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                                                                        by 

                                                  TATIANA MALASCHENKO 

                                   Under the direction of Gennady S. Cymbalyuk 

                                                                       and  

                                           the co-direction of  Andrey Shilnikov 

                                                              ABSTRACT 

 

The co-existence of bursting activity and silence is a common property of various 

neuronal models. We describe a novel mechanism explaining the co-existence of and the 

transition between these two regimes. It  is based on the specific homoclinic and Andronov-Hopf 

bifurcations of the hyper- and depolarized steady states that determine the co-existence domain 

in the parameter space of the leech heart interneuron models: canonical and simplified. We found 

that a sub-critical Andronov-Hopf bifurcation of the hyperpolarized steady state gives rise to 

small amplitude sub-threshold oscillations terminating through the secondary homoclinic 

bifurcation. Near the corresponding boundary the system can exhibit long transition from 

bursting oscillations into silence, as well as the bi-stability where the observed regime is 

determined by the initial state of the neuron. The mechanism found is shown to be generic for the 

simplified 4D and the original 14D leech heart interneuron models.  

INDEX WORDS: Bursting, silence, co-existence, multistability, bifurcation analysis,   

computational neuroscience, Master of Science, Georgia State University 
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1

                                              INTRODUCTION  

 

 Types of neuron activities  

 A fundamental goal of neuroscience is to understand the cellular mechanisms of 

neuronal network control of animal behavior. Running, swimming, breathing and other types of 

rhythmic motor behaviors are controlled by oscillatory neuronal networks located in the Central 

Nervous System (CNS) called central pattern generators (CPG) (Calabrese and Marder, 1996). 

Single neurons can have complex dynamics which are expressed in different types of electrical 

activity. The dynamics of a single neuron have to be investigated in detail to gain real 

understanding of the behavior of a large neuronal network. 

 The dynamics of a neuron are very intricate. The neuron utilizes specialized pumps and 

channels that operate on different time scales to create an appropriate pattern of electrical 

activity. This electrical activity expresses itself as the membrane electrical potential. Electrical 

potential across the membrane of the neuron is produced by a difference in ion concentrations 

between the internal and external sides of a membrane. This potential is controlled by ion 

channels and their conductances (Levitan and Kaczmarek, 1997). The conductance of the 

channels is controlled either by one variable (activation) or two variables (activation and 

inactivation). They are defined by slow and fast dynamics of channel sub-units.  There are four 

main regimes of the neuronal activity:  silence, sub-threshold oscillations, tonic spiking and 

bursting activities (Izhikevich, 1999).  

1) In the silent regime, the neuron stays constantly at a certain rest potential. It does not 

produce spikes unless stimulated.   
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2) In sub-threshold oscillatory regimes, the neuron produces hyperpolarized, low amplitude 

oscillations of the membrane potential. 

3) In the tonic spiking regime, the neuron rhythmically produces depolarized, high 

amplitude pulses of the membrane potential. 

4) In the bursting activity regime, the neuron produces oscillatory activity which is 

characterized by the alternation of the tonic spiking and the silent phases.  

Each of these regimes has been implicated in the control of rhythmic behaviors of 

animals. It has been shown that the rhythmic behaviors such as locomotion, heart beating, 

breathing and swimming are controlled by a Central Pattern Generator (CPG) (Arshavsky, 2002; 

Tryba et al., 2006; Ramirez and Viemari, 2005; Cymbalyuk and Calabrese, 2000; Cymbalyuk et 

al, 2002; DeLorenzo et al, 2005; Edwards et al, 1999; Hill et al, 2001; Kristan et al, 2005; Katz et 

al., 2004; Friesen and Stent, 1978; Arbas and Calabrese,1990, Marder and Calabrese,  1996).  

 

Advantages of studying cellular mechanisms of neuronal dynamics in invertebrates 

The main purpose of neurophysics is to understand the dynamics of neurons and neuronal 

networks. We think that basic mechanisms governing the dynamics are common among all 

animals. Invertebrates, compared to vertebrates, have much smaller Central Nervous Systems, 

but they are capable of producing complex patterns of behavior. The rhythmic movements of 

invertebrates, such as crayfish, sea slugs, crab, lobster, snail and leech, similarly to vertebrate 

animals (Cohen et al., 1988;Li et al 2004; Yakovenko et al., 2005; Solis et al., 2005; Lafreniere-

Roula and McCrea, 2005), are controlled by CPG (Angstadt et al, 1999; Arbas et al, 1990; Arbas 

et al, 1984; Arshavsky et al, 1986; Arshavsky et al, 1993; DeLorenzo et al, 2005; Edwards et al, 

1999, Friesen and Stent, 1978; Katz et al., 2004). The invertebrate neuronal systems provide a 
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number of advantages for neuroscientists. The neurons are large; some can be seen by a naked 

eye. The neurons can be identified, based on their location in the CNS, morphology and 

physiological properties, and a detailed map of the CNS can be produced. Based on these 

features, it is possible to assign a function for every single neuron. As a result, we can study 

mechanisms of neuronal control of a behavior on a cellular level. 

The medicinal leech’s CNS is relatively well studied. Neurobiological investigation has 

been focused on the seven types of rhythmical behavior: heartbeating, crawling, swimming, 

feeding, shortening and local bending and decision making (Angstadt et al., 1999; Arbas et al., 

1990; Arbas et al, 1984; Cymbalyuk et al., 2000; Hill et al., 2001; Kristan et al., 2005, Friesen 

and Stent, 1978; Simon et al.,1994). The nervous system of the leech includes 21 segmental 

ganglia. Approximately, each segmental ganglion contains 400 neurons and most of them are 

paired. The knowledge of morphology and physiological properties allows one to study the 

behavior of the leech and to correlate it with a motor pattern. One of the best studied rhythmic 

behaviors of the leech is the heart beating (Calabrese et al., 1995; Masino and Calabrese, 2002). 

The heartbeat CPG has been identified. It is controlled by paired neurons in the first four 

segmental ganglia (Kristan et al, 2005 ; Hill et al, 2001). Two pairs of mutually inhibitory heart 

interneurons, which are located in the third and fourth ganglia, create two elemental oscillators. 

Each pair of neurons is known as an elemental oscillator. As the extracellular recoding shows, a 

heartbeat interneuron can produce endogenous rhythmic bursting when it is isolated with 

bicuculline (Cymbalyuk et al., 2002).  

We analyze a model of the leech heart interneuron, developed by Hill et al., (2001). A 

neuron is represented as a single isopotential compartment with Hodgkin-Huxley type membrane 

conductances (Huxley, 2002). It is described by a system of nonlinear differential equations. The 
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leech heart interneuron contains eight voltage-dependent currents. Five of them are inward 

currents: a transient, fast sodium (Na+) current (INa); a persistent Na+ current (IP); a fast, low-

threshold calcium (Ca2+) current (ICaF); a slow, low-threshold Ca2+ current (ICaS); and a 

hyperpolarization-activated cation current (Ih) (Opdyke and Calabrese, 1994; Olsen et al., 1995; 

Olsen and Calabrese, 1996; Angstadt and Calabrese, 1989, 1991). Three outward currents are: a 

delayed rectifier-like potassium (K+) current (IK1); a persistent K+ current (IK2), and a fast, 

transient K+ current (IKA) (Hill et al, 2001; Nadim and Calabrese, 1997).The kinetics, voltage 

dependency, and reversal potentials of these currents are described in the Methods. The model is 

tuned to produce the activity with characteristics such as period, duty cycle and frequency of 

bursting activity tuned to the experimental data (Hill et al, 2001; Cymbalyuk et al., 2002).    

As we mentioned above, our particular interest is to understand the dynamics of the leech 

heart interneuron model leading to the co-existence of bursting and silence. We envisage a 

neuron as a multidimensional dynamical system. The dynamics of the model are described by a 

14 dimensional system of differential equations. The kinetics of the currents operate on different 

time scales. Activations and inactivations were identified as ultra fast, fast, moderate, slow and 

very slow (Table 1) ( Cymbalyuk et al, 2003).  

Table 1. State variables operate on more than two different time scales. Some of the state 
variables have a different time scale depending on the membrane potential (marked by red in the 
table). 
  

from -70 mV to -50 mV 
 

 
from -50 mV to -10 mV 

Ultra fast (0.1 msec) mNa mNa 
Fast (~2-10 msec) hNa, mK1, mCaF, mCaS mP, mKA, hNa, mK1, mCaF 
Moderate (~100 msec) hKA, mK2, mP, mKA  mCaS, hCaF, hKA, mK2  
Slow (~ 0.5 sec) hK1, hCaS, hCaF hK1 
Very Slow (~ 2-6 sec) mh hCaS, mh  

   

The complexity of endogenous dynamics originates from dynamical diversity of ionic currents 
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which can be separated by different time scales and other characteristics (see Table 1). Analysis in 

terms of fast-slow dynamical systems gives insight into the mechanisms responsible for the 

generation of bursting behavior.  

 

Bifurcations in the model and the transitions between different types of electrical activities 

The leech heart interneuron model can produce complex dynamics. Most of the dynamical 

behaviors of this model can be reproduced in the simplified models. There are four types of 

bifurcations (transition mechanisms) which are common for nonlinear dynamical systems like 

Hodgkin-Huxley type models: Andronov-Hopf bifurcation, Saddle-node bifurcation for an 

equilibrium, Homoclinic bifurcation, and Saddle-node bifurcation of a periodic orbit 

(Guckenheimer and Tein, 2003). These bifurcations play the key roles in controlling transitions 

between behaviors in the neuronal models.  

1) Andronov-Hopf bifurcation describes the emergence of a periodic orbit from an equilibrium 

state. At this bifurcation the stationary states has a pair of purely imaginary characteristic 

exponents. There are two types of the Andronov-Hopf bifurcation: sub-critical and super-critical. 

Figure 1.1(a) illustrates the super-critical bifurcation where a stable periodic orbit with zero 

amplitude emerges from the equilibrium state in the phase plane. In contrast, at the sub-critical 

bifurcation an unstable periodic orbit collapses at the equilibrium state (see Figure 1.1(b)). 

(Shilnikov et al, Vol 1-2 , 2001) 

2) Saddle-node bifurcation describes the metamorphosis of an equilibrium state with a single 

zero characteristic exponent. Here, the stable and unstable states move closer to each other, then 

merge and disappear (Figure 1.2) (Guckenheimer and Tein, 2003; Strogatz , 1998; Shilnikov et 

al., 2001).  
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3) Homoclinic bifurcation: the stable and unstable separatrices of a saddle point form a closed 

orbit called the homoclinic loop.  Through a homoclinic bifurcation a periodic orbit disappears as 

it merges into the homoclinic loop (Figure 1.3); note that its period grows without an upper 

bound (Shilnikov et al, 2001 ; Strogatz, 1998 ). 

 

 

 

 

 

 

 

 

 

                          

 

   

 Figure 1.2:  Saddle-node bifurcation (the figure is taken from Strogatz,  1998).  

 Figure 1.1: Andronov-Hopf bifurcation. a) The supercritical and b) subcritical Andronov-Hopf 
bifurcations are illustrated. (the figure is taken from Strogatz,  1998) 

b
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4) Saddle-node bifurcation of a periodic orbit (also called fold) - a stable periodic orbit and 

unstable periodic orbit coalesce and annihilate (see Figure 1.4) (Shilnikov et al, 2001; Strogatz, 

1998).  

                             

 

 
Figure 1.4: The example of a saddle-node bifurcation for a periodic orbit. (a) As bifurcation 
parameter x is varied, the stable and unstable periodic orbits stay close to each other, (b) for x 
=x’, the two orbits coalesce and (c)   for  x >x’, the periodic orbits disappear (figure is taken 
from Shilnikov et al,  2001).  
 

 
 

Figure 1.3: Stages of the homoclinic bifurcation in the phase plane. A bifurcation parameter x 
changes. (a) For x< x’, a stable periodic orbit passes closer to a saddle point at the origin. As x 
increases to x’, the periodic orbit swells (b) and collides with a saddle, creating a homoclinic orbit 
or loop (c). For x> x’, the saddle connection breaks and the homoclinic orbit is destroyed (d) 
(figure is taken from Strogatz, 1998). 
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                                                             METHODS 

 

We analyze a single compartment model of a leech heart interneuron (Hill et al.,2001; 

Cymbalyuk et al., 2002). The solutions of this model were obtained using Matlab ODES solvers. 

The integration and bifurcation analysis were performed using the software package CONTENT, 

developed for the bifurcation analysis of dynamical systems. Content is freely available at 

http://www.cwi.nl/ftp/CONTENT. Integration of equations was done using the Runge-Kutta 

method of the 4-th order with the minimal step size and tolerance of integration set as 10-14 and 

10-9 correspondingly.  

A leech heart interneuron is modeled as a single isopotential compartment with 

membrane conductances represented in terms of the Hodgkin and Huxley formalism (Huxley, 

2002).     The dynamics of membrane potential (V) of a neuron are described by  

 

))(( 21 tIIIIIIIIII
dt
dVC pulseleakKAKKhCaSCaFPNa +++++++++−= , 

 where C is the total membrane capacitance (0.5 nF),  Iion is an intrinsic voltage-gated current, 

Ipulse is the injected current and  ILeak is the leak current.  The voltage-gated currents are given by  

);(3
NaNaNaNaNa EVhmgI −= );( NaPPP EVmgI −= );(2

CaCaFCaFCaFCaF EVhmgI −=  

);(2
CaCaSCaSCaSCaS EVhmgI −= );(1

2
111 KKKKK EVhmgI −= );(2

222 KKKK EVmgI −=  

);(2
KKAKAKAKA EVhmgI −= );(2

hhhh EVmgI −=   
);( leakleakleak EVgI −= );()( pulsepulsepulse tfItI =
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where iong  is the maximal conductance, Eion is the reversal potential, )( pulsetf  is 1 during the 

pulse time, otherwise )( pulsetf  is 0, m and h are the activation and inactivation variables, 

respectively.  These variables are governed by the following equations 

 

( )V
mVf

dt
dm KK

,043.0,057.0,035.0,200
),02.0,83( 22

τ
−−

= ∞

 

),2.0,01.0,057.0,400(
),039.0,120(

V
mVf

dt
dm PP

τ
−−

= ∞

  

0001.0
),029.0,150( NaNa mVf

dt
dm −−

= ∞

 

)(
),030.0,500(

V
hVf

dt
dh

hNa

NaNa

τ
−

= ∞

 

)(
),0467.0,600(

V
mVf

dt
dm

mCaF

CaFCaF

τ
−−

= ∞

 

),31.0,06.0,055.0,270(
),0555.0,350(

V
hVf

dt
dh CaFCaF

τ
−

= ∞

 

),134.0,005.0,0487.0,400(
),0472.0,420(

V
mVf

dt
dm CaSCaS

−
−−

= ∞

τ  

),25.5,2.0,043.0,250(
),055.0,360(

V
hVf

dt
dh CaSCaS

−
−

= ∞

τ  

),011.0,001.0,016.0,150(
),021.0,143( 11

V
mVf

dt
dm KK

τ
−−

= ∞

 

),2.0,5.0,013.0,143(
),028.0,111( 11

V
hVf

dt
dh KK

−
−

= ∞

τ  

),011.0,005.0,03.0,200(
),044.0,130(

V
mVf

dt
dm KAKA

τ
−−

= ∞

 



 

 

10

),0085.0,026.0,055.0,300(
),063.0,160(

V
hVf

dt
dh KAKA

−
−

= ∞

τ  

),7.1,7.0,073.0,100(
)(

V
mVf

dt
dm hhh

−
−

= ∞

τ  

 

where the steady-state activation and inactivation functions are given by Boltzmann function  

)(1
1),,( bVae

Vbaf +∞ +
=

 

except for the steady-state activation of Ih which is given by 

)047.0(500)047.0(18021
1)( ++∞ ++

= VVh ee
Vf

 

The time constants are also described by the following a Boltzmann function, except for the 

inactivation time constant for INa, the activation time constant for IKF, and the activation time 

constant for ICaF 

)(1
),,,,( bVae

dcVdcba ++
+=τ

 

))027.0(300cosh(
01.0

1
006.0004.0)( )028.0(500 +

+
+

+= + Ve
V VhNaτ

 

))04.0(100cosh(
2.2

1
0.85.1)( )022.0(100 +

−
+

+
+= +− Ve

V VmKFτ
 

))0467.0(330cosh(
024.0011.0)(
+−

+=
V

VmCaFτ
 

 

The canonical parameter values are set as follows:  
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the reversal potentials are ENa=-0.045 V, ECaS=0.135 V, EK=-0.07 V, Eh=-0.021 V, and the 

maximal conductances for the elemental oscillator neurons are Nag =200 nS, 7=Pg  nS, 

5=CaFg nS, 2.3=CaSg nS, 1001 =Kg nS, 802 =Kg nS, 80=KAg nS, 4=hg nS, 8=lg nS. 

 

Next, we will describe a simplified leech neuron model, which is based on the fast 

sodium and slow calcium voltage-dependent currents and the leak current. 

This model has four equations. We assume that the activation for INa is instantaneous, therefore 

),028.0,150( VfmNa −= ∞ .  

The dynamics of the membrane potential, V, activation (m) and inactivation (h) variables of the 

sodium and calcium currents in this model are described by: 

CdV/dt =-( Nag  ∞f
3(-150, 0.028,V)hNa(V-ENa)+ CaSg  m2

CaShCaS(V-ECaS) +gleak(V-Eleak))+Ipulse(t); 

)(
),,500(

V
hVBhf

dt
dh

hNa

NaNa

τ
−

= ∞

 

),25.5,02.0,043.0,250(
),055.0,360(

),134.0,005.0,00487.0,400(
),0472.0,420(

V
hVf

dt
dh

V
mVf

dt
dm

CaSCaS

CaSCaS

τ

τ
−

=

−
−−

=
 

 

Here the parameters are:  CaSg =80 nS, Nag =250 nS, and Bh=0.031V. The function f∞(a,b,V)  is 

the Boltzmann function f=1/(1+ea(V+b)). In the simplified model the parameter Bh produces a 

shift of the steady-state inactivation curve of INa relative to the potential V in the 

equation )(
),,500(

V
hVBhf

dt
dh

hNa

NaNa

τ
−

= ∞

.  
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                                                               RESULTS 

 

Simplified model 

Our main goal is to understand the dynamics of the leech heart interneuron. Our study is 

primarily focused on understanding the mechanisms underlying the co-existence of the bursting 

and silent regimes. Because the dynamics of the complete model of the 14 state variables is very 

complex, we simplified it first by reducing the number of the equations.  A primary advantage of 

creating such a simplified model of the interneuron is that the analysis of this model will be more 

comprehensive. The minimal order of the model is determined by our fundamental knowledge of 

the processes underlying the onset of the principal activities of neurons such as bursting and 

tonic spiking. Our modeling approach is based on the theory of slow-fast dynamical systems 

(Rinzel et al., 1985; Bedrov et al., 2000; Belykh et al., 2000; Izhikevich et al., 2000; Cymbalyuk 

et al., 2003; Shilnikov et. al., 2003; Shilnikov et al., Vol. 1-2, 2001). The slowest variable 

controlling the burst duration in the complete model is the inactivation of ICaS (Hill et al., 2000; 

Cymbalyuk, et al., 2003; Olypher et al., 2006). It has been suggested that ICaS underlies the 

bursting activity (Cymbalyuk et. al. 2003). The numerical experiment performed on the complete 

model has revealed that if INa is blocked, the model produces oscillatory activity (Cymbalyuk et 

al., 2003). Our minimal model is based on the slow calcium current, the fast sodium current and 

the leak current. The current INa exhibits an ultra fast activation and determines the fast spiking 

dynamic (see Table 1). The dynamics and contributions of all other currents are not considered. 

Note that the simplified model based on (INa, ICaS) does not have the outward currents, except for 

Ileak, so the balance of inward and outward currents is lost. Usability of this model depends on 

whether it could produce the bursting activity with temporal characteristics similar to those 
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experimentally observed in the leech heart interneuron. To determine these proper parameters 

values (called canonical) for the simplified model, we varied, systematically, the maximum 

conductance iong , and the activation and inactivation kinetics for ICaS and INa.  

 

Window current mode of INa 

The steady-state activation and inactivation curves of INa are described by the Boltzmann 

function; they characterize the kinetics of ion currents. When all channels are open, then the ion 

current has the maximum conductance iong . The product of iong , activation and inactivation gives 

the instantaneous conductance. The shift of the inactivation curve relative to the activation curve 

changes the steady-state conductance of INa. For example, if the potential is fixed to a 

hyperpolarized value, then activation equals 0 while the inactivation equals 1; therefore the 

steady-state conductance 
∞

iong  is 0. Similarly, if the potential is fixed to the depolarized value, the 

activation equals 1 and the inactivation equals 0, so 
∞

iong  is 0 as well. It is important to note that 

for certain kinetics of activation and inactivation curves, there is a “window” interval in the 

values of the membrane potential where 
∞

iong  is non-zero. We can determine the “window” 

sodium current as a steady-state current at a membrane potential in the “window” interval, near 

the voltage the steady-state curves for activation and inactivation intersect (see Figure 3.1). As 

Figure 3.1 (A) shows, for some range of voltage around -0.032 V the steady-state conductance  

∞

Nag  is not zero. If the membrane potential is fixed within the “window”, then the current INa is 

persistent. In the simplified model, the “window” current plays the role similar to that of the 

sodium persistent current, which supports burst duration in the complete model (Hill et al, 2001; 

Cymbalyuk and Calabrese, 2001)    
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Figure 3.1. Wave form of bursting activity depends on the voltage dependence of the kinetics of 
the fast sodium current, INa. The data are presented for two different values of Bh, which shifts 
the steady state inactivation curve, for Bh =0.035 V at the top row and for Bh=0.038 V at the 
bottom one. The increase of Bh shifts the curve towards the hyperpolarized values and changes 
the steady state conductance 

∞

Nag . On the left panels the bursting waveforms are presented.  On 
the right side there are corresponding graphs of the steady-state activation, ∞

Nam , and inactivation, 
∞

Nah , curves presented in black and the steady-state conductance, ∞

Nag , presented in green.  The 
overall decrease of ∞

Nag  decreases the period, burst duration and duty cycle of the model. The ratio 
of the maximum values of ∞

Nag  calculated for the two values of Bh equals 
∞

=
∞

= 038.0,035.0, / BhNaBhNa gg =2.7 
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Canonical parameters of model (ICaS, INa). 

To tune up the period and the burst duration of the simplified model to the values 

corresponding to the experimental data, we need to explore the dynamics of INa. We introduce 

the parameter Bh defined as the half-inactivation voltage in the Boltzmann function 

A 

B 
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Figure 3.2. Different types of activity as Bh is varied. A) at Bh=0.034 V, the model demonstrates 
tonic spiking activity. B) Bh=0.035 V, it shows the bursting activity with the following 
characteristics: Period P=9.2 sec, Spike Frequency F=4.4 Hz, Duty Cycle D=78%. C) Bh=0.036 
bursting activity with characteristics P=6.4s, F=3.6Hz, D=64.8%, similar to the experimental data 
that was obtained. D) Bh=0.037 V corresponds to the bursting activity with Р=5.4 s,  F=2.7 Hz; 
D=52.4 %. 

f(V)=1/(1+e500(V+Bh)) which defines the steady-state condition for 
∞

Nah . Let’s consider how the 

activity of the neuron changes as Bh shifts toward hyperpolarized values. As its value is 

increased (see Figure 3.1), this shifts the curve 
∞

Nah  towards the hyperpolarized values. As Bh 

increases, the period of bursting activity decreases. The analysis of the results (see Figure 3.2) 

shows that the variations of Bh affect the conductance of INa, which alters the model activity.  For 

Bh=0.04 V, the model is in the silent regime. As Bh decreases from 0.037 V to 0.035 V, the 

period of bursting activity grows.  This leads to the increase of the burst duration (from 5.4 sec to 

9.2 sec), spike frequency (from 2.7 Hz to 4.4 Hz) and duty cycle (from 52.4 % to 78%), while  
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the interburst interval stays nearly same. The model (INa, ICaS) at Bh=0.034 V shows the 

depolarized tonic spiking activity presented in Figure 3.2 A 

We suggest in this model that the activation of ICaS initiates the beginning of spikes of bursting 

activity, while inactivation of ICaS controls the burst duration similar to half-center oscillator 

created of two heart interneuron (Olypher et al., 2006; Li et al.,1997). To analyze the dynamics 

of ICaS current in the simplified mode, we plot INa and ICaS currents during bursting activity. As 

Figure 3.3 shows, the burst duration of the model is indeed determined by the slow inactivation, 

hCaS. During the quiescence phase, ICaS activates, thereby depolarizing the neuron, and leads to 

the transition into the burst phase. The window mode of INa supports the burst along with ICaS. 

This result agrees with the results in Hill et al. (2002) and Olypher et al. (2006). 

To compare the dynamics of the simplified model and that of the complete model, we 

block INa, in the simplified model, and observe slow voltage oscillations induced by the dynamic 

of ICaS  (Figure 3.4). These oscillations are sustained in both the presence and absence of INa. 

Similar results are shown in the complete model (Cymbalyuk et al. 2003). As we vary the 

maximum conductance Nag , we observe at Nag =110 nS that the model shows bursting activity 

with a single large spike followed by a plateau. The period of the bursting activity is slightly 

longer than the period of ICaS. For parameters Nag =220 nS and Nag =250 nS the period equals 6.6 

sec and 7.6 sec, correspondingly. Both examples have a short plateau at the beginning of the 

burst (see Figure 3.4). This plateau is associated with the window in INa and dynamics ICaS.  

This analysis of the dynamics of the currents allows us to adjust the proper parameters for 

the simplified model, which we have called canonical, so the model can exhibit activities with 

characteristics similar to experimental data. To change the interburst interval in the simplified 

model, we varied the characteristics of ICaS. To modify the burst duration and spike frequency, 
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Figure 3.3 The traces of intrinsic currents INa, ICaS, inactivation hCaS, and the membrane 
potential of the simplified model. During the quiescence phase of bursting activity, ICaS 
activates, it depolarizes the neuron, and leads to the transition into the burst phase. Once the 
burst has begun, it is sustained primarily by INa.. Here, the bursting activity has the period P=6.5 
sec and duty cycle D=65.4% closed to the experimental data (Cymbalyuk et.al. 2002).  

the dynamics of the inactivation and activation of INa have to be adjusted as well. The simplified 

model with parameters Nag =250 nS, CaSg =80 nS , and Bh=0.031 V shows bursting activity with 

period and duty cycle similar to the experimental characteristics of the bursting activity of a 

leech heart interneuron (see Figure 3.5). The temporal characteristics of this activity were 

recorded extracellularly from the leech heart interneuron (Cymbalyuk et al., 2002). Other 

parameters of the simplified model are described in Methods.     

 

 

  

 

 

 

 

 

 

 

 

 

 

 

As we mentioned above, the main question here is whether the simplified model, with properly 

set canonical parameters, can also demonstrate the co-existence of bursting activity and silent 

regimes that was found in the original leech heart interneuron model.  
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Bifurcation analysis of the simplified model (INa, ICaS) 

Figure 3.5 The model with the parameters chosen as canonical produces bursting activity which 
has temporal characteristics, period and burst duration, in agreement with those obtained 
experimentally from the leech heart interneurons isolated with bicuculline. Here, Period is 8.3 sec 
and Duty Cycle is 54 %, Frequency =5.9 Hz, Interburst Interval =3.8 sec. Canonical parameters 
here and below are: Eleak =-0.0505 V, gleak =15.7 nS, CaSg =80 nS; ECa=0.135 V; Nag =250 nS; 
ENa=0.045 V; Bh=0.031 V. 

Figure 3.4. The traces of the potential for different parameters of Nag  are presented. For Nag  =0, 
the model shows oscillations. An increase of Nag leads to the onset of the bursting activity. For 

Nag =110 nS, the bursting activity with plateau is initiated.  As Nag  is increased from 220 nS to 
250 nS,  the period increases.  
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Moreover, if it does, what are the mechanisms supporting this bi-stability?   

Bifurcation analysis of the simplified model (INa, ICaS)         

The next step is to find this co-existence in the simplified model. The bifurcation analysis 

is the key element that helps us predict and localize the co-existence area in the parameter space. 

The previous studies have confirmed that the full model is quite sensitive to leak current 

parameters (gleak, Eleak) (Cymbalyuk et al., 2002). We have numerically computed similar 

bifurcation diagram of oscillatory and stationary states (see Diagram 1). This diagram describes 

the transitions between the activities that could occur in the reduced model. Our numerical 

analysis of the neuron model is done using Content. We have determined the areas of 

hyperpolarized and depolarized silence (a steady stationary state), the areas of tonic spiking (a 

stable periodic orbit) and bursting activity, and the area of multistability. As mentioned above, 

the following four types of bifurcations predict these oscillatory and stationary state areas, 

namely: the Andronov-Hopf and the saddle-node bifurcations of equilibrium states, and the 

homoclinic and saddle-node bifurcations of periodic orbits. 

To locate the parameter domain corresponding to the bursting activity in the parameters 

plane for the four dimensional simplified (INa, ICaS)- model, we have analyzed the stability of the 

hyperpolarized stationary state. The equilibrium state conditions are: 

1)  CdV/dt =0; ;0=
dt

dhNa    ;0=
dt

dmCaS    ;0=
dt

dhCaS    

 The corresponding time-constant solution of the system with respect to activation and 

inactivation of the model is given by 

  NahVf =∞ ),03.0,500( ; 

CaSmVf =−∞ ),0427.0,420( ;                                         ⇒ 
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CaShVf =∞ ),055.0,360( ; 

gNam3
NahNa(V-ENa)+ gCaS m2

CaShCaS(V-ECaS) +gleak(V-Eleak)=0; 

The values mCaS, hCaS and hNa are then substituted into the equation 

gNa )V0.028, 150,-  (∞f
3

∞f (500,0.03,V)(V-ENa)+gCaS ∞f (-420,0.0427,V) 2
∞f (360,0.055,V)(V-

ECaS) +gleak(V-Eleak)=0 , where gNa, gCaS and ENa, ECaS, Eleak are given values. 

  

                      

 

 

 

 

 

 

 

Diagram 1. Bifurcation diagram of the oscillatory and stationary regimes. The Andronov-Hopf 
bifurcation of the hyperpolarized stationary state (silent regime) is shown by the blue curve and 
marks the boundary where silent regime loses stability giving rise to the subthreshold oscillations. 
The other blue curve marks Andronov-Hopf bifurcation of the depolarized stationary state. At this 
curve depolarized stationary state loses stability and gives rise to a periodic tonic spiking. The red 
curve locates homoclinic bifurcation of the large amplitude periodic spiking. The pink curve 
corresponds to the homoclinic bifurcation of the unstable sub-threshold oscillations. The area 
between these curves of homoclinic bifurcations is the parameter regime where bursting is 
observed, marked in the white. The area between the blue and the pink curves marks the 
parameter regime where unstable sub-threshold oscillations exist; this is parameter regime of bi-
stability of silence and bursting. The blue x on the area of co-existence marks parameters used for 
Figures 3.7.  
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It allows us to calculate the so-called equilibrium curve in the (V, gleak  )-plane.  Let us point out 

that the periodic orbit emerges from the equilibrium point through the Andronov-Hopf 

bifurcations.  When born, the periodic orbit has zero amplitude and some non-zero period. As the 

bifurcation parameter gleak is varied, the amplitude grows proportionally to o
leakleak gg − , where 

o
leakg  is the bifurcation value, while its period is evaluated as T=2π/ω, where the frequency ω is 

the imaginary part of the characteristic exponents. Writing down the Jacobian J(V,mCaS, hCaS, 

hNa) for the four dimensional model, we determine the conditions for the Andronov-Hopf 

bifurcation as 0)( =JTr  and )(JDet >0, the real parts of a pair of eigenvalues must cross zero at 

the bifurcation value. Solving the system of equations gives us the set of the eigenvalues (λ) 

which characterize the Andronov-Hopf bifurcation. The imaginary part of λ defines the 

frequency, ω, of the newborn periodic orbit. There is a “Lyapunov” quantity found through the 

third degree Taylor expansion of the vector field at each Andronov-Hopf bifurcation point which 

determines the stability of the periodic orbits. The Lyapunov quantity for the super-critical 

Andronov-Hopf bifurcation is negative, therefore the periodic orbit is born stable. At the sub-

critical Andronov-Hopf bifurcation, the Lyapunov quantity is positive and the periodic orbit is 

born unstable (Guckenheimer , 2003; Shilnikov et. al., Vol 1-2, 2001).  

One can see the super-critical Andronov-Hopf bifurcation curve in Diagram 1. This curve 

corresponds to the transition from depolarized silence into tonic spiking activity. As the 

parameter gleak is increased, the stable periodic orbit moves toward the saddle equilibrium. 

The coordinates of the saddle equilibrium are given by 

0)( ===== •••• JDetVhhm NaCaSCaS . Before the stable periodic orbit comes close to the saddle 

equilibrium, it becomes unstable through the period doubling bifurcation. For example, at 

gleak=4.66 nS and Eleak=-52 mV the stable periodic orbit has the frequency ω=51.8 rad/sec. As 
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gleak increases, its amplitude grows proportionally to 66.4−leakg . The periodic orbit loses 

stability at gleak= 12 nS. Then, for a small change in gleak, the period grows fast and 

logarithmically. When the trajectory becomes the homoclinic orbit to the saddle equilibrium, the 

tonic-spiking activity ceases.   

The homoclinic bifurcation curve in the two parameter plane was computed using 

Content. We use the fact that the period of the tonic spiking orbit increases unboundedly, so we 

were able to detect an isochrone corresponding to the period of 50 sec, which gives a good 

approximation for the homoclinic bifurcation.  This curve (the red) in Diagram 1, determines the 

transition from the tonic spiking into bursting activity in the reduced model.  

On the other hand, for gleak=12.2 nS the unstable periodic orbit bifurcates from the 

hyperpolarized stationary state through the sub-critical Andronov-Hopf bifurcation with the 

frequency ω=2.3rad/sec. Content allows us to continue the Andronov-Hopf bifurcation as two 

parameters are varied; its curve is shown in Diagram 1. Similarly, as the parameter gleak is 

increased, the unstable sub-threshold periodic orbit gets closer to the saddle equilibrium. When 

gleak=12.5 nS, the period of its oscillations grows unboundedly, while its amplitude remains 

finite. At the critical parameter value of gleak, the periodic orbit collides with the saddle 

equilibrium and the oscillations vanish. The corresponding bifurcation curve is shown by the 

pink curve in Diagram 1. This curve determines the transition between the bursting and the silent 

regimes.  

As the results of the dynamical systems analysis suggest, the transitions between different 

types of model activity can be identified by the means of bifurcation theory. Crossing a 

bifurcation boundary in the model is associated with some qualitative change in the oscillatory 

properties of a neuron. 1)  The transition from tonic spiking into bursting activity is associated 
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Figure 3.6. Period doubling cascade and the coexistence of chaotic spiking and bursting activity in 
the reduced model.  A) Here the transition between tonic spiking and bursting activities occurs 
through period doubling cascade. The right column of the figure yields the corresponding voltage 
traces. B) The coexistence of the bursting activity and chaotic tonic spiking takes place at  Eleak=-51.7 
mV, gleak=12.3638 nS. 

A  

A  

with a period doubling cascade leading into chaos in the model. This transition is illustrated in 

Figure 3.6. The cascade of period doubling bifurcations leading to chaos is observed in the 

simplified model. This cascade also persists in the original model of a leech heart interneuron 

(Cymbalyuk et al. 2002). A narrow area near the transition border corresponds to that of the co- 

existence of chaotic spiking and bursting activity with a long period in the parameter space of the 

reduced model. This co-existence is shown in Figure 3.6.  

2) The transition from the bursting activity into silence is associated with the homoclinic 

bifurcation for unstable periodic orbit. The co-existence of bursting activity and silence is found, 

see Figure 3.7. This co-existence is due to the unstable periodic orbit, whose stable manifold 

separates the basin of attraction of the bursting and silent attractors. In the parameter plane, the 
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coexistence region is bounded by the homoclinic and subcritical Andronov-Hopf bifurcation 

curves. This region is marked as the co-existence in Diagram 1.   

For the model with the canonical parameter values, we have studied the (gleak,Eleak) -

parameter bifurcation diagram (see Diagram 1). It shows the relative position of two homoclinic 

bifurcation curves and two Andronov-Hopf bifurcation curves. Between the corresponding 

bifurcation curves the periodic orbit exists in the model: it terminates at the homoclinic 

bifurcation and begins through Andronov-Hopf bifurcation. The shaded area between the two 

homoclinic curves is the domain of the bursting activity (green in Diagram 1). We have found 

that bursting activity and the silent regime are separated by unstable sub-threshold oscillations. 

The switch between two activities can be performed by a pulse of current. Figure 3.8-3.9 show 

the series of numerical experiments where silence and the bursting regimes are perturbed by a 

pulse of hyperpolarizing current. The hyperpolarized current leads to the switch of activity from 

bursting into silence as soon as the pulse of current passes the phase point of the trajectory inside 

Figure 3.7. Coexistence of two attractors for the simplified model is shown. The bursting activity 
(blue) and the silence (green) are separated by the unstable periodic orbit (red)  at  Eleak=-51 mV, 
gleak=15 nS. 
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the unstable periodic orbit (marked by the red points in Figure 3.8 (A)).  As long as the phase 

point travels outside of the unstable periodic orbit (see Figure 3.8 (B)), the neuron remains in the 

bursting regime. Figure 3.9 demonstrates the perturbation of silence into bursting. Similarly, if 

the perturbation with a pulse of injected current moves the phase point away from the  
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Figure 3.8. Perturbations of bursting activity by a pulse of current for the simplified model (INa, 
ICaS). Parameters of the model have values gleak=15 nS, Eleak=-0.051 V, Bh=0.031 V, the duration 
of the pulses are 0.01 sec. On the left side of the figure in the (mCaS, hCaS) plane, the phase 
trajectory of the activity before and after injection of the pulse is plotted. The green dot is the 
stable equilibrium point. The red dotted curve marks the unstable periodic orbit. On the right side 
of the figure, the voltage traces are shown. A) The hyperpolarized pulse of the current with 
amplitude -0.264 nA switches the activity from bursting into silence.  The phase point of the 
trajectory is moved inside the unstable periodic orbit, and the bursting activity is not the attractor 
anymore. B) The hyperpolarized pulse of current is injected when the neuron shows bursting 
activity. It does not produce a switch between the activities. The pulse of the current brings the 
phase point close to the unstable periodic orbit, but the phase point is outside of the periodic orbit. 
The amplitude of the pulse is -0.26 nA.  
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equilibrium state, outside of the unstable periodic orbit (see Figure 3.9 (B)), the system will 

switch from bursting activity into silent one.  Otherwise, as Figure 3.9 (A) demonstrates, the 

neuron produces damping oscillations and returns to the silent regime. 

Next, let us to show the similarity in the dynamical behavior of the simplified model and 

of the complete model. First, we would like to pose the following questions: is the mechanism of 

the co-existence maintained in the complete model? Will similar stimulation procedures reveal 

A 

B 

Figure 3.9: Perturbation of silent regime for the simplified model (INa, ICaS). Parameters of the 
model have values gleak=15 nS, Eleak=-0.051 V, Bh=0.031 V, the duration of the pulses are 0.01 
sec. The hyperpolarized pulse of the current perturbs the silent mode. The silent mode (stable 
equilibrium) is shown by the green dot. A) The hyperpolarizing pulse of current with amplitude -
0.0677 nA moves the phase point toward the unstable periodic orbit, but the pulse is not strong 
enough to put the phase point outside of the unstable periodic orbit. B) The hyperpolarized pulse 
of current with amplitude -0.07 nA switches the activity from silence into bursting.  The phase 
point of the trajectory is moved outside of the unstable periodic orbit and silence is not the 
observed regime anymore.  
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the bi-stability in the complete model? We will answer and discuss the answers to these 

questions in the next chapter.       

  

Canonical model of a leech heart interneuron 

 

In this section we study the canonical model of the leech heartbeat neuron. This 

biophysically accurate model (Hill et al., 2001) following Hodgkin-Huxley’s formalism (Huxley, 

2002) is based on the dynamics of the eight distinct voltage dependent currents: five inward and 

three outward and a passive leak current which is not voltage dependent. The model was tuned to 

reproduce the characteristics of the neuron’s activity such as the period of bursting activity, burst 

duration and the frequency of the spikes in a burst observed experimentally.  

The analysis is based on the systematic variation of Eleak and gleak to explain the 

difference in experimental data obtained by two different techniques of recording of neuronal 

activity: intracellular and extracellular. During the intracellular method, a neuron is penetrated by 

a sharp glass electrode. It allows the membrane potential to be directly recorded. The main 

advantage of this method is that current can be injected into the cell; therefore one can control 

the membrane potential of the cell. The downside of the technique is that the cell gets damaged. 

During the extracellular recording a cell is sucked inside of the glass electrode and the membrane 

potential can be measured directly. We can not control the activity of the cell by this method, but 

it is not as harmful as the intracellular method. Cymbalyuk et. al 2002  showed that the activity 

of the leech heart neuron is highly sensitive to the method of recording. Intracellular recording of 

the single heart neuron in bicuculline (bicuculline blocks the synaptic connections of neurons) 

shows tonic spiking activity; however during extracellular recording the neuron endogenously 
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produces bursting activity. It has been proposed then that intracellular recording generates an 

additional leak current. This shunting component of the leak current can suppress the 

endogenous bursting activity (Cymbalyuk et al., 2002).  

The analysis of the model of the cell has shown that changes in the leak current cause the 

transitions between different behaviors of the neuron. For instance, increase of conductance of 

the leak current switches the neuron from tonic spiking into bursting activity (Cymbalyuk et al, 

2002). The bifurcation analysis of the neuron model allows us to elucidate the role of the 

currents in the regulation and control of these activities. Here we focus on the complex dynamics 

supporting the co-existence of two different regimes, bursting and silence. Because the activity 

of the neuron model is sensitive to the leak current, we construct the bifurcation diagram in the 

leak current (gleak, Eleak)-parameters plane.  The diagram demonstrates the borders between 

different activities (bursting and silence), and the area of their co-existence. The areas of tonic 

spiking, bursting activity, silence and multistability were determined in Cymbalyuk et. al. 2002 

(see Diagram 2). The area of co-existence was shown to be bounded by the curve corresponding 

to the Andronov-Hopf bifurcation; however the boundary near which the bursting activity 

disappears was not determined analytically, and the exact mechanism of the transition was left 

beyond the scopes of the paper. 

 

Switching the activities between silence and bursting by a pulse of current  

To examine the behavior of the neuron in the bi-stability regime, we choose the gleak and 

Eleak parameters from bifurcation Diagram 2, where the neuron model shows the co-existence of 

silence and bursting. For the parameters gleak=9.86 nS and Eleak=-0.065 V both types of activities 

exist and can be chosen depending on the initial state of the model. First, we explore the reaction 
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of the neuron at the silent regime (see Series 1 in Figure 3.10). A depolarizing pulse of current 

with duration of 0.1 sec and amplitude -0.05 nA is applied to the model. This pulse depolarizes  

 

                              

 

 

 

 

the model and leads it to the transition from silence into bursting (Numerical Experiment 1 from 

Series 1). This observation determines a threshold, which separates the activities. On the other 

hand, when we apply a hyperpolarizing pulse of current with an amplitude of 0.05 nA and 

duration 0.1 sec, the injected current hyperpolarizes the silent regime of the model. Intuitively, 

the neuron model should stay in silent regime when the neuron is hyperpolarized. Numerical 

Experiment 2 from Series 1 (see Figure 3.10) shows the activity of the model (when 

hyperpolarized current is injected) is   

                        

Diagram 2: Bifurcation diagram of the canonical 14 D leech heart interneuron model. The pink, 
orange, and yellow areas mark the parameter regimes where tonic spiking, bursting, and silence 
are stable, respectively.  Green and blue areas mark regions of multistability.  Multistability (A) 
points to the area (marked blue) where bursting coexists with silence; multistability (B) points to 
the area where bursting co-exists with tonic spiking; multistability (C) points to the area where 
tonic spiking co-exists with silence.(The diagram is taken from Cymbalyuk et al, 2002)  
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                         Series 1: Perturbation of silent regime into bursting activity. 
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Numerical Experiment 2.  

Figure 3.10: Duration of the pulse is 0.1 sec. The parameters of the model are gleak=9.86 nS Eleak =-
0.065 V. The purple dashed lines indicate the maximum and minimum values of amplitude of the 
unstable sub-threshold oscillations. Experiment 1. Perturbation of the system by the depolarizing 
pulse of current is plotted Amplitude of the pulse is -0.05 nA, it depolarizes the cell and causes the 
transition from silence to bursting. Experiment 2. Perturbation of the system by the hyperpolarizing 
pulse of current is plotted Amplitude of the pulse is 0.05 nA, it hyperpolarized the cell and also 
causes the transition from silence to bursting. 
    

                             Numerical Experiment 1.  
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counterintuitive. Either, a hyperpolarizing or a depolarizing pulses of current lead to the onset of 

bursting activity. The series 2 of our numerical experiments are performed on the model which 

initially exhibits bursting activity (see Series 2 in Figure 3.11). We inject a hyperpolarizing pulse 

of the current with the purpose of pushing the system into a silent regime. As shown in 

Numerical Experiment 3, a hyperpolarizing pulse of the current with amplitude 0.1 nA and 

duration 0.1 sec perturbs the system so that the phase point leaves the bursting attractor and 

moves into the silence mode. Then the hyperpolarized pulse of current is increased until the 

amplitude of the pulse reaches 0.4 nA. Instead of hyperpolarized silence which was expected, the 

neuron model produces bursting activity (see Numerical Experiment 4 of Series 2).  

The traditional view of neuronal activity suggests that the increase of the hyperpolarizing 

pulse of the current has to lead to the hyperpolarized silence. However, this does not account for 

the co-existence of silence and bursting, as in our case. Our numerical experiments imply two 

thresholds: upper and lower. The presence of unstable sub-threshold oscillations can explain the 

existence of the two thresholds.  

 

  Life and death of sub-threshold oscillations  

To explain the results of numerical experiments with the perturbations, described in the 

previous paragraph, we perform the bifurcation analysis of the stationary and oscillatory states of 

the model. First, we use gleak and Eleak parameters and set them so that the model has only one 

attractor, a stable hyperpolarized stationary state (silence). Then, we will analyze the stability of 

the stationary state as gleak is varied. 
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                 Series 2: Perturbation of bursting activity into silent regime                                                                    
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Figure 3.11: Duration of the pulse is 0.1 sec. The parameters of the model do not change: 
gleak=9.86 nS Eleak =-0.065 V. The purple dashed lines indicate the maximum and minimum value 
amplitude of the unstable sub-threshold oscillations.  Experiment 3 shows the co-existence of the 
bursting activity and silence regimes. Perturbation of the bursting leading to silence via the 
hyperpolarizing pulse of current is shown. Pulse’s amplitude is 0.01 nA. Experiment 4 shows the 
case where perturbation does not change the regime of the cell. Perturbation by a hyperpolarizing 
pulse of the current is shown. The amplitude of the pulse is 0.04 nA. The pulse hyperpolarizes the 
cell and does not switch the activity from bursting into silence. 
 

Numerical Experiment 3.

Numerical Experiment 4.
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The stability of the stationary state is evaluated through the characteristic exponent or the 

eigenvalues of the Jacobian. If all the eigenvalues have negative real parts, then the stationary 

state of the system is stable. The calculation of the eigenvalues is performed using Content 

(Kuznetsov et al.,1996). At the parameters gleak=33 nS and Eleak=-0.058 V the model displays 

only the hyperpolarized silent regime.  By varying the parameters, we find the curve of the 

equilibrium. It has a stable branch (green curve in Figure 3.12) composed of stable equilibrium 

states, and the unstable branch composed of the equilibrium states of the saddle and saddle-focus 

type, which is shown as the blue dashed curve in Figure 3.12. At the critical value  0
leakg =15.71 

nS, the equilibrium state undergoes subcritical Andronov-Hopf bifurcations. This leads to the 

onset of unstable sub-threshold oscillations. Near the bifurcation, the increase of the amplitude of 

the unstable periodic orbit is evaluated as 71.15−leakg  (see Figure 3.13). At the bifurcation, 

the frequency, ω, of a periodic orbit is given by the imaginary part of the two eigenvalues, and in 

the vicinity of the bifurcation the period is T≈2π/ ω +O( o
leakleak gg − ). After the Andronov-Hopf 

bifurcation, the geometry of the periodic orbit becomes distorted as gleak changes from the 

bifurcation parameter 0
leakg . For example, the integration of the solutions of the system for 

parameters gleak=15.71 nS and Eleak=-0.058 V gives the frequency of the oscillations ω=1.95 

rad/sec, therefore the period of the new born cycle is 3.22 sec. For gleak smaller than 15.71 nS the 

real parts of the two eigenvalus are positive, and the equilibrium state becomes a saddle-focus.   
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The further increase of the parameter gleak leads to the increase of the amplitude and the 

period of the unstable periodic orbit; the periodic orbit swells (see Figure 3.12 and Figure 3.13). 

The evolution of the unstable periodic orbit relative to the curve of the equilibrium is presented 

in Figure 3.12. As the parameter reaches the value gleak=15.7522 nS, a saddle-node bifurcation of 

the periodic orbits occurs. As Figure 3.13 shows, the unstable periodic orbit collides with the 

stable periodic orbit and both are annihilated.  At the figure, orbits are shown by the solid and 

dashed lines, respectively. The secondary saddle-node bifurcation of the periodic orbit occurs at 

the parameter gleak=15.7542 nS. At this bifurcation, the stable and unstable periodic orbits meet 

Figure 3.12: Rapid growth of the unstable periodic orbit (red) toward the curve of the 
equilibrium. The periodic orbit emerges through the Andronov-Hopf bifurcation at gleak=15.71 nS 
and Eleak=-0.058 V and ends up at the homoclinic bifurcation. The increase of gleak leads to the 
increase of the amplitude and the period of the periodic orbit. The stable branch of the 
equilibrium is marked by the green curve. The unstable branch of the equilibrium is represented 
by the blue dashed line.  
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and merge. Two vertical lines in Figure 3.13 indicate the small region where the three stable 

regimes can co-exist: bursting, silence and stable sub-threshold oscillations.    
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Figure 3.14 shows that for gleak> o
leakg  there are two attractors in the model which are a 

stable stationary state (the green line) and bursting attractor (the blue curve). These two attractors 

are bounded from each other by the unstable periodic orbit (the red dashed curve). Now we can 

explain the meaning of the upper and lower threshold. This unstable periodic orbit determines 

the basin of attraction of both attractors. Inside it, the phase point converges to the stationary 

state. Outside of this saddle periodic orbit, it is attracted to the bursting activity.  The minimal 

Figure 3.13: Dependence of the period and amplitude on gleak. a) The relatively small change in 
the parameter gleak near the homoclinic bifurcation leads to the rapid increase of the period of the 
periodic orbit. It is presented by the green line at gleak=15.905 nS. b) The change of the amplitude 
of the periodic orbit, when gleak is in the region of 15.9 nS, is small. At gleak=15.7522 nS and 
15.7542 nS the saddle-node bifurcations for a periodic orbit occurs. The green line corresponding 
to gleak ={15.7522 15.7542} nS indicates the region where stable periodic orbit exists. 
 

a  

b  
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and maximal values of the voltage of the unstable periodic orbit define the two thresholds. As 

shown in Figures 3.10-3.11 (Series 1 and 2), the dashed lines indicate the max and min value for 

the amplitude of the unstable sub-threshold oscillations.    

2 sec

0 V

10 mV

 

 

 

 

 

Now, let us explain the experiments with perturbations by the current. If the pulse of the 

current is sufficiently large to move the phase point from the stationary state away through the 

threshold, the neuron goes into bursting activity (see Numerical Experiments 1-2 in Figure 3.10). 

The switching pulse of the injected current can be either hyperpolarized or depolarized. In the 

second series of numerical experiments, the neuron initially shows the bursting activity. The 

pulse of the current has the amplitude in approaching phase, which puts the phase point inside of 

the unstable periodic orbit. When current is injected, the neuron switches into the silent regime 

Figure 3.14: Coexistence of the silence and bursting activities separated by unstable subthreshold 
oscillations for the complete model. The green line marks the stationary state (silence) of the 
model, the blue curve represents bursting activity, the red dashed curve marks unstable sub-
threshold oscillations. Sub-threshold oscillations define the basin of attraction. Inside of the 
unstable periodic orbit only the silent mode can exist. Across of this orbit bursting activity is the 
stable regime. Minimum and maximum values of the amplitude of the unstable periodic orbit 
define two thresholds: upper and lower. gleak and Eleak are 9.86 nS and -65 mV    
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(see Numerical Experiment 3). If the pulse amplitude is too large, and the neuron is 

hyperpolarized below the minimum voltage of the unstable sub-threshold oscillations, the phase 

point will remain in bursting activity regime (see Numerical Experiment 4). The transition from 

bursting into silence is easy to initiate when the pulse is injected at specific moments. The 

voltage coordinate of the phase point of the bursting activity has to be close to the voltage of the 

silent regime. For example, for Eleak=-0.058 V and gleak=15.9 nS, the basin of attraction is 

defined by two thresholds with Vmin= -51.52 mV and Vmax= -38.48 mV. Figure 3.14 shows the 

co-existence of the stable equilibrium and the bursting activity separated by the unstable sub-

threshold oscillations. 

The period of the unstable periodic orbit changed rapidly from  6 sec to 30 sec  as gleak  is 

increased from 15.87 nS to 15.9 nS,  (see Figure 3.13 a). This indicates indirectly that a 

homoclinic bifurcation is about to occur in the system. As the periodic orbit comes close to the 

saddle, its period increases proportionally to ln( *

1

leakleak gg −
). At the same time (Figure 3.13 b) 

the amplitude of the oscillations stays relatively constant O(1). As gleak increases toward the 

critical value, *
leakg , the unstable periodic orbit bands into the saddle point (see figure 3.12), 

creating a homoclinic loop, and vanishes. Once gleak passes the critical value *
leakg , the saddle 

connection breaks up and the homoclinic loop is destroyed.  

With the help of the software Content, this bifurcation can be detected numerically. The 

feature of this bifurcation is that as the periodic orbit approaches the critical value, the period 

grows logarithmically. The evolution of the unstable periodic orbit relative to the location of the 

equilibrium states, as gleak is varied, is presented in Figure 3.15. At the figure, the green dots 
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represent the projection of the stable equilibrium for a given gleak, on to the mCaS and hCaS plane, 

and the red points correspond to the saddle equilibrium states. 

              

0 0.1 0.2
0

0.5

1

h
CaS

m
C

aS

0.0764 0.0764

0.409

0.4091
m

C
aS

0 0.1 0.2
0

0.5

1

m
C

aS

10 mV

10 mV

10−6 V

120 sec
−54 mV

−54 mV

−48.1
mV

40 sec

10 sec

 

                 

 

 

 

 

When the parameter gleak increases, (Figure 3.15) the periodic orbit expands toward the saddle 

point. As the periodic orbit gets closer to the saddle point, the phase point spends more time in 

the vicinity of this point; therefore the period drastically increases (Figure 3.15 c)). At the 

moment when the trajectory of the periodic orbit passes through the saddle point, the homoclinic 

bifurcation occurs. The unstable periodic orbit disappears and now the stationary state is the only 

Figure 3.15: Evolution of the unstable periodic orbit in the (mCaS, hCaS) plane and corresponding 
traces (V v.s t), as parameter gleak is varied. For this set of numerical experiments Eleak is -0.058 
V. a) The unstable periodic orbit is born through sub-critical Andronov-Hopf bifurcation. 
Parameter value is gleak=15.71 nS, producing the oscillations with Period=3.23 sec. Amplitude of 
the oscillations is small and equal to 1.2 µV. b) The parameter gleak is increased to 15.89 nS, 
period and the amplitude increase, Period=10 sec and Amplitude=12.4 mV. c) Now, as the 
parameter gleak barely changes to gleak=15.9 nS, the period increases quickly, Period =30 sec while 
the amplitude almost does not change Amplitude=13 mV.    

a 

b 
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attractor. The trajectory of the bursting activity after the homoclinic bifurcation can not be 

observed anymore. With these critical parameters, if the initial conditions are chosen so that the 

neuron is showing transient bursting activity, the number of bursts before the neuron settles 

down at the rest potential is not predictable (Figure 3.16). At this bifurcation, the transition from 

bursting into silence is defined. It shows that near the border which is defined through the 

homoclinic bifurcation the model exhibits the phenomenon of intermittent transition from 

bursting into silence.  

                   

We determine a pair of parameter values of gleak and Eleak for which the unstable periodic 

orbit has period 30 sec. On time scale of the processes in the model, this is considered very long 

and therefore close to the homoclinic bifurcation parameters. To find the periodic orbits with a 

certain period, we introduce a function F( To,T( gleak, Eleak)), where  

5 sec

10 mV

0 mV

      Figure 3.16:  Intermittent transition from bursting into silence for the complete model.   
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F( T0,T( gleak, Eleak))= T(gleak, Eleak)-To , T(gleak, Eleak) is the period of the unstable periodic orbit, 

To = 30 sec. Content can detect and continue the zero of this defined function in the two-

parameter space. This lets us determine F( T0,T( gleak, Eleak))=0 and find the pair of values (gleak , 

Eleak ) comprising the isochrone of the given period. This method allows for the finding of the set 

of periodic orbits of given period. We constructed the (gleak, Eleak)-parameter bifurcation diagram, 

where the transition between bursting activity into silent mode and one of the borders of the co-

existence have been defined through the homoclinic bifurcation. As Diagram 3 shows, one of the 

borders of the area of co-existence of bursting activity and silence, that was introduced in 

Cymbalyuk et al., 2002, matches closely with the predicted value for the homoclinic bifurcation 

points.                    

                   

          

 

 

 

 

 

 

 

 

 

 

 

Diagram 3: Area of the co-existence of bursting activity and silence is defined by the subcritical 
Andronov-Hopf and homoclinic bifurcation curves. The blue curve corresponds to the Andronov-
Hopf bifurcation. The green curve shows the border where the transition from bursting into silent 
regimes occurs (Cymbalyuk, G.S., et al., 2002). The red dots mark the points where the 
homoclinic bifurcation occurs.  
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We have shown that the unstable hyperpolarized sub-threshold oscillations (periodic orbit) 

emerge through the Andronov-Hopf bifurcation and disappear through the homoclinic 

bifurcation. Diagram 3 shows the Andronov-Hopf bifurcation curve on which the second border 

of the area of the co-existence is defined.  

In conclusion, we showed that the unstable sub-threshold oscillations separate the stable 

equilibrium (rest state) and bursting activity. Minimum and maximum values of the voltage of 

the unstable periodic orbit define two thresholds: upper and lower. It explained the series of 

numerical experiments where the switch between different regimes can be produced by a pulse 

of current of certain amplitude. We showed the area of co-existence of bursting activity and 

silence is defined by the sub-critical Andronov-Hopf bifurcation and a homoclinic bifurcation. 

The homoclinic bifurcation explains the transition from bursting into silence.  
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                                                        DISCUSSION 

 

Basic patterns of neuronal activities are silence, sub-threshold oscillations, tonic spiking 

and bursting activity. A number of theoretical and experimental studies have demonstrated that 

both a single neuron and neuronal populations can exhibit bi-stability, in other words, these 

regimes can co-exist with one another (Wang et al., 1995; Shilnikov et al., 2004; Milton and 

Jung, 2003; Cymbalyuk et al., 2002; Cymbalyuk et al., 2000; Feoden and Grebogi, 1997; 

Gadatela and Dangelmayr, 2001; Manning et al., 2003; Manuca et al., 1998).  

In cortical neurons, many classes display transitions between tonic spiking and bursting 

as a function of the brain state, for example sleep versus wakefulness (Steriade, 2001). The co-

existence of tonic firing and bursting has been shown in cortical neurons (Fröhlich. and 

Bazhenov, 2006). Depolarization of a neuron caused by raised extracellular K+ concentration can 

lead to bursting in a cell which usually shows tonic spiking. (Jensen et al., 1997). The increase of 

K+ concentration during epileptogenesis is an established fact (Somjen et al., 2004; DeLorenzo et 

al., 2005). Frohlich and Bazhenov developed a cortical neuron model which explains bi-stability 

between tonic spiking and bursting for raised K+ concentration. The leech heart interneuron 

model also exhibits co-existence of two types of oscillations: tonic spiking and bursting with 

large amplitude (Shilnikov et al., 2004). Switching between these two regimes can be produced 

by modulation of the initial state of the neuron model (Shilnikov et al., 2004). Bursting is 

separated from tonic spiking by an unstable periodic tonic spiking activity of the saddle type, 

which determines the threshold between regimes.    

Here, we investigated a mechanism of bi-stability of the model of the leech heart 

interneuron. We have illustrated its properties by a series of numerical experiments. They display 
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that the activity of the cell which was initially in the silent regime can be switched into bursting 

activity by depolarized and hyperpolarized pulses of the current. In the other series of 

experiments, where the neuron was initially in the bursting mode, we showed that it can be 

switched into the silent mode by a hyperpolarized pulse. In the later case, if the amplitude of the 

hyperpolarized pulse is increased, the cell returns to bursting activity. These numerical 

experiments imply two thresholds: upper and lower. We have shown that switching between 

bursting activity and silence can be controlled by a pulse of current. 

The knowledge of the mechanism of bi-stability is useful in the design of treatments of 

such medical conditions as Parkinson’s disease, sudden infant death syndrome (SIDS), epilepsy, 

and essential tremor (Breakspear et al., 2006; Harvey et al., 2007; Milton and Jung, 2003; Wang 

et al., 1995; DeLorenzo, 2005; Weese-Mayer et al., 2007). What is common for these medical 

conditions is that they are examples of dynamically dysfunctional activities of neuronal system 

(Feudel et al., 1997; Gadaleta et al., 2001; Manning et al., 2003; Milton and Jung, 2003). For 

example, SIDS is defined as a sudden, unexpected death of an apparently healthy infant under 

one year of age, usually during sleep (Weese-Mayer et al., 2007). It has been suggested that this 

syndrome could be a result of the bi-stability of the neuronal system, where death is associated 

with the silent regime.  

Damage of the neurons might cause a change in the activity of the whole neural network 

and lead to epilepsy (DeLorenzo et al., 2005; Milton and Jung, 2003). Epilepsy can be generated 

in a large group of cells. It is the most common serious condition in neurology. Seizures are 

frequently accompanied with synchronized hyperactivity in the neuronal network and the cells 

are depolarized to a high level (Drongelen et al., 2003). A weak electrical field can modulate 

neuronal activity (Francis et al., 2003). It has been shown that deep brain stimulation can provide 
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noticeable benefits for people with tremor or Parkinson’s disease. High frequency stimulation of 

the intermediate nucleus of the thalamus essentially could relieve tremors (Perlmutter et al., 

2006). There are a number of experiments in which the seizure can be stopped by a pulse of 

current (Milton and Jung, 2003; Perlmutter et al., 2006). 

Exemplary ideas of bi-stability are exploited in designs of treatment of Parkinson’s 

disease. Under normal conditions, particular neuronal populations located in the thalamus and 

the basal ganglia show apparently random electrical activity, whereas abnormal synchronized 

activity of these neurons is associated with Parkinson’s resting tremors (Alberts et al., 1969). The 

main question is how to suppress that abnormal synchronized activity. Tass and Hauptmann 

created a model of the subthalamic nucleus (STN) (Tass and Hauptmann, 2007). Its analysis 

shows that appropriate electrical stimulation of the bursting neurons located in the thalamus may 

change synaptic wiring of the neuronal networks. It gives rise to the co-existence of different 

dynamically stable regimes. Due to this multistability of the neuronal network, it is possible to 

switch the network activity from the strongly synchronized state to a desynchronized state. It has 

been proposed that suppression of synchronized activity is based on two plasticity induced 

effects. The first is desynchronizing stimulation, which causes a decrease of synaptical weights. 

The second effect requires that the weakly synchronized state must be stable (Tass, 2001). To 

solve the problem of abnormal synchronization, authors have suggested applying weak or short 

stimulation. This stimulation causes a reduction of a pathologically synchronized neuronal 

population (Tass, 2001; Tass and Hauptmann, 2007). The main advantage of such stimulation, 

that it does not affect memory as much as alternative methods which are based upon longer 

stimulation.  To induce the switch from abnormal to normal neuronal activity, Tass suggests 

using a two pulses deep brain stimulation techniques.    
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Discussing treatment of epileptic seizures, Milton brought into consideration the co-

existence of two patterns of tonic spiking activities that arise in membrane potential of an Aplisia 

motoneuron. When the single stimulation is applied the switch between activities occurs (Milton 

and Jung, 2003). Designing methods of feedback stimulation, Milton shows that multistability 

can appear in the models of delayed feedback control. The necessary conditions for multistability 

were established as following; the sum of the conduction times along the axon and dendrites, 

time required for quantal release, processing times in the neurons, and the rise time of synaptic 

inhibition has to be greater than the intrinsic firing period of the neuron. Multistability was 

presented as the multiple basins of attraction separated by ridges of varying heights that 

correspond to energy barriers (Milton and Jung, 2003). Such a dynamical system can be 

controlled and manipulated with small perturbation. Milton has designed a feedback stimulation 

method of regulation of neuronal network activity. At each moment of time when the abnormal 

attractor occurs, the feedback stimulation imposes the initial conditions for the normal attractor 

(Milton and Jung, 2003 ).     

In 2002, Netoff and Schiff have proposed that a decrease in synchronization is essential 

for initiation and maintenance of epileptic seizures. If synchrony is associated with seizure 

termination, then the method directed at increasing such synchronization may be useful in 

controlling seizures (Netoff and Schiff, 2002).  

Our results explain a novel mechanism bi-stability at the cellular level. If neurons in a 

population where each neuron possess the property of bi-stability of bursting and silence 

according to the mechanism described here, then we can provide specific instructions for the 

design of electrical stimulation. According to the scenario described, two attractors are separated 

by the unstable periodic orbit, which was born through Andronov-Hopf bifurcation. The 
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perturbation by the pulse of current can be applied to the group of cells. If the pulse of current is 

injected with appropriate amplitude and at the specific phase, the bursting can be locked into the 

silent regime. The theory of bi-stability and the controlling mechanism might be applied to the 

design of a treatment of tissue displaying epileptic behavior. The feedback techniques may 

suppress the abnormal activity of the neuron by switching into the normal regime.  

In conclusion, we described a novel mechanism explaining the co-existence of bursting 

and silent regimes in a single neuron. We demonstrated how the injection current pulse can be 

applied with the certain amplitude and at the specific phase to make a switch between regimes. 

We demonstrated that the specific characteristics of the pulse are defined by the unstable sub-

threshold oscillations which separate two basins of attraction (bursting and silence). The 

mechanism of supporting the co-existence is similar for both the simplified four dimensional 

model and the complete fourteen dimensional model. In both models the area of co-existence is 

determined by two bifurcations: Homoclinic and Andronov-Hopf. The hypothesis is that the area 

of the co-existence of bursting and silence is defined by two types of bifurcations, which might 

give a general principal for controlling bi-stability in a Hodgkin-Huxley type model. 
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