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CELLULAR NEURAL NETWORKS WITH SWITCHING CONNECTIONS

MALCOM DEVOE

Under the Direction of Dr. Igor Belykh

ABSTRACT

Artificial neural networks are widely used for plghprocessing of data analysis and visual in-
formation. The most prominent example of artifiai@ural networks is a cellular neural network
(CNN), composed from two-dimensional arrays simple first-order dynamical systems
(“cells”) that are interconnected by wires. Thé&rmation, to be processed by a CNN, repre-
sents the initial state of the network, and thealpalrinformation processing is performed by
converging to one of the stable spatial equilibristates of the multi-stable CNN. This thesis
studies a specific type of CNNs designed to perfarenwinner-take-all function of finding the
largest among tha numbers, using the network dynamics. In a widertexd, this amounts to
automatically detecting a target spot in the givesual picture. The research, reported in this
thesis, demonstrates that the addition of fastforswitching (blinking) connections signifi-

cantly improves the functionality of winner-také-@NNs.

INDEX WORDS: Networks, Cellular neural network, War-Take-All, Blinking connections,
Multi-stable system, Averaging
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1. INTRODUCTION

1.1 State of the Art, Motivation, and Goals

This thesis studies the advantages of informatimtgssing networks with fast on-off
switching stochastic connections over the conveatimetworks with static structure in per-
forming the “winner-take-all” function [1].

This research studies a class of stochasticallycbimg networks, introduced by Belykh
et al. [2] and calledhe blinking model The blinking model represents a way of transfogra
network with static connections into a small-wanketwork with a time-varying structure.

Long-range small-world networks were proposed byt8Vand Strogatz in a 1998 Nature
paper [3], inspired by the small-world phenomenalsd known as six degrees of separation)
observed in social networks. An example of a swallld network is a lattice of locally coupled
cells that have a few, randomly chosen shortcutsalSvorld networks were then showed to
significantly enhance propagation speed, inforrmafpoocessing capabilities, and computation
power due to the presence of small-world connestidany real-world networks, including the
Internet, electrical power grids, epidemiologicatianeuronal networks were showed to display
the small-world structure (see [4] and the refeesrtberein).

In many engineering and biological networks, thelénvorld network structure changes
as a function of time. The blinking model [2] indteced a time-varying small-world network by
randomly choosing the shortcuts and leaving thewdfifor a short interval of tinte and choos-
ing randomly choosing another set of shortcuts. evigpecifically, every possible shortcut is
turned on with probability, independently on switching of the other shortcdtsing each time

interval t. This switching time interval is assumed to be,fastmpared to the dynamics of the



individual node, composing the network. Similathe blinking of an eye, the connections rapid-

ly turn on and off (see Fig. 1 (left panel)).

t=4.3 t=4.4

Fig. 1 [Modified from [2] for illustrative purposes. Cdasy of Dr. Igor Belykh]. The blinking

model of shortcut connections. Probability of shitgsp = 0.01, the switching time = 0.1. The blink-
ing model consists of the regular locally couplettice of 30 oscillators with constant couplingetfoe
cientsd and a time-dependent on—off coupling between ahgropair of cells; when switched, the
shortcuts have the same coupling strermtfieft panel). Averaged network: the locally caegbllattice
with the local coupling strengith and the additional global couplingl. Here,p is small, such that the
width of the links may be thought of as the couplgtrength (a strong coupling within the localitat
and a weak coupling for the remaining all-to-aik) (right panel).

The blinking connections model realistic networksher precisely. Examples of real-
world networks with short on-off connections inatugacket switched networks such as the In-
ternet. Neurons in the brain send out spikes aach#urons become effectively coupled during
the short period of time when the spikes arrivpadt-synaptic neurons. The simultaneous arri-
val of spikes to a given neuron in dense cortiesivorks, modeled by random networks, may be
considered as a random process which representsrigiinteraction of intermittent nature. An-
other important example of blinking interaction ggnchronization of non-precise computer

clocks by blinking network administration [2].



If the switching timer is small then the dynamics of the blinking netwodhn be similar
to that of its averaged analog where the on-oftltsstic connections are replaced with static
global links as shown in Fig. 1 [2].

In [2,5-10], the relation between the dynamics lnfiking networks and their averaged
analogs was rigorously studied using the stabiligory and averaging. It was shown [2,10]
that the solutions of the blinking system convetgen attractor of the averaged system with
high probability. In simple worlds, the averagedwwk describes the blinking stochastically
switching network rather precisely, provided tHa switching is fast compared to the intrinsic
dynamics of each node. The fact that the rapidiycéwd system has the same behavior as the
averaged system intuitively makes sense, but intfece are exceptions, and therefore, a careful
analysis of this property is needed which showsvbat parameters the occurrence of the excep-
tions depends. This statement is made explici2jhd], and rigorous upper bounds linking the
probability of converging to the same attractorjtsiwng time, and intrinsic properties of the
individual dynamical system are given.

In this thesis, the occurrence of the exceptidma, the multistable blinking and averaged
networks converge to different attractors, willdtedied in the context of information processing
cellular networks. Such exceptions will represéret failure of the network to perform its func-
tion correctly.

The research objective of this thesis is to ingase how (i) the switching network to-
pology and the properties of the individual noddgiience cooperative properties and the infor-
mation processing capabilities of the blinking netvand (ii) the addition of fast switching
connections can enhance the performance of netwatksstatic connections. Here, we exploit

the above ideas of transforming local networks istoall-worlds and study further the ad-



vantages of information processing CNNs with blingkiconnections over the conventional
CNNss with static structure in performing the “wimrtake-all” function [1,5].

More precisely, we study a cellular neural netw¢@dN), composed from two-
dimensional arrays of simple first-order biseallynamical systems that are interconnected by
wires. Depending on the initial condition, eacteracting cell converges to one of two equilib-
rium points, generating an output of +1 or -1. Titffermation, to be processed by a CNN, repre-
sents the initial state of the network, and thealpalrinformation processing is performed by
converging to one of the stable spatial equilibretates of the multistable CNN. This stable spa-
tial equilibrium state is represented by the disttion of outputs +1 and -1.

In the following, we will study a specific type GMNNs designed to perform the winner-
take-all function of finding the largest amonlige n numbers, using the network dynamics.
One usually implements this by inserting data #&glrvalues of the states and letting the states
converge to an equilibrium point of the (multisebhetwork. The mapping from the initial to
the final states is the function performed by teénork. The result of the winner-take-all func-
tion is the convergence to an equilibrium spat@hpwhere the cell with the largest initial value
converges to the “+1” equilibrium points, wheresdhee others cells with initial conditions, rep-
resented by smaller initial values, converge to“thé state. The “+1” winning cell represents
the location of the largest number in the matiix.a wider context, this amounts to automatical-
ly detecting a target spot in the given visualyniet

Unfortunately, this “winner-take-all” cannot be fiemed by a locally coupled CNN,
that is very convenient for circuit implementatiand global connections are required. This
point will be discussed in detail in Chapter 3. W& the stability conditions derived in [1] to

design 4x4 and 10x10 CNNs with global static cotinas that reliably identify the largest



number (with 100% probability). However, hardwgiall-to-all connection in a large circuit is
unrealistic. To resolve this issue, we will showtth is convenient to use a communication net-
work, that is present to charge the initial comshs and read out the results, to establish on-off
blinking connections that let the CNN perform thariner-take-all” function correctly with high
probability. In this setting, the CNN with globdl-to-all static connections plays a role of the
above averaged system for the blinking network 8gel for the comparison). A rigorous up-
per bound on the probability that the multistabieking CNN fails to converge to the correct
spatial equilibrium and misclassifies the largesiber was derived in [10]. In this thesis, we
numerically verify this exponential dependencetfa probably of an error on the negative re-
ciprocal of the switching time.

These numerical studies required the developmeMAFLAB programs to run the ex-
tensive multi-hour simulations, especially in theese of 10x10 lattice with 100 nodes. These
studies together with the efforts spent to getepdasight into this new research field constitute
the major part of the research performed in thesihh Examples of the MATLAB programs are

given in the appendix.

1.2 Thesis Outline

The outline of this thesis is as follows. In thenehapter (Chapter 2), we discuss the history and
applications of conventional CNNs with local statannections. In Chapter 3, we introduce the
models and study winner-take-all CNNs with (i) giblstatic connections and (ii) switching
blinking connections. Chapter 4 contains conclusiand discussions. The MATLAB codes are

given in Appendix.



2. CONVENTIONAL CNN MODELS: HISTORY AND APPLICATIONS

2.1 Parallel Computing and Cellular Neural Networks
Parallel computing is the use of compute resouatéise same time to solve computational prob-
lems. In other words, a problem is broken intdg#rat can be solved at the same time. For ex-
ample, suppose there was a campaign manager whimwhaarge of advertising various flyers
for promoting a mayor candidate. This managerliges given the task of the making 500,000
flyer copies that are to be delivered throughoatdity. The task of creating these copies cannot
be accomplished efficiently by the campaign mandgmself; however, with the help of some
1000 team staffers who work in a building contagni®00 copiers, the job can be completed in
less time than with campaign manager alone. Ihetaffer is position at a copier, then the job
or task can be done 1000 times faster. This psocEseparating one complex job into several
jobs to complete within a short amount of time esagnized as parallel computing. Parallel
computing has been considered “the end of compdtifiarallel computing has been used to
solve difficult problems in many areas of scienod angineering such as: Atmosphere, Earth
Environment, Physics, Bioscience, Geology, Seismgl®echanical Engineering, Circuit De-
sign, Microelectronics, Computer Science, and Matitecs. The most common type of parallel
computing is pipelining. With pipelining, the taslre broken into steps performed by different
units, with inputs streaming through, much likeaasembly line. Parallel computing is also per-
formed by means of artificial neural networks sashCellular Neural Networks.

The Cellular Neural Network (CNN) is an artificiaural network that is represented by
a collection of neurons that connected among etwr;cusually only local connections are cho-
sen. The state of each cell is described matheatigtiocy a dynamical system or a differential

equation. The cells of the CNN network will onlgramunicate with each other via sending sig-



nals to their neighboring cells. All cells in CNMve three main parts: the input coupling term,
the state (cell), and an output coupling term. @tvedition of each cell relies heavily on the cou-
pling terms from the input or output of its neighlmells along with its initial condition. The

CNN models are used in many real world applicatismsh as analyzing 3D surfaces, solving
partial different equations, and image processifige CNN models can appear in many forms
such as aring, star, mesh, or a tree (see Figh2)most popular form among the many different

types is the eight-neighbor rectangular grid (sge 3).

Fig. 2.Different CNN topologies (http:/errajib.hubpagesn/hub/Types-of-Networks). (Left)
Star network. (Middle) Tree. (Right) All-to-all dbal network. Each vertex is represented by a one-
dimensional bistable dynamical system with twoidettoutputs “+1” and “-1”. The CNN system per-

forms its information processing function by corgieg to a distribution of “+1” and “-1".

...............

Fig. 3.The most popular CNN topology: eight-neighbor dedmetwork. Observe that three of

its neighbors are boundary cells (dashed) [12].



The first cellular neural network was proposed bBeakeley professor Leon Chua and
his collaborator Lin Yang in 1988 [11,12]. Thisigmal CNN model, CY-CNN, used the
weighted sum of the input and output to determivee dondition or state at each cell. It is im-
portant to note that in a CNN model each cell scspl equally among each like ldrby N grid;
however, the CNN model is not restricted to a twoehsional network. It also can be stretched
to a finite N dimension of cells.

Today, many scientists develop CNN models to cohmard the biological settings that af-
fect the environment, the human body, or the bfaBi19]. It is often used the show the re-
sponses of artificial intelligence. These modelgldde deterministic or stochastic depending on
the dynamics or conditions of the environment. Tigio collecting data from an environment
one is able to run experiments and develop a dytamaystem or systems that satisfy the condi-
tional of a single element. For instance, biolbgisd neuroscientist collect certain data from the
brain to develop simple models that are coupled tescribe mathematically how the brain
sends signals from a single cell of the brain totla@r area.

2.2 Standard CNN equation: History
The general CNN model can be displayed as a sysfemonlinear differential equations.

We can use the basic first order cellular dynaraid interactions to describe the cell’'s state as

follows:
dx; . o
d_tj = -xt Y Al jkDyg Y, B iik,Dug,
(k,DON, ) (KJIENGL))
1)
1 forx; >1

yij:f(xj): ¥ for—lsa<s1,
-1 forx; <-1



whereu,;, x;j, and y;; are the input, the state, and the output of theiredosition (i,j),
respectively [12]. The indicdsandl denote a cell that belongs to the neighborhgfd). Ma-

tricesA and B contain the weights of the neural network. Thereggion for the output; is:
yi(t) = f(xi]-(t)) = %(|xij(t) + 1| — |x;;(t) — 1|)” (see Fig. 4). Given the input, the CNN
performs its function by converging to a specifiabde spatial equilibrium, corresponding to a

distribution of the outputs -1 and +1 and reflegtihe input signals. This point will be made

clear in Chapter 3, discussing the Winner-takdealttion performed by a CNN network.

v
X

Fig. 4 Standard nonlinearity for the output equatiothis CNN model (1).
Normally, the standard CNN model is created on anNvhetwork of cells. When calculating
the state of each cell, boundary conditions arecagssity to execute the model. The boundary
conditions can be defined in several ways. Thentdaty conditions are able to be fixed where
the value of the boundary cells is constant, Zlerowhere the solution of the boundary cell
matches the edge of cells, or periodic where theevaf the boundary cells equals the value of
the edge cells on the reverse side.

Figure 5 shows the topology of the standéxd CNN model with r =1 where represent the
extent of the neighborhood. @(,j) is the cell on thé™ row andj"™ column then celC(2,2)is

connected taC(1,1), C(1,2), C(1,3), C(2,1), C(2,2), C(2,3), @3 C(3,2),andC(3,3). The r-
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neighborhood is defined a®i,(i,j) = {C(k,D)|max[|k —i|,|l—j]l <1<k <M;1<I<

N} with M andN the number of rows and columns respectivelyraagbositive integer.
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Fig. 5 A rectangula#x4 grid CNN with a neighborhood radius of 1 [14].

The similar 8 x 8 grid CNN was called the CNN Umsad Processor in 1993 [13]. This
CNN Model has interfaces, analog memory, switchaggc, and software. It was implemented
to test the model’s productivity and effectiveness.a result in 2000, the usage of CNN models
became very popular among many companies such ako&ns, a semiconductor company.
The first CNN model that they created was callesl ACE CNN processor. This ACE CNN
processor had a 20 x 20 CNN processor unit. Tlideinwas later improved and lead to the de-
velopment of an ACE processor that has 128 x 188gssor units. After rigorous developments
of new CNN models to improve the performance ofghevious model, AnaFocus found ways
to increase the number of processing cells alortg thieir speed and functional operations of
each processing cells.

There are many advantages and disadvantages ©©NNemodel. The CNN model addi-
tional cells or neurons can be added to the netwemekxtend the network. It can also perform
tasks that a linear program cannot. When an eleofa@he neural network fails, it can continue
without any problem because of its parallel panadigAnother advantage of the CNN model is

that neural network can learn by adjusting its ¢diogpstrengths and does not need to be repro-
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grammed. It can also be implemented in any apmhicavithout any problem. The disad-
vantage of this model is that the neural networ&dsetraining to operate. The CNN requires
high processing time for large neural networks.

We recall that the basic circuit unit of the CNNcelled a cell. The cell holds linear and
nonlinear circuit elements. These elements armally linear capacitors, linear resistors, linear
and nonlinear controlled sources, and independantss. An illustration of a single cell cir-

cuit is shown in Fig. 6.

Eui *(:) — @" @" ¥ Esi

Fig. 6 [Picture taken from http://www.isiweb.ee.ethzte®nggi/CNN_web/architecture.html].

Each cells has one independent voltage soujgeariput, one independent current source | (biasjesal
voltage controlled current sourceg'| I,”Y, and one voltage controlled sourcg,@®utput). The con-
trolled current sources"! are coupled to neighbor cells via the control ingoitage of each neighbor
cell. Similarly, the controlled current sourcg$ hre coupled to their neighbor cells via the feeifeom
the output voltage of each neighbor cell.

Many scientists are motivated by the CNN modelsotigh studying the brain, scientists
have found that the human brain is an extremelyptexnnonlinear system that consists of bil-

lions of simple processing elements, neurons. pihesl by this biological network of neurons

and deeply impressed by its signal processing ey scientists and engineers design simpli-



12

fied artificial models with the far aim of achiegira performance comparable to the biological
ideal [13]".

2.3 Applications of CNNs

CNN processors are used in many fields of scieti8¢ [There are some applications that are
engineering related, where some known, understebdwor of CNN processors is exploited to
perform a specific task, and some are scientifitene CNN processors are used to explore new
and different phenomenon [13]. CNN processors assl o do image processing; specifically,
the first application of CNN processors was to gerf real-time ultra-high frame-rate (>10,000
frame/s) processing with digital processors thatieed in such as applications like particle de-
tection in jet engine fluids and spark-plug demctiCurrently, CNN processors are able to reach
up to 50,000 frames per second. Applications saghmissile tracking, flash detection, and
spark-plug diagnostics are microprocessors thag lsavpass the performance of a conventional
supercomputer. CNN processors are also used ih loealevel, processor intensive operations.
“CNN processors have been used in feature extraclavel and gain adjustments, color con-
stancy detection, contrast enhancement, decongoluitnage compression, motion estimation,
image encoding, image decoding, image segmentatinentation preference maps, pattern
learning/recognition, multi-target tracking, imagebilization, resolution enhancement, image
deformations and mapping, image inpainting, optileal, contouring, moving object detection,

axis of symmetry detection, and image fusion” [13].

CNN processors have exceptional processing capabiand flexibility. They have been used or
have been prototyped for applications such as flamadysis for monitoring combustion at a
waste incinerator, mine-detection that uses infrangagery, calorimeter cluster peak for phys-

ics, anomaly detection in potential field maps deophysics, laser dot detection, metal inspec-
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tion for identifying manufacturing defects, andsseic horizon picking. CNN processors have
also been implemented to perform biometric fundibke fingerprint recognition, vein feature
extraction, face tracking, and generating visuahsti through emergent patterns to gauge per-
ceptual resonances. CNN processors have been madeeélical and biological research to do
automated nucleated cell counting to divide hy@eipl and segment images into anatomically
and pathologically meaningful regions. The processwe great at measuring and quantifying
cardiac function, measuring the timing of neuradgntifying brain abnormalities that would
cause seizer activity. “One potential future agglmn of CNN microprocessors is to combine
them with the DNA microarrays to allow for a neaartime DNA analysis of hundreds of thou-
sands of different DNA sequences. Currently, thgombottleneck of this DNA microarray
analysis is the amount of time needed to procetsidahe form of images, and using a CNN
microprocessor, researchers have reduced the arabtinte needed to perform this calculation

to 7ms” [13].

CNN processors have also been developed to credt@aralyze patterns and textures.
One motivation was to use CNN processors to uraleispattern generation in natural systems.
Also, “CNN processors were used to approximateepatjeneration systems that create station-
ary fronts, spatio-temporal patterns oscillatingtime, hysteresis, memory, and heterogeneity
Furthermore, pattern generation was used to aid-pgformance image generation and com-
pression via real-time generation of stochastic eoarse-grained biological patterns, texture

boundary detection, and pattern and texture retiogrand classification” [13].

Scientists are working to integrate CNN processots sensory-computing actuating
machines. This is done by creating an integratstesy that uses CNN processors for the senso-

ry signal processing and potentially the decisiakimg and control. This is because CNN pro-
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cessors yield a low power, small size, and evelytlalv cost computing and actuating system
that is suited for that type of system. These CalliMachines will eventually merge into a Sen-
sor-Actuator Network (SAN), a Mobile Ad Hoc NetwsrkMANET) which is found in military
intelligence gathering, surveillance of inhospitl@invironments, maintenance of large areas,

planetary exploration, etc” [13].

CNN processors have also been proven versatilegbnimn some control functions [11].
“They have been used as associative memories, iaptionction via genetic algorithm, measur-
ing distances, optimal path finding in a compleynamic environment, and to learn and associ-
ate complex stimuli. CNN processors are used t@gdemtonymous gaits by and low-level mo-
tor for robotic nematodes, spiders, and lampreysgaing a Central Pattern Generator (CPG).
“They [CNN processors] were able to function usomdy feedback from the environment, al-
lowing for a robust, flexible, biologically inspolerobot motor system. CNN-based systems were
able to operate in different environments and fiitiction if some of the processing units were

disabled” [11].

The different types of dynamical behavior that fanend in CNN processors make them
interesting for communication systems. The turbuEmmunications that is used in CNN pro-
cessors is being investigated because of theimpatdow power consumption, robustness and
spread spectrum features. “The premise behind ichemtinmunication is to use a chaotic signal
for the carrier way and to use chaotic phase symehation to reconstruct the message.” CNN
processors are found in both the transmitter aceliver end to encrypt and decrypt the messag-
es. They can also be made for source authentictittongh watermarking, detecting of complex

patterns in spectrogram images (sound processing)iransient spectral signals detection” [11].
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CNN processors are neuromorphic processors. Thasnthat they are able to mimic
certain aspects of biological neural networks. Tind CNN processors were established on
mammalian retinas, which are composed of a laygphofto detectors that were connected to
many layers of locally coupled neurons. “This ma&&EN processors part of an interdiscipline
research area whose goal is to design systemetietige knowledge and ideas from neuro 7
ence and contribute back via real-world validatdrtheories.” CNN processors have developea
a real-time system that reduplicates mammaliamasti This process validates that the original
CNN architecture modeled the correct aspects dbgical neural networks used to perform.
“However, CNN processors are not only limited toifyeng biological neural networks associ-
ated with vision processing; they have been useaihtalate dynamic activity seen in mammali-
an neural networks found in the olfactory bulb damcust antennal lobe, responsible for pre-

processing sensory information to detect differesnneepeating patterns” [11].

CNN processors play a significant role in helpisgunderstand systems that can be modeled
living cells, biological networks, physiologicalsggms, and ecosystems. The CNN architecture
displays some of the dynamics that are observathinre and is easy enough to analyze and
conduct experiments. They are also used in stachsistulation techniques. This allows scien-
tists to venture spin problems, population dynamicgles, lattice gas models, and percolation.
Some other simulations consist of heat transfechawical vibrating systems, protein produc-
tion, Josephson Transmission Line (JTL), seismigemaropagation, and geothermal structures.
One particular CNN model, the 3D (Three Dimensipi@&N, has been invented in order to
show that complex shapes are emergent phenomearsdatiolished a link between art, dynamical
systems and VLSI technology. CNN processors ardatet study various mathematical con-

cepts, such as analyzing non-equilibrium systemggibg non-linear systems of arbitrary com-
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plexity using a collection of simple, well-understbdynamic systems, investigating emergent
chaotic dynamics, developing chaotic signals. To& gvith the CNN model is to create a con-
ceptual and mathematical framework necessary ttyamamodel, and understand systems, in-
cluding, but are not limited to, atomic, mechanicablecular, chemical, biological, ecological,
social and economic systems. “Topics explore arergemces, collective behavior, local activity
and its impact on global behavior, and quantifyiing complexity of an approximately spatially
and topologically invariant system. Although anotheeasure of complexity many not make
some people enthusiastic (Seth Lloyd, a professon Massachusetts Institute of Technology
(MIT), has identified 32 different definitions obmplexity), it can be potentially be mathemati-

cally analyze systems such as economic and soatdms” [11].

2.4 Limitations of locally coupled CNNs: the need of global connections

The basic CNN model has many functions that cacopeputed by series of locally con-
nected dynamical systems; however, many informghi@ecessing functions require long range
interactions of the cells for efficient computasonThe fixation of all-to-all connections nfby
n cells would requiren* wires which is not realistic in most cases. A meifective approach to
this is to develop an algorithm that shows thatglatistance connections can actually be
switched on and off randomly in such a way thahwiigh probability the computational func-
tion that the network performance is the same asdha corresponding non-switched system,
the averaged system.

In the next chapter, we will focus on a switchingNCthat is capable of solving the win-

ner-take-all function.
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3. WINNER-TAKE-ALL CNNs

3.1 Conventional Model with Fixed Connections
3.1.1 Winner-take-all Model
We start off with conventional CNN model proposgdSeiler and Nossek in [1].
In this CNN model, each cell is self-connected alst connected to all other cells. Sim-

ilarly to (1), the network dynamics can be desdtibe the follows:

dxl-

o= =X+ Xk @i Yk K, 2

1, Xi >1
yi=f(x) = x, =1 < % <1,
—1, Xi < -1

where the network consists Nf all-to-all coupled cells. As in (1)x; and y; are
the state and the output of thth cell. In contrast to (1), this network has nput varia-
blesu; , and the input to the network is provided viaitiigal conditions of x;. Param-
eterk maintains a certain rate of convergence to a speaifuilibrium point, and is pre-
sent due to some historical reasons [1]. Paramefeis the coupling among cells. We

assume that

ak:{a<0’ifi¢k
L B>0,ifi=k"

It is important to notice that < 0 and § > 0 so that the connections of a cell
with the other neurons aighibitory and self-connections aexcitatory (Fig. 7). For
convenience, we set the excitatory coupling stfefige 1 + a + § > 0 with an auxilia-

ry parametets chosen such th# > 0. Therefore, system (2) becomes:

dxl-

ar, = X (ay; +ay, + -+ By +ayyp1 ++ay,) +x, i =1,...,N
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and, consequently,

dxi

= X (ay; +ay, + -+ A +a+ 8y, +ayj1 + -+ ay,) +k,

i=1,..,N.

B=1+a+0 B=1+a+0

B=1+a+0d B=1+a+d

Fig.7. Four-cell network (2) of all-to-all connected celith self-couplings. Intracellular con-
nections are inhibitoryn<0). Self-connections are excitatg3~0). The arrows indicate excitatory self-

connections; the dots indicate mutual inhibitiotweEen the cells

By separating thé1l + 6)y; term from the summation we have the following sys-
tem

%= —x;i+(1+8)y;+a¥¥,y;+k wherea <0 and 1+a+6>0. 3

The excitatory self-connections with=1+ a + § > 0 (see Fig. 7) are necessary for the
CNN network (2) to perform the winner-take-all (M)l function of finding the largest
among then numbers, using the network dynamics.

More specifically, the WTA function is performed fadlows. The N given numbers are

loaded to the network (2) as initial condition®), i = 1, ..., N one for each cell. Let the largest
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among these numbers kg0). Then, the vector of statgf) evolves according to (2) and con-

verges to the equilibrium poirt such thatX,, =1 and ¥ <—1 for i Zm. In terms of the out-

puts, this implies tha¥y, = f (%) =1 and ¥ = f(%) =-1 for i #m. Therefore, the dynamical

system (2) must have N stable equilibrium pointe @r each value for each, corresponding
to xm(0) with the largest initial value. The state spatenulti-stable dynamical system (2) must
be divided into thé\ attraction basins of the corresponding equilibripomts. The cell, that cor-
responds to the initial state with the largest gadund converges to the +1 state, is called the
“winning” cell; the other cells converging to -latts are called “loosing” cells.

In other words, the WTA function is performed bywaerk (3) if vj # i if x/(0) < x%(0)
and for all initial conditions the eventual outmftthe “winning” cell {-th cell) is +1 and that of
the other cell -1. Below are the properties necgdsa the WTA function.

Properties of all-to-all coupled WTA CNN (3):

To perform the WTA function, the following conditie must be satisfied:

1. % < 0if thei-th cell is a “losing” one (non-winning)

dx;

—>0 if thei-th cell is the “winner” wher =1+ a + 6 > 0.

This implies that state,(t) with the largest initial condition must incredsereach the +1
state whereas the states of the other (loosin{p crlst decrease to reach the -1 state. The €
atory connections are necessary for the winnertoglcrease its state as they increase its - ?
derivative. The inhibitory connections decreasetitine derivatives of the loosing cells and force
them to converge to the -1 states.

Theorem [Order Preserving Dynamics [1]]:

Consider CNN network (1). If the initial stateswb cells i and j are ordered as follows
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X' (0)> X' (0)
then for all times x'(t) > X/ (). As a result the arrangement of the cells by tivellef

their respective states stays consistent.

Proof. To ensure that we do not lose the generalitg shall focus our discussion on
cell 1 and cell 2 , and claim (to arrive at a cadiction) thatx"(0) > x*(0), and there exists is
someT such thatx'(T) < X(T). Since the states are continuous, then egist <T such that
x'(t,) = x*(t,) . Using the principle of uniqueness of solutiond ¢éhe interchanging of cell indi-
ces att,, it shows thatx'(t) = x*(f). However, this contradicts the assumption tiéd) > x*(0)

whent =0. When this is applied to all pairs of cells, Hreangement of the cell described in the
proposition is preserved. This completes the fpreo

Equilibrium Design

In order to construct a WTA network froh-cell network (3), we must make WTA
patterns stable, while making the other patterrstalole. We must also find the restricted values
on the following parameterg;, §,and k. Denote by the number of + 1 states in the equilibrium

pattern. Clearly, for then-cell winner-take-all CNN (1) only?, must be stable as the other pat-

terns become unstable:

_ stable if k=1
B is _ .
unstable if k21

This is illustrated in Fig. 8, using a four-cell QIN3).
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+1
o

Fig. 8. Desired spatial equilibra of the WTA CNN. Theearme of the WTA function is the

convergence to one of the four equlibria, dependinghe initial conditions plugged in to the CNAIL
other spatial equilibria (patterns), containing entiran one winning cell (+1) must be made unstayple

an appropriate choice of parametey, and k.

We follow the steps of the previous study [1] toide the stability conditions for the
WTA patterns and the instability conditions for a@tlher patterns with more than one winner.
First, we derive the conditions on parameter§, and k that ensure the instability of the

general patterr?, with 0 “winners” (+1 states) and losers (-1 states). Similarly to Fig. 8, we
call the winning cell a red one, and the loosinidsogellow ones.
If all states approacHL, then % <Ofori=1,2,..n. For each of the cells, we as-
sume that we approaeh at all states. This yields the following equationeach cell:
dx

e —-(-D+@+6)(-1)+ a(—n)+ k < 0wherei =1,2,..n. (4)
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Inequality (4) follows from system (3) where we baeplaced all stategwith -
1 as we study the stability of all-loser patted®n Solving (4) yields the following ine-
quality

K—68>na 5)

The stability conditions of the WTA patterit3 where we have one winner and

the rest of the cells are all losers are the falhguw

d
d_)tc =—+D+A+HHD+a(l1-1-1-1—-1)+ k > 0 (winner (red)cell)

or, in a shorter form

dx

o= D+ A+ HHD +a(=3) +k >0 (winner (red)cell)

and similarly for the loosing cells

dx

i -1+ A +6)(-1) + a(-—n) + k <0 (losing (yellow) cell)

These two inequalities simplify to following forms:
k—686 < (n—2)a (redcell) (6)

K+6>m—2)a (yellow cell).

The rest of the pattern8 with j =2 such that there more than one winning cell (+1) in

the pattern must be made unstable by choosingatareters as follows. Generally, we have the
choice of centering the instability condition orwanning or losing, but the WTA function re-
quires the number of winning cells to be reducedne cell. Therefore, the instability condition,
that is developed from any winning (+1) cell is:

dx

02<j<N: ZX=-1+aEn+2j)+ @+ 1+k< 0
4
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which simplifies to

02<j<N: o+tk<afp-2)).

When j =2, the inequality becomed+ x < a(n-4). Out of all the inequalities,
J+k <a(n-4) is the most significant. By adding -0 >na with -« +J >—-(n-2)a and
solving for a , we find thata <0.

When j, <j, with 02< j<sn:d+xk<a(nh-2j) a(n-2j)<a(nh-2j,). If j=2for
J+k <a(n-2j), then it will satisfy(j O{N} -{0,3} . Thus, the only inequality

o+k<a(n-4) (7)

is sufficient to guarantee the instability Bf .

Solving the inequalities (5), (6), and (7) , we®et —1 and obtain the following suffi-
cient conditions under which only the desired WTaternsP, in CNN network (3) are sta-
ble[1]:

n?-6 _ n+4 (8)

n+2’ T n+2

a=-1, K=—
Under these conditions, our CNN model will perfoitme WTA function and converges
to one of the stable patteriswith only one winner (+1).

In the following, we will consider two CNN network8) with 16 cells (4 x 4 network)
and 100 cells (10x10 network). We shall use theilgtaconditions (8) to choose the parameters
of the networks that guarantee the WTA function.

Condition (8), applied to a 16 cell network, yields

= landk = (16)°~6 _ 13.89 and s = 014
T R R P

=111 9)

For a 100-cell network we get:
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= _landk = (100)° —6 _ 97.9804 and § = 100 T4
e T T anCO =700+ 2

=1.01961 (10)

Numerical examples, illustrating how the all-to-@dinnected CNN networks (3) perform

the WTA function and always converge to the corpatternP,, therefore identifying the largest

number, will be given in the next Section togetwéh the comparison with small-world CNNs
with sporadic connections.
3.2 Switching Small-World CNN Model

While the all-to-all connected CNN (3) reliably lieas the WTA function, its circuit im-

plementation is not realistic in most case as handgvall-to-all connections aN cells would

require N wires. On the other hand, the conventional CNNuiis¢ used for information pro-
cessing, usually consist of regular two-dimensi¢8édD) arrays where next nearest neighbors
are connected by wires (see the examples givemapi€r 1). The locally coupled CNN are very
easy to implement; however, the WTA function cari®bbtained directly using only local
connections. Here is a simple example illustrating point. Assume that there are two local
maxima in the initial state of a locally connec@®dN, at celli and cellj such that these maxima
are sufficiently far away from each other. Assuimeg &t celi the maximum is global and there-
fore represents the largest number in the setitidliconditions. If this network performs the
WTA function correctly, there must be a stable glguum for which the output of thieth cell is
+1 and all other outputs arel. However, when all cells are in saturation, jttle cell and-th

cell do not interact. Hence, there will be anottable equilibrium where, in addition to thth

cell, thej-th cell has output +1, and again all other cedigehoutput-1, representing &, pat-

tern, incompatible with the WTA function [5]. Inn3ple words, the stability conditions, similar

to (4)-(10), cannot be derived for the locally clmabCNN.
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To resolve this dilemma of having an easily implated CNN, that solves the WTA
problem, we propose to use switched, instead advieed, global connections (shortcuts) and
realize them by sending packets on a communicatework that is associated with the CNN.
This communication network is present anyway as lmageto charge the initial conditions and
read out the results. This CNN network with fixeddl connections and on-off switching con-
nections belongs to the class of blinking smallddiaretworks discussed in Chapter 1 (see Fig.
1).

3.2.1 Modd Equations
Similarly to the all-to-all connected CNN (1), wensider the following CNN with

fixed nearest-neighbor connections and on-off dwitgy shortcuts [5]. The equations read

-y + (1+0)y +a 3 .+ g 3 (Vy+ «
a wora >y Y > 50y
j nearest J not nearest (1 ]_)
neighbor ofi neighbor of
v = f(%)

During each time intervalk—1)7<t<kr, the binary stochastic variabig(t) takes on value 1

with probabilityp and therefore activates a connection betweeni @it cell j. Respectively,
sj(t) takes on value O with probabiliivp and switches off the connection between celhd
cell j if there was one, activated during the previousetinterval. Therefore, we randomly
choose the shortcuts and leave them fixed for & gfterval of timet, then we randomly choose
another set of shortcuts (see Fig. 9). Every ptsshortcut is turned on with probabiliy in-
dependently on switching of the other shortcutsindueach time interval. Switching stochastic
variabless;(t) represent independentlidentically distributed (1ID) sequences of a statita

processThis switching time interval is assumed to be,fesmpared to the convergence proper-
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ties of the individual cell, composing the networkis justifies the name of the “blinking” CNN

as the connections are switching on-off similadyte blinking of an eye.

A\ 91 %
S NEEU
o‘o”‘o!o o.o‘ O
o.o/.o.o.o.o.‘o
t=0.03

Fig. 9 Example of the CNN (11) with fixed local conriens and on-off switching nonlocal

connections. Probability of switchimg= 0.01, the switching time = 0.01. Given the probability, on av-
erage there are about 5 nonlocal connections éetividuring each time interval This average number
comes from the fact that there potentially are B8rlocal connections to switch and the probabiity
switching isp = 0.01, thus 537x0.01=5.37 connections.

If the connections in the blinking CNN model (1Witeh fast enough, then its trajectory
must follow closely the trajectory of the averaggdtem, obtained from the blinking system by

replacing the binary stochastic signalswith constantp, wherep is the switching probability

[5,10]. It is important to stress that the all-lbennected CNN (3) with fixed couplings is the



27

averaged system for the blinking CNN (11) wherestdthastic variables;(t) are replaced with
parametep.

Recall that the all-to-all CNN (3) performs the WTinction reliably and finds the larg-

est number with probability 1; however, its disathege is the necessity to wire &ll* connec-
tions. The main idea of this thesis is to use tivgking CNN (11) as WTA CNN, instead of the
all-to-all CNN with fixed connections. An advantaigethe simplicity of its circuit implementa-
tion. A potential disadvantage is that the blink{stpchastic) CNN (3) doesn’t always converges
to the correct WTA pattern, causing the misclasatfon of the largest number, as switching is a
stochastic process and the connections are nayalwresent. However, if we switch fast
enough, than the dynamics of the two CNNs (fixed stochastic) become very similar, and the
probability of misclassification tends to O as #iwdtching time decreases. We study this relation
in the next Subsections.

3.2.2 4x4 CNN: how fast the switching should be?

As a numerical example, let us consider a blinking4 CNN (N = 16) (11) that has the task

to find the largest among the 16 numbers givenvbelo

0.3244 0.3958 0.1871 0.2898

-0.3145 -0.2433 1069 0.6359

0.1833 0.8200 0.1295 0.3205 (12)
-0.2983 0.7073 0.6433 -0.2161

We compare the performance of the 4x4 CNN (3) Wxbd connections and the blink-
ing CNN (11) in finding the largest number in nva(12) (number 0.8200 in position (3,2)). To
do so, we insert data from matrix (12) as initialues of the stateg; so that number 0.3244 in
position (1,1) is the initial value of the statg; number 0.3958 in position (1,2) is the initial

value of the state,, and so on. We then run the simulation of the CéNvork (11) and letting
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the states converge to an equilibrium pattérof the (multistable) network. Recall that there are
16 co-existing stable patterii® with one “winner” number. The correct output ofsteimula-

tion must be the convergence to the following patter cells’ outputy;;:

Here, the location of +1 in the output of the bilimlkk CNN indicates the location of the
largest number in matrix (12).

Figures 10 and 11 show the simulations of the 4iking CNN (11) and 4x4 all-to-all
connected CNN (3), that plays a role of the avetaggstem for the blinking CNN (the
MATLAB codes are given in Appendix ). It is demamaséed that while the all-to-all CNN always
determines the largest number in position (3,2)nwditrix (12), the performance of the blinking
CNN depends on the generated stochastic sequeipeetieular set of stochastically chosen and

switched non-local connections) and on the switghiime z

Figure 10 demonstrates a specific instance of linkibg CNN model (11) for which the model

determines the largest number correctly for themgiswitching timez =0.001.



29

Loser Xa4
o

Winner Xs,

~o 1 2 3 4 5 6 7 8 9 10
Simulation time

Fig. 10 Componentsi(t) of trajectories for one instance of the 4x4 AMlinking CNN (11)
(irregular red lines) and for the 4x4 WTA CNN (8)ith fixed all-to-all connections (smooth bluad).
Parameters are calculated according to the stabiindition (9): a= -1, =1.11,x = —13.89. Switching
time 1=0.001, probability of switching p = 0.1. (Top p§neThe state %, of a losing cell (3,4), starts
from a value that is lower than the largest nunfb&rmatrix (12)) and decreases below -1 as iukho
All other losing cells have similar dynamics andheerge to +1. (Bottom panel): The staig,xof the
winning cell (3,2), corresponding to the largesuead.82, increases beyond the value +1, and threref
both CNNs identify the largest number correctly.

Figure 11 shows another instance of the blinkindNGhbdel (11) for which the model fails to
find the largest number. Note that the WTA CNN {8ixh fixed all-to-all connections always
determines the largest number with probabilitydwaver, it is cumbersome for circuit imple-

mentation.



30

Loser Xay

Winner Xs)

_3 1 1 1 1 1 1 1 1 1 J
0 1 2 3 4 5 6 7 8 9 10
Simulation time

Fig. 11 Another instance of the 4x4 WTA blinking CNNL) (irregular red lines) and for the
4x4 WTA CNN (3) with fixed all-to-all connectior{(smooth blue line). Parameters are the same as in
Fig. 10. (Top panel): The statg x of a losing cell (3,4), starts from a value trsatower than the larg-
est number (cf. matrix (12)) and decreases beloas-it should. (Bottom panel): The stajg,xof the
winning cell (3,2), corresponding to the largestuea0.82, increases beyond the value +1 in the CNN
with fixed all-to-all connections as it should, lfails to do so in the blinking CNN. As a resuttetblink-
ing CNN misclassifies the largest number as ceB)(4with the second largest number (0.6433) happen
to reach the +1 state (not depicted in this Figure)

The main property of the CNN (3) with fixed all-&dl- connections is that it has
N=4x4=16 co-existing stable patterngd (stable spatial equilibrium points); however, thps¢
terns are not equilibrium points of the blinkiB&IN (11). Therefore, as it is seen in Figs. 10-

11, the trajectory of the blinking CNN cannot corgeeto an equilibrium point of the CNN with

fixed all-to-all connections but can only approachnd wobble around. In practice, once the
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trajectory of the blinking CNN gets sufficienttyose to the desired stable equilibrium point of
CNN (3) , one can classify the largest number &edsystem is stopped.

As shown in Fig. 11, there always is a non-zerdability of misclassification for the
blinking CNN. However, it is relatively low and deases when the switching time decreases.
For the given switching time=0.001, we have run the simulations of the blink@yN 100
times, starting from the same initial conditionsegi by matrix (12); there were 15 switching se-
quences out of 100 that lead to misclassificatmme(such sequence is depicted in Fig. 11). Our
further numerical simulations showed that decrepasie switching time t0=0.0001 reduces the
probability of misclassification t#=2/100=0.02 as there were only 2 sequences, catiseng

convergence to the wrong attractor.

Loser Xay

Winner Xs,

Simulation time

Fig. 12 Similar to Fig.11, except for different switcgitime 1=0.01. The given switching se-

guence leads to misclassification as the winndr(8gl) converges to a wrong -1 state. The probigmf
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misclassification increases as the switching tineedases. Note larger irregular oscillations oflitiek-
ing CNN (cf. Fig. 11); the switching is slower ati@ blinking CNN cannot stay sufficiently closethe
CNN with fixed connections (blue smooth line).

In [5], Belykh et al.. used the Lyapunov function theory together wita #veraging
technique for stochastic differential equationsdéwive an upper bound on the dependence of
probability of misclassification on the switchingie. More specifically, it was shown that if the
general multistable blinking dynamical systems #@&sdaveraged analog, where the switching
parameters are replaced with their mean, start tft@rsame initial condition and the averaged
system converges to one attractor, then the prbilyatbiat the blinking system doesn’t converge
to the same attractor, as it should and escapasdimer attractor, tends to zero as the switching
time approaches 0. Explicit bounds on this prolitghé@re given in [1,5,12]. In our context, the
upper bound on the probability of escape in thekiolg CNN, that causes misclassification, be-

comes [5]:
C
Phisclass = CLNZ eXp{_zTys} :

where constant€; andC, are simple functions of parameterss, and k of CNN model
(3), parametely is defined by, §,and k and the initial condition chosen, ardis the switching
time as before. The actual formulas are tediouselver, their derivation from the general for-

mulas, given in [5,12] is straightforward. Obsethrat the probability of misclassification

1
Prisclass ~ eXp{— ;} (13)

can be made arbitrarily small by decreasing théckivig timet. However, estimate (13)
comes sufficient conditions derived in [1,5,12].this thesis, we numerically verify this expo-

nential dependence for the probably of an errothennegative reciprocal of the switching time
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T. As a result, we identify an optimal maximum switghitime 1 that keeps the probability of
misclassification minimum. Evidently, to minimizei¢ probability, one should decrease switch-
ing time T, i.e. one should switch as fast as possible. Howdaster switching results in high
power consumption and, in addition, overload the@mmnication network. Therefore, finding a
trade-off between the switching time and the prdhglof misclassification is important. Fig. 13
demonstrates the results of multi-hour numericidutations of the dependence of the probabil-
ity of misclassification on the switching time (@#ency). For each, we numerically integrate
4x4 CNN system (11), starting from the initial cdamh (12), and repeat the integration 100
times, counting the number of trials leading toataissification for which cell 3,2 doesn’t con-
verge to the winner. This number divided by 108lsrigives us the probability of misclassifica-
tion for the given each. Notice that due to the stochastic nature of $wiig, we have in princi-
ple 100 different stochastic sequences of switcliomgeacht. As shown in Fig. 13, the switch-
ing time smaller or equak0.002, corresponding to the switching frequerichr = 500 on thex
axis of the graph in Fig. 13, gives an optimal béor the switching time. Note that for the giv-
en switching frequency, the probability of miscifisation drops dramatically and slowly de-

creases for values larger than 5000.
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Fig. 13 Dependence of the probability of misclassificatP,iscjason the switching frequency

x =1/7 . Each point (diamond) represents the results 0frilnerical solutions of 4x4 CNN system
(11), starting from the same initial condition, kiiffering in the switching sequences, for eacledix
switching frequencyl/7 . Switching frequency faster than 500 yieldscadgely low probability of

misclassification. The solid line represents gpogrential fit to the theoretical curve
Frisclass = eXp{ - 1r }
3.2.3. 10x10 CNN: whereisthe spider?

In this subsection, we use a 10x10 CNN (11) totifiethe darkest spot in a 2-D visual

picture of Fig. 11.



35

Fig. 14 2-D picture with the darkest spot at cell 6 @igated by a spider. This picture is ob-

tained from the below table using a Matlab comntandge(A,'CDataMapping’, 'scaled’)’.



36

Table 1 10x10 matrix with the largest number 0.99611(@6) . This matrix is used as initial

conditions for the 10x10 CNN (11). The CNN mustfpem the WTA function by converging to the pat-

tern where cell 6,8 has an output +1 while the rotledls converge to -1 states.

0.45 0.0838  0.2290 | 0.9133 | 0.1524  0.8258 | 0.5383 | 0.9561 0.0782 | 0.4427

0.1067  0.9619 | 0.0046 A 0.7749 0.8173 A 0.8687 A 0.0844 0.3998 ' 0.2599 @ 0.8001

0.4314 . 0.9106 : 0.1818 | 0.2638 . 0.1455 | 0.1361 ; 0.8693 . 0.5797 : 0.5499 | 0.1450

0.8530 | 0.6221 | 0.3510 | 0.5132 | 0.4018 | 0.0760 | 0.2399 ' 0.1233 | 0.1839 | 0.2400

0.4173 . 0.0497 | 0.9027 | 0.9448 : 0.4909 | 0.4893 | 0.3377  0.9001 | 0.3692 | 0.1112

0.7803 | 0.3897 | 0.2417 | 0.4039 ' 0.0965 | 0.1320 ; 0.9421 0.9961 ' 0.5752 A 0.0598

0.2348  0.3532 | 0.8212 | 0.0154  0.0430 : 0.1690 : 0.6491 = 0.7317 . 0.6477 . 0.4509

0.5470  0.2963 | 0.7447 | 0.1890 ' 0.6868 | 0.1835  0.3685  0.6256 | 0.7802 | 0.0811

0.9294 | 0.7757 | 0.4868 | 0.4359 | 0.4468  0.3063 0.5085 | 0.5107 | 0.8176 A 0.7948

0.6443 | 0.3786 | 0.8116 | 0.5328 | 0.3507 | 0.9390 0.8759 | 0.5501 | 0.6225  0.5870

Figure 15 demonstrates the results of numericallsitions and shows successful loca-

tion of the largest number for the given switchgsgjuence with the switching time0.0001.

Similarly to the 4x4 CNN, we have calculated thelability of misclassification for 100
different switching sequences of the 10x10 CNNlite switching time=0.0001. While the
probability of misclassification it is still accegitle (7/100), it's remarkably lower that the one of
the 4x4 CNN with the same switching time. As a ltesve come to a natural conclusion that

while larger CNN networks (10x10 vs 4x4) give betesolution, the switching time must be
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faster to maintain the same probability of classifion (more cells, more co-existing winner-

take-all patterns).

Loser Xog

Spider Xsg

~o 1 2 3 4 5 6 7 8 9 10

Simulation time

Fig. 15 Numerical simulations of a 10x10 all-to-all CN8) (blue smooth line) and a 10x10

switching CNN (11) (red irregular line) with pamaters given in (10) and initial conditions fromble

1. The trajectory converges to the winner-takgsattern: (top) a losing cell converges to a -1estéd)

the winning cell, corresponding to the locatiortte# spider in Fig. 14, converges to the +1 st&itch-

ing time1=0.0001. Probability of misclassificatiof®isclass= 7 /100 (not depicted). Depicted is one of

the successful 100-7=93 switching sequences thedatty identify the largest number (spider) in the-

trix of Table 1 (image of Fig. 14).
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4. CONCLUSIONS

We have analyzed one of the most prominent exawfpétificial neural networks such
as a cellular neural network (CNN) and demongiréibat the addition of random on-off long-
range connections significantly enhances functignalf locally coupled neural networks. In
particular, we have studied the properties of wirtake-all (WTA) CNNs with on-off switch-
ing connections used to automatically identify ldrgest number in the given matrix. The WTA
CNN performs parallel computation by using its @bthamics when each cell of an N-cell net-
work converges to either -1 or +1 state. The raswdn equilibrium pattern, containing -1 and +1
states; for the problem in question this patternosiposed only of +1 “winner” state ahdl
“losing” -1 states.

We have constructed WTA switching CNNs of differsige (4x4 and 10x10 networks)
and analyzed their performance for different swiighfrequencies. By performing extensive
numerical simulations, we have shown that the pibya of misclassification, for which the
CNN fails to identify the largest number correctbgnverges to zero exponentially fast as a
function of the switching frequency. This alloweslto find an optimal switching frequency that
yields a trade-off between the (low) probability rafsclassification and the traffic load on the
communication network used to establish fast sttahan-off connections. We have also stud-
ied how the network size affects the probabilitynaEclassification. More precisely, larger net-
works require faster switching to keep the saméaibdity of misclassification as larger net-

works contain more cells and, therefore, have Wéfé stable patterns.
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APPENDIX: MATLAB CODES

Matlab code:

% Main program to run
%
%
%
%
% Network size 10x10

nrows = 10;
ncols = 10;
n = nrows*ncols;

% Parameter design

alpha =1,

kappa = -alpha*(n”~2 - 6)/(n + 2);

delta = alpha*(n + 4)/(n + 2);

xegp = delta + 1 + alpha*(n-2) + kappa,
xegm = -delta - 1 + alpha*(n-2) + kappa;

A = diag(ones(n,1));

fori=1:n
[irow,icol] = ind2sub([nrows,ncols],i);
forj=1:-1
[jrow,jcol] = ind2sub([nrows,ncols],));
if abs(irow-jrow) + abs(icol-jcol) ==
A®L]) = AGL)) + 1
end
end
end

plotprob=zeros(10,2);

% x0=0+(1-0).*rand(n,1);
%tau =.1,;

increment=1;

%while (tau ~=.000001)

%x0 = 2*rand(n,1)-1;
% Initial conditions:

41
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X0=[0.450541598502498;0.0838213779969326,0.228FABEB19;0.91333736150167
0;0.152378018969223;0.825816977489547;0.53834248&5260.996134716626886;0.078175
5287531837;0.442678269775446,0.106652770180584;:898980855054;0.00463422413406
744,0.774910464711502;0.817303220653433;0.868636A%33.0;0.0844358455109103;0.399
782649098897;0.259870402850654,0.8000684802243(33;813827463545,0.910647594429
523;0.181847028302853;0.263802916521990;0.14553881.7;0.136068558708664,0.8692
92207640089;0.579704587365570;0.549860201836332958798223727;0.8530311177218
94;0.622055131485066,0.350952380892271;0.5132498%3;0.401808033751942;0.07596
66916908419;0.239916153553658;0.1233189348351@3901 788282417;0.2399525256649
03;0.417267069084370,0.0496544303257421;0.9027P3dB28B1;0.944787189721646;0.4908
64092468080,0.489252638400019;0.33771940982130D0053846417662;0.3692467811202
15;0.111202755293787;0.780252068321138;0.389738353;0.241691285913833;0.40391
2145588115;0.0964545251683886;0.131973292606332050590775485;0.9561345402298
02;0.575208595078466,0.0597795429471558;0.2347BF24®6;0.353158571222071,0.8211
94040197959;0.0154034376515551;0.0430238016578A68890029462704;0.64911547495
6452;0.731722385658670;0.647745963136307;0.450%230945,0.547008892286345;0.296
320805607773;0.744692807074156;0.188955015032%86075433365315,0.183511155737
270;0.368484596490337;0.625618560729690;0.78022PA357;0.0811257688657853;0.929
385970968730;0.775712678608402;0.486791632403 ¥B5858588580919,0.446783749429
806;0.306349472016557;0.508508655381127;0.510721284.0;0.817627708322262;0.7948
31416883453;0.644318130193692;0.378609382660283;989458282477;0.5328255887994
55;0.350727103576883;0.939001561999887;0.87594 2@BB4;0.550156342898422,0.62247
5086001228;0.587044704531417;]

%x0=0+(1-0).*rand(n,1)

[xx0,ind] = sort(x0);

indmax = ind(n)

t0 = 0;

t1 = 10;

%tau = 0.0001;
%ntau = fix(tl/tau);

%Switching time;

tau =.0001,
ntau=100000;

t1 = tau*ntau,

t = [tO:tau:tl]’;
tlength = length(t);
p=0.1,

xx0 = x0;

% solution of the all-to-all CNN with fixed connemis

[tf,xfull] = oded5(WTApwl',t,xx0,[],n,alpha,delta,kappa);
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% solutions of the stochastic CNN
xblink = [x0';

myprob=0;
for itau = 1:ntau
B = rand(n,n) < p;
AA = A + (1-A).*B*(1/p);
[tb,xb] = oded5(VTApwI_var'[0 tau],xx0,[],n,AA,alpha,delta,kappa);
% if(xb(itau)>1.5)
% myprob= myprob+1;
%end
nb = length(tb);
xx0 = xb(nb,:)’;
xblink = [xblink; xb(nb,:)];

end
%finalprob=myprob/ntau
%xb(nb,:)

xblink1 = [x0T7;
xX0 = x0;

for itau = 1:ntau
B = rand(n,n) < p;
AA = A + (1-A).*B*(1/p);
[tb,xb] = 0ode23(VTApwI_var,[0 tau],xx0,[],n,AA,alpha,delta,kappa);
nb = length(tb);

xx0 = xb(nb,:)’;
xblink1 = [xblink1; xb(nb,:)];
end

if xblink(tlength,indmax) > 0

attr =1,
else

attr = 0;
end

%plt = fix(rand*n)
plt=4

%************************************************** kkkkkkkkkkhkkkkkkkkhkkk

****take comments out and put the correct plotsfigures 1 and 2 back from this sec-

tl on kkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkhkkhkkhkk



*kkkkkk

*kkkkhkkk

figure(1)

clf

subplot(2,1,1)
axis([0,10,-3,3])

hold on
plot([tO,t1],[0,0],k:")
plot([t0,t1],[1,1],k:")
plot([tO,t1],[-1,-1],k:")
plot([tO,t1],[xegm,xegm]p:’)
plot([t0,t1],[xeqp,xeqp]b:)
plot(t,xfull(:,plt), b)
plot(t,xblink(:,plt),r")
xblink(:,plt)

myprob=0;
myxblink=xblink(:,plt);
for i=1:101
if (myxblink(i)>=1.5)
myxblink(i)

myprob=myprob+1;
end
end

tau

myprob

final =myprob/101
plotprob(increment,:)=[tau,final]
increment=increment+1;
tau=tau/10;

%end

%

subplot(2,1,2)

axis([0,10,-3,3])

hold on

plot([t0,t1],[0,0], k)
plot([tO,t1],[1,1], k')
plot([tO,t1],[-1,-1], k')
plot([tO,t1],[xeqm,xeqm], b )
plot([tO,t1],[xeqp,xeqp], b’
plot(t,xfull(:,indmax), b )
plot(t,xblink(;,indmax), ™)

%

xeq = xegm*ones(1,n);

xeq(indmax) = xeqp;

Mxeq = ones(tlength,1)*xeq;

mdevfull = sgrt(mean((xfull-Mxeq).”2,2));

44
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mdevblink = sqrt(mean((xblink-Mxeq).”2,2));

if attr
mdevblink = sqrt(mean((xblink-Mxeq).”2,2));
else
mdevblink = sqrt(mean((xblink1-Mxeq).”2,2));
end
figure(2)
clf
semilogy(t,mdevfullp’)
hold on
semilogy(t,mdevblink)
96************************************************** kkkkkkkkkkkkkhkkkkhkkk
96************************************************** kkkkkkkkkkkkkkkkkhkkk

%Function for the all-to-all fixed CNN***#ad s
functiondx = WTApwI(t,x,init,n,alpha,delta,kappa)

% function WTApwI(t,x,init,n,alpha,delta,kappa)

dx = -x + (delta + 1)*fcnn(x) - alpha*ones(n,n)*fcfx) + kappa;
%Function for the switching CNN* e
functiondx = WTApwI_loc(t,x,init,n,A,alpha,delta,kappa)

dx = -x + (delta + 1)*fcnn(x) - alpha*A*fcnn(x) +dppa;

96************************************************** kkkkkkkkkkhkkkkkkkkhkkk

96************************************************** kkkkkkkkkkhkkkkkkkkhkkk

functiony = fcnn(x)

% function y = fcnn(x)
% calculates the piecewise linear activation fuorctised in CNN's.

y=-(x<-1) + (-1 <= x).*(x <= 1).*x + (1 < X);
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