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In recent years, complex exercise-dependent option features have become increasingly popular

within personal savings products. Life insurers in particular have chartered unknown territory by

offering a variety of new products that expand their risk profiles far beyond their traditional expo-

sures. In addition to the ubiquitous surrender options within traditional product lines, especially

so-called Guaranteed Minimum Benefits within Variable Annuities are extremely popular and pro-

vide a host of choices for policyholders that considerably affect their final payoff. Arguably the

most behavior-dependent option among them are so-called Guaranteed Minimum Withdrawal Ben-

efits (GMWBs), which provide the right but not the obligation to withdraw a certain amount every

year free of charge and independent of the investment performance.

My dissertation studies optimal policyholder behavior in personal savings products and the

resulting financial risks for the issuer by analyzing in detail these guarantees. In particular, I

provide novel insights on the following two important research questions: What drives optimal

policyholder behavior in life insurance? And what are the implications of optimal exercise behavior

for product design?

While previous research has shown that policyholders’ exercise strategies considerably affect

the valuation of such products (cf. Kling et al. (2011)), the drivers of policyholder exercise behav-

ior are still little understood. In particular, insurers’ attempts to estimate and correctly anticipate

policyholder withdrawal behavior vary tremendously and are typically driven by intuition and past

behavior rather than economic insights. This is problematic due to the scarcity of data for these

relatively new products, and the inability to extrapolate the observed behavior to different mar-

ket conditions. In contrast, the actuarial literature has approached the problem from an arbitrage

pricing perspective (see e.g. Milevsky and Salisbury (2006) and Dai et al. (2008) for GMWBs),
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where policyholders are assumed to exercise their options in a way that maximizes the risk-neutral

market-consistent value of the resulting cash flows. The implied policyholder behavior, however,

does not square well with observed prices and empirical exercise patterns.

I address this discrepancy in my first essay, Revisiting the Risk-Neutral Approach to Optimal

Policyholder Behavior: A Study of Withdrawal Guarantees in Variable Annuities. More specifi-

cally, since the market for personal savings products exhibits frictions – typically, investors cannot

sell their policies, or parts thereof, at their risk-neutral value – and is incomplete, key assumptions

underlying standard arbitrage pricing are violated. Therefore, (optimal) exercise behavior might

be affected by the policyholders’ preferences.

To analyze this in more detail, I develop a life-cycle model for a Variable Annuity with a with-

drawal guarantee as well as outside investment opportunities. I find that while the valuation results

are rather insensitive to preference characteristics, they are strongly affected by the consideration

of appropriate tax treatments: The tax-deferred growth property of Variable Annuities (in the U.S.)

not only makes them a popular long-term investment vehicle, but also shapes the investors’ optimal

withdrawal behavior.

Based on these insights, I then develop a risk-neutral valuation approach that incorporates

the proper tax treatments, and – as expected given my earlier findings – valuation results closely

resemble those from the life-cycle model. I also find that they are substantially different from the

case analyzed in the literature, that is without considering taxation. In particular, my analysis of an

empirical Variable Annuity product suggests that the GMWB fees are sufficient to cover the costs

of the guarantee, contrary to findings from the literature. Hence, one key result from this essay is

that the consideration of taxes alone appears sufficient to explain policyholder exercise behavior



ix

within Variable Annuities including a GMWB.

My second essay, On Negative Option Values in Personal Savings Products, concerns the de-

sign of personal savings products. In particular, I demonstrate that it is possible for financial

options to have negative marginal value for the issuer. The key insight is that when the financial

market exhibits frictions and is incomplete, market participants deviate from traditional arbitrage

pricing and their value functions no longer are direct opposites. If subjective valuation is affected

by individual preferences, the idea of risk-sharing comes to mind. However, negative option val-

ues can arise even when policyholder and insurer both are value maximizers: The consideration of

taxes introduces a third (inactive) party – the government – to the transaction.

For instance, in the context of Variable Annuities, adding a standard guarantee may incentivize

the policyholder to reduce her withdrawals and the likelihood of surrender, and thus also her tax

obligations (as tax payments are deferred). Since the government collects fewer taxes, there is

more money to be distributed between the two main parties. If, in addition, the policyholder holds

other (implicit or explicit) options from the same issuer, and the presence of the additional option

makes exercising them less optimal, it is conceivable that both investor and issuer gain from the

addition of the option – at the expense of the third party.

In Sections 2 and 3 of Essay 2, I demonstrate with a two-period model and by implementing

an empirical product, respectively, that a death benefit guarantee (GMDB) written on a Variable

Annuity with a GMWB may result in exactly such an effect: The death benefit guarantee has a

negative value to its issuer, so that both insurer and policyholder benefit from the product (at the

expense of the government). It may thus come as no surprise that death benefit guarantees have

become a standard feature in Variable Annuity policies, and most withdrawal guarantees (including
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the one that I use as an empirical example) now also promise to return the remaining benefits base

in case of the policyholder’s death.

Overall, while more research is needed until insurers can feel comfortable about their exposure

to policyholder behavior, the findings in my dissertation rectify and explain some of the insur-

ers’ strategies: The fees charged for GMWBs appear to be sufficient for covering the resulting

liabilities, contrary to what the actuarial literature has suggested; my results endorse simple dy-

namic exercise rules based on the “moneyness” of the guarantee, which are slowly being adopted

by some life insurance companies (cf. Society of Actuaries (2009)); and their recent tendency to

bundle certain guarantees might be explained by the observation that options in private savings

products (such as a death benefit guarantee) can have a negative marginal value due to specific tax

considerations, so that offering the guarantee is mutually beneficial.
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Chapter 1

Revisiting the Risk-Neutral Approach to

Optimal Policyholder Behavior: A Study of

Withdrawal Guarantees in Variable

Annuities

1.1 Introduction

Policyholder behavior is an important risk factor for life insurance companies offering contracts

that include exercise-dependent features, but so far it is little understood. Specifically, analyses

of optimal policyholder behavior uncovered in the actuarial literature – building on the theory for

evaluating American and Bermudan options – commonly yield exercise patterns and prices that
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are far from observations in practice.1 A recent strand of literature believes to have identified the

problem in the incompleteness of the insurance market.2 More precisely, the argument is that in

contrast to financial derivatives, policyholders may not have the possibility to sell (or repurchase)

their contract at its risk-neutral continuation value so that exercising may be advisable – and ratio-

nal – even if risk-neutral valuation theory does not suggest so. As a solution, these papers suggest

to analyze exercise behavior in life-cycle utility optimization models where the decision to exer-

cise is embedded in the overall portfolio problem of an individual or a household, although the

associated complexity naturally necessitates profound simplifications.

In this paper, we follow this strand of literature in that we also develop a life-cycle utility

model for a poster child of exercise-dependent options in life insurance, namely a variable annuity

(VA) contract including a Guaranteed Minimum Withdrawal Benefit (GMWB) rider. However,

compared to earlier work, we explicitly account for outside savings and allocation options. While

of course this addition increases the complexity of the optimization problem, it affects the results

considerably. We find that most risk allocations occur outside of the VA and that changes in

the policyholder’s wealth level, preferences, or other behavioral aspects have little effect on the

optimal withdrawal behavior. In contrast, the exercise behavior appears to be primarily motivated

by value maximization, however with the important wrinkle that taxation rules considerably affect

this value.

To further analyze this assertion and as an important methodological contribution of the pa-

per, we develop a valuation mechanism in the presence of different investment opportunities with

1See, among others, Bauer et al. (2008), Grosen and Jørgensen (2000), Milevsky and Posner (2001), Milevsky and
Salisbury (2006), Ulm (2006), or Zaglauer and Bauer (2008).

2See e.g. Gao and Ulm (2011), Knoller et al. (2011), and Steinorth and Mitchell (2011).
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differing tax treatments. The key idea is that if the pre-tax investment market for underlying in-

vestments such as stocks and bonds is complete, it is possible to replicate any given post-tax cash

flow with a pre-tax cash flow of these underlying investments – irrespective of the tax treatment

for the securities leading to the former cash flow.

We show that when taking taxation into account via the proposed mechanism, a value-maximizing

approach yields withdrawal patterns and pricing results that are close to the results from the life

cycle model and that square well with empirical observations. Hence, our results can be inter-

preted as a vindication of the risk-neutral valuation approach – associated with all its benefits such

as independence of preferences, wealth, or consumption decisions – although it is to be taken out

from the perspective of the policyholder rather than the insurance company so that personal tax

considerations matter.

As already indicated, we focus our attention on policyholder exercise behavior for VA contracts

with GMWBs. Here, a VA essentially is a unit-linked, tax-deferred savings plan potentially en-

tailing guaranteed payment levels, for instance upon death (Guaranteed Minimum Death Benefit,

GMDB) or survival until expiration (Guaranteed Minimum Living Benefits, GMLB). A GMWB,

on the other hand, provides the policyholder with the right but not the obligation to withdraw the

initial investment over a certain period of time, irrespective of investment performance, as long

as annual withdrawals do not exceed a pre-specified amount. To finance these guarantees, most

commonly insurers deduct an option fee at a constant rate from the policyholder’s account value.

In 2010, U.S. individual VA sales totaled over $140 billion, increasing the combined net as-

sets of VAs to a record $1.5 trillion, whereby most of them are enhanced by one or even multiple

guaranteed benefits. These figures indicate the importance for insurers to understand how policy-
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holders may utilize these embedded options, especially because changes in economic or regulatory

conditions have on occasion caused dramatic shifts in policyholder behavior that have caught the

industry off-guard.3 However, to date most liability models fail to capture this risk factor in an

adequate fashion. In particular, companies usually rely on historic exercise probabilities or static

exercise rules, although some insurers indicate they use simple dynamic assumptions in their C3

Phase II calculations (cf. Society of Actuaries (2009)).

The prevalent assumption for evaluating GMWBs in the actuarial literature is that policyholders

may exercise optimally with respect to the value of the contract consistent with arbitrage pricing

theory (see, among others, Milevsky and Salisbury (2006), Bauer et al. (2008), Chen and Forsyth

(2008), or Dai et al. (2008)).4 Specifically, the value is characterized by an optimal control prob-

lem identifying the supremum of the risk-neutral contract value over all admissible withdrawal

strategies. While such an approach may be justified in that it – in principle – identifies the unique

supervaluation and superhedging strategy robust to any policyholder behavior (cf. Bauer et al.

(2010)), the resulting “fair” guarantee fees considerably exceed the levels encountered in practice.

For example, Milevsky and Salisbury (2006) calculate the no-arbitrage hedging cost of a GMWB to

range from 73 to 160 basis points, depending on parameter assumptions, although typically insur-

ers charge only about 30 to 45 bps. While from the authors’ perspective these observed differences

3For instance, rising interest rates in the 1970s led to the so-called disintermediation process, which caused sub-
stantial increases in surrenders and policy loans in the whole life market (cf. Black and Skipper (2000), p. 111).
Similarly, in 2000, the UK-based mutual life insurer Equitable Life – the world’s oldest life insurance company – was
closed to new business due to problems arising from a misjudgment of policyholder behavior with respect to exercising
guaranteed annuity options within individual pension policies (cf. Boyle and Hardy (2003)). More recently, the U.S.
insurer The Hartford had to accept TARP money, after losing “$2.75 billion in 2008, hurt by investment losses and the
cost of guarantees it provided to holders of variable annuities.”

4A few alternatives have also been put forward. For instance, Stanton (1995) proposes a rational expectations
model with heterogeneous transaction costs in the case of prepayment options within mortgages, and De Giovanni
(2010) develops a model for surrender options in life insurance contracts, which also allows for irrational in addition
to rational exercises.
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between theory and practice are a result of “suboptimal” policyholder behavior, these deviations

can also be attributed to the policyholder foregoing certain privileges and protection when making

a withdrawal, even in the case of rational decision making. Most notably, tax benefits of VAs are

a major reason for their popularity, so that it is proximate to assume that taxation also factors into

the policyholder’s decision-making process. Furthermore, in contrast to financial derivatives, pol-

icyholders generally are not able to sell their policy at its risk-neutral value, which may also affect

withdrawal behavior.

To analyze whether or not there are rational reasons for the observed behavior – akin to re-

lated recent literature (cf. Gao and Ulm (2011) or Steinorth and Mitchell (2011)) – we introduce a

structural model that explicitly considers the problem of decision making under uncertainty faced

by the holder of a VA policy. More specifically, the policyholder’s state-contingent decision pro-

cess is modeled using a lifetime utility model of consumption and bequests, where we allow for

stochasticity in both the financial market and individual lifetime. However, in contrast to previ-

ous contributions, we explicitly allow for an outside investment option and we include appropriate

investment tax treatments. We parametrize the model based on reasonable assumptions about

policyholder characteristics, the financial market, etc., and solve the decision making problem

numerically using a recursive dynamic programming approach.

Based on the model, we are able to identify a variety of aspects that factor into the policy-

holder’s decision process. First and foremost, withdrawals are infrequent and are optimal mainly

upon poor market performance or – to be more precise – when the VA account has fallen below the

tax base. For instance, in our benchmark case the policyholder will make one or more withdrawals

prior to maturity less than one fourth of the time, and the probability that he will withdraw the
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full initial investment is less than 5%. These findings are in stark contrast to the results based on

arbitrage pricing theory, which find that withdrawing at least the guaranteed amount is optimal in

most circumstances (cf. Milevsky and Salisbury (2006)). In particular, our results indicate that the

assumed guarantee fee of 50 basis points appears to sufficiently provide for the considered return-

of-investment GMWB. Moreover, our results prove fairly insensitive to changes in individual and

behavioral parameters such as wealth, income and the level of risk aversion. The differences are

small but systematic in a way that is consistent with the market incompleteness resulting from an

absence of life-contingent securities – other than the VA – within our model. Therefore, our results

suggest that policyholder behavior is primarily driven by value maximization when taking the pre-

ferred tax treatment of VAs into account. In particular, taxation not only seems to be a major reason

why people purchase VAs, but appears to also incentivize them not to withdraw prematurely.

To further elaborate on this observation, we devise a risk-neutral valuation mechanism in the

presence of different investment opportunities with differing tax treatments. Relying on this mech-

anism, we implement an alternative approach to uncover the optimal withdrawal behavior with

regards to maximizing the value of all payoffs akin to standard arbitrage pricing methods. As pre-

dicted, the numerical results of the value-maximizing strategy turn out to be similar to those of the

– considerably more complex – utility-based model.5 Furthermore, the computational tractability

of this risk-neutral approach allows the consideration and analysis of more complex VA products as

they are offered in practice, which typically entail step-up features and other optional features. As

an empirical example, we implement Prudential’s Advanced Series Lifevest IISM (ASL II) policy

5This result shows some resemblance to the findings of Carpenter (1998) in the context of employee stock options.
In particular, her investigations suggest that a value-maximizing strategy (plus a fixed-probability exogenous exercise
state) explains exercise behavior just as well as a complex utility-based model.
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within our framework and analyze the optimal withdrawal behavior as well as the corresponding

option fees. We find that the 35 basis points charged for the GMWB roughly accord with the

marginal cost of the guarantee, although results are rather sensitive to capital market parameters.

On a practical note, our results endorse the use of simple dynamic exercise rules based on

the “moneyness” of the guarantee, which are slowly adopted by some life insurance companies

(cf. Society of Actuaries (2009)). While this result is in line with the empirical findings from

Knoller et al. (2011), we note that the coherence of this rule in our setting is not primarily due to

the “moneyness” factoring into the policyholder’s decision process, but it is a consequence of the

similarities between tax and benefits base.

The remainder of the paper is structured as follows: In the subsequent section, we introduce

a lifetime utility model for VAs. Section 3 is dedicated to the implementation of the model in a

Black-Scholes framework and to discussing computational details. Section 4 details the numerical

results of the life-cycle model. In Section 5, we develop a risk-neutral valuation approach with

taxation and apply it to our valuation problem. This is followed by a discussion of implications

for insurance practice in Section 6. Section 7 is devoted to the implementation and analysis of

Prudential’s ASL II Variable Annuity policy, and a discussion of its pricing. And finally, Section 8

concludes and briefly discusses possible extensions.

1.2 A Lifetime Utility Model for Variable Annuities with GMWBs

There exists a large variety of VA products available in the U.S. The policies differ by how the pre-

miums are collected; policyholder investment opportunities, including whether the policyholder
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can reallocate funds after underwriting; and guarantee specifics, for instance what type of guaran-

tees are included, how the guarantees are designed and how they are paid for, etc. For a detailed

description of VAs and the guarantees available in the market, we refer to Bauer et al. (2008).

This section develops a lifetime utility model of VAs including (at least) a simple return-of-

investment GMWB option, with stochasticity in policyholder lifetime and asset returns. The poli-

cyholder’s state-contingent decision process entails annual choices over withdrawals from the VA

account, consumption, and asset allocation in an outside portfolio.

In contrast to mutual funds, VAs grow tax deferred, which presents the primary reason for their

popularity among individuals who exceed the limits of their qualified retirement plans. For in-

stance, Milevsky and Panyagometh (2001) argue that variable annuities outperform mutual funds

for investments longer than ten years, even when the option to harvest losses is taken into account

for the mutual fund. Since the preferred tax treatment may also affect policyholder exercise behav-

ior, we briefly describe current U.S. taxation policies on variable annuities and the way these are

captured in our model in Section 1.2.4.

1.2.1 Description of the Variable Annuity Policy

We consider an x-year old individual who has just (time t = 0) purchased a VA with finite integer

maturity T against a single up-front premium P0. We assume that all cash flows as well as all rel-

evant decisions come into effect at policy anniversary dates, t = 1, . . . ,T . In particular, the insurer

will return the policyholder’s concurrent account value – or some guaranteed amount, if eligible –

at the end of the policyholder’s year of death or at maturity, whichever comes first. In addition, the

contract contains a GMWB option, which grants the policyholder the right but not the obligation
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to withdraw the initial investment P0 free of charge and independent of investment performance,

as long as annual withdrawals do not exceed the guaranteed annual amount gW
t . Withdrawals in

excess of either gW
t or the remaining aggregate withdrawal guarantee – denoted by GW

t – carry a

(partial) surrender charge of st ≥ 0 as a percentage of the excess withdrawal amount. We model

a “generic” contract that may also contain a GMDB or other GMLB options. In that case, we

denote by GD
t , GI

t , and GA
t the guaranteed minimum death, income, and accumulation benefit, re-

spectively.6 For simplicity of exposition and without much loss of generality, we assume that all

included guarantees are return-of-investment options. Thus all involved guarantee accounts have

an identical benefits base

G·t ≡ GW
t = GD

t = GA
t = GI

t .

If an option is not included, we simply set the corresponding guaranteed benefit to zero. Hence

this model allows us to include a variety of guarantees, without having to increase the state space,

which makes the problem computationally feasible.7 However, other contract designs could be

easily incorporated at the cost of a larger state space. We refer to Bauer et al. (2008) for details.

While for return-of-investment guarantees, the initial benefits base is G·0 = P0, this equality will

no longer be satisfied after funds have been withdrawn from the account. More precisely, following

Bauer et al. (2008), we model the adjustments of the benefits base in case of a withdrawal prior

to maturity based on the following assumptions: If the withdrawal does not exceed the guaranteed

annual amount gW
t , the benefits base will simply be reduced by the withdrawal amount. Otherwise,

6A Guaranteed Minimum Accumulation Benefit (GMAB) guarantees a minimal (lump-sum) payout at maturity of
the contract, provided that the policyholder is still alive. Under the same conditions, a Guaranteed Minimum Income
Benefit (GMIB) guarantees a minimal annuity payout.

7In particular, we can also analyze contracts that do not contain a GMWB option at all.
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the benefits base will be the lesser of that amount and a so-called pro rata adjustment. Hence,

G·t+1 =


(G·t−w)+ : w≤ gW

t(
min

{
G·t−w , G·t ·

X+
t

X−t

} )+
: w > gW

t ,

(1.1)

where w is the withdrawal amount, X−/+t denote the VA account values immediately before and

after the withdrawal is made, respectively, and (a)+ ≡ max{a,0}. To finance the guarantees, the

insurer continuously deducts an option fee at constant rate φ ≥ 0 from the policyholder’s account

value.

With regards to the investment strategy for the VA, we assume the policyholder chooses an

allocation at inception of the contract, and that it remains fixed subsequently. This is not unusual

in the presence of a GMWB option since otherwise the policyholder may have an incentive to shift

to the most risky investment strategy in order to maximize the value of the guarantee.

1.2.2 Policyholder Preferences

The policyholder gains utility from consumption, while alive, and from bequesting his savings

upon his death (if death occurs prior to retirement). We assume time-separable preferences with an

individual discount factor β , and utility functions uC(·) and uB(·) for consumption and bequests,

respectively.

The policyholder is endowed with an initial wealth W0, of which he invests P0 in the VA. The

remainder is placed in an “outside account”. We suppose there exist d identical investment op-

portunities inside and outside the VA, the main difference being that adjustments to the investment

allocations in the outside portfolio can be made every year at the policy anniversary. We denote the
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time-t value of the VA account by Xt and the time-t value of the outside account by At , where the

corresponding investment allocations are specified by the d-dimensional vectors νX and νt for the

VA and outside account, respectively. In either case, short sales are not allowed, so that we require

νt ,ν
X ≥ 0, and ∑

i
νt(i) = ∑

i
ν

X(i) = 1. (1.2)

For the values at policy anniversaries t ∈ {0,1, . . . ,T}, we add superscript − to denote the level of

an account (state variable) at the beginning of a period, just prior to the policyholder’s decision,

and superscript + to indicate its value immediately afterwards. Note that guarantee accounts do not

change between periods, i.e. between (t)+ and (t +1)−, t = 0,1, . . . ,T −1, but only through with-

drawals at policy anniversary dates, so that no superscripts are necessary here. The policyholder

receives annual (exogenous) net income It , which for the purpose of this paper is deterministic and

paid in a single installment at each policy anniversary. Upon observing his current level of wealth,

i.e. his outside account value A−t , the state of his VA account X−t , the level of his guarantees G·t ,

and his VA tax basis Ht (see below), the policyholder chooses how much to withdraw from the

VA account, how much to consume, and how to allocate his outside investments in the upcoming

policy year.

Appendix A describes the assumed timeline of events leading up to and following the policy-

holder’s decision each period.
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1.2.3 Mortality

Relying on standard actuarial notation, we denote by tqx the probability that (x) dies within t years,

and by t px ≡ 1− tqx the corresponding probability of survival. In particular, we express the one-

year death and survival probabilities by qx and px, respectively. Consequently, the probability that

(x) dies in the interval (t, t +1] is given by t px ·qx+t .

Upon the policyholder’s death, we assume that his bequest amount is converted to a risk-free

perpetuity (reflecting that upon the beneficiary’s death, remaining funds will be passed on to his

own beneficiaries, and so on) at the risk-free rate, which for simplicity is assumed to be constant

and denoted by r. Note that all previous earnings on the VA will be taxed as ordinary income at

that point. We assume the beneficiaries have the same preferences as the policyholder, and that

his bequest motive is B. That is, if he leaves bequest amount x (net of taxes), the bequest utility is

given by:

1
1−β

·B ·uC([1− e−r] · x).

1.2.4 Tax Treatment of Variable Annuities

We model taxation of income and investment returns based on concurrent U.S. regulation, albeit

with a few necessary simplifications. More precisely, we assume that all investments into the VA

are post-tax and non-qualified. As such, taxes will only be due on future investment gains, not the

initial investment (principal) itself.

Investments inside a VA grow tax deferred. In other words, the policyholder will not be taxed

on any earnings until he starts to make withdrawals from his account. However, all earnings from

a VA will eventually be taxed as ordinary income. More precisely, withdrawals are taxed on a
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last-in first-out basis, meaning that earnings are withdrawn before the principal. Specifically, early

withdrawals after an investment gain are subject to income taxes. Only if the account value lies

below the tax base will withdrawals be tax free. In addition, withdrawals prior to the age of 591
2

are subject to an early withdrawal tax of sg (typically 10%). At maturity, denoting the concurrent

VA account value by XT and the tax base by HT , if the policyholder chooses the account value to

be paid out as a lump-sum, he is required to pay taxes on the (remaining) VA earnings

max{XT −HT ,0}

immediately (if applicable, we substitute GA
T for XT ). However, if the policyholder chooses to

annuitize his account value – e.g. in level annual installments, as we assume in this paper – his

annual tax-free amount is his current tax base HT divided by his life expectancy ex+T , as computed

from the appropriate actuarial table. In other words, the policyholder will need to declare any

annuity payments from this VA in excess of HT/ex+T per year as ordinary income (see IRS (2003)).

For the initial tax base, we obviously have H1 = P0. The subsequent evolution of the tax base

depends on both the evolution of the account value and withdrawals, where Ht essentially denotes

the part of the account value that is left from the original principal. More precisely, the tax base

remains unaffected by withdrawals smaller or equal to X−t −Ht , i.e. those withdrawals that are

fully taxed (because they come from earnings), whereas tax-free withdrawals reduce the tax base

dollar for dollar. Hence, formally we have

Ht+1 = Ht−
(

wt−
(
X−t −Ht

)+)+
. (1.3)
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In contrast, returns from a mutual fund are not tax deferrable. While in practice parts of these

returns are ordinary dividends and thus taxed as income, others are long term capital gains and

subject to the (lower) capital gains tax rate. We simplify taxation of mutual fund earnings to be

at a constant annual rate, denoted by κ , which for future reference we call the capital gains tax,

although it may be chosen a little higher than the actual tax on capital gains to reflect income from

dividends or coupon payments, which are taxable at a higher rate. The income tax rate is also

assumed to be constant over taxable money and time, at rate τ .8

1.2.5 Policyholder Optimization During the Lifetime of the Contract

The setup, as described in this section, requires four state variables: A−t , the value of the outside

account just before the t-th policy anniversary date; X−t , the value of the VA account just before

the t-th policy anniversary date; G·t , the value of the benefits base (and thus all guarantee accounts)

in period t; and Ht , the tax base in period t. At the t-th policy anniversary, given withdrawal of wt ,

we define next-period benefits base and tax base by equations (1.1) and (1.3), respectively.

Transition from (t)− to (t)+

Upon withdrawal of wt , consumption Ct , and new outside portfolio allocation level νt , we update

our state variables as follows:

X+
t =

(
X−t −wt

)+
,and

A+
t = A−t + It +wt−Ct− feeI− feeG− taxes,

(1.4)

8We believe this to be a reasonable simplification as holders of variable annuities are typically relatively wealthy,
so that brackets over which the applicable marginal income tax rate is constant are fairly large. Moreover, we want to
avoid withdrawal behavior being affected unpredictably by “fragile” tax advantages.
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where

feeI = s ·max
{

wt−min(gW
t ,GW

t ),0
}

denotes the excess withdrawal fees the policyholder pays to the insurer,

feeG = sg · (wt− feeI) ·111{x+t<59.5}

are the early withdrawal penalty fees the government collects on withdrawals prior to age 59.5,

and

taxes = τ ·min{wt− feeI− feeG,(X−t −Ht)
+}

are the (income) taxes the policyholder pays upon withdrawing wt .

In our basic model, we update the guaranteed withdrawal account by (1.1). If the contract

specifies guarantees to evolve differently (e.g. step-up or ratchet-type guarantees), the updating

function must be modified accordingly. In that case we may also need to carry along an additional

(binary) state variable to keep track of whether the policyholder has previously made a withdrawal.

We refer to Bauer et al. (2008) for details.

Transition from (t)+ to (t +1)−

In our model, the only state variables changing stochastically between (t)+ and (t + 1)− are the

account values inside and outside of the VA, both driven by the evolution of the financial assets,

which are described by the vector-valued stochastic process, (St)t≥0.9 Similarly, the (row) vector

9As usual in this context, underlying our consideration is a complete filtered probability space (Ω,F,P,F =
(Ft)t≥0), where F satisfies the usual conditions and P denotes the “physical” probability measure.
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νt captures the fraction of outside wealth A+
t the policyholder wants to invest in each asset. Taking

into account the tax treatments as described in section 1.2.4 we can update the account values as

follows:

A−t+1 = A+
t ·
[

νt · St+1
St
−κ ·

(
νt · St+1

St
−1
)+]

, and

X−t+1 = X+
t · e−φ ·

[
νX · St+1

St

]
,

(1.5)

where
St+1

St
denotes the component-wise quotient.

Bellman Equation

Denoting the policyholder’s time-t value function by V−t :R4→R, yt ≡ (A−t ,X
−
t ,G·t ,Ht) 7→V−t (yt),

where we call yt the vector of state variables, we can describe his optimization problem at each

policy anniversary date recursively by

V−t (yt) = max
Ct ,wt ,νt

uC(Ct)+ e−β ·Et
[
qx+t ·uB(bt+1|St+1)+ px+t ·V−t+1(yt+1|St+1)

]
, (1.6)

subject to (1.1), (1.2), (1.3), (1.4), (1.5), the bequest amount

bt+1 = A−t+1 +bX − τ · (bX −Ht ,0) ,

where bX = max
{

X−t+1,G
D
t+1
}

, and the choice variable constraints

0 ≤Ct ≤ A−t + It +wt− feeI− feeG− taxes, and

0 ≤ wt ≤ max
{

X−t , min
{

gW
t , G·t

}}
.
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1.2.6 Policyholder Behavior upon Maturity of the Variable Annuity

If the policyholder is alive when the Variable Annuity matures at time T , we assume that he retires

immediately and no longer receives any outside income. He will live off his concurrent savings,

which consist of the time-T value of his outside portfolio, plus the maximum of his VA account

value and any remaining GMLB benefits. More precisely, we assume he uses these savings to

purchase a single-premium whole life annuity, and that he no longer has a bequest motive; his

consumption preferences, on the other hand, are the same as before.

We model the taxation of annuities following our discussion in Section 1.2.4. The outside

account value A−T is already net of taxes, thus only future earnings (i.e. interest) need to be taxed.

Therefore, A−T acts as the tax base for the whole life annuity. The outside account can thus be

converted into net annuity payments of

cA ≡
A−T

ex+T
+(1− τ) ·

(
A−T

äx+T
−

A−T
ex+T

)
= τ ·

A−T
ex+T

+(1− τ) ·
A−T

äx+T
(1.7)

at the beginning of every year as long as the policyholder is alive. Here, äx+T denotes the actuarial

present value of an annuity due paying 1 at the beginning of each year while (x + T ) is alive,

and ex+T denotes the policyholder’s complete life expectancy at maturity of the VA as used to

determine tax treatment upon annuitization of the VA payout.

At maturity, the policyholder can withdraw the remainder of the account value (or some guar-

anteed level, if applicable) from the VA. That is:

wT = max
{

X−T ,max
[
GA

T ,min
(
GW

T ,gW
T
)]}

. (1.8)
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This results in life-long annual payments of

cX ≡ min
{

wT

äx+T
,τ · HT

ex+T
+(1− τ) · wT

äx+T

}
=

wT

äx+T
− τ ·max

{
wT

äx+T
− HT

ex+T
,0
}
.

(1.9)

If a GMIB is included in the contract, the policyholder can also choose to annuitize the guaranteed

amount GI
T at a guaranteed annuity factor äguar

x+T , and thus receive annual payouts

cI ≡
GI

T
äguar

x+T
− τ ·max

{
GI

T
äguar

x+T
− HT

ex+T
, 0
}

(1.10)

Overall, the policyholder can therefore consume cA+max{cX ,cI} every year during his retirement.

The time-T expected lifetime utility for the policyholder is thus

V−T (A−T ,X
−
T ,G·T ,HT ) =

ω−x−T

∑
t=0

exp(−β t) · t px ·uC(cA +max{cX ,cI}), (1.11)

subject to equations (1.7) to (1.10).

1.3 Implementation in a Black-Scholes Framework

For our implementation, we consider two investment possibilities only, namely a risky asset (St)t≥0

and a risk-free asset (Bt)t≥0. More specifically, akin to the well-known Black-Scholes-Merton

model, we assume that the risky asset evolves according to the Stochastic Differential Equation

(SDE)

dSt

St
= µ dt +σ dZt , S0 > 0,



19

where µ,σ > 0, and (Zt)t>0 is a standard Brownian motion, while the risk-free asset (savings

account) follows

dBt

Bt
= r dt , B0 = 1 ⇒ Bt = exp(r t).

In this setting, optimization problem (1.6) takes the form

V−t (yt) = max
Ct ,wt ,νt

uC(Ct)+ e−β

∞∫
−∞

ψ(γ)
[
qx+t ·uB(bt+1|S′(γ))+ px+t ·V−t+1(yt+1|S′(γ))

]
dγ, (1.12)

where ψ(γ) =
1√
2π

exp(−γ2

2
) is the standard normal probability density function, and S′(γ) =

St · eσγ+µ− 1
2 σ2

is the annual gross return of the risky asset, subject to various constraints (see

Appendix A for a detailed list). For the proof of equation (1.12), we refer the reader to Appendix

B.

In the remainder of this section, we present a recursive dynamic programming approach for the

solution. In particular, we address practical implementation problems arising from the complexity

associated with the high dimensionality of the state space.

1.3.1 Estimation Algorithm

The key idea underlying our algorithm is a discretization of the state space at policy anniversaries.

More specifically, our approach to derive the optimal consumption, allocation, and – particularly –

withdrawal policies consists of the following steps.

Algorithm 1.

(I) Discretize the four-dimensional state space consisting of the values for A,X ,G·, and H ap-
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propriately to create a grid.

(II) For t = T : for all grid points (A,X ,G·,H), compute V−T (A,X ,G·,H) via Equation (1.11).

(III) For t = T −1,T −2, . . . ,1:

(1) Given V−t+1, calculate V−t (A,X ,G·,H) recursively for each (A,X ,G·,H) on the grid via

the (approximated) solution to Equation (1.12).

(2) Store the optimal state-contingent withdrawal, consumption, and allocation choices for

further analyses.

(IV) For t = 0: For the given starting values A0 = W0−P0, X0 = P0, G·0 = G·1 = P0 and H0 =

H1 = P0, compute V−0 (W0−P0,P0,P0,P0) recursively from equation (1.12).

Storing the optimal choices in step (III.2) not only allows us to analyze to what extent a

representative policyholder makes use of the withdrawal guarantee, which is the primary focus

of our paper, but we may also determine the time zero value of all collected fees and payouts

to the policyholder or his beneficiaries via their expected present values under the risk-neutral

measure Q.10 In particular, by comparing these values we can make an inference whether or not

the contracted fee percentage within our representable contract sufficiently provides for the offered

guarantees in the absence of other costs. However, before discussing our results in Section 1.4, the

remainder of this section provides the necessary details about the implementation of the steps in

Algorithm 1 as well as the choice of the underlying parameters.

10By the fundamental theorem of asset pricing the existence of the risk-neutral measure is essentially equivalent
with the absence of arbitrage in the market. As is common in this context, here we choose the product measure of the
(unique) risk-neutral measure for the (complete) financial market and the physical measure for life-contingent events.
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1.3.2 Evaluation of the Integral Equation (1.12)

Since within step (III) of Algorithm 1 the (nominal) value function at time t + 1 is only given

on a discrete grid, it is clearly not possible to directly evaluate the integral in Equation (1.12).

We consider two different approaches for its approximation by discretizing the underlying return

space.

Since the integral entails the standard normal density function, one prevalent approach is to

rely on a Gauss-Hermite Quadrature. However, to ascertain the accuracy of our approximation, we

additionally consider a second approach. Note that our integral equation is of the form

K ≡
∞∫
−∞

φ(u)F(λ (u))du, (1.13)

where φ(u) =
1√
2π

exp(
1
2

u2) is the standard normal density function, λ (u) = exp(σu+µ− 1
2

σ
2)

corresponds to the annual stock return St+1/St , and

F(x)≡ qx+t ·uB

(
bt+1

∣∣∣∣St+1

St
= x
)
+ px+t ·V−t+1

(
yt+1

∣∣∣∣St+1

St
= x
)
.

Dividing the return space (−∞,∞) into M > 0 subintervals [uk,uk+1), for k = 0,1, . . . ,M−1, where

we set −∞ = u0 < u1 < .. . < uM−1 < uM = ∞, a consistent approximation of the integral (1.13) is

given by

K ≈
M−1

∑
k=0

Φ(uk+1) · [ak−ak+1]+ exp(µ) ·Φ(uk+1−σ) · [bk−bk+1]. (1.14)

Here, Φ(.) is the standard normal cdf, ak ≡
xk+1 ·ψk− xk ·ψk+1

xk+1− xk
, bk ≡ ψk+1−ψk

xk+1−xk
for k = 0, . . . ,M−1,

aM = bM ≡ 0, xk = λ (uk) represent the gross returns, and ψk ≡ F(xk) are the function values
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evaluated at returns xk (see Appendix B for a derivation of (1.14)). With this approach, we have the

discretion to choose the number (M−1) and location (xk) of all nodes, providing more flexibility

than the Gauss-Hermite Quadrature method. It is important to note, however, that the values ψk

cannot be calculated directly, but need to be derived from the value function grid at time t + 1,

where we rely on multilinear interpolation when necessary. We find very similar results for both

approaches and therefore only present estimation results based on the approximation via Equation

(1.13).

1.3.3 Monte-Carlo Simulations to Quantify Optimal Behavior

Using Algorithm 1, we can determine the policyholder’s optimal decision variables for all time/state

combinations. To aggregate and better compare results, and to analyze pricing implications, we

perform Monte Carlo simulations. More precisely, we simulate 5 million paths over stock move-

ments and individual mortality. Thus, based on optimal choices of withdrawal, consumption and

investment, we can compute the evolution of state variables as well as a variety of withdrawal mea-

sures for each path. Tables 1.3 and 1.4 in the Results section 1.4 show the corresponding statistics

for different parameter assumptions. Note that the first section of each table is based on paths

generated under the risk-neutral measure Q (see Footnote 10). While we later argue that Q is not

appropriate to value contingent claims from the policyholder’s perspective due to tax considera-

tions (see Section 1.5), an insurer replicating its liabilities does not pay taxes on the respective

earnings, so that a direct valuation under Q is appropriate.
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Parameter Assumptions

Parameter Value Source

Age at inception x 55
VA principal P0 100,000
Guarantees included GMWB
Time to maturity (years) T 15

E.g. Axa-EquitableAnnual guaranteed amount gW 7,000
Guarantee fee φ 50 bps

Excess withdrawal fee s1, . . . ,s8 8%,7%, . . . ,1%
}

Similar to Chen et al., IME 2008st , t ≥ 9 0%
Early withdrawal tax sg 10% U.S. tax policy
Life expectancy at maturity ex+T 12.6 Cf. IRS (2003)

Income tax rate τ 25%
}

Based on U.S. tax ratesCapital gains tax rate κ 15%
Risk-free rate r 5% 3-Month Treasury CMR, 1982-2010
Mean return on asset µ 10%

}
S&P 500, 1982-2010Volatility σ 17%

Initial wealth W0 500,000
}

U.S. Census data∗Income It 40,000
Risk aversion γ 2

}
Cf. Nishiyama and Smetters (2005)Subjective discount rate β 0.968

Bequest motive B 1

Table 1.1: Parameter Choices for Benchmark Case

∗ In 2007, the median net worth of a U.S. household where the head is age 55 to 64 was roughly
250,000. Median annual (gross) income is around 57,000 for the same category. Our assumptions
are based on anecdotal evidence that holders of VA policies are generally wealthier than average.
In addition, our results indicate that the choices of wealth, income, etc. do not have a considerable
effect on withdrawal behavior.
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1.3.4 Parameter Assumptions

For our numerical analysis, we consider a male policyholder who purchases a 15-year VA with

a return-of-investment GMWB at age 55.11 Fee and guarantee structures are typical for contracts

offered in practice. We further assume that the policyholder maximizes his expected lifetime utility

over consumption and bequests, and that he exhibits CRRA preferences, that is

uC(x) =
x1−γ

1− γ
.

Assumptions about contract specifications and policyholder characteristics in the benchmark case

are displayed in Table 1.1.

1.3.5 State Variable Grids

As discussed above, the choice-dependent state variables in our life-cycle model are A−t , X−t , G·t ,

and Ht . The guarantee account G·t and the tax base Ht are bounded from above by their starting

value G·0 = P0 and H0 = P0, respectively. For both accounts, we divide the interval [0,P0] into

16 grid points, including the boundaries. Now note that the tax base can never fall below the

benefits base: Both start off at the same level, namely the principal, and both are only affected

by withdrawals. The benefits base, however, is reduced by at least the withdrawal amount (and

possibly more if the withdrawal amount exceeds the annual guaranteed amount); the tax base, on

the other hand, is reduced at most by the withdrawal amount (namely if withdrawals come from

the principal, not earnings). Therefore, we only need to consider state vectors for which Ht ≥ G·t .

11We assume that his mortality follows the 2007 Period Life Table for the Social Security Area Population for the
United States (http://www.ssa.gov/oact/STATS/table4c6.html).
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Account Value Grids

Mean 95%-ile 99%-ile 99.9%-ile 99.99%-ile max. grid points

X−T 361,000 933,000 1,477,000 2,579,000 3,970,000 6,000,000
A−T 709,000 1,111,000 1,339,000 1,637,000 1,981,000 7,800,000
A−T +X−T 1,070,000 2,025,000 2,791,000 4,103,000 5,758,000 n/a

Table 1.2: Distribution of Terminal VA and Outside Account Values
(Based on MC simulation, cf. 1.3.3, and choice of maximum grid point.)

Since policyholder preferences are assumed to exhibit decreasing absolute risk aversion (cf.

Section 1.3.4), and in the interest of keeping grid sizes manageable and the implementation com-

putationally feasible, we choose grids for VA and outside account that are increasing in distance

between grid points. More specifically, for the VA account X−t , we divide the interval from 0 to 6

million into 64 grid points, whereas for the outside account A−t we use 49 grid points and a range

from 0 to 7.8 million. As displayed in Table 1.2, these values are well above the 99.99th percentile

of account values as determined by simulation (see Section 1.3.3).12

1.4 Results I: Withdrawal behavior in the Life-Cycle Model

One of the primary objectives of this paper is to determine whether it is optimal for policyholders to

withdraw prematurely from their VA. We commence by analyzing withdrawal patterns and incen-

tives for the benchmark case parameters (cf. Table 1.1). Subsequently, we discuss how differences

12We choose the grid for the outside account based on the percentiles of the combined terminal account values,
A−T +X−T , in order to be able to accurately value the policyholder’s lifetime utility even if he chooses to fully surrender
his VA account.



26

in underlying parameters affect the optimal withdrawal behavior.

1.4.1 Optimal Withdrawal Behavior in the Benchmark Case

Our key observation is that in the presence of taxation early withdrawals are an exception rather

than the norm. More specifically, for the benchmark case parameters roughly 76% of all possi-

ble scenarios entail no withdrawals until maturity. And in only about 5% of all cases will our

representative policyholder withdraw his entire guaranteed amount (cf. Table 1.3, Column [1]).

Figure 1.1 depicts optimal withdrawals, wt , for our utility-based model as a function of the

VA account value X−t , in the presence and in the absence of tax considerations, whereby we also

include the maximal possible withdrawal amount as a reference. We find that withdrawal patterns

are very similar for account values below the benefits base G·t – which coincides with the tax base

Ht . Here, the policyholder withdraws the majority of his account since withdrawals are neither

taxed nor subject to fees. However, the optimal strategies in the two cases differ fundamentally

when the account is above the benefits and tax base: While we observe no out-of-the-money with-

drawals with taxes, in the absence of tax considerations the policyholder surrenders his contract

if the VA account exceeds approximately 150,000.13 The intuition for this observation is that the

benefit of deferred taxation outweighs the guarantee fees, whereas – when withdrawals are not

taxed – the benefits of downside protection does not compensate for the incurred fees. For account

values close to but above the benefits base, however, the latter comparison is inverted, leading to

13It is worth noting that we would also observe positive withdrawals when the VA makes up the vast majority of
the policyholder’s total wealth, due to an overexposure to equity risk. More precisely, since he cannot change the
allocation inside the VA, he withdraws from the VA to place the funds (after possible fee and tax payments) in the risk-
free outside account. For even larger values of the VA account, the policyholder may also want to consume beyond
the limits of his outside wealth, leading to withdrawals for the purpose of consumption smoothing. However, such
scenarios are extremely unlikely (we observed no such case in 5 million simulations of the benchmark case) and do
not have a sizable impact on the value of the guarantee. Hence, we will not delve into this issue any further.
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(b) No Taxes: τ = κ = 0%.

Figure 1.1: Withdrawal Behavior with and without Taxes
(As a function of the VA account X−t .)

no withdrawals even in the case without taxation.

The findings in the absence of taxation are consistent with results from the existing literature

that analyzes optimal withdrawal behavior based on arbitrage pricing theory (see e.g. Chen et al.

(2008)). These studies also derive fair guarantee fees that are significantly above concurrent market

rates. In contrast, our analysis – if we include taxation – suggests that an annual guarantee fee of

φ = 50 bps seems sufficient to cover the expected costs of the guarantee. More specifically, we

find that the risk-neutral actuarial present value at time 0 of the collected guarantee fees is 5,971

(plus an additional 30 in excess withdrawal charges), which far exceeds the risk-neutral value of

payments attributable to the GMWB of 1,480.

Figure 1.2 displays the optimal withdrawal behavior as a function of the VA account value X−t

at different points in time and for differing but fixed levels of the benefits base G·t and the tax base

Ht . The outside account A−t is identical over all panels, but sensitivities are analyzed in Section
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(c) t = 10
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(d) t = 13
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(e) t = 10, Lower Benefits Base
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(f) t = 10, Lower Benefits Base and Tax Base

Figure 1.2: Withdrawal Behavior in the Benchmark Case
(As a function of the VA account X−t .)
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1.4.2 below.

During the first four contract years, the policyholder has not reached age 59.5, and therefore

all withdrawals are subject to a 10% early withdrawal tax. Withdrawals are still profitable for low

account values as the policyholder may not be able to withdraw the guaranteed amount otherwise.

However, this becomes less likely as the account value increases. For instance, as demonstrated

by Figure 1.2(a) for the case of t = 4, there are no withdrawals beyond an account value of about

60,000. Moreover, we do not observe excess withdrawals in this case, which we attribute to the

15% charge (10%+5% excess withdrawal fee) on all excess withdrawals.

After his 60th birthday, the policyholder can withdraw 7,000 annually free of charge, and he

will do so whenever the VA is below the tax base, as evidenced by Figure 1.2(b) for t = 7. In

addition, we observe excess withdrawals, despite a 2% excess withdrawal fee. The intuition is

that this is the policyholder’s best chance to access as much of the aggregate guarantee as pos-

sible: He withdraws the amount that reduces his benefits base to a level that leaves roughly the

guaranteed amount of 7,000 for each of the remaining withdrawal dates. In other words, he with-

draws as much as possible without jeopardizing the future payouts from his GMWB rider. As

the VA account increases, the optimal withdrawal amount increases as well and so do the associ-

ated excess withdrawal costs. Yet, beyond a certain amount, the benefit of the maximal guarantee

will no longer compensate for the excessive withdrawal fee, so that the policyholder will prefer to

withdraw the guaranteed amount only. When the excess withdrawal fee vanishes, however, excess

withdrawals are optimal up to the full benefits base as evidenced by Figure 1.2(c) (time t = 10).

Moreover, the optimal withdrawal curve becomes steeper as time progresses since there are fewer

periods – and hence a smaller aggregate guaranteed amount – remaining.
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This pattern of excess withdrawals continues as we approach the end of the contract term.

However, during the final years before maturity, we observe zero withdrawals for low, but not too

low, account values relative to the tax and benefits base (cf. Figure 1.2(d)). This can be once again

explained by tax benefits: Since these account values are considerably below the tax base, any

(likely) return over the remaining contract years will be tax free – unlike investments in the outside

account; hence, even if the guarantee is worthless and cannot be brought in the money unless

incurring considerable withdrawal penalties, paying the fee inside the tax-sheltered VA account is

optimal. Keeping these effects in mind, it is then also not surprising that this “gap” widens as we

get closer to maturity.

This is also the motivation that withdrawals vanish beyond a certain point when the tax base

exceeds the benefits base, as shown in Figure 1.2(e). The ability to save sheltered of taxes yields

no withdrawals beyond about 45,000, whereas below that amount bringing the guarantee into the

money pays off. However, if we also decrease the tax base so that it is again on par with the

benefits base (Figure 1.2(f)), we uncover a similar pattern as before (Figure 1.2(c)). In particular,

the relative size of the outside account value A−t appears to have little effect on optimal withdrawal

patterns.

1.4.2 Sensitivities to Key Unobservables

A primary concern when implementing a utility-based model in practice is the choice of parameter

assumptions, particularly those the insurer has little or no information about. In our case, these

key unobservables include the level of initial wealth W0, the policyholder’s annual labor income It ,
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Sensitivities to Key Unobservables

[1] [2] [3] [4] [5] [6] [7]

BM
W0 = W0 = 1M

Inc = W0 = 1M,
γ = 2.88 B = 0.2

250K 70K Inc = 70K

EQ[Fees] a 5,971 5,974 5,958 5,967 5,950 5,955 6,024
EQ[Excess-Fee] 30 33 30 34 33 35 48
EQ[GMWB] 1,480 1,423 1,534 1,421 1,516 1,280 1,765

E[agg. w/d] b 13,449 13,431 13,533 13,727 13,852 14,144 11,693
E[excess w/d] 8,555 8,636 8,463 9,058 8,915 9,692 7,005
E[w/d , t ≤ 4] 151 51 263 52 218 51 264
E[w/d , 5≤ t ≤ 8] 5,263 5,476 5,288 5,483 5,502 5,727 3,770
E[w/d , t ≥ 9] 8,035 7,903 7,982 8,193 8,132 8,366 7,659

E[G·T ] c 85,961 85,943 85,892 85,763 85,645 85,369 87,499
P(G·T == 0) 4.9% 5.0% 4.9% 5.8% 5.8% 6.0% 3.1%
P(G·T < P0) 23.6% 23.9% 23.6% 23.5% 23.6% 22.5% 19.4%
E[HT ] 86,865 86,896 86,775 86,686 86,523 86,298 88,525

Table 1.3: Withdrawal Statistics in the Benchmark Case, and for Policyholders with Different
(Unobservable) Characteristics

a All under the risk-neutral measure Q: Actuarial present value (APV) of fees collected by the
insurer; APV of excessive withdrawal fees charged to policyholder; APV of payouts made to
policyholder only due to GMWB (i.e. when X−t = 0).
b Mean aggregate withdrawal amount (pre-maturity); excess withdrawal amount; withdrawals
subject to early w/d tax; withdrawals subject to excess w/d fees but no early w/d tax; “free”
withdrawals. (Note: values are added up under the physical measure P and without accounting for
the time value of money.)
c Average level of benefits base at maturity; probability that the policyholder uses full guarantee;
probability that at least one withdrawal is made; Average tax base at maturity.
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his level of risk aversion γ , and his bequest motive B.14 In that regard, our findings provide some

encouraging evidence: As Table 1.3 shows, variations in these characteristics have relatively little

effect on aggregate withdrawal statistics. Nonetheless, the effects of these deviations from the

benchmark case are quite systematic and in some cases counterintuitive at first sight: For instance,

while withdrawals appear to increase with the level of initial wealth, we observe the opposite effect

when increasing annual income. Furthermore, it may appear that a more risk averse policyholder

will make greater use of his guarantees.15 Again, this is not what we observe.

Instead, our findings reflect the insight that in addition to taxation, in-the-moneyness, and fee

structure, none of which change when varying the preference parameters, withdrawals are also

affected by the policyholder’s bequest motive. Here, it is important to realize that while the outside

account “pays” irrespective of the policyholder’s life status, the guarantee is only material while

he is alive. Conversely, the annual income stream essentially is a life annuity, so that income and

guarantee can be viewed as substitute goods. Moreover, a risk averse policyholder with a positive

bequest motive will optimally allocate a certain proportion of his current wealth in annuities while

the remainder should also serve as bequest protection. And under decreasing absolute risk aversion,

the optimal amount of annuities is increasing in the wealth level.

Hence, if the policyholder starts off with a higher degree of wealth (Columns [2] vs. [1], [3]

14More generally, one might question the fundamental assumption of our expected utility framework. While a
detailed analysis with respect to preferences or other assumptions is beyond the scope of this paper, it is worth noting
that – say – more complex utility structures reflecting non time-separable preferences (see e.g. Epstein and Zin (1989))
and similar features can be easily implemented in our model. Furthermore, we highlight in the conclusions that we see
evidence that such modifications will have little effect on our results.

15Consider e.g. a simplified version of the scenario in Figure 1.2(a): The policyholder faces the decision whether
to withdraw the guaranteed amount of 7,000. Withdrawing the money results in a certain payout of 6,300 (i.e. 7,000
minus 10% early withdrawal tax); otherwise he faces a lottery with a random payout of either 7,000 or 0, depending
on whether the portfolio will increase above the guarantee by maturity of the policy. This argument may suggest that
a more risk averse policyholder would be drawn towards the certain payout, that is towards making the withdrawal.
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vs. [1] and [5] vs. [4]), he will ideally allocate a larger absolute amount to annuities. Since income

remains fixed, his demand for the guarantee increases, and the policyholder has a greater incentive

to move the guarantee (further) into the money, thus withdrawing more frequently and making

more use of his guarantee.

As income increases (Columns [4] vs. [1] and [5] vs. [3]), on the other hand, ceteris paribus the

demand for the guarantee goes down since the two are substitutes. The policyholder thus is willing

to give up parts of his guarantee in exchange for non-life contingent funds, and he can do so by not

withdrawing and thereby letting the guarantee move out of the money. Therefore, the value of the

GMWB decreases.

Similarly, a more risk averse policyholder (Column [6]16 vs. [1]) with a positive bequest motive

is also more averse to mortality risk, and thus has an increased preference for a safe asset – in

the form of the outside account – over a risky asset in the form of the annuity. Thus, ceteris

paribus, the demand for the guarantee declines, and so will the incentives to withdraw and hence

the value of the GMWB. Finally, a lower bequest motive (Column [7] vs. [1]) reduces the demand

for payments in death states, thus raising the relative demand for the guarantee, and resulting in

increased withdrawals.

Figure 1.3 further affirms this intuition by depicting withdrawals as a function of the VA ac-

count value X−t at time t = 4 (cf. Figure 1.2(a)). As discussed above, the withdrawal decision here

is based on a trade-off between increasing the value of the guarantee and the cost of withdraw-

ing. In line with the portrayed intuition, we observe slight changes in response to changes in the

16The parameter value γ = 2.88 was chosen in order to attain a Merton Ratio (see Merton (1969)) of 60%, consistent
with the “rule of thumb” that investors should optimally hold 60% of their assets in stocks and 40% in bonds (cf. Gerber
and Shiu (2000)).
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preference parameters. More precisely, the “safe asset” characteristic of the outside account yields

increases in the withdrawal area for larger values of the outside account (Figure 1.3(b)) and for a

lower bequest motive (Figure 1.3(e)). Conversely, the range of withdrawing at the guaranteed level

shrinks for policyholders with a larger income (Figure 1.3(c)) or a higher level of risk aversion

(Figure 1.3(d)).

Hence, these deviations can be ultimately attributed to a lack of market completeness regarding

bequest protection. In particular, the sensitivities might be less pronounced – or not even existent –

if the policyholder had access to life insurance. This indicates that the sensitivity may be even less

significant in practice, where agents have access to a large menu of life- and morbidity-contingent

securities.

All in all, the insignificance of the sensitivity of optimal withdrawal behavior – and, thus,

of resulting financial statistics – points towards value-maximization as being the key driver. In

particular, it does not seem to be the market incompleteness that is responsible for the divergence

of actual observations and results from the actuarial literature, which rely on value-maximization

approaches. Rather, it appears to be a matter of perspective: While there, the calculations were

carried out from the company’s position, the focus should be on the policyholder’s point of view.

In particular, it appears imperative to take investment taxation rules into consideration. This idea

is developed in the following section.
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(b) More Wealth, i.e. Larger Outside Account
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(c) Larger Income
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(d) More Risk Averse
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Figure 1.3: Withdrawal Behavior at t = 4 when Key Unobservables Change
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1.5 Risk Neutral Valuation from the Policyholder’s Perspective

One of the primary results from the previous section is that optimal policyholder behavior in the

life cycle model seems to be mainly driven by value maximization. This raises the interesting

possibility that we can after all meaningfully analyze optimal policyholder behavior by a risk-

neutral valuation approach – associated with all its benefits such as independence of preferences,

wealth, and, in particular, outside allocation and consumption decisions. Specifically, the reason

for the meager performance of risk-neutral valuation approaches in explaining observed prices and

exercise patterns so far seems to be the disregard of important factors affecting the policyholder’s

decision, especially tax considerations, rather than a fundamental methodological flaw.

To cope with tax considerations, in this section we develop a general methodology for valuing

cash flows when tax rates differ over investment opportunities. Subsequently, in order to vindicate

– or rather rectify – the risk-neutral valuation approach to optimal policyholder behavior, we de-

scribe how to implement the method in the context of this paper. Finally, we present numerical

results and contrast them with those from the life-cycle model.

1.5.1 Valuation of Cash Flows under Different Taxation Schemes

Arbitrage pricing in the presence of taxation is an intricate issue. For instance, as demonstrated by

Ross (1987), no universal pricing measure exists when tax rates vary for different agents. In fact,

an agent’s valuation of a given cash flow depends on his individual endowment. Our primary idea

is that we can nevertheless identify a unique – though individual – valuation methodology if the
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pre-tax financial market for “ordinary” investments such as stocks and bonds is complete.17 Then,

consistent with standard arbitrage pricing arguments, we define the time-zero value of a post-tax

cash flow X as the amount necessary to set up a pre-tax portfolio that – after taxes – replicates

X . This valuation rule is individual in the sense that it depends on the investor’s current position.

For instance, if the investor has additional investments that may offset tax responsibilities for the

replicating portfolio, the relative value of the replicating portfolio will increase.

More formally, we consider an individual with endowment A and access to underlying securi-

ties such as stocks and bonds subject to capital gains taxation as described in Section 1.2.4. We

assume that the pre-tax market is complete. Hence, there exists a unique equivalent martingale

measure, denoted by Q, such that the cost for a replicating portfolio for any pre-tax cash flow is

given by its expected discounted value under Q with respect to the numeraire (Bt)t≥0 (savings ac-

count). Furthermore, for simplicity and without much loss of generality, we assume that all cash

flows are realized at the end of years only.

We first focus on a single year (t, t + 1] and consider the (post-tax) cash flow Xt+1 ≡ X at

time t + 1 potentially originating from a separate investment opportunity subject to different tax

rules. We are interested in its value at time t. Denote by At+1 the investor’s (state-specific, post-

tax) endowment at time t + 1, with known value At at time t. Then, if an amount Vt is necessary

to replicate the post-tax cash flow Y ≡ Xt+1 +At+1, then the (marginal) value of Xt+1 is given

by Xt ≡ Vt −At . Hence, the valuation problem reduces to determining the (pre-tax) replicating

portfolio, and thereby Vt .

17Note that even in the absence of taxes, arbitrage pricing theory does not give a unique pricing rule if the market is
incomplete.
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Define Z as the corresponding pre-tax cash flow required to attain Y after tax payments, i.e.

Y = Z−κ · [Z−Vt ]
+ . (1.15)

Inverting the function on the right-hand side, Equation (1.15) may be restated as

Z = Y +
κ

1−κ
· [Y −Vt ]

+ . (1.16)

On the other hand, since Vt is the cost of setting up the pre-tax cash flow Z and the pre-tax market

is complete, we have:

Vt = EQ
t

[
Bt

Bt+1
·Z
]
.

Thus, with Equation (1.16), we obtain

Vt = EQ
t

[
Bt

Bt+1
·Y
]
+

κ

1−κ
·EQ

t

[
Bt

Bt+1
· (Y −Vt)

+

]
, (1.17)

with the unknown Vt , depending on the state of the world at time t. Hence, Equation (1.17) presents

a (non-linear) valuation rule for Y and, thus, Xt+1, which gives a unique value Vt as shown by the

following result.18

Proposition 1. Any time t + 1 post-tax cash flow Xt+1 can be valued uniquely by the investor at

time t, and its time-t value is given by Vt−At , where Vt is the unique solution to Equation (1.17).

To generalize this method for payoffs multiple years ahead, consider again the cash flow

18The proof is provided in Appendix B.
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Xt+1≡ X at time t+1. As we have argued, its time t value is given by Xt =Vt−At , which again can

be interpreted as a post-tax cash flow. Hence, its value at time t−1 is given by Xt−1 ≡Vt−1−At−1,

where Vt−1 is the setup cost for a replicating portfolio for the post-tax cash flow Xt +At = Vt as

above.19 Hence, the time t−2 value – and similarly the values at times t−3, t−4, . . ., and even-

tually the time-zero value – can be determined recursively by serially solving the corresponding

Equation (1.17).

This procedure allows us to evaluate every combination of post-tax cash flows – for any given

outside investment and consumption strategy – uniquely as the marginal increase required in to-

day’s outside portfolio in order to replicate the aggregate cash flow. In particular, it can be applied

to analyze the cash flows from the VA contract introduced in the previous sections.

1.5.2 The Policyholder’s Optimization Problem under Risk-Neutral Valua-

tion

Following the previous analysis, we implement a risk-neutral valuation approach for our repre-

sentative VA policyholder assuming he maximizes the value of all benefits. Akin to the life-cycle

model, the problem will be set up recursively, period by period.

However, since the valuation introduced in the previous subsection applies only locally, i.e.

given investment and consumption decisions, a “proper” risk-neutral valuation methodology for-

mally still requires us to consider the policyholder’s entire portfolio. This implies that the value-

maximization approach loses one of its key benefits: the ability to focus solely on the cash flows

19Note that for simplicity of exposition we disregard consumption and income that would alter At . Generalizations
are straight forward.
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associated with the VA, and to ignore all other factors. In particular, this means that the model

essentially possesses roughly the same level of complexity as the utility-based framework and the

numerical implementation of this approach will be equally cumbersome.

The complexity greatly reduces when we rely on an exogenous assumption about (outside)

investment and allocation decisions. While formally imposing such assumptions appears prob-

lematic, it is important to note that their effect in regards to the VA solely comes into play when

there is a possibility to offset gains and losses. In all other case, the outside account is immate-

rial.20 Hence, supposing that the effects are minor, we consider the simplest possible case when no

offsets are possible at all, which can be represented by simply setting the outside account to zero.

Under the same specifications as in Section 1.2, at each policy anniversary date, the policy-

holder’s decision is then based solely on observing the concurrent state variables X−t , G·t and Ht ,

and only entails choosing the withdrawal amount wt . Again, we implement the model numerically

in a Black-Scholes framework using recursive dynamic programming. In doing so, we compute the

value of the payoff at maturity, and then recursively proceed similar to Algorithm 1. More specif-

ically, for each t = T − 1, . . . ,1, the policyholder chooses the withdrawal amount that maximizes

the continuation value, i.e.

Vt(X−t ,G·t ,Ht) = max
wt

(wt− feeI− feeG− taxes)+Ṽt , (1.18)

20Obviously, this is quite different from the life-cycle model, where the outside account and consumption decisions
directly enter the value function. In contrast, here we have only an indirect effect through potential tax offsets.
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where Ṽt is given implicitly by (cf. Equation (1.17))

er ·Ṽt−EQ
t [qx+t bt+1 + px+t Vt+1(.)]−

κ

1−κ
EQ

t
[
(qx+t bt+1 + px+t Vt+1(.)−Ṽt)

+
]
= 0.

Clearly, this optimization problem is subject to a variety of constraints regarding account evolution

and updating, which are similar to the implementation of the life-cycle framework. For more

details, see Appendix 1.9.3.

1.5.3 Results II: Withdrawal behavior under the Risk-Neutral Framework

Table 1.4 shows the resulting values and aggregate withdrawal statistics for the risk-neutral val-

uation approach (RNV) in comparison to the life-cycle (LC) benchmark model in the case with

(Column [1]) and without (Column [2]) taxes. In addition, we present the respective results for

contracts that differ from the benchmark case, by assuming there are no fees on excess with-

drawals (Column [3]), by reducing the equity exposure within the VA account (Column [4]), and

by varying the income tax rate (Column [5]). While we observe considerable differences between

the latter results and the benchmark case – which are discussed in detail in Section 1.6 below – we

find that within each specification the differences between the results from the two approaches are

quite small.

Therefore, overall our presumption that the results for the two approaches will be similar proves

true. The same conclusion can be drawn from Figure 1.4, where the optimal withdrawal behavior

at times t = 10 and t = 4 is displayed for both approaches in the case with and without taxes. In

particular, we do not have any withdrawals in the presence of taxes if the account value significantly
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(a) Benchmark Case, t = 10

0 50 100 150 200 250 300 350 400
07

50

100

150

200

250

300

350

400
RNV:   t = 10,  G.

t
 = 100,  H

t
 = 100.  (in 1000)

X
t
−

w
t*

 

 

w
t

max(Guarantee,X
t
−)

(b) Risk-Neutral Valuation, t = 10
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(c) Benchmark Case, t = 4
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(d) Risk-Neutral Valuation, t = 4
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(e) Benchmark Case, No Tax
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(f) Risk-Neutral Valuation, No Tax

Figure 1.4: Withdrawal Behavior under Risk-Neutral Valuation
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exceeds the tax base (Figures 1.4(a) and 1.4(b)). In contrast, in the absence of taxes, it is optimal

to withdraw when the guarantee is out-of-the money under both optimality criteria, indicating their

alignment (Figures 1.4(e) and 1.4(f)).

The rather slight deviations between the two approaches are in line with the – rather slight

– sensitivities of the results from the life-cycle model to wealth and preferences, as analyzed in

Section 1.4.2. There we demonstrate that the response in withdrawal behavior to changes in wealth,

income, or risk aversion are motivated by the allocation to death and life states. The risk-neutral

approach can now be interpreted as the limiting case of a policyholder with infinite wealth or zero

risk aversion. For instance, in Section 1.4.2 we explain that early in the contract (t = 4), an increase

in wealth yields a wider withdrawal range (Figure 1.3(b) vs. 1.3(a)). Accordingly, the risk-neutral

approach results in an even wider range (Figure 1.4(d) vs. Figures 1.3(b) and 1.4(c)). A similar

relationship holds when varying risk aversion: High risk aversion leads to a smaller withdrawal

range than lower risk aversion (Figure 1.3(d) vs. 1.3(a)), which in turn leads to a smaller withdrawal

range than the risk-neutral approach (Figure 1.4(d) vs. 1.4(c)).

These deviations then also lead to a slight increase in the value of the GMWB rider. In particu-

lar, the difference in the values of collected fees and benefits associated with the GMWB – which

may be interpreted as the value from the insurer’s perspective – decreases from 4,521 to 3,776.

It is important to note, however, that this value in the benchmark case relies on our specific as-

sumptions on preferences, income and wealth — and therefore may be even smaller for alternative

choices. Also, it may change in the presence of alternative investment options. For instance, if the

policyholder has access to other life-contingent contracts, withdrawals may be even less affected

by the policyholder’s allocation motive and, thus, his preferences. In the absence of taxes, the
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difference in values is even less pronounced (215 in the benchmark case and 146 for risk-neutral

valuation), and the big gap between the two tax regimes again resonates the deficiencies of risk-

neutral valuation approaches in the previous literature on policyholder exercise behavior within

VAs.

1.6 Results III: Implications for Life Insurance Practice

The results from the previous sections have important – and encouraging – implications for life

insurers offering GMWBs. On the one hand, this paper provides theoretical insights into optimal

withdrawal patterns that appear to be in line with actual observations. On the other hand, we

demonstrate that optimal withdrawal behavior can be analyzed based on the – relative to a life

cycle model – simple risk-neutral valuation approach.

However, of course questions arise regarding the generality of the detected patterns, for in-

stance with respect to changes in VA design or the underlying tax rates as different policyholders

may fall into different tax brackets. Furthermore, eventual quantitative results depend on specifics

of considered contracts, yet a practical implementation of the risk-neutral approach to determine

optimal policyholder behavior – despite its relative simplicity – may still be too ambitious for most

insurers. In fact, current industry practice is to rely on historic exercise probabilities or static ex-

ercise rules, although some insurers indicate they started to use simple dynamic assumptions (cf.

Society of Actuaries (2009)).

Therefore, in this section we first analyze the robustness of the uncovered exercise patterns

with respect to the underlying contract specification and parameters. Subsequently, to appraise the
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advancement of imposing dynamic exercise rules in the context of our model, we compare our

results to the usage of a simple rule based on the “moneyness” of the guarantee.

1.6.1 Robustness of the Results

Columns [3] and [4] of Table 1.4 show the effects when modifying the contract’s specifications vis-

à-vis the benchmark case. As may be anticipated, removing the excess withdrawal fees (Column

[3]) induces more frequent withdrawals early in the contract period. This reduces collected fees

and, at the same time, increases the “usage” and therefore the value of the guarantee. These

findings suggest that the “actual value” of the excess withdrawal fee to the insurer is larger than

the rather moderate amount that is directly attributed to excessive withdrawals in the benchmark

case (30) due to changes in policyholder behavior.

In practice, insurers sometimes limit equity exposure in the VA in order to contain the risks.

Column [4] of Table 1.4 provides some evidence to that effect: When reducing equity exposure

to 90%, the value of the guarantee diminishes, while collected fees remain relatively unaffected.

This of course is a direct consequence of a reduced likelihood of adverse scenarios under the more

conservative allocation strategy, since withdrawals are optimal only when the guarantee is “in the

money”. In other words, the downside protection is more valuable for a more risky investment

strategy, so that is is also no surprise that the policyholder, ceteris paribus, will prefer a 100%

equity exposure inside the VA (under both models), as shown in the bottom line of Table 1.4.

Nevertheless, in both cases, when modifying the surrender fee structure or when adjusting the

equity exposure, the general withdrawal patterns prevail. In particular, withdrawals still are the

exception rather than the norm and mostly occur in adverse scenarios for the underlying index.
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The driver behind these observations of course is the deferred taxation of investments inside the

VA.

Results change dramatically in the absence of taxation (cf. Table 1.4, Column [2]). More

precisely, investment in the VA loses its comparative advantage, withdrawals increase substantially,

and – as a result – so does the guarantee value. A similar argument applies if the tax advantage

becomes less important, e.g. due to an increase in the income tax rate: The VA becomes less

attractive, and the policyholder has a greater incentive to withdraw and invest it outside of the

VA. Accordingly, Column [5] of Table 1.4 shows that an increase from 25% to 30% leads to an

increase in withdrawals. However, we find that even under a tax rate of 30% on withdrawals, the

deferred taxation feature is valuable enough to sustain an absence of withdrawals in most scenarios.

Therefore, we again have a positive answer to the question of generality of our results: Even for

relatively high tax brackets, the observed patterns prevail.

1.6.2 Simple Reduced-Form Exercise Strategies

As indicated above, insurers have started to rely on simple dynamic exercise rules in their calcu-

lations, where approaches based on the “moneyness” of the guarantee appear particularly popu-

lar. More formally, these rules assume the policyholder withdraws the guaranteed annual amount

whenever the guarantee is “in the money” (that is: the account value lies below the benefits base),

and zero otherwise, regardless of tax and fee considerations:

wt ≡min{gW
t ,GW

t } ·1[{X−t ≤GW
t }]

.



48

The results in the context of our model are provided in Column [6] of Table 1.4, and we find

that overall the withdrawal statistics are very close to the benchmark case. Given the described

withdrawal patterns for the benchmark case, the relatively good performance of the “moneyness”

assumption should come as no surprise. Still, the suitability of this assumption – particularly in

view of the valuation results – bears good news for the insurance industry. In particular, our models

endorse the use of the simple “in-the-money” rule.

This result is also consistent with empirical findings from Knoller et al. (2011), who determine

in the case of Japanese VA products that “moneyness (. . . ) has the largest explanatory power for the

rate at which policyholders surrender their policies”. It is worth noting, however, that in our setting

the validity of “moneyness” as a proxy for optimal policyholder behavior is mainly a consequence

of the similarities between tax and benefits base.

1.7 Analysis of an Empirical Variable Annuity Product

We apply our valuation framework from Section 1.5 to a current empirical Variable Annuity prod-

uct in the U.S. market. More specifically, we implement the Advanced Series Lifevest IISM (ASL

II) Variable Annuity by Prudential Annuities Life Assurance Corporation. The product differs

from the standard example contract considered in the previous sections in a variety of features. We

commence by describing these features and their implementation and present the numerical results

thereafter.



49

1.7.1 Implementation of ASL II

ASL II is a flexible premium deferred annuity that allows investments in a variety of underlying

mutual fund portfolios, and offers numerous add-on guarantees for purchase. As a Variable Annu-

ity product, it is subject to the standard U.S. rules and regulations, such as deferred taxation and

early withdrawal penalties.

We consider a male policyholder age 55 who initially invests $100,000 but makes no further

premium payments. The VA carries an annual Mortality & Expense Risk Charge of 1.50% and an

Administration Charge of 0.15%, both as a percentage of the daily net assets of the investor’s sub-

accounts. We implement them as continuously deducted charges from the policyholder’s account

value, at an annual rate of 1.65%.21

The policyholder purchases the product in combination with an optional Guaranteed Minimum

Withdrawal Benefit (GMWB), with an annual charge of (currently) 0.35%, also as a fraction of the

policyholder’s concurrent account value. Under the GMWB, the insurer guarantees to return the

initial investment over the course of the policy, provided that the policyholder does not withdraw

more than the guaranteed annual withdrawal amount of $7,000 in any given year. The GMWB

comes with a variety of special features: (1) The policyholder can elect to step up the guarantee

level prior to his first withdrawal, and then again every 5 years; In this case, the benefits base

is stepped-up to the concurrent account value, and the annual guaranteed withdrawal amount is

set to the larger of the previous guaranteed annual amount and 7% of the new benefits base. (2)

If the policyholder makes no withdrawals during the first seven years, the GMWB fee will be

21We refrain from including the Annual Maintenance Fee of the lesser of $35 and 2% of the account value, which
is waived if the account value is above $100,000. Even if the waiver does not apply, we consider the relatively small
amount of $35 negligible.
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waived for the remainder of the contract (or until he steps up his guarantee) – even if he makes

withdrawals thereafter. (3) Withdrawals can be made at all times. However, for computational

purposes, and due to the annual withdrawal “limit” on the GMWB, we simplify the policyholder’s

decision making process by restricting withdrawals to policy anniversary dates only. (4) There are

no withdrawal obligations. In particular, the policyholder can withdraw zero, the guaranteed annual

amount, up to the level of his account value, or any amount in between. Both VA account and

benefits base are reduced by the withdrawal amount. If the policyholder withdraws excessively in a

given year, the benefits base is reduced linearly by the guaranteed amount, and then proportionally

to the account value by the excessive withdrawal amount. In this case, the annual guaranteed

amount is also reduced by the same factor.

We assume that the policyholder annuitizes his VA after 20 years, if still alive. He then can

choose whether to receive his account value in the form of a life annuity, or his remaining benefits

in the form of annual payments at the level of his annually guaranteed withdrawal amount. Note

that only the first option accumulates interest during the annuitization period. If the policyholder

chooses the benefits base option and the (accumulating) account value is not sufficient to cover the

payouts, the insurer will make up the difference.

If the policyholder dies before annuitizing, his beneficiary can choose between three payout

options: A one-time payout of the concurrent account value; receiving the benefits base in annual

installments, at the level of the annually guaranteed withdrawal amount; or receiving the benefits

base as an immediate lump-sum payment. 22

22While the second option is part of the GMWB feature, the latter option resembles the “basic death benefit” in-
cluded in the VA. The basic death benefit guarantee allows the beneficiary to withdraw the greater of the concurrent
account value and the initial investment, adjusted proportionally for previous withdrawals. Since benefits base and
death benefit amount are likely to be close, we substitute one for the other, once again to keep the state space manage-
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Regarding the overall investment strategy, the policyholder can choose between a variety of

mutual fund portfolios. In addition, the policyholder is entitled to 20 transactions per year, at

no additional cost. However, due to the downside protection of the guarantee, it appears optimal

for a value-maximizing policyholder to choose the most risky investment strategy.23 Therefore,

we assume the policyholder allocates his entire investment in the ProFund VP Bull investment

portfolio. The fund is issued by ProFund Advisors LLC and aims for returns similar to the S&P

500 index. We implement the evolution of the fund with a Black-Scholes model, assuming again

a historical volatility of 17%. We further assume a risk-free rate of 5%, net of mutual fund fees

(which for the ProFund VP Bull are 1.68% per year). Our parameter assumption for the benchmark

case are summarized in Table 1.5.

We implement the policy with the recursive dynamic programming techniques described above.

At each policy anniversary date, the policyholder can choose his withdrawal amount, and if appli-

cable whether he wants to step up his guarantee. In our implementation, we exploit that it is not

necessary to fix the absolute account for the optimal decision process but merely the ratio of bene-

fits base and tax base to the account value. The remaining state variables are the annual guaranteed

amount (as a percentage of the benefits base), the number of years that passed since the last step-up

(from 1 to 5), and whether or not the fee waiver is applicable.

1.7.2 Valuation Results for ASL II

Table 1.6 displays the numerical results for our implementation of ASL II. We find that overall

the collected fees considerably exceed the benefits of the Variable Annuity, although substantial

able.
23Most permissible investment portfolios have limitations to equity exposure.
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Parameter Assumptions

Parameter Value Source

Age at inception 55
Time to maturity (years) T 20
VA principal 100,000
VA charge 165 bps

ASL IIGuarantee fee (GMWB) 35 bps
Annual guaranteed amount 7,000

Income tax rate τ 25%
Based on U.S. tax policyCapital gains tax rate κ 15%

Early withdrawal tax 10%

Risk-free rate r 5% 3-Month Treasury CMR, 1982-2010
Volatility σ 17% S&P 500, 1982-2010

Table 1.5: Parameter Choices (Benchmark Case) for Implementation of ASL II

parts might be required to cover administrative costs and other expenses. The difference amounts

to approximately 7 to 10% of the initial investment, depending on the parameter assumptions.

To determine the marginal cost relative to the charged fee of the GMWB rider, we compare the

difference of fees and benefits with and without incorporating the withdrawal guarantee. Note that

all valuation results are quoted in net present value terms under the risk-neutral measure, and based

on an initial investment of $100,000. We find that in the benchmark case, the difference in absence

of the guarantee exceeds the difference in the presence of the guarantee: The insurer’s expected

profit decreases by $800 when adding on the withdrawal guarantee. However, an increase in the

volatility of the underlying investment from 17% to 20% would result in a positive difference of
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approximately $2,000 when adding on the GMWB. Given fluctuations in the historical volatility

of the S&P 500 index, our results indicate that a premium of 35 bps for the GMWB is roughly

consistent with the marginal cost to the insurer.

We further observe that in the benchmark case, it is optimal for the policyholder to surrender his

VA prior to maturity in approximately 75% of all scenarios. In the absence of a GMWB, surrender

occurs in over 88% of all scenarios. We attribute this high propensity of surrenders to the 165 bps

charge for the basic VA. In the absence of tax considerations (see Column 8), it even becomes op-

timal to surrender almost immediately after purchasing the VA. This suggests that the tax-deferred

growth property of the VA investment is deterring policyholders from early withdrawals (as we

argued in previous sections), but appears not to be worth 1.65% of the investment value every year

if the guarantee is out of the money.

Further evidence presented in Table 1.6 supports this theory: An increase in the tax rate on

investments outside of the VA, κ , renders the VA a relatively more attractive investment vehicle,

and we consequently observe a substantial reduction in surrenders to around 21%. Conversely,

a larger income tax rate τ makes the VA less attractive, which mildly increases surrender rates.

Not surprisingly, the results in the table also show a reduction in surrender rates for all considered

parameter values if the withdrawal guarantee is present. In particular, we observe a tremendous

reduction in surrender rates when increasing the volatility from 17% to 20%: The intuition here

is that – ceteris paribus – the withdrawal guarantee (like a put option) is more valuable in a more

volatile environment.

Columns 3 and 4 of Table 1.6 indicate that the difference in fees and benefits from the GMWB

decreases with the market interest rate, i.e. benefits considerably exceed the collected fees in a
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low interest environment. This could serve as a potential explanation why in recent years many

insurers have either modified the offered withdrawal guarantees (e.g. by increasing the fees), have

regulated the risk exposure of potential investments – particularly when guarantees are elected –

24 or have stopped offering such guarantees altogether.

Moreover, we find that the difference is rather insensitive to changes in the time period (see

Column 5). Increasing the tax rate on VA earnings from 25% to 35% (Column 6) also has little ef-

fect on the insurer’s profit calculations. Since withdrawals are treated as income (for tax purposes),

our results appear to be consistent across income groups. On the other hand, a larger tax rate on

earnings from the replicating portfolio (see Column 7) would substantially increase the marginal

value of the GMWB.

Finally, Column 8 shows that without taxation, the policyholder would surrender almost imme-

diately after purchasing the VA – and therefore probably not purchase the product at all. Clearly,

without accounting for the benefits of tax-deferred investment growth, the VA provides little ad-

vantage for the policyholder and does not justify the corresponding annual fee. This, once again,

demonstrates the fundamental difference in optimal policyholder behavior if the valuation is taken

out from his perspective.

1.8 Conclusions and Future Research

The present paper concerns the optimal policyholder exercise behavior within embedded options

in life insurance contracts. More specifically, our focus is on withdrawal behavior for the holder

24For instance, for the ASL II, it is not possible to invest in the ProFund VP UltraBull, which “seeks daily investment
returns, before fees and expenses, that correspond to twice (200%) the daily performance of the S&P 500”, if the
policyholder elects a GMWB rider.



55

Va
lu

at
io

n
re

su
lts

fo
r

A
SL

II

[1
]

[2
]

[3
]

[4
]

[5
]

[6
]

[7
]

[8
]

B
en

ch
m

ar
k

σ
=

20
%

r
=

3%
r
=

3%
,σ

=
20

%
T
=

30
τ
=

35
%

κ
=

20
%

N
o

Ta
xe

s

In
cl

ud
in

g
G

M
W

B

EQ
[G

ua
ra

nt
ee

]
4,

16
1

9,
99

2
16

,8
66

22
,0

60
4,

08
7

3,
48

2
7,

76
8

1,
48

4
EQ

[F
ee

s]
11

,1
40

19
,6

92
22

,4
80

23
,8

09
11

,2
79

10
,2

71
22

,3
79

3,
28

6
EQ

[N
et

Pr
ofi

t]
6,

97
9

9,
70

0
5,

61
4

1,
74

8
7,

19
2

6,
78

9
14

,6
11

1,
80

2

Su
rr

en
de

rR
at

e
75

.2
%

37
.0

%
19

.4
%

20
.1

%
78

.0
%

80
.2

%
21

.0
%

92
.0

%
St

ep
-u

p
R

at
e

91
.3

%
13

0.
5%

11
7.

5%
11

4.
0%

92
.0

%
90

.8
%

15
0.

5%
89

.3
%

W
ith

ou
tG

M
W

B

EQ
[G

ua
ra

nt
ee

]
79

9
1,

20
2

1,
87

0
2,

53
5

1,
14

4
76

4
92

2
41

EQ
[F

ee
s]

8,
57

9
8,

85
8

9,
48

5
9,

70
2

8,
79

7
8,

51
8

12
,8

84
1,

63
6

EQ
[N

et
Pr

ofi
t]

7,
78

0
7,

65
7

7,
61

5
7,

16
7

7,
65

3
7,

75
4

11
,9

62
1,

59
6

Su
rr

en
de

rR
at

e
88

.2
%

84
.5

%
79

.2
%

74
.1

%
88

.0
%

89
.2

%
75

.1
%

99
.2

%

N
et

V
al

ue
of

G
M

W
B

EQ
[G

M
W

B
-P

ro
fit

]
-8

02
2,

04
4

-2
,0

01
-5

,4
19

-4
61

-9
65

2,
64

8
20

6

Ta
bl

e
1.

6:
W

ith
dr

aw
al

St
at

is
tic

s
an

d
V

al
ua

tio
n

of
A

SL
II

fo
rD

iff
er

en
tP

ar
am

et
er

V
al

ue
s



56

of a VA contract including a GMWB rider, even though our insights are not limited to this popular

but rather specific product.

Our main conclusion is that the key driver for exercise behavior in the pre-retirement period is

value maximization. More precisely, we contrast two approaches to optimal policyholder behav-

ior, namely a lifetime utility model that explicitly allows for outside investment and a risk-neutral

value-maximization approach. We find that despite their conceptual differences, both approaches

yield very similar withdrawal patterns and aggregate withdrawal statistics. In particular, the pos-

sibility to defer investment taxation within the VA seems to be the dominating factor, inducing

policyholders to only withdraw when the guarantee is in the money, i.e. in adverse market condi-

tions. As a consequence, under our parameter assumptions, a guarantee fee of 50 bps, which is

close to levels encountered in practice, more than sufficiently provides for a return-of-investment

GMWB. Moreover, our analyses of an empirical VA contract containing a relatively complex with-

drawal guarantee indicate that the charged option fee is roughly in line with the marginal cost to

the insurer.

These results are in stark contrast to findings in the actuarial literature based on value-maximizing

approaches, which suggest much higher guarantee fees. In fact, it is exactly this disparity that has

led researchers to gravitate towards (more complex) life-cycle models, supposing that the disparity

has to be attributed to the incompleteness of the individual insurance market. In line with this

hypothesis, in our utility-based framework, policyholders respond to changes in parameters by

balancing payouts in the case of death and survival – which of course is the source of the incom-

pleteness of the market. However, these effects are far less pronounced relative to the motive to

maximize the value of the embedded option. In contrast, we show that the primary reason for
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the alluded disparity is the negligence of tax effects: A value-maximizing approach that correctly

accounts for tax benefits will produce very similar outcomes as the considerably more complex

life cycle model. Furthermore, the difference between the two approaches might be even smaller if

we additionally included a market for life contingencies such as term life insurance in our lifetime

utility framework. Thus, our findings suggest that the supplemental insights provided by a utility-

based framework do not justify the additional complexity relative to the risk-neutral approach – if

the latter is taken out properly, that is from the policyholder’s perspective.

Beyond taxation rules, this distinction of perspective can also be important for the underlying

assumptions of the approach. For instance, in the present paper we assume a given set of mortality

rates that are identical both from the individual and the company’s perspective. In future work,

it may be worthwhile to study the effects of an asymmetry in the mortality assumptions on with-

drawal behavior. Here, the asymmetry may originate from informational asymmetries between the

policyholder and the company during the contract phase due to individual mortality risk, or may

be simply caused by the policyholder’s poor understanding of his own mortality risk as suggested

in the behavioral economics literature (cf. Harrison and Rutström (2006)). The latter may be par-

ticularly interesting since, to our knowledge, so far there are no attempts to quantify the financial

impact of such “behavioral anomalies” on exercise-dependent retirement savings products.

Another obvious direction of future research is the generalization of our results to a more

general model frameworks and a more general set of life insurance products. Specifically, while the

life-cycle model considered here is rather simple, we see evidence that modifying the preference

assumptions or adding additional risk factors will not affect withdrawal behavior – provided that

these risks are separately insurable. However, non-insurable exogenous expenditure or liquidity
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shocks may well yield a difference in patterns. This is akin to Carpenter (1998), who in the context

of employee stock options proposes a risk-neutral valuation model with an exogenous withdrawal

state. Similarly, including additional guaranteed benefits and extending the contract period may

provide further insights. For instance, it is conceivable that for other guarantees the pooling with

a savings product could provide payoff profiles that impair the performance of the risk-neutral

approach relative to the utility maximization framework, especially later in life.

Finally, it is important to further elaborate on the practical significance of our results. While

we already highlighted that our results endorse simple reduced-form exercise rules based on the

“moneyness” of the guarantee, the question arises if there are better performing reduced-form rules

– both in the context of our model and in view of empirical exercise patterns.

1.9 Appendix A: Model Details

1.9.1 Timeline
Starting at the end of policy year t ∈ {1, . . . ,T − 1}, just prior to the t-th policy anniversary date,
the timeline of events is as follows:

1. The policyholder observes the annual asset returns St/St−1, and thus the level of his current
state variables, A−t and X−t .

2. The policyholder dies with probability qx+t−1.

3. In case of death, he leaves bequest bt = A−t +max{X−t , GD
t }, and no further actions are

taken. If he survives:

4. The policyholder receives income It for the new period.

5. Based on this information, he chooses how much to withdraw from the VA account, wt ,
consume, Ct , and how to allocate his outside portfolio, νt .

6. The policyholder consumes Ct . Account values (A+
t , X+

t ), the benefit base (G·t+1) and the
tax base (Ht+1) are updated accordingly.

7. Between t and t +1, the account values evolve in line with the asset(s).
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8. (1.) The policyholder observes St+1/St , etc.

1.9.2 Bellman Equation in the Black-Scholes Framework
In a Black-Scholes environment, as described in Section 1.3, optimization problem (1.6) takes the
form

V−t (yt) = max
Ct ,wt ,νt

uC(Ct)+ e−β

∞∫
−∞

ψ(γ)
[
qx+t ·uB(bt+1|S′(γ))+ px+t ·V−t+1(yt+1|S′(γ))

]
dγ,

where ψ(γ) =
1√
2π

exp(−γ2

2
) is the standard normal probability density function, and S′(γ) =

St · eσγ+µ− 1
2 σ2

is the annual gross return of the risky asset, subject to

yt = {A−t ,X−t ,G.
t ,Ht},

X+
t =

(
X−t −wt

)+
,

A+
t = A−t + It +wt− feeI− feeG− taxes−Ct ,

feeI = s ·max
{

wt−min(gW
t ,GW

t )
}
,

feeG = sg · (wt− feeI) ·111{x+t<59.5},
taxes = τ ·min{wt− feeI− feeG,(X−t −Ht)

+},

G·t+1 =

{
(G·t−w)+ : w≤ gW

t(
min

{
G·t−w , G·t ·

X+
t

X−t

} )+
: w > gW

t ,

Ht+1 = Ht−
(

wt−
(
X−t −Ht

)+)+
,

A−t+1 = A+
t ·
[

νt · eσγ+µ− 1
2 σ2

+(1−νt) · er−κ ·
(

νt · eσγ+µ− 1
2 σ2

+(1−νt) · er−1
)+]

,

X−t+1 = X+
t · e−φ ·

[
νX · eσγ+µ− 1

2 σ2
+(1−νX) · er

]
,

bX = max
{

X−t+1,G
D
t+1
}
,

bt+1 = A−t+1 +bX − τ · (bX −Ht ,0) ,
0≤Ct ≤ A−t + It +wt− feeI− feeG− taxes,
0≤ wt ≤ max

{
X−t , min

{
gW

t , GW
t
}}

, and
0≤ νt ≤ 1.

1.9.3 Bellman Equation in the Black-Scholes Framework under Risk-Neutral
Valuation

In a Black-Scholes environment, the risk-neutral valuation problem takes the form

Vt(X−t ,G·t ,Ht) = max
wt

(wt− feeI− feeG− taxes)+X0,
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where X0 =V is given implicitly by

er ·V −EQ[Y ]− κ

1−κ
EQ[Y −V )+] = 0,

and subject to
Y = qx+tbt+1 + px+tVt+1(X−t+1,G

·
t+1,Ht+1),

X+
t =

(
X−t −wt

)+
,

feeI = s ·max
{

wt−min(gW
t ,GW

t )
}
,

feeG = sg · (wt− feeI) ·111{x+t<59.5},
taxes = τ ·min{wt− feeI− feeG,(X−t −Ht)

+},

G·t+1 =

{
(G·t−w)+ : w≤ gW

t(
min

{
G·t−w , G·t ·

X+
t

X−t

} )+
: w > gW

t ,

Ht+1 = Ht−
(

wt−
(
X−t −Ht

)+)+
,

X−t+1 = X+
t · e−φ ·

[
νX · eσγ+r− 1

2 σ2
+(1−νX) · er

]
,

bX = max
{

X−t+1,G
D
t+1
}
,

bt+1 = bX − τ · (bX −Ht ,0) , and
0≤ wt ≤ max

{
X−t , min

{
gW

t , GW
t
}}

.

where γ follows a standard normal distribution.

1.10 Appendix B: Derivations and Proofs

1.10.1 Proof of Integral Equation (1.12)

We follow Bauer et al. (2008) to derive a quasi-analytic expression to our lifetime optimization
problem (1.6) in a Black-Scholes-type environment.
As discussed, the evolution of the stock process can be described by a geometric Brownian Motion:

dSτ = Sτ ·µ ·dτ +Sτ ·σdZτ . (1.19)

Let t ∈ N, t < T , and assume that we know the policyholder’s value function
V−t+1(A

−
t+1,X

−
t+1,G

.
t+1
−,H−t+1) as a function of the current level of state variables at the end of

the period, after observing St+1 and whether or not the policyholder has survived the period, but
before consumption, withdrawal and reallocation decisions for the next period are made.
For τ ∈ [t, t +1), we define the policyholder’s valuation of his total investments as the discounted
expected valuation of his valuation at the next policy anniversary date:

Vτ(Aτ ,Xτ ,G.
t+1,Ht+1)≡ e−β ·(t+1−τ) ·EP[V−t+1(A

−
t+1,X

−
t+1,G

.
t+1,Ht+1)|Fτ ]≡ f (τ,Sτ). (1.20)

We can write down the second identity of (1.20) because the only things changing within the period
are time and stock value. These two drive the evolution of state variables Aτ and Xτ , while all other
state variables remain at their time t+ level, hence subscript t+1 on the left hand side.



61

Our goal is to first determine a partial differential equation describing the evolution of f , and then
turn that into an integral equation that eventually allows a direct expression of f (t, .) in terms of
f (t +1, .). In that spirit, define

ũ(τ,Sτ)≡ e−β ·(τ−t) · f (τ,Sτ) = EP[e−β ·V−t+1(A
−
t+1,X

−
t+1,G

.
t+1,Ht+1)|Fτ ].

Observe first that ũ(τ,Sτ) is a martingale, and as such must have zero drift. Applying Ito’s Lemma
(together with (1.19)):

dũ = e−β ·(τ−t) ·
[
−β · f + fτ + fS ·µ ·Sτ +

1
2

σ
2 ·S2

τ · fSS

]
dτ + e−β ·(τ−t) · fS ·Sτ ·σ ·dZτ ,

we can thus conclude that

−β · f + fτ + fS ·µ ·Sτ +
1
2

σ
2 ·S2

τ · fSS = 0. (1.21)

This is a slightly modified version of the classic Black-Scholes PDE, and subject to the terminal
condition

f (t +1,St+1) = qx+t ·uB(Bt+1|St+1)+ px+t ·V−t+1(A
−
t+1,X

−
t+1,G

.
t ,Ht |St+1). (1.22)

We now try to transform the PDE (1.21) to an integral equation: For that matter, define

η ≡ µ

σ2 − 1
2

ρ ≡ 1
2σ2 ·η2 +β

Xτ ≡ logSτ

σ

g(τ,X) ≡ exp(σ ·η ·X−ρ · τ) · f (τ,S)

(1.23)

In particular, this implies S = exp(σ ·X), dX
dS = 1

σS , and f (τ,S) = exp(ρτ −σηX) · g(τ,X). And
hence:

fτ = exp(ρτ−σηX) · [ρ ·g+gτ ] ,

fS = exp(ρτ−σηX) · 1
σS · [gX −σηg] ,and

fSS = exp(ρτ−σηX) · 1
σ2S2 ·

[
σ2(η2 +η)g−σ(2η +1)gX +gXX

]
.

After plugging these derivatives into (1.21) and some simplification, we obtain

gτ +
1
2

gXX = 0. (1.24)

This PDE is commonly known as a one-dimensional heat equation, and it is subject to its terminal
condition

g(t +1,X)≡ exp(σ ·η ·X−ρ · (t +1)) · f (t +1,S). (1.25)

To solve this, observe first that a solution to (1.24) is given by the pdf of a N(α, t+1−τ) distributed
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random variable, for any α ∈ R,

hα(τ,z) =
1√

2π(t +1− τ)
exp(− (z−α)2

2τ(t +1− τ)
).

Due to the linearity of the differential operator, any linear combination (and under certain regularity
conditions that includes integration) of such pdfs also satisfies the PDE (1.24). The challenge is
then to find the one that also satisfies the terminal condition (1.25). As can be easily verified, the
following function does the job:

g(τ,X) =
∫

∞

−∞

1√
2π(t +1− τ)

exp(− (X−α)2

2τ(t +1− τ)
) ·g(t +1,α)dα. (1.26)

Using the transformation γ ≡ α−ησ −X , and applying (1.23) to (1.26), we find

f (τ,S) = e−ρ(t+1−τ) ·
∫

∞

−∞

1√
2π(t +1− τ)

exp
(
σ2η2 +σηγ · (1− 1

t+1−τ
)

− γ2 +η2σ2

2(t +1− τ)

)
· f (t +1,S · eγ+ησ )dγ,

and therefore

f (t+,St) = e−β
∞∫
−∞

ψ(γ) · f (t +1,St · eσγ+ησ2
) dγ,

= e−β
∞∫
−∞

ψ(γ)
[
qx+t ·uB(Bt+1|S′(γ))+ px+t ·V−t+1(A

−
t+1,X

−
t+1,yt |S′(γ))

]
dγ

where S′(γ) = Steσγ+µ− 1
2 σ2

, ψ(.) is the standard normal density function ψ(γ) =
1√
2π

exp(−γ2

2
),

and the final identity follows from (1.22).

1.10.2 Derivation of Approximation (1.14)

For given M and uk,k = 0, . . . ,M, we can compute xk = λ (uk) = exp(σ ·uk + r− 1
2

σ
2) and ψk =

F(xk), if necessary by interpolating and/or extrapolating F(.) over the state space grid. Note that
the domain of gross return variable x by definition is (0,∞).
Then, for arbitrary 0 < x < ∞, we can approximate the corresponding function value linearly by

F(x) ≈
M−1
∑

k=0

(
ψk +

x−xk
xk+1−xk

· (ψk+1−ψk)
)
·111[xk,xk+1)(x)

=
M−1
∑

k=0
(ak +bk · x) ·111[xk,xk+1)(x),
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where for k = 0, . . . ,M−1

ak ≡
xk+1 ·ψk− xk ·ψk+1

xk+1− xk
, and bk ≡

ψk+1−ψk

xk+1− xk
.

In addition, we define aM = bM ≡ 0.
Plugging this into Equation (1.13), we obtain

K =
∞∫
−∞

φ(u)F(λ (u))du ≈
∞∫
−∞

φ(u) ·
M−1
∑

k=0
(ak +bk · x) ·111[xk,xk+1)(x)du

=
M−1
∑

k=0

uk+1∫
uk

φ(u) · (ak +bk ·λ (u)) du =
M−1
∑

k=0
ak ·

uk+1∫
uk

φ(u) du+bk ·
uk+1∫
uk

φ(u) ·λ (u) du,

and since

φ(u)·λ (u)= 1√
2π
·exp

(
−1

2
u2
)
·exp

(
σu+µ− 1

2
σ

2
)
= eµ 1√

2π
exp
(
−1

2
(u−σ)2

)
= eµ

φ(u−σ),

we obtain

K ≈
M−1

∑
k=0

ak · [Φ(uk+1)−Φ(uk)]+ exp(µ) ·bk · [Φ(uk+1−σ)−Φ(uk−σ)].

Finally, reordering of the summation terms yields Equation (1.14).

1.10.3 Proof of Proposition 1
All that is left to show is the existence and uniqueness of the solution to Equation (1.17), which
can be written as

Vt−EQ
t

[
Bt

Bt+1
·Y
]
− κ

1−κ

∫ Bt

Bt+1
· (Y −Vt) ·1[Y>Vt ] dFQ = 0,

whereby 0≤ κ ≤ 1, and 0≤ Bt ≤ Bt+1. Denote the left hand side by f (Vt). To complete the proof,
we only need to demonstrate that the equation f (V ) = 0 has exactly one solution.
Let us first demonstrate existence: Since f (.) is continuous, f (−∞) = −∞ and f (∞) = ∞, by the
Intermediate Value Theorem, there needs to exist −∞ <V < ∞ such that f (V ) = 0.
To show uniqueness, it suffices to show that f (.) is strictly increasing. For that matter, consider
V 2 >V 1. Then:

f (V 2)− f (V 1) =V 2−V 1− κ

1−κ

[∫ Bt
Bt+1

(Y −V 2)1[Y>V 2]dFQ−
∫ Bt

Bt+1
(Y −V 1)1[Y>V 1]dFQ

]
=V 2−V 1 + κ

1−κ

[∫ Bt
Bt+1
·
{
(Y −V 1)1[V 1<Y≤V 2] + (V 2−V 1)1[Y>V 2]

}
dFQ

]
> 0.
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Chapter 2

On Negative Option Values in Personal

Savings Products

2.1 Introduction

Option values are generally considered to be strictly positive as they provide the holder with the

right – but not the obligation – to execute a transaction (see for example Merton (1973)). This is

certainly true from the holder’s perspective since she can always choose to ignore the option. And

since in general the payoff to the issuing counter party is simply the opposite of the investor’s profit

function, it will be optimal for the issuer to charge a positive option price.

This argument, however, is based on the important assumption that the two parties possess

identical value functions. We show that this assumption breaks down in the case of personal

savings products, where frictions such as preferential tax treatments may cause the value functions

to differ. In fact, in these cases an agent may increase his expected payout by issuing a marginal
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option.

This insight may not come as a surprise in the presence of unequal market access. For instance,

if it is impossible for a risk-averse holder of the option to sell it at its risk-neutral value, as it is

frequently the case for personal savings products, the investor’s decision making will be shaped by

her preferences. We show that negative option values can also arise when all market participants

are value maximizers but tax treatments differ. More specifically, in this case, in addition to the

holder and the issuer of the option, a third party (the government) has a stake in the transaction.

The key contributions of this paper are the illustration of the mechanics of negative option values,

and to provide examples where this situation may arise in practice.

Intuitively, the addition of an option to an investor’s position can change his optimal exercise

and/or investment strategy. This is true even for a value-maximizing investor, if the new option

is affecting the value profiles of other positions she possesses. However, under standard arbitrage

pricing, any dollar the investor gains from an option would have to come out of the issuer’s pocket.

This balance equation is no longer true when a third (and inactive) party gets involved, as now

the revised optimal strategy could entail a reduction of payments to the third party. For instance,

by issuing an option which induces an optimal exercise behavior that e.g. defers the investor’s tax

payments, the counter party can affect the positions of the investor and issuer dissimilarly, at the

expense of the government. Moreover, it is even possible that the issuer stands to gain directly

from the investor’s change in strategy, e.g. because he has issued other options to the investor

whose exercise is affected by the new option. Thus, it is conceivable that this option will actually

reduce the issuers aggregate liabilities, i.e. the option will have a negative marginal value. Thus

both, the issuer and the investor, may benefit from this additional option, and their compensation
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will come out of the government’s balance through a reduction in (or deferment of) the investor’s

tax liabilities. Therefore, negative (marginal) option values can arise whenever investments grow

tax-deferred or tax free.

In the United States, this is the case for many retirement savings vehicles. A prominent ex-

ample are Variable Annuities (VA). In essence, VAs are investment vehicles offered by insurance

companies that invest in mutual funds or fixed income securities. Their popularity stems primarily

from the fact that they grow tax-deferred.1 These products are frequently enhanced by long term

investment guarantees – so-called guaranteed minimum benefits – which in their payoff structure

resemble standard option contracts.

One such guarantee, known as a Guaranteed Minimum Withdrawal Benefit (GMWB), grants

the policyholder the right – but not the obligation – to withdraw her initial investment over the

course of the policy (typically around 20 years), provided that annual withdrawals do not exceed

a given amount (typically 7% of the initial investment). In my first essay, I demonstrate that

withdrawing early is not always optimal, since the policyholder might forego future tax benefits

on the amount withdrawn. Since the insurer is liable for the remaining withdrawal payments once

the investment account depletes, he benefits when the policyholder chooses not to withdraw. The

insurer further profits from a non-withdrawal by collecting more premiums, which are typically

quoted as a fixed percentage of the concurrent account value every year. On the other hand, the

investor herself can also benefit from foregoing a withdrawal, since her investment would keep

growing tax-deferred. This strategy would lead to a reduction in tax payments, and therefore there

is an opportunity to make both policyholder and insurer better off. Note that this does not imply

1Earnings are not taxed until they are withdrawn, which provides for a considerable advantage over mutual funds,
particularly for long-term investments.
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that there must always exist an enforceable contract that leads to a mutually preferable allocation,

but merely that – in contrast to standard arbitrage pricing – it is now theoretically possible for such

a contract to exist. We demonstrate this in the following sections.

In Section 2 we illustrate with a two-period model how negative marginal option values may

arise as a result of deferring tax treatments of different investments. In Section 3 we present and

implement a Variable Annuity from the U.S. insurance market that reflects this very situation: The

presence of a death benefit guarantee (formally known as a Guaranteed Minimum Death Benefit,

GMDB),2 makes withdrawing suboptimal in certain situations, and thereby increases the insurer’s

expected net profit. Section 4 concludes the chapter.

2.2 Negative Option Values in a Two-Period Model

The following two-period model describes a personalized, tax-preferred investment between an

issuer and an investor, and illustrates how adding an option (at no cost) can make both parties

strictly better off. We want to stress that it is merely the presence of differing tax policies (with

respect to a potential replicating portfolio) that cause the option to have a negative marginal value,

even if the investor acts rationally.

Consider an agent who, at time 0, invests 100 with an issuer for a period of two years. The

money is invested in an asset whose evolution can be described by a binomial tree with annual

periods: each year, investments increase by 25% or decrease by 30%, before taxes (see Figure

2.1). The (pre-tax) financial market is completed by a second asset that earns the risk-free rate of

2A GMDB promises to return the greater of the account value and the initial investment in the case of the policy-
holder’s death.
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7.2% (also pre-tax).

100

125

70

Figure 2.1: Annual Evolution of the Risky Asset (Pre-Tax)

The issuer also grants the investor the right (but not the obligation) to withdraw 50 at the end

of each of the two years, regardless of her investment performance. However, this guarantee is

tied to the investor herself and does not apply to her beneficiaries. Withdrawals are taken out of

the investment account, if possible, and are covered by the issuer, if not. In addition to the initial

investment of 100, the issuer also deducts 5% of the investment value at the beginning of each year,

to cover the costs of providing this downside protection.

Therefore, at time 1, upon observing the first-year investment performance, the investor decides

whether to exercise the first half of her option, and withdraw 50 from her account. At time 2, the

investment matures and it is obvious that the second part of the guarantee will be claimed – and

thus be costly for the issuer – if and only if the terminal account value is below 50.

We assume that the investment grows tax-deferred, that only earnings will be taxed upon their

withdrawal or when the investment matures, and that earnings are taken out first.3 In contrast,

for all other investments – including the potential replicating portfolio – earnings are taxed on an
3The reader may notice that the here described product resembles a Variable Annuity (with a withdrawal guarantee),

and that the tax policies we implement here are fairly consistent with current U.S. tax policies on Variable Annuities
(see IRS, Publication 939).
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annual basis. We assume a tax rate of 40% applicable to all investments. Furthermore, mortality

rates are 0 and 0.27 for the first and second year, respectively.

We first analyze the investor’s optimal exercise behavior in this basic model, and calculate the

resulting net profit for the issuer. Thereafter, in Section 2.2, we consider the impact of a death

benefit guarantee for the agent’s investment. We will see that this option alters the optimal time-

1 exercise strategy, to the effect that the issuer is being made better off as well. Our numerical

analysis quantifies the resulting marginal value of the death benefit option for the issuing party as

−32 basis points.

2.2.1 Withdrawal Behavior and Net Profit in Basic Model

Since the exercise decision at maturity is an obvious one, the sole choice variable for the investor

is whether to exercise her time-1 option by taking 50 out of the investment. That choice is based

on the time-1 investment value, which can take on two values, depending on the movement of the

underlying asset. Figure 2.2 depicts the evolution of the investment account in the case where the

investor chooses to exercise in both scenarios. The investment tree for different exercise strategies

can be constructed analogously. Starting with the initial investment of 100, the issuer first deducts

5% for the guarantee fee at the beginning of the first year. The remainder is invested in the asset

for one year, and thus moves to either 118.75 or 66.50. In either case, the investor exercises the

first part of her guarantee, which reduces the account value by 50. The issuer once more deducts

his guarantee fee, and invests the remainder of the investment account in the asset for another year.

If the investor is alive at maturity and his investment has fallen below 50, the issuer makes up the

difference. We observe that only if the asset moves up both times, the guarantee is worthless and
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the investor receives her investment account value at maturity.

The optimal time-1 decision is the one that maximizes the investor’s expected net present value,

after taxes. We illustrate the calculation at the example of time-1 exercise when the investment is

worth 118.75. The amount withdrawn is subject to taxation: Since the initial investment of 100

can be taken out tax-free, of the 50 that are withdrawn at time 1, 18.75 are earnings, and 31.25 are

tax-free principal. The net payout to the investor is thus 31.25+(1− 0.4)18.75 = 42.50, valued

at time 1. Her second-year payout, however, will depend on the movement of the asset and the

investor’s death or survival. In particular, since she has already withdrawn 31.25 from her initial

investment at time 1, only 100− 31.25 = 68.75 can be taken out tax-free at time 2. Hence, if

her investment appreciates to 81.64, she receives 68.75+(1−0.4)(81.64−68.75) = 76.48 net of

taxes. On the other hand, if her investment account decreases, her terminal payout will be tax-free:

either 45.72 if she dies, or 50 due to the guarantee in case of survival.

We define the time-1 value of this uncertain time-2 post-tax cash flow as the amount needed to

set up a replicating portfolio for these payouts. Since earnings of this replicating portfolio are taxed

on an annual basis, we apply the corresponding valuation formula developed in my first essay. In

particular, the time-1 value of these payouts, V 50
u , is given implicitly by

(1+ r) ·V 50
u = E[Y2]+

κ

1−κ
·E[max(Y2−V 50

u ,0)], (2.1)

where Y2 is the random variable reflecting the post-tax payout, κ = 40% is the applicable tax rate

on earnings, and r = 7.2% is the risk-free (pre-tax) interest rate. The expectation is taken under

the risk-neutral measure of the financial market, combined with the physical measure of biometric
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Figure 2.2: Evolution of Investment Account if Investor Exercises at Time 1
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risk. More specifically, since the risk-neutral probability that the asset increases in a given year is

given by

p∗ =
1.072−0.7
1.25−0.7

=
186
275

,

we can compute

E[Y2] =
186
275
·76.48+

(
1− 186

275

)
(0.27 ·45.72+(1−0.27) ·50) = 67.54.

From Equation (2.1) we thus find V 50
u = 66.99 as the time-1 value of the terminal payout if the

investor exercises her first-year guarantee. Combined with her net payout at time 1, the investor

receives the equivalent of 42.50+66.99 = 109.49 at time 1.

In contrast, if the agent does not exercise her first-year option after the asset appreciates, we find

(in similar fashion) a time-1 value of V 0
u = 109.02. The resulting investment evolution is depicted

in Figure 2.3. Therefore, it is optimal for the investor to exercise the guarantee at time 1 if the

investment is at 118.75. Moreover, it can be shown that exercising is also optimal if the investment

account decreases in the first year. Figure 2.2 thus reflects the evolution of the investment account

based on optimal exercise behavior by the investor.

Since the issuer needs to make up any difference between account value and guaranteed amount

(see Figure 2.2), his time-0 risk-neutral expected present value of guarantee payments is given by

PV B0 =
1

1.0722 ·0.73 ·

[
186
275
· 89

275
· (4.28+30.41)+

(
89
275

)2

·39.03

]
≈ 7.42.
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Figure 2.3: Evolution of Investment Account if Investor Does not Exercise at 118.75.
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At the same time, the fees he collects accumulate to a net present value of

PV P0 = 0.05 ·100+
1

1.072
·
[

186
275
·0.05 ·68.75+

89
275
·0.05 ·16.5

]
≈ 7.42.

We conclude that with a guarantee premium of 5% p.a., the issuer roughly breaks even in this

model.

Suppose now that the investor does not exercise if the investment account is at 118.75. In that

case, as Figure 2.3 shows, the guarantee will not be valuable at maturity, and the issuer also collects

more premiums at time 1. In particular, the expected net present value of collected premiums is

now

PV P′0 = 0.05 ·100+
1

1.072
·
[

186
275
·0.05 ·118.75+

89
275
·0.05 ·16.5

]
≈ 9.00,

while the issuer’s expected payout (in present value terms) decreases to

PV B′0 =
1

1.0722 ·0.73 ·

[
186
275
· 89

275
· (0+30.41)+

(
89
275

)2

·39.03

]
≈ 6.825.

Hence, the issuer would make a net profit of approximately 9.00−6.83 = 2.17, if the investor were

to forgo her first-period guarantee when the asset moves up.

If he could issue an option with a net present value of less than 2.17 that would induce the

investor to refrain from exercising at an investment account value of 118.75, it would therefore be

optimal to do so. We will see in Section 2.2 that a death benefit guarantee will do the trick. It is

also clear that in a classical arbitrage pricing environment such a situation could not arise.4

4In that case, the respective value functions of issuer and investor would be diametrical opposites, and the investor
would lose 2.17 in net present value terms from foregoing first-period exercise. Therefore, any option that the issuer
would consider offering (at no extra charge) would not make up for the investor’s loss and would not induce her to
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Figure 2.4: Tax Payments Made by Investor at Times 1 and 2.

The sole difference in this model, however, is the financial involvement of a third party, the

government, through tax payments. To more closely examine how this situation can allow for such

an option to exist, notice that in the case analyzed above, namely when the asset increases in the

first period, the investor pays more taxes on aggregate when exercising at time 1.5 These results

demonstrate that, while the investor must somehow be compensated (to make up for the reduction

from 109.49 to 109.02, see above) in order to refrain from exercising if the investment increases

to 118.75, it is generally possible to achieve that: The resulting reduction of tax payments from

10.75 to 10.35 leaves 0.40 more to be distributed between issuer and investor, with the opportunity

change her exercise behavior.
5Figure 2.4 displays the tax liabilities in the cases with and without exercise of the first-year guarantee. As de-

scribed above, when exercising at time 1, the investor pays 50− 42.50 = 7.50 in taxes immediately, while her tax
liabilities at maturity are 81.64− 76.48 = 5.16 or 0, depending on the second-year asset movement. Therefore, the
time-1 value of the investor’s risk-neutral expected aggregate tax payments is

7.50+
1

1.072

[
186
275

5.16+
(

1− 186
275

)
0
]
= 10.75.

Conversely, if the guarantee is not exercised at time 1, the investor owes taxes at the amount of either 141.02−124.61=
16.41 or 0, again depending on her investment performance in year 2. This corresponds to a time-1 risk-neutral
expected value of

1
1.072

[
186
275

16.41+
(

1− 186
275

)
0
]
= 10.35.
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to make both parties better (and the government worse) off.

2.2.2 Withdrawal Behavior and Net Profit with a Death Benefit Guarantee

Suppose now that the issuer bestows an additional option on the investor. The option promises to

return the original investment of 100 (minus proportional withdrawals) in case the investor dies.

We find that it is still optimal to exercise the first part of the guarantee if the investment account

decreases to 66.5. However, if the account appreciates in the first period, the investor is now better

off not exercising, as we demonstrate in Appendix A. In particular, the death benefit option has

a net present value of 1.69, roughly 0.48 less than the issuer stands to gain if the agent does not

exercise in the “up” state.

This shows that the death benefit option thus carries a negative marginal value to its issuer, and

it makes both issuer and investor strictly better off. In fact, with the option included, the issuer

breaks even at an annual premium of 4.68%.6 Since without the death benefit guarantee, the issuer

was breaking even at an annual premium of 5%, the marginal value of the death benefit guarantee

in this model is −0.32% or −32 basis points.

2.3 Negative Option Values in Practice

To test the occurrence of negative option values in practice, we implement a Variable Annuity (VA)

contract that closely resembles a product that has been offered in the United State until recently:

the Advanced Series Lifevest IISM (ASL II) policy, by Prudential Annuities Life Assurance Corpo-

ration. We briefly describe the implemented policy features, and present our numerical results. For
6At this rate, the issuer would lose 0.34 (out of 100) each year without the option.
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a more detailed description of the VA and its implementation, we refer to Section 1.8.

We consider a male policyholder age 55 who initially invests $100,000 but makes no further

premium payments. The insurer deducts fees at an annual rate of 1.65% of the concurrent account

value (as Mortality & Expense Risk Charge and Administration Charge). This charge of 1.65%

includes a basic death benefit guarantee (GMDB) which promises to return the initial investment

(minus proportional withdrawals) upon the policyholder’s death, if that exceeds the value of his

investment account at the time. We want to quantify the marginal value of this guarantee to the

insurer.

For that matter, note that under the ASL II, the policyholder can withdraw from his investment

account – and even surrender his VA policy – at no cost, although earnings are taxed upon with-

drawal. In addition, the policyholder may purchase an optional Guaranteed Minimum Withdrawal

Benefit rider (GMWB), at a cost of 0.35% per year, again as a percentage of his investment ac-

count value. The rider guarantees that the policyholder can withdraw the initial investment over

the course of the policy, at annual installments of $7,000. While it is possible to withdraw more

than that in a given year, the guarantee is only for $7,000 p.a. Lastly, note that the policyholder is

not obligated to withdraw.7

Upon the policyholder’s death, his concurrent investment account value will be transferred to

his beneficiary. Due to the GMDB, the insurer makes up the difference between that amount and

the benefits base, if necessary. Conversely, if the policyholder survives 20 years, his remaining

7The GMWB comes with a variety of special features: The policyholder can elect to step up the guarantee level
prior to his first withdrawal, and then again every 5 years. If that happens, the benefits base is stepped-up to the
concurrent account value, and the annual guaranteed withdrawal amount is set to the larger of the previous guaranteed
annual amount and 7% of the new benefits base. Moreover, if the policyholder makes no withdrawals during the first
seven years, his GMWB fee will be waived for the remainder of the contract (or until he steps up his guarantee), even
if he makes withdrawals thereafter.
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investment account will be converted to a whole life annuity.

The money is invested in the ProFund VP Bull investment portfolio, which evolves similarly to

the S&P 500 index. We model the index in a Black-Scholes environment with a volatility of 17%

(based on data from 1982 to 2010). We further assume a risk-free rate of 5%, based on interest rate

data over the same time span. See Section 1.8 for more details.

Lastly, we assume tax rates of 25% on income (which includes earnings withdrawn from a VA),

and 15% on earnings in any investment outside of the VA. Our implementation is consistent with

the current tax treatment of Variable Annuities in the United States, as outlined in IRS Publication

939. Mortality follows the U.S. actuarial life table for a 55-year old male. We implement the policy

with the recursive dynamic programming techniques described in Section 1.3.

To determine the marginal value of the death benefit guarantee in this context, we compare

the consequences of the policyholder’s optimal withdrawal and step-up strategy with and without

the the GMDB. As we outlined in Section 2, the presence of a death benefit guarantee gives the

policyholder incentives not to withdraw from or surrender his VA, in addition to the prolonged

tax benefits he receives from deferring his withdrawals. This allows the insurer to collect more

premiums for a longer time, and it is therefore conceivable that the insurer will be made overall

better off, at the expense of the government which now collects fewer taxes.

Table 2.1 displays the discounted net present values (under the standard risk-neutral measure

Q) of the benefit payments the insurer makes and the fees he collects. We observe that by adding

a GMDB free of charge, the insurer increases his expected net profit by 250, that is 3.5%. Since

technically the death benefit guarantee is already included in the VA, it might be more appropriate

to state our result as follows: Removing the GMDB from the VA would not only make the poli-
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With GMDB Without GMDB

EQ[Guarantee] 3,610 3,340
EQ[Aggregate Fees] 11,000 10,480

EQ[Net Profit] 7,390 7,140

Table 2.1: ASL II: Net Present Value of Benefit and Premium Payments.

cyholder but also the insurer overall worse off. This might partially explain why more and more

Variable Annuity products now include (basic) death benefit guarantees as standard features.

2.4 Conclusions

This paper demonstrates that options that are attached to personal savings products can have neg-

ative marginal values, even if the holder of the option acts rationally and seeks to maximize her

discounted expected payout. This result is in stark contrast to implications from standard arbi-

trage pricing, and it is driven solely by the consideration of appropriate tax treatments of different

investments.

We illustrate the mechanics of negative option values with a simple two-period model: As

the option induces an overall reduction in tax payments, both its issuer and the investor are be-

ing made strictly better off, at the expense of the government. Negative option values can arise,

for instance, when an investment receives preferred tax treatments. This is the case with many

retirement savings vehicles. In that spirit, we implement a Variable Annuity offered in the U.S.
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life insurance market, and identify the (very common) death benefit guarantee as having a nega-

tive marginal value to the insurer. This might perhaps explain why death benefit guarantees are

nowadays standard in most Variable Annuity policies.

2.5 Appendix A: Two-Period Model — Derivation of Optimal

Exercise Strategy and Behavior with Death Benefit Option

The death benefit option guarantees a payout of 100 in case the investor dies, and if she did not

exercise at time 1. If she did exercise, the payout would be reduced by the same ratio as the

withdrawal of 50 reduced the account value at the time. That is, if the investment account is at

118.75, the death benefit payout would be

100 · 118.75−50
118.75

≈ 57.89.

Similarly, exercising at an account value of 66.5 would reduce the death benefit payment to

100 · 66.5−50
66.5

≈ 24.81.

Naturally, payouts in the survival state remain unaffected. This yields the investment account trees

with and without time-1 exercise in the “up” state, as displayed in Figures 2.5 and 2.6, respectively.

To determine the investor’s optimal exercise strategy when the asset appreciates in year one,

we once again compute and compare her expected net present values using Equation (2.1). In the

case of no exercise, we find V 0
u = 110.23. Moreover, V 50

u = 67.69, which – together with the net
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Figure 2.5: Evolution of Investment Account with Death Benefit Guarantee and Exercise at 118.75.
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withdrawal amount of 42.5 – adds up to 110.19, if she exercises. Therefore, the investor is better

off not exercising at time 1 if her investment has increased to 118.75.

For the issuer, this implies that he gains 2.17 (in net present value terms) due to the less frequent

use of the withdrawal guarantee. His additional payouts from the death benefit guarantee amount

to

PV BDBG =
1

1.0722 ·0.27 ·

[
186
275
· 89

275
· (21.03+5.22)+

(
89

275

)2

·13.84

]
≈ 1.69 < 2.17,

which allows him to capture a profit of 0.48. This implies that the death benefit guarantee has a

negative marginal value.
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