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ABSTRACT

The co-existence of bursting activity and silence is a common property of various
neuronal models. We describe a novel mechanism explaining the co-existence of and the
transition between these two regimes. It is based on the specific homoclinic and Andronov-Hopf
bifurcations of the hyper- and depolarized steady states that determine the co-existence domain
in the parameter space of the leech heart interneuron models: canonical and simplified. We found
that a sub-critical Andronov-Hopf bifurcation of the hyperpolarized steady state gives rise to
small amplitude sub-threshold oscillations terminating through the secondary homoclinic
bifurcation. Near the corresponding boundary the system can exhibit long transition from
bursting oscillations into silence, as well as the bi-stability where the observed regime is
determined by the initial state of the neuron. The mechanism found is shown to be generic for the
simplified 4D and the original 14D leech heart interneuron models.
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INTRODUCTION

Types of neuron activities

A fundamental goal of neuroscience is to understand the cellular mechanisms of
neuronal network control of animal behavior. Running, swimming, breathing and other types of
rhythmic motor behaviors are controlled by oscillatory neuronal networks located in the Central
Nervous System (CNS) called central pattern generators (CPG) (Calabrese and Marder, 1996).
Single neurons can have complex dynamics which are expressed in different types of electrical
activity. The dynamics of a single neuron have to be investigated in detail to gain real
understanding of the behavior of a large neuronal network.

The dynamics of a neuron are very intricate. The neuron utilizes specialized pumps and
channels that operate on different time scales to create an appropriate pattern of electrical
activity. This electrical activity expresses itself as the membrane electrical potential. Electrical
potential across the membrane of the neuron is produced by a difference in ion concentrations
between the internal and external sides of a membrane. This potential is controlled by ion
channels and their conductances (Levitan and Kaczmarek, 1997). The conductance of the
channels is controlled either by one variable (activation) or two variables (activation and
inactivation). They are defined by slow and fast dynamics of channel sub-units. There are four
main regimes of the neuronal activity: silence, sub-threshold oscillations, tonic spiking and
bursting activities (Izhikevich, 1999).

1) In the silent regime, the neuron stays constantly at a certain rest potential. It does not

produce spikes unless stimulated.



2) In sub-threshold oscillatory regimes, the neuron produces hyperpolarized, low amplitude
oscillations of the membrane potential.

3) In the tonic spiking regime, the neuron rhythmically produces depolarized, high
amplitude pulses of the membrane potential.

4) In the bursting activity regime, the neuron produces oscillatory activity which is
characterized by the alternation of the tonic spiking and the silent phases.

Each of these regimes has been implicated in the control of rhythmic behaviors of
animals. It has been shown that the rhythmic behaviors such as locomotion, heart beating,
breathing and swimming are controlled by a Central Pattern Generator (CPG) (Arshavsky, 2002;
Tryba et al., 2006; Ramirez and Viemari, 2005; Cymbalyuk and Calabrese, 2000; Cymbalyuk et
al, 2002; DeLorenzo et al, 2005; Edwards et al, 1999; Hill et al, 2001; Kristan et al, 2005; Katz et

al., 2004; Friesen and Stent, 1978; Arbas and Calabrese,1990, Marder and Calabrese, 1996).

Advantages of studying cellular mechanisms of neuronal dynamics in invertebrates

The main purpose of neurophysics is to understand the dynamics of neurons and neuronal
networks. We think that basic mechanisms governing the dynamics are common among all
animals. Invertebrates, compared to vertebrates, have much smaller Central Nervous Systems,
but they are capable of producing complex patterns of behavior. The rhythmic movements of
invertebrates, such as crayfish, sea slugs, crab, lobster, snail and leech, similarly to vertebrate
animals (Cohen et al., 1988;Li et al 2004; Yakovenko et al., 2005; Solis et al., 2005; Lafreniere-
Roula and McCrea, 2005), are controlled by CPG (Angstadt et al, 1999; Arbas et al, 1990; Arbas
et al, 1984; Arshavsky et al, 1986; Arshavsky et al, 1993; DeLorenzo et al, 2005; Edwards et al,

1999, Friesen and Stent, 1978; Katz et al., 2004). The invertebrate neuronal systems provide a



number of advantages for neuroscientists. The neurons are large; some can be seen by a naked
eye. The neurons can be identified, based on their location in the CNS, morphology and
physiological properties, and a detailed map of the CNS can be produced. Based on these
features, it is possible to assign a function for every single neuron. As a result, we can study
mechanisms of neuronal control of a behavior on a cellular level.

The medicinal leech’s CNS is relatively well studied. Neurobiological investigation has
been focused on the seven types of rhythmical behavior: heartbeating, crawling, swimming,
feeding, shortening and local bending and decision making (Angstadt et al., 1999; Arbas et al.,
1990; Arbas et al, 1984; Cymbalyuk et al., 2000; Hill et al., 2001; Kristan et al., 2005, Friesen
and Stent, 1978; Simon et al.,1994). The nervous system of the leech includes 21 segmental
ganglia. Approximately, each segmental ganglion contains 400 neurons and most of them are
paired. The knowledge of morphology and physiological properties allows one to study the
behavior of the leech and to correlate it with a motor pattern. One of the best studied rhythmic
behaviors of the leech is the heart beating (Calabrese et al., 1995; Masino and Calabrese, 2002).
The heartbeat CPG has been identified. It is controlled by paired neurons in the first four
segmental ganglia (Kristan et al, 2005 ; Hill et al, 2001). Two pairs of mutually inhibitory heart
interneurons, which are located in the third and fourth ganglia, create two elemental oscillators.
Each pair of neurons is known as an elemental oscillator. As the extracellular recoding shows, a
heartbeat interneuron can produce endogenous rhythmic bursting when it is isolated with
bicuculline (Cymbalyuk et al., 2002).

We analyze a model of the leech heart interneuron, developed by Hill et al., (2001). A
neuron is represented as a single isopotential compartment with Hodgkin-Huxley type membrane

conductances (Huxley, 2002). It is described by a system of nonlinear differential equations. The



leech heart interneuron contains eight voltage-dependent currents. Five of them are inward
currents: a transient, fast sodium (Na") current (Iya); a persistent Na™ current (Ip); a fast, low-
threshold calcium (Ca2+) current (lcar); a slow, low-threshold Ca®*" current (lcas); and a
hyperpolarization-activated cation current (Iy) (Opdyke and Calabrese, 1994; Olsen et al., 1995;
Olsen and Calabrese, 1996; Angstadt and Calabrese, 1989, 1991). Three outward currents are: a
delayed rectifier-like potassium (K") current (l;); a persistent K~ current (ly), and a fast,
transient K current (Ixa) (Hill et al, 2001; Nadim and Calabrese, 1997).The kinetics, voltage
dependency, and reversal potentials of these currents are described in the Methods. The model is
tuned to produce the activity with characteristics such as period, duty cycle and frequency of
bursting activity tuned to the experimental data (Hill et al, 2001; Cymbalyuk et al., 2002).

As we mentioned above, our particular interest is to understand the dynamics of the leech
heart interneuron model leading to the co-existence of bursting and silence. We envisage a
neuron as a multidimensional dynamical system. The dynamics of the model are described by a
14 dimensional system of differential equations. The kinetics of the currents operate on different
time scales. Activations and inactivations were identified as ultra fast, fast, moderate, slow and
very slow (Table 1) ( Cymbalyuk et al, 2003).
Table 1. State variables operate on more than two different time scales. Some of the state

variables have a different time scale depending on the membrane potential (marked by red in the
table).

from -70 mV to -50 mV from -50 mV to -10 mV
Ultra fast (0.1 msec) Mya Mg
Fast (~2-10 msec) hna, Mk, Mcar, Mcas mp, Mg, NNa, MK, MCaF
Moderate (NIOO msec) hKA, Mmgo, Mp, MKaA mcas, hcap, hKA, mgo
Slow (~ 0.5 sec) hki, heas, hear hi,
Very Slow (~ 2-6 sec) my hcas, mp

The complexity of endogenous dynamics originates from dynamical diversity of ionic currents



which can be separated by different time scales and other characteristics (see Table 1). Analysis in
terms of fast-slow dynamical systems gives insight into the mechanisms responsible for the

generation of bursting behavior.

Bifurcations in the model and the transitions between different types of electrical activities

The leech heart interneuron model can produce complex dynamics. Most of the dynamical
behaviors of this model can be reproduced in the simplified models. There are four types of
bifurcations (transition mechanisms) which are common for nonlinear dynamical systems like
Hodgkin-Huxley type models: Andronov-Hopf bifurcation, Saddle-node bifurcation for an
equilibrium, Homoclinic bifurcation, and Saddle-node bifurcation of a periodic orbit
(Guckenheimer and Tein, 2003). These bifurcations play the key roles in controlling transitions
between behaviors in the neuronal models.

1) Andronov-Hopf bifurcation describes the emergence of a periodic orbit from an equilibrium
state. At this bifurcation the stationary states has a pair of purely imaginary characteristic
exponents. There are two types of the Andronov-Hopf bifurcation: sub-critical and super-critical.
Figure 1.1(a) illustrates the super-critical bifurcation where a stable periodic orbit with zero
amplitude emerges from the equilibrium state in the phase plane. In contrast, at the sub-critical
bifurcation an unstable periodic orbit collapses at the equilibrium state (see Figure 1.1(b)).
(Shilnikov et al, Vol 1-2,2001)

2) Saddle-node bifurcation describes the metamorphosis of an equilibrium state with a single
zero characteristic exponent. Here, the stable and unstable states move closer to each other, then
merge and disappear (Figure 1.2) (Guckenheimer and Tein, 2003; Strogatz , 1998; Shilnikov et

al., 2001).



3) Homoclinic bifurcation: the stable and unstable separatrices of a saddle point form a closed
orbit called the homoclinic loop. Through a homoclinic bifurcation a periodic orbit disappears as
it merges into the homoclinic loop (Figure 1.3); note that its period grows without an upper

bound (Shilnikov et al, 2001 ; Strogatz, 1998 ).

b

Figure 1.1: Andronov-Hopf bifurcation. a) The supercritical and b) subcritical Andronov-Hopf
bifurcations are illustrated. (the figure is taken from Strogatz, 1998)

\*”
|/

Figure 1.2: Saddle-node bifurcation (the figure is taken from Strogatz, 1998).



4) Saddle-node bifurcation of a periodic orbit (also called fold) - a stable periodic orbit and

unstable periodic orbit coalesce and annihilate (see Figure 1.4) (Shilnikov et al, 2001; Strogatz,

1998).

DY\ —_ \/ﬁ?\\

Figure 1.3: Stages of the homoclinic bifurcation in the phase plane. A bifurcation parameter x
changes. (a) For x< x’, a stable periodic orbit passes closer to a saddle point at the origin. As x
increases to x’_ the periodic orbit swells (b) and collides with a saddle, creating a homoclinic orbit
or loop (c). For x> x’, the saddle connection breaks and the homoclinic orbit is destroyed (d)

(figure is taken from Strogatz, 1998).

Figure 1.4: The example of a saddle-node bifurcation for a periodic orbit. (a) As bifurcation
parameter x is varied, the stable and unstable periodic orbits stay close to each other, (b) for x
=x’, the two orbits coalesce and (c¢) for x >x’, the periodic orbits disappear (figure is taken

from Shilnikov et al, 2001).



METHODS

We analyze a single compartment model of a leech heart interneuron (Hill et al.,2001;
Cymbalyuk et al., 2002). The solutions of this model were obtained using Matlab ODES solvers.
The integration and bifurcation analysis were performed using the software package CONTENT,
developed for the bifurcation analysis of dynamical systems. Content is freely available at
http://www.cwinl/ftp/CONTENT. Integration of equations was done using the Runge-Kutta
method of the 4-th order with the minimal step size and tolerance of integration set as 10™* and
10 correspondingly.

A leech heart interneuron is modeled as a single isopotential compartment with
membrane conductances represented in terms of the Hodgkin and Huxley formalism (Huxley,

2002). The dynamics of membrane potential (V) of a neuron are described by

av
C_dt =—(Iya +1p +1or +lcas +Ih+IK1+IK2+IKA+IIeak+Ipu|5e(t)),

where C is the total membrane capacitance (0.5 nF), I, is an intrinsic voltage-gated current,

Ipuise 15 the injected current and Iy cax is the leak current. The voltage-gated currents are given by
= . _ = 2 .
| Na = gNami‘ahNa(\/ — ENa ); IP = ngP(V - ENa)’ ICaF - gCaFmCthCaF(V - ECa)a
= 2 . _ _
lcas = OcasMeasheas V —Eca); 1y, = g|<1mi1h|<1(v —E¢); Ik, = ngmf(z(V -E);

I = gKAmiAhKA(V -E¢); hh= ghmﬁ(v -E,); Leak = Tieak V' = Ejege); | pulse ®=1 pulse f(t pulse);



where Gion is the maximal conductance, E;,, is the reversal potential, f(t_ ,.) is 1 during the

pulse

pulse time, otherwise f(t ,. ) is 0, m and h are the activation and inactivation variables,

pulse

respectively. These variables are governed by the following equations

dm,  f,(~83,0.02,V)—m,,

dt  7(200,0.035,0.057,0.043,V )

dm,  f,(~120,0.039,V)—m,
dt  7(400,0.057,0.01,0.2,V)

dm,, _ f,(~150,0.029,V)—m,,

dt 0.0001

dh,, _ f,(500,0.030,V)—h,,

dt z-hNa (V)

dme,: £, (=600,0.0467,V)—m,.
dt TmCaF (V)

dhe,e  f,(350,0.0555,V)—he,

dt 7(270, 0.055,0.06,0.31,V)

dMes  f,(—420,0.0472,V)— Mg

dt 7(-400, 0.0487,0.005,0.134,V)

dhe,s  f,(360,0.055,V)—h.,

dt  7(-250,0.043,0.2,5.25,V)

dm,,  f,(=143,0.021,V)—m,,

dt 7(150, 0.016, 0.001,0.011,V)

dh,,  f,(111,0.028,V)—h,,

dt  7(~143,0.013,0.5,0.2,V)

dm,  f,(~130,0.044,V)—m,,
dt  7(200, 0.03,0.005,0.011,V)
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dh,,  £.(160,0.063,V)—h,,

dt (=300, 0.055, 0.026, 0.0085,V)

dmh _ fhoo(\/)_mh
dt  7(-100,0.073,0.7,1.7.V)

where the steady-state activation and inactivation functions are given by Boltzmann function

1
f.(abV)= FRCIZDS

except for the steady-state activation of I, which is given by

1

f (V)=
hoo
1 2e1 80(V +0.047) e500(V +0.047)

The time constants are also described by the following a Boltzmann function, except for the

Inactivation time constant for Iy, the activation time constant for Ixr, and the activation time

constant for Ic,p

d

14+ e2V+D)

r(a,b,c,d,V)=c+

0.006 0.01
+ @300V 0028 T 00sh(300(V +0.027))

Tina(V) = 0.004+

8.0 =22
T = 15 + +
ke (V) ~100v+0022) - 60sh(100(V +0.04))

1+e

0.024

T =0.011+
mear (V) cosh(=330(V +0.0467))

The canonical parameter values are set as follows:
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the reversal potentials are En,=-0.045 V, Ec,s=0.135 V, Ex=-0.07 V, E;=-0.021 V, and the

maximal conductances for the elemental oscillator neurons are @,,=200 nS, §, =7 nS,

Ocar =5 108, Jgs =32 08, g, =100 nS, g, =80nS, g, =80nS, g, =4nS, J, =8nS.

Next, we will describe a simplified leech neuron model, which is based on the fast
sodium and slow calcium voltage-dependent currents and the leak current.
This model has four equations. We assume that the activation for Iy, is instantaneous, therefore
my, = f,(=150,0.028,V).
The dynamics of the membrane potential, V, activation (m) and inactivation (h) variables of the
sodium and calcium currents in this model are described by:
CdV/dt =-(G,, f,>(-150,0.028,V)hna(V-Exna)+ Gens M cashcas(V-Ecas) +ieak( V-Eiear))Hputse(t);

dh,,  f,(500,BhV)—h,,

dt Z-hNa (V)

dmes  f(~420,0.0472,V) - mg,

dt  7(-400,0.00487,0.005,0.134,V)
dhes  F(360,0.055V)—hey

dt 7(250,0.043,0.02,5.25,V)

Here the parameters are: ., =80 nS, J,,=250 nS, and Bh=0.031V. The function f.(a,b,V) is

the Boltzmann function f=1/(1+ea(v+b)). In the simplified model the parameter Bh produces a
shift of the steady-state inactivation curve of Iy, relative to the potential V in the

dhy,  f,.(500,BhV)—h,,

equation It Zma (V)
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RESULTS

Simplified model

Our main goal is to understand the dynamics of the leech heart interneuron. Our study is
primarily focused on understanding the mechanisms underlying the co-existence of the bursting
and silent regimes. Because the dynamics of the complete model of the 14 state variables is very
complex, we simplified it first by reducing the number of the equations. A primary advantage of
creating such a simplified model of the interneuron is that the analysis of this model will be more
comprehensive. The minimal order of the model is determined by our fundamental knowledge of
the processes underlying the onset of the principal activities of neurons such as bursting and
tonic spiking. Our modeling approach is based on the theory of slow-fast dynamical systems
(Rinzel et al., 1985; Bedrov et al., 2000; Belykh et al., 2000; Izhikevich et al., 2000; Cymbalyuk
et al., 2003; Shilnikov et. al., 2003; Shilnikov et al., Vol. 1-2, 2001). The slowest variable
controlling the burst duration in the complete model is the inactivation of Ic,s (Hill et al., 2000;
Cymbalyuk, et al., 2003; Olypher et al., 2006). It has been suggested that Ic,s underlies the
bursting activity (Cymbalyuk et. al. 2003). The numerical experiment performed on the complete
model has revealed that if Iy, is blocked, the model produces oscillatory activity (Cymbalyuk et
al., 2003). Our minimal model is based on the slow calcium current, the fast sodium current and
the leak current. The current Iy, exhibits an ultra fast activation and determines the fast spiking
dynamic (see Table 1). The dynamics and contributions of all other currents are not considered.
Note that the simplified model based on (In,, Icas) does not have the outward currents, except for
Lieak, SO the balance of inward and outward currents is lost. Usability of this model depends on

whether it could produce the bursting activity with temporal characteristics similar to those
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experimentally observed in the leech heart interneuron. To determine these proper parameters
values (called canonical) for the simplified model, we varied, systematically, the maximum

conductance @, , and the activation and inactivation kinetics for Icas and Ina.

Window current mode of Iya
The steady-state activation and inactivation curves of Iy, are described by the Boltzmann
function; they characterize the kinetics of ion currents. When all channels are open, then the ion

current has the maximum conductance @, , . The product of @,,,, activation and inactivation gives

the instantaneous conductance. The shift of the inactivation curve relative to the activation curve
changes the steady-state conductance of In,. For example, if the potential is fixed to a

hyperpolarized value, then activation equals 0 while the inactivation equals 1; therefore the

o0

steady-state conductance ¢, is 0. Similarly, if the potential is fixed to the depolarized value, the

o0

activation equals 1 and the inactivation equals 0, so g;,, 1s 0 as well. It is important to note that

for certain kinetics of activation and inactivation curves, there is a “window” interval in the

[’e]

values of the membrane potential where g,,, is non-zero. We can determine the

3

‘window”

sodium current as a steady-state current at a membrane potential in the “window” interval, near
the voltage the steady-state curves for activation and inactivation intersect (see Figure 3.1). As

Figure 3.1 (A) shows, for some range of voltage around -0.032 V the steady-state conductance

0

Oy 1S not zero. If the membrane potential is fixed within the “window”, then the current Iy, is

persistent. In the simplified model, the “window” current plays the role similar to that of the
sodium persistent current, which supports burst duration in the complete model (Hill et al, 2001;

Cymbalyuk and Calabrese, 2001)
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Bh=35 mV
A
20 mV
Veomy 50 -40 -30 -20 -10
10 s V (mV)
Bh=38 mV
B
20 mV
Ysomy 50 40 -30 -20 -10
10s V (mV)

Figure 3.1. Wave form of bursting activity depends on the voltage dependence of the kinetics of
the fast sodium current, In,. The data are presented for two different values of Bh, which shifts
the steady state inactivation curve, for Bh =0.035 V at the top row and for Bh=0.038 V at the
bottom one. The increase of Bh shifts the curve towards the hyperpolarized values and changes

the steady state conductance go;a . On the left panels the bursting waveforms are presented. On
the right side there are corresponding graphs of the steady-state activation, n_, and inactivation,
h. » curves presented in black and the steady-state conductance, ¢, presented in green. The
overall decrease of ¢ decreases the period, burst duration and duty cycle of the model. The ratio

of the maximum values of ¢ calculated for the two values of Bh equals

o0 0 -
g Na,Bh=0.035 / g Na,Bh=0.038 =2.7

Canonical parameters of model (lcas, Ina)-
To tune up the period and the burst duration of the simplified model to the values
corresponding to the experimental data, we need to explore the dynamics of In,. We introduce

the parameter Bh defined as the half-inactivation voltage in the Boltzmann function
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f(V)=1/(1+¢’V*®Y) which defines the steady-state condition for hy. - Let’s consider how the

activity of the neuron changes as Bh shifts toward hyperpolarized values. As its value is

increased (see Figure 3.1), this shifts the curve hy, towards the hyperpolarized values. As Bh

increases, the period of bursting activity decreases. The analysis of the results (see Figure 3.2)
shows that the variations of Bh affect the conductance of Iy, which alters the model activity. For
Bh=0.04 V, the model is in the silent regime. As Bh decreases from 0.037 V to 0.035 V, the
period of bursting activity grows. This leads to the increase of the burst duration (from 5.4 sec to

9.2 sec), spike frequency (from 2.7 Hz to 4.4 Hz) and duty cycle (from 52.4 % to 78%), while

Bh=0.034 V
VM
A ‘ 20 mV
- =40 mV
Bh=0.035 V
B Y
20 mV
- =50 mVv
Bh=0.036 V
C Y
20 mVv
- =50 mVv
Bh=0.037 V
VM
D
| 20 mv
- =50 mVv
5 sec

Figure 3.2. Different types of activity as Bh is varied. A) at Bh=0.034 V, the model demonstrates
tonic spiking activity. B) Bh=0.035 V, it shows the bursting activity with the following
characteristics: Period P=9.2 sec, Spike Frequency F=4.4 Hz, Duty Cycle D=78%. C) Bh=0.036
bursting activity with characteristics P=6.4s, F=3.6Hz, D=64.8%, similar to the experimental data
that was obtained. D) Bh=0.037 V corresponds to the bursting activity with P=5.4 s, F=2.7 Hz;
D=52.4 %.
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the interburst interval stays nearly same. The model (Ina, lcas) at Bh=0.034 V shows the
depolarized tonic spiking activity presented in Figure 3.2 A

We suggest in this model that the activation of I¢,s initiates the beginning of spikes of bursting
activity, while inactivation of Ic,s controls the burst duration similar to half-center oscillator
created of two heart interneuron (Olypher et al., 2006; Li et al.,1997). To analyze the dynamics
of Icas current in the simplified mode, we plot In, and Icas currents during bursting activity. As
Figure 3.3 shows, the burst duration of the model is indeed determined by the slow inactivation,
hcas. During the quiescence phase, Icas activates, thereby depolarizing the neuron, and leads to
the transition into the burst phase. The window mode of I, supports the burst along with Ic,s.
This result agrees with the results in Hill et al. (2002) and Olypher et al. (2006).

To compare the dynamics of the simplified model and that of the complete model, we
block In,, in the simplified model, and observe slow voltage oscillations induced by the dynamic
of Icas (Figure 3.4). These oscillations are sustained in both the presence and absence of Ix,.
Similar results are shown in the complete model (Cymbalyuk et al. 2003). As we vary the

maximum conductance §,,, we observe at J,, =110 nS that the model shows bursting activity

with a single large spike followed by a plateau. The period of the bursting activity is slightly

longer than the period of I¢,s. For parameters g,, =220 nS and §,, =250 nS the period equals 6.6

sec and 7.6 sec, correspondingly. Both examples have a short plateau at the beginning of the
burst (see Figure 3.4). This plateau is associated with the window in Ix, and dynamics Ic,s.

This analysis of the dynamics of the currents allows us to adjust the proper parameters for
the simplified model, which we have called canonical, so the model can exhibit activities with
characteristics similar to experimental data. To change the interburst interval in the simplified

model, we varied the characteristics of Ic,s. To modify the burst duration and spike frequency,
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the dynamics of the inactivation and activation of In, have to be adjusted as well. The simplified

model with parameters @, =250 nS, J., =80 nS , and Bh=0.031 V shows bursting activity with

period and duty cycle similar to the experimental characteristics of the bursting activity of a
leech heart interneuron (see Figure 3.5). The temporal characteristics of this activity were
recorded extracellularly from the leech heart interneuron (Cymbalyuk et al., 2002). Other

parameters of the simplified model are described in Methods.

| 20 mv

T —50 MV
5 sec

Figure 3.3 The traces of intrinsic currents In,, Icas, inactivation hc,s, and the membrane
potential of the simplified model. During the quiescence phase of bursting activity, Icas
activates, it depolarizes the neuron, and leads to the transition into the burst phase. Once the
burst has begun, it is sustained primarily by In,. Here, the bursting activity has the period P=6.5
sec and duty cycle D=65.4% closed to the experimental data (Cymbalyuk et.al. 2002).

As we mentioned above, the main question here is whether the simplified model, with properly
set canonical parameters, can also demonstrate the co-existence of bursting activity and silent

regimes that was found in the original leech heart interneuron model.
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Figure 3.4. The traces of the potential for different parameters of @,, are presented. For gJ,, =0,
the model shows oscillations. An increase of @,,leads to the onset of the bursting activity. For
Oy, =110 nS, the bursting activity with plateau is initiated. As @, is increased from 220 nS to

250 nS, the period increases.

20 mV

—-50 mV

5 sec

Figure 3.5 The model with the parameters chosen as canonical produces bursting activity which
has temporal characteristics, period and burst duration, in agreement with those obtained
experimentally from the leech heart interneurons isolated with bicuculline. Here, Period is 8.3 sec
and Duty Cycle is 54 %, Frequency =5.9 Hz, Interburst Interval =3.8 sec. Canonical parameters

here and below are: Ejx =-0.0505 V, gieak =15.7 nS, J.,s =80 nS; Ec,=0.135 V; §,,=250 nS;
Ena=0.045 V; Bh=0.031 V.
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Moreover, if it does, what are the mechanisms supporting this bi-stability?
Bifurcation analysis of the simplified model (Ina, Icas)

The next step is to find this co-existence in the simplified model. The bifurcation analysis
is the key element that helps us predict and localize the co-existence area in the parameter space.
The previous studies have confirmed that the full model is quite sensitive to leak current
parameters (gieak, Fieak) (Cymbalyuk et al., 2002). We have numerically computed similar
bifurcation diagram of oscillatory and stationary states (see Diagram 1). This diagram describes
the transitions between the activities that could occur in the reduced model. Our numerical
analysis of the neuron model is done using Content. We have determined the areas of
hyperpolarized and depolarized silence (a steady stationary state), the areas of tonic spiking (a
stable periodic orbit) and bursting activity, and the area of multistability. As mentioned above,
the following four types of bifurcations predict these oscillatory and stationary state areas,
namely: the Andronov-Hopf and the saddle-node bifurcations of equilibrium states, and the
homoclinic and saddle-node bifurcations of periodic orbits.

To locate the parameter domain corresponding to the bursting activity in the parameters
plane for the four dimensional simplified (Ina, Icas)- model, we have analyzed the stability of the
hyperpolarized stationary state. The equilibrium state conditions are:

dh M

1) Cdv/dt=0; FNBI =0; ~0; dNeas

dt dt
The corresponding time-constant solution of the system with respect to activation and

inactivation of the model is given by

f (500,0.03,V)=h,,;

Na >

f,(~420,0.0427,V) = M¢,q ; =
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f,(360,0.055,V) = h..;

gNamsNahNa(V'ENa)+ Ocas mZCaShCaS(V'ECaS) +gleak(V'EIeak):O;

The values mc,s, hcas and hy, are then substituted into the equation
gna f,( -150,0.028, V)2 f,(500,0.03,V)(V-Ena)+0cas T, (-420,0.0427,V) ? . (360,0.055,V)(V-

Ecas) T0ieak(V-Eieak)=0 , where gna, gcas and Exa, Ecas, Eleak are given values.

Silence
Depctarized Sub-Critical
Andronov-Hopf
50 curve
‘5" Tonic Spiking
L= .
< —52 Co-Existence 1
8 Super-Critical Homoclinie
|-|-|_ Andronov bifurcation curve
Hopf of hyperpolarized
Curve periodic orbit
Homoclinic
bifurcation §
curve Silence
of depclarized
periodic Hyperpolarized
56 oEb:i.l: . .

Diagram 1. Bifurcation diagram of the oscillatory and stationary regimes. The Andronov-Hopf
bifurcation of the hyperpolarized stationary state (silent regime) is shown by the blue curve and
marks the boundary where silent regime loses stability giving rise to the subthreshold oscillations.
The other blue curve marks Andronov-Hopf bifurcation of the depolarized stationary state. At this
curve depolarized stationary state loses stability and gives rise to a periodic tonic spiking. The red
curve locates homoclinic bifurcation of the large amplitude periodic spiking. The pink curve
corresponds to the homoclinic bifurcation of the unstable sub-threshold oscillations. The area
between these curves of homoclinic bifurcations is the parameter regime where bursting is
observed, marked in the white. The area between the blue and the pink curves marks the
parameter regime where unstable sub-threshold oscillations exist; this is parameter regime of bi-
stability of silence and bursting. The blue x on the area of co-existence marks parameters used for
Figures 3.7.
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It allows us to calculate the so-called equilibrium curve in the (V, Qieak )-plane. Let us point out
that the periodic orbit emerges from the equilibrium point through the Andronov-Hopf

bifurcations. When born, the periodic orbit has zero amplitude and some non-zero period. As the
bifurcation parameter g,k is varied, the amplitude grows proportionally t0+/0 .. — e » Where

Opa 18 the bifurcation value, while its period is evaluated as T=2m/®, where the frequency o is

the imaginary part of the characteristic exponents. Writing down the Jacobian J(V,mcas, hcas,
hn,) for the four dimensional model, we determine the conditions for the Andronov-Hopf

bifurcation as Tr(J) =0 and Det(J)>0, the real parts of a pair of eigenvalues must cross zero at

the bifurcation value. Solving the system of equations gives us the set of the eigenvalues (L)
which characterize the Andronov-Hopf bifurcation. The imaginary part of A defines the
frequency, o, of the newborn periodic orbit. There is a “Lyapunov” quantity found through the
third degree Taylor expansion of the vector field at each Andronov-Hopf bifurcation point which
determines the stability of the periodic orbits. The Lyapunov quantity for the super-critical
Andronov-Hopf bifurcation is negative, therefore the periodic orbit is born stable. At the sub-
critical Andronov-Hopf bifurcation, the Lyapunov quantity is positive and the periodic orbit is
born unstable (Guckenheimer , 2003; Shilnikov et. al., Vol 1-2, 2001).

One can see the super-critical Andronov-Hopf bifurcation curve in Diagram 1. This curve
corresponds to the transition from depolarized silence into tonic spiking activity. As the
parameter gj..x 1S increased, the stable periodic orbit moves toward the saddle equilibrium.

The coordinates of the saddle equilibrium are given by

Mg, =Ny =y, =V° = Det(J) =0. Before the stable periodic orbit comes close to the saddle

equilibrium, it becomes unstable through the period doubling bifurcation. For example, at

2leak=4.66 nS and Ej.x=-52 mV the stable periodic orbit has the frequency ®w=>51.8 rad/sec. As



22

Zleak 1ncreases, its amplitude grows proportionally to 4/, —4.66. The periodic orbit loses

stability at giex= 12 nS. Then, for a small change in g, the period grows fast and
logarithmically. When the trajectory becomes the homoclinic orbit to the saddle equilibrium, the
tonic-spiking activity ceases.

The homoclinic bifurcation curve in the two parameter plane was computed using
Content. We use the fact that the period of the tonic spiking orbit increases unboundedly, so we
were able to detect an isochrone corresponding to the period of 50 sec, which gives a good
approximation for the homoclinic bifurcation. This curve (the red) in Diagram 1, determines the
transition from the tonic spiking into bursting activity in the reduced model.

On the other hand, for ge.x=12.2 nS the unstable periodic orbit bifurcates from the
hyperpolarized stationary state through the sub-critical Andronov-Hopf bifurcation with the
frequency ®=2.3rad/sec. Content allows us to continue the Andronov-Hopf bifurcation as two
parameters are varied; its curve is shown in Diagram 1. Similarly, as the parameter gk is
increased, the unstable sub-threshold periodic orbit gets closer to the saddle equilibrium. When
gleak=12.5 nS, the period of its oscillations grows unboundedly, while its amplitude remains
finite. At the critical parameter value of gk the periodic orbit collides with the saddle
equilibrium and the oscillations vanish. The corresponding bifurcation curve is shown by the
pink curve in Diagram 1. This curve determines the transition between the bursting and the silent
regimes.

As the results of the dynamical systems analysis suggest, the transitions between different
types of model activity can be identified by the means of bifurcation theory. Crossing a
bifurcation boundary in the model is associated with some qualitative change in the oscillatory

properties of a neuron. 1) The transition from tonic spiking into bursting activity is associated
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with a period doubling cascade leading into chaos in the model. This transition is illustrated in
Figure 3.6. The cascade of period doubling bifurcations leading to chaos is observed in the
simplified model. This cascade also persists in the original model of a leech heart interneuron
(Cymbalyuk et al. 2002). A narrow area near the transition border corresponds to that of the co-
existence of chaotic spiking and bursting activity with a long period in the parameter space of the
reduced model. This co-existence is shown in Figure 3.6.
2) The transition from the bursting activity into silence is associated with the homoclinic
bifurcation for unstable periodic orbit. The co-existence of bursting activity and silence is found,
see Figure 3.7. This co-existence is due to the unstable periodic orbit, whose stable manifold

separates the basin of attraction of the bursting and silent attractors. In the parameter plane, the

E =-51.7mV g _,~12.843nS
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50 Vu
>
A E— 0 20 mVv
=
>
_ =-50 mV
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E =-51.7 mv g _,=12.8438 nS
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B >
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Figure 3.6. Period doubling cascade and the coexistence of chaotic spiking and bursting activity in
the reduced model. A) Here the transition between tonic spiking and bursting activities occurs
through period doubling cascade. The right column of the figure yields the corresponding voltage
traces. B) The coexistence of the bursting activity and chaotic tonic spiking takes place at Ejea=-51.7
mV, gieax=12.3638 nS.



24

E _=-51mV,G __ =15nS
leak

Leak

10mV
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Figure 3.7. Coexistence of two attractors for the simplified model is shown. The bursting activity
(blue) and the silence (green) are separated by the unstable periodic orbit (red) at Ejea=-51 mV,
Eleak™ 15 nS.

coexistence region is bounded by the homoclinic and subcritical Andronov-Hopf bifurcation
curves. This region is marked as the co-existence in Diagram 1.

For the model with the canonical parameter values, we have studied the (gieak,Eieak) -
parameter bifurcation diagram (see Diagram 1). It shows the relative position of two homoclinic
bifurcation curves and two Andronov-Hopf bifurcation curves. Between the corresponding
bifurcation curves the periodic orbit exists in the model: it terminates at the homoclinic
bifurcation and begins through Andronov-Hopf bifurcation. The shaded area between the two
homoclinic curves is the domain of the bursting activity (green in Diagram 1). We have found
that bursting activity and the silent regime are separated by unstable sub-threshold oscillations.
The switch between two activities can be performed by a pulse of current. Figure 3.8-3.9 show
the series of numerical experiments where silence and the bursting regimes are perturbed by a
pulse of hyperpolarizing current. The hyperpolarized current leads to the switch of activity from

bursting into silence as soon as the pulse of current passes the phase point of the trajectory inside
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the unstable periodic orbit (marked by the red points in Figure 3.8 (A)). As long as the phase
point travels outside of the unstable periodic orbit (see Figure 3.8 (B)), the neuron remains in the
bursting regime. Figure 3.9 demonstrates the perturbation of silence into bursting. Similarly, if

the perturbation with a pulse of injected current moves the phase point away from the

0.4 20 mv

2
0.015 0.02
h " —50 mV

CaS —
20 sec

0.4 20 mV

0.015 0.02
hCaS —50 mV

10 sec

Figure 3.8. Perturbations of bursting activity by a pulse of current for the simplified model (Ina,
Icas). Parameters of the model have values gie.k=15 nS, Ejeax=-0.051 V, Bh=0.031 V, the duration
of the pulses are 0.01 sec. On the left side of the figure in the (mcas, hcas) plane, the phase
trajectory of the activity before and after injection of the pulse is plotted. The green dot is the
stable equilibrium point. The red dotted curve marks the unstable periodic orbit. On the right side
of the figure, the voltage traces are shown. A) The hyperpolarized pulse of the current with
amplitude -0.264 nA switches the activity from bursting into silence. The phase point of the
trajectory is moved inside the unstable periodic orbit, and the bursting activity is not the attractor
anymore. B) The hyperpolarized pulse of current is injected when the neuron shows bursting
activity. It does not produce a switch between the activities. The pulse of the current brings the
phase point close to the unstable periodic orbit, but the phase point is outside of the periodic orbit.
The amplitude of the pulse is -0.26 nA.
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Figure 3.9: Perturbation of silent regime for the simplified model (Ina, Icas). Parameters of the
model have values gjeax=15 nS, Ejex=-0.051 V, Bh=0.031 V, the duration of the pulses are 0.01
sec. The hyperpolarized pulse of the current perturbs the silent mode. The silent mode (stable
equilibrium) is shown by the green dot. A) The hyperpolarizing pulse of current with amplitude -
0.0677 nA moves the phase point toward the unstable periodic orbit, but the pulse is not strong
enough to put the phase point outside of the unstable periodic orbit. B) The hyperpolarized pulse
of current with amplitude -0.07 nA switches the activity from silence into bursting. The phase
point of the trajectory is moved outside of the unstable periodic orbit and silence is not the
observed regime anymore.

equilibrium state, outside of the unstable periodic orbit (see Figure 3.9 (B)), the system will
switch from bursting activity into silent one. Otherwise, as Figure 3.9 (A) demonstrates, the
neuron produces damping oscillations and returns to the silent regime.

Next, let us to show the similarity in the dynamical behavior of the simplified model and
of the complete model. First, we would like to pose the following questions: is the mechanism of

the co-existence maintained in the complete model? Will similar stimulation procedures reveal
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the bi-stability in the complete model? We will answer and discuss the answers to these

questions in the next chapter.

Canonical model of a leech heart interneuron

In this section we study the canonical model of the leech heartbeat neuron. This
biophysically accurate model (Hill et al., 2001) following Hodgkin-Huxley’s formalism (Huxley,
2002) is based on the dynamics of the eight distinct voltage dependent currents: five inward and
three outward and a passive leak current which is not voltage dependent. The model was tuned to
reproduce the characteristics of the neuron’s activity such as the period of bursting activity, burst
duration and the frequency of the spikes in a burst observed experimentally.

The analysis is based on the systematic variation of Ejx and g to explain the
difference in experimental data obtained by two different techniques of recording of neuronal
activity: intracellular and extracellular. During the intracellular method, a neuron is penetrated by
a sharp glass electrode. It allows the membrane potential to be directly recorded. The main
advantage of this method is that current can be injected into the cell; therefore one can control
the membrane potential of the cell. The downside of the technique is that the cell gets damaged.
During the extracellular recording a cell is sucked inside of the glass electrode and the membrane
potential can be measured directly. We can not control the activity of the cell by this method, but
it is not as harmful as the intracellular method. Cymbalyuk et. al 2002 showed that the activity
of the leech heart neuron is highly sensitive to the method of recording. Intracellular recording of
the single heart neuron in bicuculline (bicuculline blocks the synaptic connections of neurons)

shows tonic spiking activity; however during extracellular recording the neuron endogenously
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produces bursting activity. It has been proposed then that intracellular recording generates an
additional leak current. This shunting component of the leak current can suppress the
endogenous bursting activity (Cymbalyuk et al., 2002).

The analysis of the model of the cell has shown that changes in the leak current cause the
transitions between different behaviors of the neuron. For instance, increase of conductance of
the leak current switches the neuron from tonic spiking into bursting activity (Cymbalyuk et al,
2002). The bifurcation analysis of the neuron model allows us to elucidate the role of the
currents in the regulation and control of these activities. Here we focus on the complex dynamics
supporting the co-existence of two different regimes, bursting and silence. Because the activity
of the neuron model is sensitive to the leak current, we construct the bifurcation diagram in the
leak current (gieak, Eieak)-parameters plane. The diagram demonstrates the borders between
different activities (bursting and silence), and the area of their co-existence. The areas of tonic
spiking, bursting activity, silence and multistability were determined in Cymbalyuk et. al. 2002
(see Diagram 2). The area of co-existence was shown to be bounded by the curve corresponding
to the Andronov-Hopf bifurcation; however the boundary near which the bursting activity
disappears was not determined analytically, and the exact mechanism of the transition was left

beyond the scopes of the paper.

Switching the activities between silence and bursting by a pulse of current

To examine the behavior of the neuron in the bi-stability regime, we choose the gje. and
Ejeak parameters from bifurcation Diagram 2, where the neuron model shows the co-existence of
silence and bursting. For the parameters gj..x=9.86 nS and Ej.x=-0.065 V both types of activities

exist and can be chosen depending on the initial state of the model. First, we explore the reaction
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of the neuron at the silent regime (see Series 1 in Figure 3.10). A depolarizing pulse of current

with duration of 0.1 sec and amplitude -0.05 nA is applied to the model. This pulse depolarizes

ol Tonic Spiking
% + Multistability (C)
ki Multistability (B)
% -60F
o
LLi

Bursting

Silence

Multistability (A)

_?O L 1
5 10 15 20

gIeak (nS)

Diagram 2: Bifurcation diagram of the canonical 14 D leech heart interneuron model. The pink,
orange, and yellow areas mark the parameter regimes where tonic spiking, bursting, and silence
are stable, respectively. Green and blue areas mark regions of multistability. Multistability (A)
points to the area (marked blue) where bursting coexists with silence; multistability (B) points to
the area where bursting co-exists with tonic spiking; multistability (C) points to the area where
tonic spiking co-exists with silence.(The diagram is taken from Cymbalyuk et al, 2002)

the model and leads it to the transition from silence into bursting (Numerical Experiment 1 from
Series 1). This observation determines a threshold, which separates the activities. On the other
hand, when we apply a hyperpolarizing pulse of current with an amplitude of 0.05 nA and
duration 0.1 sec, the injected current hyperpolarizes the silent regime of the model. Intuitively,
the neuron model should stay in silent regime when the neuron is hyperpolarized. Numerical
Experiment 2 from Series 1 (see Figure 3.10) shows the activity of the model (when

hyperpolarized current is injected) is
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Series 1: Perturbation of silent regime into bursting activity.

Numerical Experiment 1.

omvVv

Numerical Experiment 2.

Figure 3.10: Duration of the pulse is 0.1 sec. The parameters of the model are gjc.x=9.86 nS Eje.x =-
0.065 V. The purple dashed lines indicate the maximum and minimum values of amplitude of the
unstable sub-threshold oscillations. Experiment 1. Perturbation of the system by the depolarizing
pulse of current is plotted Amplitude of the pulse is -0.05 nA, it depolarizes the cell and causes the
transition from silence to bursting. Experiment 2. Perturbation of the system by the hyperpolarizing
pulse of current is plotted Amplitude of the pulse is 0.05 nA, it hyperpolarized the cell and also
causes the transition from silence to bursting.
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counterintuitive. Either, a hyperpolarizing or a depolarizing pulses of current lead to the onset of
bursting activity. The series 2 of our numerical experiments are performed on the model which
initially exhibits bursting activity (see Series 2 in Figure 3.11). We inject a hyperpolarizing pulse
of the current with the purpose of pushing the system into a silent regime. As shown in
Numerical Experiment 3, a hyperpolarizing pulse of the current with amplitude 0.1 nA and
duration 0.1 sec perturbs the system so that the phase point leaves the bursting attractor and
moves into the silence mode. Then the hyperpolarized pulse of current is increased until the
amplitude of the pulse reaches 0.4 nA. Instead of hyperpolarized silence which was expected, the
neuron model produces bursting activity (see Numerical Experiment 4 of Series 2).

The traditional view of neuronal activity suggests that the increase of the hyperpolarizing
pulse of the current has to lead to the hyperpolarized silence. However, this does not account for
the co-existence of silence and bursting, as in our case. Our numerical experiments imply two
thresholds: upper and lower. The presence of unstable sub-threshold oscillations can explain the

existence of the two thresholds.

Life and death of sub-threshold oscillations
To explain the results of numerical experiments with the perturbations, described in the
previous paragraph, we perform the bifurcation analysis of the stationary and oscillatory states of
the model. First, we use gk and Ejx parameters and set them so that the model has only one
attractor, a stable hyperpolarized stationary state (silence). Then, we will analyze the stability of

the stationary state as gk 1 varied.
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Series 2: Perturbation of bursting activity into silent regime

Numerical Exneriment 3.

10 mv

Numerical Exneriment 4.

10 mv

5sec

| |0.04 nA

Figure 3.11: Duration of the pulse is 0.1 sec. The parameters of the model do not change:
€leak=9.86 NS Ejeax =-0.065 V. The purple dashed lines indicate the maximum and minimum value
amplitude of the unstable sub-threshold oscillations. Experiment 3 shows the co-existence of the
bursting activity and silence regimes. Perturbation of the bursting leading to silence via the
hyperpolarizing pulse of current is shown. Pulse’s amplitude is 0.01 nA. Experiment 4 shows the
case where perturbation does not change the regime of the cell. Perturbation by a hyperpolarizing
pulse of the current is shown. The amplitude of the pulse is 0.04 nA. The pulse hyperpolarizes the
cell and does not switch the activity from bursting into silence.
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The stability of the stationary state is evaluated through the characteristic exponent or the
eigenvalues of the Jacobian. If all the eigenvalues have negative real parts, then the stationary
state of the system is stable. The calculation of the eigenvalues is performed using Content
(Kuznetsov et al.,1996). At the parameters gje.x=33 nS and Ejx=-0.058 V the model displays
only the hyperpolarized silent regime. By varying the parameters, we find the curve of the
equilibrium. It has a stable branch (green curve in Figure 3.12) composed of stable equilibrium
states, and the unstable branch composed of the equilibrium states of the saddle and saddle-focus
type, which is shown as the blue dashed curve in Figure 3.12. At the critical value g, =15.71
nS, the equilibrium state undergoes subcritical Andronov-Hopf bifurcations. This leads to the

onset of unstable sub-threshold oscillations. Near the bifurcation, the increase of the amplitude of
the unstable periodic orbit is evaluated as 4/0,, —15.71 (see Figure 3.13). At the bifurcation,
the frequency, o, of a periodic orbit is given by the imaginary part of the two eigenvalues, and in
the vicinity of the bifurcation the period is T=21/ ® +O( g e;x — Jieax )- After the Andronov-Hopf
bifurcation, the geometry of the periodic orbit becomes distorted as g,k changes from the
bifurcation parameter g, . For example, the integration of the solutions of the system for

parameters g =15.71 nS and Ej;=-0.058 V gives the frequency of the oscillations ©w=1.95
rad/sec, therefore the period of the new born cycle is 3.22 sec. For gj.x smaller than 15.71 nS the

real parts of the two eigenvalus are positive, and the equilibrium state becomes a saddle-focus.
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Figure 3.12: Rapid growth of the unstable periodic orbit (red) toward the curve of the
equilibrium. The periodic orbit emerges through the Andronov-Hopf bifurcation at gje.=15.71 nS
and Eje,=-0.058 V and ends up at the homoclinic bifurcation. The increase of g, leads to the
increase of the amplitude and the period of the periodic orbit. The stable branch of the
equilibrium is marked by the green curve. The unstable branch of the equilibrium is represented
by the blue dashed line.

The further increase of the parameter g,k leads to the increase of the amplitude and the
period of the unstable periodic orbit; the periodic orbit swells (see Figure 3.12 and Figure 3.13).
The evolution of the unstable periodic orbit relative to the curve of the equilibrium is presented
in Figure 3.12. As the parameter reaches the value gi..x=15.7522 nS, a saddle-node bifurcation of
the periodic orbits occurs. As Figure 3.13 shows, the unstable periodic orbit collides with the
stable periodic orbit and both are annihilated. At the figure, orbits are shown by the solid and
dashed lines, respectively. The secondary saddle-node bifurcation of the periodic orbit occurs at

the parameter g..x=15.7542 nS. At this bifurcation, the stable and unstable periodic orbits meet
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and merge. Two vertical lines in Figure 3.13 indicate the small region where the three stable

regimes can co-exist: bursting, silence and stable sub-threshold oscillations.
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Figure 3.13: Dependence of the period and amplitude on gj.x. a) The relatively small change in
the parameter g,k near the homoclinic bifurcation leads to the rapid increase of the period of the
periodic orbit. It is presented by the green line at gj..x=15.905 nS. b) The change of the amplitude
of the periodic orbit, when g, is in the region of 15.9 nS, is small. At gleak=15.7522 nS and
15.7542 nS the saddle-node bifurcations for a periodic orbit occurs. The green line corresponding
to gleak ={15.7522 15.7542} nS indicates the region where stable periodic orbit exists.

Figure 3.14 shows that for gea™> gy, there are two attractors in the model which are a

stable stationary state (the green line) and bursting attractor (the blue curve). These two attractors
are bounded from each other by the unstable periodic orbit (the red dashed curve). Now we can
explain the meaning of the upper and lower threshold. This unstable periodic orbit determines
the basin of attraction of both attractors. Inside it, the phase point converges to the stationary

state. Outside of this saddle periodic orbit, it is attracted to the bursting activity. The minimal
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and maximal values of the voltage of the unstable periodic orbit define the two thresholds. As
shown in Figures 3.10-3.11 (Series 1 and 2), the dashed lines indicate the max and min value for

the amplitude of the unstable sub-threshold oscillations.

2 sec
Figure 3.14: Coexistence of the silence and bursting activities separated by unstable subthreshold

oscillations for the complete model. The green line marks the stationary state (silence) of the
model, the blue curve represents bursting activity, the red dashed curve marks unstable sub-
threshold oscillations. Sub-threshold oscillations define the basin of attraction. Inside of the
unstable periodic orbit only the silent mode can exist. Across of this orbit bursting activity is the
stable regime. Minimum and maximum values of the amplitude of the unstable periodic orbit
define two thresholds: upper and lower. gjeak and Ejea are 9.86 nS and -65 mV

Now, let us explain the experiments with perturbations by the current. If the pulse of the
current is sufficiently large to move the phase point from the stationary state away through the
threshold, the neuron goes into bursting activity (see Numerical Experiments 1-2 in Figure 3.10).
The switching pulse of the injected current can be either hyperpolarized or depolarized. In the
second series of numerical experiments, the neuron initially shows the bursting activity. The
pulse of the current has the amplitude in approaching phase, which puts the phase point inside of

the unstable periodic orbit. When current is injected, the neuron switches into the silent regime
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(see Numerical Experiment 3). If the pulse amplitude is too large, and the neuron is
hyperpolarized below the minimum voltage of the unstable sub-threshold oscillations, the phase
point will remain in bursting activity regime (see Numerical Experiment 4). The transition from
bursting into silence is easy to initiate when the pulse is injected at specific moments. The
voltage coordinate of the phase point of the bursting activity has to be close to the voltage of the
silent regime. For example, for Ejx=-0.058 V and gi.x=15.9 nS, the basin of attraction is
defined by two thresholds with Vyin=-51.52 mV and V.= -38.48 mV. Figure 3.14 shows the
co-existence of the stable equilibrium and the bursting activity separated by the unstable sub-
threshold oscillations.

The period of the unstable periodic orbit changed rapidly from 6 sec to 30 sec as Zjeax 1S
increased from 15.87 nS to 15.9 nS, (see Figure 3.13 a). This indicates indirectly that a

homoclinic bifurcation is about to occur in the system. As the periodic orbit comes close to the

saddle, its period increases proportionally to ln(;* ). At the same time (Figure 3.13 b)

leak ~ Yleak

the amplitude of the oscillations stays relatively constant O(1). As gk increases toward the

critical value, g, , the unstable periodic orbit bands into the saddle point (see figure 3.12),

creating a homoclinic loop, and vanishes. Once gi..x passes the critical value g,*eak , the saddle

connection breaks up and the homoclinic loop is destroyed.

With the help of the software Content, this bifurcation can be detected numerically. The
feature of this bifurcation is that as the periodic orbit approaches the critical value, the period
grows logarithmically. The evolution of the unstable periodic orbit relative to the location of the

equilibrium states, as gk 1S varied, is presented in Figure 3.15. At the figure, the green dots
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represent the projection of the stable equilibrium for a given gk, on to the mc,s and he,s plane,

and the red points correspond to the saddle equilibrium states.
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Figure 3.15: Evolution of the unstable periodic orbit in the (mc,s, hcas) plane and corresponding
traces (V v.s t), as parameter g,k is varied. For this set of numerical experiments Ejeax is -0.058
V. a) The unstable periodic orbit is born through sub-critical Andronov-Hopf bifurcation.
Parameter value is giex=15.71 nS, producing the oscillations with Period=3.23 sec. Amplitude of
the oscillations is small and equal to 1.2 uV. b) The parameter g,k is increased to 15.89 nS,
period and the amplitude increase, Period=10 sec and Amplitude=12.4 mV. c¢) Now, as the
parameter gj..x barely changes to gi..x=15.9 nS, the period increases quickly, Period =30 sec while
the amplitude almost does not change Amplitude=13 mV.

When the parameter gk increases, (Figure 3.15) the periodic orbit expands toward the saddle
point. As the periodic orbit gets closer to the saddle point, the phase point spends more time in
the vicinity of this point; therefore the period drastically increases (Figure 3.15 c)). At the
moment when the trajectory of the periodic orbit passes through the saddle point, the homoclinic

bifurcation occurs. The unstable periodic orbit disappears and now the stationary state is the only
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attractor. The trajectory of the bursting activity after the homoclinic bifurcation can not be
observed anymore. With these critical parameters, if the initial conditions are chosen so that the
neuron is showing transient bursting activity, the number of bursts before the neuron settles
down at the rest potential is not predictable (Figure 3.16). At this bifurcation, the transition from
bursting into silence is defined. It shows that near the border which is defined through the
homoclinic bifurcation the model exhibits the phenomenon of intermittent transition from

bursting into silence.

10 mVv

5 sec

Figure 3.16: Intermittent transition from bursting into silence for the complete model.

We determine a pair of parameter values of gie.x and Ejex for which the unstable periodic
orbit has period 30 sec. On time scale of the processes in the model, this is considered very long
and therefore close to the homoclinic bifurcation parameters. To find the periodic orbits with a

certain period, we introduce a function F( T, T( geak, Eicax)), Where
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F( To,T( gieak> Eieak))= T(gleaks Eieak)-To » T(Lieak> Eicak) 18 the period of the unstable periodic orbit,
T, = 30 sec. Content can detect and continue the zero of this defined function in the two-
parameter space. This lets us determine F( Ty, T( gieak, Eieak))=0 and find the pair of values (gjeak ,
Eleak ) comprising the isochrone of the given period. This method allows for the finding of the set
of periodic orbits of given period. We constructed the (gieak, Eieak)-parameter bifurcation diagram,
where the transition between bursting activity into silent mode and one of the borders of the co-
existence have been defined through the homoclinic bifurcation. As Diagram 3 shows, one of the
borders of the area of co-existence of bursting activity and silence, that was introduced in
Cymbalyuk et al., 2002, matches closely with the predicted value for the homoclinic bifurcation

points.
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Diagram 3: Area of the co-existence of bursting activity and silence is defined by the subcritical
Andronov-Hopf and homoclinic bifurcation curves. The blue curve corresponds to the Andronov-
Hopf bifurcation. The green curve shows the border where the transition from bursting into silent
regimes occurs (Cymbalyuk, G.S., et al., 2002). The red dots mark the points where the
homoclinic bifurcation occurs.
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We have shown that the unstable hyperpolarized sub-threshold oscillations (periodic orbit)
emerge through the Andronov-Hopf bifurcation and disappear through the homoclinic
bifurcation. Diagram 3 shows the Andronov-Hopf bifurcation curve on which the second border
of the area of the co-existence is defined.

In conclusion, we showed that the unstable sub-threshold oscillations separate the stable
equilibrium (rest state) and bursting activity. Minimum and maximum values of the voltage of
the unstable periodic orbit define two thresholds: upper and lower. It explained the series of
numerical experiments where the switch between different regimes can be produced by a pulse
of current of certain amplitude. We showed the area of co-existence of bursting activity and
silence is defined by the sub-critical Andronov-Hopf bifurcation and a homoclinic bifurcation.

The homoclinic bifurcation explains the transition from bursting into silence.
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DISCUSSION

Basic patterns of neuronal activities are silence, sub-threshold oscillations, tonic spiking
and bursting activity. A number of theoretical and experimental studies have demonstrated that
both a single neuron and neuronal populations can exhibit bi-stability, in other words, these
regimes can co-exist with one another (Wang et al., 1995; Shilnikov et al., 2004; Milton and
Jung, 2003; Cymbalyuk et al., 2002; Cymbalyuk et al., 2000; Feoden and Grebogi, 1997,
Gadatela and Dangelmayr, 2001; Manning et al., 2003; Manuca et al., 1998).

In cortical neurons, many classes display transitions between tonic spiking and bursting
as a function of the brain state, for example sleep versus wakefulness (Steriade, 2001). The co-
existence of tonic firing and bursting has been shown in cortical neurons (Frohlich. and
Bazhenov, 2006). Depolarization of a neuron caused by raised extracellular K* concentration can
lead to bursting in a cell which usually shows tonic spiking. (Jensen et al., 1997). The increase of
K" concentration during epileptogenesis is an established fact (Somjen et al., 2004; DeLorenzo et
al., 2005). Frohlich and Bazhenov developed a cortical neuron model which explains bi-stability
between tonic spiking and bursting for raised K concentration. The leech heart interneuron
model also exhibits co-existence of two types of oscillations: tonic spiking and bursting with
large amplitude (Shilnikov et al., 2004). Switching between these two regimes can be produced
by modulation of the initial state of the neuron model (Shilnikov et al., 2004). Bursting is
separated from tonic spiking by an unstable periodic tonic spiking activity of the saddle type,
which determines the threshold between regimes.

Here, we investigated a mechanism of bi-stability of the model of the leech heart

interneuron. We have illustrated its properties by a series of numerical experiments. They display
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that the activity of the cell which was initially in the silent regime can be switched into bursting
activity by depolarized and hyperpolarized pulses of the current. In the other series of
experiments, where the neuron was initially in the bursting mode, we showed that it can be
switched into the silent mode by a hyperpolarized pulse. In the later case, if the amplitude of the
hyperpolarized pulse is increased, the cell returns to bursting activity. These numerical
experiments imply two thresholds: upper and lower. We have shown that switching between
bursting activity and silence can be controlled by a pulse of current.

The knowledge of the mechanism of bi-stability is useful in the design of treatments of
such medical conditions as Parkinson’s disease, sudden infant death syndrome (SIDS), epilepsy,
and essential tremor (Breakspear et al., 2006; Harvey et al., 2007; Milton and Jung, 2003; Wang
et al., 1995; DeLorenzo, 2005; Weese-Mayer et al., 2007). What is common for these medical
conditions is that they are examples of dynamically dysfunctional activities of neuronal system
(Feudel et al., 1997; Gadaleta et al., 2001; Manning et al., 2003; Milton and Jung, 2003). For
example, SIDS is defined as a sudden, unexpected death of an apparently healthy infant under
one year of age, usually during sleep (Weese-Mayer et al., 2007). It has been suggested that this
syndrome could be a result of the bi-stability of the neuronal system, where death is associated
with the silent regime.

Damage of the neurons might cause a change in the activity of the whole neural network
and lead to epilepsy (DeLorenzo et al., 2005; Milton and Jung, 2003). Epilepsy can be generated
in a large group of cells. It is the most common serious condition in neurology. Seizures are
frequently accompanied with synchronized hyperactivity in the neuronal network and the cells
are depolarized to a high level (Drongelen et al., 2003). A weak electrical field can modulate

neuronal activity (Francis et al., 2003). It has been shown that deep brain stimulation can provide
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noticeable benefits for people with tremor or Parkinson’s disease. High frequency stimulation of
the intermediate nucleus of the thalamus essentially could relieve tremors (Perlmutter et al.,
2006). There are a number of experiments in which the seizure can be stopped by a pulse of
current (Milton and Jung, 2003; Perlmutter et al., 2006).

Exemplary ideas of bi-stability are exploited in designs of treatment of Parkinson’s
disease. Under normal conditions, particular neuronal populations located in the thalamus and
the basal ganglia show apparently random electrical activity, whereas abnormal synchronized
activity of these neurons is associated with Parkinson’s resting tremors (Alberts et al., 1969). The
main question is how to suppress that abnormal synchronized activity. Tass and Hauptmann
created a model of the subthalamic nucleus (STN) (Tass and Hauptmann, 2007). Its analysis
shows that appropriate electrical stimulation of the bursting neurons located in the thalamus may
change synaptic wiring of the neuronal networks. It gives rise to the co-existence of different
dynamically stable regimes. Due to this multistability of the neuronal network, it is possible to
switch the network activity from the strongly synchronized state to a desynchronized state. It has
been proposed that suppression of synchronized activity is based on two plasticity induced
effects. The first is desynchronizing stimulation, which causes a decrease of synaptical weights.
The second effect requires that the weakly synchronized state must be stable (Tass, 2001). To
solve the problem of abnormal synchronization, authors have suggested applying weak or short
stimulation. This stimulation causes a reduction of a pathologically synchronized neuronal
population (Tass, 2001; Tass and Hauptmann, 2007). The main advantage of such stimulation,
that it does not affect memory as much as alternative methods which are based upon longer
stimulation. To induce the switch from abnormal to normal neuronal activity, Tass suggests

using a two pulses deep brain stimulation techniques.
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Discussing treatment of epileptic seizures, Milton brought into consideration the co-
existence of two patterns of tonic spiking activities that arise in membrane potential of an Aplisia
motoneuron. When the single stimulation is applied the switch between activities occurs (Milton
and Jung, 2003). Designing methods of feedback stimulation, Milton shows that multistability
can appear in the models of delayed feedback control. The necessary conditions for multistability
were established as following; the sum of the conduction times along the axon and dendrites,
time required for quantal release, processing times in the neurons, and the rise time of synaptic
inhibition has to be greater than the intrinsic firing period of the neuron. Multistability was
presented as the multiple basins of attraction separated by ridges of varying heights that
correspond to energy barriers (Milton and Jung, 2003). Such a dynamical system can be
controlled and manipulated with small perturbation. Milton has designed a feedback stimulation
method of regulation of neuronal network activity. At each moment of time when the abnormal
attractor occurs, the feedback stimulation imposes the initial conditions for the normal attractor
(Milton and Jung, 2003 ).

In 2002, Netoff and Schiff have proposed that a decrease in synchronization is essential
for initiation and maintenance of epileptic seizures. If synchrony is associated with seizure
termination, then the method directed at increasing such synchronization may be useful in
controlling seizures (Netoff and Schiff, 2002).

Our results explain a novel mechanism bi-stability at the cellular level. If neurons in a
population where each neuron possess the property of bi-stability of bursting and silence
according to the mechanism described here, then we can provide specific instructions for the
design of electrical stimulation. According to the scenario described, two attractors are separated

by the unstable periodic orbit, which was born through Andronov-Hopf bifurcation. The
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perturbation by the pulse of current can be applied to the group of cells. If the pulse of current is
injected with appropriate amplitude and at the specific phase, the bursting can be locked into the
silent regime. The theory of bi-stability and the controlling mechanism might be applied to the
design of a treatment of tissue displaying epileptic behavior. The feedback techniques may
suppress the abnormal activity of the neuron by switching into the normal regime.

In conclusion, we described a novel mechanism explaining the co-existence of bursting
and silent regimes in a single neuron. We demonstrated how the injection current pulse can be
applied with the certain amplitude and at the specific phase to make a switch between regimes.
We demonstrated that the specific characteristics of the pulse are defined by the unstable sub-
threshold oscillations which separate two basins of attraction (bursting and silence). The
mechanism of supporting the co-existence is similar for both the simplified four dimensional
model and the complete fourteen dimensional model. In both models the area of co-existence is
determined by two bifurcations: Homoclinic and Andronov-Hopf. The hypothesis is that the area
of the co-existence of bursting and silence is defined by two types of bifurcations, which might

give a general principal for controlling bi-stability in a Hodgkin-Huxley type model.
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