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ABSTRACT 

Heart disease, cancer, diabetes and other complex diseases account for more than half of 

human mortality in the United States. Other diseases such as AIDS, asthma, Parkinson’s disease, 

Alzheimer’s disease and cerebrovascular ailments such as stroke not only augment this mortality 

but also severely deteriorate the quality of human life experience. In spite of enormous financial 

support and global scientific effort over an extended period of time to combat the challenges 

posed by these ailments, we find ourselves short of sighting a cure or vaccine. It is widely be-

lieved that a major reason for this failure is the traditional reductionist approach adopted by the 

scientific community in the past. In recent times, however, the systems biology based research 

paradigm has gained significant favor in the research community especially in the field of com-



plex diseases. One of the critical components of such a paradigm is computational systems biol-

ogy which is largely driven by mathematical modeling and simulation of biochemical systems. 

The most common methods for simulating a biochemical system are either: a) continuous deter-

ministic methods or b) discrete event stochastic methods. Although highly popular, none of them 

are suitable for simulating multi-scale models of biological systems that are ubiquitous in sys-

tems biology based research. In this work a novel method for simulating biochemical systems 

based on a deterministic solution is presented with a modification that also permits the incorpora-

tion of stochastic effects. This new method, through extensive validation, has been proven to 

possess the efficiency of a deterministic framework combined with the accuracy of a stochastic 

method. The new crossover method can not only handle the concentration and spatial gradients 

of multi-scale modeling but it does so in a computationally efficient manner. The development of 

such a method will undoubtedly aid the systems biology researchers by providing them with a 

tool to simulate multi-scale models of complex diseases. 
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1 INTRODUCTION  

1.1 Why Study the new paradigm of systems biology? 

Complex diseases such as heart disease, cancer and diabetes account for more than half 

of human mortality in the United States. Other diseases such as AIDS, asthma, Parkinson’s dis-

ease, Alzheimer’s disease and cerebrovascular ailments such as stroke not only augment the mor-

tality but also severely deteriorate the quality of human life experience. Although the global mor-

tality count associated with HIV-1 infections has abated, failure to produce a vaccine still per-

mits millions of new infections worldwide. In spite of being widely studied and well character-

ized, infectious diseases such as influenza and tuberculosis continue to provide a threat to human 

life across the globe. There is no lack of financial support afforded for research in these areas and 

has been, in fact, very generous. Each year, for the past four years, the National Institutes of 

Health (NIH) in the United States has provided over 10 billion dollars for research projects in-

volving complex diseases like heart disease, cancer and diabetes (http://report.nih.gov). In spite 

of the exorbitant financial investment and ever-increasing global scientific research efforts to 

combat the challenges posed by these multifaceted ailments, the quest to find a cure or vaccine is 

not yet complete (Phair R. D., 2012).  It is well known that these complex diseases are not a re-

sult of a single element but a combination of genetic, environmental and lifestyle factors. Other 

diseases that are not officially categorized as complex, for example Tuberculosis, are also more 

often than not a combination of a variety of physiological factors (Kitano 2007). 

1.1.1 Limitations of reductionism  

For the past several decades, however, the traditional research paradigm that has been 

employed to study these diseases has been the one of ‘reductionism’. Reductionism refers to the 
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method of breaking down a biological phenomenon into its constituent components in an attempt 

to isolate and characterize the component responsible for the physiologically observed pheno-

type. The conceptual rationale for reductionism is that any physical phenomena can be explained 

by a deterministic evaluation of its constituents. An example of this approach is trying to explain 

the consciousness of human mind by ‘reducing’ the phenomenon to a set of chemical reactions 

occurring in the brain and studying them in isolation (Bickle et al., 2003). This “reductionist” 

approach of explaining high-level observations from activity of lower level components has 

served the research establishment very well over several decades and has led to a very accurate 

functional and structural annotation of the components under consideration. A major drawback 

of this approach, however, is that it provides limited insights into the functional properties of the 

system itself which can be important for a variety of reasons.  

The study of systems biology relates to studying entire biological systems consisting of 

many interacting networks that ultimately define the holistic character of any organism including 

humans. Conversely, any biological entity can be viewed as nothing but an enormous complex 

network of interacting sub-networks (Kitano 2000, 2002). The basic differences between reduc-

tionism and holism are explained in figure 1. It is now widely accepted that an important facet of 

any biological system is the property of emergence (Kitano 2002, Van Regenmortel 2004). An 

‘emergent’ property is the one that ‘emerges’ as a result of the system components coming to-

gether under specific circumstances and cannot be arrived at by simply adding the components. 

For example, the three dimensional conformation of a protein molecule cannot be predicted by 

simply lining up the amino acid sequence. The unique folding pattern adopted by the protein can 

thus said to be an emergent property of the system. Similarly, biological systems characterizing 

diseases are complex systems that have their own unique emergent properties that would be im-
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possible to be studied by the reductionist approach. Hence, a complex disease like cancer cannot 

be studied in isolation of the environmental factors without sacrificing emergent properties.  An-

other systems property of robustness is very important in the context of drug discovery and vac-

cine development (Kitano 2002). A biological system is composed of biochemical pathways, 

gene regulatory networks, signaling pathways, protein-protein interaction networks, protein-

nucleic acid interaction networks and a number of environmental factors engaged in a highly 

structured yet complex interaction. Robustness is the ability of this system to adapt to any per-

ceived perturbations in its components. The effect of any one of these components on the entire 

network is difficult to analyze with the current molecular biology methods. With most of the re-

ductionist techniques geared towards understanding the function of individual components, it is 

almost impossible to predict what effect a local disturbance introduced into the system by a dis-

ease or a drug might have on a distant pathway which may not be part of the current system but 

is nevertheless important in terms of function. System robustness is generally achieved via re-

dundancy of components where several parts of the system essentially serve the same purpose 

and affecting one of them generally provides no appreciable difference in the overall phenotype. 

In reductionism such a component would be simply ignored given the lack of its effect on the 

phenotype and in process lose a potential drug target. Redundancy allows the system to be modu-

lar so that a failure in one part of a system does not mitigate to other areas and makes the system 

‘robust’ to external insults. Hence from a drug discovery point of view, because diseases are a 

result of variation in the biological homeostasis, knowledge of the inherent robustness of the sys-

tem becomes very critical. Global effects of local perturbations in a ‘diseased’ biochemical net-

work are difficult to predict by reductionist techniques that are designed to ignore the property of 

robustness. 
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It is for these reasons that some researchers argue that reductionism might have hit its 

ceiling with regards to biological research (Mazzocchi F., 2008, Van Regenmortel 2004). Anoth-

er criticism of reductionism is that it also requires studying the component of interest external to 

its natural environment and then attempts to extrapolate the results to the host environment. Such 

extrapolation rarely works as evidenced by the failure of knockout mice experiments to be able 

to translate to human systems. It is clear from the preceding discussion that employing the sys-

tems level paradigm for investigating biological processes holds significant potential in solving a 

variety of complex problems in the areas of rational drug design, vaccine development, cancer 

therapy, metabolic engineering and personalized medicine. 

 

 

Figure 1 Conceptual differences between the two methodologies employed in bio-
medical research 
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1.1.2 Advent of high-throughput technologies 

One key development that facilitated, and is arguably indispensable for, the shift from re-

ductionism to holism is the advent of high-throughput technologies for biological experimenta-

tion (Resendis-Antonio O., 2011, Nurse P., 2011). A number of technologies such as mass spec-

trometry, DNA / RNA expression microarrays and next-generation sequencing platforms are 

now available to the molecular biologists. The literature offers a very detailed review of all the 

available technologies (Simpson J. C.., 2006, Segata N., 2008, Chen B. S., 2008). Mass spec-

trometry is widely applied in the field of proteomics where it is utilized primarily for identifying, 

quantifying and analyzing novel network components. In this technique, proteins are digested 

with proteases and then subjected to liquid phase chromatography and gas phase fractionation. 

The spectra thus obtained are used to determine the sequence of the protein. Mass spectrometry 

can identify thousands of proteins in a given sample making it an ideal fit for systems biology 

(Sabido E., 2011). DNA / RNA microarray technology is primarily used for detecting the up or 

down-regulation of RNA transcripts expressed in a biological system. As this technique can also 

detect thousands of transcripts at once, it fits nicely into the realm of systems biology. The RNA 

fragments to be detected are attached to probes and then hybridized with fluorescence. Laser is 

then used to detect the fluorescent intensity and determine the regulation status of RNA tran-

scripts. The data generated by the experiment is then analyzed statistically to draw an inference 

and generate hypotheses that can be further tested. Microarray technology was one of the earliest 

technologies that helped expedite the molecular biologist’s migration from reductionism to sys-

tems level interrogation. Other high-throughput technologies available target slightly different 

areas of biology. For instance, next generation sequencing technologies have revolutionized the 

area of genomics. It is now become possible to sequence the complete genome of any organism 
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in a matter of a few hours to days as opposed to several months required in the early part of the 

last decade. Although the recent high throughput experiments have been successful in providing 

a deluge of data to enable a systems view of a biological phenomenon, lack of adequate technol-

ogy for generating meaningful hypotheses without novel experimentation still remains one of the 

major hindrances against successful treatment of fatal human diseases.  

1.2 Application of systems biology: A literature review  

One of the more obvious applications of holistic systems-level biology can be observed 

in the process of drug discovery. The exorbitant amount of capital spent on introducing new 

drugs in the market and the relatively high number of failed targets in clinical development war-

rants a review of current drug discovery process. Identification of drug targets and developing 

drugs against most diseases requires a methodical approach to help decipher the interactions 

among the participating biological factors, and ascertain how these factors contribute towards the 

etiology of the disease. The advancement of high-throughput technologies in molecular biology 

has allowed researchers to genotype and profile thousands of DNA markers and other molecular 

phenotypes simultaneously in large number of individuals, thereby permitting the reconstruction 

of those biological networks that are known to be associated with a particular disease. These re-

constructed networks are more integrative and predictive thus providing a more insightful con-

text for single genes that have been identified by traditional molecular biology techniques (Zhu 

et. al., 2008, Schadt et. al. 2009). Another advantage of systems biology based drug discovery is 

that in diseases such as AIDS where drug resistance is a major hindrance towards developing 

new drugs, systems biology may be able to provide alternate targets based on the knowledge of 

underlying interacting metabolic pathways (Andersen-Nissen E. et. al., 2012). The use of sys-

tems biology is also widespread in therapeutics development where mathematical techniques to 
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analyze and integrate large datasets are studied in order to discover novel vaccines for HIV in-

fections (Buonaquro L., et. al., 2011, Haddad E. K., et. al., 2012).  In a different approach to 

studying HIV pathogenesis, researchers have started focusing on the so called elite controllers of 

HIV. The elite controllers are individuals who have defied the presence of the virus in their sys-

tems and show no signs of transforming into full blown AIDS without the help of anti-retroviral 

therapy. On a physiological level, holistic approaches are currently being used to study the dif-

ferential regulation of signaling pathways involved in T-cell depletion in these elite controllers of 

HIV (Fonseca S.G. et. al., 2011). Systems biology has also been applied to shed more light on 

how the sub-networks of an infected host act in concert to limit the damage to its immune system 

especially in elite controllers of HIV and natural carriers of SIV (Hoof I. et. al., 2011). A similar 

approach has also been reported for understanding the response by exposed uninfected women 

(Burgener A. et. al., 2010). Vaccine development using systems biology principles, however, is 

not restricted to one single disease and at least one study argues that using systems biology, in-

stead of the narrowly focused ‘isolate, inactivate, inject’ strategy, is a more efficient option for 

vaccine development (Oberg A. L. et. al., 2011). Another study reports the application of sys-

tems biology principles in studying the integrated actions of innate and adapted immune re-

sponse as an essential part of vaccine development (Buonaquro L. and Pulendarn B., 2011). 

In the area of neuroscience, systems biology has contributed in gaining insights into 

mechanisms of synaptic plasticity (Kotaleski J. H. et. al., 2010) as well as addiction (Tretter F et. 

al., 2008). Complex neurological diseases such as neurofibromatosis type 1 (NF1) are also being 

explored from an integrative systems biology standpoint (Lee M. J. et. al., 2011). An integration 

of genome wide association studies with the gene expression data for Parkinson’s disease recent-

ly provided more insight into the pathology of the ailment (Edwards Y. J. et. al., 2011). A similar 
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approach is adopted in the identifying new biomarkers and drug targets for the treatment of neo-

cortical epilepsy (Loeb J. A., 2010). Geshwind offers an excellent review on how the overall 

concept of systems biology can be applied to various areas of neuroscience (Konopka G., 2011). 

Understanding the etiology associated with complex medical conditions such as congeni-

tal heart diseases is greatly aided by systems biology (Sperling S. R., 2011) as is an elaborate un-

derstanding of the pathophysiology of heart disease (Dewey et. al., 2011). Recently systems bi-

ology has been instrumental in gaining systemic insight into cardiomyogenesis (Young D. A. et. 

al., 2011).  Other complex diseases such as cancer also lend themselves as ideal targets for sys-

tems biology based research. Biological cellular networks are routinely deregulated in tumor me-

tastasis. However, the resulting dynamics are not always comprehensible from an experimental 

output. Systems based mathematical models are hence important to help make sense of the com-

plex behavior resulting from such a deregulation (Cloutier M. et. al., 2011). An example of this 

type of investigation can be cited from a recent study regarding the hyperactivation of PI3k/AKT 

pathway, where systems biological approaches were used to predict useful drug targets (Mosca 

E. et. al., 2011). Another study focusing on the dynamics of JAK-STAT pathway as related to 

cancer focuses on the application of systems biology in modeling cancer-relevant signal trans-

duction networks (Vera J. et. al., 2011). Similarly, work on the role of epidermal growth factor 

receptors on cell migration in non-small cell lung cancer is also an extensive demonstration of 

the use of systems biology principles (Bianconi F et. al., 2011). From a clinical standpoint, holis-

tic approaches are routinely utilized for identification of novel genes that could contribute to re-

duced efficacy of cancer treatments (Allen W. L. et. al., 2011).  

It is clear from the above discussion that, systems biology has indeed been very useful in 

advancing biomedical related research as regards to disease. On a cellular level though, this par-
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adigm has been equally well employed. Two of the most impacted areas of molecular biology at 

this level are the genetic regulatory system and the signal transduction system. On the genetic 

regulation level, systems biology has been used to better understand the role of microRNA in 

catalyzing the gene regulation process (Watanabe Y., 2011). As a specific example, in patients 

with pancreatic cancer certain miRNAs involved in metastasis were found to be deregulated and 

the epigenetic connection for the regulation of these miRNAs was investigated by using holistic 

systems biology (Azmi A. S. et. al., 2011). In yeast, the GAL regulon encodes for genes that al-

low the processing of galactose as an energy source. Recently, a systems level interrogation of 

this genetic network uncovered certain network properties of substrate regulation and auto-

sensing that are important for the adaption of yeast to its environment (Pannala V. R. et. al., 

2010). Experimental and computational systems biology has also been applied in the area of 

gene therapy (Mac Gabhann F. et. al., 2010). High throughput approaches are routinely used in 

identifying new members of the signal transduction family of G-protein-coupled receptors 

(GPCR) that are intimately involved in signal transduction in the regulation of normal mammali-

an physiological function (Wu J et. al., 2012). In plants, the dynamics of abscisic acid (ABA) 

signaling pathway are better interrogated by using transcriptome analysis and ‘phosphoprote-

omics’ approach (Umezawa T., 2011). Systems biology has also helped better understand the 

apoptotic signaling network in eukaryotes (Lavrik I.N., 2010). 

1.3 Why is computational systems biology important? 

Experimental systems biology facilitated via high-throughput experiments are just one 

part of the holistic process. The other part is to use a computational modeling methodology to 

come up with experimentally testable hypothesis. As pointed out by Kitano in his review on the 

subject (Kitano H., 2002), computational and experimental systems biology complement each 
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other and engage in an iterative process where the quantitative predictions are constantly tested 

in wet laboratories and the results are fed back into the computational model to generate refined 

hypothesis. Although it is difficult to pinpoint the exact time when simulation of biological sys-

tems originated, it has its roots in the work done on quantitative modeling of kinetics in the peri-

od from 1900-1970. In 1952, Nobel Prize winners Alan Lloyd Hodgkin and Andrew Fielding 

Huxley successfully constructed a mathematical model describing the action along the axon of a 

neuronal cell (Hodgkin et. al., 1952), which was probably the first notable application of theoret-

ical biology. However, lack of good quality data hindered this area of study from achieving its 

full potential, validating the claim that a theoretical model is only as good as the data it works 

with. This all changed when high-throughput experiments developed in the 1990s brought a del-

uge of genomic and proteomic data that could be used for quantitative modeling. When this de-

velopment was coupled with a revolution in the computation technology available to scientists, 

numerical simulation once again topped the list in scientific discussions. An important conse-

quence of this inclusion of computation technology in life science research was the idea of a sys-

tems level integration of biological components to quantitatively understand the exact behavior 

of a biological system. Opposing the traditional view, systems biology tends to analyze any bio-

logical process as a network of interacting systems. There is now increasing consensus among 

the scientific community that this systems level perspective is poised to answer a wide range of 

biological questions that have immediate consequences in areas of rational drug design, cancer 

therapy and personalized medicine. Several methodologies including kinetic modeling, bio-

simulations, predictive metabolism, data mining, and disease modeling are a critical part of sys-

tems biology. Computational systems biology can hence be defined as a part of systems biology 

that employs model-based approaches, to integrate data extracted from existing sources while 
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using mathematical techniques to provide the ability to make predictions about future experi-

mental hypotheses (Rodriguez et al. 2010). A typical project starts with a reconstructed network 

map of all the components of the network which is then translated into a mathematical model 

(Sible et. al. 2007). Although the term ‘mathematical model’ can have various implications, in 

computational systems biology a mathematical model usually refers to a system of ordinary dif-

ferential equations (ODEs) that has been formulated using the kinetic data available for every 

non-constant component of that system. This system of ODE is then solved using appropriate 

initial conditions to realize a time course evolution of each component. Once the simulation re-

sults are consistent with previously known experimental observations, this model can be used to 

generate predictions for future experiments. The various kinetic parameters that are a part of the 

ODE system can be tweaked and twiddled to represent a local perturbation in the network and 

the global effects due to the artificial disturbance can be observed from the simulation results. 

Thus the ability to simulate a mathematical model that can provide experimentally testable hy-

potheses is central to the systems level study of a biological process. For example, a detailed 

mathematical model for TNFα – NFκB signaling was recently developed in conjunction with a 

protein-protein interaction map to quantitatively describe the signaling mechanism (Visvanathan 

M., 2010).  Such a model can now be tweaked around and ‘played with’ to mimic specific sce-

narios as regards to disease or drug intervention and the response in turn could lead to develop-

ment of new hypotheses. Similarly, in the drug discovery process, computational systems biolo-

gy based network analysis enables the action of drug targets to be considered in the context of 

the whole genome thus making them an important tool in comprehending the complex relation-

ship between a drug and the target genes (Berger et.al. 2009, Materi W. et. al., 2007). In general, 

various aspects of biology are now being tested in accordance with system biology principles and 
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mathematical / computational modeling is an integral part of such an effort (Ewing G. W., et. al., 

2011, Meyer-Hermann M., et. al., 2009, Groh A., et. al., 2008, Palme K., 2006). 

2 MATHEMATICAL MODELING AND SIMULATION 

As observed in the previous chapter, systems level investigation of biological processes 

holds significant potential in solving a variety of complex problems in the areas of rational drug 

design, cancer therapy, metabolic engineering and personalized medicine. The computational 

aspect of such an investigation routinely utilizes mathematical modeling techniques to test the 

dynamics of a biochemical system and generate experimentally testable hypotheses from them. 

 The intention to mathematically model a physical system is to create a quantitative rep-

resentation of the role of participating species (reactants) and their interdependent behavior (re-

actions). The first stage of modeling is to create a stoichiometric model by extracting pertinent 

information regarding the proportions of reactants in the system. This information is easily ob-

tained from network diagrams and technical literature. Next, a mathematically rigorous descrip-

tion of the system based on classical theory of mass action kinetics and reaction stoichiometry is 

obtained. This mathematical description can vary depending on the framework used for subse-

quent simulation of the model. In the field of biochemical reactions, two simulation frameworks, 

deterministic and stochastic, are more popular than others. The work by Crampin E.J. (2004) 

provides an excellent overview of the modeling process. 

2.1 Deterministic simulation framework 

In the widely popular deterministic framework, the goal is to try to represent the behavior 

of a homogeneous physical system by a system of ordinary differential equations (ODE) derived 

from the law of mass action. The biological species in such a model are usually represented in 
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terms of concentration (usually moles/liter) which allows the overall dynamics of the system to 

evolve continuously in time. Developed several decades ago, the law of mass action states that 

the velocity of an elementary chemical reaction (i.e. a reaction without any intermediates) is di-

rectly proportional to the product of the concentration of the reactants participating in the reac-

tion. The constant of proportionality, called rate constant, is most often a function of the reaction 

environment. It logically follows that, the net change in concentration of a reactant of a biochem-

ical system will be the sum of the changes in concentration for every elementary reaction the re-

actant is a part of. Mathematically, for ‘m’ reversible elementary reactions and ‘n’ reactants, the 

statement can be represented as, 

෍ݑ௜,௝ ௜ܵ

௡

௜ୀଵ

	↔ 	෍ݒ௜,௝ ௜ܵ

௡

௜ୀଵ

					݆ = 	1,2 …݉		… … … … … … … … … … … … … … . … … … … … … … … . . (1) 

where, ‘u’ and ‘v’  in equation (1) are stoichiometric coefficients of reactants and prod-

ucts (S) respectively. In terms of a differential equation, the net rate of change in reactant ‘S’ can 

then be written as: 

݀ ௜ܵ

ݐ݀ 	= 	෍ܴ௜,௝

௠

௝ୀଵ

			݅	 = 1 …݊		… . … … … … … … … … … … … … … … … . … … … … … … … … … … … . (2) 

where, ‘R’ is the rate of reaction ‘j’. Applying the law of mass action, we get 

ܴ௜,௝ 	= ൫ݒ௜,௝ ௜,௝൯ݑ	− ൥ ௝ܿ	ෑ ௜ܵ
௨೔,ೕ 	− 	ܿି௝ 	ෑ ௜ܵ

௩೔,ೕ
௡

௜ୀଵ

௡

௜ୀଵ

൩ 				݅	 = 1 …݊	, ݆ = 1 …݉		… . … … … … … . . (3) 

cj and c-j are the reaction constants for the forward and reverse reactions respectively. For 

example, in the following hypothetical elementary reaction: 

	ܣ + ܣ
௖
→ 	ܤ	 +   ܥ

The rate of change of reactant ‘A’ in ODE form would be written as, 
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ܣ݀
ݐ݀ 	= [ܣ][ܣ]ܿ− = ଶ[ܣ]	ܿ− 		… . … … … … … … … … … … … … … … … … … … … … … … . … … … … (4) 

In equation (4), [A] is the concentration of reactant A while ‘c’ is the reaction rate con-

stant. The negative sign indicates that ‘A’ is being consumed as the reaction proceeds. Similar 

equations can be written for ‘B’ and ‘C’ as well. Assuming it to be the only reaction in the sys-

tem, the three differential equations (each for A, B and C) taken together would form a system of 

ODE for the entire biochemical network and when integrated as a function of time would yield 

time course trajectories for all three species reflecting the dynamics of the biochemical network. 

The literature offers a more detailed description of kinetic modeling in biological systems (Gri-

ma R., 2011, and Crampin E. J. et. al., 2004). Unfortunately, biochemical reactions cannot al-

ways be characterized by simple elementary kinetics and complex kinetics such as the Michelis-

Menten scheme is often used to describe the reactions more accurately.  

The most common situation where the reactions have to be represented by complex kinet-

ics is when a biochemical reaction is catalyzed by an enzyme. The resulting kinetics from such 

an encounter are inherently non-linear and hence difficult to analyze quantitatively. The most 

common enzyme catalyzed reaction scheme is as described in Segel (1975): 

ܵ + 	ܧ
௖భೝሯሴ

௖భ೑
ሳሰ 	ܵܧ	

௖మ⇒ ܧ	 + ܲ   

‘S’ in the above scheme is the substrate, ‘E’ is the enzyme catalyzing the reaction, ‘ES’ is 

the enzyme-substrate complex and ‘P’ is the product. c1f’, c1r are the reaction rate constants for 

the forward and reverse reactions of the first half of the reaction while c2 is the rate constant for 

the final half of the interaction. The rate of reaction can only be derived using a set of assump-

tions collectively known as the quasi-steady state assumption (QSSA). In the above scheme, it 

can be reasonably assumed that the overall reaction is limited by the rate of product formation 

step. In other words, 
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݀ܲ
ݐ݀ = 	 ܿଶ ∙ [ܵܧ] = …		݊݋݅ݐܿܽ݁ݎ	݂݋	݁ݐܽݎ . … … … … … … … … … … … . . . … … … … … … … … … … . (5) 

The rate of change of [ES] can be written as, 

[ܵܧ]݀
ݐ݀ = 	 ܿଵ௙ ∙ [ܧ][ܵ] −	ܿଶ ∙ [ܵܧ] − ܿଵ௥ ∙ [ܵܧ] 	… … … … … … … … … … … … … . … … … … … … . . (6) 

The first of the QSSA states that, the concentration of the enzyme-substrate complex does 

not change over time and hence the first derivative, d[ES]/dt, will be equal to zero. Applying this 

assumption to equation (6), we get, 

[ܵܧ]݀
ݐ݀ = 	 ܿଵ௙ ∙ [ܧ][ܵ] −	ܿଶ ∙ [ܵܧ] − ܿଵ௥ ∙ [ܵܧ] = 0	… . … … … … … … … … … … . … … … … … … . (7) 

Solving for [ES] gives, 

[ܵܧ] = 	
ܿଵ௙ ∙ [ܵ][ܧ]
ܿଶ + 	 ܿଵ௥

		… . … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . (8) 

For simplicity, equation (7) can be rewritten as, 

[ܵܧ] = 	
[ܵ][ܧ]
ெܭ

		… . … … … … … … … … … … … … … … … … … … … … … … … … … … … . … … … … . . (9) 

where, KM is known as the Michelis-Menten constant and is equal to the ratio  ((c2 

+c1r)/c1f) 

Substituting equation (8) into equation (5) gives, 

݊݋݅ݐܿܽ݁ݎ	݂݋	݁ݐܽݎ = 	 ܿଶ ∙
[ܵ][ܧ]
ெܭ

		… … … … … … … … … … … … … … … … … … … … … … … … . . . (10) 

Equation (10) is an acceptable and theoretically correct form of reaction rate expression 

except for the fact that the transient concentration of enzyme, [E], cannot be readily measured in 

a laboratory. Hence for practical reasons, it is more desirable to use the [E] as a function of total 

enzyme concentration [Etotal]. This is achieved by using the second QSSA which states that, at 
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any given time during a reaction, the total enzyme concentration is equal to the sum of the transi-

ent concentration and the enzyme associated with the enzyme-substrate complex. Therefore, 

௧௢௧௔௟ܧ = [ܧ] + [ܵܧ] 		… … … … … … … … … … … … … … … … … … … … . … … … … … … … … … … . (11) 

Substituting [E] in terms of [ES], as obtained from (11), in equation (9) gives, 

[ܵܧ] = 	
[௧௢௧௔௟ܧ]} − {[ܵܧ]

ெܭ
	 ∙ [ܵ] … . … … … … … … … … … … … … … … … … . … … … … … … … … . (12) 

Solving equation (12) for [ES] gives, 

[ܵܧ] = 	
[௧௢௧௔௟ܧ] ∙ [ܵ]

[ܵ] + ெܭ
	… . … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . . (13) 

Hence, the rate of reaction becomes, 

	݊݋݅ݐܿܽ݁ݎ	݂݋	݁ݐܽݎ = 	
ܿଶ[ܧ௧௢௧௔௟] ∙ [ܵ]

[ܵ] + ெܭ
	… . … … … … … … … … … … … … … … … … . … … … . … . . . (14) 

The third and final QSSA states that, the concentration of enzyme, [E] is far less than the 

concentration of substrate, or [S] >>> [E], thereby making the maximum reaction rate limited by 

the total concentration of enzyme ([Etotal]). So the maximum reaction rate (Vmax) equals the prod-

uct of c2 and [Etotal]. With these adjustments, the rate equation finally takes form as, 

	݊݋݅ݐܿܽ݁ݎ	݂݋	݁ݐܽݎ = 	
[ ௠ܸ௔௫] ∙ [ܵ]

[ܵ] + ெܭ
	… . … … … … … … … … … … … … … … … . … … … … … … … . . . (15) 

Equation (15) is known as the Michelis-Menten equation and quantitatively relates the in-

itial rate of reaction with the substrate concentration for enzyme catalyzed biochemical reactions. 

This is the simplest reaction scheme for enzyme catalyzed reactions. Other enzyme mediated re-

actions include competitive, uncompetitive and non-competitive enzyme inhibition as well as 

multi-substrate reactions. Needless to say, the rate expressions for those schemes are much more 

complicated than equation (15) but are nevertheless based on Michelis-Menten kinetics. Finally, 

there are some enzymes which do not follow Michelis-Menten type of kinetics and a separate 
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class of kinetics called sigmoidal kinetics is used to describe them. An expression called the Hill 

equation is used to represent the dynamics of such enzymes.  

ߠ = 	
ܵ௡

݇ௗ + ܵ௡ = 	
ܵ௡

ு௡ܭ + ܵ௡ 		… … … … … … … … … … … … … … … … … … … … … … … … … … … . . (16) 

In (16), θ is the fraction of binding sites occupied on the enzyme. ‘S’ is the substrate and 

kd is the dissociation constant for the enzyme. 

Enzymes obeying the Hill equation are generally allosteric in nature and promote co-

operative substrate / ligand binding. A parameter known as the Hill co-efficient (n) determines 

the level of co-operation in binding.  It can be clearly seen from the situations above that a sys-

tem of ODE derived from such kinetics would rarely exhibit a linear relationship and as such its 

analytical solution may be extremely difficult to attain if not impossible. In such situations, nu-

merical methods have to be employed to approximate a solution of the ODE system. Two main 

classes of numerical methods are described below: 

2.1.1 Explicit numerical methods 

The most intuitive and straightforward methods to solve an ODE are the explicit methods 

belonging to a family of methods known as the Runge-Kutta methods. Euler’s method (a.k.a 1st 

order Runge-Kutta method) is the simplest explicit numerical solution available to solve an 

ODE. The mathematical problem can be stated as an initial value problem: Given an ODE of the 

form, 

ݕ݀
ݐ݀ 	= (଴ݐ)ݕ				,(ݕ)݂ = 	 ଴ݕ 		… … … … … … … … … … … … … … … … … … … … … … … . … … … … . . (17) 

it is required to find an approximate value of the function ‘y’ at time t1 so as to ‘simulate’ 

the exact solution of equation (17). If we consider the limit of the differential as Δt  0, 



18 

Δݕ
Δݐ = (ݕ)݂ = 	

ଵݕ − ଴ݕ
ଵݐ ଴ݐ	−

		… … … … … … … … … … … … … … … … … … … … … … … … … … … … … . (18) 

ଵݕ = 	 ଴ݕ + ℎ ∙ …		(଴ݕ)݂ … … … … … … … … … … … … … … … … … … … … … … … … … . … … … . . . (19) 

In general, for i = 1, 2 … n 

௜ାଵݕ = 	 ௜ݕ + ℎ ∙  (20) …...…………………………………………………………..………   (௜ݕ)݂

Equation (20) is the working equation for Euler’s method, where, yi+1 is the value of 

function ‘y’ at time ti+1; yi is the value of ‘y’ at time ti (which is known from previous step); ‘h’ 

is the arbitrarily chosen constant time step equal to ti+1 – ti and f (yi) is the kinetic function de-

rived from the law of mass action. Clearly, equation (7) has to be repeated for ‘n’ steps covering 

the entire time period of simulation, T = n x h. 

Although Euler’s method is extremely straightforward to implement as an algorithm, it is 

also the most impractical of all numerical methods. As can be clearly seen in the above deriva-

tion, the method is most accurate when Δt (or ‘h’) → 0, indicating the necessity of a very small 

time step for it to deliver an acceptable approximation to the exact solution. In doing so, because 

the period of simulation T is constant, the number of iterations ‘n’ can become very large (as h 

→ 0, n → ∞). Although the local truncation error per step is proportional to h2, it can be an accu-

racy nightmare when accrued over large number of iterations. Also, because of the limitation on 

the step size, this method is computationally inefficient. 

The mid-point method (a.k.a second order Runge-Kutta) is more accurate than the Euler 

method. Assuming the problem statement to be the same as before, the equation for the mid-

point method is, 

௜ାଵݕ = 	 ௜ݕ + ℎ ∙ ௛ݕ)݂ ଶ⁄ )   ……………………………………………….……………….…… (21) 

To be able to use equation (9), an additional step to evaluate yh/2 has to be performed.  
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௛ݕ ଶ⁄ = 	 ௜ݕ + 	௛
ଶ
∙  (22) ….……………………………………………………………………   (௜ݕ)݂

Equation (22) is used to evaluate function f (yh/2) which in turn enables the use of equa-

tion (21).  

The advantage that mid-point method has over the Euler method, in terms of increased 

accuracy, comes at a steep price in computational cost. It can be clearly seen that the use of an 

additional step per iteration essentially doubles the computational effort while not providing any 

significant improvement in accuracy (local error is of order h3 compared to h2 for Euler) or step 

size. Unless accuracy is of extreme importance, mid-point method is generally not a good choice 

to solve an ODE. Also, even if accuracy is more important, 4th order Runge-Kutta method is 

generally twice as accurate as mid-point method. 

Runge-Kutta 4th order (RK4) is the most popular explicit method available to simulate a 

system of ODE. The working equation for this method can be written as, 

௜ାଵݕ = 	 ௜ݕ + 	ଵ
଺
	(݇ଵ + 2݇ଶ + 2݇ଷ + ݇ସ)   ………………………………………………….… (23) 

݇ଵ = ℎ ∙  (24) …..……………………………………………………………………………   (௜ݕ)݂

݇ଶ = ℎ ∙ ௜ݕ)݂ + ௞భ
ଶ

)   ………………………………………………………………………….. (25) 

݇ଷ = ℎ ∙ ௜ݕ)݂ + ௞మ
ଶ

)   ………………………………………………………………………..… (26) 

݇ସ = ℎ ∙ ௜ݕ)݂ + ݇ଷ)   ……………………………………………………………………….… (27) 

RK4 has a fourth order global error (O (h4)) and a local truncation error of O (h5). It is 

one of the most accurate explicit methods because of the additional ‘k’ factors which essentially 

work as correctors for the slope obtained for Euler’s method. RK4 also has a problem with being 

computationally intensive but its major criticism stems from its inherent inability to handle ‘stiff’ 

systems of equations. 
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2.1.2 Implicit numerical methods 

It is common in biochemical systems to have some reactions operate at a vastly different 

time scale than other simultaneous reactions. This disparity in time scales translates mathemati-

cally into what is described as ‘stiffness’ in the ODE system. Although an exact definition of 

stiffness does not exist, it is generally observed when the solution of an ODE does not change 

significantly over time but attempting to increase the step-size in order to speed up the simula-

tion causes the solution to become unstable. Explicit methods, regardless of their accuracy, are 

prone to instability when applied to stiff equations. Implicit methods, on the other hand, are un-

conditionally stable and generally faster. 

The backward Euler formula is the most basic implicit method available. Again consider-

ing the problem statement to be the same as in section 2.1.1, the solution equation can be written 

as, 

௜ାଵݕ = 	 ௜ݕ + ℎ ∙  (28) …..…………………………………………………………………   (௜ାଵݕ)݂

A quick comparison of equation (28) with equation (20) reveals that the earlier expres-

sion is ‘explicit’ in the right hand side where all the terms are known beforehand. In (28) howev-

er, the function ‘f’ has to be evaluated at time ti+1 before proceeding. There are several ways to 

handle this challenge but the most common is to replace it with a linear approximation obtained 

from Taylor series. 

The problem with backward Euler is the same as with the forward Euler method de-

scribed in 2.1.1. Although, backward Euler is stable for stiff problems, its accuracy is limited. 

Also, it is much more sensitive to its step-size than other implicit methods. Computationally, 

backward Euler is difficult to encode and the marginal improvement in running time is usually 

not worth the effort. 
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One of the more popular implicit methods is the Adam-Moulton 2nd order method (aka 

trapezoidal rule) whose equation is shown below. 

௡ାଵݕ = 	 ௡ݕ + 	௛
ଶ
(௡ାଵݕ)݂]	 +  (29) …...……………………………………………………   [(௡ݕ)݂

This method enjoys several advantages including stability, speed of computation (be-

cause of large step sizes) as well as accuracy (being a second order method). Its accuracy can be 

drastically improved by combining an explicit method to ‘predict’ the solution and then ‘correct’ 

it using the trapezoidal method. Such methods are called predictor-corrector methods and are ex-

tremely useful for differential equations with complex functions. 

2.2 Stochastic simulation framework 

 Deterministic methods have been extremely useful in modeling biochemical systems and 

have been used by physical scientists to model cellular behavior for several decades. These 

methods, however, are not without limitations (Wilkinson 2006). First, there exist several bio-

chemical systems where the number of interacting reactants is extremely low. A gene regulatory 

system is an excellent example of such a system. The concentration of gene molecules in these 

systems is so low compared to the overall volume of the cell that using concentration units to 

predict the dynamical behavior of the system usually leads to erroneous results. Secondly, some 

biological systems are bi-stable and deterministic simulation in general fails to describe the dy-

namics of such systems (Zhang 2010). More importantly, random fluctuations could be physio-

logically important to the dynamics of the overall cell. For example, failure to capture random 

fluctuations in genetic regulation might interfere with the prediction of protein translation dy-

namics. Thus random behavior in certain situations can actually be a desired property rather than 

anomalous behavior. 
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2.2.1 Exact stochastic simulation 

It is for the need to accurately simulate the biochemical network that stochastic simula-

tion framework was introduced in 1977 by Daniel T. Gillespie.  The underlying logic of a sto-

chastic framework is that biochemical reactions occur due to the random collisions between two 

or more reacting species. The biochemical species in a stochastic model are represented in terms 

of discrete number of molecules instead of concentration and hence the entire system dynamics 

can be updated discretely rather than continuously as in a deterministic framework. The reaction 

rate parameters in this framework are linearly related to the deterministic kinetic parameters and 

serve as hazard functions that identify the probability of a reaction event occurring. If and when 

a reaction event occurs, only the reactants corresponding to that particular reaction are updated 

while others are left unaltered. Multiple runs of this random procedure yield a mean value for the 

state of the system which is then reported. As can be clearly seen, because the system is allowed 

to evolve discretely in time, the dynamics of species present in lower numbers of molecules (and 

hence lower concentration) can be effectively captured. From a mathematical standpoint, the sto-

chastic framework attempts to adopt a Monte Carlo approach to solve the chemical master equa-

tion (Gillespie D. T., 1992). 

߲ܲ(݊, ,଴݊|	ݐ (଴ݐ
ݐ߲ = 	෍ൣܿఓℎఓ൫݊ − ܲ൫݊	ఓ൯ݒ − ఓݒ , ,଴݊|	ݐ ଴൯൧ݐ

ெ

ఓୀଵ

−෍ܿఓℎఓ(݊)ܲ(݊, ,଴݊|	ݐ [(଴ݐ
ெ

ఓୀଵ

			 . (30) 

Equation (29) describe the rate of change of probability of system ‘n’ having ‘M’ reac-

tions each having parameters ‘c’ and ‘h’. The solution of the equation (30) as obtained by the 

stochastic simulation algorithm (SSA) is a probability density function that is a product of two 

mutually exclusive and statistically independent random events. The first event is the random 

selection of time step at which the chemical systems evolves and the second event is the random 
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selection of the reaction event that brings about this evolution. The probability functions for the 

first event (p1) is an exponential decay function with a decay factor of ‘a’ which is a function of 

the parameters ‘c’ and ‘h’. The function for the second event (p2) is a linear function of ‘c’ and 

‘h’ and is similar to the one used by the roulette wheel selection process of a genetic algorithm. 

ଵ݌  = ܽఓ݁ି௔బఛ		ܽ݊݀		݌ଶ = 	 ௖ഋ௛ഋ
௔

 

As the two events are mutually exclusive and independent, the total probability will be 

given by ܲ = 	 ଵ݌ ∙  	.ଶ݌

In this way, the next reaction chosen is always the one having either the most number of 

molecules or the one that has the highest propensity based on reaction rate constant or both. On 

the other hand, the time step is selected from a continuous function rather than from a discrete 

one and that makes this method an ‘exact’ solution to the chemical master equation (Kierzek A. 

M., 2002). The algorithm is implemented by the following steps: 

 Initialize the system with number of reactions, number of initial molecules for every reac-

tion, the type of reaction and the parameters ‘c’ and ‘h’ for each reaction. 

 Use the parameters to calculate the hazard functions for each reaction. 

 Pick two random numbers from a uniform distribution. 

 Use the first random number to generate a time step τ according to the distribution p1 

 Use the second random number to generate the index for the next reaction according to p2 

 Update the system according to the reaction stoichiometry. 

 Update the hazard functions for each reaction. 

 Repeat the above steps until end of time T  

The algorithm has to be run several times to produce trajectories that generate statistically 

significant results. 
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2.2.2 Approximate stochastic simulation 

Computational time can be a drawback for exact stochastic simulation. To tackle this 

problem, methods that attempt to combine the best of both deterministic and stochastic frame-

works called hybrid methods are developed (Salis, 2006). Hybrid methods operate on the prem-

ise that any reaction system can be categorized into a subset of ‘fast’ (high concentration) and 

‘slow’ (lower concentration) reactions. Both subsets are then simulated simultaneously using the 

appropriate simulation method i.e. deterministic for ‘fast’ and stochastic for ‘slow’ reactions. For 

a more information on hybrid methods, the work by Bentele M, (2004) provides a much detailed 

description. Hybrid methods tend to sacrifice accuracy of simulation results for gain in computa-

tional speed and are hence known as approximate methods. Hybrid methods are not the only ap-

proximate stochastic solutions available. The Tau-leaping algorithm and slow-scale stochastic 

simulation algorithm are just a couple of examples of attempts to provide approximate solutions 

to stochasticity. For further details the reader is referred to a review by Daniel T. Gillespie (Gil-

lespie D. T., 2007). 
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3 DEVELOPMENT OF THE CROSSOVER METHOD 

3.1 Why develop a new computational method? 

3.1.1 The need for multi-scale modeling 

Studying biology at a systems level to investigate emergent network properties encom-

passes a wide spectrum of time scales and physiological detail and as such mandates the use of 

multi-scale modeling techniques to construct mathematical models (Meier-Schellersheim M. et. 

al., 2009). For example, a seemingly trivial problem of testing the role of a particular enzyme in 

an organism would have to include description of genetic regulation and protein-protein interac-

tion at an intracellular level as well as cellular dynamics at a cell population level. The corre-

sponding time scale of reactions can possibly range over a few orders of magnitude and address-

ing this layer of complexity is imperative for effective systems biology. 

Multi-scale modeling is typically implemented via either a bottom-up or top-down meth-

od. A bottom-up method starts with the molecular interactions at an intracellular level and makes 

its way to the physiological function while top-down method goes the other way. Both methods 

have their own benefits. While bottom-up methods seem to be an intuitive approach to build a 

model, the biochemistry of a significant number of biological processes is not very well charac-

terized at the cellular level. This forces the model building efforts to stall at the very elementary 

stage even if the ultimate physiological phenotype is well understood. Conversely, if the bio-

chemical reaction parameters are known, a bottom-up approach can be used to construct a com-

prehensive model to generate meaningful experimental hypotheses about the physiological func-

tion. A top-down approach, on the other hand, is designed to take an observed higher level phe-

notype and make testable hypotheses about its underlying molecular mechanism. In this ap-

proach, a model is first built to replicate the higher level observations and then compounded with 
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additional details at every relevant layer of biological complexity until the lowest level of detail 

is reached. Hypotheses are generated and tested systematically at every level to determine the 

optimum path to the following layer. This approach, because it starts from the actual observation, 

is reliable in regenerating the phenotype. However, at sub-cellular level, there are several chan-

nels to achieve a desired experimental observation and therefore it is difficult to pin-point the 

exact pathway or mechanism responsible for the observed phenomenon. A typical systems biol-

ogy project actually involves a combination of both approaches and the experimental output to 

form a hybrid solution. Regardless of the approach used, it is clear that a systems biology appli-

cation has to account for multi-scale complexity as it is the only way to correctly investigate 

emergent network properties. 

The issue of multi-level complexity becomes even more critical for studying complex 

diseases where the mechanism of pathogenesis itself is complex across biological strata (Vicini 

P., 2010, Dewey F. E., 2011, Hatzikirou H., 2011). One of the most insightful descriptions of this 

issue is observed while studying genesis and metastasis of cancerous cells (Hatzikirou H., et. al., 

2011). As tumor cells originate from a single cell but grow to form a mass of tissue made up of 

an ensemble of various cell types, it is imperative to focus on the subcellular scale during model-

ing tumor genesis. At this scale, in addition to carcinogenic biochemical mechanisms, one must 

also consider other factors that influence cancerous behavior such as epigenetic regulation. Next, 

at the cellular level the interactions between tumor cells and their microenvironment such as in-

tercellular signaling and transport become dominant and have to be accounted for in the model. 

Although the spatial scales at these levels do not present any complexity, the time scales do and 

the modeling framework has to be able to handle it. Finally, at the tissue scale, the spatial scales 

become important as do the time scales and thus provide the ultimate complexity from a model-
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ing perspective. Using agent based modeling in conjunction with sensitivity analysis to predict 

therapeutic targets for cancer is another recent area where multi-scale modeling is applied (Wang 

Z., et. al., 2011). The use of multi-scale modeling is also relevant in the area of diabetes research. 

For example, the interplay between insulin secretion on a physiological scale and the inter-

cellular events on a higher scale can be understood by simulating models incorporating an inte-

grated scale of detail (Pederson M.G., et. al., 2011). Most of the common heart diseases like my-

ocardial ischemia and arrhythmia can be studied most effectively by looking beyond the simple 

genetic association. Building integrative models of mechanism of ventricular arrhythmia in a 

healthy as well as diseased heart, models for initiation of arrhythmia and image-based models are 

all examples of extensive modeling efforts spanning multiple scales (Trayanova N. A. et. al., 

2009). Such efforts not only help understand the complex mechanisms of heart disease but also 

allow testing the efficacy of antiarrhythmic drugs at multiple biological levels (Dux-Santoy L. et. 

al., 2011). 

The success of systems biology as a paradigm is inherently coupled with the necessity to 

develop integrative multi-scale models. Complex diseases, especially, can be studied effectively 

only with such a multi-scale approach. While it may seem intuitive to use multi-scale models as 

an antithesis to reductionism, it is still a fairly complicated process which is not very well under-

stood. A bigger problem, however, is the lack of an appropriate computational framework to 

simulate such a multi-scale model. To encourage researchers into applying systems biology, it is 

absolutely essential for the computational biology community to provide them with the tools that 

make the effort of building multi-scale models worthwhile. As discussed earlier, building a quan-

titative model and its subsequent simulation are tied together and one is useless without the oth-

er. While one can argue in favor of developing a simulation framework to handle mathematical 



28 

complexities in isolation from building a model, the reverse is not true. It is quite likely that the 

frequent influx of novel experimental data from high-throughput biological experiments will 

have a qualitative impact on the nature of the model being simulated. This would require having 

to rebuild the model from scratch as none of the current infrastructure supports partial modifica-

tion of any model. For real time systems biology applications that have the capability to support 

experimental research, it is highly imperative that an appropriate simulation mechanism be de-

veloped that can inherently adapt to the complexities presented by any biological model multi-

scale or not. 

3.1.2 Inadequacy of existing simulation frameworks 

As discussed in the previous chapter, a plethora of integration methods employing deter-

ministic, stochastic and hybrid techniques exists to simulate mathematical models. However, 

their suitability for systems biology, particularly in context to multi-scale modeling, is woefully 

inadequate. Here we look at the most popular methods and discuss how their shortcomings can 

limit the potential of systems biology. 

Limitations of deterministic methods: 

The continuous deterministic methods based on ODEs are the most popular methods to 

simulate a biological network. All methods in this family are easy to implement and almost all 

physical scientists are familiar with them. These methods are generally robust and can handle a 

wide range of complex kinetic expressions. In fact, these methods would be a perfect fit for sys-

tems biology if not for one glaring disadvantage: deterministic methods cannot replicate the ran-

dom fluctuations that are ubiquitous in biomolecule copy numbers. Such randomness also re-

ferred to as stochasticity or ‘noise’ is known to play very important role from a biological point 

of view. In the last decade a considerable body of work has been dedicated towards understand-
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ing how noise at genetic and molecular level leads to variability in gene expression and hence 

protein translation (Stewart-Ornstein J. et. al., 2012, Munsky B. et. al. 2012). The effects at mo-

lecular level are often transduced to the metabolic level and therefore it is critical for any simula-

tion method to acknowledge the existence of such noise. Logically it could be deduced that in 

multi-scale modeling, where the models often start with a description of lower level phenome-

non, ignoring stochasticity can lead to erroneous results further up the levels. Deterministic 

methods are fueled by kinetic rate expressions which do not change with time or with concentra-

tion and hence output a smooth solution to the system of ODE. The parameters of the kinetic ex-

pressions are often a representation of the average behavior of the system and hence the noise 

within the system is impossible to capture by pure continuous functions. The amplitude of these 

random fluctuations is generally not very high and at higher concentration of biomolecules the 

fluctuations may not make a significant impact thereby making the deterministic solution closely 

match the experimentally observed values. At lower concentration, however, the fluctuations can 

appear dominant and a deterministic solution may not seem satisfactory. For example, if the 

numbers of molecule X are fluctuating between 1000 and 1001, a deterministic value of say 

1000.30 seems like a close match. If, however, a molecule Y is varying between 1 and 2, the de-

terministic solution of say 0.95 seems insufficient and maybe even incorrect.  

To address this issue, there have been efforts directed towards using stochastic differen-

tial equations (SDE) to model the biochemical reactions. While a detailed discussion about SDEs 

is beyond the scope of this work, it is critical to note that SDEs act by simply adding a ‘noise’ 

term to the regular differential equation and integrating it as an Ito differential term. The results 

are encouraging at higher concentration where the output does become noisy but at very low 
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concentration of less than 3 molecules, the results are generally inaccurate. ODE or SDE based 

methods are therefore unsuited for systems biology based applications. 

Limitations of stochastic methods: 

One of the key developments in the 1970s, with regards to biochemical simulation, was 

the development of a Monte Carlo method to accurately solve the chemical master equation. 

Popularly called the Gillespie algorithm after its developer Daniel T. Gillespie, this method pre-

dicts which biochemical reaction, from a given biochemical system, is “most likely” to occur and 

the time at which it will occur. The fundamental idea behind this method is that if we reduce any 

biochemical system to set of elementary molecular reactions it is possible to simulate, within ac-

cepted statistical boundaries, the Brownian motion of molecules. In this way, it ensures that any 

random fluctuations that might arise because of the random motion of molecules are effectively 

captured. 

There are two critical problems, however, regarding its applicability to systems biology. 

First, the Gillespie algorithm derives its statistical parameters from the available kinetic data for 

the simulated reactions. There is an innate assumption here that these kinetic data are readily 

available for every single reaction and that they are accurate. This may not be always true. Ex-

perimental determination of the kinetic parameters is sometimes not possible for certain reactions 

while the ones that are possible might have experimental errors in them. The quality of stochastic 

simulation trajectory is then dependent on the quality of kinetic data available just as in the de-

terministic method. During the process of modeling if the modeler encounters missing kinetic 

data, it is a common practice to lump the missing reactions together and generalize its behavior 

with an approximate kinetic expression. The Michelis-Menten kinetic expression is an excellent 

example of such an approach. The Gillespie algorithm cannot be used in the case of Michelis-
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Menten type of kinetics without significantly sacrificing the accuracy of the solution. It is rea-

sonable to assume that in a complex multi-scale model, Michelis-Menten type of kinetic rate ex-

pressions would be more of a norm than exception and the stochastic method will fall far short of 

need. 

Second, and more important, issue is with the computational efficiency of the Gillespie 

algorithm. This method updates the biochemical system one reaction at a time based on the pro-

pensity of the reaction to occur. This is a major handicap for system with large number of reac-

tions especially when a system scales to a larger size. Another issue is the manner in which the 

time step is chosen for the occurring reactions. As shown in figure 2, the algorithm randomly 

picks a number from an inverse exponential distribution. The scaling factor (λ) of the distribution 

depends upon the kinetics of the reactions and hence the time step cannot be adjusted to make 

the simulation run faster. Any attempt to select a bigger time step in essence jeopardizes the ac-

curacy of the method. 

Moreover, stochastic simulation methods are not built to handle ‘stiff’ differential equa-

tions. Stiffness in an ODE system occurs when a majority of the reactions evolve very slowly 

(low reaction rate) compared to a few fast ones (high reaction rate). As a result, the time evolu-

tion of the system slows down considerably. The reason for this slow down can be explained 

with the help of figure 2. 
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Figure 2 Comparison of the probability distributions for two hypothetical biochemical 
systems used for predicting the time-step in the Gillespie algorithm. System # 2 evolves slower 
than system # 1. 

 

The two curves in figure 2 represent the probability distribution of the time step for sys-

tems 1 & 2. Assume that the two biochemical systems are evolving independently of each other. 

Also, assume that system # 2 has a reaction that evolves much faster than others making the scal-

ing factor λ higher than system # 1 which consists of reactions with rate constants in the same 

order of magnitude. The Gillespie algorithm randomly chooses a value (μ) from this distribution 

as its time step for the respective system. The expected value or the value most likely to be cho-

sen for the distribution can be clearly seen to be larger for system # 1 than system # 2. In other 

words, system # 1 is more likely to choose a larger time step and hence evolve faster than system 

 
λ depends on reaction rate of  

the fastest reaction. 

Expected value (mean) 

System # 

System # 
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# 2. In the above example, system # 2 can be described as being “stiff” and is a common occur-

rence in multi-scale models. 

Limitations of hybrid methods: 

The accuracy afforded by pure stochastic methods such as the Gillespie algorithm is im-

portant for a variety of simulation based applications. To overcome the drawbacks outlined in the 

previous section, there has been a rapid development of hybrid methods. These methods can usu-

ally be divided into two categories: The algorithms in the first category classify the biochemical 

system into groups of fast and slow reactions and treat them with either deterministic (fast) or 

stochastic (slow) methods. The problem with such a classification is that it is not entirely clear as 

to what criteria is suitable to justify such a division. Also, in some instances it might be im-

portant to study fluctuations for fast reactions and it would be impossible to do so because they 

are solved with a continuous method. Additionally, for stiff systems only a few reactions are fast 

which means the total computational efficiency is still controlled by the slow stochastic reactions 

thereby nullifying the apparent speed up in performance. The other category consists of methods 

that modify the time step calculation in the Gillespie algorithm. These methods generally re-

ferred to as ‘Tau-leaping’ methods approximate a time step for the Gillespie method without los-

ing the statistical significance of the outcome. The limitation of such an approximation is two-

fold: 1) the use of an “approximation” step for a stochastic algorithm is essentially a sacrifice of 

accuracy for gain in performance. This loss of accuracy defeats the purpose of using stochastic 

simulation in the first place. 2) Even if we accept that the loss of accuracy is minimal, which is 

true for some cases, question marks still remain on whether the performance enhancement is 

scalable with the size of the system. Most of the Tau-leaping methods are tested on smaller hy-
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pothetical biochemical pathways and so their adaptability for large systems biology applications 

is open for debate. 

To summarize, none of the methods described above really have an all-round suitability 

when it comes to simulating multi-scale systems biology models. It is extremely important for 

the integration method to be unbounded by the issues of spatial and temporal complexity which 

is a hallmark of multi-scale models. At the same time, in spite of state-of-the-art computational 

infrastructure available, the computational performance cannot be ignored. It worth noting, how-

ever, that none of these methods were initially developed with systems biology as a focal point 

and the scientific community as a whole is merely trying to adapt them to suit the new paradigm 

of systems biology. In that context, it would be more prudent to develop a simulation technique 

with the sole focus on simulating integrative models. 

3.2 The crossover method 

3.2.1 Rationale 

The lack of a single unified integration method for solving the ODE system of multi-scale 

models is a hindrance in the path of exploiting the full potential of systems level biology. A 

quick glance over the various available methods reveals that, the deterministic method is the only 

method that comes close to the ubiquity desired in multi-scale simulation. In addition, the com-

putational performance of deterministic method is beyond any debate as implicit methods allow 

a system to be simulated with large time steps. Given this background it is reasonable to propose 

that if the deterministic method is somehow manipulated to include stochastic fluctuations, at 

least qualitatively, then it can be an ideal choice for simulating a multi-scale model. Hence, the 

most important questions to be asked in this investigation are: can we develop a method that op-

erates within the premise of the deterministic framework yet outputs a trajectory that includes 
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random fluctuations? If we can, will it be computationally faster than the stochastic simulation 

algorithm? The formulation of such a method is not trivial as there are several ramifications to 

introducing a deliberate modification. In the following section, a detailed analysis of how such a 

task could be achieved is presented in terms of the development of “the crossover method”. 

3.2.2 Methodology 

Concept of a Bernoulli trial: 

The conceptual basis of the crossover method lies in an event termed as a Bernoulli trial. 

A Bernoulli trial or event is a statistical experiment the outcome of which has only two possible 

values. Figure 3 shows the graphical depiction of Bernoulli trial examples. Every such trial or 

experiment is an independent event that can be repeated any number of times without affecting 

the outcome of previous or future events. The outcomes always have a fixed probability of oc-

curring and that value is independent of the number of trials conducted. A coin flip is the best 

example of a Bernoulli trial. When a coin is flipped only two outcomes are possible: a heads or a 

tails. Each result has a constant probability of 50% or 0.5 of coming up each time. Another ex-

ample would be that of rolling a dice. A roll of a dice has only two possible outcomes: either the 

desired number comes up or it doesn’t. The probability of the desired number coming up each 

time the dice is rolled (positive outcome) here is 1/6 and the probability of something else com-

ing up (negative) is 5/6. These probability values however are independent of each trial which 

means regardless of how many times the dice is rolled, the outcome probability remains constant. 
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Figure 3 Illustration of a Bernoulli trial. A coin toss and a roll of dice are both examples 
of a Bernoulli event. 

 

Modification of the deterministic framework with Bernoulli trial: 

The rationale behind the crossover method is actually quite straightforward. It is common 

knowledge that a deterministic method generates trajectories which are continuous curves made 

up by real numbers. One way to force a fluctuation in an otherwise continuous function is to 

round up or down a fractional real number encountered at every time step. This process of round-

ing is not a trivial step because of its mathematical implications. The crossover method achieves 

this by performing a Bernoulli trial at every time step of the deterministic solution where the out-

come of the event is either rounding up (success) or rounding down (failure) the real number. It 

can be shown that if a continuous state variable is to be replaced by its discrete equivalent the 

only way to do it is to have a series of Bernoulli trials with probability being the fractional part 

of the real number. This can be verified by elementary statistical theory. If large enough Ber-

noulli trials are conducted with the fractional part of the real number, the binomial distribution 

converges to a normal distribution and the expected value of such a distribution comes out to be 

the average of all outcomes which will be the original real number itself. 
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Figure 4 Illustration of the use of Bernoulli trial to modify a deterministic framework. 
 

Consider the example in figure 4. Say a continuous trajectory value of 3.72 needs to be 

discretized. A Bernoulli trial is conducted with the fractional part i.e. 0.72 as the probability and 

an outcome of either 3 or 4 is obtained. If we conduct enough trials and look at the average ex-

pected outcome, it would be 3.72. Thus, the crossover method essentially replaces a continuous 

value by a set of discrete integers averaging to the continuous value. 

Mathematical basis: 

 

Figure 5 Schematic comparison of continuous and exact stochastic solutions to a system 
of differential equations. δt1 and δt2 are the errors introduced in the time step ‘t’ of the continu-
ous solution by the crossover method. 
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The simplistic description of the crossover method begs for a more formal and mathemat-

ically rigorous definition. There are several ways to do so: First, observing the two trajectories of 

figure 5, it can be noted that, assuming both trajectories are solutions of the differential equa-

tions, introducing error by rounding up or down the deterministic number is equivalent to intro-

ducing an error (t+δt1 or t-δt2) in the time step of the numerical method. For the solution of the 

crossover method to be one of the true solutions of the differential equation, the ‘rounded’ step 

size should correspond to a solution of the chemical master equation which is obtained by the 

stochastic simulation algorithm. The standard error in such a rounding is 
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Thus, as number of trials increase, the error associated with this modification goes down 

and eventually approaches the exact stochastic result. In other words, the solution of a crossover 
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method is mathematically viable and bounded by the deterministic solution on one end and the 

stochastic on the other. 

More support can be obtained is found in the theory of stochastic differential equations. 

A stochastic differential equation is of the form, 

   noisetsf
dt

dSi  ,    …………………………………………………….………………… (31) 

Where Si is any variable and f (s,t) is the function to be integrated. The RHS of equation 

(31) is made of two terms: a regular function that is to be integrated (i.e. f(s,t)) and a noise term 

to add stochasticity. The equation can then be integrated as 
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Where, W (t) in equation (33) is the white noise. The first term on RHS is a regular inte-

gral while the noise term integral is called an “Ito integral”. A detailed discussion on Ito calculus 

is beyond the scope of this work, however, the integral can be solved to give a product of square 

root of the time step and a normally distributed random number. So the solution to the integral 

looks like, 
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Equation (34) is known as the Chemical Langevin equation and the second term on RHS 

is the mathematical representation of the Brownian motion. In the case of crossover method an 

equivalent expression looks like, 
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While a binomial distribution can never be confused with Brownian motion, an argument 

can be made that with large number of trials, a binomial distribution can be approximated by a 

normal distribution. Thus, although not an exact solution but crossover method does utilize a 

mathematically valid avenue to introduce randomness in the solution. 

Finally, there is the concept of shadowing lemma which can be borrowed from dynamical 

systems theory. In a chaotic system, a solution generated by a numerical method always has 

rounding off errors in it. Therefore, to ascertain the validity of such a solution it has been proved 

that for a fixed bounded error ε at every time step of a numerical method, there exists a true solu-

tion that ‘shadows’ the numerically generated one (Grebogi C et. al., 1990). In case of the cross-

over method, the deterministic solution can be thought of as the true solution that shadows the 

one generated by crossover method. 

Algorithm development and analysis: 

The fundamental premise of the crossover method rests on the fact that deterministic 

methods are capable of accurately simulating biochemical networks across a varying spectrum of 

species concentration and time scales provided that its accuracy at lower concentration is not 

compromised. As will be seen, this requirement can be satisfied by incorporating a controlled 

degree of randomness in an otherwise fully deterministic simulation. The overall method can be 

partitioned into two stages: In the deterministic stage, the rate of change of a reacting species, A, 

can be given as, 

dA/dt = ∑ f (ki, [R]i) - ∑ f (kj, [R]j ) .......................................................................................... (36) 

Where ‘i’ is any reaction producing species A and ‘j’ is any reaction consuming ‘A’. ‘k’ 

is the reaction rate constant of the respective reaction and [R] is the concentration of the reactants 

for that reaction. ‘f’ is the deterministic function that is dependent on the type of the reaction. For 
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simplicity, if we consider a system where i = j =1 and the reaction is first order, the equation can 

be rewritten as, 

dA/dt = f 1(k1, R1) – f 2(k2, R2)  .................................................................................................. (37) 

The integral of the above ODE for a known time interval will yield the solution of ‘A’ at 

the end of that interval. As most of the functions of interest on right hand side of the above ODE 

are analytically intractable, numerical methods are employed to approximate the solution of ‘A’. 

In the present work, we have used forward Euler’s method to maintain simplicity and ease of 

implementation of the solution. In Euler’s method, for a given infinitesimal time step dt, approx-

imated by ∆t = t1 – t0, the change in concentration of A can be given as ∆A = A1 – A0. The con-

centration of reactants can also be expressed as number of molecules (N), if the reaction volume 

is known. So the ODE can now be changed to, 

∆A/∆t = f 1(k1, N1) – f 2(k2, N2) ................................................................................................. (38) 

∆A = f 1(k1, N1)* ∆t – f 2(k2, N2)* ∆t ......................................................................................... (40) 

∆A = D1 – D2 ………………………………………………………………..…………….…. (41) 

where D equals the product f (k, N)* ∆t and signifies the partial change in species A due 

to a single reaction. Clearly, summation of all partial changes in species A will eventually yield 

the net change in ‘A’ for the given time step. So, 

A1 = A0 + ∑ D ……………………………………………………………………………..… (42) 

It can also be noted that the function f (k, N) is a continuous function and hence the result 

of D will be a continuous value (real number) as well. This is undesirable from a physical stand-

point because it is unreasonable for the number of molecules of any species to be anything other 

than discrete integers. This requirement necessitates the inclusion of a stochastic effect to the so-

lution. 
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The second stochastic stage simply seeks to determine the integer value that D might at-

tain based on the fractional value predicted by the deterministic step. This is achieved by con-

ducting a Bernoulli trial with the fractional part of the real number, obtained in the previous step, 

as the probability of success. A true outcome of the trial rounds up the real number of D to the 

nearest integer and a false outcome rounds it down. For instance, if the real number obtained for 

D1 is 1.26 then, a Bernoulli trial with probability 0.26 will be conducted. A true outcome will 

assign D1 with 2 and a false outcome will assign it with 1 thereby ensuring D1 to be always an 

integer. It can be clearly seen that the physical significance of such a Bernoulli trial is to deter-

mine whether or not a reaction has occurred as ‘D’ represents partial change in the state of spe-

cies ‘A’ due to a single reaction. The method can be generalized in the following simple algo-

rithm.  

 Formulate the deterministic functions (based on kinetics of the reaction) for all reactions 

in the network. 

 At time t = 0; Initialize the reactant species with their initial number of molecules. 

 Assume a time step small enough for using Euler’s method. 

 Compute D values for all reactions based on their deterministic functions and the time 

step. 

 Conduct Bernoulli trials on all ‘D’ values and update the D values based on outcome of 

the trial. 

 Update reactant species by summing up their respective D values and report the results.  

 Repeat steps 4 thru 6 until t < Tmax (total simulation time). 
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The method detailed above is subject to two constraints that ensure the law of mass con-

servation is not violated. 

 The stoichiometry of the reactions should be conserved. 

 The number of molecules of any species at any time should not be less than zero. In other 

words, if A1 computes to be negative in the previous example, it should be constrained to 

zero. 

There are two points that need to be addressed in the analysis of the crossover algorithm.  

First, it is necessary to show that the use of a simple Bernoulli trial introduces sufficient random-

ness, and second, it is necessary to show that the conversion between microscopic scale, i.e. 

numbers of atoms, and macroscopic scale, i.e. concentrations, does not introduce errors. 

Fluctuations in a system governed by Bernoulli trials follow the binomial distribution.  

The variance of the binomial distribution follows np∙(np-1), where n is the number of trials, and 

p is the probability associated with the trial.  For any non-zero p, the limit in large n of the vari-

ance is (np)2 which rises to infinity.  Therefore, even this simple stochastic step is sufficient for 

the model system to visit any accessible state. 

Conversion between macro- and microscopic systems can be analyzed as well. Under the 

Grand Canonical Ensemble, the expected number of molecules of a chemical species is estimated 

by taking an expectation over an exponential distribution defined in terms of the chemical poten-

tial (μ), a constant expected kinetic energy or temperature, and other physical terms as needed for 

the specific system.  The chemical potential describes the difference in free energy associated 

with the creation or destruction of a chemical species.   

        The expected value for the number of molecules of type R is (by definition as μ is 

adjusted to make the expected value correct): 
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where k the Boltzmann constant, Z is the partition function that normalizes the distribu-

tion and the sum is over all possible values of Discrete algorithms for simulation use an ODE 

estimate of d<R>/dt .  By definition the expected value of dR/dt over the molecular distribution 

is given by: 
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Taking the derivative of equation (43) results in  
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dtdRktdtRd ///  ……………………………………………………………………... (46) 

Equation (46) shows that the expected value of the derivative of <dR/dt> and the deriva-

tive of the expected value of d<R>/dt are related by a constant. Since they are linearly related, 

changes in macroscopic and microscopic pictures are directly comparable. 
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4 TESTING AND VALIDATION 

The crossover method outlined in the previous chapter was used to study the dynamics of 

a variety of biochemical systems including both hypothetical systems and experimentally veri-

fied ones. The algorithm was implemented as a C + + code adhering to the object-oriented prin-

ciples. The choice of C + + over other languages such as Python and Java was based on the abil-

ity of C + + to present a strongly typed language platform to reduce code ambiguity and its inte-

gration into the Linux system. A well-stocked standard reference library and prior familiarity al-

so played a role in the eventual selection. Having said that, any of the programming languages 

including either Python or Java, could have been used to develop this program. The program ac-

cepts the model parameters and other relevant data from flat file or directly from the user and 

writes the results into a ‘.csv’ file to facilitate further analysis by analytical software such as MS 

Excel and Gnumeric. The entire program was developed on a Red Hat Linux distribution using 

‘vi’ as the editor and ‘gcc’ as the compiler. Wherever appropriate, the stochastic simulation algo-

rithm was also written in C + + and implemented on the same system. Other times, the stochastic 

simulator from the software package ‘Dizzy’ was used to perform exact stochastic simulation. 

Software called XPPAUT (http://www.math.pitt.edu/~bard/xpp/xpp.html) was used to perform 

deterministic simulation using either the Euler method or Runge-Kutta method. 

4.1 Specific Aim 1 

Can the crossover method qualitatively recreate the trajectories generated by the 

stochastic simulation algorithm without compromising the biological relevance of the fluc-

tuations? 

Rationale: Stochastic simulation algorithm (SSA) can recreate the random walk of mole-

cules and thus capture the random fluctuations in a biochemical reaction that may or may not be 
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relevant from a physiological standpoint. Any new method has to be able to match this capability 

at least on a qualitative level. The purpose of this experiment was to test if the crossover method 

can generate the required trajectories and capture the relevant fluctuations. This can be achieved 

by using both the SSA and crossover method to simulate the same model and compare the output 

trajectories. 

 

Figure 6 The scheme for an auto-regulatory gene network. The dimer negatively regu-
lates the gene. 

 

Procedure: The auto-regulatory network is a simple example of a mostly feed-forward 

loop coupled with a feedback regulator. It is a classic low concentration hypothetical biochemi-

cal system first used by D.J. Wilkinson (Wilkinson D. J. 2006) to demonstrate the importance of 

stochasticity in biochemical pathways. In this pathway, Gene, RNA, monomer and dimer are in a 

feed forward sequence where the concentration of any species depends upon the one before it. 

The dimer however negatively regulates ‘gene’ and creates a feedback loop. This example net-

Gene

RNA

Monomer

Dimer
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work was used to test if the crossover method provides biologically relevant random fluctuations. 

The network consists of eight reactions and five species. The reaction rate constants (based on 

number of molecules) and the deterministic functions for these reactions are as reported in Table 

1. 

Table 1 Reaction details and kinetic parameters for the Auto-regulatory gene network 
Description Reaction Rate con-

stant 
(k) 

 f (k,N) for 
crossover method 

 
Transcription 

 
Gene  Gene + Rna 

 
1 

 
0.01*Gene 

 
Translation 

 
Rna  Rna + Monomer 

 
10 

 
10* Rna 

 
Dimerization 

 
2 Monomer  Dimer 

 
0.01 

1*Monomer*Monome
r 

 
Dissociation 

 
Dimer  2 Monomer 

 
10 

 
1*Dimer 

 
Complex formation 

 
Gene + Dimer  
Gene.Dimer 

1  
1*Gene*Dime

r 
 

Complex dissociation 
 

Gene.Dimer  Gene + 
Dimer 

 
1 

 
10*Gene.Dime

r 
 

RNA degradation 
 

Rna  0 
 

0.1 
 
0.1*Rna 

 
Monomer degradation 

 
Monomer  0 

 
0.01 

 
0.01*Monome

r 
 

Results: The network was simulated with initial conditions of 0 molecules for all species 

except for the species ‘Gene’ which was equal to 10 molecules. The reaction volume was as-
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sumed to be 1E-15 liters. Figure 7 (left panel) shows the time course evolution of all species in-

volved in this network obtained from a single run of the crossover method (∆t = 0.001) and com-

pares it with the solution obtained from the SSA (single run of direct method) and deterministic 

method. The right panel of Figure 7 shows the mean behavior of the species from multiple runs. 

It is apparent that the solution from the crossover method is in reasonable agreement with the 

other two methods.  
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Figure 7 Results of a single run (left panel) and median of 9 runs (right panel) 
of crossover method (red) compared with the results from SSA (blue) and determin-
istic (black) method. 
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To test for the stoichiometric consistency of the crossover method, the solution of species ‘Gene’ 

and ‘Gene.Dimer’ is plotted in figure 8. As expected, the two solutions are mirror images of each 

other (figure 8 left) and their sum is always 10 molecules (figure 8 right). This is a direct 

consequence of the fact that because species ‘Gene’ operates in a closed system (i.e. there is no 

external production or degradation of ‘Gene’), its net concentration inside the system represented 

by ‘Gene + Gene.Dimer’ should remain constant throughout the course of the simulation. 

Finally, figure 9 demonstrates that in spite of being based on deterministic functions, the 

controlled randomness introduced by the Bernoulli trials allows the crossover method to reflect 

those fluctuations (figure 9 right) which are routinely observed in stochastic simulation (figure 9 

left) but completely missed by the deterministic simulation. 

 

Figure 8 The sum of ‘Gene’ and ‘Gene.Dimer’ stays constant throughout the simulation. 
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Figure 9 Dimer (bottom) responds to the random fluctuations in RNA (top). These sto-
chastic effects (dotted ovals) that are normally observed in SSA (left panel) are also observed in 
the crossover method (right panel). 

 

4.2 Specific Aim 2 

Will the crossover method be able to handle the concentration transitions within the 

model during simulation? 

Rationale: It is a requirement of systems biology that any method applied to multi-scale 

modeling has to be able to transition between systems of varying concentrations, especially since 

none of the existing methods do so. The purpose of this experiment was to test if the crossover 

method faithfully simulates the trajectories in accordance with the concentration regime of the 

model. This can be done by applying the deterministic, SSA and the crossover method to the 

same biological model and compare the solution trajectories, first with the deterministic method 

in a high concentration zone and then with the SSA in a lower concentration zone. 
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Procedure: We applied the crossover method to a high concentration system which de-

scribes a dimerization pathway. This model system was used by Gillespie D. T. to demonstrate 

his Tau-leap algorithm. The rationale behind using a high concentration system was twofold: 

First, we wanted to test the crossover method on a model in which the macroscopic behavior of 

the system was not dependent upon the microscopic stochastic changes. Such dependency was 

prevalent in the auto-regulatory gene network of the previous section, where the evolution of the 

dimer (higher concentration) was dictated by the fluctuations of RNA (present at lower concen-

tration). The current model allowed us to test the crossover method without the influence of 

background random fluctuations. Second, we wanted to test if the solution from the crossover 

method would qualitatively resemble a stochastic trajectory when the high concentration system 

eventually transitions to a lower concentration. The system details are described in table 2. 

Table 2 Details of a dimerization pathway 
Description Reaction Rate constant 

(k) 
 f 

(k,N) for 
crossover 
method 

 
Degradation 

 
S1  0 

 
1 

 
1*S1 

 
Dimerization 

 
2 S1  S2 

 
0.002 

 
10*S1

*S1 
 
Dimer Dissocia-

tion 

 
S2   2 

S1 

 
0.5 

 
0.5*S

2 
 
Transformation 

 
S2  S3 

 
0.04 

 
0.04*

S2 
 

 

Results: The initial conditions were 100,000 molecules for S1 and 0 for S2 and S3. The 

simulations results can be observed in figures 10 and 11. The top half of both figures compares 
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the higher concentration behavior of deterministic and crossover method for species ‘S1’ and 

‘S2’ respectively. Results from stochastic simulation (SSA direct method) are also included for 

comparison and can be observed to be quantitatively and qualitatively different from the other 

two trajectories. On the other hand, as expected the crossover method agrees very well with the 

continuous solution. The bottom half of the figures depict the trajectories at low species concen-

tration. In both cases it can be seen that at a lower concentration when stochastic fluctuations can 

be dominant, the qualitative behavior of the crossover method is almost the same as stochastic 

except for the fact that stochastic simulation is about 5 to 8 seconds slower than crossover. This 

difference is reasonable considering that stochastic and crossover methods are based on different 

core equations and are bound to yield slightly offsetting results. 

 

 

Figure 10 Crossover method displays stochastic effects as the S1 changes into a low con-
centration (bottom) from a high concentration (top). 
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Figure 11 Stochastic effects are observed when S2 transitions into a lower concentration 
(bottom). 

 

4.3 Specific Aim 3 

Can the crossover method replicate experimentally verified stochastic events occur-

ring in biochemical systems?  

Rationale: The crossover method was so far tested only on hypothetical models whose 

predictions were not physically tested. To purpose of this experiment was to further augment the 

applicability of the crossover method by testing it on a model whose results have been experi-

mentally verified. This can be achieved by simulating an experimentally verified mathematical 

model with the SSA and crossover method and compare the solution trajectories for similarities. 

A deterministic trajectory can be used as a background to contrast the stochastic results.  

Procedure: This experiment was divided into stages: 1) A B-cell differentiation model 

was used to demonstrate that the crossover method can generate as much molecular noise as is 
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experimentally observed. 2) A model for predicting the dynamics of blood testosterone levels 

was used to show that stochastic effects generated in vivo can be simulated by the crossover 

method. 

B-cell differentiation model: A recently reported mathematical model for predicting the 

differentiation of activated B cells into plasma cells presents itself as an ideal system for such a 

test for several reasons. First, it is an extremely relevant system from a molecular biologist’s 

point of view as the mechanism underlying heterogeneous differentiation of B cells into plasma 

cells is not well understood. Secondly, because the model predictions clearly demonstrate that 

the ramification of stochastic events generated at a molecular level can be clearly manifested as a 

physiological phenotype, it is important that the crossover method be able to replicate those re-

sults. 

 

 

 

 

 

 

 

 

Terminal differentiation of B cells into antibody producing plasma cells is controlled by 

three key transcription factors: Bcl-6, Blimp-1 and Pax5.(Zhang et. al., 2010). Random time evo-

lution of the genes of these proteins promotes stochastic expression patterns for the proteins that 

B

B P

Figure 12 The interaction scheme for Blimp-1, Bcl-6 
and Pax-5. Arrows indicate negative regulation. 
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eventually leading to terminal irreversible classification of B cells. The initial conditions and 

other parameters are also the exact same as used in Zhang et. al. 2010. 

Results of B-cell differentiation model: The results are presented as a trajectory of the 

three proteins evolving through 100 hours of simulation (Fig. 6). The plots are a median of 11 

simulation runs and clearly show a noisy expression pattern which can never be obtained from a 

continuous state solution. The level of noise present in the expression patterns is represented as a 

ratio of standard deviation (σ) to the average (μ) termed as coefficient of variation. As table III 

suggests the coefficient of variation is in good agreement with the results obtained from for all 

three proteins. 

 
Table 3 Noise levels in critical proteins. 
Protein Co-

efficient of 
variation 
(crossover) 

Coefficient 
of variation (from 
SSA) 

Bcl-6 0.32 
 
0.28 
 

Blimp-1 1.37 
 
1.93 
 

Pax5 0.31 
 
0.28 
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Figure 13 Evolution of three proteins critical for terminal B cell differentiation into plas-
ma cells. 

 

Oscillatory dynamics of testosterone: Mammalian circadian clock controls a variety of 

biological processes including oscillations of the gonadal hormones. From a biological perspec-

tive, the study of hormonal oscillations is non trivial as they are known to affect the morpho-

physiology of reproductive organs. Moreover, variation in the testosterone levels in mammals is 

known to influence Ca2+ oscillations, which are implicated in neuronal apoptosis. Thus, from a 

computational systems biology point of view, the ability to accurately and efficiently simulate 

hormonal oscillations is imperative to the success of any modeling and simulation tool. The fluc-

tuations observed in the secretion of the gonadal hormones are a direct result of the physiology 

of the hypothalamic-pituitary-gonadal (HPG) axis in vertebrates (figure. 13). The hypothalamic 

neurons secrete gonadotropin releasing hormone (GnRH) via a GnRH pulse generator circuit, 
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which in turn promotes the secretion of luteinizing hormone (LH) from the pituitary gland using 

a calcium dependent mechanism. LH then stimulates a cyclic AMP dependent transport of cho-

lesterol into the testicular leydig cells where it is converted to testosterone and oestradiol. Testos-

terone and oestradiol together provide a feedback signal that negatively regulates the production 

of GnRH and LH giving rise to the oscillations observed in vivo. 

 

Figure 14 Schematic representation of the HPG axis in vertebrates and its regulation. 
Dashed lines indicate negative feedback. 

 

Table 4 Details of the HPG axis 
Reaction Determinis-

tic function (same 
as reaction rate) 

T  GnRH + T A/(k+T) 

GnRH  0 b1*GnRH 

GnRH  LH + 
GnRH g1*GnRH 

LH  0 b2 * LH 
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LH  T + LH g2*LH 

T 0 b3*T 

 

 

 

Table 5 Kinetic parameters used in the H-P-G system. 
Parameter 

 

Set 1 

 

Set 2 

 

Set 3 

 

A 
0.000

1 

0.000

1 
0.1 

k 
0.000

0001 

0.000

0001 

0.000

1 

b1 0.23 0.23 0.23 

g1 
0.261

8 

0.261

8 

0.261

8 

b2 0.032 0.07 0.032 

g2 
0.901

5 

0.901

5 

0.901

5 

b3 0.046 0.1 0.046 

 

The HPG biochemical system is typically classified as a high concentration system since 

the reacting species are often present at a high copy number. A simple mathematical model does 
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exist (Heuett W. J., and Qian H. 2006) for simulating the HPG axis in silico; however a continu-

ous-time continuous-state deterministic solution to this model which is traditionally used for high 

concentration systems, does not yield the desired oscillatory dynamics. A continuous-time dis-

crete-state stochastic solution, on the other hand, is known to satisfactorily reproduce the exper-

imentally reported sustained oscillations. This discrete event algorithm for biochemical systems 

was first developed by Daniel T. Gillespie in 1977 and is popularly known as the stochastic sim-

ulation algorithm (SSA) or the Gillespie algorithm. Owing to the differences in the physical basis 

of both methods, the SSA is more accurate than the continuous deterministic method at lower 

system concentration; however, the accuracy obtained for a high concentration system does not 

vary significantly. Moreover, regardless of the system concentration, the SSA is computationally 

inefficient as it requires generating a large amount of random numbers and multiple simulation 

runs for every reaction. Another significant disadvantage of this technique is that it only works 

for reactions obeying elementary kinetics. Reactions that follow, for example, the complex 

Michaelis-Menten kinetics cannot be simulated by SSA without having to break those reactions 

into a series of elementary reactions which only add to its already inefficient computational per-

formance. As a result, a significant amount of work is now focused on improving the computa-

tional efficiency of stochastic simulation. In spite of these improvements, there is growing evi-

dence to show that deterministic methods are yet the most efficient solutions available for simu-

lating biological models. The only significant drawback of a deterministic method, as exposed in 

earlier works, is its inability to reproduce the stochastic effects that are especially dominant as a 

system transitions into lower concentration. In an attempt to address this problem, we have pre-

viously reported the development of a deterministic-stochastic crossover method that allows the 

incorporation of stochastic effects in an otherwise deterministic simulation. The solutions ob-
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tained from the crossover method were shown to be qualitatively identical to those obtained from 

SSA while retaining a deterministic implementation.  

In this work we have used the crossover method to simulate the dynamics of the HPG ax-

is using the model reported in and compared the results with those obtained from the SSA. The 

purpose of such an investigation was twofold: First, because oscillations of hormones from the 

HPG axis observed in vivo are a direct result of the random fluctuations of testosterone mole-

cules, we wanted to test if the crossover method was able to correctly reproduce these stochastic 

effects. Secondly, because the crossover method is fundamentally based on a computationally 

efficient deterministic method, it would be informative to test its computational performance 

against that of the SSA. 

Earlier, the work of Heuett W. J. and Qian H (2006). was successful in demonstrating the 

occurrence of sustained oscillations by simulating an ordinary differential equation model of the 

HPG axis using the SSA for three separate sets of parameters. In this work, we have used the 

same model and parameters as reported in Heuett W. J. and Qian H (2006).  to allow for rational 

comparison of the crossover method with the SSA. The details of the reaction network derived 

from and the corresponding functions are summarized in table 4 while the parameters are noted 

in table 5.  

The network of the HPG axis consists of six reactions and seven parameters. For every 

set of parameters described in table 2, the network was simulated first with the crossover meth-

od, followed by the SSA and finally a continuous deterministic (Gear method) algorithm. Fur-

thermore, the execution time for the SSA and the crossover method was noted and compared. 

The initial conditions were maintained the same for all simulation runs at 100 molecules of 

GnRH, 10 molecules of LH and 1 molecule of testosterone. The time step was assumed to be 0.1 
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min for the crossover method and 1 min for the deterministic method. Each simulation run was 

conducted for a total period of 478 mins. so as to allow enough time for the occurrence of sus-

tained oscillations.  

Results for the oscillatory dynamics of testosterone model: The simulation results are 

plotted in Fig. 13, 14 and 15 for the three sets of parameters respectively. In all three figures 

parts A, B and C correspond respectively to the deterministic solution, the SSA and the crossover 

method. The left panel of each of these parts shows the trajectory of testosterone while the right 

panel shows the trajectories of hormones GnRH and LH of the HPG axis. The deterministic sim-

ulation implemented via Gear method can be clearly seen to lack any sustained oscillations 

which can be attributed to the fact that the mathematical model being simulated did not have any 

explicit higher order differential terms. The peak observed in the trajectories is primarily due to 

presence of an implicit higher order differential term in the model that responds to a perturbation 

but does not oscillate. The SSA was implemented internally without the assistance of any exter-

nal software to allow for a fair comparison with the crossover method. The SSA solution of the 

model can clearly replicate the oscillatory dynamics expected from the system mainly as a direct 

consequence of the random fluctuations instigated by degrading testosterone levels. The qualita-

tive and quantitative nature of these oscillations is similar to those reported. This is especially 

true for Fig. 3 where the period of oscillation (about 120 mins.) is close to the experimentally 

reported values. 

Although, the simulation output from the SSA seems to be accurately reflecting in vivo 

observations, it also highlights a major drawback of the SSA. The SSA randomly selects a time 

step for updating the number of molecules present in a system based on an exponential distribu-

tion. Owing to the intrinsic design of the SSA, this exponential distribution always generates a 
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very small time step (0.001 – 0.01 mins.) to ensure that none of stochastic effects are missed. 

This leads to very inefficient computing time. The crossover method, on the other hand, can be 

noted to reproduce all of the oscillations previously produced only by the SSA albeit with a big-

ger and uniform time step of 0.1 mins.  Indeed, as observed in part B (the output from SSA) of 

figures, the data points are more than twice of those required for part C (the output from crosso-

ver) of the same figures for the same period of simulation. This ability of the crossover method 

to generate stochastic effects while implementing an efficient deterministic solution makes it par-

ticularly attractive for these biological systems where the traditional SSA seems impractical. It 

can also be noted that the solution from SSA (part B) “appears” to have non-uniform period of 

oscillation as opposed to the crossover method (part C). However, a close examination of the 

SSA will reveal that this visual anomaly is a direct consequence of the unequal time steps adopt-

ed by SSA during simulation and the actual period of oscillation is in fact comparable for either 

method. 
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Figure 15 The simulation output of gonadal hormones of the HPG axis for parameter set 
1. Testosterone (left), GnRH and LH (right). Trajectories from A) Deterministic solution (blue), 
B) SSA (green) and C) the crossover method (red). 

 

 

Figure 16 The simulation output of gonadal hormones of the HPG axis for parameter set 
2. Testosterone (left), GnRH and LH (right). Trajectories from A) Deterministic solution (blue), 
B) SSA (green) and C) the crossover method (red). 
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Figure 17 The simulation output of gonadal hormones of the HPG axis for parameter set 
3. Testosterone (left), GnRH and LH (right). Trajectories from A) Deterministic solution (blue), 
B) SSA (green) and C) the crossover method (red). 

 

4.4 Specific Aim 4 

Is the crossover method computationally more efficient than the stochastic simula-

tion algorithm? 

Rationale: One of the drawbacks of the SSA is the computational burden it puts on the 

machinery. It is also one of the reasons, it cannot be considered for systems biology based simu-

lation. The purpose of this experiment was to test if the novel method was faster than the SSA. 

This can be achieved by implementing the SSA and the crossover method on the same computa-

tional platform and compare the run times of both methods while simulating the exact same 

mathematical model. Only the execution times should be considered for a fair comparison. 
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Figure 18 Comparison of the execution times of the crossover method and the SSA for 
the three sets of parameters. 

 

Procedure: The code for the SSA was rewritten in C+ + so as to allow its implementa-

tion it on the same machine as the crossover method thereby making the comparison as fair as 

possible. Both methods were then used to simulate the dynamics of blood testosterone of the 

previous experiment.  

Results: Fig. 16 shows the execution times for the two methods. This time does not in-

clude the time taken for input or output as that is not a part of either algorithm. The execution 

time for the crossover method was 0.01 seconds for all three parameter sets mentioned in table II 

indicating that the run time may not be parameter dependent. The SSA, on the other hand con-

sumed 0.05 seconds for the first and second set of parameters and 0.03 seconds for the third set. 

In either case, the crossover method was at least thrice as fast as the SSA and on average was 

more than four times faster than the SSA. It is worth reiterating that these numbers are for execu-

tion of the algorithms only and do not include the time required for data input or output that can 

alter the net run time and lead to erroneous results. 
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4.5 Discussion 

We have presented in this work a simple crossover method for the simulation of bio-

chemical networks. The results obtained after testing on model biochemical systems clearly sug-

gest the plausibility of this novel method in correctly simulating the time course evolution of bi-

ochemical pathways. Although hybrid algorithms that use both deterministic and stochastic 

simulation techniques for the respective parts of a biochemical system have already been de-

scribed in the literature, the crossover method has two unique advantages; First, it does not re-

quire the partitioning of a biochemical system into ‘fast’ and ‘slow’ reactions which is a basic 

requirement of all hybrid algorithms. Moreover it can be noted that, unlike hybrid methods, the 

crossover method does not ‘combine’ deterministic and stochastic techniques but merely intro-

duces a certain degree of randomness in an otherwise purely deterministic solution. Secondly, 

none of the current methods (hybrid or otherwise) deal with the possibility of a ‘fast’ reaction, 

normally operating at a higher concentration, transitioning to a ‘slow’ reaction where it is forced 

to operate at a lower concentration due to some physiological disturbance in the system. Such 

scenarios are not altogether trivial or rare as it is common for experimental system biologists to 

purposely alter the local intracellular levels of enzymes in order to study their global effects. The 

crossover method is better equipped to predict these scenarios because the intrinsic randomness 

of the algorithm allows it to seamlessly transition between varying degrees of concentration 

without failing to capture the random fluctuations when necessary. Also, because the crossover 

method is based on deterministic functions, the system reactions need not be restricted to have 

simple elementary kinetics but can be represented by more complex expressions as evident in the 

case of B cell differentiation model. 
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The ability to simulate molecular circadian clock dependent gonadal oscillations is im-

portant for any computational systems biology application. Considering the fact that oscillations 

observed in blood testosterone levels are a direct consequence of the random activities that occur 

at a molecular level, only the stochastic simulation technique has so far been successful in repli-

cating the dynamics of the HPG axis. As this technique is not deemed to be computationally effi-

cient, in this work we have demonstrated the feasibility of a novel approach to simulate similar 

sustained oscillations. This approach, previously reported by us as the crossover method, is a 

predominantly deterministic method with the inclusion of a controlled degree of randomness. 

This inherent randomness bestows the crossover method with a unique ability to reflect the mo-

lecular fluctuations of a biochemical system that are only captured by the pure stochastic meth-

ods, while retaining the computational efficiency afforded only by a deterministic implementa-

tion. To support our hypothesis, we performed model simulations using the same sets of parame-

ters as previously reported and obtained results that were qualitatively and quantitatively similar 

to the published reports. Furthermore, we showed that, the crossover method was at least three 

times and in some cases up to five times faster than the SSA. With that being so, the crossover 

method is yet in a nascent stage of development and its ability to handle complex networks 

across multiple time scales as well as computationally stiff systems is yet to be tested. Neverthe-

less, the holistic approach adopted by systems biology introduces a dynamic wherein the effect 

of random molecular fluctuations in a biochemical system often propagates to the metabolic lev-

el. This caveat has to be adequately addressed by any simulation algorithm focused on computa-

tional systems biology. Towards that end, the efficiency and accuracy demonstrated by the 

crossover method in this work qualifies it as a viable option for systems level investigation of 

biological processes.  
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5 SUMMARY AND CONCLUSION 

Complex diseases are the biggest cause of human mortality all over the world. Traditional 

reductionist techniques are not suitable for generating a cure for these diseases as the isolation 

encouraged by reductionism fails to capture the complicated interplay between the disease phys-

iology and environmental factors. The new paradigm of systems biology may help to solve some 

of these issues as it encourages a holistic approach towards solving complex diseases. As a con-

cept, systems biology is not just limited to complex diseases but any biological phenomenon that 

warrants a systems level investigation. Systems biology is broadly classified as either experi-

mental, which employs high-throughput experiments to generate data from multiple dimensions 

(e.g. micro array), or computational, which uses mathematical and statistical techniques to ana-

lyze that data and make testable hypotheses from it. There often exists an iterative process where 

the testing of hypotheses in a lab leads to improved data for computational use which in turn re-

sults in better quality of future hypotheses. 

 

Mathematical modeling and simulation is a very important tool in computational systems 

biology used exclusively for predictive hypotheses. It allows representing seemingly abstract 

biological processes in quantitative terms so as to obtain physiologically significant clues from 

them. Simulation thus makes it possible to realize the full potential of systems biology. It is im-

portant to point out that the use of simulation in biology is by itself not a novel concept but has 

been used for more than fifty years. It is only now that the expanded computational infrastructure 

has unshackled the potential of simulation techniques which were often held back in the past by 

limited computational power. The simulation process typically starts with building a mathemati-

cal model which is often a set of differential equations. These equations are usually complex 
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themselves and do not have an analytical solution to generate a time series trajectory. Hence, 

numerical methods are employed to create an approximate solution to the set of differential equa-

tions. Numerical methods are typically implemented as computer programs which make it easier 

to perform the repetitive calculations that go into using a numerical method. Some of the widely 

studied and popular numerical implementations include explicit methods, implicit methods and 

the predictor-corrector family of methods. Each method has its own advantages and disad-

vantages when it comes to solving differential equations. Explicit methods are very simple to 

implement and easy to follow but suffer from instability and lack of sufficient accuracy. Implicit 

methods are very stable, highly accurate and computationally efficient; however they are ex-

tremely complicated in terms of implementation. Predictor-corrector methods combine the best 

of both worlds, the simplicity of an explicit formula along with the robustness of an implicit 

method. These methods collectively are known as deterministic methods because the solutions of 

the differential equations obtained using these methods are predicated by the equations them-

selves. Biological simulation is heavily dominated by the use of deterministic methods as its 

simplistic framework appeals to a variety of researchers, especially physical scientists. 

 

A second class of methods known as stochastic methods is recently being used for bio-

chemical simulation as an alternative to the deterministic methods. These methods are used by 

assuming that the function to be integrated is a discrete function and its evolution is subject to 

random events occurring in time. For example, the chemical molecules that participate in a reac-

tion are discrete and hence any differential equation involving them can be solved stochastically. 

The premise of such integration is to figure out the random Brownian motion of molecules and 

the “chance” of collision between them. It is important to understand here that stochastic meth-
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ods are developed strictly for chemical reactions and cannot be generally used for just any math-

ematical functions. Its application in biochemical simulation, however, has had extraordinary 

success. While fluctuations in molecule numbers are a common occurrence in biological reac-

tions, its effect is not very appreciable at higher concentration of molecules. At lower concentra-

tions, however, the fluctuations can present some unique events that are usually important for 

downstream processes. As stochastic simulation methods are based on predicting the random 

collisions between molecules, they easily capture these fluctuations and present them as a part of 

its solution. This unique ability of a stochastic simulation algorithm to accurately capture the 

natural randomness of a chemical reaction makes it very useful for biological simulations. Sto-

chastic methods are not without its share of issues though. They are known to be extremely inef-

ficient and problematic during scale-up. Moreover, owing to their quest for pinpoint accuracy, 

they are built to handle only simple elementary kinetics. 

 

None of these methods can really claim to suit systems biology based applications. Multi-

scale modeling and simulation is the norm for systems biology and an integration method being 

able to handle the transition to and from a lower stochastically dominated concentration system 

is very critical. It is even more critical to do so in an efficient manner. The main goal of this 

work was to present such a technique to integrate the system of differential equations originating 

from a multi-scale model. Towards that end, a new method was developed within the parameters 

of a deterministic framework but incorporating some stochasticity as well. This was achieved by 

using a regular explicit method for solving the equation while employing the concept of a Ber-

noulli event to introduce some randomness in the solution. This new concept was termed the 

crossover method. The method was then tested on four different platforms. In the first case, a 
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proof of principle had to be established. So, a hypothetical system was considered which in the 

past had been used to demonstrate the presence of stochasticity in biochemical networks. It was 

shown that the random fluctuations in this model which were not captured by the deterministic 

method were promptly captured by the crossover method and confirmed by the stochastic simu-

lation method. It was a strong indication that the crossover method might be able to generate sto-

chastic trajectories. The second platform was used to test the transition handling of the method. 

As mentioned earlier, it is imperative from a systems standpoint that a simulation method be able 

to transition smoothly between different concentration zones. This was achieved by testing the 

method on another hypothetical network which evolves from a higher concentration system to a 

lower concentration. In this case, it was shown that the crossover method does not have any ap-

preciable difference in the high concentration regime but as the system transitions into a lower 

concentration the random fluctuations become significant and are correctly captured by the 

crossover method. This result was pointing towards more evidence that the crossover method 

was able to capture stochasticity. So far the test platforms were all hypothetical models and it 

was logical to ask the question as to how the crossover method would stack up against the sto-

chastic simulation in an experimental setting. To test it, we simulated a B cell differentiation 

model with the crossover method. The results proved that we were able to generate the same de-

gree of noise in the system as observed in the experimental set up. To test it on a more compre-

hensive platform, a model for the oscillations observed in blood testosterone levels was used. 

Previously published study had confirmed that only pure stochastic methods were able to gener-

ate the oscillations required to accurately reflect the experimental observations. This was an ul-

timate challenge for the crossover method as only if the method is able to capture the minor fluc-

tuation, will it be able to generate the oscillations. As expected, the crossover method handled 
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the oscillations with ease thereby proving beyond doubt the validity of this method to generate 

stochastic results that are also biologically relevant. 

 

The next and final question was that of the efficiency of the crossover computation. To 

test this question, the stochastic simulation algorithm was implemented on the same system as 

the crossover method. The run times for methods were then noted to execute the testosterone 

model. The read / write time was ignored for both methods in order to create a fair testing plat-

form. It was found that, on average, the crossover method was at least three times faster than the 

stochastic simulation method. The superior efficiency of the crossover method can be reasonably 

concluded form this test.  

 

The development of a crossover method described in this work can be useful for systems 

biology applications. It has been shown that the new method has no issues handling the concen-

tration gradients either in terms of accuracy of solution or robustness of the algorithm. Although 

the spatial transients in biological systems have not been explored with the crossover method it 

can be reasonable to predict that it may not be too difficult to extend the core algorithm to in-

clude it. This unique ability of crossover method makes it extremely suitable for multi-scale sim-

ulation where other methods fail. The method can be a basis for a core simulation engine specifi-

cally for systems level testing of biological hypotheses generated from wet lab experiments. As 

documented throughout this work, applying the systems paradigm towards work regarding com-

plex diseases requires a powerful multi-scale simulation tool which the crossover method is well 

poised for.  The efficiency displayed by the crossover method is another aspect of its suitability 

for systems biology. The scaling of biological networks, which is very common in the era of high 
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throughput experiments, needs a simulation engine that can scale equally well. The crossover 

method will not have any problems in scaling due to its primarily deterministic framework. The 

overall computational efficiency, stability and the ability to capture random collisions between 

reacting molecules shown by crossover can be an asset not just for systems biology but any ap-

plication of simulation of mathematical models. 
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