
Georgia State University
ScholarWorks @ Georgia State University

Physics and Astronomy Theses Department of Physics and Astronomy

Spring 4-5-2012

Brain tissue temperature dynamics during
functional activity and possibilities for optical
measurement techniques
Greggory H. Rothmeier
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_theses

This Thesis is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has
been accepted for inclusion in Physics and Astronomy Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more
information, please contact scholarworks@gsu.edu.

Recommended Citation
Rothmeier, Greggory H., "Brain tissue temperature dynamics during functional activity and possibilities for optical measurement
techniques." Thesis, Georgia State University, 2012.
https://scholarworks.gsu.edu/phy_astr_theses/14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71423421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fphy_astr_theses%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/phy_astr_theses?utm_source=scholarworks.gsu.edu%2Fphy_astr_theses%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/phy_astr?utm_source=scholarworks.gsu.edu%2Fphy_astr_theses%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/phy_astr_theses?utm_source=scholarworks.gsu.edu%2Fphy_astr_theses%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


Brain tissue temperature dynamics during functional activity and

possibilities for optical measurement techniques

by

Greggory H. Rothmeier

Under the Direction of A. G. Unil Perera, Mukesh Dhamala

Abstract

Regional tissue temperature dynamics in the brain are determined by the balance of the

metabolic heat production rate and heat exchange with blood flowing through capillaries

embedded in the brain tissue, the surrounding tissues and the environment. Local changes

in blood flow and metabolism during functional activity can upset this balance and induce

transient temperature changes. Invasive experimental studies in animal models have estab-

lished that the brain temperature changes during functional activity are observable and a

definitive relationship exists between temperature and brain activity. We present a theoreti-

cal framework that links tissue temperature dynamics with hemodynamic activity allowing us

to non-invasively estimate brain temperature changes from experimentally measured blood-

oxygen level dependent (BOLD) signals. With this unified approach, we are able to pinpoint

the mechanisms for hemodynamic activity-related temperature increases and decreases. In

addition to these results, the potential uses and limitations of optical measurements are dis-

cussed.

INDEX WORDS: Functional magnetic resonance imaging, Blood oxygen level dependent,
Brain temperature, Functional near-infrared spectroscopy
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1 Introduction

Since its invention in the 1950’s [4] and later development in the 1970’s [5], Magnetic Reso-

nance Imaging (MRI) has allowed physicians and scientists a detailed view within the human

body. Beginning in the 1990’s, it was realized that changes in the local metabolic state af-

fect the local magnetic resonance and provide an indication of brain activity [6, 7]. This

is possible because hemoglobin is diamagnetic in an oxygenated state and paramagnetic

when deoxygenated. Thus as the local concentration of deoxyhemoglobin changes, the local

magnetic susceptibility is also altered.

By combining this effect with a discovery made earlier in 1986 [8], MRI becomes a

powerful tool for measuring brain activity. Fox and Raichle [8] found that with an increase

in neuronal activity came an increase in local cerebral blood flow (CBF) that exceeded

the increase in cerebral metabolic rate of oxygen (CMRO2). The change in local tissue

oxygenation created by uncoupled changes in CBF and CMRO2 is referred to as the blood

oxygen dependent (BOLD) response [7]. A schematic of the model for generation of the

fMRI BOLD response is provided in Fig. 1.1.

A stimulus within a region of the brain induces either an excitatory or inhibitory (or

a combination) neuronal response. An increase in excitatory neuronal activity triggers an

increase in CBF which overcompensates for the increase in CMRO2 [8]. Conversely, an

increase in inhibitory neuronal activity does not induce a change in CBF. Increasing CMRO2

increases the concentration of deoxyhemoglobin (deoxyHb) while increasing CBF delivers

more blood to the tissue thereby increasing the concentration of oxyhemoglobin (oxyHb)

and increasing local tissue oxygenation. The change in blood oxygenation is detected by the

fMRI as the BOLD response [7].

Along with changes in the BOLD response, changes in CBF and CMRO2 also affect

the local tissue temperature. As glucose is metabolized, heat is released that is primarily
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Stimulus/Task

Excitatory Neuronal
Activity

Inhibitory Neuronal
Activity

Increase in Cerebral
Blood Flow (CBF)

Change in Oxygen
Consumption (CMRO2)

fMRI BOLD Response

Temperature Change

Sotero and Iturria-Medina [1]

Collins et al. [2]

Figure 1.1 Generation of the fMRI BOLD response from changes in neuronal activity.
Black arrows indicate a causal relationship while colored dashed-arrows indicate existing
models for the relationship. The orange line (•) shows the model proposed by Sotero and
Iturria-Medina [1] to calculate cerebral blood flow and metabolism and the blue line (•)
shows how the model proposed by Collins et al. [2] is used to calculate temperature. Modified
after Sotero and Trujillo-Barreto [3].

dissipated by convection to blood. The human brain relies on CBF to remove excess heat

from the brain [9]; thus, a change in rate of blood flow will affect how quickly heat can be

dissipated (or delivered as we’ll explore in section 2.3). Since both BOLD and temperature

are dependent on CBF and CMRO2, it is possible to use the BOLD data collected to cal-

culate the temperature change. As will be further discussed in section 2.3.1, the resulting

temperature change cannot be easily characterized for the entire brain because it’s behavior

is spatially dependent.

Experimental measurements of activity-induced brain temperature changes are mixed in

whether an increase in brain activity increases or decreases local tissue temperature [10, 11,

12, 13, 14]. Current temperature models predict that an increase in activity will result in a

decrease in temperature [1, 15, 16]. This is generally the prediction because these models

2



generalize the resting-state conditions of the region of interest (ignoring spatial dependence)

which puts the blood temperature below the resting state tissue temperature. An increase

in blood flow then acts as a coolant for the tissue and lowers the temperature (more on this

in section 2.1).

An accurate model for brain temperature could be valuable for many clinical applica-

tions [17]. A seizure has been shown to induce a large change in brain temperature [18],

so if an fMRI measurement is made of a patient during a seizure, the temperature change

could be calculated. It has been shown that treating severe head injuries with induced mild

hypothermia greatly improves the clinical outcome [19]. A similar result has been shown in

patients being treated for brain ischemia [20, 21] and stroke [22]. Additionally, it has been

shown that mild hypothermia can be neuroprotective in infants undergoing heart surgery [23].

During treatment, the brain temperature is currently inferred by indirect means. This can

be achieved by measuring the temperature of the temporalis muscle [24], the tympanic

canal [25, 26], nasopharynx [27] or by the use of a venous bulb in the jugular [28, 29]. While

commonly used, their reliability has not been validated [26, 29]. A model of brain tempera-

ture could let physicians better understand the relationship between brain temperature and

the measurements they are able to make. This could make hypothermia-based treatments

more effective since the brain temperature could be better controlled.

I will explore a model which calculates temperature using the fMRI BOLD response for

the entire brain, thereby accounting for spatial dependencies. Additionally, in chapter 3

I’ll explore optical measurement techniques including functional near-infrared spectroscopy

(fNIRS) and the use of thermal imaging cameras to measure activity-induced brain temper-

ature changes.

3



2 Calculating Temperature Changes using the fMRI BOLD Response

2.1 Introduction

Using fMRI to find brain temperature is enticing because it is noninvasive. Existing efforts

to model temperature changes can be categorized into two classes. The first class approaches

the problem by considering a single region of interest (ROI) deep within the brain (single-

voxel approach) while the second approach considers the brain and head as an entire system

(multi-voxel approach). A voxel is a volumetric pixel that is used to subdivide the head.

The single-voxel approach is unable to explain the experimental observation of an increase

in temperature during a task; however a multi-voxel approach is able to account for this

observation.

2.1.1 Single-Voxel Methods

Numerous single-voxel approaches have been created [1, 15, 16] which differ largly only in

their formulation of Penne’s Bioheat Eqution [30]. Although different approaches consider

different contributions to the temperature change, they all narrow the problem down to a

single region of interest. By simplifying the model, the heat equation can be simplified and

the calculation is much easier to undertake. However, since the brain is not homogenous,

the values used for parameters such as heat production and thermal conductivity are taken

from an average of the tissues. As a result, this reduces the level of accuracy these models

can achieve.

The most recently published iteration of a single-voxel model was published by Sotero and

Iturria-Medina [1] in 2011. Their formulation of Penne’s Bioheat Equation is as follows [30, 1].

Ctissue
dT (t)

dt
= (∆H◦ −∆Hb)CMRO2 |0 m(t)− ρbCbCBF |0 f(t)(T (t)− Ta)

− Ct
τ

(T (t)− T0) (2.1)

4



where Ctissue is the specific heat of the tissue, ∆H◦ is the enthalpy released in the oxidation

of glucose, ∆Hb is the enthalpy used to release oxygen from hemoglobin, CMRO2 |0 is the

metabolic rate of oxygen at rest, ρb is the blood density, Cb is the specific heat of blood,

CBF|0 is the cerebral blood flow at rest, Ta is the arterial blood temperature, CT is the

specific heat for the tissue, and τ is a time constant for conductive heat loss. The values

used are provided in Table 2.2.

One advantage of using Eq. (2.1) is that the resting state temperature can be analytically

determined by substituting dT (t)
dt

= 0 [1].

T0 = Ta +
(∆H |◦ −∆Hb)CMRO2 |0

ρBCBCBF |0
(2.2)

If the values provided in Table 2.2 are substitued into Eq. (2.2), a resting temperature of

37.3057◦C is found (using Ta = 37.0000◦C). Regardless of the arterial blood temperature,

since the second term of Eq. (2.2) is always positive the resting state temperature will

always be greater than the arterial blood temperature. Thus, an increase in blood flow will

remove heat from the ROI, thereby lowering the temperature. As will be further discussed

in section 2.3.1, this is an acceptable result for the majority of the brain; however a multi-

voxel approach reveals that a region of the brain exists where a single-voxel model is unable

to predict temperature changes. Since it is a simpler model than a multi-voxel model, it is

easier to first understand the principles of Penne’s Bioheat Equation using this model before

discussing how it can be applied to the entire head.

While Eq. (2.1) appears complicated, conceptually Penne’s Bioheat Equation can be

easily understood:

heat capacity ∗ change in temperature = heat generated by metabolism

− heat lost due to convection − heat lost due to conduction

− heat lost due to radiation (2.3)

5



The system is a balance between heat generation (metabolism) and heat transfer (conduc-

tion, convection and radiation). The direction of heat transfer by convection is determined by

the difference between the voxel temperature and the arterial blood temperature (T(t)−Ta).

Similarly, the direction of heat transfer by conduction is determined by the difference be-

tween the voxel temperature and the temperature of the surrounding tissue (T(t)−T0). Since

Ta is less than T0, an increase in blood flow (f(t)) will remove heat from the voxel thereby

decreasing the temperature. Conversely, an increase in metabolism (m(t)) without a corre-

sponding change in blood flow, will result in tissue warming. Equation (2.1) omits the effect

of radiation because the contribution is small compared to the other terms. As we will see

in section 3.2, mid-infrared photons are reabsorbed by tissue within ∼10–100 µm (Fig. 3.5)

so any energy lost due to radiation does not travel very far compared to the ROI size.

2.1.2 Multi-Voxel Methods

The multi-voxel approach to calculating brain tissue temperature alleviates many of the

issues that a single-voxel approach has. The most prominent advantage a multi-voxel ap-

proach has is a result of it accounting for a voxel’s location relative to the surface of the

head and other voxels. By accounting for a voxel’s location, the same BOLD response in

two different locations can have vastly different effects on the local tissue temperature (more

on this in section 2.3.1).

Multi-voxel methods use a three-dimensional implementation of Penne’s Bioheat Equa-

tion [2].

ρc
dT

dt
= k∇2T − ρbloodf(t)wcblood(T − Tblood) +m(t)Qm (2.4)

where ρ is the tissue density, c is the specific heat of the voxel, k is the thermal conductivity,

ρblood is the blood density, w is perfusion by blood, cblood is the specific heat of blood, Tblood

is the arterial blood temperature, and Qm is the baseline metabolic heat production. f(t)

and m(t) are the time-dependent changes in blood flow and metabolism. These two factors

determine the short-term change in temperature and are calculated from the fMRI BOLD

6



response; however what makes this approach more complete than a single-voxel approach is

that the relatively slow conductive heat loss makes for a different equilibrium temperature at

each voxel. This effect can only be captured by considering the entire head. The approach we

use is a multi-voxel approach, so more details about this model are discussed in section 2.2.

2.2 Our Approach

Our approach [31, 32] combines a multi-voxel model (section 2.1.2) with a model for calcu-

lating the change in metabolism and blood flow from the BOLD response. Penne’s Bioheat

Equation (Eq. (2.4)) [30, 1] includes three terms. The first and second terms describe heat

exchange by conduction to surrounding tissues (or air) and convection to blood, respectively.

The third term describes heat generated by metabolism. On shorter time scales, the first

two terms dominate and are sufficient for determining activity-induced temperature changes;

however, the third term becomes important on longer time scales because it plays a role in

determining the resting-state temperature.

Conductive heat transfer to surrounding tissues is a comparatively slow process, but

on larger time scales, conduction plays an important role in determining the resting state

temperature. When calculating the temperature change, it is important to first have an

accurate resting state temperature since it can either be greater than or less than the arterial

blood temperature. By considering the entire head, the model we use is able to accurately

determine a resting state temperature for each voxel, enabling far more accurate temperature

calculations than what is capable with single-voxel approaches.

Figure 2.1 gives a schematic of the temperature calculation procedure. The orange blocks

represent the required data. The first thing to be done is establish the resting-state temper-

ature for each voxel within the head. The details of this procedure are given in section 2.2.2,

but in summary a T1 contrast image is segmented using SPM8 (Fig. 2.2) and is combined

with tissue-specific parameters (Table 2.1). The resulting dataset is then used to deter-

mine the resting-state temperature by repeatedly applying Eq. (2.4) until the temperature

stabilizes for all voxels.

7



fMRI BOLD Data

Calculate resting state
(avg NII rest)

Normalize the data to
resting state

(avg NII normalize)

Calculate the change in
metabolism and blood

flow (BOLDtoMF)
Details given in

section 2.2.3

T1 contrast image

Segment image (SPM8)

Build head matrix
(ImportSegmentedT1)

Details given in
section 2.2.1

Calculate equilibrium
temperature

(tempCalcEquilibrium)
Details given in

section 2.2.2

Tissue-specific
parameters (given in

Table 2.1)

Find temperature change during activity
(tempCalcDynMF)

Details given in section 2.2.4

Figure 2.1 The procedure used to calculate temperature from BOLD data. Orange blocks
(•) represent data, the sandy-colored block (•) is a step done using SPM8 and the teal blocks
(•) are steps done using a function provided within temptools (appendix A). The name of
the function used is in parentheses.

The resting-state time slices from the fMRI BOLD dataset are averaged to create a resting

state representative slice. The remaining BOLD data is then normalized to this in order to

have the normalized change in BOLD response (∆S
S0

in Eq. (2.16)). This can then be used

with Eqs. (2.9), (2.15) and (2.16) to create a time series for the change in blood flow and

metabolism. More details about this procedure are given in section 2.2.3.

The following sections provide a detailed explanation of the theory behind our mod-

eling approach. The code used to implement this procedure is provided and documented

in appendix A.
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Figure 2.2 Slice of the segmented head. Each color represents a different tissue type.

2.2.1 Preparing the model of the head

In order to begin the temperature calculating procedure, a model of the head must first be

created. Using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), we segmented a T1 contrast

image of the head into five different tissue types: bone, cerebral spinal fluid, gray matter,

white matter and soft tissue. It was assumed that soft tissue voxels that are in contact with

air are more appropriately labeled as skin, so in total we are left with a model of the head

Tissue f0

100 ml/(g min)
ρ
kg/m3

c
J kg−1 ◦C−1

k
W m−1 ◦C−1

Qm

W/m3

Bone 3 1,080 2,110 0.65 26.1
Cerebrospinal Fluid 0 1,007 3,800 0.50 0
Gray Matter 67.1 1,035.5 3,680 0.565 15,575
White Matter 23.7 1,027.4 3,600 0.503 5,192
Muscle 3.8 1,041 3,720 0.4975 687
Skin 12 1,100 3,150 0.342 1,100

Table 2.1 Tissue-specific parameters used to calculate the temperature change (values
from Collins et al. [2]).

9
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separated in to six tissue types (Fig. 2.2). The advantage this has is that we are able to

use tissue specific parameters when doing the calculations, thereby improving the accuracy

of the results. The parameters used are available in Table 2.1. The code used to create the

head matrix is discussed in appendix A.1.

2.2.2 Calculating the equilibrium temperature

The first step in calculating the temperature change is to know the resting state temperature

for each voxel within the head. Our approach was to have the initial temperature for all

tissue voxels set to 37◦C and air voxels are kept at 24◦C. The starting temperature of the

tissue does not affect the final resting state temperature; however, starting off at drastically

different values could greatly increase the calculating time required before the temperature

stabilizes. The finite difference implementation of Penne’s Bioheat Equation (Eq. (2.4)) is

used to update the temperature (derivation provided in section 2.2.4). The temperature

is updated until the temperature for every voxel has stabilized (dT
dt

< 10−6 ◦C/s). Since

temperature changes due to changes in neuronal activity are typically greater than 10−2 ◦C,

a change in temperature less than 10−6 ◦C/s is sufficiently small that transient temperature

changes are negligible and temperature can be considered stabilized. The code used to

calculate the equilibrium temperature is detailed in appendix A.3.

2.2.3 Calculating Metabolism and Blood Flow Changes from the BOLD re-

sponse

This is the critical step where we use fMRI BOLD data to calculate the normalized change

in metabolism and blood flow. The method used [1] is an assemblage of a couple other

works [33, 34, 35, 36, 37, 38]. It starts by using the relation between metabolism and blood

flow proposed by Buxton et al. [33]:

m(t) = f(t)
E(t)

E0

(2.5)
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Table 2.2 Parameters used to solve the single-voxel implementation of Penne’s Bioheat
Equation. (modified from Sotero and Iturria-Medina [1])

Parameter Meaning Value

Ta Arterial blood temperature 37◦C
Ctissue Tissue Heat Capacity 3.664 J/(gK)
∆H◦ Enthalpy released by oxidation of glucose 4.7105 J
∆Hb Enthalpy used to release O2 from hemoglobin 2.8104 J
CMRO2 |0 Cerebral metabolic rate of O2 consumption at

rest
0.026310−6 mol/(gs)

CBF|0 Cerebral blood flow at rest 0.0093 cm3/(gs)
ρb Blood density 1.05 g/cm3

CB Blood heat capacity 3.894 J/(gK)
τ Time constant for conductive heat loss from the

ROI to the surrounding tissue
190.52 s

a, b, c Parameters of the gamma function fitted from
E(f) vs. f

0.4492, 0.2216, −0.9872

A Maximum BOLD signal change 0.22
α Steady state flow-volume relation 0.4
β Field-strength dependent parameter 1.5

Variable Meaning

m(t) CMRO2 normalized to baseline
f(t) CBF normalized to baseline
T(t) Temperature
W(t) Lambert W Function
∆S(t)
S0

Change in BOLD signal normalized to rest

11



where E0 is the oxygen extraction at rest and E(f) is

E(f) = 1− (1− E0)
1
f(t) (2.6)

in accordance with the oxygen limitation model [34]. Combining Eq. (2.5) with Eq. (2.6)

yields

m(t) =
f(t)

E0

[
1− (1− E0)

1
f(t)

]
(2.7)

Sotero and Iturria-Medina [1] goes about solving Eq. (2.7) by adjusting E(t) data generated

by Eq. (2.6) and fitting it to the gamma function for the f range (0.7–2.0) that is within

experimentally reported values [35, 36, 37]:

E(f)

E0

= af c(t)e−bf(t) (2.8)

where a, b and c are fitting parameters (values provided in Table 2.2). From this approxi-

mation we have the final form of metabolism:

m(t) = af c+1(t)e−bf(t). (2.9)

As proposed by Davis et al. [38], the BOLD signal changes (∆S(t)
S0

) can be described in terms

of m(t) and f(t):

∆S(t)

S0

=
S(t)− S0

S0

= A(1− fα−β(t)mβ(t)) (2.10)

Substituting Eq. (2.9) into Eq. (2.10) yields

f(t)e−
bβ

α+βc
f(t) =


(
A− ∆S(t)

S0

)
Aaβ


1

α+βc

(2.11)
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where A is the maximum change in BOLD signal. Multiplying each side by − bβ
α+βc

gives

− bβ

α + βc
f(t)e−

bβ
α+βc

f(t) = − bβ

α + βc


(
A− ∆S(t)

S0

)
Aaβ


1

α+βc

(2.12)

which can be solved by using the Lambert W function

z = W (x) (2.13)

where W (x) is a solution for z in the equation

zez = x (2.14)

Finally, f(t) is obtained from Eq. (2.12)

f(t) =
α + βc

bβ
W (y(t)) (2.15)

where

y(t) = − bβ

α + βc

[
(A− S(t)

S0
− 1)

Aaβ

]( 1
α+βc)

(2.16)

is a function of the BOLD signal. Using Eqs. (2.9), (2.15) and (2.16) allows for the

metabolism and blood flow to be calculated from the BOLD signal (values used are pro-

vided in Table 2.2).

In order to process the files, the BOLD dataset is stored as a separate NIFTI (*.nii) file

for each time step. The first step in processing the data for temperature calculations is to

determine a resting state BOLD signal (S0). The resting state is calculated by taking the

voxel-wise mean of the data when the subject is at rest (i.e. the first and last 20 seconds).

This results in one data set where each voxel is a mean of all of the voxels at the location

over time (S0). In order to calculate the metabolism and blood flow, the BOLD dataset

13



needs to be normalized to this resting state (∆S(t)
S0

).

Once ∆S(t)
S0

is known for each time step, Eqs. (2.9), (2.15) and (2.16) can be used to

calculate the metabolism and blood flow. The implementation of this procedure is discussed

in appendix A.2.

2.2.4 Calculating the change in temperature in the active brain

As discussed in section 2.1.2, the foundation of the model is Penne’s Bioheat Equation, Eq. (2.4).

The metabolism and blood flow time-courses calculated in section 2.2.3 are used to scale the

baseline heat production and blood profusion. This, in turn, induces a change in the tem-

perature.

Penne’s Bioheat Equation (Eq. (2.4)) is implemented using the first-order forward finite

difference method:

Ṫ (t) ≈ T (t+ l)− T (t)

l
(2.17)

where T (t) is the temperature at time t and l is the time step size. Next, we can approximate

∇2T by using the second order central finite difference method applied for each coordiante:

∂2T (t;x, y, z)

∂x2
≈ T (t;x+ h, y, z)− 2T (t;x, y, z) + T (t;x− h, y, z)

h2

∂2T (t;x, y, z)

∂y2
≈ T (t;x, y + h, z)− 2T (t;x, y, z) + T (t;x, y − h, z)

h2

∂2T (t;x, y, z)

∂z2
≈ T (t;x, y, z + h)− 2T (t;x, y, z) + T (t;x, y, z − h)

h2
(2.18)

where

∇2T =
∂2T (t;x, y, z)

∂x2
+
∂2T (t;x, y, z)

∂y2
+
∂2T (t;x, y, z)

∂z2
(2.19)

and the step size in each coordinate direction is given by h. In the case of processing

BOLD data, h is the voxel size. Equation (2.19) can be subtitued into Penne’s Bioheat

Equation (Eq. (2.4))

ρcṪ = kx
∂2T

∂x2
+ ky

∂2T

∂y2
+ kz

∂2T

∂z2
− ρbloodf(t)wcblood(T − Tblood) +m(t)Qm (2.20)
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where Ṫ is the first-derivative of temperature with respect to time, kx is the thermal con-

ductivity in the x-direction, ky is the thermal conductivity in the y-direction and kz is the

thermal conductivity in the z-direction. Substituting Eqs. (2.17) and (2.18) into Eq. (2.20)

yields

ρc
T (t+ l;x, y, z)− T (t;x, y, z)

l
≈ 1

h2
[kx(T (t;x+ h, y, z)− 2T (t;x, y, z) + T (t;x− h, y, z))

+ ky(T (t;x, y + h, z)− 2T (t;x, y, z) + T (t;x, y − h, z))

+ kz(T (t;x, y, z + h)− 2T (t;x, y, z) + T (t;x, y, z − h))]

− ρbloodf(t)wcblood(T − Tblood) +m(t)Qm (2.21)

which is then rearranged to solve for T (t+ l;x, y, z)

T (t+ l;x, y, z) ≈ T (t;x, y, z) +
l

ρch2
[kx(T (t;x+ h, y, z)− 2T (t;x, y, z) + T (t;x− h, y, z))

+ ky(T (t;x, y + h, z)− 2T (t;x, y, z) + T (t;x, y − h, z))

+ kz(T (t;x, y, z + h)− 2T (t;x, y, z) + T (t;x, y, z − h))]

− ρbloodf(t)wcblood(T − Tblood) +m(t)Qm (2.22)

The time step size (l) can be picked arbitrarily, however the spatial step size (h) is limited

to the voxel spacing.

The final equation (Eq. (2.22)) gives a method for calculating the next time step (T (t+l))

from the current time step (T (t)) for each voxel. By using the central difference to solve

∇2T , the voxels on all six sides of the current voxel are considered in the heat conduction.

The implementation of this equation is discussed in appendix A.4.1.

2.3 Results

In order to understand the behavior of the model, we first applied it simulated BOLD data

that was generated by convolving a boxcar function with the hemodynamic response function
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provided by SPM8. After we understood the behavior of the model, we then applied it to

experimental BOLD data that was collected by Dhamala et al. [39].

2.3.1 Using Synthetic BOLD Data

To better understand the behavior of the tissue temperature model and the characteristics

of temperature changes, BOLD activity was simulated in two ways: (i) from a nonlinear

hemodynamic model [40] using stimulus or response function, or (ii) by convolving a boxcar

function with the canonical hemodynamic response function provided by SPM 8 and corre-

sponding temperature changes were calculated. Figure 2.3(c,d) shows a typical simulated

BOLD response used (green curve) along with the change in temperature (blue) for two

voxels at different locations in the brain (locations indicated by Fig. 2.3(a)).

Although both voxels have the same BOLD data, the demonstrate contrasting changes

in temperature. This can be best understood by considering the equilibrium temperature of

each voxel. Figure 2.3(b) is a plot of the equilibrium temperature (blue line) along a line

passing through the head (path indicated by the teal line in part (a) of the same figure). The

vertical red lines indicate the boundary between the brain and surrounding tissues and the

horizontal yellow line is an indication of the blood temperature (37◦C). Two regions exist

within the brain that lead to contrasting temperature behaviors.

The majority of the brain tissue is at a resting-state temperature that is less than the

blood temperature (region 1). For voxels within this region, a behavior like that shown in

Fig. 2.3(d) is to be expected. The primary contribution to an increase in the BOLD response

is an increase in local blood flow. Since the blood temperature is cooler than the tissue

temperature, blood flow removes heat from the tissue thereby lowering the temperature.

Single-voxel models are able to account for this result because their assumptions about the

location of a voxel are consistent with being located within this region.

The second region is comprised of a thin (4–6 mm) layer of brain tissue that is closest to

the surface of the head. As a result of its proximity to the surface of the head, conductive

heat lost to the air puts the resting-state temperature of voxels in this region below the

16



24

26

28

30

32

34

37

T
e
m

p
e
ra

tu
re

 (
C

)

 

 (b)

 Brain Boundary

1 cm

0 100 200 300 400 500 600 700 800 900 1000

35.45

35.5

35.55

35.6

35.65

T
e

m
p

e
ra

tu
re

 (
C

)

Time (s)

 

 

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

B
O

L
D

 S
ig

n
a

l

Temperature

BOLD Signal

(c)

0 100 200 300 400 500 600 700 800 900 1000

37.3

37.35

37.4

37.45

T
e

m
p

e
ra

tu
re

 (
C

)

Time (s)

 

 

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

B
O

L
D

 S
ig

n
a

l

Temperature

BOLD Signal

(d)

Figure 2.3 Temperature changes using simulated BOLD signals. (a) Slice of the head (y
= -12) with indicators of the locations for parts (b)-(d). (b) Equilibrium temperature along
a line through the head. Red lines indicate the brain boundary and the gold line indicates
the blood temperature (37◦C) used for calculations. Inside the brain, a 4-6 mm thick shell is
created where the equilibrium temperature is less than the blood temperature. Within this
shell, (c) the temperature rises with increased brain activity while (d) tissue deeper in the
brain experiences the opposite effect.
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arterial blood temperature. As a result, when there is an increase in blood flow (increase in

BOLD), the warmer blood will increase the voxel temperature (Fig. 2.3(c)). A separate study

of brain temperature using a full-head model found this region to be as thick as 1 cm [41].

Since single-voxel models approximate voxel conditions, they are unable to account for this

region of tissue.

Conduction is a slow process, so over shorter time scales (less than ∼10 minutes), con-

duction will contribute very little to the temperature change from a change in brain activity.

However, conduction plays an important role in determining the resting-state temperature.

The primary advantage with this model is that it accounts for the contribution of all of

the voxels when determining the temperature, thus the direction of the temperature change

depends on how far away from the surface of the head the voxel is. For voxels within a 4–6

mm shell near the surface of the brain, the temperature increases with increased activity (Fig.

2.3(c)) while voxels deeper within the brain experience the opposite change (Fig. 2.3(d)).

2.3.2 Using Experimental BOLD Data

Data from a previous fMRI study [39] was used to study the characteristics of temperature

changes in a typical experiment. All participants in this experiment were right handed and

between the ages of 23 and 27 years old. Signed informed consent was collected from each

one prior to participating in the study. Institutional Review Boards of Emory University

and Georgia State University approved this experiment. Twelve participants were asked to

tap their right index fingers with rhythms of varying complexity for 320s.

This task resulted in a strong BOLD response in the motor cortex (Fig. 2.4). The

experiment included 20s of rest at the beginning and end of the tapping periods. Here, the

resting state response level is calculated for each voxel by averaging across 40s of resting-

state fMRI data. Using equations Eqs. (2.9), (2.15) and (2.16), the time-dependent change

in blood flow and metabolism can be determined for each voxel. Finally, these values are

used in conjunction with Eq. (2.4) to find the change in temperature throughout the brain.

In this task, a temperature increase of approximately 0.02◦C was observed in the motor

18



0 50 100 150 200 250 300 350
36.68

36.685

36.69

36.695

36.7

36.705

36.71

36.715

Time (s)

T
e

m
p

e
ra

tu
re

 (
C

)

(b)

Figure 2.4 Temperature calculated from a voxel within the motor cortex. (a) A slice (x =
-44) showing the motor cortex warming during a finger-tapping task. (b) Temperature at a
voxel within the motor cortex (-44, -24, 60) with standard error indicated by blue error bars
(Arrows indicate task onset and conclusion, N=24).
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cortex (Fig. 2.4). This value is well within the range of temperature changes observed in

experimental measurements [10, 11, 12, 13, 14].

The increase rather than decrease in temperature in the motor cortex during a functional

activity is consistent with the idea that the temperature of the blood in the capillaries is

slightly greater than the baseline tissue temperature in superficial cortical regions; however,

single-voxel models would predict the opposite effect.
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3 Optical techniques for brain activity measurements

The best method for measuring brain temperature is to use a thermocouple probe placed

in direct contact with the tissue. Experimental measurements of brain temperature have

achieved a precision as small as 0.000 3◦C using this method [10]. However, this method

can not be used in humans without damaging the tissue. An optical method would be

ideal for non-invasive measurements. Presently, there does not exist a method for accurately

measuring the temperature of brain tissues optically. However, other optical measurements

methods could be used in conjunction with a temperature model (such as the one proposed

here) to calculate the temperature. The possible application of functional Near-Infrared

Spectroscopy (fNIRS) and its possible use in brain temperature calculations is discussed

along with the possibilities and limitations of a direct measurement technique such as thermal

imaging.

3.1 Functional Near-Infrared fNIR Spectroscopy

As discussed in chapter 1, changes in tissue activity can be detected by measuring the

change in blood oxygenation levels. Functional Magnetic Resonance Imaging (fMRI) is one

technique among several for measuring tissue oxygenation (the BOLD signal).

Blood oxygenation can be determined by measuring the relative concentrations of oxyhe-

fMRI fNIR

Spatial Resolution 8–27 mm3 ∼ 1–10 cm3

Temporal Resolution 1–2 s ∼ 10−3 s
Measurement Parameter blood volume, flow, and O2

metabolism
oxyHb and deoxyHb con-
centrations

Motion Must Remain Stationary Small movements OK
Penetration Whole-head outer 2–4 mm of brain tissue

Table 3.1 Comparison of the capabilities and limitations of fMRI and fNIR techniques.
Compiled from Bunce et al. [44], Elliott [45].
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Figure 3.1 Absorption spectra of water Cope [42], oxyHb and deoxyHb Horecker [43].

moglobin (oxyHb) and deoxyhemoglobin (deoxyHb) [6, 7, 8]. Since oxyHb and deoxyHb have

different absorption spectra as shown in Fig. 3.1. These differences are possible to detect

through optical techniques. Functional Near-Infrared Spectroscopy is a technique which uti-

lizes two or more spectral bands in order to determine blood oxygenation. fNIRS has a high

(millisecond) temporal resolution and a low (∼1 cm3) spatial resolution compared to fMRI

(as low as 1 mm3). Also, fNIRS is limited to only imaging the outer cortex (2–4 mm) [44].

A comparison of fMRI and fNIR is presented in Table 3.1.

fNIRS works by utilizing an array of near-infrared detectors and emitters (typically spaced

2–3 cm apart) placed in contact with the skin [46, 47]. A schematic of a typical fNIRS array

setup is shown in Fig. 3.2. Each dashed line is a detection path. By illuminating the emitters
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L

Detector

Emitter

Figure 3.2 A Sample arrangement of detectors and emitters in a typical 16-channel fNIRS
setup (based on Izzetoglu et al. [47]). Light coming from emitters (stars) is detected by the
detectors (circles) set at a distance L away.

sequentially, it is possible to have 16 detection channels using the setup shown. The exact

spacing between the emitters and detectors determines the depth the light is detected from.

As shown in Fig. 3.3, the closer the spacing, the higher the resolution but at the expense of

lower penetration. Conversely, in order to detect light passing through deeper tissue, a wider

spacing is used which reduces the resolution. Systems use either two [46, 48, 49] or three [50]

wavelengths selected based on differences in the absorption of oxyHb and deoxyHb. The

exact wavelengths used vary, but all lie within an optical window between 700–1000 nm [46]

where the near-infrared photon absorption in the tissue is low (Fig. 3.1).

Three techniques are used to illuminate the tissue: (i) time domain (or time resolved

spectroscopy, TRS), (ii) frequency domain and, (iii) continuous wave illumination [47]. In

TRS, short pulses of light are incident on the tissue and the temporal distribution of pho-

tons in measured. In frequency domain spectroscopy, the amplitude of the incident light is

modulated at a high frequency (10–100 MHz) and the phase shift and amplitude decay of

the detected light is compared to the incident light [52]. In continuous wave illumination,

the incident light is not modulated so the detected light can only be compared for amplitude

attenuation [47].

All of the techniques use the Beer-Lambert Law [53]

I = I0e
−α(λ)x (3.1)
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Figure 3.3 Penetration depth of a fNIR detector as a function of the distance between the
NIR emitter and detector. Light emitted by either an LED or fiber optic (red star) from
the left passes through the tissue before it is scattered back to be detected (blue circle).
The path it takes through the tissue is determined by the distance between the emitter and
detector. A larger separation between emitter and detector (L2) allows the light to penetrate
deeper in to the tissue (d2). Modified after [51]

modified to isolate the individual contributions from oxyHb and deoxyHb [42]:

I = GI0e
−(αdeoxyHbCdeoxyHb+αoxyHbCoxyHb)l (3.2)

where G is a factor to adjust for the measurement geometry, I0 is in the incident light

intensity, αoxyHb and αdeoxyHb are the molar extinction coefficients for oxyHb and deoxyHb,

CoxyHb and CdeoxyHb are the chromophore concentrations for oxyHb and deoxyHb, and l is the

path length [47]. By comparing a baseline measurement (Ib) with a new measurement (I),
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the optical density can be determined [47]

∆OD = log
Ib
I

= αdeoxyHb∆CdeoxyHb + αoxyHb∆CoxyHb (3.3)

As discussed in Izzetoglu et al. [47], at least two wavelengths are utilized in the spectral

window (700–1000 nm) in order to determine the change in concentration of chromophores

∆CdeoxyHb and ∆CoxyHb. With these values, the oxygenation and total blood volume can be

determined:

Oxygenation = ∆CHBO2 −∆CHB

Blood V olume = ∆CHBO2 + ∆CHB (3.4)

Using this method to experimentally measure the blood oxygenation while measuring the

fMRI BOLD response could be used to refine the present model for calculating the metabolism

and blood flow from the BOLD response.

While fNIRS does not provide spatially-precise measurements as fMRI, it should be

possible to modify the existing model for calculating temperature from the BOLD response

to use fNIR data. This would be advantageous because fNIRS systems are cheaper and

less disruptive than fMRI systems, meaning they can be used with a wider range of patients

(children and the elderly). For this reason, developing a model which uses fNIRS data should

be considered in future research.

3.2 Thermal Imaging

The primary challenge in brain temperature research is performing brain temperature exper-

imental measurements. Since it is non-invasive, thermal imaging is appealing as a possible

replacement for damaging thermocouple probes. Unfortunately, this technique is limited by

the high absorption of mid-infrared photons by water.
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Light absorption by a material is modeled using the Beer-Lambert law

I = I0e
−α(λ)x (3.5)

where I is the intensity at a depth x remaining from light with an incident intensity I0 in a

material with absorption coefficient α. The point at which the intensity has decayed to 1/e

(about 37%) of the incident intensity is called the penetration depth, δp

δp =
1

α(λ)
(3.6)

This equation can be used along with the black-body spectrum at tissue temperatures

(Fig. 3.4) we can estimate the penetration depth of mid-infrared photons passing through

water.

Wien’s Displacement Law is a solution to Planck’s law for the peak light emission wave-

length:

λmax =
b

T
(3.7)

b = 2.897 7721 ∗ 10−3 K m

where b is Wien’s displacement constant and T is the temperature in kelvin. For T = 310 K

(T = 37◦ C), Wien’s law yields a peak black-body emission wavelength of 9.347 652 µm. A

physiologically reasonable temperature change to expect from stimulation is on the order of

0.01◦C which corresponds to a new peak wavelength of 9.347 350 µm (T=310.01 K) or a shift

of 0.302 nm.

The values of the absorption coefficient and the penetration depth of photons in water

is shown in Fig. 3.5. Looking at around 9.3 µm, the absorption coefficient is approximately

700 cm−1 which corresponds to a penetration depth of approximately 14 µm. This depth is

roughly three orders of magnitude smaller than the distance from the surface of the brain to
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Figure 3.4 (a) Black-body spectrum at 250, 310 and 350 K calculated using Planck’s Law.
The black dashed line traces the peak in the spectrum as temperature changes. As the tem-
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compared to cooler temperatures. (b) A comparision of the black-body spectrum at 310 K
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Figure 3.5 The absorptions spectra of water from UV to far-infrared. Modified from Hale
and Querry [54].

the surface of the head. Further, all photons emitted as blackbody radiation (ranging from

3 µm to over 30 µm) have a penetration depth of less than 100 microns. Thus, a thermal

imaging camera is unable to image photons coming from the brain.

When thermal imaging is used, the photons collected come from the skin of the head

rather than from any deeper tissues, thus it is not a viable form of brain activity detection

unless direct line of sight to the brain is available (such as in an open skull surgery). The

noise-equivalent temperature difference (NETD) of currently available cameras is greater

than 14 mK [55, 56] or 7 mK [57] for a camera which is not commercially available, so it would

be limited to only the most extreme of excitations even if line of site to the brain is available.

As a comparison, the finger-tapping task discussed in the results section (section 2.3.2) only
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induced a peak temperature change of 25 mK after tapping for about 170 seconds. Detection

of this activity would be at the limits of a thermal imaging camera.

While its applications to detecting brain activity are limited, thermal cameras could

be useful in the operating room. It has been found that inducing mild hypothermia in

patients being treated for cerebral ischemia improves the clinical outcome [20]. The same

treatment has been shown to improve the outcome of patients who have experienced a

stroke [22] and even in patients with severe head injuries [19]. The temperature of the brain

is currently inferred from the core body temperature (which is monitored via an invasive

thermistor catheter). If it is possible to directly image the brain (i.e. during surgery) then

the hypothermia treatment can be better monitored through a thermal imaging camera.

This would be especially useful since conductive and radiative heat loss to the air from an

exposed brain could reduce how tightly the brain temperature is regulated by the arterial

blood temperature. Since the tissue will be directly exposed to the surrounding air, Eq. (2.1)

would need to include a term for the radiative heat loss:

Ctissue
dT (t)

dt
= ...+

AσT 4

ρgmV
(3.8)

After rearranging to solve for dT
dt

and substituting values in, it is found that the change in

temperature is approximately 0.07 K/s:

dT

dt
=

AσT 4

ρgmV Ctissue

=
1

6

(6 ∗ 4 10−6 m2)
(
5.6704 10−8 J

s m2 K4

)
(310 K)4(

1035 103 g
m3

)
(8 10−9 m3)

(
3.664 J

g K

)
≈ 0.0690454

K

s
(3.9)

where A and V are the surface area and volume of the voxel, σ is the StefanBoltzmann

constant and ρgm is the density of gray matter. The factor 1/6 is there because only one face

of the voxel is exposed to air. Radiation passing through the other faces will be reabsorbed
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by the tissue (Fig. 3.5).

Optical detectors face many challenges working with biological tissue, the worst being

infrared light absorption by water. fNIRS works within an optical window in the water

absorption in order to measure changes in blood oxygenation, while thermal imaging is

limited to measuring the temperature of tissue it has direct line of sight with because of the

high absorption of water in the operating window. Despite their limitations, both of these

techniques could be used in future studies to improve our understanding of brain temperature

dynamics.
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4 Conclusion

It has been shown that by considering the entire head within the model, brain temperature

can be reliably calculated from non-invasive fMRI measurements. Experimental measure-

ments of activity-induced brain temperature changes have shown that a simple relationship

does not exist [10, 11, 12, 13, 14]. Single-voxel brain temperature modeling efforts predict

that an increase in brain activity will induce a decrease in temperature. This one-dimensional

perspective does not account for the spatial distribution of heat throughout the head like a

multi-voxel approach.

Our model of brain temperature changes is able to account for the variability found

in experimental brain temperature measurements. This is accomplished by modeling heat

dynamics throughout the entire head rather than reducing the model to one ROI. It was

found that the variability in experiment measurements is most likely due to differences in

resting state temperatures throughout the brain. Since each voxel is at a slightly different

temperature, the same change in the BOLD response may result in different changes in

temperature. Additionally, it was found through the model that a thin (4–6 mm) region of

outer cortical tissue is at a resting temperature below the blood temperature. In this region,

an increase in brain activity (inducing an increase in CBF) will warm the tissue. Thus, with

the same BOLD response, tissue may either be warmed or cooled depending on it’s proximity

to the surface of the head.

The biggest shortcoming of our model is that we are unable to independently compare

our calculations with experimental measurements of temperature and BOLD response. It

was not possible for us to do this because there is currently not a method for non-invasively

measuring temperature independent of an fMRI. An improvement to the model could also

be gained by a more accurate method of CMRO2 and CBF calculations from the BOLD

response. The current method uses empirically fit formulas, so the accuracy is limited by

31



the data used for the fitting. A model that does not rely on experimental data would be

ideal. The calculations could also be improved by segmenting the head into more tissue

types. We used six tissue types, but the use of more would further improve the calculations

since each tissue type has different physiological parameters (thermal conduction, baseline

heat production, etc.). A separate line of research that could be pursued would be a model

for calculating brain temperature changes from fNIRS data. Both fNIRS and fMRI BOLD

response detect changes in local tissue oxygenation, so it should be possible to adapt our

model to use fNIRS data. If such a model existed, calculations from it and our model could

be compared to refine both models.

Although it is expected that the contribution would be negligible [58], our model does

not take into account the effects of perspiration. It would likely not affect the change in

temperature greatly because it takes place a couple of centimeters away from brain tissue.

Another physiological affect not account for is temperature regulation by the pre-optic nu-

cleus of the anterior hypothalamus [17]. It is responsible for balancing heat production and

dissipation [59] and if the model were applied to cases where extreme brain temperatures

are created then it would be important to account for how this would react.

How human brain temperature is affected by changes in local brain activity is not well

understood because the changes are small and current experimental measurement techniques

may require invasive procedures. Models such as the one proposed here allow for brain

temperature to be understood through non-invasive measurements such as the fMRI BOLD

response.
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[16] Hubert K. F. Trübel, Laura I. Sacolick, and Fahmeed Hyder. Regional temperature

34



changes in the brain during somatosensory stimulation. Journal of Cerebral Blood Flow

& Metabolism, 26:68–78, 2006.

[17] Gianluca Bertolizio, Linda Mason, and Bruno Bissonnette. Brain temperature: heat

production, elimination and clinical relevance. Pediatric Anesthesia, 21(4):347–358,

2011.
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Appendix A Code

The following sections include the code used. It was written for Matlab R2011b and requires

SPM8 to run. Additionally, it is recommended that you have at least 4 GB of RAM in order

to work with the large datasets that are produced. For information about how to visualize

the data produced, see appendix B. All of the code is available through the temptools github

page (https://github.com/greggroth/temptools). Additionally, many of the tasks can

be completed using the temptools gui (Figs. (A.1) - (A.4)) which can be invoked by running

temptools

at the Matlab command prompt (make sure the temptools directory and subdirectories have

been added to the Matlab path). The procedure used is explained in section 2.2 and a

graphical representation is available in Fig. 2.1.
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Figure A.1 The main window of temptools. From here, you can go through the calculation
steps and launch the visualization tool.
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Figure A.2 This is the interface for calculating the equilibrium temperature (method ex-
plained in appendix A.3) under certain conditions.
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Figure A.3 The interface for calculating temperature changes when blood flow and
metabolism are time dependent. This can be achieved by either loading metabolism and
blood flow datasets or by using generated activity.
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Figure A.4 Visualize your data using the temptools visualization window. This loads all of
the required data and launches a slice browser or tsliceplot (see appendix B for more details).
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A.1 Creating the Head Matrix

Before any calculations can be done, a matrix containing tissue-specific parameters must be

created. First, a T1 contrast image should be segmented using SPM8 (http://www.fil.

ion.ucl.ac.uk/spm/software/spm8/). For ease of consistency, the one provided by SPM8

in ./canonical/ is best to use. Using SPM’s “New Segmentation” algorithim will segment the

image into five different tissue types (gray matter, white matter, cerebral spinal fluid, soft

tissue and bone). Once this is complete, run ImportSegmentedT1() within this directory and

it will return a matrix that has been populated with the tissue-specific parameters required

for accurate temperature calculations. The functions fillAir() (A.1.2), fillHoles() (A.1.3),

build skin() (A.1.4) and repair headdata() (A.1.5) are functions required by BulkImport-

NII(). More information about this procedure is in section 2.2.1.

A.1.1 ImportSegmentedT1()

1 function [ total ] = ImportSegmentedT1(varargin)

2 % ImportSegmentedT1 Import NII files from a directory

3 % Must be run within the directory containing the files

4 %

5 % Output: head data as single with variables stored in the 4th

6 % dimension.

7 %

8 % Author: Greggory Rothmeier (greggroth@gmail.com)

9 % Georgia State University

10 % Created: 5/31/11

11

12 statusbar = waitbar(0,’Initializing ’);

13

14 if size(varargin) == 1

15 oldFolder = cd(varargin {1});
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16 end

17

18

19 % =====================

20 % = Tissue Parameters =

21 % =====================

22 % Each tissue type is assigned an integer index (i.e. gray matter

-> 11)

23 % such that tissue -specific parameters can be found by looking at

24 % that element within the corresponding storage matrix

25 % (i.e. QmSTORE (11) -> gray matter Qm)

26

27 % Parameters taken from Colins , 2004

28

29 tisorder = [11 15 5 13 3]; % Using: [GM WM CSF Muscle Bone]

30

31 QmSTORE = [0 0 26.1 11600 0 26.1 697 0 0 302 15575 0 697 1100

5192];

32 cSTORE = [1006 4600 2110 3640 3800 1300 3720 3000 4200 2300 3680

3500 3720 3150 3600];

33 rhoSTORE = [1.3 1057 1080 1035.5 1007 1850 1126 1076 1009 916

1035.5 1151 1041 1100 1027.4];

34 kSTORE = [0.026 0.51 0.65 0.534 0.5 0.65 0.527 0.4 0.594 0.25 0.565

0.4975 0.4975 .342 .503];

35 wSTORE = [0 1000 3 45.2 0 1.35 40 0 0 2.8 67.1 3.8 3.8 12 23.7];

36

37 % =====================================

38 % = Import the pre -segmented T1 files =

39 % =====================================
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40 % The T1 contrast image sould be segmented using SPM8.

41 % This loop needs to complete before the next one can begin

42 % Import all of the datat and store as ’cdat1 ’,’cdat2 ’, etc.

43 for i = 1:5

44 eval(strcat(’dat’,num2str(i),’ = loadNII(’’rc’, num2str(i), ’

single_subj_T1.nii’’);’))

45 % Preallocate

46 eval(strcat(’out’, num2str(i),’ = zeros(cat(2,size(dat’,

num2str(i),’) ,7));’))

47 end

48

49 % ============================

50 % = Populate the head matrix =

51 % ============================

52 % For each data file , it fills in the data from the data storage

53 % arrays for that particular type of tissue. It picks which

54 % ever tissue is the most likely candidate for that voxel based

55 % on the segmented data

56

57 % PROBLEM: It returns 0 (later filled with air) if there is

58 % equal probability of a voxel being two or more different types

59 % of tissue.

60 % SOLVED BY fillHoles ()

61

62

63 for i = 1:5

64 % Preallocate

65 holder = zeros(cat(2,size(dat1) ,7),’single ’);

66 mask = zeros(size(dat1));
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67 final = zeros(size(holder),’single ’);

68

69 % Create a mask that indicates whether it is the mostly likely

tissue type

70 guide = [1 2 3 4 5 1 2 3 4 5]; % This guides it through the

data correctly

71 eval(strcat(’mask = (dat’,num2str(i),’>dat’,num2str(guide(i+1))

,’) & (dat’,num2str(i),’>dat’,num2str(guide(i+2)),’) & (dat’,

num2str(i),’>dat’,num2str(guide(i+3)),’) & (dat’,num2str(i),’

>dat’,num2str(guide(i+4)),’) & (dat’,num2str(i),’~=0);’))

72 % move structure data to new matrix

73 holder (:,:,:,1) = mask;

74 % get indicies of tissues

75 a = find(holder (:,:,:,1) == 1);

76 % gets coordinates from index

77 [x y z t] = ind2sub(size(holder),a);

78

79 % go to each tissue point and store the info

80 for j = 1: length(a)

81 final(x(j),y(j),z(j) ,:) = [tisorder(i) 0 QmSTORE(tisorder(i

)) cSTORE(tisorder(i)) rhoSTORE(tisorder(i)) kSTORE(

tisorder(i)) wSTORE(tisorder(i))];

82 end

83

84 % Saves the result to a unique output variable (out1 , out2 ,

etc)

85 eval(strcat(’out’,num2str(i),’= final;’))

86

87 clearvars a x y z t holder final;
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88 waitbar(i/6,statusbar ,sprintf ([’File ’,num2str(i),’ Import

Compete ’]));

89 end

90

91 % The filleAir () function checks for any voxels which were not

92 % assigned a tissue type and fills them in with air

93 almostthere = fillAir(out1+out2+out3+out4+out5);

94 % The fillHoles () function corrects for a voxel having two

95 % equally -probable tissue types

96 total = single(buildskin(fillHoles(dat1 ,dat2 ,dat3 ,dat4 ,dat5 ,

almostthere)));

97 waitbar(1,statusbar ,’Saving Data’)

98

99 cd(oldFolder);

100 close(statusbar);

101

102 end

A.1.2 fillAir()

1 function [ output ] = fillAir( tissue )

2 % fillAir () fills gaps in data with air

3 % Once you import all of the data using loadNII (), run it though

4 % this to fill in the remaining spaces with air.

5

6 airdata = [1 0 0 1006 1.3 0.026 0];

7

8 % Picks out air spots

9 a = find(tissue (:,:,:,1) == 0);

10 [x y z t] = ind2sub(size(tissue),a);
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11

12 for i = 1: length(a)

13 tissue(x(i),y(i),z(i) ,:) = airdata;

14 end

15

16 output = tissue;

17 end

A.1.3 fillHoles()

1 function [ out_head ] = fillHoles( in1 ,in2 ,in3 ,in4 ,in5 ,headin)

2 % fillHoles () checks for misassigned voxels

3 %

4 % Solves an issue where a voxel with two equally probable tissue

5 % types resulted in being assigned as air. This checks for air

6 % voxels that are surrounded by tissue and decides a tissue it

7 % it would be best suited as

8

9 % I only need the tissue indices so this makes things easier down

the line

10 head = squeeze(headin (:,:,:,1));

11

12 %% Data Storage

13 QmSTORE = [0 0 26.1 11600 0 26.1 697 0 0 302 15575 0 697 1100

5192];

14 cSTORE = [1006 4600 2110 3640 3800 1300 3720 3000 4200 2300 3680

3500 3720 3150 3600];

15 rhoSTORE = [1.3 1057 1080 1035.5 1007 1850 1126 1076 1009 916

1035.5 1151 1041 1100 1027.4];
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16 kSTORE = [0.026 0.51 0.65 0.534 0.5 0.65 0.527 0.4 0.594 0.25 0.565

0.4975 0.4975 .342 .503];

17 wSTORE = [0 1000 3 45.2 0 1.35 40 0 0 2.8 67.1 3.8 3.8 12 23.7];

18

19 %% Get locations of holes

20 % Where two tissue types have the same probability

21

22 idx1 = (in1==in2 | in1 == in3 | in1==in4 | in1==in5) & logical(in1)

;

23 idx2 = (in1==in2 | in2 == in3 | in2==in4 | in2==in5) & logical(in2)

;

24 idx3 = (in1==in3 | in2 == in3 | in3==in4 | in3==in5) & logical(in3)

;

25 idx4 = (in1==in4 | in2 == in4 | in3==in4 | in4==in5) & logical(in4)

;

26 idx5 = (in1==in5 | in2 == in5 | in3==in5 | in4==in5) & logical(in5)

;

27 % This array will have a zero anywhere there were two or more

28 % common elements between any of the five arrays.

29 idx = idx1|idx2|idx3|idx4|idx5;

30

31 [xmax ymax zmax] = size(in1)

32 [x y z] = ind2sub(size(in1),find(idx)); % get x, y and z

coordinates of the holes

33

34 for i = 1: length(x) % go to each hole and do work

35 if (x(i)~=1) &&(y(i)~=1) &&(z(i)~=1) &&(x(i)~=xmax)&&(y(i)~=ymax)

&&(z(i)~=zmax)&&( headin(x(i),y(i),z(i) ,1)==1) % keeps away

from the edge and only looks at voxels that were assigned air
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36 [commonesttissue nouse secondbest] = mode([head(x(i)+1,y(i)

,z(i)) head(x(i)-1,y(i),z(i)) head(x(i),y(i)+1,z(i)) head

(x(i),y(i) -1,z(i)) head(x(i),y(i),z(i)+1) head(x(i),y(i),

z(i) -1)]);

37 % if air and something else are equally common , it’ll

choose air. This forces it to pick the tissue if

possible.

38 if commonesttissue == 1 && length(secondbest {1}) >=2

39 commonesttissue = secondbest {1}(2);

40 end

41 headin(x(i),y(i),z(i) ,:) = [commonesttissue 0 QmSTORE(

commonesttissue) cSTORE(commonesttissue) rhoSTORE(

commonesttissue) kSTORE(commonesttissue) wSTORE(

commonesttissue)];

42 end

43 end

44

45 out_head = headin;

46

47 end

A.1.4 build skin()

1 function [ head_out ] = build_skin( head_in )

2 % build_skin () Creates a layer of skin around the head

3 %

4 % This will check all voxels that were previously labeled

5 % as soft tissue and checks if it has a neighbor which is air.

6 % If so , then it is reassigned as skin.

7
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8 if ndims(head_in)==4

9 head_in = head_in (:,:,:,1);

10 end

11

12 % Git a list of all voxels labeled as muscle

13 muscle_voxels = find(head_in ==13);

14

15 % Go through each of them and check for neighboring air voxels

16 for i=1: length(muscle_voxels)

17 [x y z] = ind2sub(size(head_in), muscle_voxels(i));

18 % makes sure we’re not at a voxel at the boundry of the dataset

19 if (x~=1) && (x~=size(head_in ,1)) && (y~=1) && (y~=size(head_in

,2)) && (z~=1) && (z~=size(head_in ,3))

20 % Looks for neighboring voxels that are air

21 if (( head_in(x+1,y,z)==1) || (head_in(x-1,y,z)==1) || (head_in

(x,y+1,z)==1) || (head_in(x,y-1,z)==1) || (head_in(x,y,z+1)

==1) || (head_in(x,y,z-1) ==1))

22 head_in(x,y,z) = 14;

23 end

24 end

25 end

26

27 head_out = repair_headdata(head_in);

28

29 end

A.1.5 repair headdata()

This function will go through the dataset and make sure the tissue-specific parameters are

correct for the tissue type assigned for that voxel. fillAir(), fillHoles() and build skin() all
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correct mislabeled voxels, but they only correct the tissue assignment. After using any

of these functions, the data must be passed through repair headdata to update the stored

parameters.

1 function [ head_out ] = repair_headdata( head_in )

2 % repaid_headdata repopulates the headdata matrix

3 % If any changes are made to the index column in the headdata

4 % matrix , use this function to repopulate and correct the

5 % parameter values before running any other functions.

6 % head_in can be either 3 or 4 dimenisions

7

8

9 % =====================

10 % = Parameter Storage =

11 % =====================

12

13 QmSTORE = [0 0 26.1 11600 0 26.1 697 0 0 302 15575 0 500 1100

5192];

14 cSTORE = [1006 4600 2110 3640 3800 1300 3720 3000 4200 2300 3680

3500 3010 3150 3600];

15 rhoSTORE = [1.3 1057 1080 1035.5 1007 1850 1126 1076 1009 916

1035.5 1151 978.5 1100 1027.4];

16 kSTORE = [0.026 0.51 0.65 0.534 0.5 0.65 0.527 0.4 0.594 0.25 0.565

0.4975 0.3738 .342 .503];

17 wSTORE = [0 1000 3 45.2 0 1.35 40 0 0 2.8 67.1 3.8 3.3 12 23.7];

18

19 if ndims(head_in)==4

20 head_in = head_in (:,:,:,1);

21 end

22
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23 % Reassign the parameter values

24 head_out = cat(4,head_in , zeros(size(head_in)), QmSTORE(head_in),

cSTORE(head_in), rhoSTORE(head_in), kSTORE(head_in), wSTORE(

head_in));

25

26 end
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A.2 Loading the fMRI Data

The following sections details the processing required to convert the BOLD data (in NIFTI

format) to metabolism and blood flow time-courses that can then be used to calculate tem-

perature.

A.2.1 sample bold import()

The following code automates the procedure of processing and doing all the calculations on

the dataset reported in Dhamala et al. [39]. It’s is written for my data on my machine, but it

can be used to gain a better understanding of the procedure. For a conceptual explanation,

see section 2.2.3.

1 %%================================================================

2 %% How to process preprocessed BOLD data to calculate temperature

3 %%================================================================

4

5 % This Matlab script was used to automate the the process of using

6 % BOLD data stored in NIFTI (*.nii) format to calculate temperature

7 % changes. The particulars of the code may be specific to this

8 % case , but the procedure should be the same when doing these

9 % calculations on other datasets. All required functions are

10 % included as an attachment to my thesis and are available on my

11 % github (https :// github.com/greggroth/tempcalc)

12

13 cd(’/Users/Greggory/Documents/Data/fmri_rhythmic_tapping01/NIFTI’)

14

15 directories = dir(’*01’);

16

17 %% Move coregistered files to new Directory

18 for i = 1: length(directories)
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19 dir_name = directories(i).name;

20 main_path = cd( [dir_name filesep dir_name ’_NIFTI_1 ’] );

21 mkdir ’Coregistered ’

22 movefile(’r*.nii’,’Coregistered ’)

23 main_path = cd( [dir_name filesep dir_name ’_NIFTI_2 ’] );

24 mkdir ’Coregistered ’

25 movefile(’r*.nii’,’Coregistered ’)

26 cd(main_path)

27 end

28

29 %% Calculate Rest State

30 disp(’Calculating Rest State’)

31 for i = 1: length(directories)

32 dir_name = directories(i).name;

33 avg_NII_rest ([ dir_name filesep dir_name ’_NIFTI_1 ’ filesep ’

Coregistered ’]);

34 avg_NII_rest ([ dir_name filesep dir_name ’_NIFTI_2 ’ filesep ’

Coregistered ’]);

35 end

36

37

38 %% Normalize to Rest and Mask

39 disp(’Normalize to Rest and Mask’)

40 for i = 1: length(directories)

41 dir_name = directories(i).name;

42 avg_NII_normalize ([ dir_name filesep dir_name ’_NIFTI_1 ’ filesep

’Coregistered ’], fullfile(dir_name , [dir_name ’_NIFTI_1 ’], ’

Coregistered ’, ’RestState ’, ’RestStateAvg.nii’), ’

fullBrainMask.nii’);
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43 avg_NII_normalize ([ dir_name filesep dir_name ’_NIFTI_2 ’ filesep

’Coregistered ’], fullfile(dir_name , [dir_name ’_NIFTI_2 ’], ’

Coregistered ’, ’RestState ’, ’RestStateAvg.nii’), ’

fullBrainMask.nii’);

44 end

45

46

47 %% Calculate metabolism and blood flow change

48 disp(’Calculate metabolism and blood flow change ’)

49 for i = 1: length(directories)

50 dir_1 = [ directories(i).name filesep directories(i).name ’

_NIFTI_1 ’ filesep ’Coregistered ’ filesep ’Normalized_to_rest ’

];

51 dir_2 = [ directories(i).name filesep directories(i).name ’

_NIFTI_2 ’ filesep ’Coregistered ’ filesep ’Normalized_to_rest ’

];

52 BOLDtoMF(dir_1);

53 BOLDtoMF(dir_2);

54 end

55

56

57 %% Calculate the change in temperature based on metabolism and

58 % blood flow

59

60 % load(’equil.mat ’); % equillibriumT

61 % load(’tt_headdata.mat ’); % headdata

62 mask = loadNII(’fullBrainMask.nii’);

63

64 for i = 1: length(directories)
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65 disp([ int2str(i) ’-1 started ’])

66 tic

67 % Part I

68 actResult.dat = tempCalcDynMF(headdata , 37, 24, 720, 360,

equillibriumT , ...

69 fullfile(directories(i).name ,[ directories(i).name ’_NIFTI_1

’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -Sep

-2011’, ’m.mat’), ...

70 fullfile(directories(i).name ,[ directories(i).name ’_NIFTI_1

’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -Sep

-2011’, ’f.mat’), ...

71 4, mask);

72 % Store the parameters used for the calculations for reference

in the future

73 [c lmax] = max(actResult.dat(:));

74 [likelymax x y z] = ind2sub(size(actResult.dat),lmax);

75 actResult.likelymaxslice = round(likelymax /2);

76 actResult.bloodT = 37;

77 actResult.airT = 24;

78 actResult.tmax = 360;

79 actResult.stepf = 2;

80 actResult.savestepf = 4;

81 actResult.metabandflowdata = ’From Dataset ’;

82 save(fullfile(directories(i).name ,[ directories(i).name ’

_NIFTI_1 ’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -

Sep -2011’,’tt_act_res.mat’), ’actResult ’);

83 old = cd([ directories(i).name ,filesep ,[ directories(i).name ’

_NIFTI_1 ’],filesep ,’Coregistered ’, filesep ,’

Normalized_to_rest ’, filesep ,’Output_18 -Sep -2011 ’]);
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84 writeT_to_nii(actResult , equillibriumT , exp_nii);

85 cd(old)

86 clear actResult

87 % Part II

88 disp([ int2str(i) ’-2 started ’])

89 actResult.dat = tempCalcDynMF(headdata , 37, 24, 720, 360,

equillibriumT , ...

90 fullfile(directories(i).name ,[ directories(i).name ’_NIFTI_2

’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -Sep

-2011’, ’m.mat’), ...

91 fullfile(directories(i).name ,[ directories(i).name ’_NIFTI_2

’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -Sep

-2011’, ’f.mat’), ...

92 4, mask);

93 [c lmax] = max(actResult.dat(:));

94 [likelymax x y z] = ind2sub(size(actResult.dat),lmax);

95 actResult.likelymaxslice = round(likelymax /2);

96 actResult.bloodT = 37;

97 actResult.airT = 24;

98 actResult.tmax = 360;

99 actResult.stepf = 2;

100 actResult.savestepf = 4;

101 actResult.metabandflowdata = ’From Dataset ’;

102 save(fullfile(directories(i).name ,[ directories(i).name ’

_NIFTI_2 ’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -

Sep -2011’,’tt_act_res.mat’), ’actResult ’);

103 old = cd([ directories(i).name ,filesep ,[ directories(i).name ’

_NIFTI_2 ’],filesep ,’Coregistered ’, filesep ,’

Normalized_to_rest ’, filesep ,’Output_18 -Sep -2011 ’]);
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104 writeT_to_nii(actResult , equillibriumT , exp_nii);

105 cd(old)

106 clear actResult

107 disp([ int2str(i) ’ finished in ’ num2str(toc)])

108 end

A.2.2 avg NII rest()

1 function [ ] = avg_NII_rest( varargin )

2 % Collects datasets which are part of the

3 % resting state and averages them together to

4 % give a resting -state image

5 %

6 % THIS MUST BE EDITED TO WORK

7 % This is written for my data and you should read

8 % and understand what it is doing before you use it.

9 % It will almost certainly require some editing

10 % to select the right range of data.

11

12 %% Setup

13 switch length(varargin)

14 case 0

15 fold_name = uigetdir;

16 if ~fold_name % Cancel Button

17 return

18 end

19 case 1

20 fold_name = varargin {1};

21 otherwise

22 end
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23

24 % Go to the folder containing the files

25 oldfold = cd(fold_name);

26 file_list = dir(’*.nii’);

27

28 % Select resting state images

29 % (first and last 10 steps in my case).

30 % EDIT THIS TO FIT YOUR CASE

31 file_list = file_list ([1:10 170:180]);

32 file_count = length(file_list);

33

34 % Cell array to store all of the datasets in.

35 datHolder = cell(file_count ,1);

36

37 statusbar = waitbar(0,’Initializing ’);

38

39 for j=1: file_count

40 try

41 waitbar(j/file_count ,statusbar ,sprintf(’%d%%’,round((j/

file_count)*100)));

42 catch err

43 return

44 end

45 fi = load_nii(file_list(j).name);

46 datHolder{j} = fi.img;

47 end

48

49 %% Calculate the mean

50 ymax = size(datHolder {1} ,2);
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51 zmax = size(datHolder {1} ,3);

52 output = zeros(size(datHolder {1}));

53

54 for i=1: ymax

55 try

56 waitbar(i/ymax ,statusbar ,sprintf(’%d%%’,round((i/ymax)*100)

));

57 catch err

58 return

59 end

60 for k=1: zmax

61 excStr = cell(length(datHolder) ,1);

62 for l=1: length(datHolder)

63 excStr{l} = [’,datHolder{’ int2str(l) ’}(:,’ int2str(i)

’,’ int2str(k) ’)’’’];

64 end

65 comb = eval([’cat(1’ cell2mat(excStr ’) ’)’]);

66 output(:,i,k) = mean(comb);

67 end

68 end

69

70 close(statusbar)

71

72 fi.img = output;

73 mkdir(’RestState ’)

74 save_nii(fi,fullfile(’RestState ’,’RestStateAvg.nii’));

75

76 cd(oldfold)

77 end
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A.2.3 avg NII normalize()

1 function [ ] = avg_NII_normalize( varargin )

2 % Uses the resting -state image calculated using

3 % avg_NII_rest () to normalize the rest of the data

4

5 % If no inputs are given , the "open file ..." UI will

6 % prompt for the required information.

7

8 %% Setup

9 switch length(varargin)

10 case 0

11 fold_name = uigetdir(’Directory Containing Data’);

12 if ~fold_name % Cancel Button

13 return

14 end

15

16 [rest_file rest_path rest_index ]= uigetfile(’*.nii’,’

Resting State NIFTI File’);

17 switch rest_index

18 case 0

19 return

20 case 1

21 rest_dat = load_nii(fullfile(rest_path ,rest_file));

22 rest_dat = double(rest_dat.img);

23 otherwise

24 error(’An error has occured loading the resting

state data’)

25 end
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26

27 [mask_file mask_path mask_index] = uigetfile(’*.nii’,’Mask’

);

28 switch mask_index

29 case 0

30 return

31 case 1

32 mask_dat = load_nii(fullfile(mask_path , mask_file))

;

33 mask_dat = logical(mask_dat.img);

34 if max(size(mask_dat) ~= size(rest_dat))

35 error(’The Mask and Resting State files must

have the same size’)

36 end

37 otherwise

38 error(’An error has occured loading the resting

state data’)

39 end

40 case 1

41 fold_name = varargin {1};

42 [rest_file rest_path rest_index ]= uigetfile(’*.nii’,’

Resting State NIFTI File’);

43 switch rest_index

44 case 0

45 return

46 case 1

47 rest_dat = load_nii(fullfile(rest_path ,rest_file));

48 rest_dat = double(rest_dat.img);

49 otherwise
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50 error(’An error has occured loading the resting

state data’)

51 end

52 case 2

53 fold_name = varargin {1};

54 rest_dat = loadNII(varargin {2});

55 [mask_file mask_path mask_index] = uigetfile(’*.nii’,’Mask’

);

56 switch mask_index

57 case 0

58 return

59 case 1

60 mask_dat = load_nii(fullfile(mask_path , mask_file))

;

61 mask_dat = logical(mask_dat.img);

62 if max(size(mask_dat) ~= size(rest_dat))

63 error(’The Mask and Resting State files must

have the same size’)

64 end

65 otherwise

66 error(’An error has occured loading the resting

state data’)

67 end

68 case 3

69 fold_name = varargin {1};

70 rest_dat = loadNII(varargin {2});

71 mask_dat = loadNII(varargin {3});

72 otherwise

73 return
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74 end

75

76 % Go to the folder containing the files

77 oldfold = cd(fold_name);

78 file_list = dir(’*.nii’);

79 file_count = length(file_list);

80

81 % Make a directoy to save the normalized data to

82 saveDir = ’Normalized_to_rest ’;

83 if ~isdir(saveDir)

84 mkdir(saveDir);

85 end

86

87 statusbar = waitbar(0,’Initializing ’);

88

89 % for each file: load it, devide by the rest state and save it

90 for i=1: file_count

91 try

92 waitbar(i/file_count ,statusbar ,[ fold_name sprintf(’%d%%’,

round((i/file_count)*100))]);

93 catch err

94 return

95 end

96 [file_path file_name file_ext] = fileparts(file_list(i).name);

97 file_hold = load_nii(file_list(i).name);

98 file_hold.img = double(file_hold.img)./ rest_dat - 1;

99 file_hold.img(~ mask_dat) = 0; % set everything

outside the mask to 0

100 file_hold.img(isnan(file_hold.img)) = 0; % set all NaN ’s to 0
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101 file_hold.img(isinf(file_hold.img)) = 0; % set all inf ’s to 0

102 file_hold.img(file_hold.img == -1) = 0; % correct these for

voxels that are giving me problems

103 file_hold.hdr.dime.datatype = 16; % set the datatype to single

104 file_hold.hdr.dime.bitpix = 16;

105 save_nii(file_hold ,fullfile(saveDir ,[ file_name ’_rn’ file_ext ])

)

106 end

107

108 close(statusbar)

109 cd(oldfold)

110

111 end

A.2.4 BOLDtoMF()

1 function [ ] = BOLDtoMF( varargin)

2 %BOLDtoMF Calculate metabolism and blood from from BOLD reponse

3 %

4 % Input: Directory containing a series of *.nii files of the BOLD

5 % response.

6 %

7 % Output: Two new files will be created in a new subdirectory

8 % with a variable for each time step.

9 %

10 % Usage:

11 % BOLDtoMF

12 % BOLDtoMF(directory)

13 %

14 % If a directory is not provided , one will be requested.

69



15 %

16 % Method from Sotero , et. al. 2011

17

18 % =========

19 % = Setup =

20 % =========

21 % if a folder isn ’t an argument , it’ll prompt for one

22 switch length(varargin)

23 case 0

24 fold_name = uigetdir;

25 if ~fold_name % Cancel Button pressed

26 return

27 end

28 case 1

29 fold_name = varargin {1};

30 otherwise

31 error(’Input is not understood ’)

32 end

33

34 % Go to the folder containing the files

35 oldfold = cd(fold_name);

36 file_list = dir(’*.nii’);

37 file_count = length(file_list);

38

39 % Set up a directory for the outputs

40 newFolder = [’Output_ ’,datestr(clock ,1)];

41 mkdir(newFolder)

42

43 % Make *.mat files to append the data to

70



44 m0001 = 0; f0001 = 0;

45 save([’./’ newFolder ’/m.mat’],’m0001’);

46 save([’./’ newFolder ’/f.mat’],’f0001’);

47

48 s = loadNII(file_list (1).name);

49 norm = ones(size(s));

50

51 % ===========

52 % = Do Work =

53 % ===========

54 % This will calculate the metabolism and blood flow. The output is

55 % appended to ’m.mat ’ and ’f.mat ’ within a new folder created

56 % within the directory containing the data.

57

58 statusbar = waitbar(0,’Initializing ’);

59

60 maxBOLD = 0.22;

61

62 % Required Parameters

63 % [alpha beta a b c A ]

64 p = [0.4 1.5 0.1870 0.1572 -0.6041 maxBOLD ];

65

66 % Calc flow and metabolism for when BOLD = 1

67 s = 0;

68 y = -((p(4)*p(2))/(p(1)+p(2)*p(5)))*((p(6)-s)/(p(6)*p(3)^p(2)))

^(1/(p(1)+p(2)*p(5)));

69 fNOACT = -((p(1)+p(2)*p(5))/(p(4)*p(2)))*lambertw(y);

70 mNOACT = p(3)*fNOACT ^(p(5) +1)*exp(-p(4)*fNOACT);

71
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72

73 %% Calc flow and metabolism

74 disp(fold_name)

75 for j=1: file_count

76 try

77 waitbar(j/file_count , statusbar , sprintf(’%d%%’, round((j/

file_count)*100)));

78 catch err

79 return

80 end

81 s = loadNII(file_list(j).name); % Load up the file

82 s(isnan(s)) = 1;

83 s(isinf(s)) = 1;

84 y = -((p(4)*p(2))/(p(1)+p(2)*p(5))).*((p(6)-s)./(p(6)*p(3)^p(2)

)).^(1/(p(1)+p(2)*p(5)));

85 if (size(y,1) ==91) &&( size(y,2) ==109) &&( size(y,3) ==91)

86 f = -((p(1)+p(2)*p(5))/(p(4)*p(2))).* lambw_mex(real(y));

87 else

88 f = -((p(1)+p(2)*p(5))/(p(4)*p(2))).*lambw(y);

89 end

90 m = p(3)*f.^(p(5)+1).*exp(-p(4)*f);

91 % Clean up NaNs that may have popped up

92 m(isnan(m))=1;

93 f(isnan(f))=1;

94 % Normalize to resting m and f

95 m = m./ mNOACT;

96 f = f./ fNOACT;

97

98 % Rename and save the data
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99 eval([’m’ sprintf(’%04d’,j) ’ = m;’]);

100 eval([’f’ sprintf(’%04d’,j) ’ = f;’]);

101 eval([’save(’’./’ newFolder ’/m.mat’’, ’’m’ sprintf(’%04d’,j) ’

’’,’’-append ’’);’]);

102 eval([’save(’’./’ newFolder ’/f.mat’’, ’’f’ sprintf(’%04d’,j) ’

’’,’’-append ’’);’]);

103 clear m0* f0*

104 end

105

106 close(statusbar)

107 cd(oldfold)

108 end

A.2.5 lambw() and lambw mex()

The lambw() function is a wrapper for the wapr() function available on Matlab FileExchange

(http://www.mathworks.com/matlabcentral/fileexchange/3644-real-values-of-the-lambert-w-function/

content/Lambert/wapr.m). A compiled version of this function (lambw mex()) runs much

faster and is recommended. This function is used over Matlab’s built-in Lambert-W function

for the sake of performance.

1 function [ array_out ] = lambw( array_in )

2 % lambw Wrapper for wapr()

3 % Available: http ://www.mathworks.com/matlabcentral/fileexchange

/3644 -real -values -of -the -lambert -w-function/content/Lambert/wapr.

m

4 % Dwapr () doesn ’t work any arrays over Nx1 , so this steps through

5 % the full matrix and gives the rows to wapr. Works pretty fast.

6 %#codegen

7

8 if ndims(array_in) ~= 3
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9 error(’This only works (for now) with a three dimensional array

.’)

10 end

11

12 xmax = size(array_in ,1);

13 ymax = size(array_in ,2);

14

15 array_out = zeros(size(array_in));

16 for ix=1: xmax

17 for iy=1: ymax

18 array_out(ix,iy ,:) = wapr(array_in(ix,iy ,:));

19 end

20 end

21 end
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A.3 Calculating the Equilibrium Temperature

In order to determine the temperature fluctuations due to changes in activity, the baseline

temperature must first be established for each voxel. The function tempCalcEquilibrium()

will update the temperature using the Penne’s bioheat equation (Eq. (2.4)) until the change

in temperature for each voxel falls below a certain threshold. Details about this procedure

are available in section 2.2.2.

A.3.1 tempCalcEquilibrium()

1 function temperature_Out = tempCalcEquillibrium(tissue ,bloodT ,airT ,

nt,tmax ,pastCalc ,printprogress)

2 % tempCalcEquillibrium Find the equillibrium values

3 % tissue: holds all of the strucual information

4 % bloodT: Temperature of the blood

5 % airT: Temperature of the surrounding ait

6 % nt: Max number of time steps

7 % tmax: Total amount of time the simulation should run over

8 %

9 % This is based off of tempCalc () but loops until the rate of

10 % change of a each voxel is sufficiently small then outputs

11 % what ’s calculated. If if takes too long to do all at once ,

12 % split it up into smaller time chunks and use the last step

13 % from the previous dataset as pastCalc in order to resume.

14 %

15 % Note: This does not save the time corse because it can take

16 % a lot of step to find the equillibrium. It outputs the last

17 % time step.

18 %

19 % Writen by Greggory Rothmeier (greggroth@gmail.com)
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20 % Georgia State University Dept. Physics and Astronomy

21 % May , 2011

22 tic

23 %% Default Values

24 if nargin <2, bloodT = 37; end

25 if nargin <3, airT = 24; end

26 if nargin <4, nt = 100; end

27 if nargin <5, tmax = 50; end

28 if nargin <6, pastCalc = 0; end

29 if nargin <7, printprogress = 1; end

30

31 % These rescue the data if the calculation is interrupted.

32 global temperature

33 global dirty

34

35 c = onCleanup(@InterCatch);

36 dirty = 1;

37

38 dx = 2*10^ -3; % Voxel size (m)

39

40 if nt <(2* tmax),

41 warning(’Time step size is not large enough. Results will be

unreliable. Consider increasing the number of steps or

reducing tmax.’)

42 end

43

44

45 % Constants used that aren ’t already stored in tissue

46 [xmax ymax zmax t] = size(tissue);
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47 clear t;

48 dt = tmax/(nt -1);

49 % rhoBlood = 1057;

50 % wBlood = 1000;

51 % cBlood = 3600;

52

53 % =========

54 % = Setup =

55 % =========

56 % Starts all tissue voxels at bloodT (default 37) and maintains

57 % air at airT (default 24)

58 % The condition squeeze(tissue (:,:,:,)~= airIndex picks out the

59 % elements that are tissue

60

61 temperature = ones(3,xmax ,ymax ,zmax ,’single ’)*airT;

62 if pastCalc == 0

63 temperature (1,squeeze(tissue (:,:,:,1))~=1) = bloodT;

64 else

65 temperature (1,:,:,:) = pastCalc;

66 end

67 numElements = numel(temperature (1,:,:,:));

68

69 % ===========

70 % = Do Work =

71 % ===========

72 % This is a vectorized version of the next section. For the love

73 % of god don ’t make any changes to this without first looking below

74 % to make sure you know what you ’re changing. This is [nearly]

75 % impossible to understand , so take your time and don ’t break it.
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76 % data is stored in ’tissue ’ as such :

77 % [tissuetype 0 Qm c rho k w]; <-- second element is blank for

all.

78 % [ 1 2 3 4 5 6 7

79

80 averagedk = (circshift(tissue (:,:,:,6) ,[1 0 0])+circshift(tissue

(:,:,:,6) ,[-1 0 0])+circshift(tissue (:,:,:,6) ,[0 1 0])+circshift(

tissue (:,:,:,6) ,[0 -1 0])+circshift(tissue (:,:,:,6) ,[0 0 1])+

circshift(tissue (:,:,:,6) ,[0 0 -1])+tissue (:,:,:,6))/7;

81 rhoblood = 1057;

82 cblood = 3600;

83

84 %% Specify Percision Goal

85 tolerence = 1; % fraction of voxels have a slope less than ’

zeropoint ’

86 zeropoint = 2.5e-7; % point at which the slope between two *steps*

is considered essentially zero

87

88

89 goal = numElements - tolerence*numElements;

90 goon = numElements; % Forces the while loop to run the first time

91 format shortG;

92 % temperature (1,:,:,:) = Current Temperature

93 % temperature (2,:,:,:) = Next Temperature

94 % Resets after each update

95 if printprogress

96 disp([’Goal: ’, num2str(goal),’ remaining voxels ’])

97 end

98 t2 = 1;
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99 while goon (1)>goal && t2 <=nt % runs until either ’goal ’ elements

have a slope greater than ’zeropoint ’ or it exceeds nt

100 if printprogress

101 disp([t2 goon (1) (( numElements -goon (1))/numElements)*100]) %

progress

102 end

103 temperature (2,:,:,:) = squeeze(temperature (1,:,:,:)) + ...

104 dt/( tissue (:,:,:,5).* tissue (:,:,:,4)).* ...

105 (( averagedk/dx^2) .*...

106 (circshift(squeeze(temperature (1,:,:,:)) ,[1 0 0]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[-1 0 0]) +... % shift along x

107 circshift(squeeze(temperature (1,:,:,:)) ,[0 1 0]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[0 -1 0]) +... % shift along y

108 circshift(squeeze(temperature (1,:,:,:)) ,[0 0 1]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[0 0 -1]))... % shift along z

109 -(1/6000)*rhoblood*tissue (:,:,:,7)*cblood .*( squeeze(

temperature (1,:,:,:))-bloodT)+tissue (:,:,:,3));

110 % resets the air temperature back since it’s also modified

111 % above , but it needs to be kept constant throughout the

112 % calculations

113 temperature (2,squeeze(tissue (:,:,:,1))==1) = airT;

114 % checks how quickly the temperature is changing and if it is

115 % close enough to zero to be considered stopped (’zeropoint ’)

116 goon = size(temperature(abs(squeeze(temperature (2,:,:,:)-

temperature (1,:,:,:)))>zeropoint));

117 temperature (1,:,:,:) = temperature (2,:,:,:);
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118 t2 = t2 + 1;

119 end

120

121 temperature_Out = temperature (2,:,:,:);

122 dirty = 0;

123

124 % equilTemperature = temperature_Out;

125 % save(’equil.mat ’,’equilTemperature ’);

126

127 %% To Combine Datasets

128 % use this technique if there are seperate datasets that need

129 % combining

130 % vertcat(squeeze(res1(:,:,:,:)),squeeze(res2 (2:end ,:,:,:)))

131 % Where for all by the first dataset , you need to do the time from

132 % 2:end so that there are no repeats (remember that the last

133 % timestep from the previous dataset serves as the first for the

134 % new one)

135

136

137 time = toc;

138 end

139

140 % Recovers the data if calculation was interrupted

141 function InterCatch

142 global dirty

143 if dirty

144 disp(’Interupt Intercepted. Inprepretating Interworkspace Data

Interfaces.’)

145 global temperature
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146 equillibriumT = temperature;

147 save(’equiltempAbortDump.mat’,’equillibriumT ’);

148 % setappdata(0,’InterpOut ’,temperature);

149 end

150 end
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A.4 Calculating the Temperature Change

The following function takes as inputs the head data matrix (appendix A.1), the metabolism

and blood flow time courses (appendix A.2) and the equilibrium temperatures (appendix A.3)

and calculates the temperature time-course. More details about this algorithm can be found

in section 2.2.4.

A.4.1 tempCalcDynMF

1 function temperatureOut = tempCalcDynMF(tissue ,bloodT ,airT ,nt,tmax ,

pastCalc ,metab ,flow ,savesteps ,region)

2 % tempCalcDynMF How does changing metabolism and blood flow

3 % affect things?

4 %

5 % tissue: holds all of the structual information

6 % bloodT: Temperature of the blood

7 % airT: Temperature of the surrounding air

8 % nt: Number of time steps

9 % tmax: Amount of model time the simulation should span

10 %

11 % region: logical matrix same size as head that is used

12 % as a mask

13 %

14 % Writen by Greggory Rothmeier (greggroth@gmail.com)

15 % Georgia State University Dept. Physics and Astronomy

16 % May , 2011

17

18 statusbar = waitbar(0,’Initializing ’);

19

20 %% Default Values
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21 if nargin <2, bloodT = 37; end

22 if nargin <3, airT = 24; end

23 if nargin <4, nt = 3; end

24 if nargin <5, tmax = 1; end

25 if nargin <6, pastCalc = 0; end

26

27

28 % Length of one side of a voxel (m)

29 dx = 2*10^ -3;

30

31 if nt <(2* tmax),

32 warning(’Time step size is not large enough. Results will be

unreliable. Consider increasing the number of steps or

reducing tmax.’)

33 end

34

35 [xmax ymax zmax t] = size(tissue);

36 clear t;

37 dt = ones([xmax ymax zmax])*(tmax/(nt -1));

38

39 %% Determine Metabolism/Blood Flow Data Storage System

40 if ischar(metab)&& ischar(flow)

41 % if file locations are given rather than data

42 option = 1;

43 else

44 % Preallocate matrices for holding metabolism and blood flow data

45 metabMulti = ones([xmax ymax zmax],’single ’);

46 flowMulti = ones([xmax ymax zmax],’single ’);

47 option = 0;
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48 end

49

50 %% Maps

51 % Creates a map that identifies where there is tissue

52 % the condition squeeze(tissue (:,:,:,)~= airIndex picks out the

53 % elements that are tissue

54

55 tmax = ceil((nt -1)/savesteps);

56 temperatureOut = ones(tmax ,xmax ,ymax ,zmax ,’single ’);

57 temperature = ones(2,xmax ,ymax ,zmax ,’single ’)*airT;

58 if pastCalc == 0

59 temperature (1,squeeze(tissue (:,:,:,1))~=1) = bloodT;

60 else

61 % Starts everything off at the pre -determined equilibium

temperatures

62 temperature (1,:,:,:) = pastCalc(end ,:,:,:);

63 end

64 temperatureOut (1,:,:,:) = temperature (1,:,:,:);

65

66

67 % ===========

68 % = Do Work =

69 % ===========

70 % This is a vectorized version of the next section. For the love

71 % of god don ’t make any changes to this without first looking below

72 % to make sure you know what you ’re changing. This is [nearly]

73 % impossible to understand because it’s been vectorized , so take

74 % your time and don ’t break it. Data is stored in ’tissue ’ as such

:
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75 % [tissuetype 0 Qm c rho k w] <-- second element is blank for all

.

76 % [ 1 2 3 4 5 6 7]

77

78 averagedk = (circshift(tissue (:,:,:,6) ,[1 0 0])+circshift(tissue

(:,:,:,6) ,[-1 0 0])+circshift(tissue (:,:,:,6) ,[0 1 0])+circshift(

tissue (:,:,:,6) ,[0 -1 0])+circshift(tissue (:,:,:,6) ,[0 0 1])+

circshift(tissue (:,:,:,6) ,[0 0 -1])+tissue (:,:,:,6))/7;

79 rhoblood = 1057;

80 cblood = 3600;

81

82 %% Only saves every 4 steps to reduce the final matrix size

83 for t2 = 1:nt -1

84 waitbar(t2/(nt -1),statusbar ,sprintf(’%d%%’,round(t2/(nt -1) *100))

);

85

86 % if a variable needs to be used multiple times for the same time

step.

87 t3 = floor((t2 -1) /4) +1; % 1 1 1 1 2 2 2 2 3 3 . . .

88

89 % if a file is specified , pulls the data from the file for each

step

90 if option

91 eval(strcat(’load(fullfile(metab),’’-mat’’,’’m’,sprintf(’%04

d’,t3),’’’);’));

92 eval(strcat(’load(fullfile(flow),’’-mat’’,’’f’,sprintf(’%04d

’,t3),’’’);’));

93 eval(strcat(’metabMulti = m’,sprintf(’%04d’,t3),’;’));

94 eval(strcat(’flowMulti = f’,sprintf(’%04d’,t3),’;’));
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95 eval(strcat(’clear f’, sprintf(’%04d’,t3),’ m’,sprintf(’%04d

’,t3)))

96 else

97 metabMulti(region) = metab(t2);

98 flowMulti(region) = flow(t2);

99 end

100

101 temperature (2,:,:,:) = squeeze(temperature (1,:,:,:)) + ...

102 dt./( tissue (:,:,:,5).* tissue (:,:,:,4)).* ...

103 (( averagedk/dx^2) .*...

104 (circshift(squeeze(temperature (1,:,:,:)) ,[1 0 0]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[-1 0 0]) +... % shift along x

105 circshift(squeeze(temperature (1,:,:,:)) ,[0 1 0]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[0 -1 0]) +... % shift along y

106 circshift(squeeze(temperature (1,:,:,:)) ,[0 0 1]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[0 0 -1]))... % shift along z

107 -(1/6000)*rhoblood*flowMulti .* tissue (:,:,:,7)*cblood .*(

squeeze(temperature (1,:,:,:))-bloodT)+metabMulti .*

tissue (:,:,:,3));

108 % resets the air temperature back since it’s also modified

above ,

109 % but it needs to be kept constant throughout the calculations

110 temperature (2,squeeze(tissue (:,:,:,1))==1) = airT;

111 temperatureOut(ceil(t2/savesteps) ,:,:,:) = temperature (2,:,:,:)

;

112 temperature (1,:,:,:) = temperature (2,:,:,:);

86



113 clear metabMulti flowMulti

114 end

115 close(statusbar);

116

117 % ============

118 % = Old Code =

119 % ============

120 % This is what used to be used. It’s much slower (~60 times

121 % slower), but it’s much easier to understand compared to the

122 % above code. If any changes need to be made above , first look

123 % through this code to ensure you understand it before making

124 % changes. It’s reallyeasy to mess up the code above and nearly

125 % impossible to figure out where.

126 %

127 % good luck.

128

129 % for t2 = 1:nt -1

130 % for x2 = 2:xmax -1

131 % for y2 = 2:ymax -1

132 % for z2 = 2:zmax -1

133 % if tissue(x2,y2,z2 ,1) ~= 1,

134 % temperature(t2+1,x2,y2,z2) = temperature(t2,

x2,y2,z2) + (dt/( tissue(x2,y2,z2 ,5)*tissue(x2,y2,z2 ,4)))*(( tissue

(x2,y2,z2 ,6)/dx^2) *...

135 % (temperature(t2,x2+1,y2,z2) -2* temperature(

t2,x2,y2,z2)+temperature(t2,x2 -1,y2,z2)+...

136 % temperature(t2,x2,y2+1,z2) -2* temperature(t2

,x2,y2,z2)+temperature(t2,x2,y2 -1,z2)+...
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137 % temperature(t2,x2,y2,z2+1) -2* temperature(t2

,x2,y2,z2)+temperature(t2,x2,y2,z2 -1))...

138 % -(1/6000)*rhoBlood*wBlood*cBlood *(

temperature(t2,x2,y2,z2)-bloodT)+tissue(x2,y2,z2 ,3));

139 % end

140 % end

141 % end

142 % end

143 % end

144

145 end

88



Appendix B Visualization Tools

The temperature data is a four dimensional dataset (time, x, y and z), so good visualizations

tools are necessary to analyzing the results. The primary tool I use is a modification of

SliceBrowser (http://www.mathworks.com/matlabcentral/fileexchange/20604) and is

provided as part of temptools (https://github.com/greggroth/temptools/tree/master/

lib/SliceBrowser). In working with this, I also created a function (TempPlot()) to act as

a wrapper and handle possible plotting situations depending on the number of inputs.

B.1.1 TempPlot()

1 function [ ] = TempPlot( head , tempdata , highlightRegion , slice ,

equil ,threshold ,point)

2 %TempPlot Plot data from tempCalc () or BulkImportNII ()

3 % INPUT TempPlot(structuredata)

4 % TempPlot(structuredata ,temperaturedata)

5 % TempPlot(structuredata ,temperaturedata ,highlightRegion)

6 % TempPlot(structuredata ,temperaturedata ,highlightRegion ,

slice)

7 % TempPlot(structuredata ,temperaturedata ,highlightRegion ,

slice ,EquillibriumData)

8 %

9 % This function with determine which type of data it is and then

10 % plot it appropiately.

11 %

12 % equil - Equillibrium state data

13 % threshold - threshold value for being displayed as an overlay

14 % REQUIRES: SliceBrowser (http ://www.mathworks.com/matlabcentral

/fileexchange /20604)
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15 %% Error checking and data restructuring where necessary

16 if ndims(head) == 4

17 head = head(:,:,:,1);

18 elseif ndims(head) ~= 3

19 error(’Input ’’head’’ must have either 3 or 4 dimensions ’);

20 end

21

22 if nargin > 1

23 if ndims(tempdata) == 3 % should only happen when comparing

two equilibrium datasets

24 temp = tempdata;

25 tempdata = zeros ([1 size(temp)]);

26 tempdata (1,:,:,:) = temp;

27 elseif ndims(tempdata) ~= 4

28 error(’Input ’’tempdata ’’ must have either 3 or 4 dimensions ’

);

29 end

30 tempdataShort = squeeze(tempdata(end ,:,:,:));

31 end

32

33 if nargin > 2

34 if ndims(highlightRegion) ~= 3

35 error(’Input ’’highlightRegion ’’ must have 3 dimensions ’);

36 end

37 if size(highlightRegion) ~= size(head)

38 error(’Input ’’highlightRegion ’’ must be of the same size as

’’head’’’);

39 end

40 tempdataShort = squeeze(tempdata(end ,:,:,:));
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41 end

42

43 if nargin > 3

44 if slice > size(tempdata ,1)

45 error(’Input ’’slice ’’ must be less or equal to the length of

the first dimension of ’’tempdata ’’’);

46 end

47 tempdataShort = squeeze(tempdata(slice ,:,:,:));

48 end

49

50 if nargin > 4

51 if ndims(equil) == 3

52 eq = equil;

53 elseif ndims(equil) == 4

54 eq = squeeze(equil (1,:,:,:));

55 else

56 error(’Input ’’equil’’ must have either 3 or 4 dimensions ’)

;

57 end

58 clear ’equil’;

59 end

60

61 %% Pick how to format the call of SliceBrowser ()

62 switch nargin

63 case 1

64 SliceBrowser(head ,1,head);

65 colormap(gray);

66 case 2

67 SliceBrowser(tempdataShort ,tempdata ,head);
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68 case 3

69 SliceBrowser(tempdataShort ,tempdata ,head ,highlightRegion);

70 case 4

71 SliceBrowser(tempdataShort ,tempdata ,head ,highlightRegion);

72 case 5

73 SliceBrowser(tempdataShort -eq ,tempdata ,head ,highlightRegion);

74 case 6

75 SliceBrowserOverlay(tempdataShort -eq ,tempdata ,head ,

highlightRegion ,threshold);

76 case 7

77 imgoverlay(head ,tempdataShort -eq,point ,threshold)

78 end

79

80 end

B.1.2 tsliceplot

This is a visualization tool I wrote that allows you to view the change in temperature versus

time for a line passing through the head. Screenshots of the tool can be seen in Figs. B.1

and B.2.

Usage:

tsliceplot(temperature_data , equilibrium_temperature_data)

or

tsliceplot(change_in_temperature_data)

The inputs temperature data and change in temperature data should be four dimen-

sional matrices (time, x,y,z) and equilibrium temperature data is also a four dimensional

matrix (1,x,y,z).

The script is available as part of temptools (https://github.com/greggroth/temptools/

tree/master/lib/tsliceplot).
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Figure B.1 Experimental data for activity in the motor cortex visualized with tsliceplot.
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Figure B.2 The same data as is presented in Fig. B.1, but viewed flat-on along the z vs.
time plane.
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