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ABSTRACT

This dissertation aims at analyzing complex problems arising in the context of

dynamical networks, proteomics, and disease prevention. First, a new graph-based method

for proving global stability of synchronization in directed dynamical networks is developed.

This method utilizes stability and graph theories to clarify the interplay between individual

oscillator dynamics and network topology. Secondly, a graph-theoretical algorithm is

proposed to predict Ca2+-binding site in proteins. The new algorithm enables us to identify

previously-unknown Ca2+-binding sites, and deepens our understanding towards disease-

related Ca2+-binding proteins at a molecular level. Finally, an optimization model and

algorithm to solve a disease prevention problem are described at the population level. The

new resource allocation model is designed to assist clinical managers to make decisions on

identifying at-risk population groups, as well as selecting a screening and treatment strategy

for chlamydia and gonorrhea patients under a fixed budget. The resource allocation model

and algorithm can have a significant impact on real treatment strategy issues.
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INTRODUCTION

This dissertation aims at analyzing complex problems arising in the context of

dynamical networks, proteomics, and disease prevention. In Chapter 1, building on ob-

servations that synchronization has been observed in many complex networks (i.e. fir-

ing synchronization in neural networks is relevant for neurological disorders, for example,

Parkinson’s disease [1]), we extended the Connection Graph method [2] for proving syn-

chronization in directed networks. Our approach, called the Augmented Graph Stability

method, is based on the transformation of the directed graph into an undirected graph.

This is done by replacing each direct link between node i node j with an undirected edge

whose coupling strength depends on the mean node unbalance between the two nodes. In

addition, we augment the graph by adding an extra edge, connecting node i and node j if

there is no directed link between them and their mean node unbalance is negative. Differ-

ent weights are also associated with each path between any two nodes of the augmented

undirected network, according to the mean node unbalance. Upper bounds on the coupling

strength sufficient for synchronization in this augmented symmetrized network also guar-

antee global stability of synchronization in the original directed network. We show that

the new Augmented Graph Stability method is more effective than the connection graph

method in sparse networks. In Chapter 2, we propose a graph theory algorithm to predict

the Ca2+-binding site in proteins at a molecular level. Predicting the Ca2+-binding site is

important as Ca2+ and Ca2+-binding proteins (CaBP) are relevant to many diseases (i.e.

Alzheimer’s disease [3], heart disease [4], diabetes [4] , leukemia [5, 6], and cancers [7–10]).

In order to understand the mechanism of diseases related to CaBP, it was first necessary

to discover where the proteins bind to Ca2+. We hypothesize that the second, hydrophobic

shell of carbon atoms enclosing a Ca2+-binding site could sufficiently determine the site’s

location in either X-ray or NMR structures. Then we validate the hypothesis with the new

algorithm on various structural datasets. Chapter 3 addresses a real clinical issue and seeks

to find a way to help publicly-funded programs that have only limited resources regarding
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screening and treating Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (GC). In

this chapter, we develop a combinatorial optimization (a.k.a. resource allocation) model

and algorithm for health care management to distribute its funds efficiently at a population

level. The solutions generated by the new model can be used to assist clinical managers

to make decisions on identifying at-risk population groups, as well as selecting a screening

and treatment strategy for CT and GC patients under a fixed budget. We then propose

a two-step branch-and-bound algorithm tailor-made for solving the model. The solutions

calculated by the new algorithm have been compared to those calculated by commercial

software application. The main contributions of this dissertation are summarized in the last

section, “Major Findings and Significance”.
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CHAPTER 1

MATHEMATICS IN NETWORK ANALYSIS

1.1 Introduction

The phenomenon of synchronization in large complex networks of coupled dynamical

systems has attracted a great deal of attention over the past decade. Research on this top-

ic spans various scientific disciplines such as mathematics, physics, engineering, and other

fields of science. The examples include coupled synchronized lasers [11, 12], networks of com-

puter clocks [13], synchronized neuronal firing and calcium signals [14–17]. The utilization

of mathematical methods in studying synchronization not only deepens our understanding

towards the formation of this phenomenon in general, but also can have some practical

implications. For example, the presence of synchronization in the human brain has been

suggested as particularly relevant for neurological disorders, e.g. Parkinson’s disease [1]

and Alzheimer’s disease [18]. The information regarding how the firing dynamics are syn-

chronized in the neural network with a specific topology, can assist neurologists to discover

the causes of incurable diseases such as Parkinson’s and Alzheimer’s diseases and to create

better treatment. Motivated by mathematics and its applications, this Chapter will mainly

focus on methodologies for studying network synchronization [19].

The strongest form of synchrony in oscillator networks is complete synchronization

(when all oscillators do the same thing at the same time) [20–22]. The most important

question in the synchronization studies is: What are the conditions for the stability of the

synchronized state, especially with respect to coupling strengths and coupling configurations

of the network? This problem was intensively studied for networks of limit-cycle oscillators

[23–27] and chaotic dynamical systems [28–40].

Complete synchronization in networks of continuous time identical oscillators typically

becomes stable when the coupling strength between the oscillators exceeds a critical value.
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In light of this, an important problem is to identify the bounds on the coupling strengths so

that the stability of synchronization is guaranteed. Many methods for determining stability

for synchronized chaotic systems have been developed. Most of them are based on the

calculation of two quantities: (i) the eigenvalues of the coupling matrix for different network

topologies and (ii) a term that depends on the dynamics of the individual oscillators [28,

31, 34, 36–40].

One example of the methods mentioned above is the Master Stability function. De-

veloped by Pecora and Carroll [34], it is a general approach to the local synchronization of

chaotic systems for any linear coupling scheme. This approach is based on the calculation of

the maximum Lyapunov exponent for the least stable transversal mode of the synchronous

manifold, in conjunction with the eigenvalues of the connectivity matrix. An analog of the

Master Stability function for global synchronization of chaotic systems was also proposed

[36, 37]. However, the eigenvalues of the coupling matrix can often be calculated only for

simple regular topologies such as local, star-like, and all-to-all networks. In more complex

networks, the calculation of the eigenvalues becomes extremely difficult such that is often

impossible to obtain analytical bounds for the synchronization thresholds. Moreover, for

networks with a time-varying coupling, the application of the eigenvalue-based methods is

difficult and often impossible.

As an alternative approach to calculate the synchronization condition, Belykh et al.

[2, 41] proposed the Connection Graph method, which does not depend on explicit knowledge

of the spectrum of the connectivity matrix. To guarantee complete synchronization with

respect to arbitrary initial conditions, this method utilizes the Lyapunov function approach

together with graph theoretical reasoning. It is also applicable to time-dependent networks.

This method was originally developed for undirected graphs [2], and was later applied to

asymmetrically directed networks [41].

In this Chapter, we present a modification of the Generalized Connection Graph method

that gives tighter bounds on the coupling strength required for the onset of stable synchro-

nization in sparse directed networks. We demonstrate how the directed network can be
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turned into an augmented undirected network with weighted connections. As a result,

the stability conditions for synchronization in this augmented directed network also ensure

stable synchronization in the original directed network.

The layout of this study is the following. First, in Sec. 1.2, we state the problem in

the study. Then, in Sec. 1.3, we present the derivations of the graph-based criterion for

global synchronization in undirected networks. In Sec. 1.4, we introduce the new method

and compare it to the existing Connection Graph method, using specific network examples.

We also discuss computational algorithms for solving Short Path (SP) problems of how to

choose a short path between two nodes of the network; this notion is heavily used in our

graph-based Method. We show that the new Augmented Graph method is more effective

than the original Connection Graph method, for proving synchronization in sparse directed

networks.

1.2 Problem Statement

1.2.1 Complex network model

We consider a network of n interacting nonlinear d-dimensional dynamical systems

(oscillators). We assume that the individual oscillators are all identical, even though our

results can be generalized to slightly non-identical systems. The composed dynamical system

is described by the n× d ordinary differential equations [2]

ẋi = F (xi) +
n∑
j=1

εij(t)P (xj − xi), i = 1, ..., n, (1.1)

where xi = (x1i , ..., x
d
i ) is the d-vector containing the coordinates of the i-th oscillator. The

non-zero elements of the d × d matrix P determine by which variables the oscillators are

coupled. Without loss of generality, we shall consider a vector version of the coupling with

the diagonal matrix P = diag(p1, p2, ..., pd), where ph = 1, h = 1, 2, ..., s and ph = 0 for

h = s+ 1, ..., d.
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G = (εij(t)) is an asymmetric n×n zero-row sum matrix with nonnegative off-diagonal

elements such that εij ≥ 0 for i 6= j, and εii = −
n∑

j=1; j 6=i
εij, i = 1, ..., n. This matrix

represents an arbitrary directed network of asymmetrically connected oscillators. The zero-

row sum condition is a necessary condition for the existence of the synchronous solution.

The connectivity matrix G corresponds to a directed graph with n vertices and m edges.

The number of directed edges m is defined by the number of non-zero non-diagonal elements

of the matrix G. The individual oscillators correspond to the vertices of the connection

graph. To ensure synchronization of all oscillators, there must be at least one oscillator that

directly or indirectly influences all the others. This amounts to the existence of a directed

tree that involves all the vertices (oscillators).

1.2.2 Definition of global complete synchronization

The main goal of this study is to obtain stability conditions of complete synchronization

in the system (1.1). Global complete synchronization in the system (1.1) amounts to global

stability of the linear invariant manifold M = {x1 = x2 = ... = xn}. The manifold M

has the dimension of a single oscillator, and is called the synchronization manifold. This

manifold contains completely synchronous solutions of all types (multi-stable, periodic, and

chaotic oscillations).

Definition 1.1. Complete synchronization occurs in the network (1.1), if

lim
t→∞
||xi(t)− xj(t)|| = 0 for ∀i, j. (1.2)

We want to determine upper bounds for the coupling strength sufficient for complete

synchronization, and to identify the dependence of the threshold values on the network

topology and the properties of the individual oscillator.
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1.3 Connection Graph Method for Undirected Network Synchronization: Re-

view

In this section, we follow the steps of the previous study by Belykh et al. [2, 41] to

review the derivation of the Connection Graph method for undirected networks [2]. We

assume that the connectivity matrix G in (1.1) is symmetric, and therefore the network is

undirected.

1.3.1 Stability system for the difference variables

To prove the stability of complete synchronization, we have to show that the differences

between the oscillators’ corresponding variables become zero. Therefore, we introduce the

notation for the differences

Xij = xj − xi, i, j = 1, ..., n, (1.3)

and derive the stability system for the difference variables [2]

Ẋij = F (xj)− F (xi) +
n∑
k=1

{εjkPXjk − εikPXik}, i, j = 1, ..., n. (1.4)

We use the vector analog of the Mean Value Theorem for the function difference to re-write

the difference F (xj)− F (xi) as follows

F (xj)− F (xi) =

1∫
0

d

dβ
F (βxj + (1− β)xi)dβ =

 1∫
0

DF (βxj + (1− β)xi)dβ

Xij,

where DF is a d× d Jacobi matrix of F .

Consequently, the stability system becomes

Ẋij =

 1∫
0

DF (βxj + (1− β)xi)dβ

Xij +
n∑
k=1

{εjkPXjk − εikPXik}, (1.5)
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where i, j = 1, ..., n. It is worth noticing that one can calculate the Jacobian DF explicitly

via the parameters of the individual oscillator.

Notice that the stability system (1.5) has n2 equations, and n(n − 1) of them define

the stability of synchronization in the corresponding pair of oscillators. Technically, only

n(n− 1)/2 difference variables are required to describe synchronization in the network, and

the stability system (1.5) is redundant. The use of the redundant stability systems is the

key ingredient of the Connection Graph method [2].

Let us study the redundant stability system (1.5).

We add and subtract an additional term AXij from the system (1.5) to obtain the

following system

Ẋij =

[
1∫
0

DF (βxj + (1− β)xi)dβ − A
]
Xij + AXij+

+
n∑
k=1

{εjkPXjk − εikPXik},
(1.6)

where i, j = 1, ..., n and the matrix A = aP, where P is the projection matrix from the

system (1.1) and a is a constant.

The trivial equilibrium of the stability system (1.6) corresponds to the synchronization

manifold of the system (1.1). In the following, we shall obtain conditions under which the

trivial equilibrium is globally stable and therefore prove global asymptotical stability of

complete synchronization.

The addition of the matrix −A helps to damp instabilities caused by the Jacobian DF .

On the other hand, the addition of the matrix +A causes the instability that can be in turn

damped by the coupling terms.

We shall study the stability of system (1.6) in two steps. First, we introduce the

auxiliary system

Ẋij =

 1∫
0

DF (βxj + (1− β)xi) dβ − A

Xij, i, j = 1, ..., n. (1.7)
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This system is identical to the stability system (1.6) where the coupling terms are removed.

The first step is to prove that this auxiliary system can be made stable by increasing

parameter a. To do so, we assume that there exist Lyapunov functions

Wij =
1

2
XT
ij ·H ·Xij, i, j = 1, ..., n, (1.8)

where H = diag(h1, h2, ..., hs, H1), h1 > 0, ..., hs > 0, and the (d− s)× (d− s) matrix H1 is

positive definite.

We require their derivatives with respect to the system (1.7) to be negative

Ẇij = XT
ijH

 1∫
0

DF (βxj + (1− β)xi)dβ − A

Xij < 0, Xij 6= 0. (1.9)

This amounts to requiring global stability of the auxiliary system. This is a crucial compo-

nent of the Connection Graph method. As a result, we require that that all oscillators of

the system (1.1) can be synchronized when the coupling among the oscillators is sufficiently

large. It is important to stress that this property is not always true as some networks such

as x-coupled Rössler systems cannot be globally synchronized even if the coupling is made

infinitely strong [30, 42], and the requirement (1.9) cannot be fulfilled.

The conditions that guarantee the requirement (1.9) are based upon the individual

node’s dynamics and the way the oscillators are coupled (matrix P ). Therefore, the re-

quirement (1.9) has to be proven for each specific network as this condition depends on the

intrinsic dynamics of the individual oscillators and the projection matrix P. The condition

was proved for various limit-cycle and chaotic oscillators, including Lorenz systems [43],

double-scrolls [28, 40], Hodgkin-Huxley-type models and different P matrices [2, 41].

The proof of requirement (1.9) for the coupled chaotic Lorenz oscillators is given in

[2, 43]; however for an illustrative purpose, we present the sketch of the proof and calculation

of parameter a in Appendix A. One can prove the requirement (1.9) for other coupled chaotic

oscillators as long as these oscillators can be synchronized.
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To prove the global stability of the synchronization manifold, we also need to make an

additional assumption on the eventual dissipativeness of the coupled system (1.1).

We need to assume that the individual oscillator ẋi = F (xi) is eventually dissipative,

i.e. there exists a topological ball B which attracts all trajectories from the outside. This

implies that there are no trajectories which escape to infinity. This is a natural assumption

for most known chaotic oscillators.

To prove global stability of the synchronization manifold, we construct the Lyapunov

function for the stability system (1.6)

V =
1

4

n∑
i=1

n∑
j=1

XT
ij ·H ·Xij, . (1.10)

The corresponding time derivative along the trajectories of (1.6) is

V̇ = 1
2

n∑
i=1

n∑
j=1

Ẇij + 1
2

n∑
i=1

n∑
j=1

XT
ijAXij−

−1
2

n∑
i=1

n∑
j=1

n∑
k=1

{εjkXT
jiHPXjk + εikX

T
ikHPXij}.

(1.11)

We have to show the negative definiteness of the quadratic form V̇ . The first sum S1

is negative definite due to the requirement (1.9). Hence, it is sufficient to analyze the last

two sums S2 and S3. Recall that the coupling matrix G is assumed to be symmetric, we

can calculate the sum S2 as follows

S2 =
n−1∑
i=1

n∑
j>i

AX2
ij . (1.12)

The contribution of this sum, which is always positive, must be compensated by the third

sum

S3 = −1

2

n∑
i=1

n∑
j=1

n∑
k=1

{εjkXT
jiHPXjk + εikX

T
ikHPXij}. (1.13)
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Switching the summation index i and index j in the second term, we get

S3 = −
n∑
i=1

n∑
j=1

n∑
k=1

εjkX
T
jiHPXjk . (1.14)

As Xjj = 0, this formula transforms into

S3 = −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjkX
T
jiHPXjk −

n∑
i=1

n−1∑
k=1

n∑
j<k

εjkX
T
jiHPXjk . (1.15)

We use the fact that εij = εji to obtain the following

S3 = −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjkX
T
jiHPXjk −

n∑
i=1

n−1∑
j=1

n∑
k<j

εjkX
T
kiHPXkj =

= −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjk(X
T
ji +XT

ik)HPXjk .
(1.16)

The form S3 can be further simplified using XT
ji +XT

ik =
[
xTi − xTj + xTk − xTi

]
= XT

jk

S3 = −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjkX
T
jkHPXjk = −

n−1∑
k=1

n∑
j>k

nεjkX
T
jkHPXjk . (1.17)

Finally, we can make the claim that the time derivative V̇ of the Lyapunov function V is

negative if

S2 + S3 =
n−1∑
i=1

n∑
j>i

XT
ijH[A− nεijP ]Xij (1.18)

is negative definite. Therefore, V̇ < 0 if

n−1∑
i=1

n∑
j>i

εijX
T
ijHPXij >

1

n

n−1∑
i=1

n∑
j>i

XT
ijHAXij (1.19)

This statement can summarized in the following theorem.

Theorem 1 [2]. Under the above assumptions, synchronization in the network (1.1) with
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a symmetric connectivity matrix G is globally asymptotically stable if the following holds

m∑
k=1

εikjkX
2
ikjk

>
a

n

n−1∑
i=1

n∑
j>i

X2
ij , (1.20)

where Xikjk k = 1, ...,m are defined by m existing links. Note that m is the number of non-

zero above diagonal elements in matrix G. Variables Xikjk correspond to the scalars X
(l)
ikjk

,

l = 1, ..., s.

To derive the bounds for the synchronization thresholds, we have to get rid of the

difference variables in (1.20). This constitutes the second step of the Connection Graph

method. In the simplest case of a complete graph, this calculation is straightforward.

To illustrate this, let us assume that the graph is complete such that εikjk(t) ≥ ε > 0,

k = 1, ..., n(n−1)/2 for all ik, jk ∈ {1, ..., n}. Therefore, by Theorem 1, the synchronization

threshold becomes

ε(t) > ε∗ =
a

n
.

Eliminating the variables Xij and Xikjk in the inequality (1.20) requires re-calculating

Xij via the variables Xikjk that correspond to the edges on the connection graph.

1.3.2 Eliminating the difference variables using the connection graph

Our goal is to find the condition on the coupling strength ε that satisfies inequality

(1.20)
m∑
k=1

εk(t)X̃
2
k >

a

n

n−1∑
i=1

n∑
j>i

X2
ij, (1.21)

where we have relabeled the variables as follows X̃k = Xikjk and εk = εikjk , m ≥ n− 1.

We should recalculate all difference variables Xij, i, j = 1, ..., n through the difference

variables X̃k, k = 1, ...,m corresponding to edges of the connection graph. This will allow

one to eliminate the difference variables Xij and X̃k in the inequality (1.21), and therefore

derive the bound on the coupling strength.
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To do so, for any pair of vertices (i, j), we choose a path Pij from node i to node j.

If edge k belongs to the path Pij, we denote it by k ∈ Pij. The path length Pij is denoted

by z(Pij), representing the number of edges comprising Pij. If the path Pij passes through

vertices i,m1,m2, ...,mν , j then Xij = Xi,m1 +Xm1,m2 + ...+Xmν,j . As a result, we get

X2
ij =

∑
k∈Pij

±X̃k

2

≤ z(Pij)
∑
k∈Pij

X̃2
k , (1.22)

where we have applied the Cauchy-Schwarz inequality.

Therefore, the RHS of (1.21) can be bounded as follows

n−1∑
i=1

n∑
j>i

X2
ij ≤

m∑
k=1

n−1∑
i=1

n∑
j>i; k∈Pij

z(Pij)

 X̃2
k . (1.23)

Plugging the bound (1.23) into the inequality (1.21) and canceling out the difference

variables, we get

εk(t) >
a

n
·

n∑
j>i; k∈Pij

z(Pij) for k = 1, ...,m. (1.24)

This criterion constitutes the Connection Graph method for synchronization in directed

networks [2] which is formulated in the following theorem.

Theorem 2 [2]. Under the assumption (1.9), complete synchronization of system (1.1)

with a symmetrical connectivity matrix G is globally asymptotically stable if the following

holds

εk(t) >
a

n
bk(n,m) for k = 1, ...,m and for all t, (1.25)

where bk(n,m) =
n∑

j>i; k∈Pij
z(Pij) represents the sum of the lengths of all chosen paths Pij

which pass through a given edge k on the connection graph.

More details on the derivation of the Connection Graph method and its application to

specific undirected networks can be found in [2].
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1.4 Graph-based Stability Method for Directed Networks with Examples

In this section, we extend the Connection Graph method to directed graphs and derive

an effective approach to proving synchronization in directed networks. In three subsections,

we will use specific network topologies to illustrate how the methods work in these cases.

In the first subsection, we will start from an introduction of the previously developed Gen-

eralized Connection Graph method [41]. Then, we will calculate a lower bound by using

our new method. To show that our new method is more effective for sparse directed net-

works, we will compare the two methods in three more network configurations in the second

subsection. In the last subsection, we will gave an example of utilizing the new method

for a 30-node network, demonstrating that the computation task of the method could be

laborious and the pseudo-code given in this section can be a solution for calculating the

synchronization bound.

1.4.1 Five-node undirected networks

Let’s consider a simple asymmetric directed graph (Fig. 1.1A). Let d denote the cou-

pling strength in general. Specifically, dij denotes the coupling strength from node i to

node j. Dc
i denotes the node unbalance at the node i, which is the difference between the

sum of the coupling coefficients of all edges directed outward from node i and the sum of

the coupling coefficients of all the edges directed to node i. Dij denotes the mean value of

the node unbalance between node i and j. eij denotes an edge from node i to node j in a

directed graph and between node i to node j in a symmetrized graph. Therefore, we can

calculate the following quantities.

The node balance Dc
i for each node of the graph:

Dc
1 = d− 2d = −d Dc

2 = d− d = 0 Dc
3 = d− d = 0

Dc
4 = d− d = 0 Dc

5 = 2d− d = d.
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The mean node unbalance Dij, which is equal to
Dci+D

c
j

2
for each nodes i and j :

D12 :
Dc1+D

c
2

2
= −d

2
D13 :

Dc1+D
c
3

2
= −d

2
D14 :

Dc1+D
c
4

2
= −d

2
D15 :

Dc1+D
c
5

2
= 0

D23 :
Dc2+D

c
3

2
= 0 D24 :

Dc2+D
c
4

2
= 0 D25 :

Dc2+D
c
5

2
= d

2

D34 :
Dc3+D

c
4

2
= 0 D35 :

Dc3+D
c
5

2
= d

2

D45 :
Dc4+D

c
5

2
= d

2
.

1.4.2 Existing Generalized Connection Graph method

To find an upper bound for the synchronization threshold in concrete networks, one

can use the previously published Generalized Connection Graph method [41] and follow its

steps.

Step 1. Symmetrize the graph by replacing each directed edge by an undirected edge

with half the coupling strength: dij = d
2

(see Fig. 1.1B). The coupling strength is adjusted,

based on the mean node unbalance Dij. If Dij < 0 and there is an edge in the symmetrized

graph linking directly i and j, then we calculate the quantity
∣∣∣Dij5 ∣∣∣ and add this additional

coupling strength to dij. For example in Fig. 1.1B, we only added a weight d
10

to edge e12

because D12 = −d
2
< 0 and there is an edge between node i and j.

Step 2. Choose a path Pij between any pair of nodes i, j of the symmetrized graph (Fig.

1.1B). For convenience, we choose the shortest path. Note that the choice of the shortest

path does not always lead to the lowest synchronization threshold [44].

Our choice of paths is

P12 : e12 P13 : e12, e23 P14 : e15, e45 P15 : e15

P23 : e23 P24 : e23, e34 P25 : e12, e15

P34 : e34 P35 : e34, e45

P45 : e45.

Step 3. For each edge of the graph we determine the following inequality.
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Figure 1.1. A five-node network.
(A) Original directed graph with different weights. (B) Symmetrized graph obtained using
the previously developed method. The synchronization threshold is e45: d > 5a. (C) Sym-
metrized graph obtained via the Augmented Graph method. The synchronization threshold
is e34: d >

10a
3

.
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For e12 (link between nodes 1 and 2):

d1 +D1 =
d

2
+

d

10
>
a

5
bk, where bk =

n∑
j>i; k∈Pij

L(Pij).

The chosen paths that pass through the e12 are P12, P13, P25. Their weighted lengths L(Pij)

are:

L(P12) = |P12| = 1 since Dc
1 +Dc

2 < 0; and there is an edge between nodes 1 and 2

L(P13) = |P13|χ(1 + D13

a
) = |P13|(1 + 0

a
) = 2

L(P25) = |P25|χ(1 + D25

a
) = |P25|(1 + d

2a
) = 2(1 + d

2a
)

Summing up all the lengths, we get

d

2
+

d

10
>
a

5

[
1 + 2 + 2

(
1 +

d

2a

)]
.

Therefore, the synchronization condition for the e12 is d > 5a
2
.

Exactly as for the e12, we can calculate the synchronization bounds for the other edges.

These bounds are

e12 : d > 5a
2

e15 : d > 5a
4

e23 : d > 2a

e34 : d > 10a
3

e45 : d > 5a.

Hence, according to the Generalized Connection Graph method [41], the synchroniza-

tion bottleneck for the entire network is the edge e45 where the maximum coupling strength

is required to synchronize all oscillators of the network.

1.4.3 New Augmented Graph Stability method

In this subsection, we extend the Generalized Connection Graph method for proving

synchronization in directed networks. Our approach, which we called the Augmented Graph

Stability method, is based on the transformation of the directed graph into an undirected

graph. This is done by replacing each direct link between node i node j with an undirected
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edge whose coupling strength depends on the mean node unbalance between the two nodes.

In addition, we augment the graph by adding an extra edge, connecting node i and node j

if there is no directed link between them and their mean node unbalance is negative. Dif-

ferent weights are also associated with each path between any two nodes of the augmented

undirected network, according to the mean node unbalance. Upper bounds on the coupling

strength sufficient for synchronization in this augmented symmetrized network also guar-

antee global stability of synchronization in the original directed network. We show that

the new augmented graph method is more effective than the Generalized Connection Graph

method in sparse networks.

There are three steps in the new method. The differences are in symmetrizing the

graph (Step 1), choosing the path (Step 2) and calculating the bk for the inequality (Step

3).

Step 1. Symmetrize the graph by replacing each directed edge by an undirected edge

with half the coupling strength and add quantity
∣∣∣Dij5 ∣∣∣ to coupling strength, if Dij < 0 and

there is an edge in the symmetrized graph linking directly i and j.

New principal component of the Augmented Graph Stability method: If Dij < 0 and

there is no edge in the symmetrized graph linking directly i and j, then we add an edge in

the graph (dotted red line in Fig. 1.1C). Then the quantity
∣∣∣Dij5 ∣∣∣ assigns as the coupling

strength to this augmented edge.

Step 2. Choose the same shortest path Pij between any pair of nodes i, j of the sym-

metrized graph (Fig. 1.1C). The ingredient of the new method is that, when we add an

edge, we choose it once to replace our previous choice where the node unbalance Dij is

negative. In this example, they are P13 and P14. Our choice of paths is

P12 : e12 P13 : e13 P14 : e14 P15 : e15

P23 : e23 P24 : e23, e34 P25 : e12, e15

P34 : e34 P35 : e34, e45

P45 : e45.
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Step 3. We recalculate the inequality when the edge is added, i.e. the quantity of bk is

re-calculated. The rest of calculations are same as in the previous method.

For e12 (link between nodes 1 and 2):

d1 +D1 =
d

2
+

d

10
>
a

5
bk, where bk =

n∑
j>i; k∈Pij

L(Pij).

The chosen paths that pass through the e12 are P12, P25. Their weighted lengths L(Pij) are:

L(P12) = |P12| = 1 since Dc
1 +Dc

2 < 0;

L(P25) = |P25|χ(1 + D25

a
) = |P25|(1 + d

2a
) = 2(1 + d

2a
)

Summing up all the lengths, we obtain

d

2
+

d

10
>
a

5

[
1 + 2

(
1 +

d

2a

)]
.

Therefore, the synchronization condition for e12 decreases to d > 3a
2
.

For an additional edge e13 where the bk = 1, we have: d
10
> a

5
· 1. So d > 2a.

Exactly as for the e12 and e13, we can calculate the synchronization bounds for the

other edges. These bounds can be summarized as follows

e12 : d > 3a
2

e13 : d > 2a e14 : d > 2a e15 : d > 3a
4

e23 : d > 6a
5

e34 : d > 10a
3

e45 : d > 3a.

Hence, according to the new method, the synchronization bottleneck for this entire

network changes to e34, where the maximum coupling strength reduced to 10a
3

.

1.4.4 Comparisons of the methods for other network configurations

To deepen our understanding of the new method, we apply the Augmented Graph

Method to three other configurations. We find that both the previous Generalized Connec-

tion Graph method and our new method have their advantages when it comes to networks
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Figure 1.2. Three more configurations for methods comparison purpose.
(A) Sparser graph with six edges where the Augmented Graph method performs better:
d > 10

3
. (B) Graph with eight edges where both methods give the same synchronization

threshold: d > 2a. (C) Denser graph with nine edges where the previous method performs
better: d > 6a

5
.
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with different graph densities. Specifically speaking, in Table 1.1, we used both the Gener-

alized Connection Graph method and the new Augmented Graph method to calculate the

synchronization bounds for three networks of Fig. 1.2. This table demonstrates that the

new method does give lower bound when the graph is sparser. For example, in Fig. 1.2A,

adding an edge e24, we can lower the load on edge e12. However, in a denser graph of Fig.

1.2C, the new method can not lower the bound. Indeed, the added edge e35 with the new

method, becomes a new bottleneck which increases the bound of the entire network. In

between the sparse graph (Fig. 1.2A) and dense graph (Fig. 1.2C), there is a case that

both methods yield the same bound (Fig. 1.2B row in Table 1.1). This occurs when the

load of added edge (e14 or e35) in the new method is equal to the bottleneck (e12) of the old

method.

Table 1.1. Comparison of the synchronization thresholds calculated using the Generalized
Connection Graph method and Augmented Graph method in sparse and dense graphs.

GCG1 BN2 AG3 BN2 EA4

Fig. 1.2A d > 14
3
a e12 d > 10

3
a e12 e24

Fig. 1.2B d > 2a e12 d > 2a e14, e35 e14, e35
Fig. 1.2C d > 6

5
a e13 d > 2a e35 e35

1Synchronization threshold calculated by using the Generalized Connection Graph;2

Bottleneck: the edge where the maximum coupling strength is required to synchronize all
oscillators of the network;3 Synchronization threshold calculated by using the Augmented
Graph method;4 Edge Added according to the Augmented Graph method.

1.4.5 Computational algorithm and its application to larger irregular networks

Both of the old and the new methods have advantages on certain topologies. Typically,

the two methods become more effective and give more correct information on the qualita-

tive dependence of the synchronization thresholds on parameters of the network, while the

number of oscillators composing the network increases. Unfortunately, the calculation of

weighted path lengths can be quite a laborious task for larger networks with complicated
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coupling schemes. Therefore, we have to develop pseudo-codes as an implementation of the

algorithm for handling the computation. The algorithm first calculates the node unbalance

and mean node unbalance for each node of the graph. It then augments the graph by adding

an extra edge and connecting node i and node j if their mean node unbalance is negative.

While re-weighing the graph similar to Fig. 1.1C, it chooses a shortest path Pij between

any pair of nodes i and j of the symmetrized graph. Finally, for each edge of the graph the

algorithm determines the main inequality.

In the following implementation of pseudo codes, i and j represent the ith and jth

nodes. k represents the kth edge. wk represents the coupling strength of the kth edge. swk

represents the coupling strength in the symmetrized graph. We require wk to be sorted in

an ascending order, according to the node’s index. This is to guarantee that wk and swk

have the same order if no edge added to the graph and edge will be added, starting from

(m + 1)th element of swk. |Pij| represents the path length. L(Pij) represents the weighted

path length.

Input: Directed graph with various weights. Output: sck.

begin:

1. [initialize]

l = 0; j = 0; swi = 0; k = 0; compute node unbalance Dc
i and mean of node unbalance Dij

between node i and node j;

2. [symmetrize the graph, find the shortest path and compute weighted path

length]

for node i from 1 to n

j = i+ 1;

while j ≤ n

find the shortest path between node i and j (i.e. using Dijkstra algorithm, please

refer next subsection.);

k = k + 1;

if Dij < 0
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if there is an edge between node i and j

[re-assign a coupling strength and compute the weighted path

length]

swk=
wk
2

+wk
2n

; L(Pij) = |Pij|;

else [we augment the graph and change the shortest path between

node i and j to this augmented edge]

l = l + 1;swm+l = wk
2n

; L(Pij) = 1;

end if

else [half the coupling strength and compute the weighted path length

there is an edge between i and j]

swk = wk
2

; L(Pij) = |Pij|(1 +
Dij
n

);

end if

end while

end for

3. [compute the bk and derive the inequality]

In case edge k from 1 to n

[count edge k’s occurrence in the shortest path]

bk =
n∑

j>i; k∈Pij
L(Pij);

In case edge k from n+ 1 to n+ l

bk = 1;

solve the inequality swk >
a
n
bk; record the solution as sck;

end.

Then we use this algorithm to compute the synchronization threshold for a randomly

chosen directed graph. This graph (Fig. 1.3A) has 30 nodes, 37 edges and various coupling

strength chosen from d, 2d and 3d. With this algorithm, we symmetrized the graph and

adding new red dotted edges in the graph (Fig. 1.3B). The synchronization bottleneck for

this network happened to be edge e89. It is approximated to be d > 25a by using the

Augmented Graph method, while the old method yields d > 44a for the same edge. This
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shows that the Augmented Graph method does reduce the synchronization threshold in a

sparse graph.

Figure 1.3. Calculating an upper bound for a sparse directed graph.
(A) A sparse directed graph with 30 nodes and 37 edges the weights are randomly assign
from (d, 2d, 3d). The synchronization threshold using the old method is e89: d > 44a. (B)
Symmetrized graph with additional edges (red dotted line) obtained from the Augmented
Graph method. The synchronization threshold is e89: d > 25a.

1.4.6 Graph-based Stability method is path dependent

The proposed new algorithm is a path dependent method. That means that the choice

of the path can yield different bottlenecks because the different selection of paths can lead

to the load change on each edge. For example, in Fig. 1.4, our choice of paths is

P12 : a P13 : b P14 : b, c

P23 : e P24 : d

P34 : c
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However, one can also change the choice of P14 from {b, c} to {a, d}. In this case, one

chooses to redistribute the load from {b, c} to {a, d}. Thus, the equation 1.25 has to be

re-evaluated regarding these four edges. This implies that the synchronization threshold for

the whole network has to be re-calculated. This observation has been illustrated in previous

publications [44].

Figure 1.4. Augmented Graph Stability method is path dependent.

1.4.7 Augmented Graph Stability method can utilize the method for finding Shortest

Path (SP)

It has been pointed out that choosing the shortest path may not give the minimum

value of bk [44]. However, we suggest that one may use the shortest path (SP) as path

choices for calculating the synchronization threshold for the two following reasons. First,

for a larger network, the derivation of the thresholds by hand is time-consuming as the

size of network increases. One has to use an automated and well-developed method to

handle this derivation. How to find the SP is one of classic combinatorial problems and it

has been extensively studied, many efficient methods have been developed and are public

accessible. Furthermore, in some cases, the rules/methods regarding how to choose the path

(not necessarily the SP) for the bk calculation may not be at hand immediately. The SP

could be a first try.
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The SP problem has a mathematical expression. Given a directed graph G(V,E) where

V and E are vertex set and edge set of G correspondingly. A constant cij represents fixed

costs from the initial (source) vertex i to terminal (target) vertex j. A binary variable vij

is equal to “1” only if there is an edge from vertex i to j; “0” otherwise. Therefore, the

shortest path problem can be formulated as a linear integer programming problem:

Minimize
n∑
i=1

n∑
j=1

cijvij

subject to
n∑

j=1,j 6=i

vij −
n∑

j=1,j 6=i

vji = φi (1.26)

where

φi =


1 if vertex i is initial vertex;

−1 if vertex i is terminal vertex;

0 otherwise.

Different algorithms used for shortest path selection may result in running time differ-

ence. We use the Dijkstra algorithm to select the shortest path for two reasons. First, it

is an efficient algorithm and can be easily found in many textbooks (i.e. [45]). Second, it

is easy to combine the re-weight procedure together with the shortest path algorithm. Of

course, one may prefer other algorithms such as Dynamic Programming [46], A-star [47],

etc. to substitute the Dijkstra. The Dijkstra algorithm runs in O(m log(n)) time where

m and n represents the number of edges and number of nodes in the graph respectively

[45]. Therefore, if the proposed implementation utilizes the shortest path calculated by the

Dijkstra methods will have a running time of O(n · (n− 1) ·m · log(n)) approximately.
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1.4.8 Graph-based Stability method may also utilize kth shortest path (KSP)

If the shortest path is not available for some reasons, the second can be used and

the synchronization threshold have to be recalculated. If the second one is not available

either, the third shortest path will be used, so on and so forth. This case may not lead

us to consider the synchronization problem alone but to consider the KSP problem as an

embedded problem. Therefore, the study of the SP-like problem and even the KSP problem

itself might be helpful to further understand the Graph-based Stability Methods. Please

refer to Appendix B for the details.

1.5 Conclusions

In this Chapter we have addressed an important question, regarding network synchro-

nization: What is the stability criterion for synchronization in networks of identical (or

nearly identical) oscillators stable, especially in regard to network topology and coupling

strengths? This general question had been widely discussed, and powerful stability methods

for network synchronization had been developed. The most popular approaches include the

Master Stability function and the Connection Graph method. Both methods, originally

developed for undirected networks, have been generalized to handle networks with directed

connections. In this Chapter, we have developed a modification of the generalized Con-

nection Graph method that gives tighter bounds on the coupling strength required for the

onset of stable synchronization in sparse directed networks. We showed how the directed

network can be turned into an augmented undirected network with weighted connections.

The stability conditions for synchronization in this augmented directed network also ensure

stable synchronization in the original directed network.

We hope that this method not only inspires research on complex networks, but may have

applications to the synchronization phenomena in biology and engineering. We also hope

this method can contribute to deepening our understanding towards neurological disorders
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caused by synchronization of neurons at a network level. In the next Chapter, we will

develop a graph-based method to solve disease related problems at a molecular level.



29

CHAPTER 2

MATHEMATICS IN PROTEOMICS

2.1 Background

Ca2+, a secondary messenger in cellular signal transduction, plays an important role

in many biological processes, including the regulation of cell division, differentiation, and

apoptosis in the cell life cycle [48–51]. Ca2+-binding proteins are significantly related to

serious diseases such as Alzheimer’s disease [3], heart disease [4], diabetes [4] , leukemia

[5, 6], and cancers [7–10]. From a molecular perspective, mutations in close proximity to

the Ca2+-binding sites often alter a protein’s ability to bind Ca2+, a malfunction which is

sometimes the primary cause of diseases [52–54]. Therefore, identifying Ca2+-binding sites

in proteins is a crucial step towards understanding the molecular basis of diseases related to

Ca2+-binding proteins. As illustrated in Fig. 2.1A, the coordination of Ca2+ utilizes various

classes of oxygen atoms from carboxyl groups (Asp, Glu), carboxamide groups (Asn, Gln),

and hydroxyl groups (Ser, Thr) in side chains, carbonyl oxygen atoms of most residues in

the main chain, and from cofactors and water molecules. The majority of all Ca2+-binding

ligands originate from turn/loop regions [55–58]. Previous studies have revealed that Ca2+

is coordinated by 3-8 oxygen ligand atoms [57, 59–61] with an average of 6 ligands for all

Ca2+-binding sites, or 7 ligands for only EF-hand sites [56]. These hydrophilic oxygen

atoms are embedded within multiple, concentric shells of hydrophobic carbon atoms [62].

A majority of Ca-O bond lengths fall within the range 2.2-2.9Å and Ca-C bond lengths fall

within the range 2.4-4.6Å in Ca2+-loaded X-ray structures [63].

Computational methods to predict Ca2+-binding sites have been actively pursued us-

ing various approaches [51, 64–66]. Most of the published structure-based Ca2+-binding site

prediction algorithms, including FEATURE [67], Fold-X [68], and the approaches by Nayal

et al. [59] and Yamashita et al. [62], rely on the spatial coordinates of ligand oxygen atom-
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Figure 2.1. Definition of shells and algorithm workflow.
(A) The central Ca2+ is coordinated by the first shell of oxygen atoms (light gray), which
is concentrically embedded into two other shells of carbon atoms (black). Depending on
the length of the alkyl side chain, an atom of the second or third shell has a covalent bond
with an atom from the first or second shell. D1 represents the distance between Ca2+ and
second shell carbon atoms. D2 is the distance between Ca2+ and third shell carbon atoms.
A1 stands for the angle formed by Ca2+ and the second and third shell carbon atoms,
respectively (Ca-C1-C2). (B) Workflow of MUGC.
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s. Previous work has led to the development of two algorithms, GG [69] and MUG [70],

for predicting Ca2+-binding sites by constructing a corresponding graph for each protein

with a graph theoretic algorithm to identify oxygen atom clusters [69, 70]. These analy-

ses of binding site geometry have been based mainly on X-ray structures deposited in the

Protein Data Bank (PDB), and the prediction approaches derived from them have been

tested mostly on X-ray structures with high resolutions. Unfortunately, Ca2+-binding sites

with weak affinity (0.05-2 mM) often remain unidentifiable or ”invisible” in crystal X-ray

structures due to low occupancy and conformational ensembles. For example, although

extracellular Ca2+ is known to regulate family C of GPCR, Ca2+ was not observed in more

than 20 X-ray structures of metabotropic glutamate receptor (mGluR) [71, 72]. Further

prediction of Ca2+ binding sites in X-ray structures of low resolution and homology models

requires the capability to overcome large errors and incorrect assignments of the side-chain

oxygen atoms [73, 74]. As a complementary technique of structural elucidation, NMR of-

fers us additional insights into Ca2+-binding proteins [75, 76]. NMR structures differ from

X-ray structures in that, typically, a whole ensemble of low energy conformations satisfying

the experimental constraints is obtained from the structural calculations. These structures

represent the dynamic nature of the protein in solution, in contrast to the static state of a

crystal structure. However, the Ca2+ ions cannot be directly observed in NMR experiments,

but rather are positioned in the structure based on indirect effects exhibited by chemical

shifts and constraint-based assumptions. A barrier to identifying Ca2+-binding sites in pro-

tein structures derived by NMR is that the geometric coordination of Ca2+-binding sites

cannot be determined by direct observation of Ca2+, and this difficulty is compounded by

the fact that the positions of the oxygen atom ligands that fix the Ca2+ position are not

directly determined either, but extrapolated from templates of their residues, because the

isotopically-abundant 16O has an intrinsic zero nuclear spin. The previous work detailed

the development of several graph theoretic algorithms to predict Ca2+ binding sites in pro-

teins based on identification and refinement of oxygen clusters [70]. Results of these studies

further suggested that the algorithm could be extended to observe the carbon atoms asso-
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ciated with the oxygen binding ligands which would allow us to predict Ca2+-binding sites

in proteins where the Ca2+ ion may not be directly observable (e.g., low resolution struc-

tures, weak affinity binding sites, and NMR structures). We therefore hypothesized that the

second, hydrophobic shell of carbon atoms enclosing a Ca2+-binding site could sufficiently

determine the site’s location in either X-ray or NMR structures. To test this, we developed

a new algorithm, MUGC , which is capable of predicting Ca2+-binding sites by pinpointing

the Ca2+ ion position using carbon clusters (i.e., concentric rings of carbon atoms surround-

ing a ring of oxygen atoms chelating the Ca2+, Fig. 2.1A), and applying filters based on

the centers of mass of side-chain and main-chain oxygen atoms. We have applied MUGC to

delineate Ca2+-binding sites in both X-ray and NMR protein structures without reference

to explicit side-chain oxygen ligand atoms. The metal selectivity of MUGC has been further

evaluated by analyzing three additional protein datasets containing Mg2+, Zn2+, and Pb2+

binding sites. Additionally, MUGC was evaluated with a negative control dataset consisting

of protein structures not known to bind Ca2+ or other metal ions. Our results demonstrate

not only that the Ca2+-binding sites in NMR and X-ray structures can be identified based

on geometric arrangement of the second-shell carbon cluster, but that this approach with

Ca2+-optimized selection parameters, can also selectively differentiate between Ca2+ and

other relevant divalent cations. We further anticipate that application of this algorithm

will enable us to identify previously-unknown Ca2+-binding sites, deepen our understand-

ing of structural characteristics of Ca2+-binding sites, and improve our ability to design

Ca2+-binding proteins with diversified functions [77].

2.2 Methods

2.2.1 Definition of carbon shells

As seen in Fig. 2.1A, the Ca2+ ion is bound by charge interactions to oxygen atoms

either from side-chain residues (e.g., Glu or Asp) or main-chain carbonyl oxygen. These

atoms, in turn, are covalently bound to carbon atoms, which constitute a second shell. A
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third shell of carbon atoms can be defined as carbon atoms covalently bound to a second

shell. The two concentric shells of carbon atoms, in our hypothesis, constitute a scaffold

which determines the central binding site. A set of physical parameters describing the

spatial relationship of the atoms comprising the binding site can be defined by the angle

Ca-C1-C2 and the distance between Ca2+ and C1 (D1 in Fig. 2.1A) and by the distance

between Ca2+ and C2 (D2 in Fig. 2.1A), where C1 and C2 are carbon atoms within the

second and third shells, respectively. The binding site, which includes both the Ca2+ and

oxygen atoms, is enclosed in a second shell defined by a particular carbon cluster. The Ca2+

position then can be calculated by geometric parameters related to the second and third

shell carbon atoms.

2.2.2 General description of algorithm

In general, execution of this algorithm involves three major steps (Fig. 2.1B). In step

1, taking a PDB structure (i.e. 3CLN) as input, we construct the protein topological graph

whose vertices are the carbon atoms with associated oxygen atoms. Two vertices share an

edge if the distance between them is less than some defined threshold. In step 2, we search

for all maximum cliques in the graph to identify carbon clusters, and tentatively position

Ca2+ at the geometric center (Ca2+ center) of each cluster. These clusters are required

to have at least four carbon atoms, ensuring a minimum of four oxygen atoms in the site

available to chelate Ca2+ [57, 78]. In step 3, we apply three different filters to remove clusters

that are not suitable for Ca2+-binding. The remaining clusters, as well as the Ca2+ center

of each cluster, are the predicted Ca2+-binding sites. When using dynamic NMR structures

for prediction, MUGC screens the best-fit site among all members of the ensembles and

uses more inclusive geometric parameters than when using X-ray structures.

2.2.3 The topological graph of protein carbon atoms

To localize the initial calculation of the Ca2+ position, we construct a graph represen-

tation of the protein. First, we extract all Cartesian coordinates of carbon atoms covalently
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bonded to oxygen atom(s) and calculate the distances between all of these carbon atoms.

Then we construct a graph G(V, E) where V is the vertex set and E is the edge set of G. A

vertex in V represents one extracted carbon atom. An edge is assigned between two vertices

if the distance between these two vertices (C-C distance) is smaller than a predetermined

cutoff (7.5 Å for X-ray structures and 8.3 Å for NMR structures). The constructed graph is

then recorded in an adjacent matrix (Table E.7). For example, calmodulin has four binding

sites (Fig. 2A and Fig. 2B). It also has a total of 209 carbon atoms covalently binding to

oxygen atoms. After we construct its topological graph (Fig. 2C and Fig. 2D), the four

binding sites are clearly discernible as regions of dense convergence in the graph.

2.2.4 Center of mass

Proteins in solution, especially their flexible side chains, are in constant motion. To deal

with this motion, we use the abstracted side-chain mass center (Fig. 2A) as the reference

for predicting Ca2+ position. Side-chain center of mass is beneficial because it reduces

sensitivity to errors in the specific locations of side-chain atoms.

2.2.5 Ca2+ localization algorithm

After preparation of the topological graph and side-chain center of mass for a given

protein, we first search all maximum cliques in a graph constructed from the carbon atoms.

Finding all maximal cliques of a general graph is an NP-hard problem, [79] requiring more

than polynomial computation time to process. Fortunately, in the generated carbon atom

graph, the size of any maximal clique never exceeds ten. This ceiling is not a theoretical

one, but a pragmatic consequence of our considering only carbon atoms which are covalently

bonded with oxygen atoms. These carbon atoms maintain some distance from each other

due to the charge repulsion from the attached oxygen atoms. Based on these properties, we

apply a well-established algorithm of Bron and Kerbosch [80] to produce all the maximal

cliques efficiently. In our case, the maximal cliques are generated within O(n) time, where

n is the number of vertices in graph G.
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Figure 2.2. The structure of calmodulin (CaM) and topological graph of carbon atoms.
(A) CaM with center of mass of side chain (the small dots). (B) Ca2+ binding site EF-I of
CaM. (C) Topological graph of all carbon atoms in CaM associated with potential oxygen
ligands (includes both side-chain and main-chain carbon atoms in putative binding residue).
(D) The graph of CaM site EF-I loop.
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2.2.6 Constraints and filters

We tentatively place Ca2+ in the geometric center of the carbon clusters, and then

determine if they qualify based on constraints from various filters including the center of

mass of side-chain, elimination of redundant predictions, van der Waals clashes, formal

charge, and geometric constraints. Initial parameters were selected based on parameters

used in previous studies and statistical analyses conducted [57, 69, 70, 78]. These parameters,

including cutoff distances, were then optimized based on values for selectivity and sensitivity

from analysis of the training dataset. These optimized parameters (Table E.8) were then

applied to the test dataset. For example, the range of distance between Ca2+ and second

shell carbon atom (D1 in Fig. 2.1A) is reported to be between 3.0 - 4.6Å for main-chain

carbonyls [57]. The covalent bond length between second shell carbon atoms and its next-

outer shell carbon is 1.54Å. Therefore, we can estimate that the distance between a Ca2+

and the third shell carbon atoms may not exceed 6.14Å and should also be greater than D1.

If a predicted Ca2+ position falls outside of this range, this position is not likely a correct

prediction.

2.2.7 Performance evaluation on binding sites and binding residues

A Predicted True Site (PTS) is a true Ca2+-binding site for which there is at least one

Correct Hit (CH). Sensitivity (SEN) is applied to represent the percentage of PTS in all

Documented Sites (DS). Selectivity (SEL) is applied to represent the percentage of Correct

Hit (CH) in Total Predictions (TP). Sensitivity measures the proportion of actual binding

sites which are correctly identified. Selectivity measures the proportion of predicted binding

sites which are correct. Higher selectivity indicates fewer false positive predictions (=over-

predicted sites). Higher sensitivity and selectivity are important for reducing the number

of predictions and classification errors.

SEN = (PTS)/(DS)× 100%
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SEL = (CH)/(TP )× 100%

As MUGC predicts both Ca2+ position and binding residues, Correct Hit (CH) could

be defined in two ways. In the first definition, a CH is a predicted position falling within

a specific distance (here 3.5 Å [69, 70, 81]) of the documented Ca2+ position. In the second

definition, a CH is a predicted cluster of residues that contains at least two true Ca2+-

binding residues [78]. In NMR, where Ca2+ is not observable, we measure the prediction

performance by comparing the predicted residues to the holo X-ray crystal structures.

2.2.8 Algorithm implementations and computation time

The implementation language is mainly Java and Perl on URSA (a 576 core Super

Computer based on the Power5+ processor and IBM’s P series architecture). The original

source codes are available upon request. Matlab, Mathematica and PyMOL were used for

graphing and visualization. LPC/CSU online servers were used for identify binding ligand

from holo structures [82]. The computation time of predicting one protein depends on the

size of the protein and the proximity of carbon atoms to one another in the spatial structure,

which affects the time required for our graph algorithm to search for all maximum cliques.

In terms of CPU time, it may depend on what kind the computer we are using as well.

For example, the protein calmodulin (3cln) has four classic Ca2+ binding sites and 148

residues. Analysis of this file on our supercomputer takes less than 15 seconds, while the

same analysis on our personal computer (Intel Celeron M 370(1.5GHz) with RAM 512MB)

takes close to two minutes. On the other hand, as we increase the number of pdb files to be

processed during a single run of the algorithm, or evaluate pdb files for very large proteins,

the processing time increases significantly. A supercomputer is desired as multiple protein

structures can be processed simultaneously for the purpose of developing the parameters

and evaluating the performance of MUGC . Although we have not specifically calculated

the rate and magnitude of this increase, we expect it to be exponential based on analyses

of the previous algorithms performance [69, 70].



38

2.3 Results

2.3.1 Non-redundant X-ray dataset

To validate our hypothesis, we used two X-ray datasets: a training dataset (Table 2.3

and E.11), a testing dataset (Table 2.4 and E.12), and a negative control dataset (Table

E.18). For the datasets we generated, ”non-redundant” applies to sequence identity which

means that we removed sequences with 90% similarity. For the published dataset, we made

sure that no identical proteins were included within a single dataset. This also applied to

NMR dataset.

The X-ray training dataset (Table E.11) was originally from Schymkowitz et al. [68]

The X-ray testing dataset (Table E.12) was reproduced by incorporating the Ca2+-binding

proteins from Pidcock and Moore’s datasets [56] and the validation structures for NMR

testing dataset. We eliminated the redundant proteins in the datasets and revised the testing

datasets to have at least one binding site in each protein coordinated by at least four binding

ligand atoms. Binding sites with low coordination numbers (three or less) may be due to

crystal packing or non-specific binding, imply reduced stability and lower binding affinity

at best [78]. The X-ray training dataset contained 18 proteins with 45 documented Ca2+.

The testing dataset contained 43 proteins with 108 documented protein-coordinated Ca2+.

The X-ray training and testing datasets contained continuous (e.g. lactalbumin: 1B9O.pdb

and calcineurin: 1AUI.pdb), semi-continuous (e.g. lipase: 1OIL.pdb and proteinase K:

2PRK.pdb), and discontinuous binding sites (e.g. thermitase: 1THM.pdb and penicillin

acylase: 1AI4.pdb). The negative control dataset contained 24 proteins selected at random

with resolution ≤ 2.0 Å, less than 90% sequence homology, and no indication of metal

binding sites in the selected structure or in related structures. All X-ray crystallography

structures were obtained from the PDB.
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Figure 2.3. Performance in terms of sensitivity on X-ray dataset depending on C-C cutoff.

2.3.2 Sensitivity depending on C-C cutoff

Sensitivity of MUGC was found to increase as the C-C cutoff increases (Fig. 3) on

the X-ray training dataset. This is consistent with the previous finding that O-O cutoff is

positively correlated with sensitivity [69]. We have used the larger 7.5Å as cutoff, because

this accommodates a distance twice the length of the combined Ca2+-O and C-O bond

lengths and we have developed effective methods to eliminate false positives within this

range.

2.3.3 Eliminate false positive predictions with Filters

One of the concerns arising from not directly utilizing coordination atoms to predict

Ca2+-binding sites in proteins is the possibility of large number of false positive predic-

tions. To reduce the number of reported false positive predictions, three types of filters

were incorporated into the algorithm: 1). A charge filter, which requires that at least one
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negatively-charged residue is present within the tentative binding site; 2). Geometric shel-

l filters, which select the putative sites according to geometric relationships between the

calculated Ca2+ position and the second and third shell carbon atoms; 3). Filters based

on side-chain center of mass and van der Waals clashes. The side-chain center of mass is

used in conjunction with main-chain oxygen atoms. If a main-chain oxygen atom is un-

der consideration as the binding ligand, then the distance between the side-chain center of

mass and Ca2+ must be greater than that of the Ca-O (carboxylic) distance in the X-ray

structure. We use calmodulin (3CLN.pdb) from the X-ray training dataset to illustrate

how these filters work. First, we used vertices representing 209 carbon atoms, using 7.5 Å

as C-C cutoff, to construct a topological graph (see Methods). By searching all maximal

cliques in the graph, 4626 non-redundant carbon clusters comprised of four or more carbon

atoms were obtained. Among the 4626 clusters, 4589 are false positive predictions. The

charge filter first eliminates 1639 carbon clusters. Next, the geometric shell filters eliminate

an additional 2453 clusters, including 1405 clusters where the distance between Ca2+ cen-

ter and third shell carbon atom is smaller than the distance between Ca2+ center and the

second shell carbon atom, and another 1048 are eliminated based on previously-reported

geometric parameters. [57] The third and final filter eliminates another 497 clusters. For

example, we assume that the clash radius between Ca2+-nitrogen is 2.55 Å. If the distance

between the Ca2+ center and each nitrogen atom is smaller than this value, we consider

that there exists a clash and eliminate this cluster. Parameterization details are provided in

appendix C. In calmodulin carbon clusters which sequentially passed all filters, are scored

as firm predictions; this number is consistent with the documented binding sites. We al-

so have applied the filters separately, to illustrate improved results obtained by sequential

combination. The eliminated clusters are summarized in Table 2.1.

2.3.4 Performance on X-ray testing dataset

MUGC was evaluated with the Ca2+-loaded X-ray testing dataset (Table E.12). Out

of the 108 documented protein-coordinated Ca2+ ions in the testing dataset, 99 are chelated
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Table 2.1. False positive predictions remaining following applications of different filters in
either consecutive sequencea or individuallyb.

Chgc Geomd COMe

Sequential
2950
4589

497
2950

0
497

Individual
2950
4589

129
4589

267
4589

aFilters were applied consecutively;bEach filter was applied individually;cGeometric
filter;dCenter of mass and clash filter. Numerator represents remaining false positive
predictions.

by more than three binding residues. If we use the predicted Ca2+ position (CP) as a

measure, MUGC identified 102/104 sites with coordination numbers greater than three.

Five of the binding sites in this dataset have only three binding residues each. In terms

of binding residues (BR), MUGC is able to identify 98/99 binding sites having more than

three binding residues and 4/9 binding sites having three or fewer binding residues (Table

2.2 and Table E.12). The only binding site that was overlooked by MUGC due to the fact

that no negatively-charged residues are encountered in the binding site. This is discussed

in greater detail in the Discussion section.

Table 2.2. Performance on 43 proteins with 108 Ca2+ in testing X-ray dataset, measured
by CPa and BRb.

CP BR
TDSc

SENd 94% 94%
SELd 76% 43%
CNf (n > 3)
SENd 98% 98%
SELd 76% 43%

aPrediction based on Ca2+ position;bPrediction based on binding residues;cTotal
documented sites;dSensitivity;eSelectivity;fCoordination number.
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For the negative control dataset comprised of proteins without known Ca2+-binding

sites, we define True Negative (TN) as any prediction which does not identify a Ca2+-binding

site, and False Negative (FN) as any prediction which does identify a Ca2+-binding site.

Based on these criteria, MUGC correctly predicted 16/24 proteins as not being Ca2+-binding

proteins, with the remaining 8/24 proteins incorrectly identified as having Ca2+-binding

sites. A summary of predictions for this dataset is reported in Supplemental Table E.18.

The prediction success rate (66%), while lower compared to values reported for sensitivity

and selectivity with the testing dataset, still indicates that the majority of proteins were

identified correctly, and we can further speculate that one or more of the 8 FN predictions

may be Ca2+-binding sites that remain to be identified as such. These results show that

our hypothesis is valid on X-ray-derived Ca2+-loaded structures.

2.3.5 Structural difference between X-ray crystallographic sites and NMR solution

sites

Ca2+ binding sites with high affinity in X-ray structures are well defined due to direct

observation of electron density of the metal and its coordinating oxygen atoms. For ex-

ample, the static features of EF-hand Ca2+-binding sites in proteins such as a troponin C

exhibit structurally-similar pentagonal bipyramidal geometries (Fig. 2.4A). This geometry

is well conserved in more than 10 X-ray structures of troponin C [60]. In contrast, Ca2+-

binding sites in NMR structures usually are not well defined due to lack of direct observable

constraints and the dynamic ensembles. In addition, Ca2+-binding sites are often located

on the highly solvent-accessible surface, which reduces the possible connectivity that can be

used to define the Ca2+-binding site. For example, the high-resolution structure of troponin

C (2TN4.pdb), determined in the presence of 10 mM of Ca2+, has 23 structures in its NMR

ensemble. Surprisingly, the third Ca2+-binding site (D103, N105, D107, Y109 and E114) in

the least-energy (first) structure of the ensemble cannot be recognized as a Ca2+ site by the

criteria developed for static structures.
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Figure 2.4. Structure comparison between X-ray holo and NMR structures.
(A) X-ray structure of troponin C (2TN4.pdb) at a resolution of 2.00 Å (B) First ensemble of
NMR troponin C (1TNW.pdb) determined without Ca2+ constraints. (C) All conformations
in the NMR ensemble of troponin C (1TNW.pdb), determined without Ca2+ constraints.
Sub-figures (D) through (G) indicate the alignments of the binding site in calbindin D9K
NMR structures inferred without Ca2+ constraints (blue) and holo X-ray structure (green).
Ca2+ in X-ray is gray and the geometric center of a carbon cluster in the NMR structure
is red. (D) Ca2+ can be placed in the binding site formed by the loop A14-E27 in this first
member of the ensemble. (E) The binding site formed by the loop D54-E65 of the first
member of the ensemble does not appear to accommodate Ca2+, though it is present in the
X-ray structure (gray). (F) Similarly, the binding site formed by the loop A14-E27 of the
second structure in the ensemble cannot accommodate Ca2+, while (G), that formed by the
loop D54-E65, can.
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Figure 4B illustrates this lowest-energy structure, while Fig. 4C shows a composite

of all structures in the ensemble. Dynamic motion of the Ca2+-binding sites is implicit in

the NMR ensemble, where an ideal binding conformation may exist only temporarily. Such

observations motivated us to investigate the performance of algorithms on predictions of

NMR structures.

2.3.6 Non-redundant NMR dataset

To validate our hypothesis on NMR structures, we used a published training dataset [78]

(Table E.13) and constructed a testing dataset (Table E.14). The training NMR dataset (Ta-

ble E.13) contains six, EF-hand-type Ca2+-binding proteins with a total of 16 binding sites.

In four of these the authors originally deposited structures for which they imposed Ca2+ con-

straints in determining the structures: calmodulin (2BBM.pdb), parvalbumin (2PAS.pdb),

yeast frequenin (1FPW.pdb), and epidermal growth factor receptor pathway substrate 15

(1C07.pdb). It is not possible to project the original structures as they might have been

constructed without invoking the Ca2+ constraints. In the other two cases (troponin C: 1T-

NW.pdb and calbindin D9K: 2BCB.pdb) the structures submitted were not modified based

on Ca2+ constraints. We felt it important to include in the testing set only NMR structures

which were calculated without use of Ca2+ constraints. The testing dataset (Table E.14)

contains 11 NMR structures, all of which meet this criterion. Two additional criteria were

imposed: i) The data corresponded to the holo forms of the proteins (i.e., all binding sites

were occupied by Ca2+; ii) The NMR structures had corresponding holo structures derived

crystalographically, so that prediction results could be validated.

2.3.7 Analysis of C-C distance and geometric centers on a NMR training dataset

We analyzed the C-C distance of binding sites in the NMR structures with and without

Ca2+ constraints added to the structural calculations. Each ensemble in the NMR training

dataset was evaluated. If the total number of ensembles was greater than 20, we used only

the first 20 ensembles in our training NMR dataset. This data reveals that in the NMR
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structures with Ca2+ constraints, the second shell C-C distances are clustered from 4Å to

7Å, and 90% of the distances fell below 8.3Å, which was used as cutoff for identification of

the majority of the carbon atom clusters. The distribution of C-C distances in NMR binding

sites exhibits a lower mean and smaller deviation in the constrained structures (Fig. 2.5A)

as compared with structures lacking Ca2+ constraints (Fig. 2.5B). This is consistent with

our intuition that the addition of Ca2+ to the structures pushes carbon clusters closer to

each other in the binding sites, and therefore that the NMR structures should be close to

their X-ray holo counterparts.

There exists at least one structure in the ensemble that is similar to the site confor-

mation seen in models derived from X-ray diffraction of holo structures. Naturally, such

sites are recognized as having canonical Ca2+-binding geometry. For example, in the NM-

R structures of calbindin D9K (2BCB.pdb, derived without Ca2+ constraints), we observe

that the geometric Ca2+ center determined by the main-chain carbon atoms of residues E17,

D19, Q22, together with side-chain carbon of E27, is geometrically similar (within 0.55Å)

to the Ca2+ center documented in the holo X-ray-derived structure (4ICB.pdb). Fig. 2.4D

shows this NMR-observed binding loop superimposed on the X-ray structure. Similar con-

gruity is seen between the geometric center fixed by side-chain carbon atoms from D54,

N56, D58, E65 and main-chain carbon from E60 as seen in the holo X-ray structure and the

second-ranked structure in the NMR ensemble (Fig. 2.4G). These observations encouraged

us to use more inclusive parameters for the carbon clusters on NMR structures and predict

Ca2+-binding positions based on all ensembles.

2.3.8 Performance on NMR training dataset and testing dataset

For the training dataset (Table E.13), MUGC identified all binding sites with a selec-

tivity of 88%. For the testing dataset (Table E.14), MUGC predicted 20 Ca2+-binding sites

out of the (X-ray authenticated) 21 binding sites with 95% sensitivity and 81% selectivity.

These results show that using second shell carbon atoms can predict Ca2+ positions in the

NMR structures calculated with or without Ca2+ constraints. Among NMR structures, the
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Figure 2.5. C-C distances analysis.
(A) four NMR structures from the training dataset with Ca2+ constraints (1C07.pdb, 1F-
PW.pdb, 2BBM.pdb and 2PAS.pdb). (B) Troponin C NMR structures without Ca2+ con-
straints (1TNW.pdb).
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second binding site of the human centrin 2 (in complex with a 17 residue peptide (P1-XPC)

from xeroderma pigmentosum group C protein) is missed because the binding site simply

deviates too much from the site conformation seen in holo X-ray structures (RMSD of the

loop is 2.594 Å) [51].

2.3.9 Metal selectivity for Ca2+ over other divalent ions

Many proteins have well-documented binding sites for divalent metal ions other than

Ca2+. It becomes particularly relevant to ask whether the criteria we have developed to

recognize Ca2+ sites from second- and third- shell carbon coordinates are able to discriminate

sites known to bind other divalent metals of similar size; that is, how selective are these

criteria for Ca2+ binding as opposed to other divalent metals. To address this question, we

conducted additional research to determine whether the use of carbon shells in MUGC could

successfully discriminate between binding sites for Ca2+ as opposed to other divalent metals.

Three additional testing datasets (Table E.15-E.17) comprised of X-ray structures of binding

sites were evaluated for Mg2+ (52 sites), Zn2+ (51 sites) and Pb2+ (47 sites). Mg2+ and Zn2+

were selected for comparison due to their similar ionic radii (Mg2+ 0.72 Å, Zn2+ 0.75 Å)

[83], and because they, along with Ca2+, are the most abundant physiologically-relevant

metals involved in biochemical reactions. Pb2+ was selected due to its similar ionic radius

with Ca2+ (1.19 vs. 0.99 Å) [83] and a volume of evidence indicating a close relationship

between Pb2+ toxicity and Ca2+ metabolism [84–88]. For these analyses, a binding site was

considered misclassified if a Ca2+-binding site was predicted surrounding a non-Ca2+ ion

(i.e., if it placed a Ca2+ ion within 3 Å of the documented other divalent metal [70, 78]), and

if this predicted site is not known to be a true Ca2+-binding site. Results of our analysis

indicate thatMUGC does not misidentify Ca2+-binding sites for 83%, 96% and 89% of Mg2+,

Zn2+, and Pb2+ binding sites. Moreover, those binding sites classified as misidentifications

may represent potential, unidentified Ca2+-binding sites, or sites capable of binding multiple

divalent ions, including Ca2+. Several of the Mg2+ and Zn2+ sites evaluated exhibit atypical

coordination geometries or utilized ligands that would be unusual for Mg2+ (e.g., carbonyl
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oxygen atoms as seen in IKCZ.pdb) but not for Ca2+, and for some of the Mg2+-binding

sites, very high concentrations of Mg2+ were added during crystallization (e.g., 250 mM [89]

in 1OBW.pdb and 100 mM [90] in 1KCZ.pdb), so it is possible that the observed binding is

representative of the crystallization conditions, but not necessarily of the proteins function

in solution. If we remove these questionable misidentifications from our statistics (Identified

as Other in Misclassified column in Tables E.18), our final results indicate that none of the

remaining binding sites for proteins in the Mg2+ , Zn2+, or Pb2+ datasets are identified by

MUGC as Ca2+-binding sites, demonstrating excellent metal selectivity.

2.4 Discussion

2.4.1 Key factors for metal coordination

Our studies have revealed several key properties that are important for metal coordi-

nation. First, a second-shell of carbon clusters enclose the first shell atoms which directly

coordinate Ca2+. We hypothesize that the Ca2+ position within a Ca2+-binding protein is

determined as much by the positions of carbon atoms in the hydrophobic shells surrounding

Ca2+ as by the immediate positions of the oxygen ligands comprising the actual binding

site. A practical corollary to this hypothesis is that, in cases where the coordinates of ligand

oxygens are poorly defined, the surrounding carbon shells can be relied upon to accurately

predict the location of the Ca2+ center. Such cases are observed in crystallographically

determined structures, where coordinates of side-chain oxygens may be poorly resolved be-

cause of their mobility. Limitations associated with positioning of oxygen atoms in NMR

structures are also observed specifically because the naturally-abundant isotope of oxygen

is spectroscopically silent in NMR. For backbone oxygen atoms, these reconstructed posi-

tions have higher precision, precisely because the geometry is fixed and there is no torsion

angle involved. However, for sidechain oxygens, such as from the carboxylic groups of Asp

and Glu, which are subject to torsional rotations, there are substantial uncertainties in the

positions. The present work represents the first attempt to exploit the relative placement
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of the carbon atoms and to pinpoint Ca2+ centers without reference to the locations of the

directly ligated oxygen atoms, particularly involving those from side-chain. From the struc-

tural perspective of binding sites, the first (hydrophilic) oxygen shell in the binding sites

permits the protein’s exposure to water and ionic Ca2+. This immediate binding scaffold is

supported by a second (hydrophobic) shell of carbon atoms, which may restrict flexibility

within the site and thereby ameliorate the decrease in binding-associated entropy [91]. In

order to exercise the regulatory role of Ca2+ in the cell, binding sites in proteins must be

able to bind and release Ca2+ within a physiological range of Ca2+ concentrations. This

implies not only the existence of a ”pre-organized” site, but also restricted structural flexi-

bility within that site [60, 62, 91], as well as the stable positioning of carbon atoms oriented

in such a way to facilitate formation of the hydrophilic oxygen shell which coordinates the

Ca2+ directly. Our earlier studies demonstrated that the oxygen shell in the Ca2+-binding

site has an identifiable geometry (i.e., four or more oxygen atoms in the site, all separated

from each other by an oxygen-oxygen distance 6Å) [69, 70]. Our current studies, described

here, suggest that this structural regularity must be supported by the associated C-O bonds,

implying an appropriately arranged geometry for the surrounding carbon shell - an arrange-

ment which should also be identifiable. Second, we have shown that the vast majority of

Ca2+-binding sites have at least one negatively-charged residue within the tentative binding

site. This observation justifies the utility of applying a charge filter, which improves selec-

tivity in predicting various classes of Ca2+-binding sites in the protein data bank [57]. In its

X-ray structure analysis, the MUGC algorithm missed only one site in the complex formed

between proteolytically-generated lactoferrin fragment and proteinase K (1BJR.pdb) - an

exception to the rule in that there is no negatively-charged binding residue in this binding

site which has a coordination number of four. The Ca2+-binding sites was composed of

residues R12, S15, N257 and A273 [92]. It is likely that this binding site does not have

strong Ca2+-binding affinity. Third, our analysis of calmodulin has also shown that it is

important to ensure that the predicted Ca2+ positions contain neither van der Waals clash-

es nor over-lapping side-chain centers of mass. The concept of side-chain center of mass
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(SC-CoM) has been previously used in protein structural prediction [81]. In this work we

present a novel application for the use of SC-CoM as an aid to predict Ca2+-binding sites.

In a sense, side-chain center of mass is used here as a surrogate for poorly-resolved ligand

oxygen coordinates.

2.4.2 Implications for metal selectivity

From Table E.15-E.17, we can conclude that MUGC does not mis-classify other metal

binding sites as Ca2+-binding sites in most cases. There are two key designs in MUGC to

distinguish Ca2+-binding sites from non-Ca2+-binding sites. First, carbon clusters utilized

by MUGC are restricted to those with associated oxygen atoms and were required to have

at least four carbon atoms. Differences in coordination numbers between Ca2+ and the

other metals, as well as variations in ion solvation result in different ions having different

numbers of carbon atoms associated with binding. For example, Mg2+ tends to be more

highly-solvated than Ca2+, and the presence of more water molecules results in fewer carbon

atoms within the microenvironment of the binding site. Additionally, both Zn2+ and Pb2+

typically utilize fewer binding ligands than Ca2+, and utilize different ligand types [93]. As

a hard Lewis acid, Ca2+ binds preferentially with oxygen atoms whereas both Zn2+ and

Pb2+, considered borderline Lewis acids, may bind with either hard or soft bases, utilizing

both nitrogen and sulfur ligands, in addition to oxygen. Due to the smaller number of

oxygen-based ligands for these metals, MUGC selectively eliminates those sites as potential

Ca2+-binding sites. The second key design for identification of Ca2+-binding sites relates

to ionic radius, which is one factor by which proteins discriminate between divalent ions

[94]. For example, Mg2+ is 28% smaller than Ca2+, and this smaller VDW radius alters the

geometry of the binding site which then may not accommodate the larger Ca2+ ion. After

carefully calibrating the geometric parameters inMUGC with respect to Ca2+ radius and the

spatial relationships of binding ligands in Ca2+-binding sites, MUGC can distinguish Ca2+-

binding sites from those of other metals. Our results indicate that the algorithmic approach

of MUGC provides a useful tool for delineating metal binding sites. This differentiation



51

is achieved by carefully tuning the geometric and chemical parameters of MUGC based

on analysis of empirical data associated with Ca2+-binding, and parameter optimization.

Furthermore, we anticipate that this work will form the basis for incorporating additional

prediction parameters derived from molecular dynamics simulations.

2.4.3 Comparison of MUGC with other algorithms

The comparison among MUG, MUGC , SitePredict and WebFeature (the web-based

implementation of FEATURE) is based mainly on an NMR testing dataset. The MUG

web-server does not accept NMR ensembles, so we submitted each member of the ensemble

one by one; WebFeature and SitePredict do accept ensembles of structures. In these NMR

structures there are no documented Ca2+ ions. The prediction results are summarized in

Tables 2.3 and 2.4.

Table 2.3. Identification of Ca2+ positions on NMR structures by MUGC , MUG and
FEATURE.

MUGC MUG FEATURE MUGC+MUG
PTSa 20 19 7 21
DSb 21 21 21 21
CHc 330 284 21 610
TPd 403 451 21 859
SENe 95% 90% 33% 100%
SELf 81% 63% 100% 71%

aPredicted True Sites;bDocumented Sites;cCorrect Hits;dTotal
Predictions;eSensitivity;fSelectivity.

To compare results with FEATURE, whose output is the predicted Ca2+ positions in

the structures, we calculated the sensitivity and selectivity by mapping the Ca2+ position

into the binding residues. If we observe at least one documented binding residue within 4Å

of the predicted position, then we count this position as correct prediction. Failure to meet

these criteria results in a false positive. FEATURE predicted 7/21 binding sites with 33%

sensitivity and 100% selectivity. Despite this algorithms advantage in selectivity, however,
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Table 2.4. MUGC and SitePredict predictions based on binding residues in NMR
structures.

MUGC SitePredict
PTSa 20 7
DSb 21 21
CHc 89 12
TPd 327 34
SENe 95% 33%
SELf 26% 35%

aPredicted True Sites;bDocumented Sites;cCorrect Hits;dTotal
Predictions;eSensitivity;fSelectivity.

it fails to identify a significant proportion of sites in the dataset. This observation illustrates

the persistent tradeoff between sensitivity and selectivity. Most of the published algorithms

designed to predict Ca2+-binding sites are based on optimal ligand geometry deduced from

high-resolution X-ray static structures and thus rely heavily on the accuracy of the placement

of ligand oxygen atoms. In contrast, MUGC and SitePredict deliberately avoid use of

specific side-chain and ligand coordinates in an effort to desensitize the method to vagaries

in the location of ligands typical in low-resolution or homology-modeled structures. To

compare our results with SitePredict, whose output is a list of residues involved in binding,

we used such residues as a measurement of correctness of the prediction. According to its

web-server (dated current as of Dec. 14, 2010) a default cutoff of 4 is used for predictions

in binding residues (scores greater than 4 are considered as binding residues). We first

compared MUGC with SitePredict in NMR structures. SitePredict predicted 7/21 binding

sites. Our data have shown that MUGC exhibits significantly better performance in terms of

sensitivity than SitePredict under conditions where they have almost comparable selectivity.

The performance comparison with FEATURE and SitePredict, underscores the inadequacy

of site-recognition algorithms informed by static structures to recognize sites in dynamic

situations [64]. We also compared MUGC with SitePredict in X-ray structures. Similar to

testing on NMR structures, we considered that SitePredict is able to predict a binding site,
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Figure 2.6. Comparison between MUGC and SitePredict based on residues on testing
X-ray dataset.

if it is able to identify at least one binding residue in an authentic site. For our comparative

analysis, we applied a more stringent definition for the MUGC ’s true-positive prediction

sites and required that there be at least two binding residues predicted in authentic sites.

If the predicted residue is not a binding residue, then it is a false positive residue. In the

case that one binding residue appeared in two sites (thermolysin: 1HYT.pdb), we counted

it twice for SitePredict’s true positive residue, but once for MUGC ’s true positive. The

results show that, using these criteria, MUGC has a sensitivity of 94%, while detecting the

binding sites at a selectivity rate of 43% (Fig. 2.6). On the same dataset, SitePredict has a

sensitivity of 59% and a selectivity of 20%. These results suggest that the performance of

predicting binding residues could be improved by using second shell carbon atoms.

A comparison between MUGC and our previously-reported MUG algorithm indicat-

ed little difference in results analyzing the static X-ray structure dataset, with MUGC

exhibiting 89% sensitivity and 76% selectivity compared to 91% sensitivity and 73% for

MUG. However MUGC results showed improvement compared to MUG with the testing

NMR dataset: MUGC has better sensitivity of 95%, and fewer false positive predictions,
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although the selectivity of 81% leaves room for improvement. The results for MUG in-

dicated sensitivity of 90% with a selectivity of 61%. MUGC ’s superior performance with

NMR datasets (Table 2.3), however, is somewhat muted by the fact that these datasets

are small. The PDB contains many fewer NMR structures than X-ray structures, and very

few Ca2+-binding proteins in NMR structures inferred without Ca2+ constraints. Manually

combining the two algorithms resulted in 100% sensitivity and 71% selectivity.

2.4.4 Challenges in algorithm evaluations

In this work, several statistical measurements were applied to assess the quality of our

predicted results and estimate errors. First, we evaluated prediction error based on the

difference in distance between the predicted and documented Ca2+ centers [67, 68]. Second,

we evaluated a classification error based on ligand residues predicted to be involved in

binding versus documented binding ligand residues (See Table 2.2). Third, we evaluated a

negative control dataset comprised of proteins not currently known to bind Ca2+ or other

metal ions. The challenge for evaluating the accuracy of predicting Ca2+-binding sites

stems from the fact that no consensual standard of quality has emerged from previous

studies. Earlier works, such as those of Yamashita et al. [62] and Di Cera et al. [59],

listed the prediction results but did not include statistical evaluations of the results. Glazer

et al. applied sensitivity and selectivity to compare the performance of FEATURE with

results reported by Nayal and Di Cera [64], however Schymkowitz et al. argued that the

Fold-X algorithm was better at placing the Ca2+ position compared with FEATURE [68].

Babor et al. [95] later noted a large number of false positive predictions associated with

Fold-X, and also suggested that its force field optimization step is very sensitive to small

changes of position due to the electrostatic nature of the interactions. Quality evaluation

is further complicated, as seen in this study, when the ”structure” is in fact an ensemble of

structures. A concise quality measurement over the ensemble is problematic. Yet another

challenge comes from the definition of a false positive. We take as the most rigorous standard

the position of Ca2+ explicitly observed by X-ray diffraction of holo proteins. But X-
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ray models are not infallible; absence of Ca2+ at a physiologically functional binding site,

especially a low affinity one, may simply mean that Ca2+ failed to crystallize at that site.

Ironically, one might argue that the most exquisite use of prediction algorithms would

be to reveal sites not visualized to contain crystallized Ca2+, but subsequently proved to

be bona fide sites. To predict sites of Ca2+ binding in proteins where the site may be

indeterminate because of invisibility in X-ray and NMR structures, we have developed a

graph-based, site-recognition algorithm which relies on carbon shell and side-chain center

of mass information. This work shows that using information from carbon atoms, with

formal ionic charges and center of mass as additional filters, can accurately identify Ca2+-

binding sites in X-ray holo structures with accurate performance. The binding sites in

four holo NMR structures, computed with Ca2+ constraints, could be identified easily by

this algorithm. Additionally, by testing 21 NMR binding sites that do not utilize Ca2+

constraints, we have demonstrated improved prediction results with NMR structures using

carbon atoms comprising second and third concentric shells surrounding the binding sites.

Finally, our results also demonstrate that the new algorithm is optimized for prediction

of Ca2+-binding sites, and able to discriminate Ca2+ from other divalent metal ions such

as Mg2+, Zn2+ and Pb2+. The successful identification of Ca2+ positions by using the

carbon shell deepens our understanding of the structure of Ca2+-binding sites, thus further

enhancing our capability to design Ca2+-binding proteins [96–98]. This new algorithm may

be applied advantageously to unrefined homology models, low-resolutions models and NMR

structures.

To conclude, this chapter develops a graph-based method which has implications at a

molecular level to identify Ca2+-binding sites in proteins which may be related to diseases.

Next chapter, we will develop an optimization method and algorithm which solve a disease

prevention problem at a population level.
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CHAPTER 3

APPLIED MATHEMATICS IN HEALTH CARE MANAGEMENT

3.1 Introduction

Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (GC) are the two most com-

monly reported sexually transmitted diseases (STDs) in the United States. Most infections

are asymptomatic and would not be detected without asymptomatic screening, especially

for women. In 2008, 1,210,523 cases of chlamydia were reported to the Centers for Disease

Control and Prevention (CDC) in the United States. This case count corresponds to a

rate of 401.3 cases per 100,000 population, an increase of 9.2% compared with the rate in

2007 [99]. In 2008, 336,742 cases of gonorrhea were reported to CDC in the United States,

corresponding to a rate of 111.6 per 100,000 population [99].

Many cases of CT and GC diseases are screened and treated by publicity funded clinics.

In reality, these clinics may not have sufficient budgets to screen all eligible women with the

most effective CT/GC tests and to offer these infected ones with more expensive, single-dose

treatment that optimizes compliance. To effectively use limited resources, CT and GC con-

trol programs usually provide selective screening based on defined guidelines. For example,

CDC recommends annual screening for CT and GC for sexually active adolescents and young

women [100]. The U.S. Preventive Services Task Force (USPSTF) recommends screening

all sexually active women, including those who are pregnant, for gonorrhea infection if they

are at increased risk for infection [101].

For CT and GC control programs, however, identifying which subpopulations to screen

for CT and/or GC infections is just one part of a complicated problem. The availability of

several testing assays with various performances and costs presents a challenge for screening

strategies: newer diagnostic tests that are less invasive and more sensitive offer increased

opportunities for screening, but at a greater cost. In other words, the problem is whether
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it is better to use a more sensitive and expensive test to screen fewer patients, or to use a

relatively cheaper and less sensitive test to screen a greater number of patients. To further

complicate the situation, test manufacturers market combination tests or bundled test at

prices that are more lucrative than the price of a single-pathogen test. This situation

encourages the testing for GC even when its prevalence in the population is extremely low.

3.1.1 Overview of Creating Resource Allocation Models for STDs

There are not a lot of resource allocation (optimization) models regarding the control

of CT and GC infections. But many efforts have been made to develop models to investigate

and evaluate HIV prevention and control programs [102–105]. To correlate with the practical

relevance to CT infections, researchers initially developed a resource allocation model to

determine the optimal strategy for curing CT infections among asymptomatic women at

clinics [106]. Two years later, researchers proposed a mixed-integer program to model re-

screening women who test positive for CT infections [107]. These two optimization models

are able to offer simple guidelines for clinics on the selection of test and treatment for certain

populations. However, these models are not able to manage two or more infections (e.g.

CT and GC) at the same time at given clinics.

3.1.2 Overview of algorithms for solving STDs resource allocation models

Many health care researchers rely on an existing resource allocation model software to

solve their proposed models because some software applications are easy to use [106, 108–

110]. However, these applications sometimes may not provide the best outcomes due to the

complexity of proposed models and the limitations of algorithms used in the software. For

example, the resource allocation models used in the previous STD studies were nonlinear

programming models and the optimal outcomes generated by the algorithm were never

verified.

With respect to the nature of the resource allocation models that are typical nonlinear

models, the algorithms for these models in general could be divided into two categories:
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exact algorithms (e.g. dynamic programming or branch-and-bound [102, 111, 112]) and ap-

proximation algorithm (e.g. generalized reduced gradient method ([106, 108–110]). The

exact algorithms, which are exhaustive and are guaranteed to find an optimal solution with

a small number of variables, may run in exponential time [112]. In most cases, approxima-

tion algorithms, which may calculate near-optimal solutions, have to be used to speed up

the computation time. This is the case for current commercial software applications, such

as Excel Solver, MPL and Lingo [46]. When the resource allocation models become more

complicated and various algorithms may lead to different outcomes, the knowledge of the

limitations of various algorithms regarding computation accuracy and time is critical to the

researchers. Unfortunately, comparing the computational accuracy and time of exact and

approximation solutions to real-life STD models has not yet been examined or published. In

other words, we do not know how well an approximation algorithm could perform on real-

life health care data. This may be due to the fact that the optimization modelers tend to

focus on sophistication of the mathematical formulation rather than the practical relevance

[113] and algorithm accuracy and time [106, 109].

3.1.3 Our Research Objectives

We have three main objectives in this study. First, to improve CT and GC control and

prevention in the United States, we created a resource allocation model which is a cubic

binary programming model to consider two STDs. The model is designed to recommend an

optimal strategy for identifying at-risk groups with a certain screening assay and treating

those with positive results under a fixed budget. Second, to solve this resource allocation

model, we developed a two-step branch-and-bound algorithm. Because our model had two

diseases and a limited number of constraints and our two-step branch-and-bound algorithm

is an exact algorithm rather than approximation algorithm. Our approach will always pro-

vide the optimal outcomes. Finally, we compared our computation results to those obtained

by Excel Solver in terms of optimal outcome and computation time. The comparison can
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help us to better understand the characteristics of the resource allocation models and the

advantages and disadvantages of the algorithms used to solve the model [114].

3.2 Mathematical Model

3.2.1 Description of the model

The object of the model is to maximize the number of cured infections (cured cases)

among women under a fixed budget. One patient with both infections cured is counted as

two cured cases. We assume that patients would be tested and treated according to one

of the four options below using a nonrapid test that would require women with positive

tests to be recalled for treatment. Option 1). Single screening test and single treatment for

CT only. A CT screening test is given to women and then CT treatment is given to those

who had positive tests. Option 2). Single screening test and single treatment for GC only.

Similar to Option 1. Option 3). Sequence screening tests that tested for CT and then GC

if a positive CT result. A CT screening test is performed and then a GC test is performed

on those women who had positive CT tests; and CT treatment is given to those who had

positive CT tests and GC treatment is given for those who had positive GC tests. Option

4). Combo screening test for both CT and GC. Women are screened for both CT and GC

at the same time using a combo test. CT or GC or both are treated if patients had positive

tests for CT or GC or both, respectively.

There are other options in theoretical situations, such as screening patients for GC

first, then testing those with positive GC results for CT, or screening patients for CT and

presumptively treat patients for GC if they have positive CT results. However, the options

are not listed in this model because they are not realistic for use in the United States due to

the much lower prevalence of GC than CT and concerns about GC drug resistance [115, 116].

We do not count uninfected women who test positive at screening (“false positive”) and get

treated as a cured case. But, we do include the additional costs for treatment and the

treatment visit of false positive results.
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Realistically, we assume that the same test and treatment are offered to all women in

each group. The reason to make this assumption is that strategy involving more than one

test or treatment may be more complicated to implement in routine clinic practice, although

it may cure more women at a fixed budget level. For example, clinics will face the challenges

related to specimen handling, storage, transport, and billing for each test, and providers

may need additional training to explain test performance issues to women in each group

[106, 107]. This assumption complicates the mathematical formulations [106]. Two more

simplifying assumptions are made in the model. First, we assume that all sexually active

women who visit the clinic and are infected with CT or GC or both have no symptoms of

infection. Second, no patients receive more than one test or treatment for the same infection

at any one visit.

3.2.2 Data used in the model

As seen in Table 3.1, our model divides a theoretical cohort of 10,000 sexually active

female patients into three age groups (younger than 20 years, 20-24 years, and 25-34 years)

and four race/ethnicity groups (White, Black, Hispanic and Other). The age groups ana-

lyzed are similar to those classified in the CDC for screening and treating for CT infections

[106]. The prevalence rate of each group is referenced from [117, 118]. Our model includes

two CT tests (Pace 2 CT1 and BD ProbeTec CT2), one GC test (culture), three combo test-

s (Pace 2C Combo1, BD ProbeTec CT/GC, and APTIMA CT/GC1), two CT treatments

(doxycycline and azithromycin), and two GC treatments (ceftriaxone and cefixime). These

data were obtained from various published sources [116, 119–126]. The test sensitivity and

specificity are shown in Table 3.2. All costs and other parameters are shown in Table 3.3.

1Gen-Probe, Inc., San Diego, CA
2Becton, Dickinson and Company, Franklin Lakes, NJ
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Table 3.1. Population distribution characteristics of theoretical cohort of 10,000 women

Race/ethnicity
Age White Black Hispanics Others
Number of patients
<20 years 2010 480 360 150
20-24 years 2680 640 480 200
25-34 years 2010 480 360 150
CT prevalence1

<20 years 3.8% 15.6% 9.2% 10.7%
20-24 years 2.5% 14.4% 6.3% 7.5%
25-34 years 1.2% 11.8% 2.5% 3.3%
GC prevalence2

<20 years 0.1% 1.9% 0.1% 0.2%
20-24 years 0.2% 2.2% 0.1% 0.2%
25-34 years 0.2% 1.8% 0.1% 0.2%

1,2 All prevalence rates are referenced from [117] and [118].

3.2.3 The model

Several mathematical notations in the model and then the formulas are introduced

here. More details are in the appendix D.

1. Population notations. The patient population is divided into 12 groups. For each

group i, let xi be a binary variable such that xi = 1 if all the patients in the group i

is identified for screening and xi = 0 otherwise. Let Pt(i) and Pg(i) be the prevalence

of the group i with CT and GC, respectively. Popi is the number of patients in ith

group.

2. Screening notations. There are 6 available screening assays. Let yj be a binary

variable such that yj = 1 if the screening assay j is used and yj = 0 otherwise. For

each assay j (1 ≤ j ≤ 6), let Snt(j) and Spt(j) be the sensitivity and specificity for

CT; let Sng(j) and Spg(j) be the sensitivity and specificity for GC; let Bc(j) and

Ac(j) be the unit-based costs and additional costs of the jth test. Let V c be the costs

per patient for the visit in which screening was done.
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Table 3.2. Sensitivity and specificity of test assays and effectiveness of treatment regimens
for chlamydia and gonorrhea

CT GC
Test Sensitivity

Pace 2 CT 0.716 [119] N/A
BD ProbeTec CT 0.928 [120] N/A
Culture N/A 0.848 [121]
Pace 2C Combo 0.716 [119] 0.781 [122]
BD ProbeTec CT/GC 0.928 [120] 0.966 [120]
APTIMA CT/GC 0.942 [123] 0.992 [123]

Test Specificity
Pace 2 CT 0.995 [119] N/A
BD ProbeTec CT 0.981 [120] N/A
Culture N/A 1.000 [121]
Pace 2C Combo 0.995 [119] 0.991 [122]
BD ProbeTec CT/GC 0.981 [120] 0.994 [120]
APTIMA CT/GC 0.995 [124] 0.995 [127]

Treatment Effectiveness
Doxycycline 0.92 [125, 128] N/A
Azithromycin 0.95 [126, 128] N/A
Ceftriaxone N/A 0.988 [116]
Cefixime N/A 0.975 [116]

3. Treatment notations. There are 4 available treatment regimens. Let z(k,l) be a

binary variable such that z(k,l) = 1 where k > 0 and l > 0 if the regimen k is used

for treating CT together with regimen l used for treating GC. z(0,l) = 1 is that only

the GC treatment regimen l is selected and CT will not be treated, and z(k,0) = 1 is

that only CT is treated. For each CT treatment regimen k (k = 1, 2), let Et(k) be

the effectiveness of the kth regimen. Similarly, let Eg(l) be the effectiveness of the lth

(l = 1, 2) regimen for GC treatment. We also denote costs of drugs Dct(k) for CT

and Dcg(l) for GC, respectively. Let Tc be the costs per patient for the visit in which

a treatment was done.

4. Number of cured cases and unit costs. Let Curijkl and Costijkl be the rate of

cured infection cases and costs correspondingly over the population of the ith group

using the jth screening test and being treated with kth and/or lth treatment regi-
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Table 3.3. Costs1 related to CT and GC test and treatment and other parameters

Baseline
Test Cost

Pace 2 CT 18.50 [129–131]
BD ProbeTec CT 29.79 [129–131]
GC Culture 9.26 [129–131]
Pace 2C Combo2 35.16 [129–131]
BD ProbeTec CT/GC 59.00 [129–131]
APTIMA CT/GC 61.67 [129–131]

Treatment Cost
Doxycycline 8.12 [132]
Azithromycin 28.78 [132]
Ceftriaxone3 25.74 [129, 132]
Cefixime 10.06 [132]

Test Visit Cost 14.00 [130]
Treatment Visit Cost 28.43 [133]
PID Cost 2772 [134]
Probability of PID 0.20 [135]
Prob. of return for treatment 0.86 [136]

1All costs in 2006 US dollar values (adjusted with medical CPI where needed)[137].
2 For the Pace 2C, a positive test (indicating either CT or GC, but not which organism) is
followed by two separate supplemental tests.
3 For ceftriaxone, the baseline price includes the drug plus the fee for intramuscular
injection [129].

men(s). So the corresponding number of cases cured and costs are Pop(i) ·Curijkl and

Pop(i) ·Costijkl for group i. Curijkl under Option 1 (“Single screening test and single

treatment for CT”) is given as following:

Curijkl = Pt(i) · Snt(j) · Et(k) · Pr (3.1)

where Pr is the “probability of return for treatment” in Table 3.3.

Costijkl under Option 1 is given as following:
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Costijkl = Bc(j) + V c+ [Pt(i) · Snt(j)

+(1− Pt(i)) · (1− Spt(j))] · (Dct(k) + Tc) · Pr (3.2)

For treatment, Pt(i) ·Snt(j)+(1−Pt(i)) · (1−Spt(j)) gives the probability of a person

having a positive test result, where Pt(i) · Snt(j) is the probability of a person having

CT infection and testing positively, and (1−Pt(i)) · (1−Spt(j)) is the probability of a

person not having CT infection but having a (false) positive test result. The detailed

calculations on Curijkl and Costijkl for other options can be found in the appendix D.

5. Objective function and constraints. The objective function is to maximize the

cured cases with available screening assays and treatment regimens for given patient

groups.

Max
∑
i,j,k,l

Popi · Curijkl · xiyjz(k,l) :=
12∑
i=1

6∑
j=1

2∑
k=0

2∑
l=0

Popi · Curijkl · xiyjz(k,l) (3.3)

Subject to funding availability

∑
i,j,k,l

Popi · Costijkl · xiyjz(k,l) ≤ b (3.4)

which means the screening and treatment costs for identified groups should be smaller

than or equal to the annual available funding b to a clinic. Furthermore, according to

the realistic assumption that the same screening assay and the same treatment must

be applied for all patients served at the clinic, only one assay among the six screening

assays will be used:

6∑
j=1

yj = 1 and (3.5)
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Only one treatment regimen for each infection among the two CT treatment regimens

and two GC treatment regimens will be used:

2,2∑
k,l

z(k,l) = 1, (3.6)

where k, l and z(k,l) are defined in treatment notations.

In the previous published mixed-integer programming model [107], we used xijk as a

binary variable to select the choice of the best combination of i, j, k for single CT infection.

In order to model the realistic assumption of applying same screening assay and the same

treatment for all patients, we had to introduce two auxiliary binary variables3 to control the

combinatorial relationships among constraints [107]. These variables make the formulation

tedious and limit our model on only two screening regimens and two treatment regimens. In

this work, we keep the number of binary variables and simplify the formulation by defining

xi, yj and z(k,l). Now, the new model is able to consider CT and GC infections together

with more than two screening regimens and two treatment regimens.

3.3 Two-step Branch-and-bound Algorithm

The model 3.3-3.6 is a cubic binary programming problem. Except for exhaustive

methods, there is no efficient algorithm to solve this problem [46]. The exhaustive (exact)

algorithm runs in exponential time, which can only produce solutions for the problems with

a small number of variables. To solve this model in general, approximate algorithms have

to be used by commercial software applications. We do know that approximate algorithms

generally are unable to distinguish between a local maximum and a global maximum [46],

but we don’t know much these local maximum will deviate from a global maximum in this

practical case. Therefore, knowing the global optimal solutions rather than approximations

3Auxiliary binary variables representing the yes-or-no decisions are introduced to reduce the problem to
a mixed-integer programming (MIP) [46]. In the MIP model these variables can be viewed as contingent
decisions, i.e., decisions that depend upon previous decisions.
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to the global optimal solutions (global maximum) is very important here. In this study, we

define that a global optimal solution to our model under a fixed budget is the strategy which

guarantees the maximal value of cured cases. Base on this real-life model, we established

a two-step algorithm to calculate global optimal solutions. In the first step, by using an

exhaustive algorithm, we reduced the original model to several classic 0-1 knapsack problems

which is an NP-hard problem in combinatorial optimization [138, 139]. In the second step,

we used the branch-and-bound method to solve each knapsack problem and select the best

strategy among each knapsack problem. The following details the algorithm.

Because (3.5) and (3.6) show that there is only one possible j such that yj = 1 and

there is only one possible (k, l) such that z(k,l) = 1, we initially identify how many combi-

natorial strategies for screening assays and treatment regimens exist in the model by using

an exhaustive algorithm. In the real-life case, there are 26 possible screening and treatment

strategies. Option 1). Single screening test and single treatment for CT only. There are a

total of 4 (= 2 · 2) combinations using a single screening test (Pace 2 CT or BD ProbeTec

CT) and a single treatment for CT (doxycycline or azithromycin). Option 2). Single screen-

ing test and single treatment for GC only. Similar to Option 1, there are 2 combinations

using the culture test and a single treatment for GC (ceftriaxone or cefixime). Option 3).

Sequence screening tests that tested for CT and then GC if a positive CT result. There

are a total of 8 (= 2 · 1 · 2 · 2) combinations: two screening assays for CT (Pace 2 CT or

BD ProbeTec CT), one GC screening assay (culture), two CT treatment regimens (doxy-

cycline or azithromycin) and two GC treatment regimens (ceftriaxone or cefixime). Option

4). Combo screening test for both CT and GC. There are a total of 12 (= 3 · 2 · 2) combina-

tions: three combo screening assays (Pace 2C Combo, BD ProbeTec CT/GC, or APTIMA

CT/GC), two treatments for CT (doxycycline or azithromycin) and two treatments for GC

(ceftriaxone or cefixime).

After all possible strategies are exhausted, the original model was decomposited into

26 classical 0-1 knapsack problems. In general, a 0-1 knapsack problem is defined in the

following way. Given a set of items, each with a weight and a value, determine the number
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of each item to include in a collection so that the total weight is less than a given limit and

the total value is as large as possible [46]. As for our case, the 12 population groups are

“number of items”; the costs Popi ·Costijkl are the “weights”; the cured cases Popi ·Curijkl

are “values”, and the budget is the “given limit”. We then applied the classical Horowitz-

Sahni’s branch-and-bound method [112] to find which group should be identified to go

through the screening and treatment strategy. This method is further discussed in appendix

D. After applied the method, we were able to record the corresponding numbers of the cured

cases and the costs within each knapsack problem. These results are the optimal results for

each of the 26 knapsack problems. Finally, the global optimal result to the whole model is

reported as the one with maximum cured cases among the 26 optimal results.

3.4 Results and Discussion

3.4.1 Algorithms and application

The two-step branch-and-bound algorithm is our primary algorithm. It is an exact

algorithm because both of first and second steps are exhaustive methods. Because in reality

there are limited number of combined screening and treatment regimens, the first step could

be enumerated quickly. (In this case, there are only 26 combinations.) In the second step,

the Horowitz-Sahni’s branch-and-bound method to each knapsack problem is also exhaustive

[112]. This method consists of a systematic enumeration of all at-risk population groups,

where large subsets of candidate groups are discarded en masse, by using upper and lower

estimated bounds of the cured cases being optimized. We selected this method because

it is one of the most effective, structured, and easiest to implement [112]. Within each

knapsack problem, the global optimal result could be obtained because the number of at-risk

population groups is small according to a realistic division of patients [106]. The selection

of the maximal number of cured cases among each optimal solution to the 26 knapsack

problems guarantees the global optimal solution to the original model. In summary, the



68

global optimal solution is obtained because the algorithm is exhaustive and the complexity

of this real-life model is very reasonable.

As a general approach to the knapsack problem, dynamic programming is an alternative

exact method [111] could be used to solve a global optimization problem. It has been

proposed to solve a HIV resource allocation model [102] and epidemic control model [140].

We think it is interesting to see how the dynamic programming performs in the real-life

case of controlling CT and GC infections. Therefore, we implemented this method by

replacing the branch-and-bound method as the second step for the two-step algorithm. The

dynamic programming method we used is based on the classical Bellman recursion [112, 141]

due to its ease for implementation. The time and the space complexity of this method is

O(nc), where n is the number of population groups and c is the budget in our case. As

the budget increases, the time and space consumption increase, limiting the performance of

the algorithm. The pseudocodes from [112] (p.38-39) were used in this study. The two-step

algorithm is implemented in Java.

Microsoft Excel has been used in STD research as a convenient tool [106, 110]. For

comparison purposes, Excel Solver was applied to solve our original model as oppose to the

two-step algorithm. Excel Solver uses the Generalized Reduced Gradient (GRG2) algorithm

for optimizing nonlinear problems and it is an approximate algorithm [108]. We tested and

compared the performance of the two-step algorithm and Excel Solver under the different

budget levels, in terms of running time, the number of cured cases and the screening and

treatment strategy identified. From time to time, the solutions calculated with Excel Solver

do not always give the maximal value of the objective function. The following computational

results were run on an Intel Celeron M 1.6GHz processor and a RAM of 512MB.

3.4.2 Numerical results

Optimal strategy results under selected budget levels are presented in Table 3.4. The

two-step branch-and-bound algorithm has a faster running time and provides the global

optimal results rather than the approximate solutions generated by the Solver’s GRG2 al-
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gorithm, although Excel Solver can solve our original model directly. For example, at the

budget level of $17,350, Solver’s algorithm suggested to screen the group with a preva-

lence rate of 11.8% while the global optimal strategy screened the group with the highest

prevalence rate of 15.6%. Using the optimal strategy calculated by two-step branch-and-

bound algorithm, 10 more patients could be cured compared to Solver’s algorithm. At the

budget level of $30,000, Solver’s GRG2 algorithm recommended to treat CT alone with

azithromycin. However, a better optimal strategy suggested that two more patients could

be cured if we treat CT and GC together for the same groups. At the budget level of

$100,000 and $200,000, Solver’s GRG2 algorithm screened groups different from ours, and

it also selected different treatment regimens. As the result, Solver’s GRG2 algorithm cured

two and five fewer patients respectively than our algorithm suggested. These results indicate

that the accuracy of Solver’s solutions is improved by the proposed algorithm.

When the budget is low, the dynamic programming could identify the global optimal

solution. However, when the budget is high, the dynamic program has a longer running

time and it might run out of computer memory before it reaches its results.

Health care researchers [106, 107, 115, 142–145] rely on software applications to solve

their proposed models and implement their methodologies because some software applica-

tions are easy to use. However, these applications sometimes may not be accurate. There-

fore, researchers need to understand the limitations of the software applications. Software

applications’ performance and the accuracy of results may vary due to the complexity of

proposed models and the differences among available algorithms. As discussed here, we

know that the Excel Solver’s GRG2 algorithms could generate an approximately optimal

solution to our model. However, we only know how much these results will deviate from

the global optimal solution in the real-life case by using our algorithm. Our proposed

two-step branch-and-bound algorithm finds the global optimal strategy for the underlying

model. Compared with our global optimal solution, we are now able to tell how good those

approximate solutions are.
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3.4.3 The model

The proposed cubic binary model could be widely used to manage budgets beyond

the situation shown here with a fixed number of groups, screening assays and treatment

regimens for CT and GC. It can be easily modified to solve the problem with different

numbers of population groups, screening assays, and treatment regimens. It can also be

modified to solve problems which have the characteristics of two or more major infections

or diseases. For example, the model can be used to screen and treat patients for infectious

diseases and chronic diseases.

There are still some improvements that could be done to the proposed model. In

our current model, the side effect of the tests and treatments are not considered beyond

the costs associated with treating false positive. For example, treating patients with false

positive test results impose not only additional costs, but also medical side effects (such as

gastrointestinal distress following azithromycin treatment [146]) which are difficult to value

in monetary terms. Also, a false positive diagnosis can impose stress on a given patient and

on her relationship with her sexual partner [147, 148]. For such concern, we could add some

punishment components in the objective function. In other words, if there are too many

mistreated cases, then a heavy punishment could be considered while selecting the optimal

strategy.

We have restricted our work to one clinic. Government funding agencies, such as CD-

C, may need to optimize their funds for many clinics. Different clinics may use different

screening and treatment regimens with more complicated constrains, which makes the op-

timization problem much more complicated. A future goal is to tackle this generalization

problem.

3.5 Conclusion

We have designed a new mathematical model of screening and treatment for the two

most common STDs in the US. It would be simple for program managers to use to optimize
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their prevention and control programs. Benefits of this model include: it not only considers

CT and GC together, but also is able to use different prevalence and costs parameters.

Furthermore, the model can be expanded to provide optimal strategy for different number of

population groups, screening assays, and treatment regimens, and for two or more infections

or diseases. Meanwhile, tailor-made for the model, the new two-step branch-and-bound

algorithm showed its improvements towards calculating a global optimal solution on the

real-life data as compared to Excel Solver.
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Table 3.4. Optimal strategy results for screening and treating 10,000 female patients for
chlamydia and gonorrhea under the selected budget levels by three different algorithms

Two-Step Algorithm Solver’s
BnB1 DP2 GRG23

Budget= $17, 350
Optimal Strategy

Cured cases 42 42 32
Costs($) 17,348.92 17,348.92 16,941.28
Costs($) per case cured 413.07 413.07 529.42
Screening Pace 2 CT same same
Treatment DXC4 same same

Running time (second) <1 1 3
Budget= $30, 000
Optimal Strategy

Cured cases 65 65 63
Costs($) 29,151.61 29,151.61 29,654.71
Costs($) per case cured 448.49 448.49 471.71
Screening Pace 2 CT same same
Treatment DXC+CFX5 same ATM6

Running time (second) <1 9 4
Budget= $100, 000
Optimal Strategy

Cured cases 198 198 196
Costs($) 97,389.52 97,389.52 98,864.24
Costs($) per case cured 491.87 491.87 504.41
Screening BD ProbeTec CT same same
Treatment DXC+CFIX7 same ATM+ CFX

Running time (second) <1 44 1
Budget= $200, 000
Optimal Strategy

Cured cases 267 267 262
Costs($) 197,104.2 197,104.2 166,227.57
Costs($) per case cured 738.22 738.22 634.46
Screening BD ProbeTec CT same same
Treatment DXC+CFX same ATM+CFX

Running time (second) <1 13 4
Budget= $500, 000
Optimal Strategy

Cured cases 393 out of memory 393
Costs($) 476,323.83 n/a 476,323.83
Costs($) per case cured 1,212.02 n/a 1,212.02
Screening BD ProbeTec CT n/a same
Treatment ATM+CFX n/a same

Running time (second) <1 n/a 1

1branch-and-bound method; 2dynamic programming; 3generalized reduced gradient method;
4doxycycline 5ceftriaxone; 6azithromycin; 7cefixime.
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MAJOR FINDINGS AND SIGNIFICANCE

This dissertation has successfully developed three mathematical methods for solving com-

plex problems in dynamical networks, proteomics, and disease prevention. The Augment

Graph Stability method calculates the upper bounds for global synchronization in directed

networks. This method extends the Connection Graph method by transforming a directed

network into a symmetrized-and-undirected network and then augmenting the transformed

network. The synchronization criterion for the augmented symmetrized-and-undirected

network also guarantees global stability of synchronization in the original directed network.

With this method, bottlenecks for synchronizing each node in networks can be identified.

Results show that this method outperforms the previous Connection Graph method in s-

parse graphs. The new approach can be applied to study the synchronization in any network

such as engineering and biological networks. In particular, the method can potentially be

used to analyze the emergence of abnormal synchronized rhythms, associated with epilepsy

and Parkinson’s disease, caused by changes in network connectivity at a multi-cellular level.

With respect to the disease at a molecular level, the success of the graph theory algo-

rithm to predict Ca2+-binding site in proteins in Chapter 2 validates the hypothesis that the

second, hydrophobic shell of carbon atoms enclosing a Ca2+-binding site could sufficiently

determine the site’s location in either X-ray or NMR structures. This new algorithm allows

us to predict Ca2+-binding sites in proteins where the Ca2+ ion may not be directly ob-

servable (e.g., low resolution structures, weak affinity binding sites, and NMR structures).

Results regarding running the algorithm on datasets containing Mg2+, Zn2+, and Pb2+ bind-

ing sites, demonstrate not only that the Ca2+-binding sites in NMR and X-ray structures

can be identified based on geometric arrangement of the second-shell carbon cluster, but

also that this approach with Ca2+-optimized selection parameters, can also selectively differ-

entiate between Ca2+ and other relevant divalent cations. The application of this algorithm

will enable us to identify previously-unknown Ca2+-binding sites, deepen our understand-
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ing of structural characteristics of Ca2+-binding sites, and improve our ability to design

Ca2+-binding proteins with diversified functions.

The proposed combinatorial optimization model solves a real clinical issue of limited

budget at a population level. This model can be widely used to manage budgets beyond

the situation (discussed in Chapter 3) with a fixed number of groups, screening assays and

treatment regimens for CT and GC. It can be easily modified to solve the problem with

different numbers of population groups, screening assays, and treatment regimens. It can

also be modified to solve problems which have the characteristics of two or more major

infections or diseases. For example, the model can be used to screen and treat patients for

infectious diseases and chronic diseases. Running on real-life data, a proposed algorithm to

solve the model calculates the optimal solution within a very short time. The new algorithm

improves the accuracy of an approximate solution obtained by Excel Solver. This study has

shown that a resource allocation model and algorithm might have a significant impact on

real clinical issues. Finally, the innovations of the three mathematical methods will hopefully

inspire further studies for mathematical methods regarding problems in complex networks,

biology, chemistry, health and diseases.
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APPENDICES

Appendix A: Synchronization threshold for two coupled Lorenz systems

In this Appendix, we follow the steps in the previous study [2] to review the calculation

of the stability parameter a in the requirement (1.9) for a two-node network (1.1) of x-

coupled Lorenz systems.

Consider the following coupled system


ẋi = σ(yi − xi) +

n∑
j=1

εij(t)xj,

ẏi = rxi − yi − xizi

żi = −bzi + xiyi, i = 1, ..., n

(E.1)

where the vector (xi, yi, zi) is the vector xi from (1.1). σ, r, and b are standard parameters

of the individual Lorenz system.

We follow the steps in the previous study to prove that the requirement (1.9) is true for

the network (E.1). To do so, we need to prove the eventual dissipativeness of the individual

Lorenz system. It has previously been done by finding an appropriate level of the Lyapunov

function (see, for example, [43]); the Lorenz system is indeed eventually dissipative and has

an absorbing domain

B = {x2 + y2 + (z − r − σ)2 < b2(r + σ)2/4(b− 1)}.

Therefore, the orbits of the attractor of the individual Lorenz system are bounded by

|ϕ| < b(r + σ)/2
√
b− 1, ϕ = x, y, (z − r − σ). (E.2)

It has also been shown [43] that the upper bounds (E.2) are valid for each oscillator of

the coupled system (E.1).
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The auxiliary system (1.7) from the requirement (1.9) reads


Ẋij = σ(Yij −Xij)− aXij

Ẏij =
(
r − U (z)

ij

)
Xij − Yij − U (x)

ij Zij

Żij = U
(y)
ij Xij + U

(x)
ij Yij − bZij, i, j = 1, ..., n,

(E.3)

where U
(ξ)
ij = (ξi+ξj)/2 for ξ = x, y, z represent the corresponding sum variables, and −aXij

is the extra term, coming from the addition of matrix A = aP.

The cross terms in the system (E.3) can be eliminated by using

ξjηj − ξiηi = U (η)(ξj − ξi) + U (ξ)(ηj − ηi).

The Lyapunov functions (1.8), that we use to prove the global stability of the origin of

system (E.3), read

Wij = X2
ij/2 + Y 2

ij/2 + Z2
ij/2, i, j = 1, ..., n. (E.4)

Their derivatives with respect to the system (E.3) are calculated as follows

Ẇij = −
[
(a+ σ)X2

ij + (U (z) − r − σ)XijYij + Y 2
ij − U (y)XijZij + bZ2

ij

]
. (E.5)

We apply the Silvester’s criterion for proving negative definiteness of the quadratic

forms (E.5) to get three conditions [2]: a+ σ > 0,

∣∣∣∣∣∣ a+ σ U(z)−r−σ
2

U(z)−r−σ
2

1

∣∣∣∣∣∣ > 0, and

∣∣∣∣∣∣∣∣∣
a+ σ U(z)−r−σ

2
−U(y)

2

U(z)−r−σ
2

1 0

−U(y)

2
0 b

∣∣∣∣∣∣∣∣∣ > 0. (E.6)
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Plugging the estimate (E.2) for U (y) and U (z) into (E.6), we get the condition under

which the origin of system (1.7) is globally stable:

a > a∗ =
b(b+ 1)(r + σ)2

16(b− 1)
− σ. (E.7)

This implies that the requirement (1.9) is fulfilled for networks of x-coupled Lorenz sys-

tems. At the same time, it implies that the two-node network of x-coupled Lorenz systems

synchronizes completely and globally as long as the coupling ε12 = ε21 exceeds the value

a∗/2.



95

Appendix B: A Neural-network Algorithm for All k Shortest Path Problem

All k Shortest Path (KSP) Problem is one of classic combinatorial problem. Many real-

life problem can be converted into the k shortest path problem. One of these applications

is flight search algorithm. The travel agencies in airline industry need to find the lowest air

fares from departure city to destination. Consider each city as a vertex, if there is an air

fare in between two cities, then we can construct an edge, the cost will be the weights on

that edge and the direction of that edge is determined by the availability from one to the

another.

Various travel agencies utilized different algorithms to solve a KSP-like problem while

pricing the itinerary. For example, Sabre Inc. the owner of Travelocity.com who holds

44.7% market share in US, has utilized different algorithm such as dynamic programming

and Dijkstra-type algorithm for flight searching algorithm [149]. After Travelport acquired

Worldspan, it controls a 46.3% market share in the US using 2002 airline booking data.

This company empowers Priceline, adopted A* algorithm together with Breath-first search

for an initial fare estimate. Amadeus who owned Expedia and others travel agencies used

similar search engine [149]. ITA Software who is supporting Orbitz’s pricing tool and search

engine, uses different flight search algorithms according to Carl de Marcken, a founder and

scientist at the company. Unfortunately, due to the confidential nature of the subject, the

specific techniques used in these search engine are not published.

This study provides a generalized neural network form with a simple example. Secondly,

this study will propose a new graph evolution algorithm based on the mechanism of neural

network. Finally, the performance of the new algorithm will be analyzed.

Coupled neural network in continuous time and KSP problem

An overview

Coupled neural networks in continuous time has been suggested as an effective method

[150] [9] [151] for solving shortest path problem. In these methods, decision variables vij
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(or edges in a graph) are represented by the activation states of neurons which are further

modeled by a system of differential equations. A Lyapunov (energy) function is defined

to drive each neuron into its stable state [152]. Furthermore, these neurons are defined

to interact with each other by chemical (pulsed) coupling as opposed to electrical (linear)

coupling, while both forms of coupling are observed in nature though [153][152].

Unlike defining neurons as edges in a graph, recent techniques represent neurons as

vertices in the graph instead [154] [155]. The utilized neurons in a network fire through

the chemical coupling. The dynamics of each neurons are modeled by differential equations,

which are designed to realize that the smaller coupling strength (e.g. connection weights in a

graph) lead to earlier firing times. In other words, after an excitation from the initial vertex,

the signal will spread (like a wave propagation) based on the graph (network) topology and

individual dynamics. By constructing a proper neural network, a tracked signal travels from

an initial vertex to terminal vertex through the shortest path. An advantage of the method

is that the spreading time of the signal (wave) is independent of the number of vertices in

the graph but only determined by the path length from the initial vertex to the terminal

vertex. Unfortunately, in many realistic neural models due to their non-linear nature, e.g.

Hodgkin-Huxley model, Hindmarsh-Rose model, leech model and etc [2], solutions can not

be found analytically. Simulations have to be conducted for integrating the system, which

could be time-consuming.

Next, we will provide a generalized form in a continuous time for the existing neural

models which have not be found in previous publication. It offers theoretical foundation for

a new neural KSP algorithm.

General form of coupled neural network in continuous time

To solve the KSP problem, we can construct a network of n interacting linear/non-linear

l-dimensional dynamical system (neurons) and denote them as xi = (x1i , x
2
i , ..., x

l
i), i =

1, ..., n, then we can define the following general framework for the coupled network:
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ẋi = F (xi)−
n∑

j=1, j 6=i

dij(t)τ(xj)

where F (xi) define each individual system, τ(xj) is a activation (sigmoid) function

τ(xj) = 1

1+e−λ(xj−θ)
. It represents that the ith neuron is extincted by jth neuron while

the potential of jth neuron exceed a synaptic threshold θ. dij(t) is the coupling strength

(weights/costs) depend on time t from vertex i to vertex j and is a positive number.

The advantage of offering this form is that the existing methods which model vertices

in a graph as neurons, can be included under this form.

A Neural Network algorithm for KSP problem

The ideal case is that we can solve the system in a closed form. However, if we look into

the general form, the sigmoid function which makes the system non-linear complicates the

problem. We may not able to derived an analytical solutions. Therefore, when computer

handles this problem, it needs to break the complex problem in continuous time into discrete

time.

Simple example in discrete time

We present how a neuron network can help to find the shortest path using a simple ex-

ample. This is important for understanding that why the underlying neural KSP algorithm

is an exact algorithm. By “Exact algorithm”, we mean finding the global optimal solution

if exists. Let’s consider a simple asymmetric directed graph in Fig. E.1.

Results

The results are listed below from node one to the ending node:
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Figure E.6. Example of Neural KSP algorithm. Final state.
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Table E.1. Performance on four simple graphs.

K Run times Nodes Edges Reading Near KSP Neural KSP Path length
1 10 5 7 0 0 0 2

100 138 0 0 1.5 3
500 125022 1263 733 32 2
1000 499205 5974 3432 78 2

5 10 5 7 0 0 1.5 2, 3, 4
100 138 0 0 1.5 3, 4, 5, 7
500 125022 1263 764 187 2, 3, 5
1000 499205 5974 3432 234 2, 3

10 10 5 7 0 - - -
100 138 0 7 16 3, 4, 5, 6, 7
500 125022 1263 765 452 2, 3, 5
1000 499205 5974 3495 3557 2, 3, 4, 5, 6

20 10 5 7 0 - - -
100 138 0 15 16 3, 4, 5, 6, 7
500 125022 1263 780 2964 2, 3, 4, 5, 6, 8, 9
1000 499205 5974 4041 23290 2, 3, 4, 5, 6, 7, 8



105

T
ab

le
E

.2
.

P
er

fo
rm

an
ce

on
fo

u
r

m
u
lt

ig
ra

p
h
s.

K
R

u
n

ti
m

es
N

o
d
es

E
d
ge

s
R

ea
d
in

g1
N

ea
r

K
S
P
2

N
eu

ra
l

K
S
P
3

P
L
4

P
C

5

1
10

5
14

0
0

1.
5

2
96

10
0

14
9

0
0

1.
5

3
49

50
0

50
00

84
38

26
6

35
56

5
25

74
2

9
10

00
19

96
82

0
12

40
40

13
82

39
13

57
2

2
9,

9
5

10
5

14
0

1.
5

1.
6

3
97

,
99

,
10

6,
10

7
10

0
14

9
0

15
16

4
64

,
65

,
66

,
67

50
0

50
00

84
32

61
9

32
47

9
87

68
2

10
,

10
,

11
,

11
,

11
10

00
19

96
82

0
12

71
40

13
89

34
24

44
5

2,
3

10
,

10
,

10
,

10
,

10
10

10
5

7
0

4
5

2,
3,

4
10

9,
11

8,
12

0,
17

2,
18

2
10

0
14

9
0

15
31

4,
5

68
,

69
,

77
,

78
,

79
50

0
50

00
84

33
26

6
33

95
4

15
44

4
2

12
,

12
,

12
,

12
,

12
10

00
19

96
82

0
13

14
07

13
85

44
41

49
6

2,
3

11
1
0

15
10

5
7

0
15

16
3

19
3

10
0

14
9

0
30

40
4

80
,

81
,

82
,

87
,8

8
50

0
50

00
84

33
26

6
33

95
4

26
09

8
2

13
,

13
,

13
,

13
,

13
10

00
19

96
82

0
13

14
07

13
85

44
41

49
6

-
-

1
C

P
U

re
ad

in
g

ti
m

es
in

m
il
li
se

co
n
d
;

2
N

ea
r

K
S
P

al
go

ri
th

m
in

te
rm

s
of

C
P

U
ti

m
e

in
m

il
li
se

co
n
d
;

3
T

h
e

P
ro

p
os

ed
N

eu
ra

l
K

S
P

al
go

ri
th

m
in

te
rm

s
of

C
P

U
ti

m
e

in
m

il
li
se

co
n
d
;
4
P

at
h

L
en

gt
h
;
5
P

at
h

C
os

ts
.



106

T
ab

le
E

.3
.

P
er

fo
rm

an
ce

on
fo

u
r

m
u
lt

ig
ra

p
h
s.

(C
on

ti
n
u
ed

)

K
R

u
n

ti
m

es
N

o
d
es

E
d
ge

s
R

ea
d
in

g1
N

ea
r

K
S
P
2

N
eu

ra
l

K
S
P
3

P
L
4

P
C

5

20
10

5
7

0
62

67
-

-
10

0
14

9
0

30
40

4,
5

89
,

90
,

90
,

90
,

91
50

0
50

00
84

33
44

3
34

15
4

42
71

3
2

14
,

14
,

14
,

14
,

14
10

00
19

96
82

0
12

99
40

13
87

96
80

41
8

2,
3

12
1
8

25
10

5
7

0
62

67
-

-
10

0
14

9
0

31
47

4,
5,

6
92

,
11

3,
11

8,
11

9,
12

0
50

0
50

00
84

33
44

3
32

88
5

49
17

1
2

15
,

15
,

15
,

15
,

15
10

00
19

96
82

0
12

99
40

13
87

96
80

41
8

S
am

e
S
am

e
30

10
5

7
0

62
67

-
-

10
0

14
9

0
40

60
6

12
1,

12
2,

12
3

50
0

50
00

84
33

44
3

34
15

4
10

86
92

2,
3

16
,

16
,

16
,

16
10

00
19

96
82

0
12

99
40

13
87

96
80

41
8

S
am

e
S
am

e
35

10
5

7
0

62
67

-
-

10
0

14
9

0
40

60
-

-
50

0
50

00
84

33
44

3
33

10
3

14
86

92
2,

3
17

,
17

,
17

,
17

,
17

10
00

19
96

82
0

12
99

40
13

87
96

80
41

8
S
am

e
S
am

e
1
R

ea
d
in

g
ti

m
es

;
2
N

ea
r

K
S
P

al
go

ri
th

m
;
3

T
h
e

P
ro

p
os

ed
N

eu
ra

l
K

S
P

al
go

ri
th

m
;
4
P

at
h

L
en

gt
h
;
5
P

at
h

C
os

ts
.



107

T
ab

le
E

.4
.

P
er

fo
rm

an
ce

on
10

0
n
o
d
es

m
u
lt

ig
ra

p
h
s.

(C
on

ti
n
u
ed

II
).

K
R

u
n

ti
m

es
N

o
d
es

E
d
ge

s
R

ea
d
in

g1
N

ea
r

K
S
P
2

N
eu

ra
l

K
S
P
3

P
L
4

P
C

5

1
10

10
0

15
8

0
1

1.
5

1
10

14
9

0
0

1.
5

3
49

5
10

10
0

15
8

0
15

16
1

15
,

20
,

25
,

30
14

9
0

15
16

4
64

,
65

,
66

,
67

10
10

10
0

15
8

0
16

32
1,

3
35

,
40

,
45

,
49

,
50

14
9

0
15

31
4

68
,

69
,

77
,

78
,

79
15

10
10

0
15

8
0

31
42

4
64

,
65

,
66

,
67

,
68

14
9

0
30

40
4

80
,

81
,

82
,

87
,

88
20

10
10

0
15

8
0

31
47

4
69

,
77

,
78

,
79

,
80

14
9

0
30

40
4,

5
89

,
90

,
90

,
90

,
91

1
R

ea
d
in

g
ti

m
es

;
2
N

ea
r

K
S
P

al
go

ri
th

m
;
3

T
h
e

P
ro

p
os

ed
N

eu
ra

l
K

S
P

al
go

ri
th

m
;
4
P

at
h

L
en

gt
h
;
5
P

at
h

C
os

ts
.

N
o
te

:
S
m

al
l

sc
al

e
of

n
et

w
or

k
.

W
e

ad
d
ed

9
ed

ge
s

(1
0,

15
,

20
,

25
,

30
,

35
,

40
,

45
an

d
50

fr
om

ve
rt

ex
1

to
ve

rt
ex

99
d
ir

ec
tl

y
)

to
m

ak
e

p
at

h
le

n
gt

h
1

as
th

e
sh

or
te

st
p
at

h
.



108

T
ab

le
E

.5
.

P
er

fo
rm

an
ce

on
10

00
n
o
d
es

m
u
lt

ig
ra

p
h
s.

(C
on

ti
n
u
ed

II
I)

K
R

u
n

ti
m

es
N

o
d
es

E
d
ge

s
R

ea
d
in

g1
N

ea
r

K
S
P
2

N
eu

ra
l

K
S
P
3

P
L
4

P
C

5

1
10

10
00

19
96

82
5

13
20

03
13

23
99

11
39

1
6

*
19

96
82

0
12

99
40

13
82

39
13

57
2

2
9,

9
19

96
81

2
13

72
95

13
77

79
10

85
8

3
11

19
96

80
4

13
56

95
14

12
51

67
27

9
4

18
19

96
80

4
15

11
58

16
84

68
10

18
68

5
19

19
96

80
4

13
56

95
14

12
51

67
27

9
6

18
19

96
80

0
14

62
95

14
70

92
42

03
59

7
21

5
10

10
00

19
96

82
5

14
23

22
14

22
49

14
88

2
1,

2
6,

7,
8,

9,
9

*
19

96
82

0
12

71
40

13
89

34
24

44
5

2,
3

10
,

10
,

10
,

10
,

10
19

96
81

2
14

18
97

14
60

63
27

20
7

2,
3

12
,

12
,

12
,

12
19

96
80

4
13

90
95

14
28

55
21

64
84

4
18

,
19

,
19

,
19

,
19

19
96

80
0

13
85

59
14

48
62

11
83

21
7

7
22

7

10
10

10
00

19
96

82
5

13
08

99
14

63
60

25
81

8
1,

2,
3

10
6

*
19

96
82

0
13

14
07

13
85

44
41

49
6

2,
3

11
1
0

19
96

81
2

14
10

52
5

14
91

04
27

16
59

4
20

1
0

19
96

80
4

13
84

95
14

77
16

56
11

80
4

18
,

19
,

19
,

19
,

19
19

96
80

0
-

-
-

7
23

2
8

1
R

ea
d
in

g
ti

m
es

;
2
N

ea
r

K
S
P

al
go

ri
th

m
;
3

T
h
e

P
ro

p
os

ed
N

eu
ra

l
K

S
P

al
go

ri
th

m
;
4
P

at
h

L
en

gt
h
;
5
P

at
h

C
os

ts
.



109

T
ab

le
E

.6
.

P
er

fo
rm

an
ce

on
10

00
n
o
d
es

m
u
lt

ig
ra

p
h
s.

(C
on

ti
n
u
ed

IV
)

K
R

u
n

ti
m

es
N

o
d
es

E
d
ge

s
R

ea
d
in

g1
N

ea
r

K
S
P
2

N
eu

ra
l

K
S
P
3

P
L
4

P
C

5

15
10

10
00

19
96

82
5

13
31

43
14

91
74

49
44

9
2,

3
11

1
0

*
19

96
82

0
12

99
40

13
87

96
41

49
6

sa
m

e
sa

m
e

19
96

81
2

14
31

45
14

92
93

97
23

5
2,

3
14

1
3

19
96

80
4

sa
m

e
sa

m
e

sa
m

e
sa

m
e

sa
m

e
19

96
80

0
-

-
-

7
23

2
8

20
10

10
00

19
96

82
5

13
31

43
14

91
74

49
44

9
sa

m
e

sa
m

e
*

19
96

82
0

12
99

40
13

87
96

80
41

8
2,

3
12

1
8

19
96

81
2

sa
m

e
sa

m
e

sa
m

e
sa

m
e

sa
m

e
19

96
80

4
14

18
97

15
30

99
63

80
06

4
21

2
1

19
96

80
0

-
-

-
7

23
2
8

1
R

ea
d
in

g
ti

m
es

;
2
N

ea
r

K
S
P

al
go

ri
th

m
;
3

T
h
e

P
ro

p
os

ed
N

eu
ra

l
K

S
P

al
go

ri
th

m
;
4
P

at
h

L
en

gt
h
;
5
P

at
h

C
os

ts
.

N
o
te

:
L

ar
ge

sc
al

e
of

n
et

w
or

k
.

W
e

ad
d
ed

5
ed

ge
s

(6
,

7,
8,

9,
an

d
10

fr
om

ve
rt

ex
1

to
ve

rt
ex

10
00

d
ir

ec
tl

y
)

to
m

ak
e

p
at

h

le
n
gt

h
1

as
th

e
sh

or
te

st
p
at

h
.

W
e

d
el

et
ed

8
ed

ge
s

(9
,

9,
10

,
10

,
10

,
10

,
10

,
10

)
to

m
ak

e
th

e
p
at

h
le

n
gt

h
3

as
th

e
sh

or
es

t
p
at

h
.

W
e

d
el

et
ed

ad
d
it

io
n
al

12
ed

ge
s

to
m

ak
e

th
e

p
at

h
le

n
gt

h
7

as
th

e
sh

or
es

t
p
at

h
.

B
as

ed
on

*,
w

e
ge

n
er

at
e

al
l

ot
h
er

gr
ap

h
s

b
y

ad
d
in

g
or

re
m

ov
in

g
so

m
e

ed
ge

s.



110

Appendix C: Supporting Information Tables

Table E.7. Adjacent matrix for carbon atoms graph representing binding loop of D20-E31
from calmodulin (3CLN.pdb)

S2 
 

C ID D20C D20CG K21C D22C D22CG G23C D24C D24CG G25C T26C T26CB I27C T28C T28CB T29C T29CB K30C E31C E31CD

D20C 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1

D20CG 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1

K21C 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

D22C 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

D22CG 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1

G23C 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1

D24C 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

D24CG 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1

G25C 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

T26C 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1

T26CB 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1

I27C 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

T28C 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1

T28CB 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1

T29C 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

T29CB 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0

K30C 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

E31C 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

E31CD 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1  
Binding loop of D20-E31 from calmodulin (3CLN.pdb) is used as example to illustrate how the adjacent matrix is constructed for the Figure 2d in the Methods section.  In the 
Table S1, “D20C” represents the mainchain carbon from the 20th Asp while the “D20CG” represents the sidechain gamma carbon from the same residues.  “1” represents the 
distance between two carbon atoms is smaller than 7.5Å; “0” otherwise.  In this example, the distance cutoff of C-C is 7.5Å.

Terminology

In coordination chemistry, a ligand is an ion or molecule that binds to a central metal atom

to form a coordination complex. (from Wikipedia)
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Table E.8. The parameters used in the dataset for MUGC in X-ray and NMR.

S3 
 

 X-ray NMR 
Cutoff of maximum clique 7.5Å 8.3Å 

dist(ca,c1) (2.5Å ,4.5Å) (1.74Å ,4.9Å) 
dist(ca,c2) > dist(ca,c1) > dist(ca,c1)-0.5 

angle(ca,c1,c2) (>90) (>70) 
Center of Mass   

R-Ca  (sidechain O) (<4.3) (<4.5) 
Ca-O (mainchain O) (<Ca-R) (<Ca-R) 

Clash Van der waals radius Van der waals radius 
Ca-N (>2.55) (>2.55) 
Ca-C (>1.74 a/2.7 b) (>1.74 a/2.7 b) 
Ca-O (>1.6) (>1.6) 

a, b: 1.74 for monodentate and 2.7 for bidentate 
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Table E.9. Summary of X-ray training dataset.

S3 
 

 X-ray NMR 
Cutoff of maximum clique 7.5Å 8.3Å 

dist(ca,c1) (2.5Å ,4.5Å) (1.74Å ,4.9Å) 
dist(ca,c2) > dist(ca,c1) > dist(ca,c1)-0.5 

angle(ca,c1,c2) (>90) (>70) 
Center of Mass   

R-Ca  (sidechain O) (<4.3) (<4.5) 
Ca-O (mainchain O) (<Ca-R) (<Ca-R) 

Clash Van der waals radius Van der waals radius 
Ca-N (>2.55) (>2.55) 
Ca-C (>1.74 a/2.7 b) (>1.74 a/2.7 b) 
Ca-O (>1.6) (>1.6) 

a, b: 1.74 for monodentate and 2.7 for bidentate 

  

 

 



113

Table E.10. Summary of X-ray testing dataset.

S5 
 

  

PDBa Resb Proteinc Chaind Sizee

1BJR 2.44 Complex:lactoferrin fragment
and proteinase K E, I 289 

1JDA 2.20 Maltotetraose forming
exo-amylase A 418 

1FZC 2.30 Fibrin A,B,C,D,E,F,G,H,I,J 1382
1SBH 1.80 Subtilisin A 275
1OBR 2.30 Carboxypeptidase T A 323
1EGZ 2.30 Cellulase A, B, C 873
1ESL 2.00 E-Selectin A 157
1AI4 2.35 Penicillin acylase A, B 763
1ATL 1.80 Atrolysin C A, B 500
1AX0 1.90 Lectin A 239
1B9Z 2.10 β-Amylase A 516
1BF2 2.00 Pseudomonas 

Isoamylase A 750 
1CE5 1.90 β-Trypsin A 230
1CLX 1.80 Xylanase A, B, C, C 1380
1GCG 1.90 Galactose binding protein A 309
1HYT 1.70 Thermolysin A 316
1IAG 2.00 Adamalysin (II) A 201
1IRB 1.70 Carboxylic ester hydrolase A 123
1JS4 2.00 Endoexocellulase E4 A, B 1210
1KBC 1.80 Neutrophil collagenase A, B 328
1KIT 2.30 Hydrolase A 757
1KVX 1.90 Carboxylic ester hydrolase A 123
1MMQ 1.90 Matrilysin A 165
1NBC 1.75 Cellusomal scaffolding

Protein A A, B 310 
1OAC 2.00 Amine oxidase A, B 1443
1OIL 2.10 Lipase A, B 640
1SBF 2.43 Soybean agglutinin A 234
1SRA 2.00 Calcium biniding protein A 151
1TCM 2.20 Cyclodextrin glycosyl

Transferase A, B 1372 
1TN3 2.00 Tetranectin A 137
2FIB 2.01 Fibrogen A, B 254
2TEP 2.50 Peanut lectin A, B, C, E 928
4LIP 1.75 Lipase D, E 638
1C9M 1.67 Bacillus lentus subtilisin A 269 
2SCP 2.00 Sarcoplasmic Ca(2+)-binding protein (SCP) A, B 174 
1TVG 1.6 HSPC034 A 153 
2GGM 2.35 Human centrin 2 xeroderma pigmentosum group C 

protein complex A,B,C,D 172 
3FIA 1.45 Human intersectin-1 protein A 121 
1K9K 1.76 calcium bound human S100A6 A, B 90 

1DAN 2.00 
Complex of active site inhibited human blood 
coagulation factor via with human recombinant 
soluble tissue factor 

L, H, T, U, C 
152, 254, 
80, 121, 4 

1MHO 2.00 S100B from bovine brain A 88 
1EDH 2.00 E-cadherin domains 1 and 2 in complex with calcium A, B 226 
2EGD 1.8 human S100A13 A, B 98 

a PDB code. b PDB resolution. c Protein name. d Chain number. e Number of residues. 
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Table E.11. Prediction results on the X-ray training dataset.

S6 
 

  

PDB ID Ca# a Documented Ligands Predicted Ligands Rb    
1ALA 2505 M28, G32, T37, E72 M28, G32, E72 3/4 
 2506 I100, G102, G104, E144 I100, G102, G104, E144 4/4 
 2507 M259, G261, G263, D303 M259, G261, G263, D303 4/4 
1ALV 3425 A107, D110, E112, E117 A107, D110, E112, E117 4/4 
 3426 D150, D152, T154, K156, E161 D150, D152, T154, K156, E161 5/5 
 3427 D180, D182, S184, T186, E191 D180, D182, S184, T186, E191 5/5 
 3428 D135, D223, D225, N226 D135, D223, D225, N226 4/4 
1AUI 4393 D30, D32, S34, S36, E41 D30, D32, S34, S36, E41 5/5 
 4394 D62, D64, N66, E68, E73 D62, D64, N66, E68, E73 5/5 
 4395 D99, D101, D103, Y105, E110 D99, D101, D103, Y105, E110 5/5 
 4396 D140, D142, D144, R146,   E151 D140, D142, D144, R146,   E151 4/4 
1AVS 1266 D30, D32, D36, E41 D30, D32, D36, E41 4/4 
 1267 D66, D68, S70, T72, E77 D66, D68, S70, T72, E77 3/3 
 1268 D30, D32, D36, E41 D30, D32, D36, E41 3/3 
 1269 D66, D68, S70, T72, E77 D66, D68, S70, T72, E77 4/4 
1B9O 1032 K79, D82, D84, D87 K79, D82, D84, D87 4/4 
1EXR 1469 D20, D22, D24, T26, E31 D20, D22, D24, T26, E31 5/5 
 1470 D56, D58, N60, T62, E67 D56, D58, N60, T62, E67 5/5 
 1471 N129, D131, D133, H135, E140 N129, D131, D133, H135, E140 5/5 
 1472 E47 -  
 1473 D93, D95, N97, L99, E104 D93, D95, N97, L99, E104 5/5 
1FJ3 2461 D138, E177, D185, E187, E190 D138, E177, D185, E187, E190 4/4 
 2462 E177, D185, E190 E177, D185, E190 3/3 
 2463 D57, D59, G61 - 0/3 
 2464 Y193, T194, I197, D200 Y193, T194, I197, D200 4/4 
1GLG 2362 D134, N136, D138, Q140, Q142, E205 D134, N136, D138, Q140, Q142, E205 6/6 
1K96 715 S20, E23, D25, T28, E33 S20, E23, D25, T28, E33 5/5 
 716 D61, N65, D65, E67, E72 D61, N65, D65, E67, E72 5/5 
1NLS 1875 D10, Y12, N14, D19 D10, Y12, N14, D19 4/4 
1PSH 2788 Y27, G29, G31, D48 Y27, G29, G31, D48 4/4 
 2789 Y27, G29, G31, D48 Y27, G29, G31, D48 4/4 
 2790 Y27, G29, G31, D48 Y27, G29, G31, D48 4/4 
1SCD 1922 D41, L75, N77, T79, V81 D41, L75, N77, T79, V81 5/5 
 1923 A169, Y171, V174 - 4/4 
1SNC 1184 D21, D40, T41 D21, T41 2/3 
1THM 2005 D5, D47, V82, N85, T87, I89 D5, D47, V82, N85, T87, I89 4/4 
 2006 D57, D62, T64, Q66 D57, D62, Q66 3/4 
2PRK 2019 P175, V177, D200 P175, V177, D200 3/3 
 2020 T16, D260 - 2/2 
3EST 1824 E70, N72, Q75, N77, E80 E70, N72, Q75, N77, E80 5/5 
4ICB 641 A14, E17, D19, Q22, E27 A14, E17, D19, Q22, E27 5/5 
 642 D54, N56, D58, E60, E65 D54, N56, D58, E60, E65 5/5 
5PAL 843 D90, D92, D94, K96, E101 D90, D92, D94, K96, E101 4/4 
 844 D51, D53, S55, F57, E59, E62 D51, D53, S55, F57, E59, E62 6/6 

a: metal identification number in PDB file. b: the correctly predicted ligands over documented ligands 
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Table E.12. Prediction results on the X-ray testing dataset.

S7 
 

 

PDB ID Ca# a Documented Ligands Predicted Ligands Rb    
1BJR 2090 P175, V177, D200 P175, V177, D200 3/3 
 2089 R12, S15, N257, A273 - 0/4 
1JDA 3299 N116, D151, D154, D162, G197 N116, D151, D154, D162, G197 5/5 
 3300 D1, Q2, H13, D16, E17 D1, Q2, H13, D16, E17 5/5 
1FZC 11170 D381, D383, W385 D381, D383, W385 3/3 
 11171 D318, D320, F322, G324 D318, D320, F322, G324 4/4 
 11172 D381, D383, W385 D381, D383, W385 3/3 
 11173 D318, D320, F322, G324 D318, D320, F322, G324 4/4 
1SBH 1942 Q2, D41, L75, N77, V81 Q2, D41, L75, N77, V81 5/5 
 1943 A169, Y171, V174 - 0/3 
1OBR 2584 D56, E57, E61, E104 D56, E57, E61, E104 4/4 
 2585 S50, D51,E57,E59 S50, D51,E57,E59 4/4 
 2586 D51,E59, N101 D51,E59, N101 3/3 
 2587 S7, Y9, E14 S7, Y9, E14 3/3 
1EGZ 6810 G121, D158, D160, N161 G121, D158, D160, N161 4/4 
 6811 G121, D158, D160, N161 G121, D158, D160, N161 4/4 
 6812 G121, D158, D160, N161 G121, D158, D160, N161 4/4 
1ESL 1267 E80, N82, N105, D106 E80, N82, N105, D106 4/4 
 1268 E33, E36 - 0/2 
 1270 Q20, Y23 - 0/2 
1AI4 6074 E152, D73, V75, D76, P205, D252 E152, D73, V75, D76, P205, D252 6/6 
1ATL 3260 E9, D93, C197, N200 E9, D93, C197, N200 4/4 
 3262 E9, D93, C197, N200 E9, D93, C197, N200 4/4 
1AX0 1996 D129, F131, N133, D136 D129, F131, N133, D136 4/4 
1B9Z 4310 D56, D60, Q61, E141, E144 D56, D60, Q61, E141, E144 5/5 
1BF2 5737 D128, E229, T230, N232, D259 D128, E229, T230, N232, D259 5/5 
1CE5 1631 E70, N72, V75, E80 E70, N72, V75, E80 4/4 
1CLX 10801 N253, D256, N258, N261, D262 N253, D256, N258, N261, D262 5/5 
 10802 N253, D256, N258, N261, D262 N253, D256, N258, N261, D262 5/5 
 10803 N253, D256, N258, N261, D262 N253, D256, N258, N261, D262 5/5 
 10804 N253, D256, N258, N261, D262 N253, D256, N258, N261, D262 5/5 
1GCG 2895 D134, N136, D138, K140, Q142, E205 D134, N136, D138, K140, Q142, E205 6/6 
1HYT 2440 D138, E177, D185, E187, E190 D138, E177, D185, E187, E190 5/5 
 2441 E177, N183, D185, E190 E177, N183, D185, E190 4/4 
 2442 D57, D59, N61 - 0/3 
 2443 Y193, T194, I197, D200 Y193, T194, I197, D200 4/4 
1IAG 1623 E9, D93, C197, N200 E9, D93, C197, N200 4/4 
1IRB 951 Y28, G30, G32, D49 Y28, G30, G32, D49 4/4 
1JS4 9586 S210, G211, D214, E215, D261 S210, G211, D214, E215, D261 5/5 
 9587 T504, D506, D571, N574, D575  T504, D506, D571, N574, D575  5/5 
 9588 S210, G211, D214, E215, D261, S210, G211, D214, E215, D261, 5/5 
 9589 T504, D506, D571, N574, D 575 T504, D506, D571, N574, D 575 5/5 
1KBC 2591 D137, G169,  G171, D173,   D137, G169,  G171, D173,   4/4 
 2592 D154, G155, N157, I159, D177, E180  D154, G155, N157, I159, D177, E180  6/6 
 2595 D137, G169, G171, D173  D137, G169, G171, D173  4/4 
 2596 D154, G155, N157, I159, D177, E180 D154, G155, N157, I159, D177, E180 6/6 
1KIT 5861 A253, N256, D289, T313  A253, N256, D289, T313 4/4 
 5862 D621, D682, A683  D621, D682, A683 3/3 
1KVX 956 Y28, G30, G32, D49 Y28, G30, G32, D49 4/4 
1MMQ 1272 D175, G176, G178, T180, D198, E201  D175, G176, G178, T180, D198, E201  6/6 
 1273 D158, G190, G192, D194  D158, G190, G192, D194  4/4 
1NBC 2437 T44, D46, T122, N125, D126  T44, D46, T122, N125, D126  5/5 
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 2438 T44, D46, T122, N125, D126 T44, D46, T122, N125, D126 5/5 
1OAC 11388 D533, L534, D535, D678, A679  D533, L534, D535, D678, A679  5/5 
 11389 E573, Y667, D670, E672 E573, Y667, D670, E672 4/4 
 11391 D533, L534, D535, D678, A679  D533, L534, D535, D678, A679  5/5 
 11392 E573, Y667, D670, E672 E573, Y667, D670, E672 4/4 
1OIL 4677 D242, D288, Q292, V296  D242, D288, Q292, V296 4/4 
 4678 D242, D288, Q292, V296  D242, D288, Q292, V296 4/4 
1SBF 1735 D126, F128, N130, D133 D126, F128, N130, D133 4/4 
1SRA 1264 D222, P225, D227, Y229, E234 D222, P225, D227, Y229, E234 4/4 
 1265 D257, D259, D261, Y263, E268  D257, D259, D261, Y263, E268  5/5 
 1266 P241, I243, E246 - 0/3 
1TCM 10513 D27, N29, N32, N33, G51, D53  D27, N29, N32, N33, G51, D53  4/4 
 10514 N139, I190, D199, H233  N139, I190, D199, H233  4/4 
 10515 D27, N29, N32, N33, G51, D53 D27, N29, N32, N33, G51, D53 5/5 
 10616 N139, I190, D199, H233  N139, I190, D199, H233  4/4 
1TN3 1068 D116, E120, G147, E150, N151, D116, E120, G147, E150, N151, 5/5 
 1069 Q143, D145, E150, D165  Q143, D145, E150, D165  4/4 
2FIB 2036 D318, D320, F322, G324 D318, D320, F322, G324 4/4 
2TEP 7081 D123, Y125, N127, D132  D123, Y125, N127, D132 4/4 
 7083 D123, Y125, N127, D132 D123, Y125, N127, D132 4/4 
 7085 D123, Y125, N127, D132 D123, Y125, N127, D132 4/4 
 7087 D123, Y125, N127, D132 D123, Y125, N127, D132 4/4 
4LIP 4669 D242, D288, Q292, V296 D242, D288, Q292, V296 4/4 
 4670 D242, D288, Q292, V296 D242, D288, Q292, V296 4/4 
1C9M 1897 G2, D41, L75, N77, I79, V81 G2, D41, L75, N77, I79, V81 6/6 
 1898 A169, Y171, A174, G195 D197 A169, A174, D197 3/5 
2SCP 2739 D16, D18, D20, A22, D27 D16, D18, D20, A22, D27 5/5 
 2740 D104,N106, D108, N110, E115 D104,N106, D108, N110, E115 5/5 
 2741 D138, N140, D142, L144, E149 D138, N140, D142, L144, E149 5/5 
 2742 D16, D18, D20, A22, D27 D16, D18, D20, A22, D27 5/5 
 2743 D104,N106, D108, N110, E115 D104,N106, D108, N110, E115 5/5 
 2744 D138, N140, D142, L144, E149 D138, N140, D142, L144, E149 5/5 
1TVG 1086 N29, D32, N34, T37, H130 N29, D32, N34, T37, H130 5/5 
2GGM 2682 D114, D116, T118, K120, N125 D114, D116, T118, K120, N125 5/5 
 2683 D150, D152, D154, E156, E161 D150, D152, D154, E156, E161 5/5 
 2684 D114, D116, T118, K120, N125 D114, D116, T118, K120, N125 5/5 
 2685 D150, D152, D154, E156, E161 D150, D152, D154, E156, E161 5/5 
3FIA 780 D66, N68, D70, R72, E77 D66, N68, D70, R72, E77 5/5 
1K9K 1417 S20, E23, D25, T28, E33 S20, E23, D25, T28, E33 5/5 
 1418 D61, D63, D65, E67, E72 D61, D63, D65, E67, E72 5/5 
 1423 S20, E23, D25, T28, E33 S20, E23, D25, T28, E33 5/5 
 1424 D61, D63, D65, E67, E72 D61, D63, D65, E67, E72 5/5 
1DAN* 4723 D46, G47, N49, D63, N64 D46, G47, N49, D63, N64 5/5 
 4724 CGU -  
 4725 CGU -  
 4726 CGU -  
 4727 CGU -  
 4728 CGU -  
 4729 CGU -  
 4730 CGU -  
 4731 D70, D72, E75, E80 D70, D72, E75, E80 4/4 
1MHO 713 S18, E21, D23, K26, E31 S18, E21, D23, K26, E31 5/5 
 714 D61, D63, D65, E67, E72 D61, D63, D65, E67, E72 5/5 
1EDH  3230 E11, E69, D100, Q101, D103 E11, E69, D100, Q101, D103 5/5 
 3231 E11, D67, E69, D103 E11, D67, E69, D103 4/4 
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 3232 E11, N12, D67, E69, D103 E11, N12, D67, E69, D103 5/5 
 3234 E11, E69, D100, Q101, D103 E11, E69, D100, Q101, D103 5/5 
 3235 E11, D67, E69, D103 E11, D67, E69, D103 4/4 
 3236 E11, N12, D67, E69, D103 E11, N12, D67, E69, D103 5/5 
2EGD 1386 A24, E27, R29, S32, E37 A24, E27, R29, S32, E37 5/5 
 1387 D64, N66, D68, E70, E75 D64, N66, D68, E70, E75 5/5 
 1388 A24, E27, R29, S32, E37 A24, E27, R29, S32, E37 5/5 
 1389 D64, N66, D68, E70, E75 D64, N66, D68, E70, E75 5/5 

a: metal identification number in PDB file. b: the correctly predicted ligands over documented ligands 
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Table E.15. Testing on Mg2+-binding proteins (X-ray structures).

S13 
 

 

PDBa Resb Proteinc Chaind Mg#e Mis-
classifiedf

1CMC 1.8 Met repressor (metj) A,B 1693 No
1721 No

1EBH 2.2 Enolase A,B 6631 No
6633 No

1XLB 2.3 D-xylose isomerase A 6055 No
1CHN 1.6 Chey A 968 No

1EO3 1.9 Restriction enzyme ecoRV A,B 
4229 No
4230 No
4235 No
4236 No

1VSD 1.9 Integrase A 1129 No
1MUS 2.5 Adenine phosphoribosyltransferase A,B 4435 No

4436 No
1QB7 1.9 Xanthine-guanine phosphoribosyltransferase A 1857 No
1EYJ 2.1 Fructose-1,6-bisphosphatase A,B 5011 No

5056 No
2UAG 1.7 D-glutamate ligase A 3247 No

A 3248 No
3PRN 1.9 Porin A 2203 No

1HBN 1.1 Methyl-coenzyme m reductase 
B 19432 No
D 19557 No
E 19570 No

2TCT 2.1 Tetracycline repressor A 1575 No
1LUC 1.5 Bacterial luciferase A 5096 No

B 5106 No
1KQP 1.0 Nh(3)-dependent nad(+) synthetase B 8739 No
1NG1 2.0 Signal sequence recognition protein FFH A 2279 No
1BL3 2.0 Integrase B 3445 No
1NUL 1.8 Xanthine-guanine phosphoribosyltransferase A 2159 No
2UAG 1.7 D-glutamate ligase A 3247 No
1IDE 2.5 Isocitrate dehydrogenase A 3881 No
1JIV 2.0 DNA beta-glucosyltransferase A 2871 No

A 2872 No
1DOZ 1.8 Ferrochelatase A 2490 No
1G8T 1.1 Nuclease sm2 isoform A 3878 No
1A73 1.8 Intron 3 (i-ppo) encoded endonuclease A 3353 No
1FWK 2.1 Homoserine kinase D 9162 No
1JKK 2.4 Death-associated protein kinase A 2247 No
1LDF 2.1 Glycerol uptake facilitator A 1936 No

1OBW 2.1 Inorganic pyrophosphatase A,B,C 

4141 Other
4142 No
4143 No
4144 Other
4145 No
4146 No
4147 Other

1KCZ 1.9 Beta-methylaspartase A,B 6431 Other
6440 Other

1RK2 1.8 Ribokinase A,B,C,D 
8992 Other
9035 Other
9078 Other
9121 Other

a PDB code. b PDB resolution. c Protein name. d Chain number. e metal identification number in PDB file. f mistakenly 

classified Mg2+-binding site as Ca2+-binding site. 
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Table E.16. Testing on Zn2+-binding proteins (X-ray structures).

S14 
 

 

PDBa Resb Proteinc Chaind Zn#e Mis-
classifiedf

1FWZ 2.3 Diphtheria toxin repressor A 1588 No

1CY5 1.3 Apoptotic protease activating factor 1 A 
749 No
750 No
752 No

1WEJ 1.8 E8 antibody A 4170 No

1E67 2.1 Azurin  A,B,C,D
3901 No
3906 No
3907 No
3908 No

1GS8 1.9 Nitrite reductase A 2590 No
2591 No

1F5F 1.7 Sex hormone-binding globulin A 1369 No
1370 No

1GI4 1.3 Beta-trypsin A 3369 No
2CBA 1.5 Carbonic anhydrase A 2081 No
1F3Z 1.9 Glucose-specific phosphocarrier A 1109 No
1C8Y 2.0 Endo-beta-n-acetyl-glucosaminidase H A 2015 No
4ENL 1.9 Enolase  A 3291 No
1I6N 1.8 Loli protein A 2231 No
1IM5 1.6 Pyrazinamidase  A 1439 No

1VSH 1.9 Integrase  A 
1129 No
1130 No
1131 No

1NOY 2.2 DNA polymerase A 5953 No
2CTB 1.5 Carboxypeptidase A A 2452 No
1TOA 1.8 Periplasmic binding protein A,B 4295 No

4302 No

1A2P 1.5 Barnase  A,B,C 
2628 No
2629 No
2630 No

1EU3 1.6 Superantigen Smez-2 A,B 3419 No
3436 No

1EWC 1.9 Enterotoxin H A 1733 No
1EU4 2.5 Superantigen spe-H A 1668 No
1AST 1.8 Astacin A 1593 No
1ZFP 1.8 Growth factor receptor binding protein E 870 No
1K4P 1.0 3,4-dihydroxy-2-butanone 4-phosphate synthase A 1643 No

1K9Z 1.5 Halotolerance protein HAL2 A 
2731 No
2732 No
2735 No
2733 No

1CNQ 2.2 Fructose-1,6-bisphosphatase A 2572 No
1KSP 2.3 Klenow fragment A 4817 No
3IVE 2.0 Immunoglobulin A 893 No
1M5E 1.4 Glutamate receptor 2 A 6150 No
1L7O 2.2 Phosphoserine phosphatase B 3208 No
8RNT 1.8 Ribonuclease T1 A 779 No

1XLL 2.5 D-xylose isomerase A,B 
6057 Other
6058 No
6059 Other
6060 No

a PDB code. b PDB resolution. c Protein name. d Chain number. e metal identification number in PDB file. f mistakenly 

classified Zn2+-binding site as Ca2+-binding site.
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Table E.17. Testing on Pb2+-binding proteins (X-ray structures).

S15 
 

  

PDBa Resb Proteinc Chaind Pb#e Mis-
classifiedf

1E9N 2.20 DNA-lyase A,B 
4339 No
4340 No
4341 No
4342 No

1FJR 2.3 Methuselah ectodomain A,B 
3120 No
3121 No
3169 No
3170 No

1NA0 1.60 Designed protein CTPR3 A,B 

1969 No
1970 No
1975 No
1976 No
1977 No

1QNV 2.5 5-aminolaevulinic acid dehydratase A 2548 No
2549 No

1SN8 2.00 Ribonuclease E  A,B 1330 No
1331 No

1SYY 1.7 Ribonucleoside-diphosphate reductase A 2617 No

1XXA 2.20 Arginine repressor  A~F 
3245 No
3246 No
3259 No
3284 No

1ZHY 1.6 KES1 protein A 3516 No
3517 No

2CH7 2.5 Methyl-accepting chemotaxis protein  A,B 4633 No
4634 No

2FJ9 1.6 Acyl-CoA-Binding protein A 710 No
2FP1 1.55 Chorismate mutase  A,B 2705 No

2706 No
2OQ1 1.9 Tyrosine-protein kinase A,B 2200 No

2QD5 2.3 Ferrochelatase  A,B 
5845 No
5846 No
5965 No
5966 No

2QKL 2.3 Hydrolase  A,B 1772 No
3EC8 2.6 FLJ10324 A 1083 No

1084 No

3FHH 2.6 Outer membrane heme receptor ShuA A 
4778 No
4779 No
4780 No
4781 No

1HD7 1.95 DNA-lyase A 2072 Other

2G0A 2.35 Cytosolic 5’-nucleotidase III A,B 
4655 Other
4671 Other

2O3C 2.30 APEX nuclease 1 A,B 
6648 Other

6649 No
6650 Other

a PDB code. b PDB resolution. c Protein name. d Chain number. e metal identification number in PDB file. f mistakenly 

classified Pb2+-binding site as Ca2+-binding site. 
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Table E.18. Testing on a negative control dataset (X-ray structures).

S16 
 

  

PDBa Proteinb FNc

1DTS Dethiobiotin synthase 0
1L68 Lysozyme 0
1PTX Scorpion toxin II 0
1VCC DNA topoisomerase I 0
1WBA Winged bean albumin 1 0
2ENG Endoglucanase V 0
2YLE Human spir-1 kind fsi domain in complex with 

the fsi peptide 0 
3O5F Fk1 domain of FKBP51 0
3OQ7 Multidrug-Resistant Clinical Isolate 769 HIV-1 

Protease Variants 0 
1IQR DNA photolyase 0
1IUG Aspartate aminotransferase which belongs to 

subgroup IV 0 
1IZ0 Quinone Oxidoreductase 0
1J27 Hypothetical protein, TT1725 0
1J3M Conserved hypothetical protein TT1751 0
1JJF Feruloyl esterase domain of the cellulosomal 

xylanase z of clostridium thermocellum 0 
1TCA Lipase 2
2OLB Oligo-peptide binding protein 4
1TTB Transthyretin 2
1BDM Malate Dehydrogenase 5
1K4N Protein EC4020 3
2AQJ Tryptophan 7-halogenase (PrnA) 5
1ISO Isocitrate dehydrogenase    2
1SGV Trna psi55 pseudouridine synthase (trub) 3
a PDB code. b Protein name. c Number of False Negative predictions. 
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Appendix D: Formula in Resource Allocation Model

1. Three other options calculations:

(1). Single screening and treating for GC only.

Curijkl = Pg(i) · Sng(j) · Eg(l) · Pr (E.8)

Similar to (3.2), we have

Costijkl = Bcg(j) + V c+ [Pg(i) · Sng(j)

+(1− Pg(i)) · (1− Spg(j))] · (Dcg(l) + Tc) · Pr (E.9)

(2). Sequence screening tests that tested for CT and then GC if a positive CT result.

Curijkl = Curijkl in (3.1) + Pt(i) · Snt(j) · Pg|t(i) · Sng(j) · Eg(l) · Pr

+(1− Pt(i)) · (1− Spt(j)) · Pg|t(i) · Sng(j) · Eg(l) · Pr (E.10)

• Pt(i) · Snt(j) gives the rate over the population of group i tested positively by using

the jth CT screening test;

• Pt(i) · Snt(j) · Pg|t(i) · Sng(j) ·Eg(l) · Pr gives the rate of the cured number of the GC

patients infected by both of CT and GC and tested both positively.

• (1−Pt(i)) · (1−Spt(j)) is the rate of those who are not infected with CT but who test

positive. So (1− Pt(i)) · (1− Spt(j)) · Pg|t(i) · Sng(j) gives the percentage of patients

who are in a “stroke of good luck” case. In this case, patients only have GC and were

accidentally diagnosed as having CT with the jth test firstly and were caught with

the second GC test finally, which in turn shows that (1−Pt(i)) · (1− Spt(j)) ·Pg|t(i) ·
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Sng(j) ·Eg(l) ·Pr is the percentage of the cured number of GC patients in the case of

the “stroke of good luck”.

Costijkl = Costijkl in (3.2) + [Pt(i) · Snt(j) + (1− Pt(i)) · (1− Spt(j))]

·Bcg(j) + [Pt(i) · Snt(j) · Pg|t(i) + (1− Pt(i)) · (1− Spt(j))

·Pg|t(i)] · Sng(j) · (Dcg(l) + Tc) · Pr (E.11)

• [Pt(i) ·Snt(j)+(1−Pt(i)) ·(1−Spt(j))] ·Bcg(j) represents the rate over the population

of GC testing costs for the patients testing positive for CT.

• [Pt(i) · Snt(j) · Pg|t(i) + (1− Pt(i)) · (1− Spt(j)) · Pg|t(i)] represents the rate over the

population of those testing positive on CT and then positive on GC.

• [Pt(i) ·Snt(j) ·Pg|t(i)+(1−Pt(i)) · (1−Spt(j)) ·Pg|t(i)] ·Sng(j) · (Dcg(l)+Tc) ·Pr is the

rate over the population of treatment costs for curing these patients with a positive

GC test.

(3). Combo screening test for both CT and GC.

Curijkl = Curijkl in (3.1) + Curijkl in (E.8) (E.12)

Costijkl in (3.2) + Costijkl in (E.9) will give the basic count except the visit costs for

the screening test is counted twice and the treatment costs for those testing positive on both

CT and GC are counted twice. Subtracting them, we obtain the following.

Costijkl = Costijkl in (3.2) + Costijkl in (E.9)

−Vc − Pt(i) · Pg|t(i) · Tc · Pr (E.13)
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Note: For a combo assay, there is an additional cost which is calculated slightly

different from (E.13). Thus, we added the extra costs to the previous formula and it is

Costijkl = Costijkl in (E.13) + [Pt(i) · Snt(j)

+Pg(i) · Sng(j)− Pt(i) · Pg|t(i)] · Ac(j) (E.14)

2. Useful formula:

Let Pg|t(i) be the conditional probability of a CT patient in group i having GC and

Pt|g(i) be the conditional probability of a GC patient in group i having CT. From Bayes’

law, we obtain

Pt|g(i) =
Pt(i) · Pg|t(i)

Pg(i)
. (E.15)

Therefore, if Pg|t(i) is given, Pt|g(i) can be calculated by the above equation.

Let Pg|t(i) be the conditional probability of GC infection in a patient without CT

infection. The following equations are useful while calculating costs.

Pg|t(i) =
Pg(i)− Pt(i) · Pg|t(i)

1− Pt(i)
(E.16)

Because Pg(i) = Pt(i) · Pg|t + (1− Pt(i)) · Pg|t(i).

Similarly, we need Pt|g(i) in the cost estimates. Pt|g(i) can be presented as the following:

Pt|g(i) =
Pt(i)− Pg(i) · Pt|g(i)

1− Pg(i)
(E.17)

3. The Horowitz-Sahni branch-and-bound method.

In general, this algorithm has two moves. The descriptions and pseudocodes are published

[112]: “A forward move consists of inserting the largest possible set of new consecutive

items into the current solutions. A backtracking move consists of removing the last inserted

item from the current solution. Whenever a forward move is exhausted, the upper bound

corresponding to the current solutions is computed and compared with the best solution
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so far, in order to check whether further forward moves could lead to a better one; if so,

a new forward move is performed, otherwise, a backtracking follows.” (p.30-31). In this

algorithm, items initially are sorted according to decreasing rates of the values per unit

weight. The pseudocodes we used [112] are: (x̂j)=current solution; ẑ=current solution

value (=
∑n

j=1 pjx̂j); ĉ=current residual capacity (= c−
∑n

j=1wjx̂j); (xj)=best solution so

far; z= value of the best solution so far (=
∑n

j=1 pjxj).

input: n, c, pj, wj; output: z, xj;

begin:

1:[initialize]

z=0; ẑ = 0; ĉ = c; pn+1 = 0; wn+1 = +∞; j = 1.

2:[compute upper bound U1]

find r = min{i :
∑i

k=j wk > ĉ}; u =
∑r−1

k=j pk +
⌊
(ĉ−

∑r−1
k=j wk)pr/wr)

⌋
;

if z ≥ ẑ + u then go to 5;

3:[perform a forward step]

while wj ≤ ĉ do ĉ = ĉ− wj; ẑ = ẑ + pj; x̂j = 1; j = j + 1;

if j ≤ n then x̂j = 0; j = j + 1;

if j < n then go to 2; if j = n then go to 3;

4:[update the best solution so far]

if ẑ > z then z = ẑ; for k = 1 to n do xk = x̂k;

j = n;

if x̂n = 1 then ĉ = ĉ+ wn; ẑ = ẑ − pn; x̂n = 0;

5:[backtrack]

find i = max{k < j : x̂k = 1};

if no such i then return;

ĉ = ĉ+ wi; ẑ = ẑ − pi; x̂i = 0; j = i+ 1; go to 2;

end.
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