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DI-SEC: DI STRIBUTED SEC URITY FRAMEWORK FOR HETEROGENEOUS

WIRELESS SENSOR NETWORKS

by

MARCO VALERO

Under the Direction of Dr. Raheem Beyah and Dr. Yingshu Li

ABSTRACT

Wireless Sensor Networks (WSNs) are deployed for monitoring in a range of critical do-

mains (e.g., health care, military, critical infrastructure). Accordingly, these WSNs should

be resilient to attacks. The current approach to defending against malicious threats is to

develop and deploy a specific defense mechanism for a specific attack. However, the problem

with this traditional approach to defending sensor networks is that the solution for one at-

tack (i.e., Jamming attack) does not defend against other attacks (e.g., Sybil and Selective



Forwarding). In reality, one cannot know a priori what type of attack an adversary will

launch. This work addresses the challenges with the traditional approach to securing sensor

networks and presents a comprehensive framework, Di-Sec, that can defend against all known

and forthcoming attacks. At the heart of Di-Sec lies the monitoring core (M-Core), which is

an extensible and lightweight layer that gathers information and statistics relevant for cre-

ating defense modules. The M-Core allows for the monitoring of both internal and external

threats simultaneously supporting the execution of new or existing detection and defense

mechanisms against different threats in parallel. Along with Di-Sec, a new user-friendly

domain-specific language was developed, the M-Core Control Language (MCL). Using the

MCL, a user can implement new defense mechanisms without the overhead of learning the

details of the underlying software architecture (i.e., TinyOS, Di-Sec). Hence, the MCL expe-

dites the development of sensor defense mechanisms by significantly simplifying the coding

process for developers. The Di-Sec framework has been implemented and tested on real sen-

sors to evaluate its feasibility and performance. Our evaluation of memory, communication,

and sensing components shows that Di-Sec is feasible on today’s resource-limited sensors

and has a nominal overhead. Furthermore, we illustrate the functionality of Di-Sec by im-

plementing and simultaneously executing detection and defense mechanisms for attacks at

various layers of the communication stack (i.e., Jamming, Selective Forwarding, Sybil, and

Internal attacks). We ran all our experiment on a cluster of real sensors and showed the

functionality of the cluster heads running Di-Sec.

INDEX WORDS: Di-Sec, Security framework, Monitoring core, Wireless sensor networks
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PART 1

INTRODUCTION

1.1 Problem and Motivation

Wireless Sensor Networks (WSNs) are no longer a nascent technology and today, they

are actively deployed as a viable technology in many diverse application domains such as

health care, military, and environmental. Moreover, with recent initiatives such as Cyber-

Physical Systems [1], Internet of Things [2], and Planetary Skin [3], sensor-based applications

have gained a new impetus in the research community. WSNs have been predicted to be one

of the ten technologies that will change the world in the next 10 years [4]. More companies

offer sensor-based solutions and the usage of billions of networked sensors are envisioned to

be deployed on land, sea, air, and space to detect and predict the environmental changes in

an effort to build a globally pervasive nervous system composed of these tiny devices [3].

Over the last decade, the WSNs research community has identified many unique security

threats. There has been a tremendous effort in building defense mechanisms against these

threats and a myriad of security solutions have been introduced in the literature. Nonethe-

less, the trend with different security schemes so far has been to focus on defending against

individual threats/attacks rather than a comprehensive security solution. We observe sev-

eral legitimate reasons for this trend. First, sensors are limited in terms of energy, memory,

and computational resources and this situation poses unique challenges for protocol builders.

Second, sensors were initially considered to be deployed for single-task applications; thus, the

threat models envision the protection against only single attacks. Third, the sensor research

was evolving and the sensor software and hardware platforms were not as rich and mature

as today.

However, in reality, the traditional method of defending against only a certain attack

does not eliminate the risk of other attacks. For instance, the solution for the Jamming attack
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does not defend against other possible attacks (e.g., Sybil, Selective Forwarding). Armed

with only one defense mechanism, sensor nodes and WSNs are unable to defend against

attacks other than what the current defense mechanism can defend against. Albeit being

useful in theory, this is far from the truth because in this traditional approach to securing

WSNs one must unrealistically assume that the attacker will only employ the attack for

which the network is prepared to defend. In fact, one cannot know a priori what type of

attack an adversary will launch. Given the multifaceted threats on today’s networks, it is

very probable that one or more attackers launch single or multiple attacks simultaneously

at different places in the network and employ different techniques to target different nodes

and functionalities. Keeping the realistic threat model in mind, WSNs must be prepared

to defend against all known attacks at any given time [5]. Additionally, the intuitive idea

of combining the existing schemes will not suffice given the resource constraints of current

inexpensive sensors. For example, if we consider the memory capacity of a sensor node (e.g.,

Mica2 mote with 4 KB RAM and 128 KB program memory), it is not possible to store

mechanisms that detect and analyze many attacks, and therefore prevent the nodes/network

from a security breach. For instance, [6] requires 2.2 KB RAM to defend against DoS attacks,

[7] needs 1.5 KB RAM to defend against sinkhole attacks, and [8] requires approximately

1 KB RAM to defend against hello flood attacks. If we consider program memory, then

60KB is required for the operating system (e.g., TinyOS [9]), 45.26 KB to store a code

dissemination tool such as [6], and 7.2KB (approx.) to provide link layer security [10], which

consumes 88% of the available program memory while still leaving the node vulnerable to

many attacks.

1.2 Proposed Solution

In this work, we present a comprehensive security framework, Di-Sec, that can defend

against all known threats for WSNs. To the best of our knowledge, there is not a solution

that can defend against all known attacks in realistic situations. Although the previous se-

curity mechanisms are well established for each individual layer of the communication stack
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or individual attack, combining all of the mechanisms and making them work in

collaboration is a challenging research problem [11]. Therefore, in this work, we pro-

pose a framework that can provide generic security to WSNs using real sensors. Moreover,

motivated by the future applications of sensors and the growing interest [2] to integrate these

resource limited devices with more powerful infrastructures, Di-Sec provides an architecture

for heterogeneous sensor networks where there is a combination of high-end sensors along

with low-end sensors to define a general framework for security. The approach is also benefi-

cial because providing defenses for all known attacks at different layers would not be possible

with the low-end sensor nodes memory and other constraints, and using only high-end sensor

nodes (base stations and cluster-heads) introduces high deployment costs.

The Di-Sec framework runs on TinyOS. TinyOS is a modular operating system based

on components that are wired together through interfaces to create applications with differ-

ent functionalities. Following this operating system characteristic, we designed the Di-Sec

framework with a highly modular architecture where every component is independent, and

can be easily added and removed without affecting the rest of the framework.

In order to create a comprehensive security solution we analyze the functionality of WSN

devices and the variety and nature of WSN attacks. Three important functions of sensor

devices include sensing physical or environmental conditions, processing collected data, and

communicating with other sensors. All of these three functions are potential attack vectors

and should be continuously monitored. The sensing device itself can be used to trigger

attacks on the sensor. For instance, a motion pattern, a change of temperature, or even a

flashing light could be used to activate a trojan on the sensor. The collected data should

also be monitored since it might be used to inject some malicious code or data that can

compromised the sensor. The sensor communication function is the main target of attacks.

Given the broadcast nature of the wireless medium used by sensors to communicate, it is

very attractive and easy for adversaries to launch attacks against communication channels.

For the design of the Di-Sec framework we also considered the different types of attacks:

1) Active attacks including packet modification, injection and replaying, 2) Passive attacks
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or Eavesdropping, 3) External attacks, and 4) Internal attacks which are the more dangerous

attacks. All of these attacks are also classified at different layers of the protocol stack, for ex-

ample Jamming attacks (at the physical layer), Sybil attacks (at the MAC layer), Wormhole

attacks, and Selective Forwarding (at the network layer). Therefore, our framework should

be able to defend at all the layers of the protocol stack.

The novel architecture of Di-Sec includes three fundamental components: the Monitoring-

Core (M-Core), the reporting control (R-Control), and the Detection and Defense Modules

(DDMs). Conceptually, the M-Core is the heart of Di-Sec for individual node activities

monitoring. It is an extensible and lightweight layer responsible for gathering specific statis-

tics to support the operations of the DDMs. The M-Core is a simple yet effective novel

component-based solution for monitoring of both internal and external threats. It supports

the execution of new or existing detection and defense mechanisms against different threats

in parallel. On the other hand, the R-Control is use for network control and communication

with the cluster head.

The DDMs are specific attack detections and/or defense mechanisms, but can also be

used as conduits to provide services to other layers. Each DDM would include the implemen-

tation of the necessary behavior to detect and defend against attacks utilizing the M-Core

services. Furthermore, to easily use the Di-Sec framework to access the services provided by

M-Core, we have created a new domain specific language named M-Core Control Language

(MCL). Using MCL, a user can implement new DDMs and M-Core services without the

overhead of learning the details of the underlying software architecture (i.e., TinyOS, Di-

Sec). Hence, MCL expedites the development of sensor defense mechanisms by significantly

simplifying the coding process for developers.

We have implemented the Di-Sec framework and tested it on real sensors to evaluate its

feasibility and performance. Our evaluation of memory, communication, and computation

shows that Di-Sec is feasible on today’s resource-limited sensors and has a nominal overhead.

Furthermore, the comprehensive architecture of Di-Sec framework allowed us to implement

four detection and defense mechanisms that span different layers of the sensor communication
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stack (i.e., Jamming, Sybil, Selective Forwarding, and Internal attacks). To the best of our

knowledge, this is also the first implementation of defenses against these four prevalent WSN

threats at the same time on sensors.

In this work, we assume a realistic scenario in which the network is divided into clusters.

In each cluster, all the sensors (regular nodes) are running the Di-Sec software as an invisible

layer, and one gateway node is present and serves as the cluster head. The regular nodes

can run any application layer program together with Di-Sec. Usually, they will be collecting

data from the physical environment and sending it back to the cluster head in a multi-hop

fashion.

The cluster heads running Di-Sec, contain a large database of program images with

DDMs to defend against various attacks, which are used to reprogram the regular nodes

according to detected attacks and required defenses. This set of DDMs can be updated and

upgraded since we assume that in the future more sophisticated attacks like buffer overflow

on sensors [12] are possible, and therefore, new detection and defense techniques will be

developed.

Providing defense against all known as well as future attacks requires regular nodes to

have the defense mechanisms for all these attacks in memory. However, because of memory

constraints, regular nodes cannot contain all DDMs, only a subset of these mechanisms

can be stored in the local memory of these devices. Based on this subset, the regular

nodes will be capable of detecting and defending against some attacks. The cluster head

is responsible for monitoring the network, detects and defends against other attacks by

updating the sensors with a new program image containing the required DDMs. One way to

do this is by using wireless network reprogramming (remotely reprogramming sensor nodes

through wireless links after they are deployed). The Di-Sec framework uses the Secure and

Link-Quality Cognizant Image Distribution (SIMAGE) [13] tool for code dissemination and

sensor reprogramming to update the set of DDMs in the cluster. Note that to add a new

DDM, it might be necessary to delete another DDM from the node’s subset due to its limited

memory capacity. How to decide the DDMs subset for regular nodes in the same cluster is
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an optimization problem. After detecting an attack in its own cluster, a cluster head also

propagates a warning to other cluster heads. After receiving the warning information, the

cluster heads evaluate the likelihood of each attack and choose a new subset of DDMs for

regular nodes in their cluster.

The goal of the Di-Sec framework is to realize an architecture that can be leveraged

by researchers to expedite the development of sensor defense mechanisms and to allow their

parallel execution. We envision a platform that is community driven, similar to open-source

network simulators (e.g., NS-3). The Di-Sec framework provides a realistic environment

and a complete security solution where the resources of high-end devices (base stations and

cluster heads) are available to enhance the functionality of the framework.

The main contributions of this work are the following: (1) Realizing an extensible archi-

tecture that can rapidly allow the implementation and execution of multiple attack defense

and detection mechanisms simultaneously; (2) presenting a new language to significantly

simplify the development of new defense mechanisms; (3) illustrating scenarios for single

and multiple simultaneous attacks and how Di-Sec can host multiple defense mechanisms to

stop the attacks. The code and more information about the Di-Sec are available at [14].

1.3 System Overview

To better illustrate our proposed solution, in this subsection we explain the general idea

of the Di-Sec framework with a collection of figures and define our network and threat model.

Figure 1.1 presents the main components of our system. The Di-Sec framework is an

invisible layer that provides a variety of services for node and network control and monitoring,

and facilitates the creation of DDMs. As shown in figure 1.2, Di-Sec supports and runs

multiple DDMs simultaneously. Figure 1.3 shows a cluster of sensors running Di-Sec and a

cluster head, which is in charge of monitoring the cluster.



7
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Figure 1.1 Network Components.

Di-Sec + DDMs
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Figure 1.2 Di-Sec + DDMs in a Sensor.

Cluster

Sensors

Figure 1.3 Sensor Cluster.
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1.3.1 Network Model

We consider heterogeneous WSNs in this work, where there are two kinds of nodes,

regular nodes and cluster heads (CHs). Regular nodes have limited energy, poor computation

ability, short sensing, and small transmission ranges while CHs have plentiful resources

including more energy, a larger memory size, stronger communication ability, and more

powerful computation ability. In our model, we have a network represented as an undirected

graph G = (V,E), where each edge (u, v) ∈ E represents a communication link between

nodes u and v, and each sensor v ∈ V collects data from one of its sensing components and

forwards the values through one or multiple hops to the cluster head for further processing,

analysis, and storage. The CHs are more expensive than the regular nodes. As a result, fewer

CHs are deployed in a WSN. Usually, these CHs are responsible for complex computations

to increase the cluster processing capabilities and prolong the network lifetime. The network

is divided intro cluster and each cluster head is also a gateway node that can communicate

with outside networks. A regular sensor joins the nearest cluster and communicates with

the cluster head over multiple hops. Figure 1.4 shows a network with multiple cluster, which

represents a realistic scenario of WSN deployments.

Figure 1.4 Network with Multiple Clusters.
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When running the Di-Sec framework, the gateway nodes have a database component in

memory which maintains the records of various details regarding the previous threats/attacks

as well as possible oncoming attacks and their respective detection and defense schemes

(DDMs). Once an attack is detected in the cluster, the cluster head notifies its neighbor

clusters so that the other cluster can prepare themselves for possible attacks. Figure 1.5

shows the warning notification process once and attacker is identified, and figure 1.6 shows

the clusters after updating their DDM set.

Attacker

Detect
Notify

Figure 1.5 One Cluster Under Attack.

X

Update DDMs

Figure 1.6 All Cluster Updating their DDMs Set.
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1.3.2 Threat Model and Assumptions

We assume that is possible to have one or more attackers in the network. The malicious

nodes are structurally the same as the regular nodes, and possess hardware capabilities either

similar to or higher than that of legitimate nodes. An attacker can launch multiple attacks

on the cluster and also may change his position to target other regions of the cluster. An

example of an heterogeneous network with multiple attackers is shown in Figure 1.7.

Jamming Attack

Selective Forwarding Attack

Sybil Attack

Wormhole Attack

Figure 1.7 Heterogeneous Network with Various Attackers.



11

PART 2

LITERATURE REVIEW

The issue of providing security to WSNs is a significant and open research problem

which has been discussed extensively in earlier studies. When designing a generic security

framework for WSNs, it is imperative to sift through the relevant literature; hence, in this

chapter, we list several related works from the literature. We classify the relevant literature

under two categories. (1) General knowledge that include surveys, security analyses, attacks

definitions, and defense techniques, and (2) Existing security solutions.

2.1 General Knowledge

The majority of sensor security related works can be further divided into three groups:

(a) general security overviews, (b) works associated with one or more layers of the protocol

stack, and (c) cryptographic and key management works.

(a) General security overviews:

In [15], the authors present a WSNs security survey where they summarize defense meth-

ods based on the networking protocol layer and present an analysis of the advantages and

disadvantages of current secure schemes. In this work, the authors give a holistic overview

of the security issues divided into seven categories including cryptography, key management,

attacks detection and prevention, secure routing and others. It is relevant to briefly discuss

some of those categories:

Cryptography: Cryptography is fundamental to providing security services in WSNs

as well as in most ad hoc networks. Many researchers consider that public key cryptography

is too expensive for WSNs in terms of computation and energy costs. However, some recent

research results show that it is feasible to apply public key cryptography by using lightweight

algorithms. The use of symmetric key on the other hand, is a more popular and feasible
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solution because of its low cost even though the key management is still a drawback.

Key management: Is an important component of the cryptographic solution. Most

proposals use a key-predistribution technique to facilitate the key management. Some of the

recommendations for key management are: 1) To use symmetric cryptography, 2) To predis-

tribute the keys before deployment, 3) To use master keys with small number of key-seeds

to reduce computation complexity, 4) To use location information or deployment knowledge

in key management to improve the performance, and 5) To integrate the node identity in

the process of key generation to make the systems more secure.

Attacks detection and prevention: Attack detection techniques are either central-

ized approaches or distributed cooperative approaches. Centralized mechanisms gather the

data from monitoring nodes and compare it with the data from other neighbor nodes. Based

on this comparison, the system can make a decision whether a given node is under attack or

not. In the distributed cooperative approaches, all neighbors of a given node make collective

decisions to detect attacks. The disadvantage of the first approach is that it introduces more

routing traffic from the network to the base station while the disadvantage of the second

approach is that it introduces more computation requirements for monitoring neighbor nodes

and taking decisions.

Secure routing: Another important component for the security of the network is a

secure routing. There are many secure routing algorithms for WSNs proposed in the litera-

ture. Some of them are reputation based schemes that rely on neighbor nodes cooperation,

and other works propose the use of multi-path techniques. Although there exist many secure

routing protocols, the design of new algorithms is still open to research.

(b) Security associated with layers of the protocol stack:

Other research in the literature focus on attacks and detection at different layers of the

protocol stack, like the work in [16] where the authors presented the Denial-of-service (DoS)

attacks and defenses at different layers, which is summarized in table 2.1.

The work in [17] also focusses on the prevention of DoS attacks using watchdog and

reputation schemes to identify misbehaving nodes. For instance, a reputation variable of a
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Table 2.1 DoS Attacks and Defenses at Different Layers of the Protocol Stack

Layer Attacks Deffenses

Physical Jamming Spread-spectrum, priority messages, lower
duty cycle, region mapping, mode change

Tampering Tamper-proofing, hiding
MAC Collision Error-correcting code

Exhaustion Rate limitation
Unfairness Rate limitation

Network Neglect and greed Redundancy, probing
Homing Encryption
Misdirection Egress filtering, authorization, monitoring
Black holes Authorization, monitoring, redundancy

Transport Flooding Client puzzles
Desynchronization Authentication

node A from the point of view of a node B should be constantly updated based on various

parameters to decide whether node A is a misbehaving node or not.

Some other works in the literature are more specific and address particular attacks,

like [18], where the authors presented a survey with the different Jamming techniques that

include: Spot Jamming, Sweep Jamming, Barrage Jamming, and Deceptive Jamming. The

authors also provided a thorough lists and comparison of the different anti-jamming ap-

proaches.

The work in [19] is very similar to [16] and also analyzes the attacks on the network

communication stack. This work provides a taxonomy of attacks on sensor network and

outline possible solutions for each attack. For instance, at the physical layer, some defenses

against Jamming attack include frequency hopping and code spreading, and at the link layer

the attacks can be detected by using collision detection techniques, reducing the rate of

packet requests, or using smaller frames for each packet.

Some analyses on MAC layer attacks are introduced in [20], where the authors present

a good overview of Sybil attacks and divide the attacks into the following six categories:

Direct Communication: A Sybil nodes communicate directly with legitimate nodes.

Indirect Communication: No legitimate nodes are able to communicate directly with
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the Sybil nodes. Therefore, one malicious node claims to be able to reach the Sybil nodes.

Fabricated Identities: The Sybil nodes create arbitrary new identities.

Stolen Identities: The attacker uses a legitimate ID as his own.

Simultaneous: The attacker use multiple Sybil identities at the same time.

Non-Simultaneous: The attacker alternately use a large number of identities over a

period of time.

Some attacks at the network layer are defined in [21] including: replayed routing in-

formation, Wormhole, acknowledgement spoofing, and Selective Forwarding. In [21] the

authors also introduced two new attacks: Sinkhole attacks and Hello Floods. Since all of

these attacks can target the majority of the routing protocols in sensor networks, the paper

also discusses the different defense solutions.

(c) Cryptographic and key management

Some other research works related to cryptography and key management include [22],

[17] and [23]. According to [22], sensor networks pose unique challenges, and traditional

security techniques used in traditional networks cannot be applied directly because of sensor

devices limited energy, computation, and communication capabilities. Also, sensor nodes

are generally deployed in accessible areas increasing the risk of physical attack. In this work

the authors cover several security challenges, including key establishment, secrecy, authenti-

cation, and privacy. The proposed solution to the challenges is the use of cryptography, and

the simplest solution proposed for key establishment is a network wide shared key.

In [17], part of the work focusses on key management, which the authors say is an

unsolved problem in ad hoc sensor network due to sensors limited resources. Their conclusion

is that key management should adopt a ”local-updated and global distributed algorithm and

should be combined with topology management”. Finally, the work in [23] focusses on

designing sensor networks that are at the same time connected (with high probability) and

provably secure. The authors introduced a mathematical analysis to show connectivity via

secure links and resilience against malicious attacks by using random pre-distributed keys.
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2.2 Existing Security Solutions

2.2.1 802.15.4

The 802.15.4 standard [24] provides link layer security using three different modes of

operation: unsecured mode, access control list (ACL) mode, and secured mode. In unsecured

mode, no security is provided. In ACL mode all frames are sent without security but the

frame originator can be checked against an ACL table. Therefore, it is easy to spoof the

source address to bypass this security service. The secured mode allows a choice of security

suites to be applied to all frames. These suites include: 1) AES-CTR: where all the data is

encrypted using a defined 128-bit key and the AES algorithm. 2) AES-CBC-MAC: where a

Message Authenticity Code (MAC) is attached to the end of the data payload. 3) AES-CCM:

which is the mixture of the previous two methods.

One of the main problems of the 802.15.4 security solution is that not all the features

are actually implemented by the chip manufacturers or the developers in case of software

implementation. Therefore, not all the devices using the 802.15.4 have full access to all the

security functionalities including access control lists.

Although Di-Sec runs on TinyOS and uses the 802.15.4 as its communication standard,

we are not using any of the security solutions provided by the standard. The matching

characteristic of Di-Sec and the 802.15.4 security is that Di-Sec also provides encryption and

ACLs.

2.2.2 TinySec

TinySec [10] is another link layer security architecture for WSNs, easy to use and trans-

parent to applications. Similar to Di-Sec it is implemented for the TinyOS operating system.

It uses a single shared global cryptographic key to provide link layer encryption and integrity

protection. Its cryptography is based on block cipher and provides two modes of operation:

authenticated encryption (TinySec-AE) and authentication only (TinySec-Auth). Its prin-

cipal security features are access control, integrity, and confidentiality.
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In contrast to our work, TinySec is not prepare to defend against other attacks like

Jamming attacks or Internal attacks. Its packet overhead is 5 bytes, which is one byte

smaller than the Di-Sec packet overhead.

2.2.3 MiniSec

MiniSec [25] is a secure sensor network communication protocol that provides data

secrecy, authentication, replay protection and freshness with lower energy consumption and

better security than TinySec. It uses offset codebook (OCB) mode as its block cipher mode

of operation, which allows the ciphertext to be the same length as the plaintext. Another

strong characteristic of MiniSec is the replay protection without the transmission overhead

of sending a large counter with each packet. MiniSec has two modes of operation: MiniSec-U

for unicast packets and MiniSec-B for broadcast packets as explained in [10].

Similar to TinySec, MiniSec does not provide security against other attacks like DoS

attacks.

2.2.4 SecureSense

SecureSense [26] is another link-layer security solution designed to provide energy effi-

cient communication in WSNs. It proposes the use of a security broker that enables a sensor

node to dynamically modify its security controls and optimally allocate the resources required

for the security services (CPU cycles, memory consumption and RF messages) depending

on the observed external variables (e.g., environment), internal constraints and application

requirements.

This work also provides secure communications but in the same way that the previous

solutions, it does not defend the network from other attacks.

2.2.5 SPINS

A set of secure protocols for sensor networks, SPINS, is given in [27]. It describes two

important secure building blocks: secure network encryption protocol (SNEP) and micro,
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timed, streaming, loss-tolerant authentication protocol (µTESLA), where SNEP gives the

baseline security primitive (i.e., data confidentiality, two-party data authentication, and data

freshness) whereas µTESLA is a protocol which provides authenticated broadcast. Although

these security protocols detect and correct some classes of abnormal node behavior, they do

not consider all scenarios of malicious activity that a node is susceptible to. For example,

DoS attack.

2.2.6 AMSecure

AMSecure [28] is a link layer security suite which provides message confidentiality, au-

thentication, integrity, replay protection and semantic security [29]. AMSecure was designed

to interact with the CC2420 radio chip and implemented in TinyOS. It uses the security

features of the Texas Instruments CC2420 radio chip in order to provide all of its security

services. An interface is provided to allow security aware applications to manage the keys

being used [29]. For the secure communication of Di-Sec, we use the SecAMSenderC com-

ponent provided with TinyOS-2.x. This component is similar to the AMSecure and also uses

the security features of the CC2420 chip.

As we can see, some studies provide classifications and address the relevant issues from

a general perspective [15], [16], [17], [19], [21], [22], [23], [29]. Some others focus only on

a particular layer of protocols [18], [20], [21], [30] identifying various common attacks like

Jamming (physical layer), Sybil (MAC layer), Selective Forwarding (network layer). The

common drawback with earlier security schemes is the fact they were designed to defend

against only individual threats/attacks rather than a comprehensive security solution. How-

ever, these are very useful studies and in fact, many of our design choices in Di-Sec stem

from them.

2.2.7 Intrusion Detection Systems

Although Di-Sec is not solely an intrusion detection system (IDS) per se, it is a pertinent

area to Di-Sec because using the facilities provided in our framework, an IDS could be
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implemented. To have a complete security coverage in our literature review, we also analyze

some intrusion detection systems. In [31], the authors propose a hierarchical framework for

intrusion detection (ID). However the focus of this work is on providing solutions to only a

specific subset of sensors called industrial sensors rather than providing a generic solution.

Although this study claims to support several attacks using real sensors and report the

performance of intrusion detection via real experiments, there is no explicit evaluation of the

performance of each defense mechanism on sensors. For instance, the implementation details

and the overhead and cost associated with the design were not analyzed. In the neighbor-

based IDS scheme [32], the authors implemented an IDS on TinyOS and evaluated accuracy

of the neighbor-based technique in detection of Selective Forwarding, Jamming and Hello

Flood attacks. However, similar to [31] the focus is on the performance of the successful

detection rate of the IDS rather than a generic security framework. In [33], a framework of a

machine learning based IDS for WSNs was presented without any evaluation of the scheme;

only the rules for the proposed IDS was listed without any results and real experiment on

sensors. In [34], embedded sensor networks were utilized to supplement wireless intrusion

detection systems (WIDSs) on physical site surveillance and security tasks. However, the

main aim of this work is to aid current WIDSs in physical security via deployed sensors

rather than designing an IDS framework for WSNs. On the other hand, the IDS works in

[35, 36] only treat the matter via simulations without real experiments.

Di-Sec is fundamentally different from previous approaches in several ways. First, Di-

Sec is neither an IDS nor a solution to a specific attack. It is a generic modular security

framework for heterogeneous WSNs that can be easily extended and enhanced, used as a

solution for innumerous attacks. Given the facilities provided by Di-Sec, an IDS can also

be implemented in our framework. By default, the Di-Sec framework supports solutions

on real sensors to several attacks at different layers of the communication stack including

Jamming (physical layer), Sybil (MAC layer), Selective Forwarding (network layer). It also

supports internal threats detection with the M-Core. The Di-Sec architecture was designed

with modularity and flexibility in mind to ensure compatibility with future applications.
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2.3 Network Reprogramming Protocols

When using Di-Sec, it is expected that cluster heads update the DDMs set in their

cluster nodes. This action can be accomplished by using network reprogramming protocols

and tools. This subsection presents our review of existing protocols including Deluge, the

Secure Network Programming, Seluge, Dynamic TinyOS, and the Secure and Link-Quality

Cognizant Image Distribution (SIMAGE) [13].

Deluge [37] is a reliable code dissemination protocol for propagating large binary images

to all sensor nodes in multihop wireless sensor networks. It can push about 90 bytes per

second (11% of the maximum transmission speed of the radio supported by TinyOS). More-

over, each node can maintain multiple code images, and quickly switch between different

programs.

Deluge is a widely accepted and used method for code dissemination and it comes

along with the distribution of TinyOS. Deluge splits the program image into pages and each

page is split into fixed size packets. It generates an advertisement packet to propagate the

information about the new program image version and the image is transmitted based on

the Selective Negative Acknowledgement (SNACK) requests from the nodes. In Deluge, the

propagation will be in terms of pages, that is, nodes will receive all the packets in a particular

page before advertising it to the neighboring nodes. It uses an epidemic protocol and a page

by page propagation method which uses spatial multiplexing for an efficient dissemination.

Since code dissemination is a critical step for the network reprogramming, securing this

step is a requirement. There were many proposed ideas for the secure implementation of

Deluge to provide encryption along with integrity. The Secure Network programming [38]

proposed a public key - private key encryption method to sign the advertisement and a SHA1

hashing method for computing the hash of each packet. In this method, the computed hash

of one packet is embedded into payload of previous packet in sequence. This allows the

receiver node to verify the integrity of the received packet immediately and save or discard

the packet based on the result. But in the case of out of order delivery scenario, the receiver
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needs to cache the packet and wait for the previous packet in sequence to verify the cached

packets hash. This can be used by the attacker to inject bogus packets and deplete the cache

memory of receiver nodes.

Seluge [6] was also introduced as the secure extension of Deluge. It proposed a new

propagation method which utilizes the efficient page by page propagation method of Deluge.

A hash of each packet in a page is computed using SHA1 and this value is embedded in the

previous page packets. So once all the packets in a page are received, the receiver has all the

hash values for the packets in the next page. So it can immediately authenticate the out of

delivery packet. Seluge inherits efficiency, robustness, and reliability from Deluge, and also

provides protection for code dissemination. Seluge not only promises the integrity of code

images but also resistance to various DoS attacks.

Another secure extension of Deluge is the Secure and Link-Quality Cognizant Image

Distribution (SIMAGE). SIMAGE uses a dynamic link quality adaptive packet-sizing tech-

nique to reduce the retransmission bytes by 93% and the image transmission time by 35%

when compared to other existing code dissemination protocols. It also provides confidential-

ity and integrity to the code dissemination process by utilizing energy-efficient encryption

and authentication mechanisms with RC4 and CBC-MAC.

The last code dissemination tool that we analyzed to use with Di-Sec was the Dynamic

TinyOS [39], which enables the dynamic exchange of software components and thus incre-

mentally update the operating system and its applications. The benefit of using Dynamic

TinyOS is that it allows replacements of program modules instead of the complete program

image, which is faster and more efficient.

We evaluated all the code dissemination tools and tested Deluge and SIMAGE. We chose

SIMAGE as Di-Sec’s network reprogramming tool because it provides a better security and

performance.
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PART 3

DI-SEC FRAMEWORK

3.1 Di-Sec Framework Architecture

In this section, we discuss the architecture of the Di-Sec framework in detail. It con-

sists of seven main components that have unique and important roles in the framework:

the Monitoring-core (M-Core), the Communication Module (COMM ), the Sensing Module

(Sense), the Detection and Defense Modules (DDMs), the Reporting Control Module (R-

Control), the Network/Transport Module (NET ), and the Cluster Head Application (CH ).

The complete framework was implemented in TinyOS-2.x and tested using Tmote Sky and

MicaZ sensors. The general Di-Sec architecture is shown in Figure 3.1. Along with the

framework, we implemented four default DDMs using Di-Sec to defend against Jamming,

Sybil, Selective Forwarding, and Internal attacks.

Figure 3.1 Di-Sec Architecture.
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3.1.1 The Monitoring Core (M-Core)

The M-Core is designed to be the heart of a sensor node. M-Core proposes a novel way

to provide information and support for the defense against both internal and external threats.

The way M-Core collects its data is from the COMM and SENSE components. This data is

analyzed and transformed into useful information at the M-Core. To reduce the complexity

of the implementation and increase the flexibility and modularity of our design, M-Core

is divided into sub-components (services), each of which provides some specific services to

the defense and detection modules (DDMs). It is important to note that any of these sub-

components can be removed or replaced, and more sub-components can be added to enhance

the M-Core functionality. The current architecture of the M-Core is shown in figure 3.2.

Figure 3.2 M-Core Architecture.

For each outgoing packet, the COMM module notifies the M-Core whether the trans-

mission was successful or not. For all incoming packets, the COMM module passes a copy of

the message to the M-Core even though the packet is not addressed to that specific sensor

node. With the SENSE’s module help, the M-Core is also able to intercept, monitor, and

record all internal sensing measurement values and requests.

The interaction between the M-Core and the DDMs is shown in figure 3.3, where we

illustrate four M-Core sub-modules (A, B, C, and D), each of which provides a service.

Table 3.1 summarizes some of our implemented M-Core sub-modules and services. The M-
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Figure 3.3 M-Core Interaction with DDMs.

Core services module advertises all the services provided by the sub-modules to the M-Core

module, and the M-Core module allows the DDMs to access those services. In our imple-

mentation we included four security modules for the detection of: Jamming, Sybil, Selective

Forwarding, and Internal attacks. The security modules are specific attack detections and/or

defenses mechanisms against threats. Each security module includes the implementation of

the necessary behavior utilizing the M-Core services. For instance, to implement the defense

mechanism against sybil attacks, our sybil module uses the rssivalue interface provided by

the received signal strength indication RSSI sub-module of the M-Core.

The benefits of using the M-Core when developing detection and defense mechanism

for WSNs include: Built-in modular and flexible software architecture that provides an easy

means to add, remove, and replace services. It is a lightweight monitoring and control layer

invisible to upper layers (e.g., application layer). It is easy to activate and use. The provided

services can be enhanced and expanded.

In TinyOS jargon, interfaces are used to interconnect components. Each interface define

commands and events that can be used by developers of DDMs. Our implemented M-Core

sub-components (services) are presented in table 3.1 and their descriptions are as follows:
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Table 3.1 M-Core Sub-Components
sub-component Interface Commands/Events Action

commScan channelinfo getConsecutiveSuccess Returns the number of consecutive
sent packets

getpps Returns the number of received
packets per second

setThreshold Sets the threshould for acceptable
consecutive sent packets

packetCount packetcount getPacketCount Returns the total received packets
lostPacket Returns the number of lost packets

by node
packetSize packetsize getPacketSize Calculates and returns the size of a

packets
getReceivedPacketSize Returns the average size of all the

received packets
RSSI rssivalue getRssiTable Returns neighbors RSSI table

initRssiTable Initializes the neighbors RSSI table
LQI lqivalue getLqiTable Returns neighbors LQI table

initLqiTable Initializes the neighbors LQI table
hopCount hopcount hopcount Initiates the hop count process

hopcountDone Notifies the nodes when the hop-
count value is ready

neighbors neighbors request Triggers a neighbor discovery mes-
sage

neighborsinfo getNeighbors Returns the number of current
neighbors

initNeighbors Initializes current neighbors table
commAttributes commAttributes setCommChannel Changes the communication chan-

nel
setTransPower Adjusts the transmission power a

the specified value
tickCount tickcount getTicks Returns the number of CPU ticks to

transmit a packet
sensingInfo sensingstat getAvgSenseValue Returns the average sensed value ag-

gregated at the mcore
RC4 encryptI encrypt Encrypts/Decrypts a message based

on a secret key
remoteExecution remoteexec execute Executes command provided by an-

other M-Core component
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1) commScan The commScan sub-component can be used to detect the status of

the communication channel based on two parameters: the number of consecutive success-

fully transmitted packets, and the average number of received packets per second. Both

parameters can be obtained by the commands getConsecutiveSuccess() and getpps() respec-

tively. To collect information about the successfully transmitted packets, we configured the

COMM module to notify the M-Core whether a packet is successfully sent or not by signaling

two different events, packetsuccess() and packetfail() respectively. For the received packets

per second calculation, we count all the packets received by the node and average them every

second. The COMM module passes a copy of all messages to the M-Core even when the

packets are not addressed to the sensor.

This sub-component also provides a command setThreshold() that allows users to define

a threshold for a minimum acceptable successfully transmitted packet rate. If this threshold

is not reached, the commScan sub-component will notify the upper layer by signaling an

event. Some other possible uses of this sub-component include the detection of correct (or

incorrect) functioning of the radio transceiver, the amount of traffic in the channel, and

congestion in the network.

2) packetCount The packetCount sub-component provides the interface packetcount

with one command (getPacketCount()) to return the total number of packets received by

the sensor, and one event lostPacket(), which is signaled every time a packet is lost by one

of the node’s neighbors. For the lostPacket event the sensor keeps track of all its neighbor’s

transmissions and maintains a four-tuple table to simplify the detection of a neighbor losing

or dropping packets. The four-tuple contains the ID of the node who created the packet

(NodeS), the ID of the node forwarding a packet (NodeF ), the sequence number for the

combination (NodeS,NodeF ), and the total lost packets for the same combination. Hence,

one can detect if any of the forwarding nodes F is dropping packets generated at node

S. This sub-component can be used to detect unreliable communication links as well as

malicious activities in the network.
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3) packetSize The packetSize sub-component is used to get information about the

size of the packets. The packetsize() interface provides two commands: getPacketSize()

which was designed for the users to directly ask the M-Core for payload size of a specific

packet, and getReceivedPacketSize() which returns the average payload size of all received

packets. Average payload size information can be used in conjunction with the received

packets per second information (provided by the getpps() command) to calculate network

throughput.

4) RSSI and LQI The receiver signal strength indication (RSSI ) and link quality

index (LQI ) are independent sub-components but the way they collect data and operate is

very similar. A copy of every packet received by the COMM module is passed to each of

these sub-components where they parse the message to extract the RSSI and LQI values

respectively. The sub-components maintain a neighbors’ table and all the extracted values

are averaged with the corresponding values from the tables. Our current implementation

supports CC2420, and RF230 radios, which are used by many of the sensors currently avail-

able in the market. However, support for other radios can be easily added. The information

provided by these two sub-components can be used for defining reliable links in routing

protocols, and also for device fingerprinting for authentication.

5) neighbors The neighbors sub-component provides two interfaces, neighbors and

neighborsinfo, to gather neighbor information. Using the request() command from the neigh-

bors interface, the sensor initializes a neighbor discovery process where it broadcasts a dis-

covery message that is acknowledged by all the neighbors within its transmission range.

Once the acknowledgement is received, the sensor refreshes its neighbor table with updated

information. Accordingly, the getNeighbors() command provided by the neighborsinfo inter-

face returns the neighbors’ table, which can be initialized or reset with the initNeighbors()

command. The information provided by this sub-component can be used to dynamically

create communication routes for mobile WSN deployments.
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6) commAttributes The commAttributes sub-component is used to adjust commu-

nication attributes such as the communication channel and the transmit power using the

setCommChannel() and setTransPower() commands respectively. These attributes can also

be modified at run time, which is convenient for users that need to tune their application

while running.

7) tickCount The tickCount can be used to verify the CPU load. The command

getTicks() provided by the tickcount interface initiates the transmission of an arbitrary

packet to calculate the number of CPU ticks elapsed from the message creation until the

confirmation of the transmission. This value varies according to the CPU load, and can

be used to establish a threshold for minimum or maximum CPU utilization. This sub-

component can also be used for security to observe abnormal activities onboard.

8) sensingInfo The sensingInfo sub-component collects information about the sen-

sor readings and keeps an average of the measured sensing values. Sensor information is

important to monitor since it can be used to verify the correct functioning of the sensor

itself. For instance, an overloaded sensor might report a higher temperature readings due to

overheating.

9) RC4 An instance of the RC4 [40] encryption algorithm is also provided as a service

in the M-Core. The encrypt command provided by the encryptI interface is used to encrypt

and decrypt a message that is passed as a parameter along with the encryption key of a

certain size.

10) hopCount The hopCount is used to enable all the nodes to determine their hop-

count values with respect to the cluster head. It provides the interface HopCount with a

command hopcount() to initiate the hop-count service and an event hopcountDone() which

is signaled once the nodes have determined their hop-count values. This service can be used

periodically or on-demand.
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11) remoteExecution The remoteExecution is a sub-component used to remotely

call commands from other other M-Core sub-components to initialize variables as well as

configure sensors attributes. This component can be used to initialize neighbors, RSSI, and

LQI tables, to remotely change the channel and transmit power, and to adjust any parameter

available in the M-Core.

3.1.2 The Communication Module (COMM)

The current architecture of the communication module is shown in figure 3.4.

Figure 3.4 COMM Architecture.

The communication module provides the main communication interfaces: AMSend,

Receive, Packet, and AMPacket. AMSend is the active message sending interface, Receive

provides a message reception interface, Packet facilitates access to the message t data type,

and AMPacket for active message accessors for the message t data type. When using the

Di-Sec framework, all the packets will pass through the communication module. For each

outgoing packet, the COMM module notifies the M-Core whether the transmission was

successful or not (Figure 3.5). For all incoming packets, the COMM module passes a copy

to the M-Core even though the packet is not addressed to that sensor node (Figure 3.6).

The COMM module is also in charge of adding Di-Sec headers to all outgoing packets before

transmitting them and analyzing the headers when packets arrive (Figure 3.7).
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Figure 3.7 COMM Headers and Multiplexing.

The purpose of Di-Sec headers is to facilitate control of the communications and also for

the multiplexing of the messages. From figure 3.7 we notice that DDMs and other modules

inside the M-Core can also communicate securely with the same DDM or M-Core module in

other sensors through the COMM module. Figure 3.8 shows other important features of the

COMM module: encryption and access control lists (ACL). When encryption is enabled, all

the packets sent by the COMM module are securely encrypted using the embedded AES-128

encryption provided by the CC2420 radio transceiver. The ACL can be configure using the

aclmanager interface provided by the coreaclC M-Core service. The aclmanager interface

provides the commands addNode to the ACL, deleteNode from the ACL, and findNode in

the ACL.

To increase the simplicity and cleanliness of activating and utilizing the Di-Sec frame-

work, we assigned the COMM module to be the framework’s activation component. Users

can easily enable the Di-Sec framework by adding the COMM module and wiring it to their

applications as shown in Listing 3.1.
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Figure 3.8 COMM Operation Modes (Encryption and ACL).

Listing 3.1: How to Enable Di-Sec.

components new Comm(AM MSG) ;

MainC . S o f tw a r e I n i t−>Comm. I n i t ;

App . Packet −> Comm;

App . AMSend −> Comm[AM MSG ] ;

App . Rece i v e −> Comm[AM MSG ] ;

3.1.3 The Sensing Module (SENSE)

Similar to the COMM module, we added to our framework the capability to intercept,

monitor, and record all internal sensing measurement values and requests. We implemented

a sensing component to facilitate upper layers to get information such as the temperature,

humidity, total solar radiation, Photosynthetically active radiation, and internal voltage

by calling simple commands like sensing.getTemperature() or sensing.getHumidity(). The

current architecture of the sensing module is shown in figure 3.9.

The main functionality of this module in our framework is the capability to monitor

internal sensing activities. In this way, the sensing component is used to supplement the

detection and defense modules security mechanisms. For example, the Sensing module can be

used to leverage the temperature sensing component to detect the temperature of the sensor

itself. A significant spike in temperature could indicate that the CPU has been excessively

utilized, possibly as a result of malware. Another use of the Sensing module would be to
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Figure 3.9 SENSE Architecture.

detect various types of proximity-based attacks, where the sensing component is used to

trigger malware (i.e., a certain light pattern observed by a light sensing component used to

activate a Trojan on the sensor). Figure 3.10 shows the interaction of the SENSE component

with the M-Core.

Application Layer
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Sense

HARDWARE

1

2 3

4

4

Temperature?

Figure 3.10 SENSE Interaction with M-Core.
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3.1.4 The Detection and Defense Modules (DDMs)

DDMs are specific attack detections and/or defenses behaviors mechanisms against

threats, but can also be used as conduits to provide services to other layers. Each DDM

would include the implementation of the necessary behavior utilizing the M-Core services.

Like the M-Core sub-components, the DDMs have a modular architecture too and can be

added, removed, and replaced without affecting the rest of the framework. In order to

not restrict the Di-Sec framework to only detection and defense mechanisms implemented

for our architecture, we allow the DDMs to communicate and collaborate with

external security mechanisms as well. This feature enhances the main functionality of

the DDMs. For instance, a network layer that implements an implementation of a Sinkhole

attack defense mechanism does not have to be ported into our framework, but it can use

the services provided by the M-Core through the easy implementation of a DDM that will

actually act as an information conduit. We implemented four different detection and defense

mechanisms against Jamming (DDM1), Sybil (DDM2), Selective Forwarding (DDM3), and

Internal attacks (DDM4) which are distributed with the framework as the default DDMs.

Figure 3.11 shows the interaction of the DDMs component with the M-Core. Note that the

details for the behavior and implementation of each individual attack are discussed in the

performance evaluation section along with the results.

3.1.5 The Reporting Control Module (R-Control)

In the same way the M-Core provides local services to monitor and control sensor nodes

individually, the R-Control is intended to manage network services to monitor and control

the cluster. The R-Control also multiplexes incoming and outgoing messages to deliver

the packets to the corresponding modules. These modules implement the algorithms and

required behavior to facilitate the control of the cluster and communication with cluster

heads. For instance, the keepAlive module sends keep alive messages from all the nodes to

the cluster head every 30 seconds, and the nodeNotifications module allows the cluster head

to send messages and notifications to individual nodes.
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Figure 3.11 DDM Component.

In order to detect malicious activities or unexpected behaviors in the network, each

regular node is required to periodically send its current state to the cluster head. If the

cluster head does not receive the report on time from a specific node, it assumes that it

has been compromised, is dead, or a link failure has occurred. Thus, the cluster head can

request more information from the neighbors of the unresponsive node. Cluster heads also

have the ability to communicate with DDMs in the sensors and send requests to activate

defense actions. The current architecture of the reporting control module is shown in figure

3.12. Note that more network services modules can be easily added to the R-Control in a

similar way that we add services to the M-Core.

Figure 3.12 R-Control Architecture.
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The interaction of the network services modules with the R-Control is presented in figure

3.13. The R-Control does not intend to provide any routing or network layer protocol. From

figure 3.13 we can see that the R-Control relies on Di-Sec’s Network/Transport module to

take care of message forwarding and delivery.
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Figure 3.13 Interaction of Network Services Modules and R-Control.

The main difference between M-Core and R-Control is that M-Core provides services

that are used to implement DDMs, while the R-Control manages network services modules

that implement a complete behavior.

3.1.6 The Network/Transport Module (NET)

The network/transport module (NET) allows the Di-Sec framework to have commu-

nication independence. This means that Di-Sec can define its own routing algorithms and

forwarding paths. This is important since the next hop selection depends on the status of the

network. If the cluster is under attack, the NET module can update the routing information

to make sure the messages reach the cluster head. The NET module also makes sure we

have a reliable message forwarding and delivery in our internal communication. This module

provides a similar functionality as the network and transport layer of the TCP/IP protocol

stack and its current architecture is presented in figure 3.14.
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Figure 3.14 NET Architecture.

The modularity of the NET layer allows us to use any available routing protocol. In

our implementation and experiments we used a static routing protocol (routing tables), but

any dynamic protocol can be use. The benefit of using a dynamic routing protocol is that

every node constructs a map of the network and independently calculates the best path to

every possible destination based on its collected information. All the messages passed to the

NET module only contain the final destination node ID and the module handles the routing

and next hop selection (figure 3.15).

R - Control

Routing

COMM

NET

1.- Message to X

2.- Get Next hop

3.- Next hop is Y

4.- Send to Y

Figure 3.15 NET when Sending Packets.
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Figure 3.16 NET when Receiving Packets.

Figure 3.16 shows the behavior of NET when receiving a packet: if the message is

intended for that node it passes the packet to the R-Control, otherwise it finds the next hop

and forwards the message.

3.1.7 Cluster Head Module (CH)

Although each cluster is autonomous, the cluster heads collaborate with each other by

exchanging information and warnings to provide a more robust security solution. The use

of cluster heads facilitate the monitoring and control of the network, and highly increase

the security of the cluster. Di-Sec’s cluster head module (CH) consist of two applications

App 1 (Monitoring) and App 2 (SmartDDM ). App 1 is for monitoring and communication

with the R-Control modules running in the regular nodes. App 2 is for DDM selection

and DDM redistribution. Our cluster heads are 10” Dell Netbooks with Ubuntu Netbook

Edition 10.04 connected to 2 MicaZ sensors as shown in figure 3.17. Sensor 1, which interacts

with the App 1, is running the Di-Sec framework to receive information from the sensors

and communicate with all the devices in the cluster. Sensor 2 is a passive sensor used for

network reprogramming and activated by App 2.
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Figure 3.17 Cluster Head Architecture.

App 1 (Monitoring) is in charge of monitoring the cluster and detecting attacks

and misbehavior in the network. A basic application of the App 1 has been implemented

and tested to show that it successfully receives notifications, detects attacks, and commu-

nicates with other cluster heads. App 1 is a Java application connected to the TinyOS

SerialForwarder to receive and send packets. Once an attack is detected by this program a

new TCP socket connection is established with other cluster heads and a warning message

is sent. Figure 3.18 presents this cluster heads communication and shows that the App1

communicates with the App 2 in other clusters.

App 2 (SmartDDM ) is an intelligent Java application consisting of two main com-

ponents: DDMs Selection and DDMs Redistribution. A basic application of the App 2 has

been implemented and tested to show that it successfully receives warnings from other clus-

ter heads and activate the network reprogramming protocol (SIMAGE in our case). Even

though the App 2 was not fully implemented for our experiments (no sophisticated decisions),

it provides the base schema for future enhancements.
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Figure 3.18 Cluster Heads Communication.

The following are some details to be considered to enhance the SmartDDM application:

DDMs Selection:

The main problem is to find a solution to select the optimal subset S of DDMs to

be installed in the sensors. Although we would like to include as many defense schemes

as possible in S, the cluster head will be responsible for determining the optimal subset S

according to different parameters including the likelihood of being attacked, more frequent

attacks, severity of the attacks, detectability and attacks on other clusters. Since an attacker

can repeat the same attack or launch a new attack at any time in the network, the likelihood

of occurrence of each attack at a given time will be measured at each cluster head. Based

on this likelihood and the other parameters, the cluster heads recalculate the subset S for

the sensors in their respective clusters. As a result, an attacker can launch an attack and

compromise a node or several nodes because S does not contain the detection and defense

mechanism for that attack. However, the attacker cannot continue to compromise more

nodes once the cluster head detects it and propagates defense schemes to the regular nodes.
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Given that memory capacity is not a concern with cluster heads, we assume that the

cluster heads have all DDM modules available in their databases for all the known attacks.

Whether the detection and defense scheme for an attack is available in the subset S of the

regular nodes or not, the base station would be able to identify an undergoing attack by

detecting the unexpected behaviors in the network.

DDMs Redistribution:

Given the multiplicity of detection and defense mechanism available for different attacks,

a network reprogramming tool is a necessity. Even though there exists a variety of tools to

deploy new software updates and upgrades into systems, TinyOS is still limited to full image

replacement as nodes only execute a statically-linked system-image generated at compilation

time. As stated in Section 2.3, there were different options that we considered for the Di-

Sec program redistribution including SIMAGE, Deluge, the Secure Network Programming,

Seluge, and Dynamic TinyOS. For our experiments we chose SIMAGE since it has better

performance and also provides a secured network re-programming.

3.2 Di-Sec Architecture Overview

Now that we have introduced and described all the components of the Di-Sec framework,

we present the complete implemented architecture in the following figure:
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Figure 3.19 Di-Sec Complete Architecture.
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3.3 M-Core Control Language (MCL)

In order to easily use the Di-Sec framework, we have created a new domain specific

language: the M-Core Control Language (MCL). In this section, we introduce the MCL,

present the formal grammar of the language, and show how it can be used to activate,

deactivate or create new detection and defense modules with an example.

3.3.1 Rationale for MCL & Formal Definition

Di-Sec was designed to provide a comprehensive security framework to programmers

when implementing DDMs. However, a programmer who would like to use the framework

would still need to do some additional implementation (e.g., wiring in TinyOS) to take

advantage of the existing defense and detection modules or create new ones. Moreover,

this situation may be exacerbated given the sophistication needed to implement programs

on sensors for a novice programmer. The MCL has been designed to address this issue. It

utilizes the sub-modules defined in the M-Core and simplifies the programmer’s work to easily

activate, deactivate or create their own new defense mechanisms by automatically generating

important programming components needed for the underlying Di-Sec architecture (e.g.,

configuration files, module files and wiring). Primarily, the MCL is a language consisting

of a small set of keywords. The formal definition of the grammar of the MCL using the

Extended Backus-Naur Form (EBNF) is given in Listing 3.2.

Also, the list of all the keywords in the MCL and their simple descriptions are tabulated

in Table 3.2. A program written with the MCL starts and ends with the keywords, START

and END. Between these, one can use the other keywords ACTIVATE, STOP, or NEWDDM

to activate, deactivate or create a DDM respectively. A programmer can even define its own

variables using the SET keyword.
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Table 3.2 The Keywords of MCL.

Keywords Descriptions

START Starts the program

END Ends the program

ACTIVATE(module name, time)
Activates an existing module name at
specific time (ms)

STOP(module name) Deactivates an existing module name

SET(variable name, attribute, value) Creates a new variable with a value

ASSOCIATE(module name, interface name . . . )
Associates a module name with one or
more interface name

DISSOCIATE(module name, interface name . . . )
Dissociates a module name with one or
more interface name

COMMUNICATE(module name, packet field . . . )
Adds communication capabilities to
module name using one or more packet
fields

NEWDDM(module name, interface name . . . )
Creates a new detection and defense
module

NEWSERVICE(module name, interf. name . . . ) Creates a new M-Core service

Listing 3.2: Formal definition of MCL with EBNF.

MCL : := ’START’ , SPACES ,

{ KEYWORDS, ’ ( ’ , EXPRESSIONS , ’ ) ’ , SPACES } , ’END’ ;

KEYWORDS : := ’ACTIVATE ’ | ’STOP’ | ’SET ’ | ’ASSOCIATE ’ |

’DISSOCIATE ’ | ’COMMUNICATE’ | ’NEWDDM’ | ’NEWSERVICE’ ;

EXPRESSIONS : := PARAMETERS, { [ ’ , ’ , SPACES ,

PARAMETERS ] } , [ ’ , ’ , SPACES , VALUE ] ;

PARAMETERS : := [ a−zA−Z]\w∗ ;

VALUE : := \d∗ ;

SPACES : := ’ ’∗ ;
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3.3.2 Sample Usage

In this sub-section, we show a sample usage of MCL. In our realistic scenario, the user

implements a secure WSN program using MCL to protect against several attacks. The MCL

written by the user is given in Figure 3.20 (code snippet in the middle). Specifically, the user

instructs the Di-Sec to activate and deactivate the existing defense and detection modules D1,

D2, and D3. The user also adds a new module, D4, into Di-Sec and sets the specific activation

time and specifies that it use the cpucycles sub-component of the M-Core. In the example,

ACTIVATE enables the existing D1 and specifies the D1 starting time. ASSOCIATE is used

to connect the D1 to the sub-modules of M-Core in Di-Sec. Also, STOP simply disables

the existing D2 and D3 that might not be used at run time and disconnects them from

the sub-modules. Moreover, NEWDDM adds the new D4 module configurations into Di-

Sec and generates a new template file for the D4 module implementation. With this one

keyword (NEWDDM ), the users can start writing their own detailed defense mechanisms in

the template file without worrying about the underlying details of the Di-Sec and TinyOS.

As seen in the figure, a user would be able to handle existing detection and defense modules

and create new ones with simple keywords. Most importantly, the conversion from MCL to

the necessary underlying components (i.e., side files in Figure 3.20) of the Di-Sec framework

and the integration with Di-Sec are automatically handled by MCL.

Figure 3.20 A realistic example usage of MCL.
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3.4 Performance Evaluation

Given that different sensor platforms have different characteristics, the analysis of the

performance of the framework depends on the platform. For example, Let us consider Telosb

and Iris motes. Telosb sensors use the CC2420 radio transceiver and MSP430 micro con-

troller, while the Iris motes use the RF230 radio and ATmega1281 micro controller. Each

chip has different characteristic, performance, and energy consumption. Therefore, the av-

erage energy consumption in one platform it is not necessary same in other platform. For

our performance evaluation we only focus on two platforms that we are currently supporting

with Di-Sec: Micaz and Telosb.

In this section, we evaluate the performance of the Di-Sec framework on real sensors in

four dimensions: (1) we evaluate the different components’ storage costs (RAM and ROM),

(2) we show the CPU overhead, (3) we evaluate Di-Sec’s communication overhead, and (4)

we present the energy consumption evaluation based on simulations.

3.4.1 Storage Costs

In our evaluation, we present 11 configurations with different components to analyze

the cost of each of them. We have 1 plain upper layer configuration and 10 Di-Sec configu-

rations. In this experiment the upper layer is an application layer provided with the default

installation of TinyOS: RadioCountToLeds. The configurations are the following:

• (A) Plain Upper Layer.

• (B) M-Core Full.

• (C) M-Core + Encryption.

• (D) M-Core + Encryption + ACL.

• (E) M-Core + Encryption + ACLSENSE.

• (F) M-Core + Jamming DDM.
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Table 3.3 Di-Sec ROM and RAM Footprint (Bytes)

Platform MicaZ Telosb

CONFIG ROM ∆ROM RAM ∆RAM ROM ∆ROM RAM ∆RAM

A 18496 18496 1655 1655 20610 20610 1824 1824
B 20650 2154 2491 836 22630 2020 2572 748
C 23140 2490 2607 116 25484 2854 2710 138
D 23542 402 2748 141 26018 534 2730 20
E 23542 0 2748 0 29218 3200 2816 86
F 24570 1028 3029 281 30030 812 2988 172
G 24882 312 3158 129 30244 214 3084 96
H 25260 378 3182 24 30522 278 3112 28
I 25260 0 3182 0 30564 42 3128 16
J 43194 17934 3921 739 42678 12114 3936 808
K 43842 648 4146 225 43010 332 4136 200

• (G) M-Core + Jamming DDM + Selective Forwarding DDM.

• (H) M-Core + Jamming DDM + Selective Forwarding DDM + Sybil DDM.

• (I) M-Core + Jamming DDM + Selective Forwarding DDM + Sybil DDM + Internal

DDM.

• (J) M-Core + Jamming DDM + Selective Forwarding DDM + Sybil DDM + Internal

DDM + SIMAGE.

• (K) M-Core + Jamming DDM + Selective Forwarding DDM + Sybil DDM + Internal

DDM + SIMAGE + R-Control.

The costs of the different components in terms of storage are presented in Table 3.3. For

ROM, we observe that the network reprogramming tool (SIMAGE), the sensing component,

and the encryption components have the largest storage costs. For RAM, M-Core has the

largest cost, which is expected because the M-Core includes all the submodules previously

discussed. Table 3.4 shows a summary of the cost for each of the Di-Sec’s Components.
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Table 3.4 Di-Sec ROM and RAM Footprint (Bytes)

Platform MicaZ Telosb

COMPONENT ROM RAM ROM RAM

COMM 2892 257 3388 158
SENSE 0 0 3200 86
M-Core 2154 836 2020 748
DDMs 1718 434 1346 312
R-Control + NET 648 225 332 200
SIMAGE 17934 739 12114 808

3.4.2 CPU Costs

For the CPU footprint we captured the CPU cycles introduced when using Di-Sec. To

show the CPU overhead we recorded the CPU information from a sensor running a basic

application with and without Di-Sec. We used two techniques to collect this information.

The first was adding monitors into our code to keep track of the CPU cycles, and the second

was using the Avrora [41] simulation tools, which shows the total CPU cycles at the end

of the simulation. Table 3.5 shows the CPU overhead when sending and receiving packets,

and collecting values from the sensor. We compare CPU ticks of the plain application

configuration and the full M-Core configuration. The results show that M-Core adds an

overhead for the transmission scenario which is expected since our framework adds and

verifies Di-Sec headers before transmitting the packets. For the receiving scenario we do not

see any overhead since the COMM module passes the incoming packet directly to the upper

layer as soon as it is received. For the sensing component there is a minimal overhead since

the request has to pass through Di-Sec’s Sense component.

Table 3.5 Di-Sec CPU Ticks

M-Core Plain Diff

TX 352 239 113
RX 1600 1600 0

Sensing 550 546 4
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Table 3.6 Di-Sec CPU Cycles

30 Sec 60 sec 120 sec

Config. CPU Cycles % Increase Cycles % Increase Cycles % Increase

A 8432964 0 8850145 0 9686985 0
B 8610382 2.104 9196315 3.911 10370376 7.055
C 8692504 3.078 9376776 5.951 10744125 10.913
D 8740946 3.652 9472368 7.031 10933816 12.871

We also used Avrora with four different configurations and simulation times to evaluate

Di-Sec’s CPU cycles. The configurations are the following:

• (A) Plain Upper Layer.

• (B) M-Core Full.

• (C) M-Core + Jamming DDM + Sybil DDM.

• (D) M-Core + Jamming DDM + Selective Forwarding DDM + Sybil DDM + Internal

DDM

From table 3.6 we see that Di-Sec adds up to 12% more CPU cycles when running the

full framework including the four default DDMs for 120 simulated seconds.

3.4.3 Communication Costs

The Di-Sec header is 6-bytes long and includes 2-byte source node ID and 1-byte Di-Sec

sequence number managed individually at each sensor. The header also includes a 2-byte

DDMtype variable used to multiplex the message to Di-Sec modules and a 1-byte command

variable used for internal communication. Figure 3.21 is a packet sniffer capture showing

the difference between the packets sent with the plain application layer, and M-Core with

and without encryption. The Di-Sec communication overhead is only 6 header-bytes added

to the message plus the overhead of the encryption and decryption of the payload.
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Figure 3.21 Same Information to the Application Layer on Different Packet Payloads.

We also used Avrora to confirm that the simulation produces the same results as our

experiments. Figure 3.22 shows the simulation interaction between sensors running the

plain RadioCountToLeds application. This is an example where each node transmits only

2 packets. Figure 3.23 shows the result for the same experiment with the sensors running

Di-Sec. The simulation packets are the same that we capture with the packet sniffer and we

can see that for 2 packets the plain application transmitted 42 bytes while the application

running Di-Sec transmitted 54 bytes (12 extra Di-Sec header bytes for 2 packets).

Figure 3.22 Avrora Running Plain Application Layer.
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Figure 3.23 Avrora Running Di-Sec.

3.4.4 Energy Consumption Costs

Since there is no a generic model to externally calculate energy consumption in sensor

nodes, we use the Avrora simulation tools to provide such calculation. Avrora has several

useful monitors to allow the monitoring of the simulation as it progresses as well as the

summary of some parameters at the end of the simulation such as energy consumption. The

overall energy consumption is calculated by printing the energy consumed by each of the

following components CPU, LEDs, External Flash, and Radio independently. Figure 3.24

shows an example of Avrora displaying the energy consumption of a sensor running Di-Sec.

To calculate energy consumption we ran simulations with the following configurations:

• (A) Plain Upper Layer.

• (B) M-Core Full.

• (C) M-Core + Jamming DDM + Sybil DDM.

• (D) M-Core + Jamming DDM + Selective Forwarding DDM + Sybil DDM + Internal

DDM
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Figure 3.24 Avrora for Energy Consumption Calculation.

Table 3.23 shows the energy consumption for different configurations and simulation

times. From this figure we note that Di-Sec has a minimum impact on the energy consump-

tion: an average of 0.09% increase when using the full M-Core (with all the services), and

0.17% increase when including all the default DDMs.

Table 3.7 Di-Sec Energy Consumption (EC) in Joules

30 Sec 60 sec 120 sec

Configuration EC % Increase EC % Increase EC % Increase

A 0.325419 0 0.627033 0 1.230265 0
B 0.325724 0.093605 0.627628 0.094785 1.231439 0.095369
C 0.325865 0.136932 0.627938 0.144197 1.232082 0.1475266
D 0.325948 0.16249 0.628102 0.170371 1.232408 0.1739985
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3.5 Experimental Evaluation

To test the Di-Sec framework, we created an experimental cluster scenario where we

deployed 6 Tmote Sky sensors with unique IDs from 1 to 6 throughout the second floor of

the Klaus Advanced Computing Building (KACB) at the Georgia Institute of Technology.

The topology is shown in Figure 3.25. Node 1 is the cluster head and base station (BS)

in charge of collecting all the data and the rest of the sensors communicate with the BS

through multiple hops. All the nodes collect and average light measurements and transmit

packets at the same rate of 1 packet every 9 seconds. It is expected that nodes 2 and 3

will have higher traffic compared with the others since they are the gateways to the base

station. The overall traffic behavior and packet loss after an attack was recorded at the base

station and presented in this section. Using the this topology we launched Jamming, Sybil,

Selective Forwarding, and Internal attacks against the nodes in the cluster and monitor and

capture the traffic to show how the cluster defends and recovers from the attacks. Each of

the attacks scenarios will be explained along with the results.

1

2

3

4

5

6

Figure 3.25 Experiment Setup at the KACB.
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3.5.1 Jamming Scenario

Jamming attacks can be easily accomplished by transmitting radio signals that do not

follow an underlying MAC protocol. This will create collisions and interfere with the normal

communication of the wireless network [42]. For our experiment, the complete jamming

detection and defense mechanism was implemented inside the Di-Sec framework. Figure

3.26 shows the Jamming scenario for our experiments.

Primary Channel

1

2

3

4

5

6 JAMMER

Figure 3.26 Jamming Scenario.

The M-Core services used for the detection of the jamming were the average number of

received packets per second and the number of consecutive successfully transmitted packets.

We defined a threshold for the maximum number of received packets per second and a

minimum acceptable transmission rate (e.g., successfully transmitted packets). If the number

of received packets per second is larger than our threshold or the number of consecutive

successfully transmitted packets is smaller than our acceptable rate, we assume there is a

jamming attack. On the other hand, our implemented defense technique consists of two

parts: the monitoring period and the active jamming period. During the monitoring period,

all sensors are listening to a default channel and every 5 seconds they will change and listen

to the secondary channel for 400 milliseconds watching for any jamming notification. There

are two ways to trigger the active jamming period. First, if the sensor detects the jamming
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it will permanently change its frequency to the secondary channel and starts sending a

JAMMING DETECTED message every 100 milliseconds until it receives a JAMMING ACK

message from all of its neighbors. And second, if a sensor, not in the transmission range

of the jammer, receives the JAMMING DETECTED message from one of it neighbors, it

locks himself in the secondary channel and starts sending the jamming notification until

it propagates through the entire network. The message propagation stops when all the

neighbors acknowledge the notification message with an JAMMING ACK packet. After

recovering from the attack, all nodes are locked in the secondary channel and resume normal

operations (Figure 3.27). Note that this is only a simple solution and a different approach

can be used for a better defense technique.

Secondary Channel

1
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3

4

5

6 X
JAMMER

Figure 3.27 Jamming Scenario.

The flowchart of our Jamming DDM implementation is presented in figure 3.28. Figure

3.29 shows the aggregated packet count and arrivals at the base station. We see that node 3

has higher traffic than 2 which is expected since 3 is forwarding packets coming from 4 and 5

and node 2 is only forwarding packets generated at 6. Since all the nodes generate traffic at

the same rate, we can perceive that the jamming attack was launched after approximately

32 packet transmissions. From the aggregated traffic received from node 2 we detected that

there were approximately 28 lost packets and from node’s 3 aggregated traffic we detected 38

lost packets out of a total of 420 packets transmitted during the experiment. The results show
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that our implementation of jamming detection and defense using the M-Core services actually

protects from jamming attacks and the packet lost due to the attack was approximately 15%

for this specific scenario.

Figure 3.28 Jamming DDM Flowchart.
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Figure 3.29 Jamming Attack Results.
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3.5.2 Sybil Scenario

A case attack consists of a malicious node (Sybil node) impersonating other legitimate

nodes by broadcasting messages with one or multiple node identifiers (IDs) [43]. There are

different solutions for this attack including the use of shared encryption keys. In our scenario

we assume that a node can be compromised and the shared key extracted, therefore, we use a

RSSI-based approach to detect the Sybil attack. For the Sybil detection the M-Core provides

a RSSI table containing average RSSI values for each neighbor. This table is updated every

time a packet arrives to the sensor since the packet is passed to the M-Core and the RSSI

value is extracted and averaged. We collect at least 10 sample packets from each neighbor

to calculate the RSSI average and define an upper and lower threshold for the RSSI. Note

that all values and thresholds in our framework are configurable.

For this experiment we configure the DDM to communicate directly with the upper

layer (e.g., application layer) through the ddmApp interface to provide live feedback of the

incoming packets. The setup of the experiment consists of 2 legitimate sensors: one sampler

and one collector. The sampler gets light intensity measurements and transmits the values

to the collector. The collector receives and displays the data. We also have 1 Sybil sensor

that impersonates the sampler and injects false data into the network which is received by

the collector node (Figure 3.30). When the DDM detects a Sybil message it signals an event

to notify the application layer about the fraud and discard the packet.

Node A

Node A*

Real Data

Fake Data

Figure 3.30 Sybil Scenario.
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Figure 3.31 shows the flowchart for our Sybil DDM implementation and figure 3.32

shows the results of our experiment including the data fluctuation caused by the injections

and the detection and recovery point. As seen in the figure, the Di-Sec framework is able

to support Sybil scenario as well. While implementing this RSSI approach we notice that

there are some false positives due to the unstable nature of the communication channels and

RSSI. This is not the optimal solution to defend against Sybil attacks but we are showing

that our framework provide useful services for security.

Figure 3.31 Sybil DDM Flowchart.
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Figure 3.32 Sybil Attack Results.
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3.5.3 Selective Forwarding Scenario

In the Selective Forwarding attacks, malicious nodes behave like regular nodes most of

the time but selectively drop sensitive packets [44]. In order to detect this attacks we used

the number of lost packets provided by the packetcount module in the M-Core services. The

packetcount module creates and maintains a lost packet table which is updated every time a

packet is received by the node. The table consists of four main fields: packet origin O (the

node who created the message), forwarding node F (the node sending the message), previous

sequence number for the combination (O, F ), and number of lost packets for the combination

(O, F ). Using this table we can identify if one or more packets created by node A were lost

by node B for example. The COMM module overhears all the messages in its transmission

range and passes a copy to the M-Core module (e.g., packetcount). The packetcount parses

the message and compares the Di-Sec sequence number with the previous sequence number

from the table, updates the sequence number and increases the lost packets if necessary. The

flowchart for our Selective Forwarding DDM implementation is presented in figure 3.33.

Figure 3.33 Selective Forwarding DDM Flowchart.

The scenario for the experiments is shown in Figure 3.34. For this scenario we delib-

erately modified node 4 to drop 66% of the received packets. We set a threshold for the

maximum acceptable packets dropped by a relaying node to 25 packets. The first time the
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Figure 3.34 Selective Forwarding Scenario.
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Figure 3.35 Selective Forwarding Recovery.

neighbors detect this irregularity the threshold have not been reached therefore, no action is

taken. The second time the misbehavior is detected, node 5 assumes that node 4 is a selec-

tive forwarder and changes its relaying node to be node 6 to reach the base station through

node 2 (Figure 3.35). Figure 3.36 shows that packets from node 5 are being dropped.

As expected, the services provided by the M-Core facilitate the implementation of se-

curity measures for selective forwarding attacks. The aggregated traffic received from node

2 and 3 at the base station is shown in Figure 3.37. If we compare Figures 3.37 and 3.29

and ignoring the jamming fluctuations on 3.29, we observe that node 2 transmitted more

aggregated traffic in the selective forwarding scenario as node 3 did in the jamming scenario.

These results are expected since in the selective forwarding scenario, node 5 redirected all

its traffic to node 6 after detecting node 4 as a selective forwarder.



60

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

P
k
t 
C

n
t 

Pkt Arrival

Selective Forwarding Attack Experiment

 

 

Node 2

Node 3

Node 4

Node 5

Node 6

Threshold not reached

Threshold reached

Recovery

Figure 3.36 Selective Forwarding Attack Results.
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Figure 3.37 Selective Forwarding Aggregated Traffic.
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3.5.4 Internal Threat Scenario

For this attack scenario, we focus on the sensing component. We created a malicious

sensing component that returns forged sensed values to the application layer to simulate a

misbehaving component or internal threat. We set up 3 sensors with different configurations

to collect and display the total solar radiation values from the light sensor. The first sensor

is not compromised and collects data from the legitimate sensing component. The second

node is compromised and collects the data directly from a compromised light component

(e.g., HamamatsuS10871TsrCompromised). The third sensor also collects the data from

the malicious component but uses Di-Sec sensing component to verify the collected values.

During the experiment, we placed the three sensors next to each other in our laboratory

and turn the lights off and on repeatedly. A low measurement value activates the malicious

module and all subsequent measurements returned by the module are fixed to a value of 10.

Figure 3.39 presents results of this experiment and shows that the compromised application

relying on our framework services identifies and recovers from the malicious attack while the

compromised node keeps recording a value of 10 during the rest of the experiment.

Figure 3.38 Internal DDM Flowchart.
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Figure 3.39 Internal Attack Results.

3.5.5 Combined Attacks

For the sake of completeness we combined and launched two of the previous attacks in a

single experiment. Specifically, we combined Jamming and Selective Forwarding attacks to

demonstrate that Di-Sec framework successfully defends and recovers from any combination

of attacks. Figure 3.40 shows the overall traffic behavior per node and aggregated at the

gateways (node 2 and 3). Figure 3.41 highlights the impact of the Selective Forwarding

attack on the individual traffic. Again node 5 traffic is dropped by the selective forwarder

(node 4) and after detection the route is changed and all the traffic is redirected to the base

station via node 6. Right after the first attack, we launched the jamming attack which was

also handled by our framework to finally resume the normal communications.

As we can see from the previous scenarios, the Di-Sec framework provides the services

required to identify and defend against different attacks. Moreover, the M-Core architecture

allows more sub-modules (services) to be easily developed and integrated into the framework,

according to the requirements of the DDMs.
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Figure 3.40 Combined Selective Forwarding and Jamming Attacks.
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3.6 MCL Evaluation

To evaluate the benefits of the Di-Sec and the MCL we describe the amount of work

(i.e., costs) required to develop new DDMs with and without our framework. We divided

the development costs in two categories: learning costs and implementation costs.

3.6.1 Learning Costs

For the development of new WSN software programs in TinyOS, one needs to understand

the concepts of modules, configurations, interfaces and wiring. Modules (or components) are

the basic building blocks of a TinyOS program since they implement the program’s exe-

cutable logic and include some specific behaviors. For one module to be able to call and

use the functions provided by another module, we need configuration files to map the set of

provided functions in one component to a set of required functions in another component

(interfaces). In TinyOS, connecting two components through an interface is called wiring.

Whenever a developer wants to create a new program, he must define the program re-

quirements and then identify the components that provide the required functionality. Once

the components are identified, the developer needs to find the interfaces to communicate

with those components and implement their events and learn how to use their commands.

Moreover, when some functionalities are not implemented in the required components, the

developer has to implement it himself. For instance, to obtain the RSSI value from a packet,

a developer needs to identify the radio transceiver used by the sensor, discover the structure

of the message provided by the radio, parse the message, and extract the RSSI value.

Given that the M-Core provides all the required information (services) for the develop-

ment of new programs within a single component, a developer only needs to add an M-Core

component in their programs and call any service directly through the M-Core. All the mes-

sage and sensing values parsing is done inside the M-Core to reduce the developer’s effort.

Therefore, the amount of work required to create new DDMs is much smaller when using

Di-Sec since it reduces the complexity of finding and learning how to use new components.
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Table 3.8 Implementation Comparison
No Di-Sec Di-Sec & No MCL Di-Sec & MCL

Lines of
code

20 for new component 20 for new component 5 for new program

8 for new configuration 8 for new configuration
4 for component wiring 4 for M-Core wiring
8 for every additional event per
interface

8 for every additional
event per interface

55 for RSSI extraction and tables
Total 91 36 5

Files to
modify

2 modules 1 New module 1 MCL program

1 configuration 1 configuration 1 module
1 interface 1 M-Core
1 headers

Total 5 3 2

3.6.2 Implementation Costs

The Di-Sec framework provides a simple architecture that eases the design of new DDMs.

Di-Sec allows the developers to create multiple DDMs running individually or in parallel,

and it is also possible to have a stack of layers using the M-Core services. To compare the

implementation costs, we discuss the amount of work to create a simple DDM that maintains

a table with the node neighbors’ RSSI information. The evaluation is based on the number

of lines of code to write and the number of files to modify for a basic code setup of a new

program. As seen in Table 3.8, using Di-Sec and MCL only takes 5 lines of code to develop

our simple program compared to 91 lines of code without Di-Sec. For our evaluation we used

a simple scenario, but savings are amplified when developing more complex DDMs.
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PART 4

MCORE FOR RAPID SENSOR APP DEVELOPMENT

In this section, we discuss the use of the Monitoring-Core (M-Core) for the development

of new application programs in different domains. The information provided by the M-Core

in the form of services can be accessed by multiple processes simultaneously and can be used

to develop a wide range of software solutions. Similar to how Rhodes Framework [45] provides

modules and procedures for building native applications for smartphones, the M-Core can

be used to facilitate the design and reduce development time of new WSN software.

Figure 4.1 shows the M-Core architecture used to create Application Modules (AMs),

where we also illustrate five application modules (AMs) implemented at the Communications

Assurance & Performance Group at Georgia Tech. The details of these implemented pro-

grams across multiple applications domains (security, networking / routing, host application)

are presented in section 4.1.

Figure 4.1 M-Core Architecture.
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4.1 WSN Application Development for Different Domains

To show the M-Core’s functionality we implemented several application modules (AMs)

in multiple application domains (security, networking / routing, host application). For the

security domain we have implemented a stand-alone application and a collaborative attack

detection and defense. The first is a secured communication application, and the second is the

Wormhole attack detection and defense. For the network / routing domain, we implemented

the Dynamic Source Routing (DSR) protocol [46], which is used in wireless ad-hoc and sensor

networks. And, for the host application domain, we implemented a task manager for sensors

that we call TinyOSTaskManager.

4.1.1 Security Domain

Secure Communication (A Stand-alone Application) The M-Core provides the

RC4 stream cipher [40] encryption and decryption algorithm as a service by providing the

encryptI interface. Since the RC4 ciphers are generated using a symmetric operation, the

AM can use the same encrypt function call of the encryptI interface to encrypt and decrypt

the data. To perform this encryption or decryption operation, the AM passes the secret key,

size of secret key, plaintext and size of plaintext as input to the encrypt function call. After

encrypting the plaintext, the RC4 service will overwrite the input plaintext with the resultant

ciphertext data. Hence applications have to make only one function call before sending the

data and after receiving the data to encrypt and decrypt the data stream respectively.

This RC4 encryption is a simple algorithm which is platform independent and can work

with all versions of TinyOS. Using this sub-component, a sample Radio Count Application

implementing an 8-bit counter secures its broadcast data, which has the counter value as

payload. Table 4.1 shows the sizes of our program with and without M-Core.

Table 4.1 Secure Communication Program Size
M-Core Plain

ROM (bytes) 18718 11598
RAM (bytes) 1293 310
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Wormhole Detection and Defense (A Collaborative Program) The Wormhole

attack [47], is one of the potential threats targeting ad hoc and sensor networks. To launch

this kind of attack, an adversary connects two distant points in the network using a tunnel

with low latency, to deceive distant sensors and make them believe they are neighbors. Once

the routes are established and the network traffic starts using the wormhole link, the attacker

can retrieve sensitive information or disrupt the network communication.

For this experiment, the complete wormhole detection and defense mechanism was im-

plemented using the M-Core. As shown in figure 4.2, the scenario consisted of four legitimate

sensor nodes and an attacker node placed near node 4. Node 1 is the cluster head and the

base station is in charge of collecting all the data and the rest of the sensors communicate

with the base station through multiple hops. Using the attacker node, the wormhole link

(i.e., faster link) is established between node 4 and the cluster head (node 1).

1

Attacker

4

3

2

Figure 4.2 Wormhole scenario.

For the wormhole detection mechanism, we use the hop-count service provided by the

M-Core. During the initialization of the topology, the hop-count service is called by the

cluster head and all the nodes estimate their corresponding hop-counts from the cluster

head. The hop-count service can also be called periodically or whenever there is a change in

the topology (new nodes added). At the end of each hop-count service, all nodes will update

their corresponding node id of their preceding node towards the cluster head and cache it.

In the normal communication procedure, each node which initiates a transmission to-

wards the cluster head sets its current hop field to its estimated hop-count and sends the
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packet. Each subsequent node decrements this current hop value and compares with its own

estimated hop-count. It forwards the packet only if both the values match. If not, it im-

mediately broadcasts an alert message. On reception of the alert message, the nodes revert

back to their cached preceding node id for sending packets towards the cluster head.

Whenever a node receives an advertisement packet for a shorter (or faster) route to-

wards the cluster head, it starts sending packets to the cluster head through this new route.

However, it still holds the previous preceding node id in its cache. Now, when the attacker

(node placed near node 4) advertises a shorter route to the cluster head, node 4 sends packets

to the cluster head through the attacker. When node 1 receives these packets, it identifies

a mismatch between its own hop-count and the current hop associated with each of these

packets. It broadcasts an alert message once the threshold (number of packets arriving with

a hop-count mismatch) is reached, which directs node 4 to revert back to its cached pre-

ceding node id and resume transmission. Now, the route through the attacker is avoided

and also both ends of the wormhole link are identified using the hop-count and current hop

parameters of the node which initiated the alert message.

4.1.2 Network / Routing Domain

Dynamic Source Routing (A Network Routing Protocol) The Dynamic Source

Routing (DSR) protocol [46] is a type of reactive (on-demand) routing protocol for multi-hop

wireless ad-hoc and sensor networks, which uses source routing. Source routing is a method in

which the sender specifies either the complete or partial path a packet has to take to reach the

destination. Whenever an application needs to route a packet to a particular destination, the

DSR protocol looks into its route cache for any cached path to the requested destination. If

the route for the requested destination is not found in the route cache, then a route discovery

process is initiated by the DSR protocol in the source node. The route discovery process of

the Dynamic Source Routing protocol was implemented using the neighbors service provided

by the M-Core. This neighbors service gives the list of Node ID’s of all reachable neighbors

from the current node. In the modified DSR route discovery implementation, using M-Core,
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the intermediate node queries the neighbors service to determine whether the destination is

an immediate neighbor of this current node. If the destination is an intermediate neighbor,

the intermediate node generates the route reply message to the source instead of forwarding

the request. So the intermediate nodes which have the destination node as their neighbor

will generate the route reply instead of forwarding the route request, optimizing the route

discovery process. Table 4.2 shows the sizes of our program with and without M-Core.

Table 4.2 DSR Program Size
M-Core Plain

ROM (bytes) 20338 18718
RAM (bytes) 2043 1293

4.1.3 Host Application Domain

TinyOSTaskManager (A Host Application) using the M-Core services we also

developed a task manager-like program that allows one to monitor different activities on

the sensor (TinyOSTaskManager). The monitor application collects information about the

CPU ticks, number of neighbors, number of active M-Core services, packets in/sec, packets

out/sec, and total packets received. The status of the different parameters are displayed in

a java interface. Figure 4.3 shows a screen capture of the TinyOSTaskManager.

Figure 4.3 TinyOSTaskManager.

The applications from multiple domains illustrated above are based off of existing solu-

tions in the literature and were presented as examples. The main contribution is to show

that they were quickly developed using the M-Core and MCL.
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4.2 Other Related Works for WSN Application Development

In this final part of the dissertation we demonstrated that the M-Core can be used as

a middleware for developing new applications for sensor networks. We are aware that there

exists other works that proposed a general solution for WSN development as well, and we

briefly reference those works in this section.

In [48], the authors proposed OASIS, a programming framework for service-oriented

sensor networks. OASIS also follows a service oriented middle-ware approach for rapid

application development similar to the M-Core, but they don’t offer those services in a single

configuration file as the M-Core does. Additionally, they support service sharing between

the motes using a Service Discovery algorithm.

The work in [49] discusses the trends and challenges of designing and developing solu-

tions for WSN using service oriented middleware. Some of the middleware they analyze are:

SStreaMWare [50], USEME [51], MiSense [52], SOMDM, and others.
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PART 5

CONCLUSIONS

In this work, we introduced a comprehensive security framework for WSNs called Di-Sec.

The goal of our architecture design was to create highly modular, flexible, and expandable

framework to provide security against different attacks.

The overall contribution of this work is to realize an architecture that can be leveraged

by researchers to expedite the development of sensor defense mechanisms and to allow their

parallel execution. We want to do for sensor security researchers what metasploit has done

for hackers.

Along with Di-Sec we also created a domain specific language called MCL to interact

with the framework. Using MCL, a user can implement new defense mechanisms without

the overhead of learning the details of the underlying software architecture (i.e., TinyOS,

Di-Sec). We study the performance of the framework in terms of storage costs (RAM and

ROM), CPU overhead, and communication overhead. We also implemented detection and

defense mechanisms against Jamming, Sybil, Selective Forwarding, and Internal attacks and

show through experimentation that Di-Sec framework successfully defends and recovers from

those attacks. Moreover, we demonstrated that our framework, specifically the M-Core can

be used to easily develop applications in other WSN domains.
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