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ABSTRACT 
 

DETERMINATION OF OXIDIZED LIPIDS IN COMMONLY CONSUMED FOODS 
AND THEIR BINDING AFFINITY FOR PPARγ 

by 
Joanna P. Skinner 

 
Background:  Foods rich in polyunsaturated fatty acids (PUFA) are susceptible to 

oxidation through heating or storage.  Oxidized lipids are known to act as ligands for a 

transcription factor (PPAR-gamma) that affects adipocyte differentiation and insulin 

sensitivity.   

Objective:  The purpose of this study was to determine the amounts of oxidation 

products of a variety of PUFA containing foods over time, and to determine whether 

extracted fats from these foods act as ligands for PPAR-gamma.   

Method:   To study the effect of room-temperature storage on oxidation, 5 foods 

(walnuts, sunflower seeds, ground flax, fish oil capsules, and infant formula) were 

purchased and stored at room temperature for 1, 2, and 3 months.  To determine oxidation 

levels in fried foods, French fries and chicken nuggets were used.  Fat was extracted from 

each food and the levels of oxidation products were analyzed by spectrophotometry and 

kits designed to measure oxidation products.  Using a fluorescence polarization-based 

ligand screening assay kit, fat extracted from foods was analyzed for its binding affinity 

for PPAR-gamma.   

Results:  Among foods stored at room temperature, the levels of oxidation products did 

not change significantly with time.  Most foods exhibited the highest levels of oxidation  

 



at the purchase date.  Infant formula and ground flax demonstrated higher levels of 

oxidation products than did other foods.  In preliminary ligand binding assays, extracted 

fat from French fries showed the greatest binding affinity for PPAR-gamma; a select few 

other oils showed slight affinity.   

Discussion:  Surprisingly, storage time did not affect oxidation levels; the greatest 

amount of oxidation may occur during pre-purchase storage conditions.  The processing 

of formula and ground flax may be the cause of the relatively higher oxidation levels in 

those foods.  The binding affinity for PPAR-gamma demonstrated by French fries needs 

further investigation.   

Conclusion:  Certain oxidized lipids from foods may act as ligands for PPAR-gamma.  

Further research is required not only to determine which component of these PUFA-

containing foods activates PPAR-gamma but also to determine whether that component 

acts as an agonist or antagonist for PPAR-gamma.  
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CHAPTER I 

INTRODUCTION 

 

As obesity becomes more common throughout the world, accompanying 

comorbidities such as diabetes and cardiovascular disease also occur more frequently.  

According to the World Health Organization (WHO), 10% of the world’s population was 

obese in 2008, and this figure is expected to rise.
1
  Further, the WHO attributes 44% of 

diabetes cases and 23% of ischemic heart disease to overweight/obesity.
1
  The WHO 

estimates that by 2030, 366 million people throughout the world, including more than 30 

million in the United States alone, will have diabetes.
2
   In light of the significant effect 

excessive weight has on global health, scientists are seeking out and investigating an 

increasing number of factors that may impact weight and health.   

 As research into dietary fat ingestion has progressed, scientists have found 

evidence for recommending consumption of a variety of sources of “healthy fats,” such 

as olive oil and walnuts.
3-5

  These sources contain primarily unsaturated fats, which are 

considered less harmful to the cardiovascular system and are sometimes even reported to 

be cardioprotective, particularly if they are consumed in place of saturated fats in the 

diet.
5-7

  One potential problem with unsaturated fats is that they are prone to oxidation 

and therefore have decreased shelf life compared to saturated fats.
5,8

  In animals, fats 

oxidized through the frying or other heat-based processing of food have been associated 

with increased risk of atherosclerosis.
8-10

  It is unlikely that humans would eat oxidized 
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unsaturated fats in unheated oils and nuts, because oxidation would cause odoriferous 

rancidity.  It is widely known that processing, including heating, of food containing 

unsaturated fats oxidizes these fats.
6,11

 

 Often separate from oxidized lipid research is examination of physiology related 

to energy balance, weight, and insulin sensitivity.  Some of this research centers on a 

family of nuclear transcription factors known as peroxisome proliferator-activated 

receptors (PPAR).  Though there are 3 PPAR isoforms, of specific concern for adipocyte 

differentiation and insulin sensitivity is PPARγ, a receptor found in cells throughout the 

body but particularly active in muscle and adipose tissue.
12,13

  Recent research indicates 

PPARγ in the liver and hypothalamus may exercise important metabolic control as well.13
  

While certain endogenously oxidized lipids are known to act as ligands for PPARγ, less 

is known regarding the effects of exogenously oxidized dietary fats on the receptor.  The 

purpose of this study was two-fold:  to observe the relative amounts of primary and 

secondary oxidation products of PUFA-containing products, both between product types 

and over time, and, primarily, to determine whether oxidized fats act as ligands for 

PPARγ.  Given the varying fatty acid composition of foods with large amounts of PUFA, 

the products’ tendencies to activate PPARγ could be expected to vary.  This project might 

therefore indicate the relative potential of certain PUFA-containing products to influence 

PPARγ.  Thus, the first hypothesis is that as duration of storage or heating increases, the 

levels of products of oxidation in a food also increase.  Secondly, we hypothesize that as 

the primary oxidation products of an extracted oil increase, the oil’s binding affinity for 

PPARγ also will increase.
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CHAPTER II 

REVIEW OF LITERATURE 

 

Lipids and Oxidation  

Fats are a necessary component of the diet, and their functions go far beyond 

provision of calories.   Fatty acids are essential structural components of cell membranes.  

They participate in cell signaling, regulation of gene expression, and control of 

inflammatory responses; the function depends on the type of fatty acid.
7,14

PUFA are 

unsaturated fatty acids containing at least 2 double bonds.  Each double bond represents a 

possible target for hydrogenation or oxidation.  The common dietary PUFA are n-6 and 

n-3 fatty acids, and the correct balance of these two types of PUFA in the diet is the 

subject of much discussion.
15,16

It has been reported that n-3 fatty acids may reduce 

inflammation, lower serum triglycerides, and raise HDL concentrations; however, other 

studies have shown n-3 fatty acids to actually raise LDL while lowering HDL 

concentrations.
3,7,15-17

 

Though PUFA in their unoxidized forms may offer health benefits, their structure 

leaves them vulnerable to oxidizing agents.
10,18

  Oxidation occurs in vivo (such as through 

β-oxidation or oxidation via lipoxygenases and cyclooxygenases) as well as exogenously 

in fat-containing foods.
18

Due to exposure to heat, oxygen, or light, oxidation in foods can 

occurduring storage, cooking, or other processing.
10,18,11,19

  Increased availability of fried 

and other processed foods, along with recommendations to replace foods high in 
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saturated fats with those containing unsaturated fats, has led to high rates of consumption, 

potentially exposing people to large quantities of oxidized fatty acids.
6,11

  If oxidized fat 

has the potential to negatively impact health, it may be notable that people with 

uncontrolled blood glucose seem especially susceptible to absorbing oxidized fatty acids 

into their chylomicrons.
6,10

 

PPARγ 

PPARs belong to a family of nuclear transcription factors found throughout the 

body.  Three isoforms exist:  PPARα, PPARβ/δ , and PPARγ.19
  Gene regulation by 

PPAR is a complex process that begins when a PPAR, following activation by a ligand in 

the cytosol, forms a heterodimer with a retinoid X receptor (RXR).  The heterodimer 

binds to a gene at the peroxisome proliferator response element (PPRE) in the nucleus, 

causing a conformational change that allows for activation or repression of the gene.
12,20

 

PPARs are considered adopted receptors, meaning that there are no known 

endogenous ligands with strong affinity (meaning they act as ligands even at very small 

concentrations) for them.  Ligands with weak-to-moderate affinity (meaning they may act 

as ligands if presented in high concentrations), including dietary fatty acids and their 

metabolites, have been identified.
21,22

  PPARα is present in the liver, though it is found in 

the muscles (including heart), kidney, intestines, and immune cells.  It is involved in lipid 

metabolism, particularly beta-oxidation and production of ketones.
19PPARβ/δ is found in 

tissue throughout the body, though it is reported to be concentrated in the skin, liver, 

central nervous system, colon, and small intestine; further research into its role in these 

tissues is warranted, but it is also known to assist in the regulation of lipid 

metabolism.
19,23
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PPARγ participates in regulation of both lipid and carbohydrate metabolism.  It 

has two isoforms, termed PPARγ1 and PPARγ2.19
  PPARγ2 is found mainly in adipose 

tissue, while PPARγ1 is found throughout the body, including in immune cells, skeletal 

muscle, and hypothalamus.
12,21,24

  Known ligands for PPARγ include unsaturated fatty 

acids, thiazolidinediones (TZDs), oxidation products of linoleic acid (13-

hydroxyoctadecadienoic acid, 13-oxooctadecadienoic acid, and 9-

hydroxyoctadecadienoic acid), 15-hydroxyeicosatetraenoic acid (an oxidation product of 

arachidonic acid, otherwise known as ARA), non-steroidal anti-inflammatory (NSAID) 

medications, and oxidized low-density lipoproteins (LDL).
19,25,26

 

PPARγ is recognized as a mediator of adiposity and insulin sensitivity.  When 

treated with an antagonist, it limits fat accumulation; conversely (and seemingly 

counterintuitively), when activated by an agonist, such as rosiglitazone, it improves 

insulin sensitivity while promoting accretion of fat mass.
21,24

  Consequently, the receptor 

has attracted attention from researchers studying obesity, type 2 diabetes mellitus, 

metabolic syndrome, and atherosclerosis.  Treatment with TZDs, which are PPARγ 

agonists, has repeatedly demonstrated improvement of insulin sensitivity in humans and 

animals with insulin resistance (IR).
13,19,21,24,27,28

  There are several mechanisms by which 

PPARγ may affect insulin sensitivity, and because of the variety of study designs and 

occasionally contradictory results, it is unclear which mechanism is most potent.  It has 

been suggested that because PPARγ affects expression of adipokines such as adiponectin 

and vaspin, its activation leads to improved insulin sensitivity.
13,21

 

Recent research indicates PPARγ might promote leptin resistance (and 

consequently, weight gain) when activated frequently, such as with consumption of a 
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high-fat diet or chronic use of TZDs.
21,24

  While adipose tissue differentiation and 

mediation of insulin sensitivity are the 2 main roles ascribed to PPARγ, studies also have 

linked it to atherosclerosis, inflammation, and immune function.
19,27,29,30

 

Oxidized Lipids 

A study comparing the impact on murine leptin expression of a high fat, high 

cholesterol (atherosclerotic) diet without oxidized lipids to the same diet with oxidized 

linoleic acid showed the diet containing oxidized fatty acids significantly increased the 

animals’ leptin expression.9 Though leptin is commonly associated with appetite 

regulation, with production increased as animals reach satiety, it may have other 

functions as well.  For example, this study showed a significant positive correlation 

between leptin levels and development of atherosclerotic lesions in the animals’ aortas.9   

It is not known whether the oxidized fatty acids affected leptin concentration by 

influencing PPARγ’s activation, but because PPARγ plays a significant role in adipose 

accumulation, and leptin is generated by adipose, the possibility of a connection appears 

to exist.
9,13

 

Ringseis and colleagues explored the in vivo binding of exogenously oxidized 

dietary fats with enterocyte PPARγ in pigs to determine whether the fat could have a pro-

inflammatory effect [defined as increased expression of nuclear factor-kappa B (NF-κB)] 

on the animals.
25

For 28 days, the pigs were fed a diet containing either fresh oil or oil 

heated for 24 hours at 200˚C.  Analysis of the experimental group’s enterocytes showed 

that the exogenously oxidized oil did activate PPARγ, though only moderately, and no 

change in NF-κB expression was noted, suggesting that oxidized oils are not pro-

inflammatory.
25
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In a two-part study of the effect of oxidized linoleic acid on atherosclerosis in 

LDL receptor knockout mice, Khan-Merchant et al found that enzymatically oxidized 

linoleic acid increased aortic lesion development, serum cholesterol levels, or both.
31

  

The authors noted that because only linoleic acid was used in both parts of their study, it 

was not possible to determine whether other oxidized fatty acids would be similarly 

atherogenic. The authors noted that the animals consuming the high oxidized fat diet 

gained less weight compared to those consuming the unoxidized oil.
31

Similarly, Chao 

and colleagues found that in mice and rats, a diet containing heated frying oil led to 

weightand fat pad mass loss but led to glucose intolerance.
32

 

Though PPARγ is known to play a role in adipocyte differentiation and insulin 

sensitivity, and despite the evidence that exogenously oxidized dietary fats can be 

absorbed to some degree, no studies have definitively answered the question of whether 

oxidized lipids act as ligands for PPARγ in humans.  Knowing the answer to this question 

could be a preliminary step in research leading to improved dietary recommendations for 

people at risk of or currently dealing with obesity or insulin resistance.  
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CHAPTER III 

METHODS 

 

All foods chosen for this project contain PUFA.  PUFA contain more than one 

double bond; hence, they are more susceptible to oxidation than are saturated or 

monounsaturated fatty acids.
7,17

  Though it does not appear to fit with the other foods 

selected for this research,  infant formula supplemented with DHA and ARA was one of 

the items chosen for examination, as DHA and ARA are PUFAs which are considered 

important for normal cognitive development in young children.
33

  Table 1 illustrates the 

PUFA content relative to total fat content of our chosen foods.   

 
TABLE 1:  Fat amounts (including PUFA content) in commonly-consumed foods selected for testing 

 

Food Mean Amount Fat per 

100g Food (g) 

Mean Percent PUFA in 

Food (%) 

Walnuts 65.21* 72.3
* 

Ground Flaxseed 42.16
* 

68.14
* 

DHA/ARA-fortified  

Infant Formula* 

24.52
 

20.96
* 

 

Fish Oil Softgels 100 40.00 

Sunflower Seeds 51.46
* 

44.96
* 

Fried Chicken Nuggets 18.82
* 

28.26
* 

French Fries 16.51 38.57
* 

 

 

 

 

 

 

*Fat content was not available from all companies; therefore, information from the USDA’s National Nutrient 
Database for Standard Reference (Release 24) was included in these averages.  Except in the case of fish oil, PUFA 

content was only available from the USDA.34 
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Purchasing and Storing the Foods 

 The initial step in this project was to determine the effect of time on the 

development of both primary and secondary oxidation products.  The intention was to 

observe whether, with more extensive oxidation, they became better ligands of PPARγ.   

Three brands of 5 preselected foods were purchased as close in time as possible on the 

same day with the purpose of being stored at room temperature.  All fried foods were 

purchased on the same day (a separate day from the other foods) from the same 3 fast 

food establishments.  Samples of walnuts, sunflower seeds, ground flaxseed, infant 

formula, and fish oil softgels [room temperature foods (RTF)]were placed into airtight 

plastic tubes and stored under nitrogen at -80°C to prevent further oxidation; no weights 

were taken at this phase. 

Changes in oxidation products were measured at 4 separate time periods.  After 

storage of the first set of samples, RTF were left in their original packaging (sealed, to 

replicate conditions in a consumer’s home) at approximately 22˚C for 1 month.  At the 

end of that month, 3 more tubes of each product were placed in the -80°C freezer, with 

the remainder of the RTF left in the original packaging.  This process was repeated at 2 

months and 3 months from the purchase date.  For the French fries and chicken nuggets, 

on the day before extraction (detailed below), the foods were purchased, pulverized in a 

coffee mill (Braun, Kronberg, Germany), and stored under nitrogen at -80°C until 

immediately prior to extraction.  Further oxidation was not intentionally induced. 

Extracting the Oil 

 Prior to extraction, foods were thawed briefly and ground in a coffee mill when 

not already in ground or oil form.  Two portions each of the walnuts, sunflower seeds, 
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ground flaxseed, and fish oil were weighed out; each portion weighed approximately 1.5 

g.  Because fat is a much lower percentage of weight of formula and fried foods 

compared to nuts, seeds, and fish oil, a larger initial amount of food was required for 

those products.  Like the other samples, these were weighed out 1.5 g at a time. With the 

exception of the chicken nuggets, all oils were extracted from foods using a solvent 

containing hexane and isopropanol (HIP) in a 3:2 ratio according to the modified Hara 

and Radin method
35

.  For the chicken, the solvent contained chloroform and methanol in 

a 2:1 ratio using a modified Folch method
36

.  Food samples were mixed with the 

appropriate solvent (either HIP or chloroform-methanol) using a Poly Tron homogenizer 

(Kinematica AG, Lucerne, Switzerland).  In order to prevent further oxidation, each 

portion of sample with its respective solvent was kept on ice or refrigerated while other 

portions of the same sample were homogenized.  When all portions of a given sample 

(for example, all portions of Room Temperature Brand A walnuts) were homogenized, 

the homogenate was combined and filtered through grade 1 filter paper (90 mm) 

(Whatmanplc, Kent, UK) in a Buchner funnel into a filter flask.  The filtrate was removed 

from the flask into a graduated cylinder, and the flask was subsequently washed with 

additional solvent to remove any remaining filtrate; the solvent was added to the cylinder 

containing the rest of the filtrate. 

 The filtrate was transferred via Pasteur pipette to a separatory funnel.  Five ml of 

6.7% NaSO4 was used to wash the graduated cylinder, and it was then transferred to the 

separatory funnel with a pipette.  The separatory funnel was shaken to thoroughly mix the 

contents and left untouched for 10 minutes to allow separation of the fat layer from the 

water layer.  An additional 5 ml of NaSO4 was added for every 1.5 g portion of sample; 
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each 5 ml was added separately, and each addition was followed by agitation of the 

funnel and a 10-minute wait for separation.  The fat layer was removed by draining the 

separatory funnel when possible; when it was too viscous to flow out of the funnel, it was 

removed from the funnel with a pipette.  The fat layer was poured into a previously 

weighed test tube, which was then placed in a 40ºC water bath in a nitrogen evaporator 

(N-Evap; Organomation Associates, Inc., Berlin, MA) to allow the hexane to evaporate.  

Following evaporation, the test tube was dried carefully and weighed again to determine 

the weight of extracted oil.  Finally, 100 μl aliquots of each sample were weighed, and all 

extracted oil was stored under nitrogen at -80°C.  

Heating the Soy Oil 

 Unlike the RTF, oxidation of the soy oil (Welch, Holme& Clark Co., Inc., 

Newark, NJ) was promoted by heating rather than storage at room temperature.  Prior to 

heating, approximately 200 ml of oil was stored under nitrogen at -80˚C.  The rest was 

heated until it reached 195˚C.  Upon reaching 195˚, the temperature maintained for the 

duration of the heating process, the oil was heated for 3 hours, and approximately 200 ml 

was removed.  The remaining oil was heated for an additional 3 hours, and another 200 

ml removed.  The last portion was heated for another 3 hours, bringing the total heating 

time of this portion to 9 hours.  After its removal from the heat, each portion of oil was 

cooled for 5 minutes and then stored under nitrogen at -80˚C until analysis.  Oxidation 

products in the soy oil were measured in the oil’s fresh and extracted (using the 

extraction process described above) states. 
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Measuring Products of Oxidation 

The initial products of oxidation are peroxy and hydroxyl fatty acids, molecules 

that degrade into secondary products such as ketones, aldehydes, and hydrocarbons; it is 

expected that at the start of oxidation, primary oxidation products will form faster than 

they degrade.
37

  That peroxides are so short-lived makes it difficult to quantify the extent 

of oxidation, particularly without the measurement of other, less transient, oxidation 

species, such as hydroxy fatty acids.
18

  Therefore, to get a more complete sense of the 

extent of oxidation, levels of both primary and certain secondary products of oxidation 

were measured in all samples. 

Primary Products of Oxidation 

Assays for peroxides and conjugated dienes (CD) determine the presence of 

primary products of oxidation.  Assays for detecting CDs are sensitive and require very 

small quantities of sample, making them appealing when little oil is available for use.
18

 

To prepare the samples, the sample oil was solubilized in hexane to create a 1% solution; 

this solution was diluted as necessary by a process of trial and error to achieve 

spectrophotometric readings in the target absorbance range of 0.2-0.8 at 234 nm.  Hexane 

was used as the blank.  Because hydroxy and peroxy fatty acids—primary products of 

oxidation—have CD structures that demonstrate maximum UV absorbance at 234 nm, 

the oil samples were read at that wavelength in an Epoch spectrophotometer (BioTek, 

Winooski, VT, USA).  CD levels are expressed as absorbance of a 1% solution at 234 nm 

(E ); however, the calculation necessary for expressing them this way requires knowing 

the extinction coefficient of the sample, which itself requires knowledge of the specific 
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fatty acid composition of each sample.
18

  Because this information was not available for 

this project, CD levels were expressed in units of raw absorbance. 

 The concentration of peroxide values, another common measurement of primary 

products of oxidation, wasdetermined for each sample using PeroxySafe kit (SāfTest, MP 

Biomedicals, Solon, OH, USA).  This kit was used in place of the official American Oil 

Chemists Society (AOCS) method to simplify the process of measuring peroxide values.  

Though not all correlation studies agree, some
38,39

 indicate that PeroxySafe kits correlate 

well with the official AOCS method as well as another common method known as the 

ferrous oxidation/xylenol orange (FOX) method.  After running the standard curve, 

samples were prepared for reading according to the manufacturer’s recommendations and 

then read in an Epoch spectrophotometer at 570 nm and 690 nm.  The absorbance of each 

sample at 690 nm was subtracted from the corresponding result at 570 nm to yield the 

actual absorbance value.  The concentration of peroxides was calculated by putting each 

of the absorbance values into the linear equation from a calibration curve.  Each observed 

value was multiplied by its corresponding dilution factor to yield the concentration of 

peroxides (measured in mEq/kg oil).  To determine the concentration in a serving of food, 

the concentration in one kg of oil was multiplied by the kilograms of fat in a single 

serving. 

Secondary Products of Oxidation 

Conjugated trienes (CT) are secondary products of oxidation which exhibit 

maximum absorbance at 268 nm.  The absorbance values for these were read at the same 

time as the CD, allowing for the conservation of sample; all assays were run in triplicate. 

Levels of CT were expressed as absorbance at 268 nm (E ). 
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Another secondary oxidation product is malondialdehyde.  The process of 

measuring the level of malondialdehyde in the samples was similar to that of determining 

peroxide values.  In this case, the kit used was the SāfTest AldeSafe kit (which is specific 

for malondialdehyde, unlike other commonly-used tests, and has been shown to be well-

correlated with the AOCS official method of determining aldehyde levels
40

), and as with 

the PeroxySafe assays, all assays were prepared according to the protocol recommended 

by the manufacturer.  Controls and samples were read at both 550 nm and 690 nm.  The 

absorbance was calculated by subtracting the measurement at 690 nm from that at 550 

nm.  Each absorbance was inserted into the linear equation generated from the calibration 

curve; the result was multiplied by the dilution factor and expressed in mg/kg oil.   

Determining Binding Affinity to PPARγ 

To determine the binding affinity of the extracted fat samples to PPARγ, a 

fluorescence polarization-based PPARγ ligand screening assay kit (Cayman Chemical, 

Ann Arbor, MI) was used.  This kit was designed to allow the user to conveniently screen 

substances, such as oil samples, to observe whether they contain ligands for a specified 

protein (in this case, PPARγ).  To prepare the extracted fat samples for screening, four 

concentrations of each (all time periods included) were prepared:  1%, 0.1%, 0.01%, and 

0.001%.  The solvent used for this process was dimethyl sulfoxide (DMSO).  A 384-well 

plate was prepared according to the manufacturer’s protocol, and all assays were 

performed in triplicate.  In accordance with the manufacturer’s protocol, the plates were 

read at 450 nm in a Victor
3 

spectrophotometer (Perkin Elmer, Waltham, MA, USA).  A 

standard curve was read concurrently with the samples and percent binding of samples 

was calculated using the standard curve. 
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Calibration curves with a normal dynamic range were not obtained on the same 

days as binding activity of sample oil was observed.  Because it was not possible to 

attempt the assay again before completion of this project, data from separate assays were 

used to estimate binding activity of the sample oil.  It is understood that this assay will 

need to be attempted again in the future to test the legitimacy of the results.  Further, after 

the first assay failed to show binding affinity of the fresh (unextracted) soy oil for 

PPARγ, the oil was extracted in an attempt to hydrolyze more of the triglycerides in the 

oil and determine if doing so affected the oil’s binding affinity. 

Data Analysis 

All data were analyzed with SPSS, version 18.0 (IBM Corporation).  The 

Kruskal-Wallace and Kolmogorov-Smirnov Z tests were used to compare means among 

and between time periods and products for non-normal data.  For normal data, ANOVA 

was used to compare means.  Post-hoc tests included theTukey honest significant 

differences (HSD) for samples with homogenous variance, and Dunnett’s T3 for samples 

with heterogeneous variance.  For the comparison of RTF at purchase date to each other 

and to fried foods, peroxide data were log-transformed.



16 

 

 

 

 

CHAPTER IV 

RESULTS 

 

Amounts of Oxidation Products in All Foods 

Figure 1 illustrates the effect of time on the level of each type of oxidation 

product.  Mean oxidation amounts were aggregated for all RTFs at each time point to 

illustrate the change in primary and secondary products over time.Among the RTF, 

aggregated peroxide and aldehyde values were greatest on the date of purchase.  The 

levels for peroxides and aldehydes were significantly higher (p=0.013 and p=0.038, 

respectively) at the purchase date than after 1 month of storage; there were no other 

significant differences between time periods.   

 
FIGURE 1:  The effect of time on the oxidation of Room Temperature Foods 

 

 

*

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Purchase Date 1 Month 2 Months 3 Months

P
e

rc
e

n
t 

o
f 

O
ri

g
in

a
l 

V
a

lu
e

Peroxide Values

Conjugated Dienes

Conjugated Trienes

Aldehyde Values
C

* Peroxide values and aldehyde values significantly lower at 1 month compared to purchase date (p ≤ 0.05) 
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By contrast, there was a distinct pattern of increasing products of oxidation in the 

soy oil (Figure 2).  The soy oil used in this project was aged on a different timeline (hours 

instead of months) and exposed to a different method of oxidation (heating) than the 

other products, so it was not compared directly to the room temperature foods.  As 

heating time increased, there was a corresponding, non-significant increase in the levelof 

all products of oxidation except peroxide values.  The peroxide levels increased from the 

unheated state until the 6-hour mark; by the final measurement at 9 hours, the level was 

below the starting point.  There were significant differences between oxidation levels at 

each time period in both peroxides and aldehydes.  Percent changes in oxidation levels 

are illustrated in Figure 2. 

 
FIGURE 2:  The effect of heating duration on each product of oxidation in fresh soy oil
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peroxides and aldehydes between the date of purchase and 3 months of room temperature 

storage.  There were no significant differences in oxidation products between any two 

foods at any one time period. 

FIGURE 3:  Comparison of levels of oxidation products in room temperature foods at purchase date and 3 months   

 

 

 

 

 

For the purposes of this project, changes in the levels of oxidation products of 

chicken nuggets and French fries (“fried foods”) could not be measured.  As a result, 

mean levels of oxidation for each brand of food were compared to each other and to the 

brands of the other fried food; they also were compared to the oxidation levels of RTF at 

purchase date, since the fried foods’ oxidation levels were also measured essentially on 

Significant differences are denoted by *.  Small sample sizes and non-normality of data may have influenced 

appearance of significance between purchase date and three months of storage.  Fried foods and soy oil are not 

represented because prior to the assays, they were not systematically oxidized at room temperature as the above 

foods were. 
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the date of purchase.  A comparison of levels of oxidation products in French fries and 

chicken nuggets can be found in Figure 4.   

FIGURE 4:  Oxidation product levels for each type of fried food analyzed 

 

 

 

Figure 5 shows a comparison of peroxide and aldehyde levels in servings of fried 
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there were significant differences in peroxide values between most (but not all) other 

foods as well.  No significant differences in aldehyde levels were found between foods.  

However, though it did not demonstrate higher peroxide levels relative to oil from other 

foods, oil extracted from fried foods did contain higher aldehyde levels. 
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FIGURE 5:  Levels of peroxide values (A) and aldehydes (B) per serving of each food on purchase date  

 

 

 

 

 

PPARγ Ligand Screening Results 

Several samples were screened for potential PPARγ binding activity using a 
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A few extracted oils from the first assay—particularly from the French fries 

(again, though not as strong an affinity as was seen in the second assay), the unheated soy 

oil (0.001% concentration), soy oil heated 6 hours (0.001% concentration, soy oil heated 

9 hours (both 0.01% and 0.001%), and walnut oils (all concentrations)—also showed a 

slight binding affinity compared to the other oils. Figure 5 and Tables 3 and 4 show the 

calibration curve and the binding affinity of samples, respectively.   

Selected products whose extracted oil was measured in the second assay are 

included in Table 4 for purposes of comparison.  Oil extracted from French fries and 

unheated extracted oil (0.1% concentration) exhibited stronger binding affinity for 

PPARγ than did the oils extracted from other foods on the same day.  The binding 

strength of the French fry oil lessened as the oil concentration decreased with dilutions.  

Infant formula was included because of its relatively high levels of oxidation products 

compared to other foods.   
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FIGURE6:  PPARγ ligand binding assay calibration curve demonstrating percent binding 

 

 

 

 

 

TABLE2:  Percent binding of extracted oil from foods and soy oil as determined by PPARγ ligand binding assay  

 

Food Type 
 % Binding 

Concentration: 0.1% 0.01% 0.001% 

Fresh Soy Oil – Unheated  95.78 99.42 88.83 

Fresh Soy Oil – Heated 3 Hours 96.88 98.37 86.78 

Fresh Soy Oil – Heated 6 Hours 96.39 91.51 94.48 

Fresh Soy Oil – Heated 9 Hours 95.10 86.12 87.55 

French Fry C 88.97 82.27 86.42 

Walnut B – Purchase Date 90.43 87.27 84.33 

Walnut B – Stored 3 Months 90.19 87.63 83.13 
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TABLE3:  Percent binding of extracted oil from selected foods and soy oil as determined by PPARγ ligand binding 

assay  
 

Food Type 
 % Binding 

Concentration: 1% 0.1% 0.01% 0.001% 

Extracted Soy Oil – Unheated  98.56 63.62 99.55 104.46 

French Fry C 24.71 45.62 67.31 69.46 

Formula – Purchase Date 98.35 97.06 100.7 103.9 

Formula – 3 Months 103.46 104.42 101.78 96.81 

 

 

 

 

 

Foods from PPARγ assay on 12/13/11.Only the unheated soy oil and French fries demonstrated binding.  Formula 

is included here because it showed the greatest amount of lipid oxidation of all foods.  
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CHAPTER V 

DISCUSSION AND CONCLUSION 

 

With regard to the oxidized oils, it was hypothesized that as room temperature 

storage or heating time increased, levels of all products of oxidation would increase.  

Further, it was hypothesized that the greater the level of primary products of oxidation, 

the greater the amount of binding affinity an extracted fat would demonstrate for PPARγ.  

While the soy oil showed the expected “classical” (containing the lowest level of 

oxidation products at the start and increasing over time) trend for all products but 

peroxides, the products stored at room temperature did not consistently demonstrate such 

a pattern.  Peroxides are rapidly converted to more stable compounds, and this may 

happenat least as quickly as they form
41

; over time, this can cause a decrease in peroxide 

levels.
18

  This is a possible explanation for the trend in the soy oil as well as the RTF 

(with the exception of the infant formula).  Because CDs represent both hydroxy fatty 

acids as well as peroxy fatty acids, and hydroxy fatty acids degrade to secondary 

oxidation products more slowly than do peroxy fatty acids,CD levels increase more 

steadily than peroxides alone. 

 Another factor affecting oxidation in a food is the amount of antioxidants present 

in the food.  Many of the products analyzed for this project are known to contain vitamin 

E (α-tocopherol), a common antioxidant.  Multivariate regression was used to find the 

Pearson correlation between vitamin E content and the level of each oxidation product at 
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purchase date.  One significant association was found:  controlling for PUFA 

concentration, vitamin E content had a -0.937 correlation (p=0.037) with peroxide levels 

at purchase date.  Thus, greater vitamin E content might, as expected, be associated with 

lower oxidation levels. 

One obstacle encountered in the measurement of peroxide values in particular was 

difficulty in obtaining a consistent calibration curve when using the PeroxySafe kits.  Foo 

et al compared several SāfTest kits for the measurement of oxidation products in frying 

oil to the comparable American Oil Chemists’ Society (AOCS) methods of measuring the 

same products of oxidation.
40

  The authors noted that the PeroxySafe kit was prone to 

substantial variation in results and was not well-correlated with the AOCS method; 

though contrary to some studies
38,39

, this finding is supported by others.
42

  By contrast, 

the AldeSafe kit, which was found in the course of this project to be stable and reliable, 

was found by Foo and colleagues to have the same characteristics; they also noted its 

high correlation with the official AOCS method of measuring aldehyde levels in heated 

oil.
40

 

In any food, there is a mixed fatty acid content; the composition differs 

considerably between products.
34

Though the sample oils could not be examined at the 

molecular level to determine the FA content of each, there is a reasonable chance that the 

differing fatty acid content contributed to each sample’s susceptibility to oxidation.  For 

example, of the products analyzed for this project, ground flax had the largest amount of 

18:3 fatty acids per 100 g of food, both as an absolute number and as a percentage of 

PUFA.
34

  This likely explains why flax had higher aldehyde levels than any of the other 

foods in this project, as malondialdehyde levels are highest in foods with large amounts 
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of fatty acids containing 3 or more double bonds.
43

 By definition, CTs can only form 

from products with ≥3 double bonds, so it was no surprise that these also were found in 

larger amounts in flax than in the other RTF.
18

 

To add to the analysis of oxidation levels, it would have been interesting to know 

the pre-purchase storage conditions (particularly including duration, temperature, and 

light exposure) of the products to be stored at room temperature.  That the levels of 

peroxide and aldehyde content on the date of purchase were so often as high as, if not 

higher than, the levels at 3 months of storage, suggests that there is considerable 

opportunity for oxidation between harvesting or manufacturing and purchase date.  Given 

that so many of the products chosen for the room temperature storage portion of this 

project were packaged in clear or light-colored plastic packaging, it is likely that these 

products were highly susceptible to temperature and light-related oxidation. 

As stated previously, the fried foods presented a special case for analysis, because 

it was not possible to determine the type of oil, nor the age, number of uses, or frying 

temperature to which the oil and foods fried in it were subjected.  Research indicates that 

each of these factors plays a role in the extent of oil decomposition.
42

  The type of food 

being cooked in the oil also may influence the rate of oxidation.
41

Given the many factors 

and their likely complex interactions, it is not surprising that significantly different levels 

of oxidation products were not observed within or between foods.  Notably, the levels of 

oxidation products (all types) per 100 g of fried foods did not differ significantly from the 

levels in 100 g of other foods.  However, given that the aldehyde values of these foods 

were higher relative to the RTF than were their peroxide levels, it is possible that the oil 
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might have been old or used several times, thus demonstrating that its primary oxidation 

products had already mostly degraded to secondary products. 

Fried foods were not given opportunities to oxidize after purchase; they were 

frozen immediately after purchase and their oxidation levels measured because fried 

foods are typically eaten immediately after purchase.  This is in contrast to the RTF used 

in this project, which may be stored for weeks or months at room temperature.As Figures 

3 and 5 show, infant formula consistently demonstrated some of the highest levels of 

oxidation products—particularly peroxides—of all foods.  Similarly, fish oil and ground 

flax also had higher levels of oxidation products relative to other foods. This may be due 

to the processing used in manufacturing these items.  The oxidation of formula is of 

particular interest because it has been suggested that preterm infants who consume 

formula supplemented with DHA and ARA have increased adiposity later in childhood 

compared to children consuming formula without the added fatty acids.
44

 

PPARγ Ligand Screening Assay 

Of the oils tested in the preliminary assays, oil extracted from French fries 

demonstrated the strongest binding affinity for PPARγ.  Though it cannot be truly 

compared to the binding of the other oils, as they were assayed on a separate day, 

extracted French fry oil assayed on the second day showed a much stronger affinity than 

the other oils.  This may be due to its specific fatty acid composition, but because the 

assay used to determine binding is only a ligand screening assay, it was not possible to 

determine which fatty acid(s), and more specifically, which type of oxidized lipid, within 

the extracted sample bound most strongly.  As there is little evidence for the binding of 
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secondary oxidation products, it is likely that primary oxidation products did most of the 

binding.   

A potential explanation for the lack of binding demonstrated by most foods is that 

even if oxidized fatty acids activate PPARγ, large amounts of them may be required for 

this purpose.
19

If this is the case, it would indicate that PPAR activation due to dietary 

lipids would require a person to eat considerable amounts of food containing oxidized 

PUFA.  The fact that formula did not demonstrate this seems to conflict with previously-

mentioned assumptions about infant formula based on its relatively high oxidation levels 

compared to other foods.  However, it may be that if oxidized formula has the potential to 

cause fat accumulation in infants, there could be other associated factors besides its 

interaction with PPARγ.  Alternatively, it could be that the process of extraction left 

many triglycerides intact; though it is speculated that whole triglycerides may be able to 

act as ligands, individual free fatty acids (not attached to the glycerol backbone) are more 

commonly thought to fill the role.  To explore this further in the future, alkali hydrolysis 

could be used as part of the extraction process to ensure more complete breakdown of 

triglyceride molecules; the primary drawback to this step is its potential to promote 

further oxidation.   

The influence of PPARγ on gene transcription varies depending on whether the 

ligand binding acts as an agonist or antagonist.
21,24

Further, the binding affinity of a ligand 

does not always correspond to the level of its functional activity.  The activation potential 

of exogenously oxidized oils, such as those included in this project, therefore will need to 

be elucidated through future research, such as cell culture-based PPARγ transactivation 

assays. 
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Conclusion 

It is important to determine the levels of oxidized lipids in foods, because they 

might influence adipose tissue metabolism and thus the risk of diabetes and CVD. This 

project showed that commonly consumed foods contained oxidized lipids on the day of 

purchase—often in higher amounts than are seen as they age.  Processed foods had 

greater amounts of oxidized lipids compared to unprocessed foods. This underscores the 

need for further research into the consumption patterns of oxidized lipids and how they 

influence health, because consumption of processed foods in on the rise globally.  

PPARγ activation mediates multiple metabolic pathways in the immune system, 

cardiovascular system and the adipose tissue. Drugs that activate PPARγ are currently 

used to treat diabetes. However, this treatment is associated with undesirable side effects, 

including weight gain
21,24

 and edema
45

, among others. Therefore, there is a great deal of 

interest in identifying food components that act PPARγ ligands with therapeutic 

properties. This project demonstrated for the first time that lipids extracted from certain 

foods have an affinity for PPARγ.Further research is required not only to determine 

which component of these PUFA-containing products activates PPARγ but also to 

determine whether that component acts as an agonist or antagonist for PPARγ.  Only then 

can a reasonable guess about these products’ effects on adiposity and insulin sensitivity 

be made.  
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