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STABILITY ANALYSIS OF PHASE-LOCKED BURSTING IN INHIBITORY

NEURON NETWORKS

by

SAJIYA JALIL

Under the Direction of Drs. Igor Belykh and Andrey Shilnikov

ABSTRACT

Networks of neurons, which form central pattern generators (CPGs), are important for

controlling animal behaviors. Of special interest are configurations or CPG motifs com-

posed of reciprocally inhibited neurons, such as half-center oscillators (HCOs). Bursting

rhythms of HCOs are shown to include stable synchrony or in-phase bursting, which is

a phase-locked state that has zero phase difference. This in-phase bursting can co-exist

with anti-phase bursting, commonly expected as the single stable state in HCOs that are

connected with fast non-delayed synapses. The finding contrasts with the classical view

that reciprocal inhibition has to be slow or time-delayed to synchronize such bursting

neurons. Phase-locked rhythms are analyzed via Lyapunov exponents estimated with

variational equations, and through the convergence rates estimated with Poincaré return

maps. A new mechanism underlying multistability is proposed that is based on the spike

interactions, which confer a dual property on the fast non-delayed reciprocal inhibition;

this reveals the role of spikes in generating multiple co-existing phase-locked rhythms.

In particular, it demonstrates that the number and temporal characteristics of spikes de-

termine the number and stability of the multiple phase-locked states in weakly coupled

HCOs. The generality of the multistability phenomenon is demonstrated by analyzing



diverse models of bursting networks with various inhibitory synapses; the individual cell

models include the reduced leech heart interneuron, the Sherman model for pancreatic

beta cells, the Purkinje neuron model and Fitzhugh-Rinzel phenomenological model. Fi-

nally, hypothetical and experiment-based CPGs composed of HCOs are investigated, and

predictions that may be verified by electrophysiologists studying the sensory-motor sys-

tems are made. This study is relevant for various applications that use CPGs such as

robotics, prosthetics, and artificial intelligence.

INDEX WORDS: Bursting, Central pattern generator, Fast threshold modulation,
Half-center oscillator, Inhibition, Lyapunov exponents, Multi-
stability, Networks, Neurons, Phase-locking, Poincaré return
maps, Synchrony, Variational equations
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2.2.4 Poincaré return maps . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.5 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.6 Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.7 Variational equations . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.8 Lyapunov Exponents . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Computational methods . . . . . . . . . . . . . . . . . . . . . . . . . 39



vii

2.3.1 Lyapunov Exponents . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Phases and Phase Differences . . . . . . . . . . . . . . . . . . 41

2.3.3 Phase Differences on 3D Torus . . . . . . . . . . . . . . . . . . 41

Chapter 3 SPIKE SYNCHRONY ANALYSIS: . . . . . . 45

3.1 Half Center Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Fast, Non-delayed Synapse Coupled HCOs . . . . . . . . . . . 49

3.1.2 Slow Synapse Coupled HCOs . . . . . . . . . . . . . . . . . . 58

3.2 Large Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 4 BURST SYNCHRONY ANALYSIS . . . . . . 62

4.1 Weakly coupled HCO: Multiple phase-locked states . . . . . . . . . . 62

4.1.1 The mechanism of multistability: two opposite roles of inhibition 67

4.1.2 Stability diagrams . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.3 Phase return maps . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Strongly coupled networks: stable in-phase bursting . . . . . . . . . . 77

4.2.1 Generic coexistence of in- and anti-phase bursting . . . . . . . 80

Chapter 5 EXPERIMENT-BASED CPG ANALYSIS . . . . 85

5.1 Minimal configuration networks . . . . . . . . . . . . . . . . . . . . . 85

Chapter 6 CONCLUSIONS AND FUTURE DIRECTIONS . 90

REFERENCES . . . . . . . . . . . . . . . . . . . 93

Appendix A PARAMETERS . . . . . . . . . . . . . . 101

Appendix B PSEUDO CODES . . . . . . . . . . . . . 103



viii

LIST OF TABLES

Table A.1 Time scales, capacitance, maximal conductances and reversal po-

tentials for leech heart interneuron . . . . . . . . . . . . . . . 101

Table A.2 Boltzmann functions with parameters for leech heart interneuron 101

Table A.3 Time scales, capacitance, maximal conductances and reversal po-

tentials for Sherman’s pancreatic β-cells . . . . . . . . . . . . 101

Table A.4 Boltzmann functions with parameters for Sherman’s pancreatic β-

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table A.5 Maximal conductances and reversal potentials for Purkinje neu-

rons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table A.6 Voltage dependent time scales for Purkinje neurons . . . . . . 102

Table A.7 Voltage dependent time scales for Purkinje neurons: auxiliary func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table A.8 Boltzmann functions with parameters for Purkinje neurons . . 102

Table A.9 Parameters for Fitzhugh-Rinzel model . . . . . . . . . . . . . 102



ix

LIST OF FIGURES

Figure 1.1 Voltage traces showing synchrony and anti-phase bursting rhythms. 3

Figure 1.2 Visualization of in-phase spike and burst synchrony, intermediate

phase-locked, and anti-phase synchrony in the voltage plane. . 4

Figure 1.3 Voltage traces showing rhythms with intermediate delays between

active states of neurons. . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.4 Schematic depiction of processes at the neuron membrane produc-

ing electrical activity. . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.5 Action potential resulting from ion transports at specific time

scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.6 The original Hodgkin-Huxley equation for the membrane poten-

tial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.7 Depiction of inhibition and excitation, and graphs of Boltzmann

functions for gating variables, and fast threshold modulatory func-

tion, Γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 1.8 Image of brain tissue and schematic drawings of neuron networks. 10

Figure 1.9 Phase differences compare the phases of activity pattern in CPG

neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 1.10 Phase differences measured with Poincaré sections. . . . . . . 15
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Chapter 1

INTRODUCTION

Neurons, composing the nervous system of an animal, are highly specialized cells.

These cells, unlike most other cells, show electrical activities. They have many projections

that are similar to wires and are capable of passing on the electrical signals to each other.

The paradigm for mathematically capturing these electrical activities was introduced in

the 1950s by two scientists, namely Alan L. Hodgkin and Andrew Huxley. Following

their electrophysiological studies and the proposed mathematical model of the activities

of the neurons, there has been much development in the areas of computational and

mathematical neuroscience. Mathematical quantities including the rates of changes or

the time scales of the flow of ions in the neurons are now used to categorize diverse groups

of neurons. A system of ordinary differential equations (ODEs), obtained from these

measures, represent an individual neuron, and can be used to study network functions

and mechanisms.

Animal behaviors are thought to be controlled by networks of neurons. In particular,

groups of neurons can be found that demonstrate correlated electrical activities during

the behavior. Such groups are connected in some fashion forming networks, called the

central pattern generators (CPGs). A CPG produces specific activity pattern without any

external stimulation, and if any of the neurons in the group is removed the pattern is lost.

While identifying a CPG is not a trivial task, use of mathematical and computational

techniques provide neuroscientists with additional tools to study the functions of CPGs.

In 1911, T. G. Brown suggested a specific network configuration, underlying behav-

iors that are composed of alternating rhythms such as locomotion. He coined the term

half-center oscillator (HCO) to describe a CPG type network that have two components

and inhibit each other while active. Since then many CPGs have been identified that

contain HCOs as component subnetworks. HCO produces alternating activities as each

half of the network ensures the other half is inactive. At the same time, both halves
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can participate, but only by taking turns. With the advent of electrophysiological tools,

such alternating activities can be seen in the simultaneous recordings made from multiple

neurons. Furthermore, connections between neurons can be distinguished as inhibitory

or not. As a result, reciprocal inhibition between two neurons, forming a half-center

oscillator, has been under intense investigation.

Studies of model half-center oscillators are rich with mathematical analysis of the

differential equations representing the network. Alternating rhythm is contrasted with

synchronous rhythm, where activities of the neurons in the network perfectly coincide.

Using low dimension ODEs, the classical theory proves that under the most general

conditions, alternating rhythm is robust while synchronous rhythm is unstable in the

HCO networks. The research presented in this discourse is an extension of the classical

theory. When ODEs of higher dimension is used, it is found that synchronous rhythm is

robust along with the alternating one. Furthermore, rhythms with intermediate delays or

correlations have been observed and found to be stable. Since any behavior of an animal

can be decomposed into a number of simpler activity patterns that may be sequentially

active with various delays, the underlying mechanisms are important to understand.

In this study, stability of multiple coexisting rhythms in the HCO networks has been

analyzed using mathematical and computational tools. These rhythms, in general, are

referred as the phase-locked states of the network. ODEs that are complex enough to

capture bursting behavior of neurons are used to study the stability properties of phase-

locked bursting in the inhibitory neuron networks. Insights gained are used to analyze

and predict plausible mechanisms of an experiment-based CPG from the invertebrate

Melibe leonina. The broader implication of this study is that electronic circuits designed

with the ODEs may be used to control useful machines similar to how CPGs control

animal behaviors.

1.1 Background

Ordinary differential equations capture natural phenomena rather accurately in

many cases. ODEs represent dynamical systems that have quantities evolving in time.
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Electrical properties of neurons, for example, may oscillate frequently, in time, between

two states separated by high amplitudes, producing patterns known as spikes. They

can also spike intermittently, alternating with a third state, composing bursts [1, 2].

Bursts are characterized in experiments. These experiments are meant to reveal under-

lying mechanisms of various behaviors and nervous functions in animals. When neurons

produce complex behaviors, their network interaction is often monitored by emergence

of synchrony and other types of robust correlated activities known as phase-locking or

phase-locked states[3–6]. To study the phase-locked bursting activities, the following

mathematical tools are used: systems of ordinary differential equations, equilibriums

or steady states, nullclines, bifurcations, variational equations, stability, Lyapunov ex-

ponents, phases and phase differences [7–11]. The discourse is organized as follows,

introduction, models and methods, spike synchrony analysis, burst synchrony analysis,

experimental network analysis, and finally, conclusions and future directions followed by

references and appendices.

−0.03

 

0.03
(i)

V
1

34 36 38 40 42 44 46

−0.03

 

0.03
(ii)

V
2

t [s]

Figure 1.1. Voltage traces showing synchrony (left box) and anti-phase bursting (right
box) rhythms.

Chapter 1 gives a broad view of the research embodied in this discourse,

the main hypothesis and the significance of this work along with some back-

ground knowledge. This study starts with the spike synchrony of the electrical signals

between neurons, which is achieved when the signals recorded from each neuron over-
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lap completely. The traces (recorded signals) after being superimposed appears identical.

The left box in figure 1.1 shows voltage traces for a pair of neurons producing synchronous

rhythm. The traces are shifted vertically, as otherwise they would be indistinguishable.

To demonstrate that they are identical, traces are often plotted with respect to each

other without the explicit time coordinate. Visualized this way, spike synchrony appears

as a diagonal line as depicted in 1.2.1. Burst synchrony, on the other hand, appears in

1.2.2. In this case, the lower values of the membrane potential, which is the main variable

recorded from neurons, are identical. The higher values, which correspond to the spiking

patterns within the bursts, are slightly deviated.
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Figure 1.2. Visualization of in-phase (∆ϕ = 0) spike (1.2.1) and burst (1.2.2), interme-
diate (0 < ∆ϕ < 0.5) phase-locked (1.2.3), and anti-phase (∆ϕ = 0.5) synchrony (??) in
the voltage plane for leech model HCOs. Phase-lag, ∆ϕ is measured at the left bottom
corner, when either V1 or V2 is −0.042 V. Spike synchrony is measured by maximum
absolute difference of membrane potentials, |V1−V2|, which is reflected by distance from
the diagonal.

In chapter 2, details of the models, relevant concepts and descriptions

of procedures are presented. The various phase locked rhythms are quantified and

represented by constant differences between phases, ϕ. The definitions of phases, ϕ
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and phase differences, ∆ϕ, can be found in chapter 2, and the pseudo code for the

algorithm used to compute ∆ϕ can be found in appendix B. The traces for rhythms that

have intermediate delays between the active (spiking) states of the neurons are shown

in figure 1.3. While synchronous and anti-phase rhythms have diagonal and L-shaped

configurations in the V1 − V2 plane, other phase-locked rhythms are mixtures of both.

Naturally, the later rhythms have zones where electrical activity is nearly identical or far

from it. The two types of zones cause the mixture configuration; for example see figure

1.2.3.

Figure 1.3. Voltage traces showing rhythms with intermediate delays between active
states of neurons. Generally, these rhythms are known as phase-locked bursting

patterns.

There are mathematical abstractions that correlate with different types of neuron

generated patterns. Neurons are classified according to their electrical activities. Al-

though spikes are present in bursting traces, some neurons are only capable of spiking

or bursting, while others can generate both types of activities. In addition, neurons can

be silent, meaning no oscillatory activity may be present in the traces. For a system of

ODE represented by (1.1) a function x(t) is considered a solution if it satisfies the rates

of change (indicated by ′ or ˙ ) equations given by the system. A non-oscillatory pattern

produced by the neuron is a constant function, and an oscillatory pattern such as spiking
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or bursting is a periodic function; moreover, these patterns are solutions to the ODEs,

constructed from the measurements of the neuron, given by the expression f(x).

x′ = f(x) (1.1)

The boldfaced characters used in the equation (1.1) represent a number of variables and

functions tabulated in the form of vectors. In other words, f is a vector of functions,

while x is a vector of variables. Once the functions f(x) have been crafted, and the

variables x have been selected based on the experiments, mathematical analysis of the

ODEs and computational experiments have proven to be useful in providing insights into

the underlying principles that govern neurons. Hence, there is a demand for further

development of mathematical and computational tools for research in neuroscience.

Figure 1.4. Schematic depiction of processes at the neuron membrane producing electrical
activity, reproduced from [12]. Here, most common ions are shown: sodium (Na), chloride
(Cl), potassium (K), calcium (Ca). Neuron’s membrane is composed of special molecules
depicted in green. Channels and receptors are made of proteins and sugars, shown here as
orange cylindrical objects. Activities of these molecules may be dependent on membrane
potential, or other molecules, known referred as their ligands. ATP stands for Adenosine
Tri-Phosphate, which is the energy releasing molecule.

There has been much research exploring the causes and the meaning of electrical

signals in neurons. Neurons or other cells capable of electrical activities have reservoirs

of various ions, such as sodium, potassium, chloride, calcium and so on. The charges on
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these ions retain the ability to cause electricity as they move between the interior and

the exterior portions of the neurons. The amplitude of the electrical activity is dictated

by the concentration of these ions. The specific distributions of various ions correspond

to membrane potential that drives the electrical activities. In other words, neurons or

cells control their electrical activity by controlling the distribution of ions [13]. Figure

1.4 shows schematic representation of some of the processes.

Figure 1.5. Action potential resulting from ion transport at specific time scales. Mem-
brane potential depolarize (increase) following shortly after opening of channels that
raises sodium permeability; on the other hand, it hyperpolarize (decrease) when perme-
ability of potassium changes allowing the ion to leave the intracellular space. Figure
reproduced from Encyclopedia Britannica.

The use of ordinary differential equations to model electrical activities of a neuron

was first introduced by Nobel laureates Hodgkin and Huxley, in their seminal papers,

studying the electrophysiology of the squid’s giant axon [14, 15]. Neurons propagate

electrical signals over long distances through their axons and dendrites. These projections

of neurons contain large numbers of channels (pores) that are capable of transporting ions

across the membrane, which separates the interior of the neurons from the exterior. Many

channels require energy produced via dephosphorylation of Adenosine Tri-Phosphate
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(ATP), or other conditions to transport ions. In general, channels activate (open) or

inactivate (close) depending on the voltage potential across the membrane. Depending

on the specific distribution of ions maintained by the neurons, certain ions typically flow

either in or out when their corresponding channels activate, creating inward or outward

flow of currents. By convention, flow of positive charge indicates the inward or the

outward currents. In other words, inward current is the flow of positive charge into the

cell, or equivalently, the flow of negative charge out of the cell; outward current is the

reverse flow. Furthermore, by convention, inward currents result in depolarization (rise

in the positive direction) and outward currents result in hyperpolarization (lower in the

negative direction) of the membrane potential [16]. Hodgkin and Huxley proposed the

Figure 1.6. The original Hodgkin-Huxley equation for the membrane potential,
reproduced from [14].

ODE shown in figure 1.6 to model the membrane potential of a neuron. It has a number

of expressions defining the ionic contributions. In this model, a number of variables

and parameters are introduced along with V , the membrane potential. Conductances,

ḡx, and reversal potentials, Vx, specific to two of the major ion species are included

as the experimentally measured parameters. Probability variables m,n, h, which define

the rates of transport of the ions across the membrane are introduced. Variables are

functions of time whereas parameters are time independent constants. Further details

for these type of models and their interpretations can be found in the chapter 2.

The types of networks, considered in the study, are formed by neurons that can elicit

electrical responses in each other. This interaction can be caused directly by the flow

of ions between neurons (gap juctions/electrical synapses) or indirectly by neurotrans-

mitter signals (chemical synapses). The synapses are further classified into excitatory
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(depolarize membrane potential) or inhibitory (hyperpolarize membrane potential). Fig-

ure 1.7.1 shows changes in the membrane potentials of the post-synaptic neurons for the

two types of synapses. It is also possible for synapses to have the capacity to function

as both excitatory and inhibitory connections. In this study, models that approximate

chemical synapses are used. Among these models are Heaviside, fast threshold modula-

tory (FTM), alpha-, and leech dynamical synapses. First three are phenomenological,

meaning they approximate signature electrical properties of the synapses, and the fourth

includes mechanistic details of the synapses. Regardless of the paradigm, all of the model

synapses are quite fast. This means that the post-synaptic potentials, elicited in response

to pre-synaptic spikes, decay as fast as the spikes. In contrast, slow synapses have longer

lasting post-synaptic potentials. The mathematical function used for a fast synaptic con-

1.7.1 1.7.2

Figure 1.7. Figure (1.7.1), reproduced from [17], showing post-synaptic potentials may be
hyperpolarizing (inhibitory) or depolarizing (excitatory). In (1.7.2), graphs of functions
used to generate action potentials in the neuron models, and fast threshold modulatory
function, Γ used for synaptic connections, are shown. The voltage depended probabilities,
n∞, h∞,m∞, representing the channel gates are modeled by Boltzmann functions, which
transition between closed (zero) to open (one) state smoothly. Here, n,m are activating,
that is for high values of membrane potential, V , these channels open; whereas, h is
inactivating because this channel closes for high values of V .

nection is depicted in figure 1.7.2 and denoted by Γ. Compared to the functions used for

generating action potentials in the neuron, Γ has the fastest transition from minimum to

maximum value.

Reciprocal inhibition is a common and critical feature in various neuronal networks

that regulate biological functions [3, 18–20]. Such networks, known as central pattern gen-



10

erators (CPGs) are polymorphic, meaning different configurations may serve the same

function, and multifunctional, meaning same network may serve different functions un-

der different conditions. CPGs govern various rhythmic activities including cardiac beat-

ing and locomotive behaviors such as walking, chewing, swimming, and so on [21–24].

Switching between behaviors can be attributed to switching between various attractors

of a CPG network, where attractors are the dominant and stable patterns in the system,

with specific rhythms and time scales associated with them. A dedicated CPG has a

single attractor as opposed to a multifunctional CPG which has more than one attractor.

The smallest network capable of possessing reciprocal inhibition is a pair of neurons, the

half-center oscillator (HCO) [18], which sometimes operates as a CPG by itself, or more

often belong to larger CPGs. The figure 1.8.1 is a stained brain tissue that reveals the

1.8.1 1.8.2

Figure 1.8. In (1.8.1), image of brain tissue stained with a dye show interconnectedness
of the neurons, reproduced from [25]. In (1.8.2), schematic drawings of neuron networks
show two levels of connectedness: global (top row) and local (bottom row). Large circles
represent the neurons and round headed arrow indicated inhibitory synapses. Global
networks have reciprocal inhibition between all pairs, local networks have reciprocal
inhibition between only two neighbors. Local and global networks are the same for
networks of two and three neurons.

projections of neurons that form connections with each other. A common strategy to

study the brain mechanism or the functions of the nervous system is to study smaller

networks such as those shown in 1.8.2. The idea is to understand the network behaviors

theoretically, so that predictions can be made to verify the real mechanisms.

Many behaviors are composite sequences of activities, where one subset of activities

completely suppresses another group of activities. For example, to move a leg during

walking a group of muscles must be contracted to lift the leg, while the opposite group
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must be inhibited or relaxed at the same time, allowing the lift. T. G. Brown originated

the concept of the half-center oscillator in 1911 [18] while studying animal locomotives

and their associated neuronal rhythms. Neurons in the half-center oscillators may not

exhibit bursts of activity that alternate if dissociated from the network. This indicates

the importance of formation of network and interaction between neurons in the net-

work. In this discourse, the HCO is defined as a reciprocally inhibitory, two-neuron

configuration that can produce anti-phase bursting. There are many studies that define

mechanisms that generate bursting in individual and networked neurons [2, 26–29]. In

particular, it has been shown that spiking and bursting behaviors may be regulated by

slight perturbation of some critical parameter of the neuron.

In mathematical models, time scales are essential for analyzing model behavior. Mul-

tiple time scales are required to capture the stereotypical shape of action potentials in

neurons (see figure 1.5). Existence and shapes of the spikes and bursts are closely tied

to the number of time scales in the model. In addition, network interactions may be di-

rected by the time scales. It has been shown that stable synchronous oscillations (traces

boxed on the left, in figure 1.1) are not possible in reciprocally coupled networks of fast

inhibitory spiking neurons [30, 31], unless each neuron has at least two slow intrinsic

variables [32]. In other words, reciprocal inhibition is postulated to desynchronize neu-

rons, if the inhibition is fast [33, 34]. Pre-synaptic neurons reliably take turn inhibiting

the post-synaptic neurons because of reciprocal inhibition, leading to the phenomenon

of anti-phase bursting (traces boxed on the right, in figure 1.1). The later pattern is

strongly stable in the HCOs; hence the discovery that the former pattern can also be

stable is of noteworthy.

In chapter 3, details of the spike synchrony analysis in bursting neuron

networks is presented. Answer to the question, whether inhibition can synchronize

fast non-delayed reciprocally connected bursting neurons, is amenable to mathematical

analysis. Stability analysis of spike synchrony is possible by the use of variational equa-

tions because the system of ODEs in the neighborhood of synchronous manifold can be

reduced [10]. This chapter demonstrates that numerical simulations of variational equa-

tions indicate spike synchrony in HCOs is stable, in a biologically relevant domain, in the
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case of the fast non-delayed inhibition. A slowly decaying or a time-delayed inhibition,

however, has been found previously to establish synchronization in the network by [35].

In addition, it was demonstrated that “inhibition not excitation” leads to synchronized

firing, provided that reciprocal synapses are non-instantaneous and slow [33]. In these

literatures, however, the time scales of the synapse required for synchronization excluded

the fast and non-delayed condition.

For the purpose of studying HCOs with fast and non-delayed synapses, variational

equations were used to analyze the stability of spike synchrony. In reality interactions

between neurons in CPGs are highly nonlinear and nonhomogeneous as the neurons

receive uncorrelated driving inputs from each other. As a result, novel patterns emerge

due to network interactions [36]. When bursts are present, spike synchrony (figure 1.2.1)

is a special case of in-phase burst synchrony (figure 1.2.2); the later form of synchrony is

common in heterogeneous networks and cannot be detected by the variational equations.

Larger networks that are homogeneous were investigated briefly using the variational

equations. HCOs with slow synapses were also explored in this chapter, but without the

use of variational equations.

In chapter 4, the concept of phases and phase differences are used to

analyze the stability of burst synchrony in the HCO. Experiments show bursting

patterns may be phase-locked during particular behaviors. For example, when swimming

is initiated, recordings from swim interneurons show specific phase-lags, and it is distinct

from the pattern seen for crawling [37]. In fact, constituent neurons from CPGs are

distinguished by measuring phase relation between bursts generated by neurons in the

network [3, 38]. Phases are defined by progression of the neuronal activity in terms of

the percentage of one cycle of activity pattern. For a bursting neuron, one cycle is one

complete burst and for spiking neuron, it is one complete spike. In other words, every

time the activity pattern of a neuron repeats, it is a cycle. Period of a cycle is the time

it takes for the pattern to recur (purple bars in figure 1.9). A convenient way to study

multiple oscillatory units is to compare the phases by measuring phase differences (green

bars in figure 1.9).
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Figure 1.9. Phase differences compare the phases of activity pattern in CPG neurons.
Traces are from [39]. Purple bars show periods, red and yellow arrows identifies beginning
and ending of bursts, green bars show phase differences with respect to a reference neuron.
Si stands for swim interneurons, L or R mean left or right side of the animal. ∆ϕ denotes
phase differences; subscripts identifies the neurons being compared.

A stunning feature of all CPGs is the burst synchrony: robust and stable timing

of the constituent neurons’ oscillatory rhythms [40, 41]. Figure 1.9 shows simultaneous

recording from four neurons from the swim CPG of a marine invertebrate. The traces

maintain specific timing among their bursts [39]. In an animal, a behavior often requires

that groups of muscles act together and/or in specific sequences. For example, leech body

wall muscles, grouped into twenty seven segments, engage in contraction in sequence to

produced blood circulation. The bursting activities in the motor neurons in each segment

show phase-lags, when compared to a reference neuron [3]. Large scale recordings show

groups of neurons with bursting activities that are highly correlated within group and in

specific phase relation among the groups [42]. There are several aspects to consider when

seeking explanations for this generic and noticeable CPG phenomenon. These aspects

include properties of individual neurons or neuronal models, types and time scales of

synaptic coupling, as well as network architectures of CPGs. The stability analysis of

burst synchrony is integral to the understanding of CPG functions [43–48]. A critical
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question is whether there is one CPG dedicated for each activity or one multifunctional

CPG capable of generating several behaviors. In this study, evidence for the multifunc-

tional CPG is found.

In this chapter,weakly coupled HCOs are used to explain how spike interactions

due to reciprocal inhibition induce multiple stable phase-locked states. Multiple stable

phase-locked states imply multifunctional CPGs. The phenomenon of multistability has

been reported in several cases of slow inhibitory [33, 34] and fast excitatory synapses

[49, 50], and in this study, it is found in the case of fast, non-delayed inhibitory synapses.

Diverse HCOs made of bursting neurons, such as leech heart interneurons [51], Sher-

man pancreatic β cells [52], Purkinje neurons [53], and the classical Fitzhugh-Rinzel

phenomenological neurons are simulated. In addition, a number of different paradigms

of fast, non-delayed synapses are employed. The results show that for a broad class of

bursting neurons, burst synchrony and multistability are generic phenomena.

The effect of spike interactions are measured using phase differences. These phase

differences, in turn, are measured using Poincaré sections mapping technique, which is

a useful historic tool in the theory of dynamical systems. It measures how the phase

changes after every cycle for a periodic solution of ODEs. In figure 1.10, the dashed

horizontal lines represent location of the Poincaré sections. Instead of measuring phases

of each neuron, the phase differences are measured directly from the time delay between

the neurons at each Poincaré section. Stability diagrams for phase differences between

bursts are constructed from the sequence ∆ϕ(n); an effective potential to quantify the

stability of phase-locked states is introduced, such that its depths of wells correspond to

robustness of stable states. The stability of in-phase bursting in strongly coupled HCOs,

is also investigated for cases when variational equations are inapplicable.

In chapter 5, an experiment based CPG that includes two pairs of HCOs

is examined. The CPG is for swimming behavior of the marine invertebrate Melibe

leonina. Simultaneous recordings from four of the swim interneurons show phase-locked

patterns (figure 1.9). While the biological preparation of the CPG includes excitatory and

electrical coupling between some of the neurons, inhibitory coupling is more prevalent.

In this study, starting with identical neuron models and coupling strengths, variation in
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Figure 1.10. Phase differences measured with Poincaré sections.

parameters are introduced systematically; in the process, theoretical understanding of

the system is validated or corrected as needed; only the inhibitory couplings are consid-

ered. The individual neuron used in the CPG was originally developed for leech heart

interneuron, and the coupling paradigm used is FTM. The strategy is to use models that

are well understood and introduce components that are grounded on a hypothesis about

the mechanism of the CPG.

To reduce the number of distinct cases generated by combination of a plethora of

parameters, coupling conductances are varied in groups, while maintaining small hetero-

geneity of random components up to 1% of mean strength. Figure 1.11 shows inhibitory

connections grouped by colors and the parameter space organized by Cartesian prod-

uct. Phase relation is captured by three unique phase differences (∆ϕ12, ∆ϕ13, ∆ϕ14),

by choosing one of the neurons in the CPG as reference and other three as its partners

(figure 1.9). For network period that admits single burst for each neuron, the reference

neuron maintains phase difference of 1 , see ∆ϕ11 in figure 1.9; and, the three phase

differences may be used to obtain those between any pairs of neurons. For example,

∆ϕ23 = ∆ϕ13 −∆ϕ12. In addition, symmetry imposed by periodicity equates the value 0

and 1. In other words, ∆ϕ = 1−∆ϕ imply the same phase difference between the neurons
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1.11.1 1.11.2

Figure 1.11. Schematic representation of coupling parameter groups and corresponding
simulation grid. In 1.11.1 the color blue, green, pink corresponds to the pair of conduc-
tances g12 ≈ g21, g32 ≈ g41, and g34 ≈ g43 respectively. The 3D grid in 1.11.2 shows
the parameter variation as the Cartesian product: blue × green × pink. The values in
the vectors labeling the dots match the parameter sequence in the Cartesian product.
The red numbers are inserted as shorthand for each of the gride nodes (dots), numbered
sequentially from the front layer bottom left corner (1-9), middle layer bottom left corner
starts with 10 and third layer bottom left corner starts with 19, following this numbering
convention.

in the pair. This means the delay between the bursts in a pair is the same regardless of

the chronological order of the bursts.

Discrete trajectories are constructed from a dense array of 3-tuple initial values,

whose evaluation in the forward time represents the network phase state at every network

period. Sequence of these phase differences resulting from the Poincaré mappings, when

plotted in Cartesian coordinate, generate a 3D torus. Equivalently stated, the solutions

stay within a unit cube whose opposite faces are identified; when a trajectory given by

the mapping reaches either surface of the cube, it emerges from the side opposite to it.

This toroidal resetting happens due to the equivalency between 0 and 1; a full description

of the algorithm may be found in the appendix B. Finally, predictions are made based on

parameter manipulations, and plausible sources of the experimentally observed pattern

are suggested.



17

In chapter 6, conclusions and future directions are presented. The signif-

icance of the study and the results are briefly highlighted. In addition, relevance and

importance of future investigations are discussed.

1.2 Hypothesis

The premise of this study is that the presence of spikes in bursts underlies the

existence of multiple stable phase-locked states, including the synchrony. Multistability

is hypothesized to be a common phenomenon for square-wave type bursting neurons,

coupled reciprocally by fast, non-delayed inhibitory synapses. Further, the number of

phase-locked states is suggested to be essentially determined by the number of spikes in

the burst.

1.3 Significance

Many diseases and disorders result from the malfunctions of the nervous system.

Starting from locomotion to cognition, all aspects of the animal behaviors are either

generated or regulated by the nervous system. By understanding the functions, one can

cure diseases, alleviate disorders, and may even build machines to serve greater purposes

of the human society. To understand the functions of the nervous system, one needs to

address numerous components and interactions. While high speed computers confer the

ability to simulate very complex systems, underlying questions remains the same: what

general laws govern the various functions of the nervous system? In this study, the role of

bursts of activity in neurons and other electrically enabled cells is investigated. Processes

resulting from spikes interact in a critical way during bursts of activities correlating to

specific behaviors. In particular, spikes in bursting neurons are shown to play important

roles in generating the robust correlates of a behavior.

In this study, it is found that the fast, non-delayed reciprocal inhibition can stably

synchronize endogenously bursting neurons in the HCO through spike interactions. Fast,

non-delayed inhibition is typical in many neuronal networks including the leech heartbeat

CPG [23] or the Melibe swim CPG [54]. Since these systems are different from human
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nervous systems in many ways, additional investigation is required to make direct con-

nection. Nevertheless, the phenomenon is expected to persist with appropriate balance

of parameters, and the basis for building machines controlled by artificial networks is an

important implication of this study.

The bistability in HCO networks can make CPGs multistable with a bursting reper-

toire of two (anti-phase and in-phase) or more complex rhythms [55]. HCOs with bursting

neurons contrast with the HCOs comprised of non-bursting neurons, which do not have

spikes and are only capable of generating a single anti-phase rhythm. Compared to

anti-phase bursting, less robust in-phase bursting can be effectively established in the

HCO after both cells have received an external inhibition from another bursting neuron

[56]. The computational approaches developed in the study enhances the perturbation

technique of phase resetting curves (PRCs) [57]. The conventional PRCs are proven

to be an effective tool for analyzing spiking neuronal models. However, the PRC tech-

nique, in application to bursting cells, produces rather complex outcomes (due to highly

timing-sensitive changes in the number of spikes per burst that can sporadically cause

large magnitude phase responses) even in the weak coupling case [58]. It is argued that

the stability diagrams, along with Poincaré return mappings based on the variations of

phase lags between the neurons, are more efficient tools for thorough studies of spike

interactions in bursting neurons.

Finally, mathematical models and computational tools used to study the specific

neurons and networks are generic to many classes of systems such as oscillations of pro-

teins or genes. The abstraction of mathematics allows one to apply similar equations and

analysis techniques for a multitude of real world phenomena. In addition to neuroscience,

modeling studies can be easily maneuvered to include components of other critical and

relevant modalities such as genetics or cardiac-vasculature systems. The ability to com-

bine such seemingly disparate but interacting modalities through mathematical equations

makes modeling studies a powerful tool for any scientist. Hence, tools and techniques

developed in this study are very important for real world investigation and contribution

to the society.
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Chapter 2

MODELS AND METHODS

Mathematical models representing various biological processes have been developed

and studied by many researchers over the decades [1, 16, 59]. In this chapter, the details

of specific models and concepts used in the study are presented. While the applications

in neuroscience is relatively new, some of the theories of dynamical systems revoked in

this research have been known for centuries and are found in classic text books [60, 61].

Hence, general overview with fewer rigors are included for such concepts. First, math-

ematical equations and their electrophysiological interpretations are presented; second,

overview of theories and concepts used for analysis are presented; finally, the computa-

tional implementation methods are presented.

2.1 Electrophysiological models

Electrical signals recorded from neurons represent the physiological entity (neuron)

for the purpose of the model. While there are large amounts of details that may be

included in a model, the most salient features included in these models are voltage-current

relation governed by molecules or proteins that act as non-ohmic resistors. Below are

detailed descriptions of the models used in the study.

2.1.1 Neuronal models

Following the Hodgkin-Huxley formalism, the models used for neurons represent

sum of ionic currents that change with characteristic time dynamics. Ionic currents

result from specific charges on types of ions, as they flow in and out of the neurons

due to various influences, such as osmosis, active transport, or signal induced channel

opening. Electrophysiologists have measured such currents, and ordinary differential

equations (ODEs) are used to capture the conservation principle of the flow of currents.

A set (system) of ODEs is used as the model of a neuron. Specific details of the models
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are presented later; in the following, the general form of the ODE corresponding to most

observable variable, membrane potential, is shown:

C V ′ =
n∑

i=1

Ii(V ), (2.1)

Here, V ′, C and Ii, respectively, represent the rate of change in the membrane potential

measured in voltage, the capacitance of the membrane, and a number of ionic currents,

referenced by the subscript i, that pass through the membrane. The flow of currents

depend on the membrane potential, V , which in turn is determined by the level of these

currents. Each current is characterized by reversal potential, meaning the direction of

current is switched (inward/outward to outward/inward) when the membrane potential is

above or below the corresponding reversal potential. Mathematically, this phenomenon

is implemented by sign change, so that Ii(V ) = Ii(V − Ei), where Ei is the reversal

potential for a particular ion. In addition, amount of current flowing is not necessarily

constant; hence the use of appropriate function for approximation is imperative.

The functions used for ionic currents are experimentally established by approximat-

ing electrophysiological data. Amplitude of current is related to the ion specific channels,

which have multiple subunits that have the ability to open or close. The effect of the

activity of these subunits is captured by probability variables representing the degree

to which channels are opened or closed. So, current Ii is the function of three quanti-

ties ((V −Ei), xi(V ), ḡxi
), namely deviation of the membrane potential from the reversal

potential, the voltage dependent probability variable(s), and the maximal conductance

respectively. Product of voltage and conductance, multiplied by dimensionless probability

variables approximates the amount of current flowing through the channels. The prob-

ability variables are also commonly referred to as gating variables that may activate or

inactivate. In other words, activation level may saturate in the direction of depolarization

or hyperpolarization (see figure 1.7.2). It is noteworthy that there is also evidence for un-

specific ion channels and channels that have constant probabilities. For example, a class

of current often referred as the ohmic leak current is modeled with these assumptions.

Mathematically, ionic currents are expressed by the function, Ii = ḡxi
xk
i (V )(V − Ei),
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where k is the number of gating subunits present in the channels, and x may be either

activating, inactivating or product of both types of gating variables.

The flow of current is governed by processes that involve physical movement and

conformational changes, both of which requires time. Specifically, the gating variables

represent allosteric proteins that change shapes leading to opening or closing of channels

through which ions pass. ODEs are used to capture the time dynamics of these processes.

Time scales for different types of gates vary considerably. Some gate activities may be

so fast that they are assumed to be at their full capacity, restricted only by membrane

voltage but fully saturated regardless of time. These gates are represented by x∞(V ),

which are typically Boltzmann functions, which have sigmoid shaped graphs as shown

in 1.7.2, indicating 100% and 0% channel opening at the opposite ends of the voltage

axis. Time scales are constants that define the multiple scales in the multiple-scale

oscillators, and also the rate of dynamics for each dynamic variable (variable with non-

zero time derivative). It is possible that time scales depend on voltage in such a way that

assumption of constancy is invalid, and a function is used for better approximation of

the time scales of the system, see tables in Appendix A. The model 2.4 retains voltage

dependent time scales, while others maintain multiple but constant time scales.

The three distinct model neurons used in the study are listed and described in the

rest of this section.

1. Leech heart interneuron model

This model includes the fast sodium current, INa, the slow potassium current, IK2,

and an ohmic leak current, IL, and is taken from [28]:

C
dV

dt
= −INa(V )− IK2(V )− IL(V )− Iapp,

INa = ḡNa n
3 h (V − ENa), n = n∞(V ),

IK2 = ḡK2m
2(V − EK), IL = ḡL (V − EL),

τNa
dh

dt
= h∞(V )− h, τK2

dm

dt
= m∞(V )−m.

(2.2)

Here, V is the membrane potential, n and h are the gating variables for sodium

channels, which activate and inactivate respectively as the membrane potential de-



22

polarizes. m is the gating variable for potassium channels that activate slowly as the

membrane potential hyperpolarizes. The sodium current activates instantaneously.

The time constants for the gating variables, maximum conductances and reversal

potentials for all the channels and leak current, and the membrane capacitance are

shown in table A.1. The steady state values of the gating variables are given by

the Boltzmann functions in table A.2. An applied current Iapp = 0 is used unless

indicated otherwise. In this study, Vshift
K2 is a primary bifurcation parameter that

controls the number of spikes per burst.

2. Sherman model of pancreatic beta cells

This model [52] is based on two fast currents: calcium ICa, and persistent potassium

IK , and a slow potassium current Is. V is the membrane potential and m, n, and

s are the voltage dependent gating variables for these currents. The model is given

by the ODEs:

τ
dV

dt
= −ICa(V )− IK(V )− Is(V ),

ICa = ḡCam
∞(V ) (V − ECa),

IK = ḡK n (V − EK), Is = ḡs s (V − EK),

τ
dn

dt
= λ[n∞(V )− n], τs

ds

dt
= s∞(V )− s.

(2.3)

The governing equations for the gating variables n and s are similar to those in

(2.2), where the time constants, maximum conductances, and values of reversal

potentials are shown in table A.3. In the model, an additional scaling factor, λ,

controls the time scale of the persistent potassium channels. The steady state

values of the gating variables are given by the Boltzmann functions in table A.4.

3. Purkinje neuron model

This model [53] includes five currents: the sodium current, INa, with slow inacti-

vation, h, and fast instantaneous activation, m∞; the delayed rectifier potassium

current, IK, with activation, n; the non-inactivating calcium current, ICa, with acti-

vation c; the muscarinic receptor suppressed potassium current, IM, with activation

M ; the leak current, IL, and an applied current, Iapp. The individual cell model is
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given by:

dV

dt
= −INa(V )− IK(V )− ICa(V )− IM(V )− IL(V )− Iapp,

INa = ḡNa m
3 h (V − ENa), m = m∞(V ),

IK = ḡK n4(V − EK), ICa = ḡCa c
2(V − ECa),

IM = ḡMM (V − EM), IL = ḡL (V − EL).

(2.4)

The governing equations for the gating variables h, n, c, and M are similar to those

in 2.2, where the values for maximum conductances and reversal potentials are set

according to table A.5. Voltage dependent time scales for the gating variables,

measured in msec, are governed by the following functions shown in the tables A.6

and A.7. The steady state values of the gating variables are given by the Boltzmann

functions in table A.8. Here the applied current is a bifurcation parameter, set for

the cell to be a long burster, as Iapp = −27 nA.

4. Fitzhugh-Rinzel model

This is a phenomenological model and thus lacks specifically defined ionic currents.

However, it does produce regular bursts with two spikes for the parameter values

given in A.9. This is a classical model of excitable system, a system that is capable

of producing large amplitude oscillation centered around a small amplitude (nearly

quiescent) branch, a characteristic feature of elliptic bursters [1].

dx

dt
= x− x3

3
− y + z + I,

dy

dt
= δ(a+ x− by),

dz

dt
= µ(c− x− z).

(2.5)

Here, the parameters δ and µ are the timescales, similar to τ ’s in the other models.

In the first equation, the value of timescale is 1, set as two orders larger than δ and

three order larger than µ, which makes z the slowest variable of the system.

The first three cases of neuron models generate bursting patterns of square-wave type,

which is characterized by depolarized spikes and hyperpolarized silent state. The fourth
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produces bursts of elliptic type, which is characterized by silent state at a depolarized

level between the minimum and maximum level of spikes. Elliptic bursters, such as

Fitzhugh-Rinzel model, involve delayed loss of stability and canard solutions [62], which

make the system very sensitive and inherently unstable. As a result, only the first three

models show multiple phase relations that are stable. Equivalently stated, multiple phase-

locked states coexist in the first three cases. This coexistence implies multiple behaviors,

corresponding to multiple possible fixed time delays between the spiking activities in the

voltage traces, may be controlled by same network.

2.1.2 Network models

The network that is the primary focus of this study is a pair of neurons in the half

center oscillator (HCO) configuration. Other networks that have been explored are all-

to-all (global) and local reciprocally inhibited networks. Schematic diagrams of these

networks are shown in the figure 1.8.2. In terms of the equations, negative synaptic

currents, −Ki · I(i)syn, are now added to the individual neuron model.

C V ′
i = F (Vi,hi)−Ki · I(i)syn, τ(Vi)h

′
i = G(Vi,hi), i = 1..n. (2.6)

where Vi stands for the i-th neuron membrane potential, and hi stands for the gating

(in)activation variable(s) describing kinetics of specific ion current(s) with a characteristic

time scale(s) τ(Vi). The scalar notation for the characteristic time should be interpreted

as distinct for individual gating variables in the vector h. Ki is n-dimensional connectivity

vector whose jth entry is either 1 or 0, indicating whether synaptic input can be received

from the jth neuron or not. For example, all entries are 1 except when i = j in global

networks, as every neuron receives input from every neuron except from itself. For local

networks, only (i − 1)th and (i + 1)th entries have value 1, assuming Ki,1−1 = Ki,n and

Ki,n+1 = Ki,1. The I
(i)
syn is a vector of all possible synaptic inputs, I

(ij)
syn j = 1..n. Neurons

composing all networks and connections among them are assumed to be identical, hence,

I
(ij)
syn = gs(Vi − Esyn)S(Vj), j = 1..n. (2.7)
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Here S(Vj) is the synaptic gating variable, which may or may not be dynamical. The

details of the synaptic models are presented in the next section.

In addition to the above networks, an experimental CPG for swimming behavior of

marine invertebrate Melibe leonina has also been studied. This network has four model

neurons that are grouped into two pairs of HCOs and unidirectional inhibitions from one

pair to the other. The connectivity vectors are stacked row wise to form a matrix and

shown below:

(
Kij

)
=


0 1 0 1

1 0 1 0

0 0 0 1

0 0 1 0


(2.8)

Here the i-th neuron inhibits j-th neuron if there is a non-zero number at the ij-th entry.

The schematic diagram for the network is shown in figure 5.1.1. In future, signs and ϵ

may be added in the matrix to indicate inhibitory, excitatory, and electric coupling.

2.1.3 Synaptic models

Models used for synapses have several levels of details. On one extreme, Heaviside

and fast threshold modulatory (FTM) synapses with no time dynamics are used; on the

other extreme, dynamic synapses with up to three time dependent variables are used. In

total, four types of models are used to approximate fast non-delayed synapses.

1. “Heaviside” synapse

This is the simplest representation of the synapses [32, 49]: S(Vj) = H(Vj − Θsyn)

with H = {0, 1}. The synapse activates instantaneously, S(Vj) = 1, as soon as the

membrane potential Vj of the presynaptic neuron exceeds the synaptic threshold

Θsyn, and deactivates instantaneously, S(Vj) = 0, after Vj drops below Θsyn. The

synaptic threshold Θsyn is chosen to ensure that every spike of the bursting cell

crosses the threshold 2.1. The actual value for Θsyn is determined for each model

individually. Unless specified otherwise, we fixed Θsyn = −0.0225 V for the leech
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interneuron model, Θsyn = −0.03 V for the Sherman model, and Θsyn = −0.036 V

for the Purkinje cell model. For Fitzhugh-Rinzel model the number 1000 below is

replaced by 50 and the value corresponding to Θsyn is −0.8

2. Fast threshold modulatory (FTM) synapse

The coupling function is modeled by the sigmoidal

S(Vj) = 1/[1 + exp{−1000(Vj −Θsyn)}]. (2.9)

This coupling form was introduced and called the fast threshold modulation by

Somers and Kopell [49]. It is a smooth version of the Heaviside coupling function

with the same rise and decay times (compare panels A and B in Fig. 1). The FTM

is a remarkable model of a realistic fast synapse [32, 49], such as that in the leech

heart CPG [23], as it yields a nearly instantaneous response from the synapse on

the post-synaptic neuron.
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Figure 2.1. Four-spikes bursting in the leech interneuron HCO (2.13). Overlaid is the
normalized synaptic function S(t) for the synapse modeled by the (A) Heaviside function;
(B) FTM coupling; (C) α-synapse and (D) leech heart dynamical synapse. Here Θsyn =
−0.0225 (horizontal line across the panels aligned to Θsyn on the left and S(t) = 1 on
the right) and gsyn = 0.005.
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3. α-dynamical synapse

In this frequently used model of the synapse [33, 34] the coupling function S(Vj) is

described by the following ODE:

S ′(Vj) = α(1− S)[1 + exp(−1000(Vj −Θsyn))]
−1 − βS. (2.10)

Here, α = 1000 and β = 100 are set to match the rate of the synaptic onset,

decay, and maximum efficacy (S ≈ 1) similar to the FTM synapse (see Fig. 1C).

Decreasing β makes the synaptic current last longer.

4. Leech heart dynamical synapse

The last model for fast synapses is from leech heart CPG, introduced in [23], where

S(Vj) = Y M(Vj) is such that the fitted dynamics of the variables Y and M are

governed by the auxiliary ODE system:

Ẋ = [[1 + exp(−1000(Vj −Θsyn))]
−1 −X]/0.002,

Ẏ = (X − Y )/0.011,

Ṁ = [0.1 + 0.9[1 + exp(−1000(Vj + 0.04))]−1 −M ]/0.2.

(2.11)

2.2 Mathematical concepts

Systems of ordinary differential equations are commonly analyzed for long term be-

haviors. Analytically, these approaches work well for characterizing the local behaviors

of the system such as steady states or equilibriums. In recent years, the uses of numerical

integration methods and high speed computers have allowed one to screen global behav-

iors as well. Global behaviors can be as simple as plain periodic orbit or as complex

as bursting periodic orbits or chaotic and aperiodic orbits [8, 9, 63]. In this study both

analytical and numerical approaches have been used in conjunction. Some of the relevant

concepts and definitions are presented next.
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2.2.1 Steady states

Steady states are attained when transient changes disappear from the system. The

figure 2.2 shows solution trajectories that approach steady states over time. There are

two steady states achieved in forward time, which corresponds to following the traces

to the right of the figure. In the figure, all of the traces either move to the top or the

bottom. The persistent horizontal slopes of the trajectories indicate that the rates of

change of the variable being plotted have vanished. Loss of change over time is precisely

how the steady states are defined. So, there are steady states located at the top and the

bottom of this figure. In addition, there is a invisible steady state that separates the two

visible steady states.
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Figure 2.2. Phase-lag traces showing unstable and two stable states in close proximity
for parametric regime (1) in 2.7. A phase-locked state other than anti-phase, which has
phase-lag ∆ϕ = 0.5, is observed. The phase-locked states, ∆ϕ = 0, 0.017, attract nearby
trajectories as time progresses, whereas the state ∆ϕ ≈ 0.007 repels (separates).

When trajectories are near the invisible steady state, they move away from it in

forward time. As a result, one sees traces emanating from it as the traces move to

the right of the figure. On the other hand, if the time is reversed and one follows the

traces from right to left, then the middle steady state now attracts all trajectories. In

the backward time, it appears that the trajectories are emanating from the top and
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the bottom steady states. The two types of behaviors of steady states, attracting or

emanating are rigorously defined by the concept of stability, which is presented in the

section 2.2.2.

The time derivatives, which are the rates of change of dynamic (time dependent)

variables become zero. For the first order ODE systems with linear or weakly non-linear

terms, the steady states can be found analytically by setting the derivatives to zero and

solving the resulting system. Shown below are calculations for the leech model:

0 = −INa(V )− IK2(V )− IL(V )− Iapp,

0 = h∞(V )− h, 0 = m∞(V )−m.
(2.12)

As a result following function is gotten that describes the steady states of the system.

Iapp = −ḡNa n
∞(V )3 h∞(V ) (V − ENa)− ḡK2 m

∞(V )2(V − EK)− ḡL (V − EL). (2.13)

Here the applied current, Iapp, is often treated as the independent variable since it can

be controlled by the experimenter. For this reason, it is also the parameter of choice

for analyzing individual neuron models. In this study, value of this parameter is fixed

at a level that generates bursting behavior. For example, figure 2.3 shows steady states

Meq in blue S-shaped curve, but the trajectories, shown in black and grey, do not settles

at the steady states; they form a closed loop with multiple oscillations corresponding to

bursts. Figure 2.5, on the other hand, shows the graph of steady states from an analogous

equation as 2.13. This figure plots steady states of a HCO as the function of the coupling

parameter gs of the network, instead of the parameter Iapp. Further details and use of

steady states are provided in the next few sections.

2.2.2 Stability

The concept of stability classifies the behaviors of solutions surrounding a steady

state. As mentioned earlier, a steady state may attract or emanate other solutions (see

figure 2.2). A steady state is asymptotically stable, when other solutions approach it

as time progresses. On the other hand, it is unstable, if other solutions emanate or
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Figure 2.3. Depiction of steady states, nullclines and bifurcations in a single neuron
model. This figure is reproduced from [64].

diverge from it as time progresses. In addition, it is possible to have solutions that do

not approach or diverge from a steady state, but maintains limited distance from the

nearby steady states. A periodic orbit is an example of such a solution. Figure 2.3 shows

that a bursting periodic orbit (black/grey curves) maintains limited or bounded distance

from the steady state solutions (blue curve).

The classical method for analyzing stability of steady states of ODEs is through

locally linearizing the system in a small neighborhood of the steady state under investi-

gation. Lyapunov stability of a solution of interest, V∗, is defined by growth or decay of

small perturbation, δV, so that over time V∗ + δV approaches one of three outcomes:

|V∗+ δV| → ∞, |V∗| < |V∗+ δV| < ∞, or |V∗+ δV| → |V∗|. In the first case, solution

is unstable; in the second case, it is stable, and in the last case, it is asymptotically stable.

Locally, stability of steady states are detected by characteristic exponents, that is

the rate of convergence or divergence of solutions near the steady state up to linear rate,

which turn out to be the eigenvalues of the Jacobian, the first derivative of the system
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of ODE. In this study, the primary focus is the stability of periodic bursting orbits, the

stability of which is studied by Poincaré return maps, described in the section 2.2.4.

2.2.3 Nullclines

The nullclines are found by setting the derivative of one dynamic variable to zero,

as opposed to those of all the variables as in the case of steady states. As a result, each

variable has a corresponding nullcline. Analytical expression of the nullclines may be

complex, but geometrically they provide much useful insight into the global behaviors of

the system. The figure 2.3 shows the nullcline (gold color) of the slowest variable m in

2.2, where ṁ = 0. The steady states coincide with the intersections of all the nullclines,

as all the derivatives vanish at these points. Figure 2.3 depicts this process, except due

to high dimension two of the nullclines are not plotted, only their intersection (dashed,

blue curve) is plotted, the third nullcline is shown in gold.

In studying the systems that have multiple (time) scales, it is classical to consider

the nullcline of the slowest variable in particular. The slow variable, m, grows (ṁ > 0)

above the slow nullcline and decays (ṁ < 0) below it. The spikes in the bursting patterns

are generated by the fast periodic orbits (loops foliating Mlc), and the slow silent phase

is generated by hyperpolarized steady states in Meq. The location of nullcline dictates

the existence of bursting pattern. A low level causes asymptotically stable steady state,

leading to persistent silent phase of the neuron; a high level causes stable fast periodic

orbit, leading to persistent spiking behavior of the neuron. For the bursting behavior to

exist, the nullcline must be located at an intermediate level such that neither the steady

state nor the fast periodic orbit is stable, such that a complex periodic orbit may exist

in combination of the two.

2.2.4 Poincaré return maps

Periodic orbit, by definition, returns periodically to every point that belongs to it.

Poincaré section, named after Henri Poincaré, is a set that is transversal to the periodic

orbit and small enough such that the periodic orbit intersects it only once. The mapping

constructed from the points after every periodic return to the section is the Poincaré
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2.4.1 2.4.2

Figure 2.4. Schematic portrayal of Poincaré return maps and the stabilities of their fix
points. Figure reproduced and modified from [8, 65].

return map, and the periodic orbit is its fixed point (M∗ in figure 2.4.1 and the bursting

orbit from leech HCO in the study, shown in inset). If the mapping is of contraction

type, then the periodic orbit is asymptotically stable. Then the slope of the mapping,

its derivative, has magnitude less than one (top panel in 2.4.2). If a trajectory is not

the periodic orbit itself but approaches one, then the mapping is useful in finding the

destination of the trajectory by applying it iteratively a number of times, or cycles.

If the mapping has slope of magnitude bigger than one at the fixed point, then the

corresponding periodic orbit is unstable (bottom panel in 2.4.2).

2.2.5 Bifurcations

In the theory of qualitative analysis of dynamical systems, two systems are consid-

ered to have the same behavior if changing a parameter does not cause emergence or

disappearance of qualitatively distinct solutions such as steady states, periodic orbits or

other complex structures. Change in stability is also considered qualitatively distinct;

however, change in numerical values of these solutions is not considered to be so. Bifur-
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cation diagrams capture the number of distinct behaviors in a system and how they are

organized and transition in some critical parameter space.
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Figure 2.5. Bifurcations of steady states in HCOs as function of coupling parameter gs.
Two different set of parameters are used in the individual neuron models in the HCO:
(1) near blue sky catastrophe (blue) [51], or (2) period doubling cascade (black) [28].
Vertical lines cross the curves at equilibrium points for the corresponding values of the
parameter, gs = 0, 0.65. Inset shows magnification of the knee region where two new
equilibriums emerge through saddle node bifurcation.

The variable mK2 in the model 2.2 and depicted in the figure 2.3 is considered the bi-

furcation parameter in the analysis of dynamical systems via the slow-fast decomposition

of the time scales. Because mK2 is the slowest variable in the system, it is treated as a

parameter and the qualitatively different behaviors as a function of this variable is iden-

tified. For example, in the aforementioned figure high values of mK2 have a single steady

state in the fast subsystem (lower blue curve, extending to the left in the picture), for

slightly lower value there are three steady states (middle portion of S-shaped blue-curve,

but to the left of Mlc), for even lower values there is a periodic orbit in addition to the

steady states (middle portion of S-shaped blue-curve, but including only Mlc). Insight

gained from bifurcation analysis helps one to identify zones of qualitatively significant

dynamics in a system.
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In contrast to the bifurcation analysis of individual neuron model, figure 2.5 shows a

bifurcation diagram of two coupled neurons in HCOs. The black and blue folded curves

indicate that for some critical coupling strengths, gs, the number of steady states tran-

sition from 1 to 3 steady states as gs increases from zero, or 3 to 1 steady state as gs

increases further past the value of 10. Lowest (hyperpolarized) branch fall below the

graphed window in the figure. Known as hysteresis, this curve is a classical bifurcation

structure in many systems. In this study, the diagram enables one to precisely define the

value of gs for which transition from 1 to 3 steady states happens. Figure shows the set

of steady states for two distinct set of parameters defining the individual neurons. The

existence of hyperpolarized branch following the transition coincides with the network

interaction known as the hold-then-release mechanism for anti-phase bursting [56, 64].

When hold-and-release mechanism is established in the HCO, spikes of one neuron com-
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Figure 2.6. Traces showing anti-phase bursts with or without hold-then-release
mechanism.

pletely block spike initiation in the other neuron. Each neuron takes turn to be active;

such anti-phase bursts are qualitatively distinct from the case when some spikes may

overlap in the anti-phase bursts (traces shown in figure 2.6). Thus, bifurcation diagrams

help one to distinguish processes in the dynamical systems.

Weak to strong: bifurcation of coupling strength. In this study, HCOs are investi-

gated in two distinct regimes or bifurcation zones given by the coupling strength of the

network. The two regimes are distinguished qualitatively by the smoothness of the phase
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difference trajectories. Figure 2.7 demonstrates the difference between the two regimes.
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Figure 2.7. Strong versus weak coupling definition. Graphs of smooth (black curve) and
non-smooth (red curve) convergence of phase differences ∆ϕ.

Sudden large changes are indicative of highly non-linear interactions among the variables.

Hence, the results of weakly coupled networks are not valid for strongly coupled ones.

2.2.6 Mean Value Theorem

Suppose the function F (x) is C1 that is it is continuous and has continuous derivative

on [a, b], a < b. Then there exist a number c such that a < c < b and F ′(c) = (F (b) −

F (a))/(b − a) [60]. This can be applied for a small deviation ξ such that ξF ′(x) =

F (x + ξ) − F (x). In the derivation of variational equations V1 = x + ξ and V2 = x

is set. On the synchronous manifold where {V : V1 = V2} the following derivative

{F ′(V ) : F ′(v1) = F ′(V2)} is used to approximate F (V1) − F (V2) by F ′(V )ξ. This

approximation is justified as long as ξ is small.

2.2.7 Variational equations

Individual models of neurons in networks confer symmetry that may be used to

study convergence or divergence properties of small variations of special solutions. In-
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phase synchronization, where all variables in each model neurons are identical, is one such

solution. Shown below are the variational equations for transverse perturbations to the

synchronous solution for the leech HCO connected by FTM synapses. These equations

are obtained by following the method in [10].

C ξ′ = FV (V, h,m)ξ + Fh(V, h,m)η + Fm(V, h,m)ζ+

+(S1 + S2)ξ

τhη
′ = GV (V, h)ξ − η, τmζ

′ = RV (V,m)ξ − ζ,

(2.14)

where ξ = V1 − V2, η = h1 − h2, ζ = m1 − m2 are infinitesimal perturbations of the

zero equilibrium state of (2.14), which represents in-phase synchronization. In (2.14),

{V (t), h(t), m(t)} corresponds to the synchronous bursting rhythm. The terms S1 =

−gsΓ(V −Θsyn) and S2 = gs(V −Es)ΓV (V −Θsyn) are due to the synaptic coupling. The

derivation of the variational equations is presented next.

Suppose, V̇i = F (Vi, hi,mi) − gs(Vi − Esyn)Γ(Vj − Θsyn) where i, j = 1, 2, then the

rate of change of the infinitesimal perturbation ξ̇ is obtained as the following:

C (V̇1 − V̇2) = F (V1, h1,m1)− gs(V1 − Esyn)Γ(V2 −Θsyn)

−F (V2, h2,m2) + gs(V2 − Esyn)Γ(V1 −Θsyn)

C ξ̇ = F (V1, h1,m1)− F (V2, h2,m2)

+gs(V2 − Esyn)Γ(V1 −Θsyn)− gs(V1 − Esyn)Γ(V2 −Θsyn)

C ξ̇ = F (V1, h1,m1)− F (V2, h2,m2)

+gs(V2 − Esyn)Γ(V1 −Θsyn)− gs(V1 − Esyn)Γ(V2 −Θsyn)

+gs(V1 − Esyn)Γ(V1 −Θsyn)− gs(V1 − Esyn)Γ(V1 −Θsyn)

+gs(V2 − Esyn)Γ(V2 −Θsyn)− gs(V2 − Esyn)Γ(V2 −Θsyn)

(2.15)

In order to approximate the deviation in F with the mean value theorem, it is as-

sumed that F (V1, h1,m1) − F (V2, h2,m2) ≈ F (V1, h,m) − F (V2, h,m) + F (V, h1,m) −

F (V, h2,m)+F (V, h,m1)−F (V, h,m2) so that F (V1, h,m)−F (V2, h,m) ≈ FV (V1−V2) =

FV ξ, F (V, h1,m) − F (V, h2,m) ≈ Fh(h1 − h2) = Fhη and F (V, h,m1) − F (V, h,m2) ≈
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Fm(m1 −m2) = Fmζ. These steps explain the first three terms in the ODE Cξ′ in the

equation 2.14. By rearranging the synaptic components the fourth term is derived as

follows:

C ξ̇ = ...

+gs(V1 − Esyn)Γ(V1 −Θsyn)− gs(V2 − Esyn)Γ(V2 −Θsyn)

+gs(V2 − Esyn)Γ(V1 −Θsyn)− gs(V1 − Esyn)Γ(V1 −Θsyn)

+gs(V2 − Esyn)Γ(V2 −Θsyn)− gs(V1 − Esyn)Γ(V2 −Θsyn)

C ξ̇ = ...

+gs{Γ(V −Θsyn)(V − Esyn)}′(V1 − V2)

+gs(V2 − Esyn − V1 + Esyn)Γ(V1 −Θsyn)

+gs(V2 − Esyn − V1 + Esyn)Γ(V2 −Θsyn)

C ξ̇ = ...

+gs{Γ(V −Θsyn) + (V − Esyn)ΓV (V −Θsyn)}ξ

−gsΓ(V −Θsyn)(V1 − V2)− gsΓ(V −Θsyn)(V1 − V2)

C ξ̇ = ...

+gsΓ(V −Θsyn)ξ + gsΓV (V −Θsyn)(V − Esyn)ξ − 2gsΓ(V −Θsyn)ξ

(2.16)

Thus the second term in the ODE Cξ′ in the equation 2.14 is obtained. The derivations of

τhη
′ and τmζ

′ is similar but simpler since there are no synaptic terms in the corresponding

ODEs. One only needs to replicate the procedure 2.15 for τhḣi = G(Vi, hi,mi) and

τmṁi = R(Vi, hi,mi) with i = 1, 2.

For larger networks with equal number of inputs, only the terms due to synaptic

coupling needs to be modified as following: S1 = −kgsΓ(V − Θsyn) and S2 = (k +

γ2)gs(V −Es)ΓV (V −Θsyn), where k is the number of synaptic inputs each neuron receives

and γ2 is the second largest eigenvalue of a matrix G. The connectivity of the network is

represented by the matrix G which is gotten from the connection matrix K such as 2.8.

When all neurons have equal inputs, the matrix G = K − kI such that it has zero row

sum. A classical result for such matrix is the existence of zero eigenvalue while all other
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eigenvalues are of the same sign [66]. For the networks considered in this study all other

eigenvalues except the zero eigenvalue are negative.

2.2.8 Lyapunov Exponents

Named after Aleksandre Lyapunov, Lyapunov exponents are measures of exponential

rate of separation between trajectories as time progresses. The trajectories are initially

separated by infinitesimal perturbation. Suppose, Ψ = (ξ, η, ζ) is defined as the vector

defining the small perturbation. The entries ξ, η, ζ are similarly defined as in the section

2.2.7. Then the Lyapunov exponent is defined as the following:

lim
t→∞

1

t
ln

|Ψ(t)|
|Ψ(t0)|

(2.17)

where Ψ(t) is time evolution of the initial infinitesimal perturbation Ψ(t0). Such small

variations may grow or decay as the time evolves. An average measure of this growth

and decay is indicated by a spectrum of Lyapunov exponents. The number of exponents

in the spectrum corresponds to the dimension of the system of interest.

For the synchronous trajectory, Qs in figure 3.1, {V1 = V2, h1 = h2,m1 = m2 : ∀ t},

three of the six Lyapunov exponents are zero, other three corresponds to transverse per-

turbation and are measured with 2.14. The signs of these Lyapunov exponents indicate

the overall convergence or divergence of the nearby trajectories. For the networks con-

sidered in this study, two of the non-zero Lyapunov exponents are always negative, hence

the stability is indicated by the sign of the third non-zero Lyapunov exponent. In other

words, the largest Lyapunov exponent may be positive or negative, which corresponds to

unstable or stable zero steady state of the variational equations respectively. Although

there are methods to compute Lyapunov exponents without the use of variational equa-

tions, it has been found to be more accurate to use the variational equations [67].
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2.3 Computational methods

ODE integrator routines from Matlab software were used to simulate the solutions

of all the networks presented in this discourse except those of experiment-based Melibe

CPG.

2.3.1 Lyapunov Exponents

The algorithm used for Lyapunov exponents is adapted from the Matlab code written

by V. N. Govorukhin, who wrote the code based on the method suggested by [68]. The

method evaluates the variational equations on an orthonormal matrix (unit cube) and

renormalizes the transformed matrix at specified time intervals to produce Ψ(t) in the

equation 2.17. Govorukhin’s code is freely available through his website and the Matlab

central website [69, 70]. Figures 2.8 and 2.9 show the number of step sizes, and durations

of the settle time are used to gauge the appropriate discretization.

Figure 2.8. Comparison of step size for largest Lyapunov exponent calculation us-
ing long time average. Lyapunov exponents were calculated at regular time inter-
vals for 200 seconds, and the average of last 50 seconds are plotted. The step sizes
used for time intervals, plotted right to left in each panel on logarithmic scales, are
1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005. Variation in amplitude plateaus at 0.005, which
was chosen for all simulations of Lyapunov exponents, except in the cases of larger net-
works where an alternate algorithm was used. Synaptic threshold varies in each panel,
Θsyn = −0.0375 (a),−0.031 (b),−0.0285 (c),−0.021 (d),−0.0085 (e),0.0125 (f).

Randomly selected stability outputs by the above algorithm are verified by Matlab

toolkit for Lyapunov exponent, LET, and by directly measuring maximum difference
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Figure 2.9. Synaptic threshold dependence of error in Lyapunov exponent compared to
last 50 seconds average of 2000 seconds long simulation. Compared maximum largest
Lyapunov exponent, see 3.5, the error is less than 5%; vertical axis represent difference
of Lyapunov exponent shown by the legend with that computed for 2000 seconds.

between the trajectories after removing the transients. Two methods are used to evaluate

Lyapunov exponents: (1) the aforementioned algorithm is simulated for 200 seconds and

averaged over last 50 seconds, and (2) linear coefficients of the variational equations are

multiplied to an unit matrix precisely for one period, T . Then the Floquet multipliers,

eigenvalues of the transformed matrix, are used as Ψ(t) in the equation 2.17 for t =

T instead of the limiting variable t which approaches infinity. The pseudo codes for

Govorukhin’s code and the alternate code using Floquet multipliers are presented in the

appendix B.

The above algorithm outputs cumulative average of the variation as the Lyapunov

exponents as the time progresses (see appendix B). To investigate the role of synaptic

terms of the variational equations in defining the largest Lyapunov exponent, the sum

S = S1 + S2 in 2.14 is cumulatively averaged as well. In other words, at every time step

along with the Lyapunov exponents an output for the sum S is produced, which is denoted

by S̄(t). Similar to the computation of Lyapunov exponents at every time step the value

of S is added to the sum of the previous ones and divided by the time elapsed since the

beginning. Stated mathematically, S̄(t) = 1/t
∫ t

0
S(r)dr. As the Lyapunov exponents and

the S̄(t) continue to oscillate with slowly decaying amplitudes, they are further averaged

to obtain estimates of the settled values for each parameter combination (for examples
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see 3.5 and 3.6). The duration of the time steps, total time and non-transient averaging

time chosen for optimum settled values are based on the comparisons shown in the figures

2.8 and 2.9.

2.3.2 Phases and Phase Differences

The algorithm for identifying phase differences between the bursting neurons of the

HCO is based on the observation that solutions of the two neurons belong to the same

orbit. The neurons in the weakly coupled HCOs are identical and the weak reciprocal

inhibitions perturb their trajectories small enough that they remain nearly identical in

the phase space. In addition, because of the strong convergence to stable periodic orbit

from neighboring points in the phase space, small perturbations diverge along the periodic

orbit the most. Therefore, the trajectory of each neuron passes through a reference point

contained in the periodic orbit but with some delay.

The reference point is set to be on the auxiliary threshold Θth = −0.0425 V (see

figure 2.10A), halfway between the spiking and quiescent voltage values. The phase of

the bursting neuron is initiated/reset every cycle after the voltage, V (t), increases above

Θth. The phase lag, ∆ϕ(n), on the n-th bursting cycle is defined through the delay, τn,

between the burst initiations V1(tn) = Θth and V2(tn+τn) = Θth (see figure 2.10B), which

is further normalized over the recurrence period, T (n) = t(n) − t(n−1), of the HCO. The

pseudo code for the algorithm is presented in the appendix B. A detailed account of the

routine for the computations of the sequence {∆ϕ(n) = τ (n)/T (n)} is given in [55].

Due to symmetry imposed by the identical neurons and synaptic connections, the

same phase difference may occur in two distinct configurations, either neuron 1 or neuron

2 is delayed. Phase-advance with respect to neuron 1 correlates to phase-lag with respect

to neuron 2. Hence, results of phase-advances and phase-lags are symmetric. So, it is

sufficient to measure only the phase-lags with respect to the reference neuron.

2.3.3 Phase Differences on 3D Torus

The system of ODEs representing the CPG in chapter 5 is numerically integrated and

processed by PyDSTool and python packages [71]. Phase-lags are computed as described
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V1

V2

Figure 2.10. (A) Periodic bursting orbit in a 3D projection of the phase space of the leech
model HCO. Dark and lighter spheres represent, schematically, the densely distributed
initial phases, ϕ0, for neuron 1 (reference) and, ϕ0+∆ϕ(0), for neuron 2 across the bursting
orbit of a normalized 1-period. (B) The sequence, {∆ϕ(n)}, for every initial phase lag,
∆ϕ(0), (out of 7,200) is identified from the traces at the instances when the ascending
voltage V1,2 passes through an auxiliary threshold Θth shown in (A).
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in the section 2.3.2 by pairing three of the neurons with the fourth in the network. In

this process 3-tuple phase-lags (∆ϕ12,∆ϕ13,∆ϕ14) resulting from the Poincaré return

mappings are obtained. As the time progress, sequences of phase-lags are obtained,

which form trajectories indicating the progression of initial phase-lags when connected

by lines, shown in figure 2.11. Here, neuron 1 is the reference neuron and maintains

the phase-lag ∆ϕ11 = 1 (see figure 1.9 for illustration). When graphically visualized

in Cartesian coordinate, the three phase-lags (∆ϕ12,∆ϕ13,∆ϕ14) from the four-neuron

network generates a 3D torus (for example, see figure 2.12).

Figure 2.11. Traces of phase-lags with respect to burst cycles. The subscript j = 2, 3, 4
corresponding to the colors green, black and blue.

The 3D torus is a unit cube whose opposite faces are identified, so that when a

trajectory of the mapping reaches either surface of the cube it emerges from the side

opposite to it. Figure 2.11 shows some traces being reset near the beginning of the

graphs. The resetting procedure is given in the appendix B. In order to capture all

possible network behaviors a dense array of initial phase-lags, green points in figure 2.12,

are simulated whose evaluation in the forward time represents the network phase state

at every network period. Traces in the figure 2.11 correspond to two initial 3-tuple phase

lags (two green dots) in the figure 2.12 at the beginning of the simulation, and to two final

ones (two red dots) in the figure 2.12 at the end of the simulation. Thus the Cartesian

plot of 3-tuple phase-lags allows one to visualize the network behavior simultaneously
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Figure 2.12. Initial (green dots) and final (red dots) distributions of 3-tuple phase-lags in
Melibe CPG for a 60 cycles long simulation. Author acknowledges undergraduate mentee
Dane Allen for this figure.

from a large set of initial conditions. The figure 2.12 only shows initial and final phase-

lags after a number of cycles, however plots of these points at intermediate cycles would

reveal the transience, hence the convergence and the divergence properties of the network

steady states.



45

Chapter 3

SPIKE SYNCHRONY ANALYSIS:

The stability analysis of spike synchrony of bursting neurons, forming various net-

works, is presented in this chapter. The terms ‘spike synchrony’ and ‘in-phase synchrony’

are used interchangeably in this chapter. Through the examination of the variational

equation, properties of the network models, with fast, non-delayed synapses, that make

spike synchrony stable are distinguished. It is found that reciprocal inhibition can cause

both in-phase and anti-phase bursting to exist for the same parametric regime; an exam-

ple is shown in figure 3.1. This result extends the classical results of spiking neurons

which show that mutual inhibitory connections cause activity of one neuron to block the

activity of the other, leading to the anti-phase network activity, where each neuron must

take turn to be active. This sequential activity is referred to as the anti-phase bursting.

The coexistence of the two attractors mean that there are two separate attraction

basins, which are identified and shown to have non-smooth boundary between them; some

examples are shown in figure 3.2. The findings indicate initial preparations, under which

experiments are conducted, are critical for defining the outcome. By the same token, the

circumstance under which CPG receives input should then dictate the behavioral output.

Another critical feature that is elucidated through the analysis presented in this

chapter is that the spikes in the endogenously bursting neurons contribute to stabilize

the in-phase synchrony. This contrasts the solely desynchronizing property of relaxation

oscillators, which are often used to model bursting cells where the spikes are omitted

[19, 31]. Relaxation oscillators have monotonic depolarized state as opposed to square

wave bursters, which have depolarized oscillatory (non-monotonic) state in addition to

monotonic hyperpolarized state. The depolarized state of the neuron is generally referred

interchangeably as the active phase, the spiking phase. The ratio of the duration of the

active phase and the period is termed the duty cycle. During the active phase of a
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Figure 3.1. Co-existing stable in-phase (Qs) and anti-phase (Qa) bursting orbits in the
phase space of (2.2) at gs = 0.7, Θsyn = −0.02 and VK2shift = −0.0215. Voltage cuts
pi, i = 1..4 reveal the V -range of attraction basins (shown in 3.2) of in-phase bursting
at the periodic orbit’s various phases (3.1.1). Voltage traces showing the robustness of
in-phase bursting against an external pulse perturbation during the spiking period, and
its vulnerability, leading to anti-phase bursting, during the quiescent period of bursting
(3.1.2).
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Figure 3.2. Basins of attraction corresponding to the stable synchronous trajectory in
the leech HCO. The four basins of attraction (synchronization zones) in the (V1, V2) plane
are calculated by choosing different V1 and V2 along the four vertical lines p1, p2, p3, p4,
depicted in (3.1), that correspond to four fixed values of the gating variables m1 = m2

and h1 = h2. Here, gs = 0.4, Θsyn = −0.0225, and VK2shift = −0.022. Black points
indicate the initial values that converge to the synchronous trajectory (the diagonal
V1 = V2), whereas the white regions indicate the attraction basins of anti-phase bursting.
Panels 1-2 show that during the spiking phase, in-phase synchronization occurs despite
a large dispersion in initial conditions in V and dominates entirely (cf. line p2) over
anti-phase bursting. Panels 3-4: during the quiescence, the basins shrink strongly and
become fractal.
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pre-synaptic neuron, chemicals (neurotransmitters) are released by the neuron that elicit

response in the form of an inward (excitatory) or an outward (inhibitory) current in the

post-synaptic neuron. Due to reciprocal synaptic connections, spike interaction takes

place when both pre- and post-synaptic neurons are in the active phase.

The suggested mechanism of in-phase synchronization is based on the observation

that the neurons in the networks interact through their spikes during their active phases.

It is shown that spikes influence the synaptic components of variational matrix in such

a way that correlations with stable spike synchrony occurs. This is demonstrated with

networks connected by fast, non-delayed synapses. Various cross sections of attraction

basins of the leech HCO network show the phenomenon is ubiquitous. Lyapunov expo-

nents are calculated using the variational equations for leech HCO and large networks;

the largest Lyapunov exponents are plotted in the (Θsyn, gs)-biparametric plane, which

show broad regions of spike synchrony in these systems. For comparison leech HCOs

connected by slow synapses were investigated. In this case, spike synchrony is calculated

using voltage variation averaged over long-term and is plotted in the (β, gs)-biparametric

plane, where the parameter β controls synaptic decay - the speed at which synapses

inactivate. In what follows, results and analyses for HCOs are presented first, which are

sectioned based on two types of connections: fast and slow synaptic connections. Finally,

results for large (up to hundred neurons) networks with fast, non-delayed synapses are

presented.

3.1 Half Center Oscillators

The common network motif, HCO, is studied for three distinct neuronal and two

categories of synaptic models. Unless stated otherwise, the connections are assumed to

be symmetric such that g
(ij)
syn = g

(ji)
syn = gsyn are modeled by the FTM paradigm. The

reversal potential is set so that Esyn < Vi(t) at all times t to ensure the inhibitory nature

of the current. Specifically, Esyn = −0.0625 V is fixed for the leech heart interneuron

model, and Esyn = −0.08 V is set for the Sherman β-cell and Purkinje cell models, and

corresponding value of Esyn is −3 in Fitzhugh-Rinzel model. The HCO with individual
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neuron model (2.2) was shown to generate robust anti-phase bursting via the hold-and-

release mechanism [56], similar to synaptic release [34] in spiking cells.

Any network of identical neurons always possesses a symmetric solution {V : Vi(t) =

Vj(t), h : hi(t) = hj(t), m : mi(t) = mj(t), i, j = 1..n}, corresponding to spike synchrony

and governed by the self-connected system known as autapse. This synchronous solution

is unstable in the absence of appropriate form and strength of coupling. Computer-

assisted verifications aimed to examine the robustness of in-phase synchronization are

of four categories: (1) application of small amounts of current to one of the neurons in

the HCO at different times in the numerical simulations; (2) introduction of variation in

membrane potential, while other variables are fixed at that of the synchronous solution;

(3) introduction of variation in the phases along the bursting orbit, and (4) numerical

evaluation of Lyapunov exponents using variational equations for the transversal pertur-

bations to the synchronous solution [10]. All of the approaches have been used for leech

HCOs with fast, non-delayed synapses and selected few have been applied to other net-

works to test the generality hypothesis for the in-phase synchronization of the bursting

networks.

3.1.1 Fast, Non-delayed Synapse Coupled HCOs

In leech HCOs, approach (1) demonstrates coexistence of in-phase and anti-phase

synchrony, shown in figure 3.1(b). The pulse of current applied is shown in the middle

of the two voltage traces. At different times within a cycle, perturbation caused by the

applied current leads to either persistence or loss of the in-phase synchrony. Samples

resulting from approach (2) are shown in figure 3.2, which depicts in-phase synchrony

with black dots, meaning the voltage variation corresponding to the black area results

in spike synchrony. Figure 3.3 shows the variations of the synchronization zone (shaded)

as the neurons transition from the silent phase to spiking, uncovered by approach (3).

The synchronization zone, identified with the third alternate approach, is consistent with

the results of figure 3.2 and confirms that in-phase synchronization is quite robust and

achievable during the spiking phase of bursting. However, small variation introduced

during the silent period will likely lead to anti-phase bursting. The third approach has
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Figure 3.3. Analysis of synaptic terms in variational matrix for the leech HCO. (a) Volt-
age trace of four-spike synchronous bursting. Its red (thin) and black (thick) segments
indicate positive and negative instantaneous values of the largest transversal Lyapunov
exponent Linst

max. (b). Synaptic term S = S1 + S2. Note sharp positive peaks in S, cor-
responding to the appearance of the desynchronizing term S2, when the bursting orbit
crosses the synaptic threshold Θsyn. The wide negative plateaus in S are caused by the
stabilizing term S1 and coincide with the upper part of the bursting trajectory. For the
given threshold Θsyn = −0.02, S1 wins over S2 and defines the overall synchronizing effect
of coupling. The corresponding averaged value of S is depicted by ⋄ in 3.4b. (c) Shape of
the synchronization basin (dashed) along bursting, parameterized from 0◦ through 360◦;
0◦ corresponds to the beginning of its quiescent period. Its boundaries correspond to
evolutions of unstable fixed points on the orbit which separate the basin from anti-phase
bursting. Tonic spiking period of bursting corresponds to the widest synchronization
zone (cf. 3.2), while it becomes more fragile during the quiescent period: exceed of 5◦,
or advance of either cell’s state, leads to anti-phase bursting.
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been applied to HCOs coupled by four paradigms of fast, non-delayed synaptic models.

The results, shown in figure 4.13, indicate that regardless of the paradigm, synchroniza-

tion zones are preserved. In-phase synchrony is measured two ways, deviations of either

voltage or phase values, which are delineated by the two color bars in the figure. In

addition, this approach is applied to HCOs, composed of Sherman pancreatic β−cells,

Purkinje neurons, and Fitzhugh-Rinzel models connected by FTM synapses. The results

of the first two cases are presented in the figure 3.9, which shows more irregularities

but significant sizes of the synchronization zones. For Fizhugh-Rinzel HCO, very little

synchronization zones are observed for the parametric regime considered (figure 3.7).

However, (Θsyn, gs)-biparametric diagram indicates non-trivial synchronization zone is

possible (figure 3.8).

Finally, the approach (4) is considered, which uses variational equations 2.14 pre-

sented in chapter 2 for the HCO configuration. Spike synchrony is a steady state, located

at the origin, of the ODEs defined by the variational equations. As a result, when S1 ≤ 0

it stabilizes the steady state of 2.14. More precisely, S1 < 0 after the membrane potential

V (t) goes over the synaptic threshold Θsyn, as in the case of excitatory coupling in [10].

On the other hand, S2 ≥ 0 due to (V − Es) > 0. The partial ΓV (V − Θsyn) reaches a

positive and high amplitude peak at V = Θsyn and then rapidly decays away from the

threshold. Consequently, S2ξ tends to destabilize steady state at the origin every time

the membrane potential V (t) gets close to Θsyn. In simple terms, the inhibition has a

dual role in stabilizing and breaking in-phase synchronization as the terms S1 and S2

compete with each other to make the synchronous solution stable versus unstable. The

overall outcome depends on various quantitative factors including the coupling strength

and the level of the synaptic threshold.

Whenever the phase point (depicted by spheres in figure 2.10), corresponding to the

instantaneous state of one cell, gets close to the threshold Θsyn, the other cell receives a

strong, short-term desynchronizing kick due to S2 that causes the divergence between the

phase points (see figure 4.6 as well). Once both rise above the threshold, the inhibition

switches into a synchronizing role. Then the phase points receive a weaker though longer

lasting synchronizing effect due to S1. As a result, the phase points converge leading



52

−1

0

1

L
max a

−0.04 −0.03 −0.02 −0.01

−0.1

0

0.1

Θ
syn

〈S〉 b

−0.03

 

0.03

V
c

V=Θsyn

0.2 0.4 0.6 0.8 1 1.2

0

8 d
S

e

0.2 0.4 0.6 0.8 1

V=Θsyn

f

 [s]

Figure 3.4. (a) Largest transversal Lyapunov exponent, Lmax, of synchronous bursting
plotted against the synaptic threshold Θsyn at gs = 0.3. Note two stability intervals
where Lmax < 0. (b) Dependence of averaged ⟨S⟩ = ⟨S1 + S2⟩ on Θsyn. Observe the
graph of ⟨S⟩ closely following that of Lmax within the physiologically relevant interval
[−0.025 ; 0.015] for Θsyn. It accurately predicts the critical threshold Θsyn = −0.009
beyond which in-phase synchronization breaks down. Insets (c,d) and (e,f) are similar to
Figs. 3a-b and relate to the thresholds Θsyn marked by the circle and the square in (b),
corresponding to stable and unstable in-phase synchronization, respectively. When the
spikes hit Θsyn transversally [(c-d) and Figs. 3a-b], the impact of S2 is weaker, so that
⟨S⟩ remains negative long enough to ensure stable in-phase synchronization. When Θsyn

touches spikes from below (e-f), the desynchronizing term ⟨S2⟩ lasts longer, thus making
⟨S⟩ positive and breaking in-phase synchronization down.
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to synchrony (illustrated in figures 3.3a-b). The threshold value Θsyn and the synaptic

strength gs are two crucial factors determining the stability of the zero equilibrium state

in the variational equations (2.14), and hence the stability of spike synchrony. It is noted

that the choice of Θsyn affects the balance between the competing terms S1 and S2 and

may reverse the overall contribution of the coupling from negative to positive and vice

versa. That is raising the threshold closer to the upper part of the spikes lowers the

contribution of the stabilizing term S1 and leads to anti-phase bursting in the network

(see figures 3.4-3.6).

It is worth noticing that the values of Θsyn from the left interval of stability (see

figure 3.4a) range from about −0.038 to −0.036 in the leech HCO. For these values,

the threshold Θsyn is placed below the minimum value of spikes and cannot intersect

the bursting part of the trajectory and hence cannot account for the presence of spikes

in the presynaptic cell. As far as the synaptic coupling between the cells is concerned,

this location of the synaptic threshold Θsyn implies an interaction that is similar to

that between spiking (non-bursting) cells [19]. For such a low threshold, the synaptic
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Figure 3.5. Cross sections of (Θsyn, gs)-parametric contour plot of largest Lyapunov
exponent, shown in figure 3.6, and corresponding traces for average synaptic terms,
⟨S⟩, in the variational matrix, reveals two correlated intervals of negative values that
corresponds stable spike synchrony.

coupling is always switched on when the system is on the bursting manifold and switched

off when the system is on the silent branch of the solution. Stable synchronization

observed in this interval is fragile. Lowering the threshold closer to the silent part switches
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on the destabilizing term S2 in such a way that the effect of S2 becomes significant.

Therefore, the synchronous solution receives a long lasting desynchronizing impact during

the quiescent part and destabilizes. At the same time, the right, physiologically relevant

interval of Θsyn corresponds to the spike interactions during the active phase of bursting,

and therefore to more robust synchronization.
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Figure 3.6. Stability islands for in-phase synchronization in the (Θsyn, gs)-parameter
diagram. Level curves of the Lyapunov exponent Lmax show two large islands of stable
synchrony, where Lmax < 0. Darker shading (top color bar) corresponds to smaller values
of Lmax. Note that the vertical axis scale does not extend down to gs = 0. The Lyapunov
exponent Lmax can still be negative below the level gs = 0.05, however its values are close
to 0 and sensitive to the choice of the integration method.

Figure 3.6 shows a two-parameter diagram of the stability of synchronization as a

function of parameters Θsyn and gs in the leech HCO. Given a fixed threshold Θsyn, pro-

viding stable synchronization for certain values of the synaptic coupling gs, increasing the

synaptic strength at first has a general tendency to make synchronization more stable.

However, once a certain strength of inhibition is reached, the inhibition starts desynchro-

nizing the neurons. Indeed, an increase in gs makes the individual self-connected system

more unstable, therefore the dominance of the stabilizing term S1 over S2 is no longer

sufficient to synchronize the neurons.
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It is important to stress that the evaluation of the averaged synaptic term from

the variational equations 2.14 predicts the synchronization threshold rather precisely and

serves as the necessary quantitative condition for stable in-phase synchronization. This

calculation is particularly important for the bistable network where co-existing anti-phase

bursting typically dominates over in-phase synchronization such that it is easy to come

to the wrong conclusion that in-phase synchronization is always unstable, relying only on

numerical calculations from random initial conditions. Indeed, if one cell is initially in the

spiking phase, whereas the other is silent fast, non-delayed reciprocal inhibition between

the cells leads only to anti-phase bursting. However, if the cells start firing in the spiking

phase, then the inhibition, instead of diverging them, will force the cells’ states to come

together, resulting in stable synchronized bursting. Note that once anti-phase bursting is

achieved, it remains highly resistant to external voltage perturbations of either cell. On

the contrary, a weak common inhibition applied to both cells can break the anti-phase

regime and make the cells burst together [56] so that the reciprocal inhibition between

the cells could synchronize them.

Figure 3.7. Synchronization zone along periodic orbit in the phase space for Fitzhugh-
Rinzel HCO, with gs = 0.0001. Only complete (spike) synchrony is measured. Algorithm
for burst synchrony is not applicable.
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Figure 3.8. Biparametric (Θsyn, gsyn)-diagrams depicting stability zones (dark) of in-
phase bursting in the Fitzhugh-Rinzel HCO. Color bar measures maximum absolute
deviation in the values of x variable, after transients have been removed.

The synchronizing effect of fast non-delayed reciprocal inhibition is defined by the

intrinsic property of the fast synaptic coupling to act differently on the synchronization

trajectory, depending on whether the trajectory crosses or is above the synaptic threshold.

This property is linked to the presence of the two competing terms S1 and S2 in the

variational equations. In this context, it is generic and applicable to other Hodgkin-

Huxley-type neurons, exhibiting different types of bursting. In support of this claim,

we have examined the synchronization properties of the network (2.6), composed of two

coupled (i) Sherman pancreatic β-cell models [52], displaying square-wave bursting; (ii)

Purkinje bursting cell models [53]; and (iii) FitzHugh-Rinzel elliptic bursters [62]. In the

first two networks, it is observed that stable and robust in-phase synchronization co-exists

with anti-phase bursting (figure 3.9). The elliptic bursters tend to synchronize poorly

due to the delayed loss of stability property. Small variations may cause difference in the

numbers of spikes causing spike synchrony less achievable (figure 3.7). Nevertheless, this

class of bursters are very important to study as many biological neurons produce bursts
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that have close resemblance to that of the elliptic bursters and their HCOs may conform

to less stringent but more experimentally relevant condition for synchrony.
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Figure 3.9. Synchronization zones for pancreatic-β and purkinje HCOs, where complete
in-phase synchrony is achieved. (A-B) Voltage traces of single complete bursts for HCOs
composed of pancreatic-β and purkinje neuron models, respectively. The dots indicate
reference phases for estimating synchronization zone. Horizontal lines represent synaptic
thresholds. (C-D) Initial phase differences, ∆ϕ(1), that lead to complete in-phase syn-
chrony are shaded dark, corresponding to the traces above. Reference phases correspond
to each vertical bars, which may be discontinuous.

The persistence of robust in-phase synchronization in the leech HCO is also verified,

after the synaptic FTM function was replaced by the Heaviside function [31] and more

common alpha-dynamical function; and by a precise dynamical model of fast synapses,

wiring the heart beat central patter generator of the leech [23](figure 3.10). In the

latter case, the synapses are non-instantaneous, yet fast so that the impact of inhibition

on synchronization is identical to those of the instantaneous FTM coupling. Synaptic

current traces generated by the various paradigms are shown in 2.1 for comparison.

The robustness of in-phase synchronization with respect to mismatches in the synaptic

strengths and the intrinsic parameters of the cells is also tested. Perfect synchronization
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is no longer possible in these cases due to symmetry-breaking, which leads to the fact

that the spikes within the synchronized burst do not coincide anymore. In all simulated

cases this burst synchronization has been verified to be robust for 5− 10% mismatch in

the synaptic strengths, presented in chapter 4. The main results and analysis presented
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Figure 3.10. Biparametric (Θsyn, gsyn)-diagrams depicting stability zones (dark) of in-
phase bursting in the leech HCOs connected by various paradigms of fast non-delayed
synapses. Here, leech models have parameters regime of (2) in fig. 2.7. (A) Heaviside,
(B) FTM, (C) alpha and (D) leech dynamical synapses.

in this chapter have been published in [72].

3.1.2 Slow Synapse Coupled HCOs

In-phase synchrony has been shown to exist for HCOs connected by slow or delayed

synapses in the mathematical and computational neuroscience literature. In this doctoral

research, α-dynamical synapse is calibrated to match transition from slow, non-delayed

to fast, non-delayed synapse (see figure 3.11). Thus far, the choice of parameters α and β

that produce qualitative results matching those of FTM synapse connected leech HCO are

shown. The use of variational equations is dependent on the type of synaptic terms, which

allows for approximation of small variation. Networks with slow synaptic connections are

checked for both spike synchrony and burst synchrony by the methods described in the
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3.11.1 3.11.2

Figure 3.11. Determination of single parameter control, from slow to fast decay, of
synaptic current, matching FTM and alpha synapse models in leech HCOs. The traces
in 3.11.1, top to bottom, are the results of variation of control parameters α and β,
in alpha-synapse with vertical axis being dimensionless synaptic gating variable, S(t).
In 3.11.2, voltage and synaptic gating variable traces are shown for specific parameter
combinations: (A) FTM synapse, (B-D) alpha-synapse. (C) was chosen as a match for
fast non-delayed FTM synapse.
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Figure 3.12. Biparametric (β, gsyn)-diagrams depicting stability zones (dark) of in-phase
bursting in the leech HCO connected by alpha-synapses. Right and left edges of the
plane correspond to fast and slow synapses, respectively. Color bar indicates phase-lags.
Darkest shade closely relate to complete in-phase synchrony.
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chapter 2. The (β, gs)-parameter diagram shows evolution of synchronization zone as the

speed of synaptic decay, measured by β, is lowered. Figure 3.12, which is not unique

and is dependent on the choice of initial conditions show non-linear transition in such a

way that the in-phase synchrony disappears for intermediate rate of synaptic decay for

certain coupling strengths. Further investigation is needed to shine light on the cause of

this phenomenon.

3.2 Large Networks

The same variational equations 2.14, with small changes, may be used for larger net-

works as long as individual neuron models remain the same. Each network corresponds

to a connectivity matrix that defines coupling configurations among neurons in the net-

work. The variational equations for larger network differ from that of the HCO only by

two constants, number of connections per neuron and second largest eigenvalue of the

connectivity matrix [10]. In particular, ten local and two global networks have been ex-

plored using this approach (see figure 3.13). A general trend of increased synchronization

islands is seen with respect to increasing size of the local networks, and the opposite trend

is seen for global networks. The magnitude of the largest Lyapunov exponent however

decreases as the size of the local network is increased, indicating weaker convergence with

respect to the size. The reason for this behavior needs further investigation as well.



61

Figure 3.13. Maximum Lyapunov exponent, in (Θsyn, gs)-parameter plane, for networks
larger than HCOs. Two cell network (largest inset) is reproduced to match the grid sizes
and color schemes of reference scales of the larger networks. Remaining insets, row-wise
from left to right (from the top), belong to all-to-all connected networks with three and
four neurons. Continuing the sequence, remaining insets belong to locally connected
networks with 4..10, 20, 50, 100 neurons.
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Chapter 4

BURST SYNCHRONY ANALYSIS

Bursting patterns of neurons have persistent and correlated activities. Phase dif-

ference allows one to describe phase-locked states that are neither spike synchrony nor

anti-phase synchrony. In addition, in-phase synchrony without spike synchrony is possi-

ble. For neurons with approximately equal duty cycles and period, the burst envelopes

may align without the spikes in the burst, giving the appearance of correlated burst ini-

tiation and termination. For mismatch in duty cycle or period, bursts may still robustly

and persistently initiate together, that is with zero phase-lag. From henceforth the term

‘in-phase synchrony’ is used to mean zero phase-lag between bursts generated by each

neuron in the network. Spike synchrony is a subset of the in-phase synchrony defined in

this way.

In this chapter, weak and strong coupling is considered, as opposed to slow and

fast coupling, considered in the previous chapter. The burst synchrony algorithm, based

on the phase-lag, reveals a number of coexisting stable behaviors (multiple phase-locked

states) as opposed to just two robust patterns, in-phase and anti-phase synchrony, for

weakly coupled networks. Stability is determined qualitatively using convergence or

divergence of phase-lag sequences. The algorithm is described in chapters 2 and B, and

the results and analysis are presented in this chapter. In addition, a mechanism for

multiple phase-locked states is suggested. Other tools such as phase return maps and

reversal of stability through inhibition to excitation coupling are employed to analyze

the data as well.

4.1 Weakly coupled HCO: Multiple phase-locked states

This section is begun with the HCO (2.6 with n = 2) composed of the leech heart

interneurons (model 2.2) coupled by weak FTM inhibitory connections (model 2.9). In

chapter 3, it has been shown that this HCO bursts, not only in anti-phase as predicted,
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but also in in-phase [72]. The weakly coupled HCO possesses multiple, co-existent phase-

locked states, in addition to in-phase and anti-phase bursting. In what follows, it is

demonstrated that the co-existence of several phase-locked states is due to spike interac-

tions in overlapping bursts.
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Figure 4.1. (A) Exponential convergence of initial phase-lags to four co-existent
phase-locked states over 200 burst cycles of the leech HCO. Parameters are Θsyn =
−0.0225, V shift

K2 = −0.022, and gsyn = 0.005. ∆ϕ(n) = 0 and 0.5 correspond to stable
in-phase and unstable anti-phase bursting, respectively. The right panel shows the es-
tablished bursting cycles (dark and light/green colors for neurons 1 and 2, respectively)
corresponding to the selected phase-locked states (thick lines in Panel A). Symbols ×
and � are the same in 4.6.

The case of the weak inhibitory coupling gsyn = 0.005 between the neurons in the

leech HCO is considered. Such weak coupling does not drastically change the phase

lags ∆ϕ(n), between the neurons over a bursting cycle thereby allowing one to follow

“continuous” evolution of the phase lags, ∆ϕ(n), as the number n, of bursting cycle

progresses. One must keep in mind though that such continuous evolution may be hard

to achieve when the individual neuron is defined by parameters close to a bifurcation

such as the one underlying slow transition from bursting to tonic spiking or silence. Slow

evolution of the phase lags however lets one systematically single out all co-existing stable

phase-locked states. In addition, the separating thresholds (unstable states) are identified

by evaluating the convergence rates given by ∆ϕ(n+1) −∆ϕ(n).



64

Figure 4.1A represents the evolution of the phase lags, ∆ϕ(n), plotted against the

number of burst cycles, n, for the leech heart HCO generating four-spikes per burst. By

assessing convergent tendencies of ∆ϕ(n), as n increases, in the figure one can clearly

identify four stable phase locked states (non-linear thick curves), which include the syn-

chronous state, ∆ϕ(n) = 0. Unstable states are invisible, but they exist between every

pair of stable states. Four unstable states, which include the anti-phase state ∆ϕ(n) = 0.5

(top thick curve) are seen. Panel B of figure 4.1 depicts the voltage traces for bursting

patterns corresponding to the states, anti-phase (B1) through in-phase (B5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

V
 [V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

∆ 
φ

φ

B

A

6

10

13

2

2

6

10
13

4.2.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06

−0.04

−0.02

0

0.02

0.04

V
 [V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

∆ 
φ

φ

1 2

6

9

2
1

6

9

B

A

4.2.2

Figure 4.2. Graphs of phase-lags with respect to phases for two different parametric
regimes of leech model HCOs. All parameters are same as (2) in 2.7, except VK2shift =
−0.024 in both; Iapp = 0 in 4.2.1 and Iapp = 0.005 in 4.2.2. Panel (A) in each show
reference burst with dots representing varied (numbered sequentially from the left) and
cross representing fixed initial conditions. In panels (B) black lines represent initial
phase-lags, red dashed line represent final phase-lags after 40 bursts have elapsed, while
numbers correspond to those in panels (A).

A number of examples and methods of quantifications are investigated before a

comprehensive explanation for the causes of the multistable states are given in section

4.1.1. Figures 4.2 and 4.3 show phase-lags produce results symmetric to that of phase-

advances (see more detailed discussion in the chapter 5). The symmetry is graphically

portrayed by the two diagonals with slopes of opposite signs. In figure 4.4.1, the net

synaptic currents are averaged for a number of phase-lag trajectories for a leech HCO.

All of these traces approach equilibriums or level off over time. Net synaptic currents

are also plotted with respect to phase-lags in 4.4.2 to investigate correlations of minima
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with stable phase-locked states (red circles). However, net inhibition is not minimized at

the phase-locked states.
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Figure 4.3. Graphs of phase-lags with respect to phases for pancreatic-β and purkinje
HCOs. Markers in 4.3.1 (pancreatic-β HCO) has same meaning as those in 4.2. In 4.3.2,
the panels (A1-A3, B1-B3) show phase-lag versus phase plot, phase-lag time series, and
voltage traces for in-phase and anti-phase synchronous state respectively, for the purkinje
HCO.

In figure 4.4.3, V̇ from individual neurons is used to compare the rate of change in

the coupled versus uncoupled neurons. As expected from the ODEs, coupled neurons

(black traces) have smaller rates of change when V̇ > 0 and larger for V̇ < 0 compared

with the uncoupled neurons (red traces). In an effort to quantify the speed of the phase

points L2 norm is used to cumulatively measure the distance travelled over the elapsed

number of burst cycles in the figure 4.4.4. A number of phase-lag trajectories show

growing separation between the coupled (blue) versus the uncoupled (green) HCOs. In

figure 4.5.1, instantaneous phase of each neuron in the coupled HCOs are graphed. The

algorithm which used L2 norm probably failed to detect distance along the trajectory at

times, indicated by the large jumps. Nevertheless, initial phase difference clearly causes

differential impact on the motion of the phase points over a burst cycle, indicated by

separation between the black and green curves. Duration of common activity, when both

neurons spike above the synaptic threshold, is investigated for correlations with phase-



66

50 100 150 200 250 300

−5

−4

−3

−2

−1

0

1

2

3

x 10
−3

# cycle

∆ 
(I

ps
c 1−

Ip
sc

2)

 

 

data1
data2
data3
data4
data5
data6
data7
data8
data9
data10
data11
data12
data13
data14
data15
data16

4.4.1

0 0.1 0.2 0.3 0.4 0.5
−8

−6

−4

−2

0

2

4
x 10

−3

∆ φ

∆ 
(I

ps
p 1−

Ip
sp

2)

red circle = accumulation points

4.4.2

335 340 345 350
0

5

10

15

348.5 349 349.5
0

5

10

15

348.35348.4348.45348.5348.55

0.013

0.014

0.015

0.016

348.03 348.04 348.05 348.06

−0.54

−0.535

−0.53

−0.525

−0.52 + velocity, coupled slower − velocity, coupled faster

4.4.3

0 50 100 150 200 250 300 350
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

∆ 
av

g 
di

st
an

ce

# burst

green = uncoupled; blue = coupled at g=.005

4.4.4

Figure 4.4. Investigation of underlying mechanism of phase-locking using the leech HCO.
A number of < IPSC > traces are plotted with respect to time in 4.4.1, and with
respect to phase-lags in 4.4.2. The derivative of membrane potential (velocity) is plotted
and magnified for weakly coupled (black) and uncoupled (red) HCOs in 4.4.3, and the
difference between L2 norm of the dynamic variables of the two neurons in the HCOs,
per burst cycle, is plotted in 4.4.4, where green is uncoupled and blue is coupled case.
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4.5.1 4.5.2

Figure 4.5. Instantaneous phase-lag resulting from spike interaction and duration of
active phase per network period. In 4.5.1, voltage traces of individual neurons in the
leech HCO is shown, horizontal line indicates level of Θsyn; the panel below corresponds
to self-referenced phase-lags with respect to individual uncoupled phases. Green and
black traces show spike interaction affects each neuron differently, the underlying reason
of resetting the phase-lags between the neurons. In 4.5.2, duration of active phase, time
spent by the spikes above Θsyn, is plotted as function of initial phase-lag.

locked states. However, due to non-linear effect of duration of the spike interaction is

not a sufficient correlate of the phase-locking phenomena.

4.1.1 The mechanism of multistability: two opposite roles of inhibition

In this section, it is argued that the cause of multistability is a dual role of inhibition.

Since the periodic orbit does not significantly deform the shape in the limiting case of

the uncoupled network, motion of a phase point along the orbit is tracked. Due to the

oscillatory nature of spiking, the inhibition from a pre-synaptic neuron can either speed

up the post-synaptic neuron on the downstroke (decreasing further V ′ < 0) or slow it

down on the upstroke (decreasing V ′ > 0) as one can see from the modeling equations

equations(2.6). Because the inhibition is reciprocal in the HCO, this argument also

applies to the other neuron. As a result, depending on timing, the phase lag between the

neurons can shrink or widen during the spiking period of bursting, thereby giving rise to

multiple phase locked states.

The mechanism is illustrated in figure 4.6A, depicting the momentary phases of the

reference neuron 1 on the upstroke (above the synaptic threshold) and the two relative



68

0 50 100 150 200 250
−4

−3

−2

−1

0

1

2

3
x 10

−3

(B)

cycle number

∆ 
<

IP
S

C
>

Figure 4.6. (A) Illustration of the dual, slowing and speeding, roles of reciprocal inhibition
on evolution of the phase lags during the spiking phase on the bursting orbit, sketched
as a helix segment in R3 with the voltage on the vertical axes. Black (dark) sphere
denotes the reference neuron 1 on the upstroke, while lighter (green and blue) spheres
denote the instant phases of the neuron 2 on downstrokes. Arrows indicate the direction
of inhibition at the current phases of the neurons that make the phase lags widen (upper
arch between 1 and 2a) or narrow (low arch between 1 and 2b) along the bursting orbit.
(B) Transients of the averaged net synaptic current ∆⟨IPSC⟩ converging to two non-zero
equilibrium levels representing the (B3) and (B4) phase-locked states. Transients (red)
converging to the zero level for the stable in-phase (solid) phase locked state, as well as
unstable anti-phase state (dashed).
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positions of neuron 2 both on the downstroke along the bursting orbit in the active,

spiking phase. In the first case, the initial distance (upper arch of the spiking helix)

or the phase lag between neurons 1 and 2a widens because the phase 1′ is slowed on

the upstroke by inhibition from the neuron 2a while the phase 2′a is accelerated on the

downstroke due to the reciprocation from the neuron 1. In the second case, the reciprocal

inhibition makes the distance (low arch) between the neuron 1 and 2b shrink instead, thus

narrowing the phase lag (arch between 1′ and 2′b) with each cycle. It is noteworthy to

mention that during simultaneous upstrokes and downstrokes, discrepancies in inhibition

are less significant. The overall cells’ convergence to or divergence from the given phase-

locked state depends on the initial conditions that in turn define a fragile balance between

the two competing, slowing and speeding, forces over the bursting period.

An average effect of instantaneous spike interactions on phase lags per burst cycle

can be assessed from figure 4.6B, showing the dynamics of the net synaptic current,

∆IPSC(t) = I
(12)
syn (t) − I

(21)
syn (t) for several initial phase lags. The vertical axis repre-

sents the difference between the average synaptic currents generated by both neurons,

∆ < IPSC > (n) =
∫ nT

(n−1)T
∆IPSC(r)dr, where n and T are cycle number and pe-

riod respectively. The figure shows that ∆ < IPSC > settles down to a constant value

after a number of bursting cycles when a phase-locked state is achieved. The rate of

change of ∆ < IPSC > approaches zero when all spikes with a burst are aligned. The

attracting phase locked states are represented by the horizonal lines indicating the levels

of ∆ < IPSC > on established HCO configurations. While the zero level corresponds to

two opposite states: unstable anti-phase and stable in-phase bursting with four spikes,

nonzero states correspond to other configurations such as (B3) and (B4) spike offsets

marked by × and � in figure 4.1. This presents a very peculiar observation that over-

lapping bursts can generate non-zero amounts of average net inhibition. In other words,

force is required to maintain some of the stable states of the multistability.

In short, the ability of inhibition to speed up or slow down, depending on whether

the driven postsynaptic neuron is on the down- or upstroke, respectively, is emphasized.

Note that the neurons become decoupled during the spiking phase as soon as the voltage

drops below the synaptic threshold. When the spikes are aligned, the relative phases
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speed up and slow down simultaneously thus causing small variations in the phase lag.

As a result, a weak coupling and a high synaptic threshold combined can give rise to

the occurrence of multiple phase-locked states. This property is uniquely attributed to

bursting cells with spikes as opposed to relaxation oscillator-type neurons without fast

spikes that are capable of producing only anti-phase bursting.

4.1.2 Stability diagrams

To analyze and quantify the stability of the phase-locked states (figure 4.1), 1D sta-

bility diagrams (shown in figure 4.7) is employed. It represents snapshots of the n-th iter-

ate of the difference between the current and preceding phase lags, i.e.,
[
∆ϕ(n+1) −∆ϕ(n)

]
,

plotted against the initial distribution 0 ≤ ∆ϕ ≤ 0.5. For dense enough initial distribu-

tion, n can be taken as small as 2, which would give a scalar number corresponding to

every initial phase lag. Observe that
[
∆ϕ(n+1) −∆ϕ(n)

]
can also be viewed as the change

rate over a single burst cycle on the n-th step. If the change rate does not vary for some

initial phase lag ∆ϕ∗, then the latter corresponds to a fixed point of the iterative process.

A zero of the graph
[
∆ϕ(n+1) −∆ϕ(n)

]
vs. ∆ϕ is a fixed point. The stability of the

point is determined by the derivative d[∆ϕ(n+1) −∆ϕ(n)]/d∆ϕ at ∆ϕ∗. The fixed point

is stable if the derivative is negative, or unstable if the derivative is positive. The basins

of the stable states (four total as in figure 4.1) of the HCO network are separated by the

unstable ones in this 1D phase portrait. Panel A of figure 4.7 shows the two 1D phase

portraits of the leech heart HCO with a weak gsyn = 0.005 (black graph), and a stronger

gsyn = 0.01 (blue/grey graph) coupling. In both cases, the fixed points are located at the

same zeros of the graph of
[
∆ϕ(n+1) −∆ϕ(n)

]
. However, local (in)stability of the fixed

point becomes quantitatively stronger with an increased coupling strength.

In addition to local stability, the robustness of the stable phase-locked states can

be characterized in terms of the wells of an effective potential. The normalized poten-

tial function is computed from the stability diagram in panel A, and is given by the

formula: Φeffective
potential (p) =

∆ϕ=p∑
∆ϕ=0

(∆ϕ(n+1) − ∆ϕ(n))/
∆ϕ=0.5∑
∆ϕ=0

(∆ϕ(n+1) − ∆ϕ(n)). In panel B,

the normalized effective potential plotted against the phase lag distribution ∆ϕ, reveals

the profile of the potential wells corresponding to the attraction basins of stable states,
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Figure 4.7. (A) Two graphs (black and blue/grey) of the 1D stability diagram: zeros
of the stationary distribution of the phase lag difference

[
∆ϕ(n+1) −∆ϕ(n)

]
over the

range ∆ϕ = [0, 0.5] are phase-locked states: four stable (solid dark circles) separated
by repellers in the four spikes bursting HCO at V shift

K2 = −0.022 at gsyn = 0.005 and
gsyn = 0.01, respectively. (B) Normalized effective potential (integral) for gsyn = 0.005:
different wells implying uneven robustness of the stable phase-locked states whose basins
are separated by the thresholds. Solid grey circles indicate intermediate (saddle-node)
states. (C) Zeros indicated by solid circles corresponding to seven stable phase-locked
states, in the eight spikes bursting HCO at V shift

K2 = −0.024, in the 1D stability diagram.
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and the barriers corresponding to the unstable states in the leech HCO network. This

diagram allows one to identify the most robust phase-locked state by the depth and

width of the wells. The steepness of a potential well yields the rate of convergence to

the corresponding phase-locked state. This figure also shows that fast convergence to the

in-phase (∆ϕ∗ = 0) state does not make it the most robust, as its basin is not as deep as

those of other stable phase-locked states.

The comparison of figures 4.7A and 4.7B with the corresponding four spikes bursting

trace (figure 4.9A), suggests that there is a (direct) correlation between the number of

spikes per burst and the number of stable phase-locked states. To support the hypothesis

we present figure 4.7C showing a similar 1D stability diagram for the eight spikes bursting

trace (figure 4.9C): now the leech HCO possesses seven attractors corresponding to the

stable phase-locked states. The relation between number of spikes and that of phase

locking is still consistent because there are only six spikes that fall in the range 0 ≤

∆ϕ ≤ 0.5 and the anti-phase state is located at ∆ϕ = 0.5, which has switched stability.
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Figure 4.8. Average phase-lag change per burst cycle for various levels of excitation in
the synapses. Synaptic reversal potential, Esyn, is varied from −0.0625 (black, inhibitory
case) to 0.0625 (red, excitatory case) at increments of approximately 0.009. For the green
curve Esyn = 0.5. Open and closed circles represent unstable and stable states.

Based on the qualitative examination of the stability of the fixed points for the phase

lags, together with the quantitative observation, it is hypothesized that spikes do matter
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for the emergence of multiple phase-locked states. The number of spikes per burst does

yield an estimate for the number of phase locked states. However, complexity of the spike

interactions due to timing and irregularities of the spike characteristics, slow convergence

due to weak coupling and the sensitivity of the two-time scales bursting solutions may

cause inaccuracy in some models. Moreover, multistability of weakly coupled HCO be-

comes harder to describe properly as the duty cycle becomes greater, resulting in a long

burst train with a larger number of spikes (figure 4.9G-H). Meanwhile, the attraction

basins of the phase locked states become narrower and less clearly identifiable, which

means that accurate numerical simulations would require unrealistically high resolution.

Excitations instead of inhibitions in the same network configurations often reverses

the stability of steady states [33]. So, multistability is expected to exist for excitatory

coupling as well but with different phase-locked state being stable. This hypothesis is

investigated by gradually raising the synaptic reversal potential, the result of which is

shown in 4.8. Stability does switch however non-linear effects shift the locations for some.

Thus far, the most tractable cases are presented, and next, an alternate way of thoroughly

examining multistability is presented. This method reduces the problem of finding and

characterizing stability of phase-locked states to studies of 1D Poincaré return mappings.

4.1.3 Phase return maps

Identifying multiple phase-locked states of the bursting HCO can effectively be re-

duced to that of finding stable fixed points in 1D Poincaré return mappings defined as:

∆ϕ(n) → ∆ϕ(n+k), where k is the degree of the mapping. For a non-stationary phase lag,

either ∆ϕ(n+k) > ∆ϕ(n) or ∆ϕ(n+k) < ∆ϕ(n) for k = 1, but the change is small because of

the “continuity” condition mentioned earlier: the case of the weak coupling, which results

in slow and smooth dependence of ∆ϕ(n) on the burst cycle number n (figure 4.1A). As a

result, the slope of the mapping at a stable fixed point is 1− ϵ (for k-degree mapping the

slope (1−ϵ)k → 0) and at an unstable fixed point it is 1+ϵ (k-degree slope (1+ϵ)k → ∞).

Hence, the integer k may be chosen relatively large for the basins of attractions to be

well identified. Specific values of k depend on the individual cell model in question as

they have distinct rates of the convergence to the phase-locked states. So, (k − 1) is
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the number of successive burst cycles skipped in the traces to generate the mappings.

By choosing the degree to be k, the mapping reveals robust phase-locked states that are

represented by stable fixed points, located at intersection points of the flat sections (slope

0) of the mapping graph with a 45-degree line. Due to the large values of k, the unstable

fixed points corresponding to the threshold separating the attraction basins reside at the

discontinuity points (slope ∞) of the mapping graph.
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Figure 4.9. Mappings and reference bursts for leech, β-cells, and purkinje HCOs. Burst-
ing cycles generated by the HCO composed of the leech heart interneuron models (panels
A and C), and the Sherman models (E) and the Purkinje cell models (G). Overlaid boxes
indicate the reference half-period frames defining the spikes that effectively determine
the number of phase-locked states in the networks; the horizonal lines set the synaptic
thresholds in the HCOs. Panels B, D, F, and H show the corresponding 1D return map-
pings: ∆ϕ(n) → ∆ϕ(n+k) of degree k (k = 345, 40, 80 and 35, reps.). (B) and (D): Four
and seven stable fixed points in the mapping imply the coexistence of the same number of
phase locked states in the bursting leech heart HCOs (gs = 0.005). (E-F): The Sherman
model HCO (gs = 0.001) generating six-spike bursting possess the same number of stable
fixed point in the mapping. (E) Zoom of the mapping (H) for the the Purkinje cell HCO
(gs = 0.001) generating 62-spikes burst trains reveals multiple phase locked states within
[0.4, 0.5] range accumulating to anti-phase bursting.

Figure 4.9 presents four pairs of panels each representing bursting rhythms and the

corresponding return mappings for the four HCOs under consideration: two with leech

heart interneurons with varying duty cycles and one each with Sherman pancreatic β-cells

and Purkinje neurons. Panels A-B and C-D depict, respectively, the voltage traces and
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the mappings ∆ϕ(n) → ∆ϕ(n+k) of degrees k = 345 and k = 40 for the weakly coupled

leech HCOs, which robustly produce four and eight spikes per bursting cycle. Panels

E-F and G-H are for the HCOs made of the Sherman pancreatic β-cell models, and the

Purkinje neuron models, respectively. The frames overlaid on top of the bursting traces

denote half-period windows, 0 ≤ ϕ ≤ 0.5, with the spikes determining the number of

phase-locked states. By construction, the phase lag, ∆ϕ is symmetric about the half-

period point such that the phase lags outside and inside of the half-period frame are

equivalent. This implies that only the spikes within the frames are critical for spike

interactions leading to phase-locked states.

Figure 4.9 suggests that the HCO models under consideration possess the same uni-

versal properties, which are due to spike interactions contributing to the emergence of

multiple phase-locked states. There are some distinctions as well, for example, wide

asymmetric spikes produced non-homogeneously by the leech heart interneuron model

can result in more subtle attraction basins and less robust phase-locked states, including

meta-stable states near saddle-node equilibria (figure 4.9) or tangent fixed points (fig-

ure 4.9). Those meta-states have vanished and phase-locked states gain robustness, as the

number of spikes per burst becomes larger. Furthermore, narrow symmetric spikes pro-

duced evenly by the bursting Sherman model HCO contribute to the occurrence of robust

phase-locked states with well defined (separated) basins of attraction (see figure 4.9E-F).

Remarkably, the number of the spikes occurring within the half-period windows in the

leech heart and Sherman β-cell HCOs accurately determines the number of coexisting

stable phase-locked states.

The Purkinje model generates long bursts with multiple, nearly instantaneous spikes

at the chosen parameter values. Because of that, it is hard to identify a large number

of all phase-locked states with rather narrow attraction basins in the weakly coupled

(gsyn = 0.001) HCO case due to slow convergence. To take fewer spikes into consideration,

the synaptic threshold Θsyn is lowered so that spikes occurring closer to the end of the

burst cycle can actually cross it (figure 4.9G). As a result, the corresponding Poincaré

mapping ∆ϕ(n) → ∆ϕ(n+k) (here k = 80) has an array of fixed points within the range,

[0.4, 0.5], near the phase-locked state corresponding to anti-phase bursting produced by
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the HCO. Additionally, this demonstrates the significance of the choice for the synaptic

threshold in modeling studies of larger network models, such as specific central pattern

generators that are often comprised of several HCOs.

In this section it is demonstrated how various intrinsic properties of the HCOs may

determine the number of co-existing phase-locked states. These properties include cor-

relations between the number of spikes and the temporal characteristics of bursting,

such as the spike frequency, duration and duty cycles, as well as the level of the synap-

tic threshold. While the strength of the synaptic coupling modulates the amplitude of

the synaptic current, and hence influences the spike interaction, the simulations suggest

that variations of the coupling strength do not essentially influence the number of stable

phase-locked states as long as the coupling remains weak, which in turn guarantees the

relatively slow convergence to a phase locked state. A significant increase in the coupling

strength makes most phase-locked states disappear so that anti-phase bursting will solely

persist in the HCO, which is the general convention.
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Figure 4.10. Phase return maps for the leech HCO with stronger coupling conductances,
gs = 0.4 (4.10.1), and constant IPSPs, that is, Isyn = ḡsΓ(Vpre −Θsyn) shown in (4.10.2).
Horizontal and vertical axes represent phase-lags at the beginning (n = 1) and after
k, number of cycles, respectively. Colors yellow, green, cyan, blue and black represent
increase in k, showing transitions.

A Sequence of phase return maps is useful for studying the phase-locked states of

strongly coupled HCOs. Figure 4.10.1 shows mappings for a strongly coupled leech HCO

for a number of degrees k = 1, 2, 3, 4, 5 (corresponds to yellow, green, cyan, blue and black
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dots). Most phase-lags converge to one of two attractors: in-phase synchrony with small

basin of attraction and a phase-locked state at ∆ϕ = 0.43 with large basin of attraction.

Due to strong coupling convergence is quite fast, so sequential degrees of the mapping

aids one to visualize the transition to phase-locked states and reveal the fractal nature

of the attraction basins.

Phase return maps are plotted in similar fashion for a synaptic paradigm that is

activity independent (figure 4.10.2). In all other cases synaptic currents depend on the

post-synaptic membrane potential (Vpost − Esyn) which correlates with the activity of

the post-synaptic neuron. This figure reveals the role of duration of inhibition as the

activity dependent term that modulates the amplitude of the inhibition is removed.

Multistable phase-locked states seems to be emerging but in a discontinuous fashion.

Further investigation is necessary to elucidate the observed behavior.

4.2 Strongly coupled networks: stable in-phase bursting

Strong inhibition is defined through coupling that is sufficiently strong to establish

anti-phase bursting rapidly, indicated by the convergence rate of the phase-lags (see figure

2.7). The rapid transitions appear as non-smooth time evolution of phase-lags leading

to anti-phase bursting. This occurrence precedes or coincides with the hold-and-release

mechanism (due to a saddle-node bifurcation) [56], which happens to be functionally

similar to synaptic release mechanism, common for relaxation oscillator-type spiking

neurons [19, 34, 48]. The hold-then-release mechanism implies that the active pre-synaptic

neurons temporarily lock down the inactive post-synaptic cell at the hyperpolarized state

during the half-oscillator bursting cycle. Fast inhibition implies that as soon as the active

neuron ceases firing and becomes inactive, the other cell is released from inhibition,

so they switch roles to produce the second half-oscillator bursting cycle. This cyclic

switching between active and inactive phases in the HCO gives rise to highly robust anti-

phase bursting. The details on emergent anti-phase rhythms in HCOs made of bursting

neurons can be found in [64] and the references therein.
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Figure 4.11. Biparametric (Θsyn, gsyn)-diagrams depicting stability zones (dark) of in-
phase bursting in the strongly coupled leech HCO after hold-and-release mechanism has
engaged. (A-B) has the same color bar, which depicts maximum absolute deviation in V
without transients (spike synchrony); (C-D) shares the color bar for burst synchrony.

In-phase synchrony is possible despite strong inhibitions that establish the hold-and-

release mechanism (see figure 4.11). When the coupling is strong and the initial conditions

of bursting cells are set so that one cell is active (above the synaptic threshold) while the

other is inactive, then fast non-delayed reciprocal inhibition leads ultimately to anti-phase

bursting in any HCO, independent of the choice of models of individual bursters and fast

synapses. Once achieved, anti-phase bursting remains highly resistant to external voltage

perturbations; however, this is not true when long [periodic] inhibition is forwarded to

both cells from an external source. As shown in [56], this external inhibition establishes

in-phase synchronization in the HCO.

In the previous section, we have stressed that the coexistence of multiple phase-

locked states is a peculiar paradigm of the weakly and reciprocally inhibitory coupled

HCO made of identical cells. Increasing the coupling strength makes most, but not all,

phase-locked states disappear eventually. Nevertheless, bistability can be seen for a wide

range of coupling strength as shown in the figure 4.11. Both weakly and strongly coupled
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HCOs exhibit anti-phase bursting generally, but the emergent mechanisms are different:

a fragile balance between spike timing and IPSCs in the weak coupling case and the

robust hold-then-release mechanism in the strong coupling case.

A feature of the strong coupling is the robustness of in-phase bursting that coexists

with anti-phase bursting [72]. In-phase bursting emerges over a wide range of dispersed

initial conditions chosen within the spiking phase of both cells. Initial conditions corre-

sponding to the activity of one cell and inactivity of the other lead to the emergence of

anti-phase bursting via the above hold-then-release mechanism [56]. In 3, it is demon-

strated that the impact of inhibition on the bursting cells drastically depends on whether

both cells are above the synaptic threshold, Θsyn. More specifically, the variational equa-

tions for the stability of synchronized bursting is analyzed, which showed that inhibition

instantaneously switches from desynchronization to synchronization as long as both cells

become active. That is, if both bursting cells are initially active in the spiking phase of

bursting, the inhibition, instead of desynchronizing them, will force the cells’ states to

come together resulting in stable synchronized bursting.
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Figure 4.12. Bistability revealed in the (Θsyn, gs)-biparametric plane for a leech HCO. (A)
and (B) only differs in initial conditions. Color bar indicates phase-lags in the terminal
bursts after at least 100 seconds.

The synchronizing effect of the fast inhibition is specifically due to spike interactions

of the cells during the active phase of bursting. This property is linked to the presence

of two competing, desynchronizing and synchronizing, synaptic terms in the variational

equations 2.14. That is, whenever one cell gets close to the threshold Θsyn, the other
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cell receives a short-term desynchronizing kick that causes the divergence between the

cells. However, when both cells rise above the threshold, the inhibition switches its role

and the cells converge. In this respect, inhibition acts as excitation during the time

interval of simultaneous cell activity when both cells are above the synaptic threshold.

This synchronization property of inhibitory bursting cells with spikes is in contrast with

the HCO made of cells exhibiting spike-free relaxation-type bursting, such as plateau-

bursting where the fast inhibition carrying only desynchronizing effects makes stable

synchrony impossible.

4.2.1 Generic coexistence of in- and anti-phase bursting

In this section, it is demonstrated that in-phase bursting, co-existing with anti-

phase bursting, is a generic property of the HCO, composed of endogenously bursting

(nearly identical) neurons, reciprocally coupled by fast non-delayed inhibitory synapses.

This property is independent from the model of the fast non-delayed inhibition, be it

the instantaneous Heaviside or FTM synapse or a dynamical synapse with the synaptic

constants comparable with the duration of the presynaptic spike.

In what follows, the stability and robustness of in-phase bursting with respect to

transversal perturbations is examined. More specifically, how the shape of the attraction

basin of in-phase bursting varies along the in-phase bursting orbit is investigated. To do

so, first one parameterizes the bursting cycle with respect to a phase, defined on modulo

1, as described in the previous section. Next, the in-phase bursting cycle is discretized

with a mesh, comprised of reference phase values (see figure 4.13A). Each reference phase

is employed to identify a local basin of attraction by gradually advancing, ∆ϕ > 0, or

delaying, ∆ϕ < 0, the initial phase of the perturbed or the non-reference member of the

HCO. In the remaining panels of figure 4.13, the initial perturbations, ∆ϕ, that result in

spike and/or burst synchrony are plotted against phase, ϕ, for the leech HCO described

by the four models given in 2.

The shaded regions in the figure 4.13 B-H panels, represented by the largest de-

viations of the phase perturbation, ∆ϕ, reveal that the width of the “synchronization

band” varies with the phase; it is maximized during the active or spiking period and
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Figure 4.13. Phase dependent synchronization zone along bursting orbit in leech HCOs
with various synaptic paradigms. (A) Bursting cycle of the leech heart HCO at gs = 0.4
is phase-parameterized on the interval [0, 1]: dots indicate some reference phases used
for identifying the attraction basins of in-phase bursting. The horizontal line across the
spikes sets the level of the synaptic threshold Θsyn = −0.0225. Attraction basins of
the in-phase state plotted against the phase along the bursting cycle for four models of
inhibitory synapses: (B) Heaviside, (C) FTM coupling; (D) heterogeneous FTM coupling

with g
(12)
s = 0.4 and g

(21)
s = 0.44; (E) α-dynamical synapse; (F) leech heart dynamical

synapse. All cases reveal that the widest synchronization zone occurs during the tonic-
spiking period of bursting, while quiescent period yields a narrow basin. In all panels
the range of ∆ϕ is scaled between [−0.05, 0.05]. Color bars represent degree of phase
synchrony (left) or spike synchrony (right).
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Figure 4.14. Biparametric (Θsyn, gsyn)-diagrams depicting stability zones (dark) of in-
phase bursting in the leech HCO with inhibitory coupling due to (A) the Heaviside
function based synapse; (B) the FTM coupling; (C) the α-dynamical synapse; and (D) the
leech heart dynamical synapse. Color bar showing the maximal difference in the voltage
values between the cells: zero for in-phase bursting and 0.08 for anti-phase bursting. The
parameters are Vshift

K2 = 0.02, Iapp = 0.006, ḡNa = 160, τK2 = 0.9.
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shrinks during the quiescent period. For larger initial phase mismatches, the cells of

the HCO will settle in anti-phase bursting. Figure 4.13 also demonstrates that all se-

lected models of inhibitory synapses agree both quantitatively and qualitatively. Fur-

thermore, as expected, longer lasting inhibitory inputs of the α-dynamical (2.10) and

leech heart dynamical synapses (2.11) (see figure 2.1) ensure some wider synchronization

zones. Indeed, beyond the critical values after which the synapse is considered slow or
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Figure 4.15. Biparametric (Θsyn, gsyn)-diagrams depicting stability zones (dark) of in-
phase bursting in the pancreatic-β (A,C) and purkinje HCOs (B,D). Color bars represent
phase-lags, same number of intervals in large and small scales, (0, 0.5) and (0, 0.001),
respectively. In-phase synchrony begins with strong enough coupling. Note that shaded
regions that are white in bottom panels must be at least phase-locked at 0.001.

slowly decaying in time (figure 3.12), anti-phase bursting becomes non-observable, thus

leaving in-phase bursting as the only stable state; this is a classic result [33]. On the con-

trary, when synapses are fast, anti-phase bursting largely dominates over much weaker

in-phase bursting in the inhibitory HCOs (2.6). In-phase bursting necessarily requires

close initial burst overlapping. Based on the analysis done in the previous section, it is

inferred that spike interactions bound the attraction basin of in-phase synchrony.

In addition to variations in the level of synaptic threshold, Θsyn, that of the synaptic

strength, gsyn, is used to examine the synchronization properties of in-phase bursting
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in strongly coupled HCOs. Figure 4.14 presents bi-parametric sweeping of (Θsyn, gsyn)-

bifurcation diagram for in-phase bursting in the leech heart HCO and figure 4.15 presents

those for β-cell and Purkinje HCOs. Leech models are explored with the four selected

models of synapses. In the diagrams, shaded areas correspond to stability islands of in-

phase bursting. For the given leech interneuron model, the synaptic coupling with gsyn

exceeding 0.02 is considered strong as it leads right away to robust anti-phase bursting

via the hold-and-release mechanism [56].

The HCOs possess the largest stability islands where it can exhibit in-phase burst-

ing within the plausible range of values for the synaptic threshold, [−0.015, −0.005]V for

leech, [−0.05,−0.02]V for β-cell, and [−40,−30]mV for Purkinje HCOs. In this range,

the synaptic threshold crosses the middle of all of the spikes, which ensures an optimal

stabilizing balance for inhibiting synaptic currents to promote in-phase bursting. Lower-

ing or raising the synaptic threshold out of this range makes in-phase bursting less robust

as the contribution of the spikes becomes less significant. After the synaptic threshold is

lowered below the minimum voltage level of the spikes, the HCO cells begin bursting in

anti-phase, generally, similar to pairs of relaxation oscillators [19], such as Morris-Lecar

or FitzHugh-Nagumo spiking neurons, where the spike interactions play no functional

role.
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Chapter 5

EXPERIMENT-BASED CPG ANALYSIS

Behaving animals show correlated neuronal activity in their nervous system. Record-

ings from single neuron to hundreds of neurons show discriminating activities that are

initiated at the onset and terminated at the offset of such behaviors [3, 4, 42]. These

observations lead to the question, how are the specific patterns of activities generated

and used to control behaviors?

CPGs are small networks of neurons that are experimentally identified as necessary

for expressions of behaviors and the core group capable of controlling various aspects

of the behavior. Hence, mechanistic understanding of CPG functions is under intense

investigation. It is also important for engineering equipments that are dynamically con-

trolled by circuits, such as those in robotics and prosthetics. In this chapter, the role

of network configurations of an experiment based CPG for swimming behavior in the

marine invertebrate Melibe leonina is investigated.

5.1 Minimal configuration networks

The model for leech heart interneurons is used as the individual constituent of the

CPG. The model of leech interneurons has been studied extensively and shown both

mathematically and experimentally to have the ability to transition into a number of

distinct patterns including square wave bursting, spiking, and chaos [26, 29, 51, 73]. In

addition, multistability with two or more coexisting stable patterns for this model has

been uncovered earlier in this study as well as by other researchers [55]. Due to its

versatility and physiological derivation, the leech heart interneuron model is a generic

candidate for modeling Melibe swim CPG interneurons, for which physiologically accu-

rate model is yet to be identified. Based on experimental recordings, electrical activity

patterns and the hypothesis concerning the number of constituent neurons and the nature

of connections, a minimal plausible network is investigated.
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5.1.1 5.1.2

Figure 5.1. Model of an experiment based CPG from Melibe with only inhibitory con-
nections (5.1.1), and schematic depiction of the outcomes (5.1.2). The color of the edge
of the boxes indicate traces of corresponding HCO. Double headed arrow indicates pos-
sible bidirectional movement of each pair of traces with respect to each other, while
maintaining anti-phase bursting within each HCO.

Phases and phase relations between bursting interneurons are imperative for repre-

senting the repetitive nature of activity patterns of the CPGs. The design of the model

was inspired by the specific phase relations seen in experimental voltage traces, see figure

1.9 for example. In-vitro measurements identify a number of half-center oscillators and

their anti-phase bursting patterns are apparent [39, 54]. Due to intrinsic symmetry, the

network can be treated as two pairs of HCOs, while one pair unidirectionally inhibit

the other, see figure 5.1.1. Simulations show that the traces in the HCOs remain in

anti-phase, while the phase relation between the pairs shift, see figure 5.1.2.

Phase-locked state that is idiosyncratic of the experimental system is discovered in

the simulations, see figures 1.9 and 5.2. Both figures show ∆ϕ12 ≈ 0.5, ∆ϕ13 ≈ 0.75, and

∆ϕ14 ≈ 0.25 measured against ∆ϕ11 ≈ 1, which is scaled by the period of the network

cycles. The extra inhibition received by the driven HCO (black box in figure 5.1.1),

delays it’s activity compared to the driving HCO (blue box in figure 5.1.2). Anti-phase

bursting of neurons 1 and 2 corresponds to ∆ϕ12 = 0.5 and that of neurons 3 and 4

corresponds to ∆ϕ34 = 0.5. Due to equal periods for all neurons, ∆ϕ34 = ∆ϕ13 −∆ϕ14,

which explains the deviation between these two phase differences. Moreover, the value
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of ∆ϕ13 indicates that the anti-phase bursting patterns of the HCOs are shifted with

respect to the opposite pair only.

Figure 5.2. Phase-lag definition for experiment based Melibe CPG model. The traces
are labeled by numbers matching those in (5.1.1), the bars at the top are labeled with
phase-lags between neurons given in the subscript and values are scaled by the period
of neuron 1, the vertical lines are meant to indicate beginning of a burst in the color
matched traces.

The shift between the HCOs can be explained further by the observation that in-

phase synchrony between the HCOs seems unstable. When ∆ϕ13 = 0 or 1, neurons 1

and 3 bursts in-phase and due to half-center configurations neurons 2 and 4 bursts in-

phase. Similarly, when ∆ϕ13 = 0.5 neurons 1 and 4 bursts in-phase along with in-phase

synchrony between neurons 2 and 3. However, these patterns are unstable due to the
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fact that net inhibition is asymmetric between the pairs 1 and 3, and 2 and 3. Neuron

1 receives more inhibition through two synapses than neuron 3, and so does neuron 2.

Hence, phase differences away from in-phase synchrony is preferred by the network such

that 0 < ∆ϕ13 < 0.5 or 0.5 < ∆ϕ13 < 1 must contain the stable state.

Figure 5.3. Decomposed configurations and their expected traces. Schematic network
in each panel correspond to the traces below. Traces colors correspond to neurons 1
(black), 2 (red), 3 (green) and 4 (blue). Green and blue dots indicate driving neurons,
and the arrows next to the traces indicate number of synaptic inhibitions. Vertical lines
are inserted for visualization of burst alignments.

To answer the question why ∆ϕ13 is in the second of the two intervals mentioned

above following is suggested. Since only phase-lags with respect to the reference neuron

are measured (see chapter 2), 0 < ∆ϕ13 < 0.5 means neuron 3 is delayed whereas

0.5 < ∆ϕ13 < 1 means neuron 3 is advanced. Here the term “delayed” means reference

phase of neuron 3 is closest to neuron 1 if following the burst in neuron 1, and the term

“advanced” means the nearest burst of neuron 3 is preceding that of neuron 1. The green

bursts in figure 5.3 is further (long phase-lags) if measured following the black bursts,
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but closer (short phase-advances) if measured preceding the black bursts. This concept

is consistent since neurons 1 (black traces) and 2 (red traces) receive more inhibition,

neuron 3 should advance compared to neuron 1.

The decomposed configurations shown in the figure 5.3 are expected to be unstable

since the top HCO is perturbed asymmetrically. The anti-phase bursting of neuron 1

and 2 are destabilized due to uneven reciprocal inhibition within the pair. As a result,

parameter space is explored by variations of symmetric connections as shown in the

figures 1.11.1 and 1.11.2. It is found that ∆ϕ13 = 0 or 1 is achievable if the net inhibition

received by each neuron is nearly identical. Figure 5.4 shows that ∆ϕ13 → {0, 1} when

5.4.1 5.4.2

Figure 5.4. In-phase and phase-locked synchrony between HCOs in the Melibe CPG.
The subscript j stands for 2 (green), 3 (black), 4 (blue) in reference to color coded
traces. Synaptic conductances for 5.4.2 are 4-fold that of 5.4.1 for the driving inhibition
between the HCOs. Following the coordinate system in 1.11 the coupling conductances
are: (0.001, 0.002, 0.003) for 5.4.1.

the net inhibition is balanced, whereas ∆ϕ13 → 0.87 when the driving inhibition offsets

the net inhibition received by the HCOs. This indicates one mechanism through which

the experiment based phase-locked state gets generated is by the up regulation of the

inhibitory connections between the half-centers.
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Chapter 6

CONCLUSIONS AND FUTURE DIRECTIONS

In summary, the general ability of fast, non-delayed reciprocal inhibition to syn-

chronize bursting cells has been discovered. This synchronizing property is independent

from the type of the individual bursting cell and the model of the fast non-delayed inhi-

bition, be it the instantaneous FTM coupling or a dynamical synapse with the synaptic

constants comparable with the duration of the presynaptic spike. The exact synergetic

features that make stable in-phase synchronization possible are (i) the ability of fast

inhibition to switch its impact from desynchronizing to synchronizing when the spikes

cross the synaptic threshold, and (ii) the presence of spikes in bursts. It is customary in

biophysics to use relaxation oscillators as simplified models of bursting cells where the

spikes are smoothed over and ignored.

Reciprocally coupled relaxation oscillators with fast non-delayed inhibition, however,

are impossible to synchronize [19, 31]. In light of this, the finding that the addition of

spikes to the individual cell model can reverse the role of fast inhibition from desynchro-

nization to synchronization is imperative for biophysical modeling of neuronal networks.

It stresses the importance of full-scale detailed models of bursting cells versus simplified

models such as relaxation oscillators. The two-cell networks that are studied are the fun-

damental building elements of large realistic inhibitory networks. The results show that

such complex networks with fast inhibitory connections also possess the hidden prop-

erty to produce the in-phase synchronized rhythm, provided that the individual cells are

bursters not spikers. A consequence is the enhanced multistability of complex neuronal

networks resulting in richer dynamical information capacity and spatiotemporal neuronal

integration.

Moreover, fast non-delayed inhibitory HCOs composed of two endogenously burst-

ing neurons can generate multiple co-existent phase-locked states, in addition to stable

anti-phase and in-phase bursting. This is an extension of the previous result that fast
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non-delayed reciprocal inhibition synchronizes HCOs, which contrasts with the custom-

ary view that reciprocal inhibition has to be slow or time-delayed to establish in-phase

bursting. The study shows that the multistability of the HCOs is due to spike interactions

and independent of specific choice of models for endogenous square-wave bursters and

fast non-delayed synapses. Fast tonic spiking and fast inhibition are the two necessary

conditions for multistable bursting to exist in such HCOs.

Bursting HCOs with spikes contrast plateau-like bursting HCOs in their capacity

for spike interactions. Plateau-like bursts have slow frequency and smoothed spiking

magnitude relative to the plausible range of the synaptic threshold levels, leading to in-

significant spike interactions in the HCOs. The number and temporal characteristics of

spikes are found to determine the number of co-existing phase-locked states in weakly

coupled HCOs. Besides, spikes are also attributed to be the necessary component for

dynamically establishing the bi-stability in strongly coupled HCOs, where robust anti-

phase bursting co-exists with less robust in-phase bursting. This study emphasizes the

importance of detailed Hodgkin-Huxley models for credible modeling of larger CPG net-

works, as opposed to employing relaxation oscillators, which might give rise to simplistic

cooperative properties.

The study of multiple phase locking in the HCOs and co-existing dynamical rhythms

can help one better understand the origin of multistability and the nature of switching

mechanisms between various neuronal rhythms that a multi-functional CPG can generate

in response to changes in sensory inputs and external perturbation. Recent experimental

studies [24, 37, 42] suggest that leech crawling and swimming can be generated by the

same multifunctional CPG, capable of switching between the two locomotor patterns

with no change in the types or strengths of connections among the coupled neurons. At

the neuronal level, crawling is governed by the command neurons firing in synchrony,

whereas the CPG switches to the swimming rhythm when the neurons switch to anti-

phase bursting. The duty cycle of in-phase bursting, generating the crawling rhythm, is

7-10 times longer than that of the swimming rhythm [24].

The duty cycle is conjectured to be the main control parameter that determines

the rhythms and can trigger the switching between the rhythms [55]. The study of the
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spike interactions, whose number and frequency are controlled by the duty cycle, together

with previous studies of duty-cycle induced phase locking in larger inhibitory networks

[56, 64, 72], promise to shed light on the genesis of switching mechanisms for emergent

bursting patterns in real multifunctional CPGs and their realistic models. Investigation

of the mechanism that causes particular phase-locked states in the four-neuron CPG

and the exploration of parametric regime for sensitivity, and emergence of additional

phase-locking in the system would broaden the current understanding of multifunctional

CPGs.

In the future, there are number of avenues that may be explored. Brain functions

of vertebrate animals are thought to result from neuronal networks similar to CPGs

[74]. In addition to inhibitory, excitatory synaptic coupling with various time scales,

and networks with direct electrical connections through gap junctions, neuromodulatory

effects resulting in synaptic plasticity is common in the mammalian brains. Hence, it is

important to incorporate cellular and population level plasticity in the future theoretical

investigations of neuron networks [36, 75]. In addition, the CPG models may be enhanced

by including extra interneurons of other types, by introducing heterogeneity in network

connections, and by increasing physiological fine details that are currently neglected.
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Appendix A

PARAMETERS

Table A.1. Time scales, capacitance, maximal conductances and reversal potentials for
leech heart interneuron

τNa = 0.0405 sec ḡNa = 200 nS ENa = 0.045 V
τK2 = 0.25 sec ḡK2 = 30 nS EK = −0.070 V
C = 0.5 nF ḡL = 8 nS EL = −0.046 V

Table A.2. Boltzmann functions with parameters for leech heart interneuron
n∞(V ) = [1 + exp(−150(V + 0.0305))]−1

h∞(V ) = [1 + exp(500(V + 0.0333))]−1

m∞(V ) = [1 + exp (−83(V + 0.018 + Vshift
K2 ))]−1

Table A.3. Time scales, capacitance, maximal conductances and reversal potentials for
Sherman’s pancreatic β-cells

τ = 0.02 sec ḡCa = 3.6 nS ECa = 0.025 V
τs = 5 sec ḡK = 10 nS EK = −0.075 V
λ = 1 ḡs = 4 nS
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Table A.4. Boltzmann functions with parameters for Sherman’s pancreatic β-cells
m∞(V ) = [1 + exp(−83.34(V + 0.02))]−1

n∞(V ) = [1 + exp(−178.57(V + 0.016))]−1

s∞(V ) = [1 + exp (−100(V + 0.035245))]−1

Table A.5. Maximal conductances and reversal potentials for Purkinje neurons
ḡNa = 152 nS ENa = 50 mV
ḡK = 10 nS EK = −75 mV
ḡCa = 1 nS ECa = 125 mV
ḡM = 0.75 nS EM = −95 mV
gL = 2 nS EL = −70 mV

Table A.6. Voltage dependent time scales for Purkinje neurons
τn = 0.25 + 4.35 exp(−0.1|V + 10|)
τh = 0.15 + 1.15[1 + exp(0.0667(V + 33.5))]−1

τc = [αCa + βCa]
−1, τM = [αM + βM]

−1

Table A.7. Voltage dependent time scales for Purkinje neurons: auxiliary function
αCa = 1.6/(1 + exp(−0.072(V − 5)))
βCa = 0.02(V + 8.9)/(−1 + exp(0.2(V + 8.9)))
αM = 0.02/(1 + exp(−0.2(V + 20)))
βM = 0.01 exp(−0.0556(V + 43))

Table A.8. Boltzmann functions with parameters for Purkinje neurons
n∞(V ) = [1 + exp(−0.1(V + 29.5))]−1

m∞(V ) = [1 + exp(−0.1(V + 34.5))]−1

h∞(V ) = [1 + exp(0.0935(V + 59.4))]−1

c∞(V ) = αCaτc, M∞(V ) = αMτM

Table A.9. Parameters for Fitzhugh-Rinzel model
I = 0.3125 a = 0.7
δ = 0.08 b = 0.8
µ = 0.002 c = −0.7
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Appendix B

PSEUDO CODES

To calculate the Lyapunov exponents, following steps are followed by Govorukhin

[69]. The code is available from Matlab central [70]. There are two functions files: the

first function file defines the synchronous trajectory along with variational equations, the

second function file integrates the equations provided in the first function file in order to

calculate the Lyapunov exponent. The pseudo code for the first function follows:

1. Populate A to integrate x′ = Ax numerically.

2. Assign first n entries of A with ODEs corresponding to single neuron.

3. Set V1 = V2 = V in the synaptic component to ensure evaluation on the synchronous

manifold.

4. Allocate n+ 1 to n+ n2 entries of A for the coefficients of variational equations.

5. Obtain n coefficients of each variational from every variational equation.

6. Assign coefficients of the linear part in the variational equations to A(n + 1) ...

A(n+ n2).

The second function calculates the Lyapunov exponents by finding evolution of unit

vectors under the linear transformation given by the variational equations evaluated on

the synchronous manifold. The total time is divided into smaller time steps to prevent

build up of error. Gram-Schimdt process of orthonormalization resets the unit vectors

after every time step. Natural logarithm of the norms of the orthogonalized vectors give

the Lyapunov exponents, when averaged over elapsed time. The pseudo code for the

second function follows:

1. Assign x(1), x(2)..x(n) with initial condition from the synchronous manifold.



104

2. Assign x(n+ 1 : n+ n) = (1, 0, ..0), x(2n+ 1 : 2n+ n) = [0, 1, 0..0], and so on such

that each n-tuple have orthogonal unit vector.

3. Set number of iteration: total time,T , divided by time step, dt.

4. Integrate for first time step.

5. Obtain solution xout.

6. Reset x(1), x(2)...x(n) equal to xout(1), xout(2)...xout(n) for integration in next iter-

ation.

7. Apply Gram-Schimdt process to the remaining output by treating each n-tuple as

vectors.

8. Get L2 norm for each vectors, which give total n scalar values z(1)...z(n).

9. Reset x(n+1 : n+n), x(2n+1 : 2n+n)... with Gram-Schimdt orthonormal vectors.

10. Lyapunov exponents,λ1...n, after first time step equals log(z(1))
dt

... log(z(n))
dt

.

11. Repeat steps 6 to 11 for the next time step.

12. Lyapunov exponents after this time step equals
∑

log(z(1))∑
dt

...
∑

log(z(n))∑
dt

.

13. Continue the process until
∑

dt = T , obtain n Lyapunov exponents, λ1...n, after

every time step.

An alternate method is also used to calculate the Lyapunov exponents. The linear

transformation is used to transform the basis of unit vectors for precisely one period.

Then the Floquet multipliers are calculated from the matrix formed by the transformed

unit vectors. Natural logarithm of Floquet multipliers, averaged over the period, gives

the Lyapunov exponents. The pseudo code follows:

1. Set dt = T , in the step 4 of second function above, where T is precisely the burst

period.
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2. Obtain the output xout, and construct the transformed unit matrix, S, from each

n-tuple numbers from x(n+ 1) to x(n+ n2).

3. Find the Floquet multipliers, which are the eigenvalues,ρ1...n, of the matrix S.

4. Apply log, divide the result by the period to get Lyapunov exponents: λ1...n =

log(ρ1...n)/T

The process for computing phase differences between a pair of neurons records the

time at which either neuron crosses a voltage threshold given by the Poincaré section.

Subtraction of subsequent times recorded for the same neuron gives the period, while that

between different neurons give the time delay, which is scaled by the period to obtain the

phase differences. The pseudo code follows:

1. Choose one of the neurons as the reference neuron, label its membrane potential as

V1.

2. Integrate the system of ODEs representing the network, record the times when

V1...n crosses an auxiliary threshold, Θth, such that V ′
1...n > 0.

3. Suppose {t(n)} is the time sequence obtained for the reference neuron, while {s(n)}

is that of another neuron.

4. Obtain T (n) = t(n+1) − t(n).

5. Set ∆ϕ(n) = min {|t(n) − s(n−1)|, |t(n) − s(n)|, |t(n) − s(n+1)|}/T (n).

6. Obtain {∆ϕ
(n)
1k } for every non-reference neuron k.

The process for setting initial phase differences uses points from a reference trajectory

that are equally spaced in time. Exactly one cycle of burst is chosen from the last cycle

of 100s of simulation to avoid the transience. The phases are defined by scaling the time

steps within the cycle by the total time of the cycle. The pseudo code follows:

1. Run the full system of ODEs for 100s.

2. Find the times of last two minima in V for the reference neuron.
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3. Use the time difference in step 2 as the period, set of variable values for the second

minimum for the simulation in step 4.

4. Simulate for exactly one period, obtain variable values at equal time steps, dt =

0.0001s.

5. Obtain sequential indices of the points that are sampled at regular intervals by the

above step.

6. Set ϕ = i/L, where i is a specific index and L is the total number of indices.

7. Set ϕref closest to 0.5, assign corresponding state variables as the initial condition

for the reference neuron.

8. Select ϕnon−ref at regular intervals between 0 and 0.5, assign the corresponding

state variables as the initial condition for the non-reference neurons.

9. Initial ∆ϕ = ϕref − ϕnon−ref .

The process for toroidal resetting corrects the values of ∆ϕ whenever it falls outside of

the interval [0, 1]. This resetting causes an effect such that the graphs of those trajectories

{∆ϕ(n)} appear to end at one boundary and emerge from the opposite boundary. The

pseudo code follows:

1. If ∆ϕ < 0 add +1 until 0 < ∆ϕ < 1. For example, ∆ϕ = −δ becomes ∆ϕ = 1− δ,

for δ > 0.

2. If ∆ϕ > 1 and −1 until 0 < ∆ϕ < 1.
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