32± 3.5  25± 5.4 
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Figure 3.1.  Method for quantification of neuronal response type distribution in auditory cortex. 

Based on the location of ferret AC on the middle ectosylvian gyrus, we drew an equilateral 

triangle along the anterior and posterior suprasylvian sulcus and across the tip of the 

pseudosylvian sulcus (pss) (* indicates the tip of pss). An internally tangent circle was drawn. 

Two lines were drawn along the anterior and posterior arms of the suprasylvian sulcus to form 

angle A. The third line was drawn just above the tip of the pseudosylvian sulcus and 

perpendicular to the dividing line of angle A, creating angle B. The intersection of the third line 

and the bisecting line of angle A is defined as point 0 The arrowheads point to several neurons in 

lateral AC that responded with a long latency (>100 ms) to sound stimuli, reflecting their 

location outside of the primary auditory areas. Such neurons were excluded from analysis. R 

represents rostral, C represents caudal, M represents medial, L represents lateral. 
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Figure 3.2.  Assessment of midbrain damage. Dark areas represent the central nucleus of the 

inferior colliculus (ICc) (A, B) and the superficial layers of the superior colliculus (sSC) (C, D). 

A. An example of a series of sections through the normal IC. B. An example of a series of 

sections through the lesioned IC. C. An example of a series of sections through the superficial 

layers of normal SC. D. An example of a series of sections through the superficial layers of 

lesioned SC. The directional at bottom indicates dorsal (D), rostral (R) and left (L). The left side 

was oriented on the right in this figure in order to show rostral sections of ICc in the front after 

sectioning from caudal to rostral. In all panels several sections at 400 µm intervals are overlain. 
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Figure 3.3.  Statistical comparison of residual volume of inferior colliculi in Xmodal and blind-

lesioned animals. Data represent Mean ± S. E. M. 
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Figure 3.4. Examples of tuning curves of auditory and multisensory neurons. A. Tuning curves 

of auditory neurons in normal AC. The dashed lines represent frequencies at which neurons were 

divided into low-, mid-, and high-frequency bins. B. Tuning curves of auditory neurons in the 

AC of blind animals. C. Tuning curves of auditory neurons in the AC of blind-lesioned animals. 

D. Tuning curves of auditory neurons in the XMAC. E. Tuning curves of multisensory neurons 

in the XMAC. F. An example of a tuning curve from a No-BF auditory neuron. No BF auditory 

neurons respond to multiple pure tones but do not show any preference. G. An example of a 

tuning curve from a dual-peak auditory neuron.  Dual-peak auditory neurons have two best 

frequencies. 
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Figure 3.5. The response characteristics of neurons in Xmodal and control animals.  A. The 

proportion of non-responsive recording sites across groups. No significant difference was found 

despite comparable sampling densities and locations. B. Normalized thresholds of auditory 

responses across groups. C. Bandwidth of auditory responses across groups. D. Latencies of 

auditory responses across groups. Error bars show ± S.E.M..  *** indicates p<0.001, ** indicates 

p<0.01 * indicates p<0.05. 
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Figure 3.6. Reconstruction of locations of frequency-tuned neurons in normal AC. Each panel 

exhibits data from 1 animal (6 of 8 examples are shown). Each circle represents one auditory unit, 

and the numbers in the center indicate BFs, expressed in kHz. White circles represent high-

frequency neurons (responding to sound ≥12 kHz). Gray circles represent mid-frequency neurons 

(responding to sound ≥6 kHz and <12 kHz). Dark circles represent low-frequency neurons 

(responding to sound <6 kHz). X indicates a non-responsive site. Scale bar: 1 mm.  

 



108 

 

 

Figure 3.7. Reconstruction of locations of frequency-tuned auditory neurons in AC of Xmodal 

animals. Semitransparent circles represent multisensory neurons that were recorded at the same 

time. Each panel shows data from one animal (6 of 9 examples are shown). A-F. The panels are 

ordered from small residual left IC to large residual left IC. The insets show the volumes of 

residual midbrain from each animal. The Y axis represents the proportion of spared midbrain as a 

percent of the average volume of normal midbrains. The maximum is therefore 100%. Above the 

insets to the left is a section of IC and on the right is a section of SC from the same animal. The 
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dark areas in these insets represent the central nuclei of IC and the superficial layers of SC. 

Corresponding to these two figures, the four histogram bars on the X axis represent the residual 

volumes of left IC, right IC, left SC and right SC, from left to right.  
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Figure 3.8. Reconstruction of locations of frequency-tuned multisensory neurons in AC of 

Xmodal animals.  Semitransparent circles represent auditory neurons that were recorded in the 

same session.  Each panel exhibits data from 1 animal (6 of 8 examples are shown). A-F. The 

panels are ordered from small residual left IC to large residual left IC. The insets show the 

volumes of residual midbrain from each animal (conventions as in Fig. 3.7.).  
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Figure 3.9. Reconstruction of locations of frequency-tuned neurons in AC of blind-lesioned 

animals. Each panel shows data from 1 animal (6 of 6 examples are shown). (A-F) Animals are 

listed in order from small residual left IC to large residual left IC. Conventions as in Fig. 3.7.  

 

 

 



112 

 

 

Figure 3.10. Reconstruction of locations of frequency-tuned neurons in AC of three blind 

animals. Scale bar: 1 mm.  
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Figure 3.11. Distribution of frequency-tuned neurons in AC of ferrets using pooled data from 

each group. As in the micrographs, rostral is to the left and caudal to the right in these lateral 

views of the left AC.  Open circles represent the class of high-frequency neurons. Gray circles 

represent mid-frequency neurons. Dark circles represent low-frequency neurons. The insets show 

the geographic centers ± SE of the distribution of each frequency class. A. Distribution of 

auditory neurons pooled from 8 normal animals.  Note that high frequencies are represented 

medially, mid frequencies centrally, and low frequencies laterally. B. Distribution of 

multisensory neurons pooled from 8 normal animals. These neurons are tuned appropriately for 

their location within the tonotopic map of auditory-only neurons.  C. Distribution of auditory 

neurons pooled from 9 Xmodal animals. Note the lack of clear tonotopic order and the overlap in 

distribution centers in the inset.  D. Distribution of multisensory neurons pooled from 9 Xmodal 

animals.  E. Distribution of auditory neurons pooled from 3 blind animals. Tonotopy is normal. F. 

Distribution of auditory neurons pooled from 6 blind-lesioned animals.  Tonotopy is clear and 

the orientation of the map is normal.   
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Figure 3.12. The location of frequency-tuned neurons in the 5 groups. A. High-frequency 

neurons in Xmodal AC were located significantly more laterally than those in normal AC. B. 

The locations of mid-frequency neurons in the five groups were not significantly different from 

each other. C. Low-frequency neurons in Xmodal AC were located significantly more medially 

than those in normal AC. D. Low-, mid- and high-frequency auditory neurons in the XM group 

were located at similar mediolateral locations (gray circle), showing a marked reduction in 

tonotopy compared to that in the normal group.  Error bars show ± S.E.M..  ( * p<0.05; *** 

p<0.001) 
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Figure 3.13.  The proportion of frequency-tuned neurons in the 5 groups. A. The Y-axis 

represents the percentage of neurons tuned to high-frequency sounds. There was no significant 

difference in the proportion of high-frequency neurons between groups. B. There was no 

significant difference in the proportions of mid-frequency neurons between groups. C. The 

proportion of low-frequency neurons in the Aud-XM group was significantly lower than that in 

the normal group, but the proportion of low-frequency auditory and low-frequency multisensory 

neurons in the XM group considered together was not significantly different from that in the 

normal group .( ** p<0.01). Error bars show ± S.E.M..   
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CHAPTER 4   CROSS-MODAL PLASTICITY RESULTS IN INCREASED INHIBITION 
IN PRIMARY AUDITORY CORTICAL AREAS 
 
 
by  
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1. Abstract  

Sensory cortices can be reorganized after deafferentation resulting from peripheral organ damage, 

sensory deprivation, or brain damage.  In deaf or blind patients, cross-modal inputs from other 

sensory modalities invade and activate deafferented cortical areas.  This cross-modal plasticity 

can be maladaptive, impairing recovery of the original function during rehabilitation, but the 

mechanism by which the original function is impaired remains unknown. Previous studies on 

recovery within one sensory modality suggest that inhibition is decreased in sensory-deprived or 

deafferented animals.  We hypothesized that loss of inhibition may also be responsible for 

impaired recovery after cross-modal plasticity. Alternatively, inhibition may be increased to 

facilitate separate processing of the two modalities of information within one cortical area. We 

tested these hypotheses using ferrets in which retinal afferents had been induced at birth to 

innervate auditory thalamus, resulting in an auditory cortex in which visual and auditory inputs 

converge throughout postnatal development.  The contribution of inhibition to sensory responses 

was measured using iontophoretic application of the GABAA receptor antagonist gabazine during 

in vivo electrophysiological recordings with visual and auditory stimulation. We found that 

levels of inhibition in auditory cortex (AC) of cross-modal animals were increased above normal.  

Blocking inhibition resulted in greater increases in responsiveness to auditory stimuli in the 

cross-modal group than in the normal group.  In addition, tuning curves of auditory neurons in 

cross-modal AC broadened more than those in normal AC after removal of inhibition.  These 

results suggest that decreased inhibition is not responsible for the compromised auditory function 

after cross-modal invasion of visual inputs to AC.  We also found that blocking inhibition 

unmasked visual responses in some auditory neurons and auditory responses in some visual 

neurons of cross-modal AC, suggesting a role for inhibition in mutual suppression between 
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visual and auditory modalities. These results imply that increased inhibition may play a role in 

reorganizing sensory cortex after invasion by cross-modal inputs, causing it to represent visual 

and auditory stimuli in a way that impairs auditory function.  Overall, our research provides 

further evidence that inhibitory plasticity is an important factor in designing clinical strategies 

aimed at recovery after brain injury or sensory deprivation.  

2. Introduction 

Loss of sensory drive by sensory deprivation or sensory deafferentation can change 

responsiveness, sensory topography, and/or tuning characteristics in the affected sensory cortices. 

In animals deprived from birth, cortices and subcortical areas may fail to mature or maintain 

mature response properties, exhibiting unrefined receptive field and sensory tuning (Benevento 

et al. 1992; Blakemore and Price 1987; Carrasco and Pallas 2006; Carrasco et al. 2005; Imbert 

and Buisseret 1975). Loss of lateral inhibition is responsible for some aspects of deprivation-

induced reorganization (Carrasco et al. 2011; Chen et al. 2001; Morales et al. 2002). In 

deafferented animals, loss of peripheral sensory inputs can lead to an increase in responses to 

neighboring inputs as a result of decreased inhibition (Calford and Tweedale 1988; Canu et al. 

2006; Ralston et al. 1996). Although loss of inhibition is proposed as an underlying mechanism 

through which sensory deprivation and deafferentation have their effects, most studies have 

focused on a single sensory modality, overlooking the fact that loss of unisensory drive can result 

in changes in multiple modalities and in cross-modal plasticity. In deaf and blind patients who 

have lost sensory drive from early in life, it is common to observe enhanced abilities in the 

remaining senses. This enhancement results at least in part from recruitment of deafferented 

cortical areas by cross-modal inputs. This cross-modal plasticity provides novel inputs that can 
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induce both adaptive and maladaptive changes in the affected sensory areas. Our previous 

research has shown that primary auditory areas that are rewired with ectopic visual inputs 

(XMAC) retain tuning to sound frequency but the tonotopic map is disrupted and auditory tuning 

curves are broader than normal (Mao et al. 2011). Based on previous research on changes in 

inhibitory circuitry in sensory-deprived and -deafferented animals (Pallas 2010), we propose that 

inhibitory plasticity contributes to the degradation of auditory tuning and tonotopy in XMAC. 

Lateral inhibition may be decreased in order to compensate for the loss of sensory drive. 

Alternatively, inhibition may be increased, given that auditory cortex in the cross-modal animals 

manages both auditory and visual functions in the limited cortical area. To better process 

responses to different modalities, mutual inhibition may be required to suppress responses to the 

other modality. Here we tested these two hypotheses using electrophysiological and 

pharmacological methods. We found that the change in auditory responses after acute blockade 

of GABAA receptors was larger in the cross-modal group than in the normal group. Our results 

demonstrate that inhibition is increased in auditory cortex after deafferentation and subsequent 

invasion by ectopic visual inputs.  We also found that blocking inhibition could unmask visual 

and auditory responses in auditory cortex, suggesting that subthreshold auditory and visual 

responses are suppressed by strong inhibition. Multisensory integration, however, could not be 

revealed by removal of inhibition. Our results provide important insight into maladaptive 

changes that can be associated with cross-modal plasticity and can guide further study on 

designing rehabilitative strategies in the context of compensatory plasticity during recovery from 

brain damage. 
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3. Materials and methods   

a) Animals 

In total, 12 adult pigmented ferrets (Mustela putorius furo) were either purchased from Marshall 

Farms (North Rose, NY) or bred in house. Non-lactating adults were fed Marshall Farms ferret 

diet and kept on a 12/12 light/dark cycle.  Seven ferrets were assigned to the normal group and 

the other 5 underwent neonatal surgery. All animal protocols were approved by the Institutional 

Animal Care and Use Committee (IACUC) at Georgia State University and met or exceeded 

standards of care established by the USDA and the Society for Neuroscience.   

b) Neonatal surgery 

Surgical procedures were similar to those described previously (Mao et al. 2011; Pallas et al. 

1999). Under sterile conditions, ferret kits were deeply anesthetized by isoflurane (1-4% prn) 

within 24 hr of birth.  After the brain was exposed, the left superficial layer of the superior 

colliculus (sSC) and the central nucleus of the inferior colliculi (ICc) on both sides were 

cauterized. The brachium of the left inferior colliculus was sectioned. The incision was closed by 

surgical adhesive (VetBond, 3M, St. Paul, MN). The kits recovered from anesthesia on a heating 

pad. Subcutaneous fluids and a respiratory stimulant (doxapram, 2 mg/kg, SQ) were given to 

help them recover. Analgesics (buprenorphine 0.01 mg/kg bid) were given if warranted to 

prevent postoperative pain.   

c) Preparation for adult electrophysiology 

Adult animals were prepared for terminal electrophysiology recording as described previously 

(Mao et al, 2011). The ear canal of each ferret was examined before surgery with an otoscope. 
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Animals were given atropine (0.4 mg/kg SQ) and doxapram (2 mg/kg, SQ) before anesthesia to 

counteract bradycardia and to reduce mucosal secretions. Anesthesia was induced by 

intramuscular injection of ketamine (40 mg/kg, IM) and diazepam (2 mg/kg, IM).  

Dexamethasone (1mg/kg, IM) was given every 24 hr to prevent cerebral edema. After the 

cephalic or femoral vein was cannulated, anesthesia was maintained by a continuous infusion (2-

5 ml/hr, IV) of a mixture of dexmedetomidine (0.022 mg/kg/hr) and ketamine (5 mg/kg/hr) in 

lactated Ringer’s with 5% dextrose (Bizley and King 2008; Bizley et al. 2005). Atropine (0.4 

mg/kg, SQ) was given as necessary to counteract the bradycardia caused by dexmedetomidine. A 

tracheotomy was performed for artificial ventilation (SAR 830/P ventilator, CWE Inc, Ardmore, 

PA). Body temperature was maintained at 38º C with a heating pad. Vital signs including EKG, 

respiration rate, muscle tone, withdrawal reflexes, and end-tidal CO2 were monitored during the 

entire process. Eyes were kept moist with commercial artificial tears solution. Animals were 

placed in a stereotaxic device to stabilize the head. After the skin on the top of head was incised 

by a scalpel, the temporal muscles were retracted bilaterally from the skull. Two burr holes (at 

coordinates A5.5 ±L1.5) were drilled for optic chiasm recording/stimulation electrodes. Saline 

was added around the drilling area frequently to prevent overheating. Two tungsten rods with 

Teflon insulation (0.008 inch bare, 0.011inch coated, A-M systems, Inc., Carlsborg, WA) were 

lowered to a depth (8~10 mm) that yielded strong visual responses to a strobe light. The tungsten 

rods were connected to a preamplifier and then switched to connect to a stimulus isolation unit 

(BAK Electronics, Mount Airy, MD).  A 0.8~1.0 cm diameter craniotomy was drilled over the 

left auditory cortex. The dura was removed and auditory cortex was covered with sterile saline. 

A metal bar was cemented on the contralateral (right) side of the skull to stabilize the head.  The 

right ear bar was then released to allow access for auditory stimulation.  
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d) Acoustic stimuli and visual stimuli 

Acoustic stimuli were generated by TDT system III hard- and software (Tucker-Davis 

Technologies, Alachua, FL). A calibrated earphone (ER-2 insert earphone, Etymotic Research, 

IL) was placed in the pinna at the entrance to the right ear canal. All auditory stimuli were given 

contralaterally. White noise bursts (5 ms ramp, 40-100 ms duration, 80 dB SPL) were used to 

search for sound-responsive units. After a responsive neuron was found, pure tones were given in 

a pseudorandom order ranging in 2 kHz steps from 2 kHz to 18 kHz or ranging in half octave 

steps from 500 Hz to 16 kHz with intensity of 30 to 80 dB SPL (50 ms duration, 5 ms ramp).  

Bipolar electrical stimulation of the optic chiasm was applied (single pulses at 0.5-1 mA, 60 µs 

duration) to test whether the units were multisensory neurons. Light stimuli were presented on a 

computer screen ~40 cm from the eyes. Moving bars, gratings and flashes were used to elicit 

responses. After a visual neuron was found, the computer screen was moved to a location and 

height that aligned the center of the visual receptive field approximately at the center of the 

screen.  

e) Multibarrel electrodes for recording and iontophoresis. 

Three-barrel glass micropipettes (A-M systems Inc., Sequim, WA) were used to record evoked 

activity and for application of drugs. The multibarrel electrodes were pulled by a vertical puller 

(Kopf vertical pipette puller 720, David Kopf Instruments, Tujunga, CA). The tip diameter was 

observed under a microscope before recording. Any electrodes with a tip bigger than 15 µm were 

discarded. The recording barrel was filled with 3 M NaCl. A silver wire was inserted into the 

recording barrel to connect it with the preamplifer. Another two barrels were used as 

ionotophoresis barrels. Another barrel was filled with 3 mM gabazine (pH 3.0). The 
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ionotophoresis barrels were connected to the headstage of a three-channel ionotophoresis device 

(Cygnus Technology, Inc, Delaware Water Gap, PA) via silver wire. The headstage and the 

preamplifer were grounded together to the skin, which served as the ground for the entire 

recording apparatus.  A retaining current (-10 nA) was applied in each barrel to prevent drug 

leakage. Ejecting currents were +5 ~ +10 nA. Application of drugs was maintained throughout 

the testing period. Typically it took 5 min for running a series of different sound frequencies for 

testing.  

  The electrode was advanced under the pial surface in 5 µm steps up to 2000 µm by a 

hydraulic microdrive (Kopf Instruments, Tujunga, CA).  For each penetration, the first stable 

unit that was encountered was isolated and characterized. Only one recording was taken in each 

penetration so as to maximize sampling area. Penetrations were limited to primary auditory 

cortex (AI) and anterior auditory field (AAF) (Bizley et al. 2005; Mao et al. 2011). In order to 

avoid potential diffusion of iontophoretic drugs, penetration sites were at least ~400 µm apart. 

Neural responses were amplified (x10000, BAK Electronics, Inc, Mount Airy, MD), bandpass 

filtered (500 Hz to 5 kHz), and monitored on a digital oscilloscope (Hameg Instruments, 

Mainhausen, Germany). Responses to 5-10 stimulus presentations were collected from each 

recording site and digitized at 25 kHz (Brainware software, Tucker-Davis Technologies Inc., 

Alachua, FL). The evoked responses were averaged and normalized to a sample of spontaneous 

activity recorded for 50 ms before each trial.  The recording continued for 1-2 days, after which 

the animal was deeply anesthetized (65 mg/kg, IP) for perfusion and the brain was extracted for 

histological examination.  
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f) Electrophysiological data analysis 

 After recording, spike sorting was performed by Brainware software (Tucker-Davis 

Technologies Inc., Alachua, FL). Single units were isolated according to their waveform, 

amplitude, and width.  For each isolated single unit, the response threshold was defined as the 

minimum sound intensity that could elicit responses at least 20% above the mean spontaneous 

firing rate (Bizley et al. 2005; Sutter and Schreiner 1991). The boundary of each frequency 

tuning curve was defined as the stimuli (intensity and frequency) that yielded excitatory 

responses at 20% above background (Moore et al. 1983; Sutter and Schreiner 1991). The best 

frequency (BF) of each unit was defined as the frequency at which responses are elicited at the 

lowest sound level. Bandwidth was determined as the width of the tuning curve at 10 dB above 

the minimum threshold. Multisensory units were defined either as neurons that responded both to 

visual and auditory stimuli or as neurons that only responded to one modality but could be 

significantly modulated by stimulation with the other modality (Stein and Meredith 1993). 

Statistical significance between groups was determined by comparing the number of spikes per 

trial in response to both stimulus modalities, using Student’s t-test (significance at p<0.05).   

g) Statistical analysis 

Statistical comparisons were performed using Sigmastat software (Systat Software Inc, Chicago, 

IL) and PASW statistic 18 (SPSS Inc, Chicago, IL) and plotted with Sigmaplot software (Systat 

Software Inc, Chicago, IL). For within group comparison, paired-t tests were used for normally 

distributed data, whereas Wilcoxon rank-sum tests were used for non-normally distributed data. 

For between group comparisons, Student-t tests were used for normally distributed data and 
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Mann-Whitney U tests were used for non-normally distributed data. Means are given with 

standard errors of the mean (± SEM) throughout.  

4. Results 

Previous studies in our lab demonstrated that auditory function is impaired in XMAC, with 

broader tuning and less organized tonotopy than in normal animals. Here we investigated the 

mechanism underlying this auditory impairment. We hypothesized that weaker inhibition is the 

cause of the wider tuning in XMAC than in normal AC. Forty-one auditory neurons from 7 

normal animals and 55 auditory neurons, 9 visual neurons, and 24 multisensory neurons from 5 

Xmodal animals were recorded for the iontophoresis experiments.  

a) Gabazine increases responsiveness to auditory stimulation 

In order to test the hypothesis that inhibition contributes to the auditory impairment in XMAC, 

we examined the effect of gabazine, a GABAA receptor antagonist, on evoked responses to 

auditory stimulation. Figure 4.1 shows the post stimulus time histogram (PSTH) of the 

responses of a single unit in AC from each group. Stimuli started 50 ms after data acquisition 

(Fig 4.1A, D) so that a baseline firing level could be determined. As expected for a GABAA 

receptor antagonist, gabazine application led to an increase in spike numbers (Fig 4.1B, E), 

which returned to normal after 30 minutes (Fig 4.1C, F). In contrast, injection of a GABAA 

receptor agonist or an NMDA receptor antagonist decreased responsiveness to auditory stimuli 

(not shown).  

b) GABAA receptor blockade had a greater effect on auditory tuning in XMAC than in 

normal AC  
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We hypothesized that loss of inhibition is responsible for the wider frequency tuning in XMAC 

than in normal AC that was reported in our previous study (Mao et al., 2011). To test the 

hypothesis, we compared the frequency tuning selectivity (bandwidth) and threshold of auditory 

responses in normal AC and XMAC.  One example from each group is shown in Fig 4.2.  

Although no change in best frequency was observed, we found that the average thresholds of 

auditory neurons in normal animals decreased significantly after blocking inhibition by gabazine 

application, from 51±1.5 dB to 49±1.5 dB (n=41, p=0.03, Wilcoxon rank-sum test, Fig 4.3A ). 

The thresholds of auditory neurons in XMAC were also significantly decreased by gabazine 

application, from 58±1.5 to 53±1.7 dB (n=55, p<0.001, Wilcoxon rank-sum test, Fig 4.3A). 

There was no significant difference in the average decrease in threshold between these two 

groups (normal AC -2.7±0.9 dB, XMAC -5.3±1.0; p=0.1, Mann-Whitney U test, Fig 4. 3B).  

Blockade of inhibition by gabazine also significantly broadened the bandwidth of the tuning 

curves in both the normal group (from 0.74±0.1 to 0.96±0.1 octaves at 10 dB above threshold; 

n=41, p<0.001, Wilcoxon rank-sum test, Fig 4.3C) and the XM group (from 1.2±0.1 to 1.7± 0.1 

octaves; n=55, p<0.001, Wilcoxon rank-sum test, Fig 4.3C). This increase in bandwidth was 

significantly greater in the XM group than in the normal group (normal: 0.2±0.06 vs. XM: 

0.5±0.1, p<0.05, Mann-Whitney U test, Fig 4. 3D). Thus, contrary to our hypothesis, this result 

suggests that auditory stimulation evoked stronger inhibition in XMAC than in normal AC.  

c) GABAA receptor blockade had a greater effect on responsiveness to sound in XMAC 

than in normal AC 

We hypothesized that inhibition is changed in XMAC after invasion by visual inputs. In order to 

test this hypothesis, we compared the spontaneous activity levels in normal AC and XMAC. 
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Although blockade of GABAA receptors by gabazine increased spontaneous activity significantly 

both in normal AC and in XMAC (normal before gabazine: 2.55±0.3 spikes per trial vs. normal 

after gabazine: 3.77±0.5, p<0.001; XM before: 1.73±0.2 vs. XM after: 2.7±0.3, p<0.001; 

Wilcoxon rank-sum test, Fig 4.4A), the increase in spontaneous activity was not significantly 

different between these two groups (normal: 63.83±11.5% vs. Xmodal: 90.62±16.0%, p>0.05, 

Mann-Whitney U test, Fig 4. 4B).  We also measured the strength of auditory responses before 

and after blocking inhibition. The evoked responses were normalized to the mean level of 

spontaneous activity during the 50 msec before each trial. We found that blockade of GABAA 

receptors by gabazine increased the mean number of spikes per trial significantly in both normal 

AC (from 4.88±0.5 to 6.95±0.7 spikes, normal before vs. normal after, Wilcoxon rank-sum test, 

p<0.001, n = 41, Fig 4. 4C) and XMAC (from 5.53±0.7 to 8.28±0.6 spikes , Xmodal before vs. 

after, p<0.001; Wilcoxon rank-sum test, n = 55, Fig 4. 4C). This represents a proportionally 

greater increase in spike number per stimulus in the XM group (88.28±14.1%, n=55, than that 

seen in the normal group (48.39±7.7 % (n = 41), p<0.05, Mann-Whitney U test, Fig 4.4D).  

Consistent with the significantly greater change in threshold and bandwidth in the XM compared 

to the normal group, these results further suggest that auditory neurons in XMAC receive 

stronger inhibition than neurons in normal AC.  

d) GABAA receptor blockade unmasks visual responses  

Our finding that inhibition is stronger in XMAC than in normal AC suggests that auditory and 

visual responses may inhibit each other in order to perform different functions within the same 

cortical area. To test this hypothesis, we assayed bisensory responsiveness before and after 

blockade of inhibition by gabazine. We found no auditory neurons in normal AC began to 
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respond to optic chiasm stimulation but  25.5% of the auditory neurons in XMAC (14 out of 55 

neurons from 5 animals) began to respond to electrical stimulation of the optic chiasm after 

blocking inhibition (Fig 4.5A, B) The responses to optic chiasm stimulation were strong, 

although none of the neurons responded to light stimulation, perhaps due to insufficient drive 

from the retina to MGN even with unmasking. In normal multisensory cortex or subcortical areas, 

multisensory neurons show facilitation or depression to multisensory cues, however, no 

integration of bisensory stimuli was observed in these neurons (Fig 4.5D). 

e) GABAA receptor blockade does not unmask light responses or cross-modal facilitation in 

multisensory neurons.  

We reported previously that XMAC contains more multisensory neurons than normal AC (Mao 

et al. 2011), we observed that the majority of multisensory neurons in XMAC did not exhibit 

integration with bisensory stimuli. In this study, only 8.3% of the recorded multisensory neurons 

from 5 animals (2 out of 24) showed integration. We reasoned that the lack of integration in 

XMAC could be caused by GABAergic suppression of the opposing modality. If so, then 

blockade of inhibition should release facilitation or suppression. We were able to conduct a 

complete iontophoresis battery from 8 multisensory neurons from these 5 Xmodal animals. 

Contrary to our hypothesis, none of them showed integration either before or after blockade of 

inhibition. Before blockade of GABAA receptors, these neurons responded to both sound and 

optic chiasm stimulation (AOX; Fig 4.6A) but none of them showed either facilitation or 

depression when both stimuli were given (p>0.05, t-test, Fig 4.6C). After blockade of inhibition, 

we still did not observe any significant facilitation or depression of responses by bisensory 

stimulation (Fig 4.6B, D) (p>0.05, t-test). Furthermore, we did not find any multisensory neurons 
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originally responding to both auditory and optic chiasm stimulation that started to respond to 

light after removal of inhibition (Fig 4.6B). These results suggest that inhibition may not 

contribute to multisensory integration in XMAC.  

In contrast to the significant increase in auditory response levels that were seen after 

gabazine application, we found that optic chiasm response levels did not increase significantly 

after GABAA receptors blockade (p>0.05, paired-t test, Fig 4.7). The mean spike numbers during 

optic chiasm stimulation before gabazine application (2.3±0.5 per trial) were not significantly 

different from those seen after gabazine application (3.85±0.6, n=8, p>0.05, paired t-test). These 

results suggest that inhibition of ectopic visual inputs to XMAC may have been decreased during 

recovery from neonatal brain lesion in order to create multisensory neurons that can respond to 

the other modality.  If so, then application of gabazine would be expected to have little effect on 

visual responses. Although we cannot completely rule out the possibility that electrical activation 

of optic chiasm is such a strong stimulus that the OX responses are saturated, the mean spike 

numbers/trial for OX responses were generally less than the mean spike numbers /trial for 

auditory responses. Furthermore, we also tried to reduce optic chiasm stimulation current during 

multisensory recording but no integration was found (data are not shown). 

f) Neurons in which gabazine unmasked visual responses were spatially intermixed with 

auditory and multisensory neurons in XMAC 

We reported in previous research that auditory, visual, and multisensory neurons in XMAC are 

not segregated from each other (Mao et al. 2011). The finding of inhibition-masked visual 

responses in XMAC raised an interesting question concerning their distribution. To determine 

whether neurons that exhibited unmasking of bisensory capability were a spatially separate 
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population, we mapped the neuronal responses in XMAC. We found that auditory neurons that 

responded to optic chiasm stimuli after but not before blockade of inhibition were located 

randomly in XMAC (half white circles, Fig. 4.8), and not selectively in one area. They were 

found surrounded by or adjacent to either auditory or multisensory neurons (white and black 

circles, respectively, Fig 4.8). These results show that neurons exhibiting unmasking of bisensory 

responses were neither segregated nor clustered in their distribution. 

5. Discussion 

We found that neurons in auditory cortex rewired at birth with ectopic visual inputs (XMAC) 

received stronger inhibition than normal auditory cortex. This result implies that the broadened 

auditory tuning found in XMAC does not result from decreased inhibition.  The increased 

inhibition in XMAC may be involved in cortical reorganization.  Blockade of inhibition 

unmasked responses to the other modality in some neurons. These findings argue that inhibition 

plays a role in suppressing responses to the opposing modality during unisensory stimulation. 

These results provide important information for rehabilitation from sensory dysfunction, 

particularly when cross-modal plasticity occurs.  

a) Contribution of GABAergic inhibition to auditory impairment in XMAC 

After loss of inputs due to IC damage, we expected that inhibition in the affected brain regions 

would be decreased, as seen in other studies of deafferented sensory cortex. In somatosensory 

cortex, deafferentation induces an expansion of adjacent inputs into the affected area of the 

cortex ( Kaas et al. 1983; Merzenich et al. 1983b; Wall et al. 1983). This reorganization results 

from removal of inhibition (Calford and Tweedale 1988; Canu et al. 2006; Ralston et al. 1996). 

In the visual system, visual deprivation leads to broader visual tuning and larger receptive fields 
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in both cortical and subcortical areas (Carrasco et al. 2005; Imbert and Buisseret 1975).  This 

change is caused at least in part by loss of inhibition (Benevento et al. 1992; Carrasco et al. 

2011). In the auditory system, deaf animals exhibit a decrease in chloride conductance during 

IPSCs (Vale and Sanes 2002) and express reduced levels of GABA in inferior colliculus 

(Bledsoe et al. 1995). These studies suggest that inhibition is homeostatically decreased in 

deprived and deafferented animals to compensate for the loss of sensory drive (Turrigiano 2012). 

Other investigators report that inhibition need not change at the neurotransmitter level or 

may change transiently. For example, in the olfactory system, deafferentation did not reduce 

GAD, the synthetic enzyme for GABA expression in the olfactory bulb (Parrish-Aungst et al. 

2011). Similar results were found in visual cortex of dark-reared animals (Bear et al. 1985). In 

addition to GAD, the expression of GABA has also been reported to remain at normal levels in 

visual cortex of deafferented cats (Rosier et al. 1995). In other cases, the expression of GABA 

and the number of GABAergic neurons was reduced one week after sensory deafferentation but 

recovered to normal levels within a month, suggesting that the change in inhibition is transient 

(Wang et al. 2007). Our results showed that inhibition was increased in the auditory cortex of 

cross-modal animals. These findings suggest either that an initial loss of inhibition is transient or 

that there is no decrease in inhibition during recovery from sensory deafferentation in the cross-

modal AC. Our recordings were all done in adults, thus we cannot currently distinguish between 

these possibilities. The impaired auditory function in the XMAC, therefore, does not result from 

a lasting loss of inhibition as we initially predicted. Alternatively or additionally, sprouting of 

residual auditory inputs to the cortex could contribute to the broader tuning seen in auditory 

neurons within XMAC, whereas a reduction in excitatory auditory inputs in XMAC is a possible 

explanation for the higher auditory thresholds.    
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In contrast to studies reporting deprivation-induced loss of inhibition as discussed above, 

other studies reported a compensatory increase in inhibition during recovery from sensory loss. 

In visual cortex, inputs from the two eyes compete for cortical territory, creating ocular 

dominance columns (Kratz and Spear 1976; Shatz and Stryker 1978; Stryker 1978). Monocular 

visual deprivation leads to a loss of visual responsiveness to the deprived eye (Rauschecker and 

Singer 1981). This decreased responsiveness may be caused in part by an increase in local 

inhibition (Maffei et al. 2006) as well as by LTD (Kirkwood et al. 1996). GABA receptor 

blockade can rescue the cortical responses to the deprived eye (Burchfiel and Duffy 1981; 

Ramoa et al. 1988), supporting the hypothesis that an increase in inhibition may be responsible 

for the competition for territory. In a previous study, we found that auditory and visual inputs 

compete for space in cross-modal AC (Mao et al. 2011). Here we provide information about the 

mechanism by which inputs from different modalities compete with each other. We not only 

found that inhibition was increased in cross-modal AC, but also that auditory responses could be 

unmasked after blockade of GABAA receptors, suggesting that inhibition is involved in the 

processing of both modalities within the same brain area. 

b) Multisensory processing in primary sensory areas. 

Multisensory neurons were first reported in the superior colliculus, and were defined as 

neurons that respond to multiple modalities and can be either facilitated or suppressed by 

bisensory or trisensory stimuli (Meredith and Stein 1983; 1986). Later research reported 

multisensory cortical neurons that only responded to one modality under normal conditions but 

could be modulated when more than one modality of stimulation was given (Allman et al. 2009b; 

Allman and Meredith 2007; Meredith and Allman 2009). Several recent studies have now 
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demonstrated multisensory responses in primary sensory areas (e.g. Bizley and King 2009; 

Bizley et al. 2007; Falchier et al. 2002), arguing that primary sensory cortex is not “primary” in 

the sense of receiving only unimodal thalamic input (Ghazanfar and Schroeder 2006).  

Multisensory integration includes either facilitation or suppression of responses to multisensory 

stimuli, but some subthreshold multisensory responses are masked by inhibition and thus lack 

integration (Allman et al. 2008). Here we found subthreshold multisensory responses that could 

be unmasked by blockade of inhibition, but no integration was revealed, either as subthreshold or 

superthreshold multisensory responses. Multisensory integration is strongest when the single-

modality stimuli are weakest for the recorded neuron (Stein and Meredith, 1993), but 

multisensory response magnitudes were generally consistent with  linear summation of modality-

specific influences (Stanford et al, 2005). Therefore, it is unlikely that the lack of integration 

between modalities in multisensory neurons from XMAC is caused by saturation of responses to 

single-modality.  Our data also showed that inhibition could not contribute to multisensory 

integration in primary auditory areas, regardless of the existence of both super- and sub-threshold 

multisensory responses. These results emphasize the special role of primary auditory areas in 

sensory perception and behavior of both normal and cross-modal animals. When responses to 

multiple modalities are forced to co-exist in XMAC, multisensory integration would likely 

interfere with rather than improve sensory perception, especially for multisensory neurons that 

are tuned to pure tones. These findings reveal that convergence of inputs to one limited area 

could create neurons responding to different modalities but multisensory integration may be 

suppressed in order to optimize overall sensory processing. 
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c) Possible mechanism of impaired auditory tuning.  

Although the tonotopic organization from cochlea to cortex has been considered a basic trait of 

auditory systems for decades (Kelly et al. 1986; Phillips et al. 1988; Reale and Imig 1980; Winer 

et al. 2001), recent studies have challenged this classical view (Bandyopadhyay et al. 2010; 

Rothschild et al. 2010). Using two-photon imaging, tonotopic maps were seen on a large scale 

but not on a fine scale in mouse primary auditory cortex. It was argued that this fractured 

tonotopy might be caused by local intracortical inhibition, because of the subthreshold auditory 

responses exhibited in topographic clusters. We found orderly tonotopic mapping in auditory 

cortex of normal ferrets as others have reported (Kelly et al. 1986; Phillips et al. 1988), but not in 

auditory cortex of XM animals (Mao et al. 2011). Analogous to Bandyopadhyay and 

Rothschild’s results, the fractured auditory map in XMAC might be caused by increased 

inhibition. I hypothesized that when auditory tuning is refined during development by inhibition, 

the best frequency of auditory neurons may be more sharply defined and auditory tonotopy 

would be better organized. Although blockade of GABAA receptors did not change the BF of 

auditory neurons nor rescue an ordered tonotopy, we did find an increased level of inhibition in 

XMAC that suppresses responses to the other modality.  Bandyopadhyay and colleagues suggest 

that the fractured, suprathreshold map may result from parallel processing streams for different 

input features, as in cerebellar structures (Gonzalez et al. 1993; Shumway et al. 2005). We 

therefore propose that the disrupted tonotopy in the XMAC might be caused by invasion of 

visual inputs that were used for different tasks via strong inhibition.  

The reason for our finding that loss of inhibition is not responsible for broader than 

normal tuning in XMAC may rely on the role of lateral inhibition in refinement of auditory 
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tuning curves. Local inhibition has been shown to shape sound frequency tuning in auditory 

cortex (Chen and Jen 2000; Jen and Zhang 2000; Sutter et al. 1999; Wang et al. 2000), but in 

vivo intracellular recordings of ipsps and epsps have shown that inhibitory inputs exhibit the 

same broad tuning as excitatory inputs (Tan et al. 2004; Wehr and Zador 2003; Zhang et al. 2003; 

but see Dorrn et al), arguing that the tuning of the excitatory component is sufficient to build up 

a tuning curve for an auditory neuron.  Although later studies found that inhibitory neurons in 

auditory cortex have broader tuning than excitatory neurons (Wu et al. 2008), excitatory inputs 

but not these broadly-tuned inhibitory inputs are refined during development (Sun et al. 2010). 

These studies further support the idea that refinement of auditory receptive fields relies more on 

the maturation of excitatory than inhibitory inputs. Here we found that inhibition was increased 

in XMAC after recovery from neonatal midbrain lesions, despite the fact that auditory tuning 

was broader in XMAC than in normal AC. Because refinement of auditory receptive fields could 

depend on narrowing of the axonal projections from excitatory thalamocortical inputs, the 

widened auditory tuning in XMAC may result from sprouting of auditory thalamocortical 

afferents after lesion of the inferior colliculi rather than from a decrease in lateral inhibition.  Our 

data support the hypothesis that the sharpness of auditory tuning relies more on excitatory inputs 

than on lateral inhibition.   

Overall, our results provide importance evidence that an increase in inhibition contributes 

to cross-modal reorganization of cortical areas after recovery from neonatal deafferentation. 

These findings can help further study on the design of rehabilitative strategies for patients who 

have brain damage, sensory/motor dysfunction or sensory deprivation. 
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Figure 4.1. Effects of the GABAA receptor antagonist gabazine on evoked responses to sound. 

A-C. PSTH of the responses of a single unit to a pure tone at its BF in a normal animal, before, 

during, and after the gabazine application. D-F, PSTH of the responses of a single unit to a pure 

tone at its BF in a cross-modal animal. ‘A’ represents auditory stimulation. The duration of each 

auditory stimulus was 100 ms.   
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Figure 4.2. Two examples of the effect of gabazine on sound frequency tuning. A. Blockade of 

inhibition by gabazine decreased the sharpness of auditory tuning curves in normal AC. B. 

Blockade of inhibition by gabazine decreased the sharpness and the threshold of auditory tuning 

curves in XMAC. 
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Figure 4.3. The effects of gabazine on thresholds and bandwidths of auditory tuning curves in 

the population of normal and XM neurons. A. A. Blockade of inhibition by gabazine decreased 

thresholds in both normal and Xmodal groups. B.The threshold changes in the Xmodal group 

were not significantly different from those in the normal group. C. Blockade of inhibition by 

gabazine increased bandwidths in both normal and Xmodal groups. D. The changes in bandwidth 
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in the Xmodal group were significantly larger than those of the normal group. * p< 0.05; 

**p<0.01; *** p< 0.001; NS: no significant difference. Data in A and C show Mean ± S.E.M. 

Data in B and D show Median ± S.D.  
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Figure 4.4. The effects of gabazine on spontaneous activity and auditory responsiveness. A. 

Blockade of inhibition by gabazine increased spontaneous activity in both normal and Xmodal 

groups. B. Spontaneous activity did not change significantly after gabazine administration in the 

Xmodal group compared to the normal group. C. Blockade of inhibition by gabazine increased 

mean spike numbers per trail in both normal and Xmodal groups.  D. The changes in 
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responsiveness to sound stimuli after gabazine administration in the Xmodal group were 

significantly larger than those in the normal group.* p< 0.05; *** p<0.001. NS: no significant 

difference. Data in A and C show Mean ± S.E.M. Data in B and D. show Median ± S.D. 
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Figure 4.5. One example of auditory neuron responses to bisensory stimuli before and after 

blocking inhibition. A. Before gabazine application, this neuron responded to auditory but not to 

optic chiasm stimulation. B. After gabazine application, it responded to both auditory and optic 

chiasm stimulation. C. The mean spike numbers per trial before blockade of inhibition. D. The 

mean spike numbers per trial after blockade of inhibition. Neither facilitation nor depression was 

found when auditory and optic chiasm stimuli (AOX) were given simultaneously. Note that the 

neuron began to respond to OX stimulation only after blockade of inhibition.  
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Figure 4.6. One example of the response of multisensory neurons to auditory and optic chiasm 

stimuli before and after blockade of inhibition by gabazine. A. Before gabazine application, this 

neuron responded to both auditory and optic chiasm stimuli but not to light stimuli. B. The 

response type was not changed by gabazine application. C. The mean spike numbers per trial 

before blockade of inhibition. Neither facilitation nor depression was found when auditory and 

optic chiasm stimuli (AOX) were given together. D. The mean spike numbers per trial after 

blockade of inhibition. Neither facilitation nor depression was found when bimodal stimuli were 

given. Note that responses to auditory stimuli but not to OX stimuli were increased after 

gabazine application.  Other conventions as in Figure 4.5. 
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Figure 4.7. The comparison of mean spike numbers from responses to optic chiasm stimulation 

before and after gabazine application. No significant difference was found (Error bars show ± 

S.E.M, p>0.05, paired t-test). 
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Figure 4.8. The distribution of neuronal response types before and after application of gabazine. 

Each figure represents data from one animal. Two examples are shown. A indicates auditory 

stimulation. OX indicates optic chiasm stimulation. The + symbols in the legend represent 

neurons that were responsive to that modality, whereas – symbols represent neurons that were 

not responsive to that modality. Unmasked visual responses were intermixed with auditory and 

multisensory neurons. X indicates a non-responsive recording site. Scale bar: 1 mm.  Arrows at 

lower right show orientation.  M, medial, L, lateral, R, rostral, C, caudal. 
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CHAPTER 5 DISCUSSION 

Our results demonstrate that the auditory cortex can be reorganized to manage multiple functions 

after recovery from damage to input pathways. Although invasion by ectopic visual inputs did 

not create segregation of auditory and visual neurons, cross-modal visual inputs compromised 

auditory function with respect to sensitivity, tuning, and topography. Inhibition in the auditory 

cortex was increased, and blockade of inhibition unmasked multisensory responses. Our findings 

provide important information regarding maladaptive plasticity during compensation for loss of 

brain functions. These results can provide guidance for designing rehabilitative strategies for 

brain damage and sensory/motor dysfunction. 

1. Competition (fire together, wire together) 

Hebbian plasticity plays an important role in cortical development and cortical reorganization. 

60 years ago, the psychologist Donald Hebb introduced the idea that any two cells increase the 

strength of their connectivity when they are repeatedly active together (Hebb 1949). This 

Hebbian rule has shaped thinking in the field of synaptic plasticity for many years.  According to 

Hebbian rules, strong communication between cells can stabilize their contacts. During brain 

development, neuronal networks start with broad, exuberant connections and become more 

refined and narrow with time, largely as a result of their patterns of activity. This process occurs 

in learning and memory, maturation of sensory systems, and recovery from brain damage. In 

learning and memory, long-term potentiation enhances synaptic strength by high frequency 

stimulation of presynaptic axons or neurons (Bliss and Lømo 1973). During maturation of the 

visual cortex, competition between the two eyes results in segregation of their cortical territory 

into ocular dominance columns, whereas monocular deprivation causes loss of territory by the 

deprived eye (Guillery and Kaas 1974; Kratz and Spear 1976; Shatz and Stryker 1978; Stryker 
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1978). The refinement of sensory receptive fields is also activity-dependent (Kratz and Spear 

1976). During recovery from early brain damage, activity can stabilize neuronal connections that 

might have been eliminated during normal development, in order to compensate for  the loss of 

inputs (Kerr et al. 2011; Lund and Lund 1976). Because compensation may involve multiple 

brain areas and/or multiple modalities, inputs that respond to different modalities would compete 

for limited brain territory. In blind and deaf patients who have partially lost inputs from one 

sense or have rebuild the damage pathway by prosthesis, cross-modal projections take over the 

spared cortex that originally responded to the lost modality. These cross-modal inputs compete 

with residual sensory innervation when auditory or visual prostheses are implanted and the 

damaged sensory pathway is partially recovered (Gordon et al. 2011). Using cross-modal ferrets 

as an animal model to study rewiring and cross-modal plasticity, I report here that auditory 

cortex is reorganized after rewiring with  visual inputs. I also found that the proportions of 

auditory neurons and visual neurons correlated with the residual volumes of subcortical auditory 

and visual midbrain, suggesting that the number of inputs determines the extent to which either 

modality can occupy the auditory cortex (Mao et al. 2011). These results imply that stronger 

inputs obtain more brain territory, consistent with a Hebbian mechanism (Hebb, 1949). Although 

both auditory and visual inputs to auditory cortex in the rewired animals arrive via the medial 

geniculate nucleus (MGN) (Pallas et al. 1990; Sur et al. 1988), I found that multisensory neurons 

in XMAC had longer latencies to auditory stimulation than auditory neurons in normal AC. 

These data suggest that auditory and visual thalamocortical inputs may compete for synaptic 

connections at the cellular level.  Therefore, auditory neurons that receive direct thalamocortical 

auditory projections may be less likely to be reinnervated by thalamocortical visual inputs. Our 
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results further support the idea that interneuronal competition can operate between inputs 

carrying information from different modalities.  

2. Reorganization of brain areas after sensory deafferentation, deprivation, or brain 

damage 

Topographic maps in cortical areas are maintained dynamically, which means they can adapt to 

changes in the environment. Loss of inputs by sensory deafferentation, deprivation, or brain 

damage results in reorganization of brain areas. In the visual system, eye enucleation causes an 

expansion of the ipsilateral retinotectal projection (Lund et al. 1976; Rhoades and Chalupa 1980).  

In the somatosensory system, Areas 3b and 1 in somatosensory cortical regions that originally 

represent some skin fields are taken over by inputs responding to adjacent skin surfaces after 

nerve transection (Merzenich et al. 1983). In addition to reorganization in primary 

somatosensory cortex, secondary somatosensory cortex can be occupied by an expansion of the 

foot representation after partial lesion of the hand representation in primary somatosensory 

cortex (Pons et al. 1988). In the auditory system, cochlear lesion results in an expanded 

representation of adjacent frequencies in auditory cortex (Robertson and Irvine 1989), and an 

expansion of regions neighboring a retinal lesion also occurs in the visual system (Kaas et al. 

1990). Although studies demonstrate that reorganization of brain areas involves projections from 

neighboring peripheral sensory inputs, lesion of brain areas may cause different results. Removal 

of half of the superior colliculus does not eliminate half of the visual field but induces map 

compression (Finlay et al. 1979). Map compression in tectum was originally demonstrated in 

goldfish and hamster ( (Dunn-Meynell and Sharma 1984; Hodos and Yolen 1976; Schmidt 1983; 

Sharma  and Romeskiel. 1977; Udin 1978). In our research, I found that recovery from neonatal 

auditory midbrain lesions resulted in nearly intact tonotopy, arguing that auditory topographic 
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maps may be compressed in IC as occurs in visual midbrain. Before the onset of hearing at about 

P30 in ferrets (Moore 1990), the auditory afferents reach the inferior colliculus but do not 

segregate into frequency bands (Brunso-Bechtold and Henkel 2005; Henkel et al. 2007). On 

postnatal day 4, a few synapses can be observed but are very immature (Brunso-Bechtold et al. 

2006).  This evidence suggests that the inferior colliculus in ferrets contains the potential to 

rearrange its connections with its afferents when it is damaged. 

3. Cross-modal plasticity 

Cross-modal plasticity can occur after sensory deprivation, deafferentation or brain damage. In 

deafness and blindness, the spare cortices can be taken over by another modality (Cohen et al. 

1997; Finney et al. 2001). The advantage of cross modal plasticity is the compensation for 

reduced sensory inputs. Research on cross modal plasticity has shown alterations of cortical 

areas from the molecular to the behavioral levels and from humans to other animals (Merabet 

and Pascual-Leone. 2010; Frasnelli J et al, 2011). The cross-modal paradigm used in our 

experiments employs neonatal midbrain lesions. After recovery from this damage, retinal 

projections are redirected to auditory thalamus, which carries their visual activity to auditory 

cortex, creating a rewired auditory cortical region that responds to visual stimuli. This retinal 

misrouting was first noted by Schneider and Frost after midbrain lesions in hamsters (Frost and 

Schneider 1979; Schneider 1973), and then the model was adopted in ferrets (Sur et al. 1988), in 

frogs (Scalia 1987; Scalia et al. 1995) and in mice (Lyckman et al. 2001). In frogs, retinal 

afferents were directed into olfactory cortex (Scalia 1992; Scalia et al. 1995). In hamsters, lesion 

of visual midbrain and visual cortex induced retinal projections to auditory or somatosensory 

thalamus (Frost 1981; 1982;  1999). In ferrets, retinal axons were rewired to auditory thalamus 

(MGN) (Sur 1988; Sur et al. 1988). This rewiring did not alter the thalamocortical projection 
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( Pallas et al 1990), allowing visual information to be transmitted from MGN to auditory cortex. 

The visual responses in XMAC have similarities to and differences from responses in primary 

visual cortex. The visual information in AC originates from W-type retinal ganglion cells (Pallas 

et al. 1994; Pallas and Sur 1994; Roe et al. 1993). Compared to X- and Y-driven visual neurons, 

visual neurons in cross-modal AC exhibited larger receptive fields, low responsiveness, and 

longer latencies. On the other hand, the visual neurons in XMAC have orientation and direction 

selectivity, and simple and complex receptive field organization like those in normal visual 

cortex (Roe et al. 1992). In addition to visual responses, here I show that auditory and 

multisensory responses coexist in XMAC. I further found that auditory responses in XMAC had 

wider tuning, higher thresholds than normal auditory neurons, and the tonotopic maps were 

disrupted by invasion of ectopic visual inputs. Previous cross-modal research found that XMAC 

contains a retinotopic map (Roe et al. 1990; Roe et al. 1992) and interconnections between 

neurons with similar orientation tuning (Sharma et al. 2000). Visual pathways in normal animals 

map visual information in two spatial dimensions, whereas auditory pathways map sound 

frequency information in one dimension. In order to acquire a retinotopic map and orientation 

tuning, thalamocortical excitatory inputs may adopt the two-dimensional pattern seen in normal 

animals. However, anatomical data argue against this hypothesis and show that the 

thalamocortical projection in cross-modal animals remains one-dimensional (Pallas et al. 1990). 

Therefore, visual neurons may modify intracortical connections in order to construct visual maps. 

I found stronger inhibition in XMAC, suggesting that intracortical inhibition may contribute to 

the sculpting of visual response properties. Possible interactions between auditory and visual 

circuits in XMAC were not addressed fully in this study and require further investigation.  
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4.  Maladaptive plasticity  

The term neuroplasticity is often used to refer to beneficial changes during recovery from brain 

damage or sensory dysfunction; however, plasticity is sometimes maladaptive. After amputation, 

the spared regions in somatosensory cortex can be occupied by inputs from other body surfaces. 

In contrast to beneficial reorganization, amputation may also cause phantom limb pain. It has 

been suggested that this negative aspect of recovery is caused by expansion of adjacent 

somatosensory cortex (Karl et al. 2001). Focal hand dystonia is another disorder resulting from 

maladaptive plasticity, which is often referred to as “writer’s cramp” or “musician’s cramp” 

(Pantev et al. 2001; Quartarone et al. 2006). After repetitious professional training and extensive 

hand movements, the motor cortex of musicians and writers actually develops abnormally, and 

merging of representative regions for individual digits can occur (Byl et al. 1996). Reductions in 

inhibition in sensorimotor cortex have been revealed in focal hand dystonia patients (Levy and 

Hallett 2002). Tinnitus is another phantom sensation that may also result from cross modal 

plasticity. Tinnitus patients claim that they can hear sounds in the absence of auditory stimuli. 

Some research has shown spontaneous activity in the auditory system during tinnitus, whereas 

other studies have found cross-modal facilitation or suppressive interaction in tinnitus patients 

(Langguth et al. 2005; Roberts et al. 2010). In my study, I found multisensory neurons that are 

specifically tuned to pure tones. Given that these neurons are visually responsive, they may 

contribute to the auditory phantom sensation of tinnitus. For example, visual stimuli can activate 

multisensory neurons in XMAC. Those multisensory neurons may communicate with the 

auditory pathway. Phantom sound then occurs without auditory stimuli. Therefore, neural 

plasticity may boost unwanted connections that can interfere with the original functions of the 

affected brain areas. I also found that after reorganization, auditory cortex in XM animals can 
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respond to both sound and light. The invasion of visual inputs impaired auditory function 

(Chapter 3). These data imply that cross-modal plasticity can interfere with the recovery of the 

original function, as has been found in deaf patients after cochlear implants (Lee et al. 2001). 

Our research provides further evidence that maladaptive plasticity can result from brain damage 

and then prevent a full recovery of the patient’s hearing ability.  

5. Inhibitory plasticity after sensory deprivation/deafferentation and brain damage 

a) The role of lateral inhibition 

Before concluding that lateral inhibition is responsible for the expansion of receptive fields in 

sensory cortices of deprived and deafferented animals, the role of lateral inhibition in shaping 

receptive fields of sensory neurons must first be discussed.  Blockade of inhibition in visual 

cortex enlarges visual receptive fields (Sillito 1975), and decreases orientation selectivity (Sillito 

1979; Sillito et al. 1980; Tsumoto et al. 1979; Worgotter and Eysel 1991). The original model of 

lateral inhibition suggests that lateral inhibition from neighboring neurons sharpens excitatory 

responses to sensory stimuli.  If so then inhibitory neurons should either have broader tuning 

curves than excitatory neurons or be untuned. Recent research has challenged this classical 

model. Ozeki and colleagues found that iontophoretic application of GABAA receptor antagonist 

did not alter visual stimulus-size tuning (Ozeki et al. 2004). The disadvantage of the in vivo 

extracellular recording methods used in previous studies is that they can only record action 

potentials that result from summation of both excitatory and inhibitory inputs to a single neuron.  

In contrast to extracellular recording, intracellular whole cell patch-clamp recording can 

distinguish between excitatory (EPSP) and inhibitory postsynaptic potentials (IPSP).  Using this 

method it has been reported that both IPSPs and EPSPs show well-tuned orientation selectivity 
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(Ferster 1986). The preferred orientations of EPSPs and IPSPs in one visual neuron are identical. 

These results argue that orientation of visual neurons is not created or sharpened by inhibition 

(Ferster 1986). Further research found that excitatory and inhibitory components of the recorded 

visual neuron are tuned to the same orientation but are temporally out of phase with one another 

(Priebe and Ferster 2005). Similar results have been found in the auditory system (Tan et al. 

2004; Wehr and Zador 2003; Zhang et al. 2003). These intracellular recording results suggest 

that lateral inhibition may not be responsible for sharpening sensory tuning, in which case the 

broader tuning curves found in sensory-deprived and –deafferentated animals may not result 

from loss of lateral inhibition.  The intracellular studies mentioned above distinguish inhibitory 

and excitatory components of excitatory neurons, but few studies have recorded from inhibitory 

neurons in vivo.  Recently, an impressive study using whole-cell recordings of inhibitory neurons 

has been done in rat primary auditory cortex (Wu et al. 2008). Their results show that inhibitory 

neurons have broader tuning curves than excitatory neurons, while another study has found that 

auditory tuning of excitatory but not inhibitory neurons gets sharper during development (Sun et 

al. 2010), suggesting that the refinement of auditory receptive field relies more on maturation of 

excitatory inputs than on inhibitory inputs. In the current project, I found that broader tuning of 

auditory neurons in XMAC is not correlated with loss of lateral inhibition. I suggest that 

excitatory input may play a more important role than inhibitory inputs in constructing auditory 

properties during recovery from midbrain damage. 

b) Changes in inhibition may be layer specific and not be reflected at the molecular level  

Although inhibition is decreased in sensory-deprived and deafferented animals (Garraghty et al. 

1991; Vale and Sanes 2002), it is still debated whether and to what extent inhibition is altered in 
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this process. Physiological recordings suggest that GABAergic inhibition decreases in dark-

reared animals. Some research reported that the number of GABAergic neurons decreased in 

sensory-deprived animals (Garraghty et al. 1991; Hendry and Jones, 1986), whereas some 

immunohistochemical studies show that expression of GAD does not change in visual cortex of 

dark-reared animals (Bear et al. 1985; Mower and Guo 2001). -In some cases, an expansion of 

adjacent representations is found in deafferented animals, but changes in GABAA receptors m 

RNA level and immnuohistochemically stained neurons are not observed (Jones et al. 2002). 

Therefore, it is possible that physiological abnormalities are not reflected at the molecular level.  

Recent research proposes that deafferentation unmasks both excitatory and inhibitory inputs 

(Rajan 2001), therefore either there is no change in afferent strength or the changes are specific 

to layers or synaptic connections. For example, studies in barrel cortex show that the decreases in 

expression of GABAergic neurons, GABA receptors, or GAD are layer specific (Micheva and 

Beaulieu 1995b). The decrease in GABAA receptor expression in visual cortex of deprived 

animals is concentrated closer to the dendrites than to the axons (Katagiri et al. 2007). After 

central, binocular lesions of retina, the expression of GAD-positive puncta decreases, whereas 

GAD-positive somata increases, in visual cortex of cats (Rosier et al. 1995). Expression of 

GABA-positive somata and puncta does not change, nor does the expression of GABAA and 

GABAB receptors (Rosier et al. 1995).  The inconsistent results across the literature suggest that 

loss of inhibition in sensory-deprived or deafferented animals may only be reflected at the 

physiological level. 

c) Reductions in inhibition may be transient, with the recovery stage requiring strong 

inhibition. 
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The decrease of inhibition within one modality after loss of inputs may be transient. It has been 

found that GABA expression in sensorimotor cortex is reduced quickly after forearm nerve block 

(Levy et al. 2002), but can recover to normal levels in adult sensory-deprived or -deafferented 

animals. For example, the expression of GABA in IC is decreased after unilateral cochlear 

lesions, but returns to normal levels one month later (Wang et al. 2007). I did not find the 

bandwidths of tuning curves in AC of the blind-lesioned animals to be significantly different 

from those in normal animals (Chapter 3), suggesting that thalamocortically-activated  lateral 

inhibition may recover to normal levels after IC lesions. 

 After transient changes following damage to sensory pathways, re-establishment of 

receptive fields and excitability levels is the long-term goal of cortical reorganization. Increasing 

inhibition may play an important role during this process. Removal of the olfactory bulb in rats 

shows that GAD-positive terminals are denser in the lateral olfactory tract than normal 

one.(Westenbroek et al. 1988). Deafferentation of rat spinal cord results in an increase in GAD-

67 mRNA that coincides with the sprouting of unaffected afferents (Feldblum et al. 1998). After 

vibrissal deafferentation, GABA-immunostained boutons are increased in the ventrobasal 

thalamic complex, indicating a compensatory increase in inhibition (Hamori et al. 1986). The 

increase in inhibition has also been found in brain regions across modalities. In mice that have 

olfactory deficits, whisking responses in the barrel cortex are upregulated. With this upregulation, 

the number of GABAergic neurons is increased (Ni et al. 2010). In my research, midbrain lesions 

were associated with increased inhibition in the auditory cortex, consistent with Ni et al.’s 

results.. Based on the results mentioned above in chapter 3, I suggest that the increased inhibition 

is caused by the invasion of visual inputs but not by the loss of auditory inputs. After recovery 

from visual invasion, XMAC is reorganized to manage responses to both auditory and visual 
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stimuli. Because auditory and visual neurons are not segregated from each other (Chapter 2), 

responses to a single modality may be disturbed by responses to the other modality. In order to 

cope with this dilemma, mutual inhibition may be increased in XMAC in order to suppress 

neighboring firing that may represent a different modality.   

d) Inhibition is increased when inputs compete for territory 

Visual deprivation in early life can induce permanent loss of visual responsiveness (reduced 

visual acuity, loss of tuning, etc.) to the deprived eye. These changes may be caused by 

depression of excitatory intracortical inputs (Kirkwood et al. 1996). Alternatively, they could 

also be caused by an increase in cortical inhibition (Maffei et al. 2006). Research has 

demonstrated that the weaker responses to the deprived eye in ocular dominance columns result 

at least in part from stronger inhibition (Duffy et al. 1976; Sillito et al. 1981). Iontophoretic 

application of bicuculline, a GABAA receptor antagonist, can restore neuronal activity to the 

deprived eye at  5 months of age in cats (Burchfiel and Duffy 1981) and induce significantly 

more changes in ocular dominance in monocularly-deprived than in normal animals (Mower and 

Christen 1989). Our current study found competition between the auditory and visual inputs that 

are both activating auditory cortex in XM animals. Therefore, residual auditory responses may 

have been suppressed by ectopic visual activity, which is similar to-- the activity from non-

deprived eye in monocular-deprived animals. I suggest that increased inhibition plays a 

significant role during cross-modal plasticity to manipulate bimodal modalities.  

6. Clinical applications 

Cross modal plasticity occurs in deaf or blind patients and patients recovering from brain damage. 

Maladaptive compensation is not optimal, but is the situation that rehabilitation strategies must 
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cope with. After stroke, cortical representations are rearranged and excitability thresholds are 

increased (Traversa et al. 1997). Behavioral training is applied to encourage specific movements. 

These movements can enlarge their own cortical representations after training (Nudo et al. 1996a; 

Nudo et al. 1996b). This use-dependent plasticity provides important cues for designing 

rehabilitation therapy. The disadvantages of maladaptive plasticity include possible unwanted 

projections or cortical reorganization. Preventing activation of mis-wired connections or 

boosting activity from residual connections may help to eliminate disadvantageous cortical 

reorganization.  Another important rehabilitative strategy is pharmacotherapy. Neurotransmitters 

and their receptors can target certain circuits that are involved in brain reorganization. Recently, 

a study found that inhibition is increased in the peri-infarct zone in mice after stroke. The 

researchers applied the GABAA benzodiazepine agonist L655,708-- and found that motor 

function was recovered, suggesting that pharmacological treatment is a possible way to 

counteract abnormal function after maladaptive plasticity (Clarkson et al. 2010). In my study, I 

also found an increase in inhibition in XMAC. Auditory function was compromised by invasion 

of visual inputs. In order to rebuild auditory function, possible strategies include exposure to 

enriched auditory environments and blockade of inhibition. Further research is required to 

address these questions. 

7. Evolutionary implications          

The brain differentiates into functional areas during development, and this is especially obvious 

in neocortex. It has been proposed that although all mammals have basic sensory areas in 

common, some new areas were added in more recently evolved animals (Kaas 1989). The 

emergence of new functional areas may be caused by duplication, differentiation, or invasion by 

axons from other structures (Kaas 1989; 1993); however, the process of brain evolution remains 
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elusive. Sensory cortex and motor cortex in mammals are topographically arranged (Kaas 1997). 

Although each sensory cortex has its own unique topographic map that corresponds to its 

modality, most of these maps still follow the order of the receptor sheet, suggesting common and 

possibly interchangeable characteristics between them (Kaas 1997). Comparative studies have 

shown that the size and divisions of sensory cortices in different species relate to their life styles 

(Catania 2000). Because they are living underground almost their entire life, blind mole rats have 

evolved a reduced visual cortex and an expanded somatosensory cortex (Mann et al. 1997). The 

sizes of sensory cortices may rely on neural activity and sensory experience; the existence of 

primary sensory cortex, however, cannot be altered by environmental change or even by gene 

knockout (Hunt et al. 2006; Karlen and Krubitzer 2009; Merzenich et al. 1983). The occurrence 

of new cortical areas may also relate to gene mutation. For example, knockout of the axon 

guidance molecules called ephrins can induce retinal inputs to project to the auditory pathway 

(Lyckman et al. 2001). A large body of work has been done to show that the rerouted retinal 

afferents can bring visual information to auditory cortex and change auditory cortex to be 

visually responsive (Roe et al. 1992; Sharma et al. 2000; Sur et al. 1988). These studies suggest 

that the sensory cortex can be altered to perform a significantly different function by changes in 

gene expression or activity, implying an evolutionary possibility for emergence of new cortical 

areas. Here I show that rewired auditory cortex actually responded to both auditory and visual 

cues. Although auditory and visual neurons were not segregated from each other, multisensory 

neurons were created by convergence of auditory and visual inputs. In rodents, multisensory 

neurons exist at the border of unisensory cortex (Wallace et al. 2004). In blind animals with 

cross-modal projections, multisensory neurons occur in areas between primary sensory cortices 

(Hunt et al. 2006; Kahn and Krubitzer 2002). Our data further support the idea that the evolution 



161 

 

of new multisensory areas could be a developmental mistake of axon rerouting and provide 

crucial information for brain evolution in general.  

 

Overall, our results on cross-modal plasticity shed light on the implications of 

maladaptive outcomes after recovery and on compensatory changes in inhibitory circuits. These 

results provide important knowledge for future study of recovery from sensory/motor 

dysfunction and brain damage and also add more understanding of plasticity in general to the 

literature.  
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