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VERBAL LEARNING AND MEMORY ABILITIES IN CHILDREN WITH BRAIN 

TUMORS: THE ROLE OF THE THIRD VENTRICLE REGION 

by 

JACKIE L. MICKLEWRIGHT 

Under the Direction of Tricia Z. King 

ABSTRACT 

The third ventricle region houses several neuroanatomical structures that are 

primary components of the human memory system, and provides pathways through 

which these brain regions communicate with critical regions of the frontal and medial 

temporal lobes.  Archival data was obtained for 42 children with cerebellar or third 

ventricle tumors, and was examined for tumor and treatment related confounds.  Children 

with third ventricle tumors were hypothesized to exhibit; 1) better performance on a 

measure of auditory attention, 2) greater impairment in learning across trials, 3) greater 

memory loss over a 20-minute delay, and 4) greater impairment across delayed memory 

tests than the cerebellar group.  Children with third ventricle tumors demonstrated 

significantly better auditory attention, but greater impairments in verbal learning, and 

greater verbal memory loss following a 20-minute delay.  In contrast, children with third 

ventricle tumors did not demonstrate significantly greater memory impairments across 

long delay memory tests. 
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Introduction 

Brain tumors comprise approximately 22% of childhood cancers and tumors 

originating in the central nervous system and are second only to leukemia in cause of 

death among childhood cancers (Linet et al., 1999; Fuemmeler, Elkin, & Mullins, 2002).  

Although survival rates among children with brain tumors have risen over the last two 

decades due to improvements in neuroimaging and treatment options, brain cancer 

continues to be a life-threatening and chronic ailment for many children (Packer et al., 

1989; Finlay & Goins, 1987).  A 1994 review by Ris and Noll suggested that the 

prognoses for pediatric brain tumor patients ranged from almost certain death to almost 

certain survival and that outcome was related to a variety of factors including tumor site, 

treatment type, age at diagnosis, medical complications and a myriad of tumor and 

treatment related factors.   

Previous research on the impact of tumors on brain functioning has produced a 

virtual laundry list of impairments spanning cognitive, emotional and behavioral 

domains.  The severity of these impairments is complicated by diversity in tumor type 

and location.  Over the years, multiple studies have reported a progressive decline in IQ 

scores after diagnosis which may affect several domains of the patient’s life (Morris et 

al., 2000).  Other neuropsychological findings have indicated significant difficulties with 

memory, executive abilities, fine motor coordination, and perceptual-motor abilities, as 

well as disturbances in emotional functioning (Morris et al., 2000).  When considered in 

the context of a child’s life, the widespread implications of a brain tumor on a child’s 
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ability to learn, succeed in the classroom environment, and connect with peers becomes 

apparent.   

One concern for parents and health care providers is how cognitive difficulties 

will affect the child’s school performance and their ability to learn and remember 

information.  Learning is the primary way in which we acquire knowledge, and occurs 

when experiences in the environment change our nervous system and subsequent 

behaviors (Carlson, 20004).  These changes are referred to as memories.  A brain tumor 

can have innumerable effects on a child’s attentional, learning and memory abilities.  The 

impact of attentional, learning, and memory dysfunction is widespread, affecting both the 

daily activities of childhood and the attainment of scholastic strategies.  Much of school-

taught information builds on itself and early identification of specific difficulties could 

facilitate the development of compensatory skills.  The value of research within this field 

lies in its ability to guide remedial efforts and individualized curriculum that will 

capitalize on each child’s strengths.  Therefore, in order to design appropriate ability-

based skills, it is of utmost importance to understand the impact of brain tumors on the 

structures and pathways of developing learning and memory processes.   

A number of tumor and treatment related variables have consistently been shown 

to impact intellectual and memory abilities in children with brain tumors.  These 

variables include age at the time of diagnosis and neuropsychological evaluation, 

presence of hydrocephalus, seizure medication, and hormone deficiency, time since 

completion of treatment, and type and amount of treatment received (whole brain vs. 

focal radiation, chemotherapy, neurosurgery, or multiple treatments).  Because these 
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variables may mediate or moderate cognitive outcomes, they are considered to be 

potential confounds.  For the purposes of this study, these variables were examined for 

their impact on memory abilities and unequal representation across groups.  This was 

done in an attempt to prevent these potentially confounding variables from obscuring the 

true relationship between brain regions and learning and memory processes. 

Time since diagnosis 

 Traditionally, studies of children with brain tumors have focused on age-

dependent effects on cognitive processes.  In general, findings have illustrated that 

children who are diagnosed and treated for brain tumors at a younger age are at a higher 

risk for neuropsychological problems (Packer et al., 1989).  Age at diagnosis and 

treatment are thought to be important variables because differential impairments in 

intellectual and emotional functioning may result as a function of the developmental 

stage at which the tumor appeared and was treated.   

In 1994 Ris & Noll warned against neglecting a time since diagnosis variable 

when examining the abilities of children with brain tumors.  They posited that the 

exclusion of this variable may function to overestimate the effects of age at diagnosis and 

treatment on outcome variables.  The amount of time passed between diagnosis and 

evaluation has been found to be negatively correlated with performance on cognitive 

tasks.  Potentially vast differences in ability may be observed when children with brain 

tumors are evaluated at different stages of tumor development, treatment and recovery, 

therefore making qualitative statements regarding the nature and severity of their 

impairments difficult.   
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Ellenburg et al. (1987) measured IQ over a four year period in groups of children 

with third ventricle, fourth ventricle and hemispheric tumors.  The children in the third 

and fourth ventricle groups experienced an increase in IQ in the interval from diagnosis 

to four months post-diagnosis.  The third ventricle group experienced a steady decline in 

IQ from four months to one year, but experienced an increase in IQ in the one to four 

year interval.  In contrast, the fourth ventricle group displayed a consistent and significant 

decline in IQ over the one to four year interval.  These findings illustrate group 

differences in the pattern of cognitive decline over time, while highlighting the utility of 

the time since diagnosis interval as a variable in neuropsychological research.  The 

relationship between the time since diagnosis interval and cognitive abilities is thought to 

primarily result from the early disruption of brain regions and pathways that are 

instrumental in the acquisition and development of skills and higher cognitive processes.  

In the current study, the amount of time passed since diagnosis was examined for 

potential group differences that could obfuscate the relationship between tumor location 

and memory performance. 

While advancements in the treatment of brain tumors have helped to increase 

survival rates in this population, complications resulting from these procedures are 

known to cause significant and permanent cognitive deficits (Packer et al., 1989).  This 

fact makes it difficult for researchers to determine if certain deficits primarily result from 

the tumor type and location, or long-term side effects of the medical treatments.  In their 

1994 review, Ris & Noll concluded that previous research has lent strong support to the 

hypothesis that cognitive and emotional impairments primarily result from an interaction 
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between tumor pathology and location, and the treatment modalities utilized.  Regarding 

cognitive impairments often seen in this population, the authors stated “the fact that these 

diseases and their treatments affect the organ of adaptation/adjustment means that the 

survivors are at increased risk for such problems,” (p. 37).   

Whole-brain radiation 

Over the years, countless research endeavors have demonstrated a robust 

relationship between whole-brain radiation therapy and damage to brain structures and 

their associated functions (Fletcher & Copeland, 1988).  Of particular relevance to the 

current study, are the findings of Dennis and colleagues (1992) which reported that, in a 

sample of 46 children with brain tumors, severe deficits in working memory were found 

when individuals with tumors located in thalamic/epithalamic regions were treated with 

radiation therapy.  In 1989, Packer et al. noted that children who had received whole-

brain radiation therapy displayed, 1) a significant decline in IQ, and 2) a wide range of 

dysfunction that included deficits in memory, fine motor, visual-motor and visual-spatial 

skills.  They noted that children who had not received whole-brain radiation did not 

demonstrate consistent or significant declines in any of the aforementioned domains over 

time.   Due to the consistently documented impact of whole-brain radiation therapy on 

memory and various aspects of cognitive functioning, participants within the two tumor 

location groups were evaluated for the differential impact of whole-brain radiation 

therapy on memory processes. 
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Focal Radiation, Chemotherapy, & Neurosurgery  

 Focal radiation, chemotherapy and surgical interventions are known to have less 

of a global impact on intelligence and memory abilities.  Ris & Noll (1994) reviewed a 

number of investigations into the effects of focal radiation therapy on cognitive abilities.  

The authors reported that the majority of studies found “no discernable neurobehavioral 

deficits” associated with this type of treatment.  However, they noted that despite the 

precision of focal radiation, the potential still exists for this type of treatment to cause 

damage to brain regions surrounding the tumor site.  Additionally, the amount of 

radiation received has been shown to be related to greater declines in intellectual 

functioning (Sibler et al., 1992). 

 Regarding the effects of chemotherapy on the CNS, Riva and colleagues (1990) 

reported that the impact of this treatment modality on cognitive abilities is far less 

significant than that caused by radiation.  Additionally, a 1987 study by Ellenberg et al. 

found virtually equivalent declines in IQ from post-diagnosis to follow-up between 

children treated with and without chemotherapy.  Regarding the effects of neurosurgery, 

Moore et al. (1992) reported that children who underwent neurosurgery or chemotherapy 

performed significantly better on a battery of neuropsychological tasks, with the 

exception of those within the visual-spatial domain, than did children treated with 

radiation therapy.   

A recent study by Carpenteri et al. (2003) reported that memory disturbances, 

difficulties with problem solving, visuospatial deficits and psychomotor slowing were 

observed in pediatric brain tumor patients who had undergone neurosurgery only.  The 



  7  
 

sample was taken from a population of 106 children with brain tumors and included 

participants with tumors in a variety of locations.  Participants received partial or total 

tumor resection based on the characteristics (histology and location) of their tumor.  

Although significant impairments were found across a number of domains, the authors 

acknowledged that there is the potential for the observed deficits to be the result of the 

disruptive presence of the tumor, the impact of the neurosurgery, or factors related to the 

surgical procedure (Carpenteri et al., 2003).  Research findings attempting to define a role 

for neurosurgery, chemotherapy, and focal radiation in the cognitive decline of children 

with brain tumors have been mixed.  Therefore, these treatment-related variables were 

examined for their differential representation across groups and relationship with memory 

abilities. 

Multiple Treatments 

While combining various treatment modalities has been shown to increase 

survival rates in some populations of children with brain tumors, this strategy also poses 

a significantly greater risk for global cognitive impairment.  The most commonly 

observed combination of treatment for pediatric brain tumors is radiation plus 

chemotherapy.  In 1988, Copeland and colleagues demonstrated that children displayed 

significantly greater impairments in cognitive performance when treatment included both 

intrathecal chemotherapy and cranial radiotherapy.  Riva and colleagues (1990) 

investigated the effects of multiple treatments on cognitive functioning.  They reported 

that the combination of chemotherapy and cranial irradiation more frequently results in 

serious brain damage than chemotherapy alone.  Furthermore, Carlson-Green, Morris & 
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Krawiecki (1995) demonstrated that the number of treatment modalities a child is 

exposed to is a significant predictor of later intellectual functioning and achievement.  

The current study examined the use of multiple treatments in order to determine if group 

differences exist, and if this variable is significantly related to participants’ memory 

abilities.  

Time since initiation of treatment 

The amount of time passed since the initiation of treatment has been found to be 

related to declines in cognitive abilities, and multiple studies have cited the relationship 

between variables of this type and declines in intellectual abilities (FSIQ) (Packer et al., 

1989).  These “late effects are usually thought to be a function of the vulnerability of the 

developing brain,” (Chapman et al., 1995).  Children treated with radiation “show a 

progressive decline in IQ compared to those children treated without it,” however, time 

since the initiation of chemotherapy has been less explored in the literature (Chapman et 

al., 1995).  Packer and colleagues (1989) reported that memory was “frequently 

impaired” in children who received whole-brain radiation therapy, and the authors noted 

a significant decline in memory performance over time in one third of participants.  

Therefore, the time since the initiation of radiation and chemotherapy variables were 

examined for group differences and a relationship with participant’s memory abilities.  

Hormone Deficiency 

 The plasma concentration of several hormones has been shown to be significantly 

related to cognitive abilities, including memory (Whean et al., 1980).  Some of the 

hormones that have been implicated in memory function include the anterior pituitary 
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peptide hormone, adrenocorticotropin (ACTH), the adrenocortical steroid hormone, 

cortisol and the posterior pituitary peptide hormone (Dennis et al., 1992).  There are  

three primary ways in which the occurrence of a brain tumor can lead to endocrine 

dysfunction including; the compression of structures that are directly involved in the 

release and regulation of hormones, damage caused by the surgical removal of the tumor, 

and damage caused by radiation treatment.  Because the structures of the third ventricle 

region are located in close proximity to a number of brain regions that regulate hormone 

levels, it is likely that children with tumors of the third ventricle will account for a 

significantly higher percentage of the hormone deficiency group, than will children with 

cerebellar tumors.  Therefore, hormone deficiency was examined for potential group 

differences and a relationship with memory abilities. 

Hydrocephalus 

Hydrocephalus, as defined by Erickson et al. (2001), is a condition in which an 

excess amount of cerebral spinal fluid accumulates within the ventricles of the brain and 

results in an increase in intracranial pressure.  It is commonly observed in children with 

brain tumors, particularly when the tumor is located near the fourth ventricle/cerebellum 

or third ventricle region, and can lead to diffuse impairments in cognitive abilities (Ris & 

Noll, 1994).  Erickson et al. (2001) reviewed the effects of hydrocephalus on 

neuropsychological functioning and reported that children with hydrocephalus secondary 

to a brain tumor had greater intellectual deficits than did children without secondary 

hydrocephalus.  This can be partially explained by the fact that hydrocephalus is 

characterized by diffuse cortical and subcortical damage which affect a wide range of 
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cognitive abilities (Erickson et al., 2001).  These researchers reported that memory and 

attentional difficulties are a common complaint of children with hydrocephalus.  

Specifically, they cited several studies illustrating that children with hydrocephalus 

display impaired verbal short-term retrieval when assessed with word lists (Cull & Wyke, 

1984; Scott et al., 1998; Yeates et al., 1995).  On average, these individuals recalled 

fewer words on both initial and subsequent trials.  Learning difficulties were also noted, 

with children with hydrocephalus taking longer to acquire information and skills across a 

variety of domains.  Further evidence was provided by Fletcher 1992, who reported 

verbal and nonverbal memory deficits in children with hydrocephalus of varying 

etiology.  Due to a number of reports of learning and memory impairments in children 

with hydrocephalus, the presence of hydrocephalus was examined for group differences 

and its relationship with memory abilities. 

Seizure Medications 

Individuals with brain tumors often experience the additional complication of 

recurrent seizures, which can result from the location of the tumor or the toxic effects of 

chemotherapy.  Although the long-term outcome of treatment induced seizures is 

unknown, many children have experienced cognitive decline as a result (Khan, 

Marshman, & Mulhern, 2003).  A primary concern for families and health care providers 

are the deleterious effects of a handful of seizure medications.  In 1991, Forsythe et al. 

(1991) documented the impact of anti-epileptic medication on cognitive abilities in a 

sample of 64 children with epilepsy.  At the time of the study, participants had remained 

seizure free for one year after being randomized to one of three anti-epileptic drug 
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groups.  Results were mixed, only participants on carbamazepine displayed impairment 

in memory function.  While impairments were observed after 6 months of 

carbazmazepine treatment, the authors stated that the impairments were definite after the 

full 12 months.  Participants taking valproate or phenytoin did not display consistent 

difficulties in memory performance.  Regardless of the etiological nature of the epileptic 

syndromes observed in these patients, many studies have documented the negative effect 

of both the seizures and seizure medications on cognitive integrity (Vining et al., 1987; 

Farwell et al., 1990).  The presence of seizure medication is considered a potential 

confound in research within this domain and was examined for group differences and a 

relationship with memory abilities.   

The results of multiple investigations into age and treatment related variables, as 

well as associated medical complications (hydrocephalus, epilepsy, and hormone 

deficiency), have illustrated that a potential exists for each of these factors to be 1) 

differentially represented in the two groups, and 2) related to memory abilities.  Due to 

the potential for and unequal representation of these factors within samples of children 

with brain tumors, researchers must evaluate and control for the relative effects of all 

confounds prior to offering an interpretation of their findings.  Neglecting to take 

confounds into consideration has the potential to render any inferences drawn from the 

sample invalid, as there would be less certainty that significant results are due to the 

variables of interest.  This investigation examined learning and memory abilities in 

children with tumors of the cerebellum and third ventricle region after examining the 
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relationship between previously cited potentially confounding variables and verbal 

memory abilities.  

Brain tumors are heterogeneous in both location and histology.  Many of the 

clinical samples used in research of this type include participants with varied tumor 

histologies and locations, making a distinct neuropsychological profile of pediatric brain 

tumor patients virtually impossible. The predominant effects of a brain tumor are 

imposed on the structures or pathways to which it is in closest proximity.  Therefore, 

research focusing on pediatric brain tumors has the ability to help psychologists and other 

medical professionals to better understand the specific impairments that result from 

damage to particular regions of the brain.  The current study focuses on supratentorial 

tumors of the third ventricle and infratentorial tumors of the cerebellar region in an 

attempt to better understand the role of these neuroanatomical regions in attentional, 

learning and memory processes.   

 In general, supratentorial tumors have been found to be more disruptive to 

cognitive functions than infratentorial tumors (Ris & Noll, 1994).  Studies have found 

two to three times the incidence of neurological deficits and disability in children with 

supratentorial tumors compared to children with infratentiorial tumors and approximately 

twice the incidence of intellectual and emotional disability (Mulhern et al., 1983).  The 

third ventricle of the brain is a narrow ventricle surrounded by the diencephalon and is 

the most common location for supratentorial tumors in the pediatric population.  While it 

has long been known that damage to the medial temporal lobes and hippocampal 

formation severely disrupts memory processes, there is strong support for the hypothesis 
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that a tumor in the closely interconnected structures and pathways of the third ventricle 

region also causes memory impairment (Crosson, 1992).   

Diencephalic structures that have been proposed to play a critical role in memory 

processes include the thalamus, hypothalamus, basal forebrain, mammillary bodies, 

fornix, and mammillothalamic tract.   The role of the structures in the third ventricle 

region in memory processes is partially based on the white matter pathways which 

provide connections to the structures of the medial temporal lobes.  These structures of 

the third ventricle region and medial temporal lobe are strongly interconnected and 

damage to any one of these components or the fiber tracts that connect them, can have a 

severe effect on memory functions (Mayes & Montaldi, 2001).  

Basal Forebrain 

One area of particular relevance within the third ventricle region is the basal 

forebrain, which contains large clusters of neurons that provide cholinergic innervation to 

the prefrontal cortex and temporal lobes (Hendelman, 2000).  The basal forebrain is 

considered imperative to memory processes because of the nuclei that it contains and the 

connections it provides to the amygdala and hippocampus (Crosson, 1992).  A 1985 

study by Damasio et al. examined five adults with damage to the basal forebrain who 

were suffering from amnesia.  None of the five patients had damage in the regions 

classically associated with major amnesic syndromes (medial temporal lobes or the 

dorsomedial thalamus).  These patients exhibited a deficit in the recall of previously 

presented information.  The deficit was supported by clinical observations and an 

examination of the patients’ performance on the Rey Auditory Verbal Learning Test.  An 
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impaired learning curve was observed during the recall trials of the RAVLT, however 

patients improved to normal or near normal on the recognition trial.   

These individuals were suffering from a type of amnesia primarily associated with 

the basal forebrain portion of their lesions. Specifically, it was concluded that this 

amnesia resulted from “interference with medial temporal function in the hippocampal 

formation proper, amygdala, and parahippocampal gyrus caused by the basal forebrain 

lesion,” (p. 661).  Due to the interconnectedness of these brain structures, and the finding 

that basal forebrain damage is associated with diminished activity in the medial temporal 

regions, it was concluded that damage to the basal forebrain can lead to a reduction of 

cholinergic input into the temporal lobes and association cortices which results in 

memory impairments.  Therefore, it is proposed that one way in which a brain tumor in 

the basal forebrain of the third ventricle region can affect memory and learning is by 

preventing the flow of information between these critical components of the human 

memory system. 

Hypothalamic Nuclei 

Evidence for the role of third ventricle structures in memory, particularly the 

nuclei of the hypothalamus, has been provided through the study of Korsakoff’s 

Syndrome.  While chronic alcoholism is the most common cause of this disorder, this 

syndrome has been observed in individuals suffering from tumors that apply pressure to 

the mammillary bodies of the hypothalamus, causing lesions to the hippocampus and 

septal areas (Kahn & Crosby, 1972). The study of the role of the mammillary bodies of 

the hypothalamus in memory processes has indicated that damage to this area can result 
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in significant impairments in recall abilities.  The hippocampus is greatly dependent on 

the activation of the cyclic limbic arcs which involve the septal areas and mammillary 

bodies, therefore damage to either of these areas will produce difficulties in memorizing 

and recalling recently acquired information (Kahn & Crosby, 1972).    Therefore, it 

follows that a tumor or lesion in this region of the hypothalamus would also negatively 

impact an individual’s memory system and learning ability. 

Fornix 

As the mammillary bodies of the hypothalamus have been implicated in human 

memory processes, so has damage that threatens the ability of these structures to convey 

information to and from the structures of the medial temporal lobe.  Heilman and Sypert 

(1997) illuminated the role of the fornix, the fiber tract that provides a pathway for 

hippocampal input to the mammillary bodies and dorsomesial thalamic nucleus, in 

memory processes.  It follows that damage to the pathway that allows the flow of 

information between the hippocampus, mammillary bodies and thalamus would impair 

memory abilities.  Heilman & Sypert (1977) reported that a lesion of the fornix resulted 

in an inability to recall verbal stimuli after being distracted, and a virtual inability to learn 

a list of 41 common words (Heilman & Sypert, 1977).  This finding is consistent with the 

results of a 1996 meta-analysis of human recognition data, which suggested that there is a 

single dissociation in which patients with damage to the hippocampus, fornix, 

mammillary bodies, or thalamus are relatively unimpaired on item recognition, but 

equally impaired as more generally deficient global amnesiacs, on measures of free recall 

(Tulving & Craik, 2000).   Together, these findings provide further evidence for the role 
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of the structures of the third ventricle region in memory processes that include learning 

ability, recall, and recognition.  

Thalamus 

Research into the role of the thalamus in memory has led to the implication of this 

structure primarily in verbal memory processes.  Specifically, it appears that greater 

verbal-memory deficits are observed in adults with damage to the left medial thalamus. 

Speedie & Heilman (1982) reported greater impairment of verbal than nonverbal memory 

in a patient with left dorsal medial thalamic infarction.  In 1989, Brown & colleagues 

observed a greater impairment in verbal versus visual memory in patients with damage in 

the same region.  These results indicated that there is a lateralization of verbal memory 

functions at the level of the medial thalamus.  Further evidence provided by Mori and 

colleagues (1986), indicated a relationship between left thalamic infarction and 

significant impairments in immediate recall, delayed recall, and delayed recognition trials 

on a test of verbal memory.  In the last twenty years, multiple studies have documented 

the role of this thalamic region in memory processes while providing evidence for the 

hypothesis that “lateralization of verbal and visual memory abilities extends, in most 

cases, to the level of the medial thalamus,” (Crosson, 1992 p. 229).  

In a series of three studies focusing on brain tumors in children and adolescents, 

Dennis and colleagues (1991a, 1991b, 1992) examined the impact of brain tumors on 

working memory task performance.  Three memory tasks were administered to 46 

children with tumors in 13 brain regions.  The distribution of the tumors was primarily 

subcortical and infratentorial, with the most common locations being the cerebellum and 



  17  
 

diencephalon (Dennis et al., 1991a).  The memory tasks included a measure of 

recognition, content, and sequential memory, however the authors stated that all three 

tests qualify as recognition measures because each included a list of exhaustive responses 

from which the participant chose.  These researchers utilized “a CT scan transcription 

system that was designed to identify the brain regions affected by the tumor and 

associated damage,” (p. 832).  Multiple regression analyses were then completed for each 

of the three memory tasks to determine the patterns of brain damage that were most 

predictive of memory deficits.   

The researchers found that damage to the putamen or globus pallidus impaired 

performance on all memory tasks.  They also reported that “performance on the 

recognition memory test was impaired by damage in the diencephalon,” specifically the 

anterior thalamus, medial-midline thalamus and pineal gland.  In contrast, they reported 

that “performance on the sequential memory test was impaired by tumor damage in both 

diencephalic and telencephalic components of the limbic system,” with specific damage 

to the pulvinar, hypothalamus, the neuro-hormonal pathways of the tuber cinerium and 

pituitary, and the uncus. No specific sites of tumor damage significantly predicted deficits 

in content memory.  These findings highlight the role of structures of the third ventricle 

region in children’s learning and memory processes, while noting the distinct nature of 

these three types of memory tasks at a neuroanatomical level. 

The way in which memory systems are disrupted depends on which structures or 

pathways are primarily affected by the tumor or lesion.  Because focal damage is difficult 

to attain in clinical samples, there is significant diversity in the methodology and results 
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of the aforementioned studies.  The role that specific diencephalic structures play in 

memory processes also remains elusive due to difficulties identifying the contributions of 

small structures and pathways in learning and memory tasks.  

A growing body of literature has highlighted the importance of the structures of 

the third ventricle region in learning, recall, and recognition in adult samples.  However, 

few studies have examined the role of these structures in children, and significant 

differences in impairment may be observed when underdeveloped memory systems are 

damaged at a young age.  In one of the few studies of examining these abilities in 

children, King et al. (2004) compared performance on auditory verbal learning and 

memory measures in a sample of children with third ventricle and cerebellar tumors.  

Drawing from research on adults with diencephalic insult, the researchers hypothesized 

that verbal memory abilities would be more impaired in children with third ventricle 

tumors than in children with cerebellar tumors.  Specifically, it was hypothesized that the 

third ventricle group would display;  1) a more impaired rate of list learning, 2) a larger 

decline in recall after a delay, and 3) a greater impairment on both delayed memory tasks, 

but a greater rate of improvement on the recognition task.   

The King study followed methodological guidelines for the study of children with 

brain tumors set by Ris & Noll (1994) through the utilization of theory driven hypothesis 

testing and consideration of the many potential confounding variables that plague 

research of this type.  The results provided considerable support for the role of the third 

ventricle region in children’s learning and memory processes.  In the study, the third 

ventricle group demonstrated significantly worse learning ability over the five trials.  
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They displayed greater impairment on immediate and delayed recall trials, but displayed 

improved performance on delayed recognition.  Additionally, the cerebellar group 

performed significantly worse than the third ventricle group on digit span, a measure of 

auditory attention and working memory for number sequences.   

Learning and memory are important outcome variables in the study of children 

with brain tumors.  Dennis et al. (1991) reported that examinations of memory abilities 

are of utmost importance in these populations because “many of the tumors that 

characteristically occur in childhood are located in brain regions, such as those 

surrounding the third ventricle, which have been demonstrated to be important for 

memory functioning in older individuals,” (p. 814).  Continual examination of damage to 

these structures during development is warranted in order to fully elucidate their role in 

learning and memory and later academic functioning.  The findings by King and 

colleagues (2004) highlight the severity of learning and memory difficulties in a sample 

of children with third ventricle tumors.  Replication of these findings would provide 

further support for the role of these structures and pathways in children’s learning and 

memory processes, and would help to provide parents and health care providers with a 

greater understanding of the difficulties experienced by these children.  By attempting to 

replicate and extend the findings of King et al. (2004), the current study hopes to provide 

further evidence for the role of diencephalic structures in the verbal learning and memory 

abilities of children.   
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Cerebellum 

Unlike the third ventricle region, research has not demonstrated a consistent role 

for the cerebellum in verbal memory and learning processes, and for many years it was 

believed to be solely involved in motor activity (Courchesne et al., 1997).  This is due in 

part, to past observations of the effects of cerebellar damage on posture, gait, and 

voluntary movement (Fiez et al., 1992).   More recent studies have implicated the 

cerebellum in multiple cognitive abilities including the voluntary shift of selective 

attention (Akshoomoff & Courchesne, 1992), executive functioning (Appollonio et al., 

1993), associative learning (Bracke-Tolkmitt et al., 1989), and the skilled manipulation of 

information (Leiner et al., 1986).  The cerebellum has been called “one of the busiest 

intersections of the human brain,” (Courchesne et al., 1997).  Researchers have proposed 

that the cerebellum’s connections with the prefrontal cortex and association cortices may 

be responsible for “frontal-like” cognitive impairments observed in individuals with 

cerebellar tumors (Appolonio et al., 1993). 

Research into the role of the cerebellum in verbal learning and memory abilities 

has produced mixed findings.  A 1992 case study by Fiez et al. reported that a patient 

with a large right cerebellar hemisphere lesion was severely impaired on a series of tasks 

that included learning abilities and the retrieval of verbal information.  Helmuth, Ivry & 

Shimizu (1997) attempted to replicate these findings with twelve cerebellar lesion 

patients.   In this study, the cerebellar lesion patients displayed a learning rate on the 

semantic association task equivalent to that of the control subjects.  The equivalence of 

their performance was noted through the examination of the learning curve of the two 
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groups when tested with the same stimuli used by Fiez et al. (1992).  The researchers 

reported an initial deficit in verbal discrimination learning in the cerebellar patients, 

however, when age was entered as a covariate in the analysis, the difference in learning 

ability between the cerebellar and control groups disappeared.  Inconsistency regarding 

the participation of the cerebellum in learning and verbal retrieval may be the result of 

the limitation of Fiez et al.’s single patient approach. Therefore, this incongruity in results 

between studies justifies further investigation into a potential role for the cerebellum in 

verbally based learning and memory processes. 

 Attention can be thought of as the direction of resources in the active processing 

of incoming information (Crosson, 1992).  In 1992, Akshoomoff and Courchesne 

examined the role of the neocerebellum, the evolutionarily newest piece of the 

cerebellum, on attention.   The researchers found a significant role for this region of the 

cerebellum in the voluntary shift of selective attention between sensory modalities.  They 

proposed that this portion of the cerebellum is involved in tasks that require quick, 

successive changes or adjustments of neural activity in order to proceed from one motor 

or cognitive condition to another.  A 1997 follow up study by Courchesne et al., further 

elucidated the relationship between the cerebellum and attention.  The researchers found 

that the cerebellum was activated by attentional processes without the engagement of any 

component, physical or imagined, of the motor system.  The results demonstrated that 

attention to sensory information was enough to activate the cerebellum in their sample of 

adolescents and children with autism.  They reported that their results highlighted the 

“functional independence of cerebellar activation by attention,” (p. 1941).  However, a 
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1997 attempt by Helmuth et al. to replicate these findings was unsuccessful and led the 

researchers to question the generalizability of Courchesne’s findings.  

Many researchers have posited that the role of the cerebellum in cognitive 

processes may be best explained through examination of the connections it forms with 

other brain regions.  A 1992 study by Riva et al. reported significant attentional 

difficulties in children with posterior fossa tumors. They hypothesized that these deficits 

were the result of the proximity of the tumor to the ascending activating system.  The 

ascending activating system travels through the brainstem and works with thalamic and 

cortical structures to mediate attention and arousal in humans.  These researchers 

concluded that brain tumors of the posterior fossa may lead to attention deficits during 

routine tasks in children.  Other researchers have posited that the cerebellum plays a role 

in cognitive abilities through its modulation of higher brain regions such as the frontal 

and parietal association cortices (Lalonde & Botez-Marquard, 2000).   The idea that 

multiple cortical areas project to, and communicate with, the cerebellum through the 

cortico-ponto-cerebellar pathway has been widely accepted (Middleton & Strick, 1998).   

However, until recently it was thought that the cerebellar output to the thalamus had an 

influence solely on regions of the primary motor cortex (Middleton & Strick, 1998).  

However, through the use of neuroanatomical tracing techniques, Middleton & Strick 

(1998) have demonstrated that the cerebello-thalamocortical connections project to 

regions of the premotor and prefrontal cortex, as well as to regions of the cingulate gyrus 

involved in the regulation of attention and emotion.  Findings from neuroimaging studies 

have led to the hypothesis that these cerebello-prefrontal connections contribute to 
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various cognitive and language abilities in normal populations (Desmond & Fiez, 1998).  

Furthermore, it is believed that damage to the cerebellum has the potential to reduce 

activation in cerebellar efferent target regions, thereby contributing to cognitive and 

executive impairments (Lalonde & Botez-Marquard, 2000).   

Research examining the relationship between the cerebellum and attention has led 

to an interest in the potential role for this brain region in more severe attentional 

impairments, such as Attention-Deficit Hyperactivity Disorder (ADHD).  ADHD is 

characterized by attentional impairments, impulsivity and hyperactivity (American 

Psychiatric Association, 2000).  Brain regions typically associated with ADHD include 

the prefrontal cortex and basal ganglia, however, a growing body of literature has 

highlighted the correlation between cerebellar volume and attentional impairments 

consistent with a diagnosis of ADHD (Berquin et al., 1998).  Berquin and colleagues 

(1998) examined differences in cerebellar and vermal volumes in 46 right-handed boys 

with ADHD and 47 healthy control children.  The researchers documented a significant 

reduction in cerebellar vermis in males with ADHD.  This finding was replicated by 

Mostofsky and colleagues (1998) in a sample of 12 boys with ADHD.  These findings 

support a potential role for the cerebellar vermis in clinical disorders of attention.  

However, due to the correlational nature of these studies, the researchers note that the 

exact contribution of the cerebellum to attentional processes remains unclear and call for 

further examination into this issue.     

Evidence for the cerebellum’s role in auditory attention was provided by King and 

colleagues (2004), who reported that children with cerebellar tumors performed 



  24  
 

significantly worse than children with tumors in the third ventricle region on the digit 

span task of the Wechsler Intelligence Scale for Children-III.  In contrast, the researchers 

did not find a significant difference in performance between the cerebellar and third 

ventricle group on the first trial of the auditory verbal learning tests.  The lack of a 

consistent impairment in the cerebellar group’s performance across two tasks of auditory 

attention indicates that the additional sequencing demand of the digit span task may 

account for this discrepancy.  The first trial of the two word lists of the Rey Auditory 

Verbal Learning Test (RAVLT) differ from the digit span task in their supraspan format, 

lack of a sequencing component, and utilization of words as stimuli.  Trial 1 of list A has 

demonstrated negligible correlations with subsequent learning trials (A, 2-5 of the Rey) 

as a result of its supraspan format and large attentional component (Macartney-Filgate & 

Vriezen, 1988).  Furthermore, neuropsychological findings have demonstrated that the 

immediate memory span for digits and the numbers of words recalled on trial 1 should be 

within one or two points of each other (Lezak, 1995).    

The inconsistency in results yielded by these two tasks which require the use of 

auditory attentional abilities warrants further investigation and highlights the need for 

additional research into the role of the cerebellum in attentional processes.   The current 

study attempted to replicate the King et al. (2004) finding of decreased performance on 

measures of auditory attention in the cerebellar group.  However, instead of evaluating 

auditory attentional abilities based on the digit span task, performance on trials A, 1 and 

B of the Rey Auditory Verbal Learning Test (RAVLT) were examined.  Utilizing trials 

A, 1 and B of the Rey allowed the researchers to determine if the cerebellar group would 
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demonstrate consistent impairments on attentional tasks that utilize verbal stimuli and do 

not require sequencing abilities.  

Multiple studies have reported a role for the structures of the third ventricle region 

in memory processes that underlie the acquisition of knowledge.  Damage to any 

component of these critical diencephalic structures or pathways may result in 

impairments in learning and memory.  In contrast, the cerebellum has not been 

consistently implicated in learning and memory processes, and mixed results have been 

reported regarding its role in basic auditory attention processes.  The current study 

examined whether or not children with cerebellar tumors demonstrate a greater 

impairment in auditory attention for words.  The current study also compared pediatric 

patients with third ventricle tumors to those with cerebellar tumors in an attempt to 

determine if children with tumors of the third ventricle region would exhibit a greater 

degree of difficulty on a measure of verbal learning and memory abilities.   

The first aim of the study was to examine differences in auditory attentional 

abilities across the two tumor location groups.  Specifically, it was hypothesized that due 

to attentional difficulties, the cerebellar group would demonstrate a greater impairment 

than the third ventricle group on trials A, 1 and B of the Rey AVLT.   The second aim of 

the study was to examine differences in verbal auditory learning and memory abilities 

across the two tumor location groups.  Specifically, participants of the third ventricle 

group were hypothesized to exhibit; 1) a greater impairment in learning across trials 2-5, 

2) a greater memory loss over the 20 minute delay and, 3) a greater impairment across 
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delayed memory tests than the cerebellar group, but to demonstrate a greater benefit in 

performance when presented with the recognition test format. 

Methods 

Participants   

A subset of 51 children were selected from 191 participants in a longitudinal 

study that focused on cognitive, emotional and behavioral changes in children diagnosed 

and treated for a brain tumor.  Participants were recruited from the hospital at which they 

were seeking treatment in the metropolitan area of Atlanta.  Informed consent was 

obtained from all families.  In most cases, the children participating in the study 

underwent neuropsychological assessment shortly after their diagnosis and annually 

during the anniversary month of their diagnosis.  At each assessment, the children 

completed a battery of neuropsychological tests and parents were asked to complete 

several questionnaires that inquired about the functioning of the child and family.   

For inclusion in the current analyses, participants had to be between 5 and 17 

years old at the time of the evaluation and speak English as their first language.  

Participants were required to have been diagnosed with a brain tumor in the cerebellum, 

posterior fossa, or third ventricle region of the brain.  They also were required to have 

completed the Rey Auditory Verbal Learning Test and the Stanford-Binet Intelligence 

Test-IV as part of their participation in the longitudinal study.  Participants were excluded 

from the current analyses if they had comorbid neurological conditions, auditory 

impairments, had experienced a traumatic brain injury or stroke, or if their tumor 

extended to the brain region of the comparison group. 
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 After reviewing the medical records of the original 51 participants, nine 

individuals were excluded from participation in the current study.   Three participants 

were excluded due to incomplete medical records, three were excluded because of 

hearing difficulties, and two participants had co-morbid neurological conditions (hypoxic 

encephalopathy, meningitis).  One participant was excluded because of a verbal 

reasoning IQ score below 70 on the Stanford-Binet Intelligence Scale-IV.  The excluded 

sample was comprised of four individuals with third ventricle tumors and five with 

cerebellar tumors.  The mean age of the excluded participants was 11.2 and did not differ 

significantly from the study sample (p = .72).  The excluded group was comprised of 

seven females and two males.  Seven of the nine excluded participants were Caucasian 

and two were African-American.  The Hollingshead Two-Factor Index of Social Position 

(Hollingshead, 1957) was used to estimate family socioeconomic status.  The 

Hollingshead is scored on a 1-5 point scale (1 = high, 5 = low) and calculates SES as a 

function of occupation and years of education of the child’s parents (Ater et al., 1996).  A 

significant difference in mean SES was noted between the excluded and study samples (p 

= .04), with the study sample having a mean SES of 3.11 and the excluded sample a 

mean of 3.77.   

Within the study sample, the cerebellar/posterior fossa group was comprised of 

nine males and nine females and the third ventricle group was comprised of sixteen males 

and eight females.  Within the cerebellar group, sixteen children were Caucasian and two 

were African-American.  Within the third ventricle group, nineteen children were 

Caucasian and five were African-American.  The mean SES fell near the midpoint of the 



  28  
 

Hollingshead scale for both the cerebellar (M = 3.16, SD = 1.29) and third ventricle 

groups (M = 3.08, SD = 1.41).  The pathology of the tumors observed in the cerebellar 

and third ventricle group are listed in Table 1.  See Table 2 for the demographics of the 

two tumor location groups. 

The average age at the time of evaluation was 10.7 years.  A significant (p = .006) 

difference was observed in the age of participants within the two tumor location groups at 

the time of the neuropsychological evaluation.  The average age at the time of the 

evaluation was 8.9 for the cerebellar group and 12.1 for the third ventricle group.  The 

average time between diagnosis and first neuropsychological evaluation in the 

longitudinal study did not differ significantly (p = .72) between the cerebellar (M = 1.72, 

SD = 2.38) and third ventricle groups (M = 2.23, SD = 3.33).  Because each tumor 

location group contained a small number of individuals who were seen years after their 

original diagnosis, and who were likely to increase these time estimations, medians were 

also calculated.  The results  revealed that the median time between diagnosis and first 

evaluation was .29 years (105 days) for the cerebellar group and .75 years (274 days) for 

the third ventricle group.  

Procedure 

Medical Information 

 Neuroanatomical verification of the location of the tumor was completed in the 

longitudinal study by radiologists and neurologists in the Atlanta area.  Radiological and 

surgical reports were obtained from participants’ medical records in order to confirm the  
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Table 1 

Tumor Pathologies by Tumor Location Groups  
 
 

  Third Ventricle Region 
 
Craniopharyngioma    9 
Fibrillary Astrocytoma   7 
Glioma     3 
Germinoma     3 
Pineoblastoma     1 
Ependymoma     1 
 
           Cerebellar & Posterior Fossa 
 
 
Medulloblastoma    8 
Astrocytoma     8 
Ganglioglioma     2 
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Table 2 
 
Demographic Variables by Tumor Location  
 
          Tumor Location 
 
Demographic Variables              Third Ventricle Region      Cerebellar/Posterior Fossa 
 
Number of participants   N = 24    N = 18 
 
Mean age at evaluation   12.1*     8.9* 
 
Mean time from diagnosis to 
evaluation     2.23     1.72 
 
Male to female ratio    16:8     9:9 
 
Caucasian to non-Caucasian ratio  19:5     16:2 
 
Mean SES estimate (Hollingshead)  3.08     3.16 
 
* p < .05 
** p < .01 
** *p < .001 
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location and extent of the tumor.  Information about tumor location and potentially 

confounding variables was gathered from archival data and medical records provided by 

the participants’ primary treatment institution.  Access to the medical records of the study 

participants was granted during their participation in the longitudinal study.  

Additionally, a HIPAA waiver of authorization was obtained from Georgia State 

University (IRB No. H04405) and Emory University (IRB No. 672-2004). 

Neuropsychological Measures 

 The Rey Auditory Verbal Learning Test (RAVLT) was designed to assess 

learning ability across 5 trials, interference, memory span, and recognition memory.   A 

list of 15 nouns (list A) was read aloud to each participant for five consecutive trials. 

Each trial was immediately followed by a free-recall test.  After completion of the 

learning trials, an interference list of 15 nouns (list B) was read aloud to the participant 

and was followed by a free recall test.  Immediately thereafter, participants were given a 

free recall test of list A.  After a 20-minute delay period, participants were again asked to 

recall the words from list A.  The final component of the Rey AVLT involved the 

examiner reading a list of fifty words (15 target words, 35 distracter words) and asking 

the participant to state whether or not each word was included in list A. 

Evaluations of the RAVLT’s psychometric properties have demonstrated good 

reliability and validity.  The majority of studies that have examined test-retest reliability 

of the RAVLT employed an alternate-form test-retest format in order to avoid practice 

effects (Groth-Marnat, 2000).  Correlations of scores between parallel forms (A and C) 

have been found to range from .61 to .86 for trials 1-5, and from .51 to .72 for recall trials 
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(Delaney et al., 1992).  Stallings et al. (1995) examined the convergent validity of the 

Rey AVLT and the California Verbal Learning Test.  Raw scores for all trials (1-7) were 

found to be significantly correlated (p < .001) and ranged from .49 for Trial 1 to .83 

across trials 1-5.  Additionally, Guilmette & Rasile (1995) examined the ability of the 

Rey AVLT to discriminate between sixteen adults with mild brain injuries and controls 

matched for age, gender and education.  The Rey demonstrated overall accuracy rates of 

about 70% with moderate sensitivity (range of 38% to 75%) and good specificity (69% to 

100%).  The RAVLT has been found to correlate well with other measures of learning 

and memory and is sensitive to neurological impairment, laterality of damage, and 

deficits in verbal memory in an array of patient groups (Crossen & Wiens, 1994).   

Comprehensive normative data from a sample of control subjects age 5-17 was 

not available for the Rey AVLT, therefore norms from a number of studies were 

compiled to allow for the conversion of participants’ raw scores to Z-scores.  Normative 

data for a sample of children and adolescents reported by Forrester & Geffen (1991), was 

used to calculate Z-scores for the following age ranges; 7-12, 14-15.  Normative data 

from a large sample of Midwestern children ages 5-6 was utilized in the calculation of Z-

scores for the current analyses.  Munson’s (1987) data on a sample of adolescents was 

used to calculate Z-scores for participants ages 13, 16, and 17.  Compiling normative data 

from several samples, which have variable sample sizes and differing methodology 

increases the likelihood that variability in performance will be observed both within and 

across age groups.  However, because of an inability to locate a single study that reported  
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comprehensive normative data for children ages 5-17, this method was utilized and 

interpreted with caution. 

The following variables of the RAVLT were included in the current study: 

List A Recall Trial 1:  The first trial of the RAVLT is thought to measure auditory 

attention and immediate memory (Lezak, 2004).  Trial 1 of list A was used to determine 

if there were significant differences in attention across the two tumor location groups.  It 

was hypothesized that children with tumors in the cerebellum would have greater 

difficulty with attention, and would therefore display greater impairment on list A, trial 1 

than members of the third ventricle group.   

List A Recall Trials 2-5:  Free recall tests provide a good measure of memory in children 

with learning impairments because they are similar to tasks encountered in the classroom 

and allow for responses to be free of structure (Talley, 1995).  Performance on list A 

trials 2-5 was examined in order to evaluate the hypothesis that the third ventricle group 

would demonstrate greater impairment in auditory verbal learning abilities. 

List B:   List B requires participants to attend to, and immediately recall a new word list 

after being presented with five trials of list A.  It is considered a measure of auditory 

attention and susceptibility to proactive interference.  This trial was compared to trial A, 

1 to determine if the cerebellar group demonstrated consistent impairments in attention 

across these two trials. 

Short Delay Free Recall Trial (Trial A, 6):  Trial 6 of the Rey AVLT requires the child to 

recall the original words from list A, after being exposed to the interference list.  This 

trial is typically administered 1-3 minutes after trial A, 5 and does not include a 
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presentation of the word list.  It is considered to be a measure of short-term verbal 

memory and will be compared to long delay free recall to determine the extent of  

memory loss over the 20-minute delay in each tumor location group. 

Long Delay Free Recall Trial:  This trial provided a measurement of the participants’ free 

recall of list A after a 20 minute delay.  No interfering material was presented during the 

20 minute delay.  This variable was examined to determine if third ventricle participants 

demonstrate impaired verbal recall abilities and a greater memory loss after a delay. 

Long Delay Recognition:  This task was completed approximately 20-25 minutes after 

list A, 5 and was compared to performance on the long delay free recall trial.  The two 

long delay variables were examined to determine if the third ventricle group exhibited a 

greater impairment across delayed memory trials, and a greater benefit in performance 

than the cerebellar group when presented with the recognition test format.   

Results 

Potential Confound Analyses:  

In the current analyses, a confound was defined as a variable that is  

1) significantly differentially represented in the two tumor location groups, and              

2) significantly related to delayed memory performance.  Participants’ performance on 

the long delay free recall trial was the dependent variable used to determine if a confound 

was significantly related to memory performance.  Parallel confound analyses were 

computed with delayed recall Z-scores and age-covaried raw scores.     

Two-tailed t-tests were completed to determine if the potentially confounding 

continuous variables were differentially represented in the tumor location groups.  In 
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order to determine if the potentially confounding continuous variables were significantly 

related to memory abilities, each was correlated with performance on the long delay free 

recall trial of the RAVLT (Z-scores and age-covaried raw scores). 

Prior to running the analyses, the continuous variables were examined for 

normality.  The time since diagnosis, amount of radiation, and time since the initiation of 

radiation and chemotherapy variables were found to be positively skewed.  Log10 

transformations were completed on these variables, and resulted in closer approximations 

of the normal curve.  In the instances in which a continuous variable was non-normally 

distributed, two correlations were completed and compared for consistency.  Specifically, 

Spearman two-tailed correlations were used to correlate non-transformed (positively 

skewed) independent variables with delayed memory abilities, and Pearson two-tailed 

correlations were used to correlate transformed (normally distributed) independent 

variables with delayed memory abilities.  See Table 3 for an overview of the significance 

levels for the correlations and chi-square analyses.   

Chi-Square Analyses or Fisher Exact Tests were used to examine differential 

representation of the categorical variables across the two tumor location groups.  The 

decision regarding which of the independent sample tests to use was determined by the 

total number of individuals falling within each of the cells.  If the value of any cell was 

less than 5, a Fisher Exact Test was completed in the place of a Chi-Square.  Table 4 lists 

the Chi-Square/Fisher Exact Test values, phi coefficients and significance levels.  Table 5 

lists the number of participants within each tumor location group who were exposed to 

each of the potentially confounding categorical variables. 
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Table 3 

 
Significance Levels of Variables Examined to Determine Confound Status 

Variable      Tumor Location               Delayed Recall          
            

     Age-Covaried            Z-score       
       Raw Score      
      

Time since Diagnosis   p = .65   p = .15   p = .20 

Radiation Treatment   p = .53   p = .05*  p = .16 

Whole-brain Radiation  p = 1.0   p = .76   p = .75 

Amount of Radiation   p = .11   p = .14   p = .28 

Time since Radiation   p = .79   p = .04*  p = .07 

Chemotherapy    p = .44   p = .16   p = .11 

Time since Chemotherapy  p = .09   p = .20   p = .09 

Neurosurgery    p = .00***   p = .31   p = .09 

Multiple Treatments   p = .07   p = .16   p = .07 

Growth Hormone Deficiency  p = .01*  p = .96   p = .21 

Hydrocephalus   p = .21   p = .82   p = .59 

Seizure Medication    p = .71   p = .67   p = .32 

* p < .05    
** p < .01 
*** p < .001 
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Table  4 

Chi-Square Analysis and Fisher Exact Tests for Categorical Variables              

Variable   χ2  p   φ  p  

Radiation Treatment  .66  .53  .13  .42 

Whole-brain Radiation .05  1.0  .04  .83 

Chemotherapy   .70  .44  -.13  .40 

Neurosurgery   9.8***  .00  -.48  .00  

Multiple Treatments  7.07  .07  .41  .07 

Hormone Deficiency  7.64*  .01  .43  .00 

Hydrocephalus  1.96  .21  -.22  .16 

Seizure Medication  .42  .71  .10  .52 

*p <.05    
**p <.01 
***p <.001 
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Table 5 
 
Number of Participants Exposed to Potentially Confounding Tumor and Treatment 
Related Variables by Tumor Location Group 
 
               Cerebellar              Third Ventricle  
    
     N = 18           N = 24  
  
Radiation    9    15 

Whole-Brain Radiation  5    9 

Chemotherapy    4    3  

Neurosurgery    18***    14*** 

Radiation & Surgery   5    8 

Radiation & Chemotherapy  0    2 

Chemotherapy, Radiation &   4    0 
Neurosurgery 
 
Hormone Deficiency   5*    17* 

Hydrocephalus   17    19  

Seizure Medications   3    6 

*p <.05    
**p <.01 
***p <.001 
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The relationship between the potentially confounding categorical variables and 

delayed recall memory abilities was examined using both Z-scores and age-covaried raw 

scores. (See Table 3).  T-tests and analyses of covariance were chosen for these analyses.  

The relationship between the covariate (age) and the delayed recall variable was 

examined and found to be linear in nature (F (1, 39) = 14.50, p = .00).  The assumptions 

of analysis of covariance were examined and met by the data.   

Time since Diagnosis 

 The amount of time since diagnosis was not significantly different between the 

two tumor location groups (t (40) = -.45), p = .65).  The average time since diagnosis in 

the third ventricle group was 1330 days (SD = 1827), and 1120 in the cerebellar group 

(SD = 848).  A Spearman correlation coefficient was calculated on the non-normally 

distributed time since diagnosis variable and age-covaried raw scores (r = -.17, p = .27). 

A Pearson correlation was calculated on the transformed continuous variable and age-

covaried raw scores (r = -.23, p = .15).  Parallel Spearman (r = -.20, p = .20) and Pearson 

correlations were completed (r = -.12, p = .44) on delayed recall Z-scores and the time 

since diagnosis variable and were found to be nonsignificant.  Although time since 

diagnosis was not significantly related to performance on the delayed recall trial, it was 

noted that as time since diagnosis increased, performance on the delayed recall memory 

task decreased.  Time since diagnosis is not considered a confound in the current sample. 

Radiation Treatment 

There was no significant difference in the number of participants who underwent 

radiation treatment between the two tumor location groups (χ2 (1, N = 42) = .66, p = .53).  
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Specifically, 9 out of 18 of the cerebellar participants and 15 out of 24 of the third 

ventricle participants had received radiation treatment as a result of their tumor diagnosis. 

Radiation treatment was found to be significantly related to age-covaried raw scores (F∆ 

(1, 39) = 4.24, p =.05) but not delayed recall Z-scores (t (40) = 1.44, p = .16).  Radiation 

treatment accounted for 7.0% of the variance in participants’ age-covaried raw scores and 

4.9 % of the variance in delayed recall Z-scores, but is not considered a confound in the 

current analyses.  

Within the group of participants who had undergone radiation, the presence of 

whole-brain radiation treatment was examined.  The number of patients who underwent 

whole-brain radiation treatment was comparable across the two groups (χ2 (1, N = 24) = 

.05, p = 1.0).  Specifically, 5 out of 18 cerebellar participants and 9 out of 24 of the third 

ventricle participants received whole-brain radiation therapy.  Furthermore, the presence 

of whole-brain radiation treatment was not significantly related to age-covaried raw 

scores (F∆ (1, 21) = .10, p = .76) or delayed recall Z-scores (t (22) = .33, p = .75).   

Therefore, the presence of radiation or whole-brain radiation are not considered to be 

confounding variables in the current sample. 

Time since the initiation of radiation (in days) was not significantly different 

between the two tumor location groups (t (40) = .27, p = .79).  On average, the mean time 

since the initiation of radiation was 918 days (SD = 1029) for the third ventricle group 

and 801 days (SD = 1598) for the cerebellar group.  Spearman correlation coefficients 

calculated on the non-transformed time since initiation of radiation variable and age-

covaried raw scores (r = -.30, p = .05), and delayed recall Z-scores (r = -.28, p = .07), 
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were found to cluster near significance.  Pearson correlation coefficients calculated on the 

transformed time since the initiation of radiation variable and age-covaried raw scores (r 

= -.31, p = .04), and delayed recall Z-scores (r = -.28, p = .07)  resulted in comparable 

findings. Time since the initiation of radiation accounted for .4% of the variance in 

delayed recall Z-scores, and 4.9% of the variance in age-covaried raw scores. 

The amount of radiation received (in rads) was not significantly different between 

the two tumor location groups (t (40) = -1.65, p = .11).  The average amount of radiation 

in the third ventricle group was 3665 rads (SD = 2435), and the average in the cerebellar 

tumor location group was 2393 rads (SD = 2527).  Pearson correlation coefficients were 

calculated on the amount of radiation received and age-covaried raw scores (r = -.23, p = 

.14) and delayed recall Z-scores (r = -.16, p = .31).  Additional Spearman correlation 

coefficients calculated on age-covaried raw scores (r = -.23, p =.15) and delayed recall Z-

scores (r = -.17, p = .28), confirmed that the amount of radiation received was not 

significantly related to delayed recall performance.  Therefore, neither the amount of 

radiation received or time since the initiation of radiation, are considered to be confounds 

in the current analyses.   

Chemotherapy 

There was no significant difference in the number of participants undergoing 

chemotherapy between the two tumor location groups (χ2 (1, N = 42) = .70, p = .44). 

Specifically, 4 out of 18 cerebellar participants and 3 out of 24 third ventricle participants 

received chemotherapy treatment.  Furthermore, the presence of chemotherapy treatment 

was not significantly related to age-covaried raw scores (F∆ (1, 39) = 2.02, p =.16) or 
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delayed recall Z-scores (t (40) = 1.65, p = .11).  The presence of chemotherapy accounted 

for 3.5% of the variance in participants’ raw scores and 6.4% of the variance in Z-scores.  

Therefore, chemotherapy is not considered a confound in the current sample.  

A trend was observed for a significant difference in time since the initiation of 

chemotherapy (t (40) = 1.76, p = .09).  The mean number of days since initiation of 

chemotherapy was 433 in the cerebellar group (SD = 857) and 66 in the third ventricle 

group (SD = 247).  Spearman correlation coefficients were calculated on the non-

transformed time since initiation of chemotherapy variable and age-covaried raw scores 

(r = -.20, p =.20), and delayed recall Z-scores (r = -.27, p =.09).  Pearson correlation 

coefficients were calculated on the log10 transformed variable and age-covaried raw 

scores (r = -.17, p = .26) and delayed recall Z-scores (r = -.05, p = .77), and indicated 

that the time since initiation of chemotherapy was not significantly related to delayed 

recall performance.  Time since the initiation of chemotherapy accounted for less than 

1% of the variance in delayed recall Z-scores and age-covaried raw scores.  Time since 

the initiation of chemotherapy is not considered a confound in the current sample. 

Neurosurgery 

A significant difference was found in the number of participants undergoing 

neurosurgery between the two tumor location groups χ2 (1, N = 42) = 9.84, p = .00).  The 

number of participants undergoing neurosurgery in the third ventricle group was 

significantly lower than in the cerebellar group.  Specifically, 14 of 24 (58.3%) 

participants in the third ventricle group underwent neurosurgery compared to 18 of 18 

(100%) in the cerebellar group.  Undergoing neurosurgery was not significantly related to 
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delayed recall Z-scores (t (40) = -1.73, p = .09), or age-covaried raw scores (F∆ (1, 39) = 

1.08, p = .31).  Neurosurgery accounted for 2.7% of the variance in age-covaried raw 

scores and 7.0% of the variance in delayed recall standard scores.  However, 

neurosurgery is not considered a confound in the current sample. 

Multiple Treatments 

 A nominal variable was created in order to determine if the number of children 

receiving multiple treatments was significantly different across tumor location groups.  

The variable had 4 levels and each child was coded based on their membership in one of 

the 4 treatment groups.  Prior to the creation of this variable, participants’ treatment 

records were examined for the purpose of defining the multiple treatment groups.  It was 

determined that within this sample of 42 children with brain tumors, 3 distinct treatment 

combinations were utilized.  Children receiving combination treatment fell into one of the 

three following categories; 1 = radiation and surgery, 2 = chemotherapy and radiation, 3 

= chemotherapy, radiation and surgery.  The fourth level of this variable included 

children who experienced only one treatment modality as a result of their brain tumor 

diagnosis.   

A trend for a significant difference was found in the number of participants who 

experienced multiple treatments across the two tumor location groups (χ2 (1, N = 42) = 

7.07, p = .07).  Specifically, five of the cerebellar and eight of the third ventricle 

participants experienced the radiation and surgery treatment combination.  Two 

participants in the third ventricle group experienced the chemotherapy and radiation 
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treatment combination.  Four participants in the cerebellar group experienced the 

radiation, chemotherapy and surgery treatment combination.   

The multiple treatment variable was not significantly related to delayed recall Z-

scores (F (3, 38) = 2.64, p = .07) or age-covaried raw scores (F (4, 37) = 1.84, p = .16). 

The multiple treatment variable accounted for 10.7% of the variance in participants’ 

delayed recall Z-scores, and 3.6% of the variance in age-covaried raw scores. However, 

the exposure to multiple treatment modalities is not considered to be a confound in the 

current analyses. 

Hormone Deficiency 

A significant difference was found in the number of participants experiencing 

hormone deficiency between the two tumor location groups (χ2 (1, N = 42) = 7.64, p = 

.01).  The number of participants experiencing hormone deficiency in the cerebellar 

group was significantly lower than in the third ventricle group.  Specifically, 5 of 18 

(24.7%) participants in the cerebellar group experienced hormone deficiency compared to 

17 of 24 (70.8%) within the third ventricle group.   However, hormone deficiency was 

not significantly related to delayed recall Z-scores (t (40) = 1.27, p = .21) or age-covaried 

raw scores (F∆ (1, 39) = .00, p = .96).  Therefore, hormone deficiency is not considered a 

confound in the current sample. 

Hydrocephalus 

 No significant difference was observed in the number of participants with a 

hydrocephalus diagnosis between the two tumor location groups (χ2 (1, N = 42) = 1.96, p 

= .21).  Specifically, 17 out of 18 of the cerebellar participants and 19 out of 24 third 
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ventricle participants had received a diagnosis of hydrocephalus.  Furthermore, a 

diagnosis of hydrocephalus was not significantly related to age-covaried raw scores (F∆ 

(1, 39) = .05, p =.82) or delayed recall standard scores (t (40) = .54, p = .59). Therefore, 

hydrocephalus is not considered a confound in the current sample. 

Seizure Medications 

No significant difference was observed in the number of participants prescribed 

seizure medications between the two tumor location groups (χ2 (1, N = 42) = .42, p = 

.71).  Specifically, 3 out of 18 cerebellar participants and 6 out of 24 third ventricle 

participants had been prescribed seizure medication.  Furthermore, seizure medications 

were not significantly related to age-covaried raw scores (F∆ (1, 39) = .17, p =.67) or 

delayed recall Z-scores (t (40) = 1.01, p = .32). Therefore, the presence of seizure 

medications is not considered a confound in the current sample. 

Attention Deficit/Hyperactivity Disorder and Learning Disabilities 

 Participants’ medical records and data from the longitudinal study were examined 

for the presence of pre-morbid diagnoses of learning disabilities and Attention Deficit-

Hyperactivity Disorder.  This was done in an attempt to control for the effects of pre-

existing attentional or learning difficulties on participants’ performance on the Rey 

AVLT.  However, a review of the files indicated that none of the participants in the 

current sample had preexisting diagnoses of Attention Deficit-Hyperactivity Disorder or 

learning disabilities. 
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Trial A, 1 vs. Trial B 

In order to address the auditory attention hypothesis, and determine if children 

with cerebellar tumors would show consistent impairment in performance on tasks of 

auditory attention and immediate memory, a 2 x 2 ANCOVA was completed.  The 2 x 2 

ANCOVA examined participants’ age-covaried raw score performance on list A, trial 1 

and list B of the RAVLT.  A significant effect was found for the tumor group by list type 

interaction, and accounted for 13.6% of the variance in participants’ performance (F (1, 

39) = 6.16, p = .02).  A trend for a significant difference in performance between the two 

tumor location groups was also observed (F (1, 39) = 2.41, p =.13).  However, no 

significant effect was found for list type among the two groups (F (1, 39) = .90, p = .35).  

See Figure 1, and Table 6 for age-covaried raw score means and standard deviations for 

trials A,1 and B. 

A significant difference in performance was observed between groups on trial A, 

1 of the RAVLT (F (1, 39) = 7.16, p = .01).  Tumor location accounted for 15.5% of the 

variance in participants’ performance on trial A, 1.  On average, participants in the 

cerebellar group recalled fewer words (M = 4.16, SD = 1.69) than participants in the third 

ventricle group (M = 5.50, SD = 1.51).  These results indicate that participants with 

cerebellar tumors performed significantly worse than participants with third ventricle 

tumors, on a measure of auditory attention and immediate memory.  However, no 

significant difference in performance was found between groups on trial B of the RAVLT 

(F (1, 39) = .00, p = .96).  Performance on trial B was strikingly similar across the 

cerebellar (M = 4.45, SD =  1.76) and third ventricle groups (M = 4.42,  SD = 1.57). 
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Figure 1 

Performance on List A, Trial 1 and List B across the Two Tumor Location Groups, in 
Age-Covaried Raw Scores 
 
 
 
Table 6 
 
Age-Covaried Means and Standard Deviations of Words Recalled on List A, Trial 1 and 
List B by Tumor Location  
 
  
               Cerebellar              Third Ventricle  
    
    M  SD  M  SD 
  
 

List A, Trial 1   4.16*  1.69  5.50*  1.51 

List B    4.45  1.76  4.42  1.57 

* p < .05    
* *p < .01 
*** p < .001 
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Within each tumor location group, simple effects analyses were completed to 

compare performance on trial A, 1 and trial B.  Within the third ventricle group, the 

attention list variable accounted for 13% of the variance in performance.  The third 

ventricle group’s performance declined significantly across trials A, 1 and B (F (1, 45) = 

6.7, p = .01).  In contrast, the cerebellar group demonstrated roughly equivalent 

impairment across trials A, 1 and B (F (1, 33) = .18, p = .68).  This finding is inconsistent 

with the proposed hypothesis which stated that the children with cerebellar tumors would 

demonstrate a greater impairment in performance than children with third ventricle 

tumors across both trials of auditory attention. 

Parallel analyses completed on participants’ Z-scores revealed a strikingly 

different pattern of results than observed with age-covaried raw scores.  The 2 x 2 

ANOVA indicated significant main effects for the trial type (F (2, 40) = 9.87, p = .00) 

and the attention trial by tumor location interaction (F (1, 40) = 6.20, p = .01).  No 

significant main effect was observed for tumor location (F (1, 40) = .84, p = .36).  Simple 

effects analyses were completed and indicated that participants differed significantly in 

performance on trial A,1, but that this difference diminished in trial B (F (1, 40) = .00, p 

= .96).  On trial A, 1, tumor location accounted for 10% of the variance in performance.  

On this trial the cerebellar group performed in the mildly impaired range (M = -1.41, SD 

= 1.21), and the third ventricle group performed in the average range of functioning (M = 

-.69, SD = .99).  On trial B, both the cerebellar (M = -.27, SD = 1.36) and third ventricle 

groups performed in the average range (M = -.56, SD = 1.16).  Simple effects analyses 

also indicated that the third ventricle group’s performance did not differ significantly 
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across trials (F (1, 46) = .23, p = .64).  In contrast, to the proposed hypothesis, the 

cerebellar group performed significantly worse on trial A, 1 than on trial B (F (1, 34) = 

10.57, p = .003).  See Figure 2 and Table 7.   

List Learning  

 To address the list learning hypothesis, which proposed that the third ventricle 

group would perform significantly worse than the cerebellar group across trials 2-5 of the 

RAVLT, a 2 x 4 ANCOVA was completed.   A 2 x 4 ANCOVA was chosen in order to 

examine differences in age-covaried raw score performance in the two groups unaffected 

by differences in attention on trial A, 1.  Therefore, trial 1 was entered as a covariate into 

the analysis and was found to account for 29.5% of the variance in participants’ 

performance (F (1, 38) = 15.88, p = .00).    

After controlling for differences in performance on trial 1, a significant effect was 

demonstrated for tumor location (F (1, 38) = 4.39, p = .04).  Tumor location accounted 

for 10.4% of the variance in participants’ performance across trials 2-5 of the RAVLT.  

In contrast, no significant effect was observed for learning trial (F (3, 114) = 0.68, p = 

.57) or the interaction of learning trial by tumor group (F (3, 114) = 0.96, p = .41).  These 

findings are consistent with the list learning hypothesis, and indicated that after 

accounting for initial differences in attention, children with cerebellar tumors display 

superior learning across trials 2-5 of the RAVLT than children with third ventricle 

tumors.  See Figure 3 and Table 8 for the age-covaried raw score means and standard 

deviations for trials 1-5. See Figure 4 and Table 9 for the age-covaried raw score means 

and standard deviations for trials 2-5 (after covarying out performance on trial A, 1). 
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Figure 2  
 
Performance on List A, 1 and List B across the Two Tumor Location Groups, in Z- 
Scores 

 
 
Table 7 
 
Mean Z-Scores and Standard Deviations of Words Recalled on List A, Trial 1 and List B 
by Tumor Location  
 
  
               Cerebellar              Third Ventricle  
    
    M  SD  M  SD 
  
 

List A, Trial 1   -1.41*  1.21  -.69*  .99 

List B     -.27  1.36  -.56  1.16 

* p < .05    
* *p < .01 
*** p < .001 
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Figure 3  
 
Learning Across Trials 1-5 of the RAVLT by Tumor Group, in Age-Covaried Raw Scores 
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Table 8 
 
Age-Covaried Mean and Standard Deviation of Words Recalled Across Trials 1-5 of 
RAVLT by Tumor Location  
  
               Cerebellar              Third Ventricle  
    
    M  SD  M  SD 
  
Trial 1    4.16**  2.33  5.50**  2.00 

Trial 2    6.59  3.43  6.93  2.91 

Trial 3    8.06  3.79  7.83  4.08 

Trial 4    8.67  4.27  8.29  3.63 

Trial 5    9.91  4.47  8.69  3.82 

*p <.05    
**p <.01 
***p <.001 
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Figure 4 

Learning across Trials 2-5 of the RAVLT after Controlling for Performance on Trial 1, in Age-

Covaried Raw Scores 
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Table 9 
 
Mean and Standard Deviation of Words Recalled Across Trials 2-5 of RAVLT after 
Controlling for Age and Performance on Trial 1 
  
               Cerebellar              Third Ventricle  
    
    M  SD  M  SD 
  
Trial 2    7.13  3.24  6.52  2.78 

Trial 3    8.83  3.82  7.25  3.75 

Trial 4    9.4  3.82  7.74  3.30 

Trial 5    10.4  4.53  8.33  3.82 

*p <.05    
**p <.01 
***p <.001 
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 In order to compare the performance of the two groups on each trial of the 

RAVLT, a series of five simple effects analyses were completed (See Tables 8 & 9).  As 

previously reported, a significant difference in performance was observed between 

groups on trial A, 1 of the Rey AVLT (F (1, 39) = 7.16, p = .01).  No significant 

difference in performance was observed between the tumor groups on trial 2 (F (1, 38) = 

0.73, p = .40).  However, both the cerebellar (F (1, 33) = 8.95, p = .00) and third ventricle 

groups (F (1, 45) = 12.45, p = .00) demonstrated their only significant gain in the number 

of words recalled between trials 1 and 2.  A trend for a significant difference in 

performance between the two tumor location groups was observed on trial 3 of the 

RAVLT (F (1, 38) = 2.57, p = .12), and the difference in performance between the two 

groups closely approached significance on trial 4 (F (1, 38) = 3.83, p = .06).  Tumor 

location accounted for 9.2% of the variance in performance on trial 4.  A significant 

difference in performance was observed on trial 5 of the RAVLT (F (1, 41) = 4.33, p = 

.04), with tumor location accounting for 10.2% of the variance in participants’ 

performance. 

Parallel analyses completed on participants’ Z-scores indicated a comparable 

pattern of results for the 2 x 4 ANCOVA.  Trial 1 was entered as a covariate and was 

found to account for 24.3% of the variance in participants’ performance (F (1, 39) = 12.5, 

p = .001).  After controlling for this initial difference in performance on trial 1, a 

significant effect was observed for tumor location (F (1, 39) = 4.05, p = .05).  Tumor 

location accounted for 9.4% of the variance in participants’ performance across trials 2-5 

of the RAVLT.  On average across trials 2-5, the performance of the cerebellar group (M 
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= -.89, SD = 1.55) fell in the low average range, while the performance of the third 

ventricle group fell in the mildly impaired range (M = -1.57, SD = 1.36).  No significant 

effect was observed for learning trial (F (3, 117) = .15, p = .91) or the learning trial by 

tumor group interaction (F (3, 117) = .50, p = .68).  These findings provide further 

support for the list learning hypothesis and indicate that children with tumors of the 

cerebellum display verbal learning abilities superior to those of children with tumors of 

the third ventricle region (See Tables 10 & 11, Figures 5 & 6). 

As previously reported, simple effects analyses completed on participants’ Z-

scores revealed that the two groups differed significantly on trial A, 1 of the Rey AVLT 

(F (1, 39) = 4.44, p = .04).  On this trial, tumor location accounted for 10% of the 

variance in performance.  A series of four simple effects analyses revealed no significant 

difference in performance between groups on trial 2 (F (1, 39) = .57, p = .46), a trend for 

a significant difference in performance between groups on trial 3 (F (1, 39) = 2.98, p = 

.09), and a significant difference on trial 4 (F (1, 39) = 4.07, p = .05).  In contrast to the 

results from the age-covaried raw score analyses, the Z-score analyses revealed that the 

third ventricle group improved from the mildly impaired range on trial 4, to the low 

average range on trial 5.  This improvement in recall between trials 4 and 5 was also seen 

in the cerebellar group, and resulted in only a trend for a significant difference between 

groups on the last list learning trial (F (1, 39) = 2.29, p = .14).     

Delayed Memory 

In order to examine memory loss over time within each group, a 2 x 2 ANCOVA 

was completed to examine age-covaried raw score performance on short and long-delay  
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Table 10  
 
Mean Z-Scores and Standard Deviations of Trials 1-5 of RAVLT by Tumor Location  
  
               Cerebellar              Third Ventricle  
    
    M  SD  M  SD 
  
Trial 1    -1.41*  1.21  -.69*    .99   

Trial 2    -1.1  2.20  -1.08  1.87  

Trial 3    -1.17  2.40  -1.57  2.07 

Trial 4    -1.30  2.27  -1.69  2.00 

Trial 5    -.85  2.07  -1.29  1.81 

*p <.05    
**p <.01 
***p <.001 
 
 
 
 
Table 11 
 
Mean Z-Scores and Standard Deviations of Words Recalled Across Trials 2-5 of RAVLT 
after Controlling for Performance on Trial 1 
  
               Cerebellar              Third Ventricle  
    
    M  SD  M  SD 
  
Trial 2    -.89  1.55  -1.23  1.81 

Trial 3    -.93  2.27  -1.75  1.94 

Trial 4    -1.02  2.07  -1.90  1.81   

Trial 5    -.72  2.07  -1.38  1.81 

*p <.05    
**p <.01 
***p <.0 
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Figure 5  
 
Learning Across Trials 1-5 of the RAVLT by Tumor Group, in Z-Scores 
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Figure 6 

 
Learning Across Trials 2-5 of the RAVLT after Controlling for Performance on Trial 1, in Z-
Scores 
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free recall trials.  After controlling for differences in learning abilities by covarying out 

performance on trial 5 (F (1, 38) = 41.73, p =.00), no significant main effect was found 

for tumor location (F (1, 38) = .00, p = .96), or trial type (F (1, 38) = .66, p = .42).  No 

significant effect was found for the trial by tumor interaction (F (1, 38) = .50, p = .48).  

Additionally, simple effects analyses revealed that neither the cerebellar (F (1, 33) = .03, 

p = .87) or the third ventricle group (F (1, 45) = .03, p = .86) demonstrated a significant 

decline in memory performance between the short and long delay free recall trials.  See 

Figure 7, Table 12. 

A 2 x 2 ANCOVA was completed on participants’ performance on the long delay 

free recall and recognition trials.  It was hypothesized that the third ventricle group would 

be more impaired than the cerebellar group on both delayed memory tasks, but would 

show a greater rate of improvement when presented with the recognition test format.  In 

order to examine differences in memory performance unaffected by differences in 

learning abilities, trial 5 of the RAVLT was entered as a covariate.  Performance on trial 

5 accounted for a significant amount of the variance (η2 =.36) in delayed memory 

performance (F (1, 38) = 21.19, p= .00).   

Results of the 2 x 2 ANCOVA illustrated a significant effect for delayed memory 

trial type (F (1, 39) = 20.92, p = .00), which accounted for 35.5% of the variance in 

performance.  Participants across tumor location groups performed significantly better on 

the delayed recognition memory task (M = 13.07, SD = 2.98) than on the delayed recall  
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Figure 7 

Performance on List A, Trial 6, Delayed Recall and Recognition trials  in Age-Covaried 
Raw Scores 
 
 
 
Table 12 
 
Age-covaried Raw Score Performance on Short and Long Delay Free Recall and 
Recognition Trials by Tumor Location 
 
  
               Cerebellar              Third Ventricle  
    
    M  SD  M  SD 
  
 
Short Delay Free Recall 7.4  3.75  7.62  3.18 

Long Delay Free Recall 7.65  4.08  7.36  3.56 

Delayed Recognition           13.44  4.80  12.96  4.15   

* p < .05    
** p < .01 
*** p < .001 
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task (M = 7.38, SD = 2.48).  Simple effects analyses indicated that the tumor location 

groups did not differ significantly in their performance on the long delay free recall (F (1, 

39) = .24, p = .63) or recognition trials (F (1, 39) = .04, p = .64) when controlling for age 

and trial 5.  A significant effect was not observed for tumor location (F (1, 38) =.41, 

p=.53), or the interaction of trial by tumor (F (1, 38) = .09, p = .77).  In contrast to the 

proposed hypotheses, the third ventricle group did not demonstrate a greater impairment 

than the cerebellar group across delayed memory tasks, nor did they demonstrate a 

greater benefit in performance when presented with the recognition test format.  (See 

Table 12, Figure 7).   

Participants’ standard scores were examined for outliers prior to completing the 

delayed memory analyses.  One member of the third ventricle group was excluded from 

the analyses because of a delayed recognition Z-score of -10.71, because of the potential 

for this value to unduly skew the results of the analyses. 

Parallel analyses completed with Z-scores indicated a somewhat different pattern.  

A 2 x 2 ANCOVA was completed to examine memory loss over the 20-minute delay 

(short delay vs. long delay free recall).  Trial 5 was entered as a covariate to control for 

differences in learning ability (F (1, 39) = 15.88, p = .00), and accounted for 28.9% of the 

variance in participants’ performance.  No significant main effect was observed for tumor 

location group (F (1, 39) = .54, p = .47).  A significant effect was observed for the 

memory trial (F (1.39) = 7.63, p = .009), with participants across the two groups 

performing significantly better on the short delay free recall trial (M = .15, SD = 1.10) 

than on the long delay free recall trial (M = -.76, SD = 1.62).  A trend for significance  
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Table 13 
 
Z-Score Performance on Short and Long Delay Free Recall and Recognition Trials by 
Tumor Location with Trial 5 as a Covariate 
 
  
               Cerebellar              Third Ventricle  
    
    M  SD  M  SD 
  
 
Short Delay Free Recall .10  1.68    .19  1.43 

Long Delay Free Recall        -.48*  2.20  -1.04*  1.94 

Delayed Recognition           -.69  3.30    -.61  2.91   

* p < .05    
** p < .01 
*** p < .001 
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Figure 8  
 
Performance on List A, Trial 6, Delayed Recall and Recognition Trials in Z- Scores with 
Trial 5 as a Covariate 
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was noted for the memory trial by tumor group interaction (F (1, 39) = 3.74, p = .06).  

See Table 13, Figure 8.   

Simple effects analyses were completed to examine differences between groups 

on the two memory trials.  No significant difference was observed on trial A, 6 of the Rey 

AVLT (F (1, 39) = .07, p = .79).  The performance between the two groups on this trial 

was strikingly similar, with both the cerebellar (M = .10, SD = 1.68) and third ventricle 

group (M = .19, SD = 1.43) performing in the average range.  A trend for a significant 

difference was observed between groups on the long delay free recall trial (F (1, 39) = 

1.83, p = .18), with the cerebellar group performing in the average range and the third 

ventricle group performing in the low average range of functioning.  Additional simple 

effects analyses were used to examine the pattern of performance within each group.  The 

performance of the cerebellar group did not differ significantly across the short (M = .10, 

SD = 1.68) and long delay free recall trials (M = -.48, SD = 2.20) of the Rey AVLT (F 

(1, 39) = .11, p = .74).  In contrast, the performance of the third ventricle group declined 

significantly across the short (M = .19, SD = 1.43) and long delayed free recall (M = -

1.04, SD = 1.94) trials of the Rey AVLT (F (1, 46) = 8.58, p = .005).   

A 2 x 2 ANCOVA was completed on the Z-score of participants’ performance on 

the long delay free recall and recognition trials.  Trial 5 was entered as a covariate into 

the analysis and accounted for 21% of the variance in participants’ performance (F (1, 

38) = 10.11, p = .003).  No significant effect for tumor location was observed (F (1, 38) = 

1.33, p = .57).  No significant main effects were observed for trial type (F (1, 39) = .002, 

p = .96), or the trial type by tumor location interaction (F (1, 38) = .98, p = .33).   
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Simple effects analyses were utilized to compare performance between groups on 

the long delay memory trials.   A previously completed simple effects analysis revealed a 

trend for a significant difference between groups on the long delay free recall trial (see 

above).  In contrast, the two groups did not differ significantly on the delayed recognition 

trial (F (1, 38) = .01, p = .91).  On average, participants in both the cerebellar (M = -.69, 

SD =3.30) and third ventricle groups (M = -.61, SD = 2.58) performed in the average 

range on the delayed recognition memory trial.   

To examine the performance of each group across the delayed memory trials, two 

one-way ANOVAs were completed.  The cerebellar group’s performance did not differ 

significantly across the two delayed memory test formats (F (1, 34) = .23, p = .64).  The 

performance of the cerebellar group was in the average range on both the long delay free 

recall trial (M = -.48, SD = 2.20), and the delayed recognition trial (M = -.69, SD = 3.30).  

The third ventricle groups’ performance did not differ significantly across the delayed 

memory trials (F (1, 44) = .78, p = .38).  However, as a result of the recognition test 

format, the performance of the third ventricle group improved from the low average (M = 

-1.04, SD = 1.94) to the average range of functioning (M = -.61, SD = 2.91).      

Memory for Sentences   

As a secondary analysis, a t-test was completed on the standard scores of 

participants’ performance on the memory for sentences subtest of the Stanford-Binet 

Intelligence Scale-IV.  This was completed as a collateral measure of verbal auditory 

attention abilities.  One member of the third ventricle tumor group was excluded from 

these analyses, due to missing data on the memory for sentences subtest of Stanford-
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Binet Intelligence Test-IV.  No significant difference in performance was observed 

among the two groups on the memory for sentences subtest (t (39) = .66, p = .51).  On 

this task, members of both the cerebellar (M = -.16, SD = .81) and third ventricle groups 

(M = -.39, SD = 1.30) performed in the average range.   Little overall differences in 

performance were observed between groups; however, the third ventricle group 

demonstrated greater variability in performance on this subtest (See Table 14). 

 

 

Table 14 

Performance on the Memory for Sentences of the Stanford-Binet Intelligence Scale-IV by 
Tumor Location 
  
                Memory for Sentences  
 
     Standard Age Scores  Z-Scores 
  
         M           SD        M       SD   
   
 
Cerebellar Tumor Group  48.72              6.51      -.16       .81 
  
 
3rd Ventricle Tumor Group      46.87         10.43      -.39       1.30 
  
*p <.05    
**p <.01 
***p <.001 
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Discussion 
 

Examinations of cognitive abilities in children with brain tumors are complicated 

by a multitude of treatment and diagnosis related variables, which have the likelihood to 

interact and exert diverse and widespread affects on the developing neural structures.  

The consideration and statistical control of the differential effects of these variables on 

cognitive abilities is a primary means by which researchers can increase the internal 

validity of their findings.  The current study considered both the individual and combined 

effects of treatment and diagnosis related variables on memory abilities in a sample of 

children with brain tumors.  Surprisingly, the examination of these potentially 

confounding variables within the cerebellar and third ventricle groups revealed minimal 

group differences.  This finding was unexpected, as tumor pathology, and therefore tumor 

characteristics, the presence of diagnosis related conditions, and treatment modalities of 

choice, vary across the cerebellar and third ventricle regions of the brain.   

Within this sample, two variables were found to be differentially represented in 

the two tumor location groups; the presence of neurosurgery and hormone deficiency.  

The third ventricle region of the brain is located deep in the cerebral hemispheres and is  

surrounded by subcortical structures that are sensitive to disruption.  The high prevalence 

of hormone deficiency in children with tumors of the third ventricle region is thought to 

be due to tumor and treatment-related disturbances of diencephalic brain structures (e.g. 

hypothalamus, pituitary gland), which are responsible for the modulation of a variety of 

hormones.  In an attempt to minimize damage to these surrounding brain structures that 

may result from surgical removal, tumors of the third ventricle region are frequently 
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treated with radiation therapy.  In contrast, surgical resection is frequently utilized in the 

treatment of children with cerebellar tumors.  Surgical resection is favored in this 

population because of its high success rate.  Additionally, the location of the cerebellum 

reduces the risk of disrupting surrounding brain structures and pathways during the 

surgical procedure.  The significant differences observed between groups in the 

prevalence of hormone deficiency and neurosurgery, are consistent with the literature 

regarding co-morbid conditions and treatments of choice in children with brain tumors.  

An examination of these two differentially represented variables revealed that they were 

not significantly correlated with performance on the delayed recall memory task, and 

therefore were not considered to be confounds in the current analyses.   

Two treatment related variables, the presence of radiation treatment and the time 

since the initiation of radiation, were found to be significantly related to performance on 

the long delay free recall measure.  Specifically, participants who had received radiation 

performed significantly worse on the long delay free recall memory trial than participants 

who had not received radiation therapy.  Furthermore, as the amount of time that had 

passed between the initiation of radiation and the neuropsychological evaluation 

increased, participants’ performance on the delayed recall memory trial decreased.  These 

findings are congruent with studies citing radiation “late effects,” or notable increases in 

cognitive impairment that may occur weeks, months and years after the initiation of 

radiation treatment (Chapman et al., 1995).  Although both radiation variables were 

found to be significantly related to memory abilities, no significant group differences 

were noted.  Therefore, after a comprehensive review of participants’ medical records, it 
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was concluded that none of the 12 tumor or treatment related variables met criteria (p < 

.05) to be considered a confound in the current analyses. 

Deficits in executive functioning, including attention, have been repeatedly 

documented in the literature on children with tumors in the cerebellum/posterior fossa 

region of the brain.  In 2004, King et al. reported that children treated for cerebellar 

tumors performed significantly worse than children treated for third ventricle tumors on 

the digit span subtest of the Wechsler Intelligence Scales for Children-III.  Additionally, 

a role for the cerebellum has been implicated in selective attention tasks in normal 

populations.  Specifically, posterior sites of the cerebellum have been shown to become 

activated in a visual shape detection task that was free of a motor component (Allen et al., 

1997).   

The current examination of attention in a sample of children with brain tumors 

supported the findings of King et al. (2004), and other studies citing a role for the 

cerebellum in attentional abilities.  Specifically, children with cerebellar tumors 

performed in the mildly impaired range on the first trial of the Rey AVLT.  Impaired 

performance on trial A, 1 of the Rey AVLT has typically been thought to be due to 

inattention and a slowness in shifting from one task to another (Lezak, 1995).  

Furthermore, when poor performance on trial A, 1 is observed in a sample of individuals 

with attentional impairments, but whose immediate verbal memory abilities are within 

normal limits, it is expected that, 1) the performance of these individuals will improve to 

within normal limits on list B, and 2) performance will improve significantly between 

trials A, 1 and A, 2 (Lezak, 2004). 
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The Z-scores of the cerebellar group revealed a pattern that was consistent with 

the profile of individuals exhibiting attentional impairments.  The cerebellar group 

demonstrated its only significant increase in word recall between trials A, 1 and A, 2.  An 

examination of the raw number of words recalled by the cerebellar group revealed that 

the group’s average raw scores did not increase significantly on trial B.  However, an 

examination of norm generated Z-scores indicated that their performance on this trial fell 

in the average range of functioning, a pattern more consistent with the profile of 

individuals with attentional impairments cited by Lezak (2004).  The inconsistency in the 

pattern of results between the raw scores and Z-scores can be partially explained through 

an examination of the normative data.  Across ages, the individuals comprising the 

normative sample performed better on trial A, 1 than on trial B.  When individuals 

demonstrate this pattern of performance, the decreased number of words recalled in trial 

B is typically attributed to the effects of proactive interference.  Proactive interference 

occurs when previously learned material (list A) interferes with an individual’s 

acquisition of new material (list B) (Lezak, 2004). As the performance of the normative 

group declined across trials A, 1 and B, the slight increase in raw number of words 

recalled by the cerebellar group translated to a significant increase in standard Z-scores 

(resulting in the mean Z-score that fell in the average range of functioning).  This 

indicates that the cerebellar group demonstrated consistent performance across trials, but 

that this performance did not consistently fall in the mildly impaired range of functioning 

when compared to same aged peers.  Similarly, the significant decline in the third 

ventricle group’s word recall between trials A, 1 and B, paralleled the performance of the 
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normative sample.  This resulted in a stability of the third ventricle group’s standard 

scores across tasks, and indicated that individuals in this group demonstrate susceptibility 

to proactive interference that is within normal limits.     

The pattern of performance observed across trials A, 1 and B indicates that the 

mildly impaired performance of the cerebellar group on trial A, 1 may be due to 

inattentiveness and a slowness of shifting to the new task, and is consistent with some of 

the literature citing a role for the cerebellum in attentional and executive abilities.  The 

majority of evidence for the cerebellum’s role in executive functioning has been provided 

by neuroanatomical demonstrations of indirect cerebellar connections with frontal and 

parietal association cortices (Riva & Giorgi, 2000).  Cerebrocerebellar pathways that link 

the cerebellum with frontal and prefrontal areas through the pons, and reciprocally 

through the thalamus, have been identified in a number of studies (Schmahmann & 

Pandya, 1995, 1997 a, b; Middleton & Strick, 1997; Riva & Giorgi, 2000).  Examinations 

of these neuroanatomical substrates have been used to define the cerebellum as a primary 

component in the widely distributed neural pathways that play a role in cognitive and 

executive abilities (Levisohn et al., 2003).  Difficulties in attention and executive 

functioning may result from the reduced metabolism in cerebellar efferent target regions, 

as a result of the tumor or treatment related damage (Lalonde & Botez-Marquard, 2000).   

 As a collateral measure of attention and verbal short-term memory abilities, the 

performance of the tumor location groups was compared on the Memory for Sentences 

subtest of the Stanford-Binet Intelligence Scale-IV.  In contrast to performance on trial 

A,1 of the Rey AVLT, no significant difference was observed in the performance of the 
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tumor location groups on the Memory for Sentences subtest.  On this task the 

performance of the cerebellar group was slightly superior to that of the third ventricle 

group, however, on average members of both the cerebellar (M = -.16, SD = .81) and 

third ventricle groups (M = -.39, SD = 1.30) performed in the average range.   

A lack of a notable difference in performance on this measure between groups 

could be partially attributed to its additional language comprehension component.  Factor 

analyses of the Stanford-Binet IV have indicated that this measure loads more highly on 

“verbal ability” than on “memory” (Sattler, 1992).  Strong language abilities in children 

often function to improve otherwise impaired skills, such as attention and auditory-verbal 

memory abilities (McGrew & Flanagan, 1998).  It is reasonable to postulate that children 

who comprehend the sentences with ease, will demonstrate superior performance when 

asked to recall the sentences.   Furthermore, it is important to note that performance on 

the memory for sentences subtest may be influenced by the meaningfulness of the 

sentences.  The more meaningful a sentence is, the higher the likelihood that a child will 

attend to, and recall, the sentence (Lezak, 2004).  As a result, performance on this subtest 

may be influenced by differences in oral language comprehension abilities and the 

meaningfulness of the stimuli, which have the potential to mediate the relationship 

between tumor location and performance, and obscure any real effects of the tumor 

location. 

 Consistent with previous findings, a significant role was found for the structures 

and pathways of the third ventricle region in children’s auditory verbal learning abilities.  

In this sample, children treated for tumors in the third ventricle region demonstrated 
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significantly greater impairments in learning across trials 2-5 of the Rey AVLT than did 

children with cerebellar tumors.  Results indicated that the learning abilities of the third 

ventricle group across the trials of the Rey AVLT were in the low average to mildly 

impaired range (Z-scores between -1.90 and -1.23). 

The pattern of results observed in the current study suggests that children with 

tumors of the third ventricle region demonstrated average auditory attention and 

immediate memory on trial A, 1.  However, the Z-scores of the third ventricle group’s 

performance proceeded to decline across trials, as participants in this group demonstrated 

minimal gains in the number of words recalled as a result of repeat exposure.  Non-

neurologically impaired children who comprised the normative sample used in the 

current study demonstrated significant improvements in performance as a result of repeat 

exposure to the learning material.  As the average number of words recalled by the 

normative sample increased with each exposure, so too did the discrepancy between the 

performance of “normals” and children with tumors of the third ventricle region, thereby 

resulting in a significant decline in the Z-scores of the third ventricle group over trials.   

An examination of the standard scores illustrates the growing discrepancy in 

performance between the third ventricle group and same aged peers across trials 2-5 of 

the Rey AVLT (See Figure 6).  After controlling for differences in attentional abilities on 

trial A, 1, the third ventricle group performed in the low average range on trial 2, and in 

the mildly impaired range on trials 3 and 4.  On trial 5, the performance of both groups 

increased relative to the normative sample, placing the cerebellar group in the low 

average range and the third ventricle group in the mildly impaired range.  On average 
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across trials 2-5 of the Rey AVLT, the performance of the third ventricle group was in 

the mildly impaired range and differed significantly from the performance of the 

cerebellar group.  

On average, the performance of the cerebellar group across trials 2-5 of the Rey 

was in the low average range.  After an initial impairment on trial A,1, the cerebellar 

group demonstrated an increase in the number of words recalled across subsequent 

learning trials.  However, when the performance of this group was examined relative to 

the normative population, they appeared to demonstrate a relatively flat learning curve.  

The Z-score profile of the cerebellar group indicated that these children learned at a 

normal rate across trials, but on average recalled fewer words than their same-aged peers.   

The performance of the cerebellar group was superior to that of the third ventricle group, 

and by the end of the fifth learning trial, the cerebellar group’s performance had 

improved from the mildly impaired to the low end of the average range.    

 Consistent with the proposed hypotheses, children with tumors of the third 

ventricle region demonstrated an impairment in verbal memory abilities.  A significant 

decline was noted in their Z-scores between the short and long delay free recall trials.  

Examination of the Z-scores and age-covaried raw scores demonstrated that both groups 

performed in the average range on the short delay free recall trial, indicating preserved 

immediate memory abilities.  However, the Z-scores of the third ventricle group declined 

significantly in the 20-minute delay that separates the short and long delay free recall 

trials.  On the long delay trial, a trend for a significant difference in Z-score performance 

was observed.  On this trial, the cerebellar group performed in the average range while 
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the third ventricle group’s performance declined into the low average range of 

functioning.   

 The recognition trial is a measure of how many words the participant learned, 

unaffected by difficulties with spontaneous retrieval (Lezak, 2004).  In contrast to the 

proposed hypothesis, the third ventricle group’s performance (Z-scores) did not improve 

significantly as a result of the recognition test format.  Across these trials, the 

performance of the third ventricle group improved from the low average to the average 

range of functioning.  Although this finding was not as robust as predicted, the results of 

the current analyses indicate that the utilization of a recognition test format improves the 

delayed memory performance of children with tumors of the third ventricle region.  

These findings indicate that although children in the third ventricle group had mildly 

impaired learning abilities over trials 2-5 of the Rey AVLT and low average performance 

on the long delay free recall trial, their performance can improve to the average range of 

functioning when asked to recognize previously learned material.  This pattern of results 

points to a deficit in verbal memory retrieval in children with tumors of the third ventricle 

region. 

 What may appear to be an inconsistency in the tumor location groups’ profiles 

across the age-covaried raw scores and Z-scores is likely due to the characteristics of the 

normative data.  On the short delay free recall trials, age-covaried raw scores and 

standard scores are consistent.  However, between the short and long delay free recall 

trials this pattern seems to shift.  An examination of the normative data used in the 

analyses indicates that, in general, children ages 5-17 demonstrated an increase in the 
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number of words recalled between the short and long delay free recall trials.  The 

increase in the cerebellar group’s performance across these trials was less than that 

observed in the normative sample and resulted in a slight decline in the cerebellar group’s 

Z-scores on the long delay free recall trial.  Furthermore, the performance of the third 

ventricle group declined between the short and long delayed free recall trials, and resulted 

in an even larger drop in standard scores.   

Additionally, it is important to note that subtle differences observed in the 

patterns of results between the age-covaried raw scores and Z-scores are likely due to 

inherent differences in the way that these two statistical methods account for differences 

in age.  Covariation occurs when one variable (age) consistently and systematically 

changes relative to another variable (tumor location).  When age is covaried out of 

memory performance scores, the result is an increase in the memory scores of younger 

children and a decrease in the memory scores of older children.  In contrast, the 

calculation of norm generated Z-scores assigns each child’s performance a position 

(usually between +3 and -3) amongst the performance of same-aged peers.  This method 

of evaluating the child’s performance relative to peers is typically considered to be more 

sensitive to age differences, and allows for the assignment of qualitative labels to the 

data.  

On the recognition trial of the Rey AVLT, both groups demonstrated a significant 

increase in the raw number of words recalled.  Although the raw scores of both groups 

increased significantly as a result of the recognition test format, so too did the 

performance of the normative sample.  Therefore, the increase in raw number of words 
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recalled by the two groups did not result in a significant increase in Z-scores.  However, 

it is important to note that the performance of the third ventricle group improved from the 

low average to the average range of functioning on the delayed recognition trial.   

 Damage to the structures and white matter pathways of the third ventricle region 

have been consistently implicated in impairments of learning and memory.  Specifically, 

damage to the structures involved in the transmission of information between the third 

ventricle region and the prefrontal cortex and medial temporal lobes is proposed to be a 

primary mechanism that underlies memory impairments in this population.  The findings 

from the current study indicate that when compared to children with tumors of the 

cerebellum, children with tumors of the third ventricle region demonstrate a greater 

impairment in auditory verbal learning, and a greater memory loss over a 20-minute 

delay when tested on a free recall measure.    

 Overall, the pattern of performance in this sample of children with tumors of the 

third ventricle region was consistent with learning and memory profiles observed in both 

adult and pediatric populations with damage to regions of the thalamus and third 

ventricle.  Consistent with expectation, the third ventricle group demonstrated impaired 

learning abilities across trials 2-5 of the Rey AVLT.  However, as observed in the current 

analyses, when patients with damage to the third ventricle are presented with a 

recognition test format, they typically demonstrate a pattern of performance that 

highlights their ability to learn (and therefore recognize) a limited amount of the 

previously presented material.  Normal learning abilities in children with third ventricle 

tumors are thought to be compromised by defective encoding, which in turn renders 
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retrieval strategies ineffective, thereby affecting free recall memory abilities (Gazzaniga, 

1995).  Several studies have demonstrated that impaired free recall performance is 

associated with a decreased use of organized encoding strategies (Gershberg & 

Shimamura, 1991).  The compromised performance observed on a measure of delayed 

free recall, relative to average performance on a measure of recognition memory, 

suggests deficits in encoding and retrieval as primary causes for the learning and memory 

difficulties within this sample of children with tumors of the third ventricle region 

(Kopelman, 1989).   

 The limitations of clinical studies of the cognitive abilities of children with brain 

tumors must be considered prior to the interpretation of findings.  A primary limitation of 

the current study was the use of normative data compiled from a number of studies 

differing in inclusionary/exclusionary criteria, methods of recruitment, sample sizes and 

demographic composition.  As a result, this may have introduced some degree of 

unknown variability into the Z-score analyses.   In light of the significant difficulty 

encountered in obtaining adequate normative data for the Rey AVLT, the current study 

would have benefited from the inclusion of pre-diagnosis measures of auditory verbal 

learning and memory abilities or an appropriate control group.  An examination of our 

findings in relation to pre-diagnosis data would allow for a more comprehensive 

understanding of the decline in attentional and memory abilities that results from the 

diagnosis and treatment of a brain tumor.  However, pre-diagnosis or baseline measures 

are uncommon in research of this type because of the rarity of the sample and an inability 

to predict which children may develop such a diagnosis.  A promising alternative is the 
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use of an age-matched control group.  Using such a group would allow researchers to 

make comparisons between participants with brain tumors and normally developing 

children who were exposed to similar research/testing methods during their participation 

in the study.  In the absence of an age-matched control group, the acquisition of 

comprehensive normative data for the Rey AVLT would significantly increase the 

researchers’ confidence in the meaning of the qualitative labels applied to participants’ 

performance (Z-scores).   

 When examined in relation to the myriad of research studies examining cognitive 

abilities of children with brain tumors, the current study stands out for a number of 

reasons.  First and foremost, the current study examined a relatively large sample of 

children experiencing brain tumors during childhood.  The study from which the current 

data was obtained (Neurological and Neuropsychological Recovery Following Brain 

Tumors in Children) had a number of strengths including; 1) its utilization of a variety of 

neuropsychological and behavioral measures, 2) its examination of children at early ages, 

and 3) the longitudinal or prospective nature of the study.  A second way in which the 

current study sets itself apart from other examinations of this population, is through its 

meticulous examination of potentially confounding variables.  In their 1991 article, 

Dennis et al. state that, “research investigations have generally failed to explore the 

systematically interrelated effects of brain-tumor variables on cognitive outcome,” (p. 

814).  Research in the field of pediatric neuro-oncology is rife with treatment and disease 

related variables that may function to obscure the relationship between the constructs of 

interest.  The current study examined the relationship between several potentially 
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confounding variables and verbal memory abilities.  The absence of a relationship 

between these variables and the dependent variable of interest serves to increase our 

confidence in the external validity of our findings.   

 The current study supports a potential role for the cerebellum in a distributed 

attentional and executive executive network.  Future studies should explore this issue 

further using a comprehensive attentional battery.  Ideally, the neuropsychological battery 

would be varied in task type, response modality, and cognitive load.  Specifically, 

attentional abilities in children with cerebellar tumors could be examined using measures 

of sustained and divided attention, and an expanded battery of auditory attention 

measures (digit span, letter span).  Furthermore, examining attention across modalities 

(visual cancellation tasks, visual span, spatial span) would also aid in our understanding 

of the cerebellum’s role in these processes.  A more thorough examination of learning 

and memory abilities in children with tumors of the third ventricle region could be 

accomplished through the administration of a measure such as the CVLT, which allows 

for an examination of serial and semantic encoding strategies, and the effects of cueing 

on recall performance.  Additionally, the use of a story recall measure would help to 

examine memory abilities using a format that resembles everyday interactions.  These 

measures are beneficial because they examine retention for material that exceeds 

immediate memory span (Lezak, 2004).  Story recall measures also have the power to 

elucidate the contribution of context and meaning to recall abilities.  

Relative to the substantial need for information within this domain, studies such 

as this can only provide limited insight into the cognitive deficits associated with brain 
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tumors.  In spite of this fact, such studies contribute to the field of neuro-oncology by 

providing data that can be assimilated into working hypotheses.  The active investigation 

and refinement of these working hypotheses will lay the groundwork for the creation of 

profiles of cognitive impairment in children with tumors of the cerebellum and third 

ventricle region.  Profiling cognitive dysfunction relative to localized brain damage is a 

meaningful, yet daunting task.  However, through the integration of neuropsychological 

data, researchers are afforded the ability to weave together the findings from research 

studies such as this, into a comprehensive conceptualization of the functions of specific 

brain structures and pathways.   Creating profiles of cognitive impairment in this 

population has the potential to provide families with a better understanding of their 

child’s strengths and weaknesses, which may facilitate the child’s adjustment to home 

and school environments, and aid in the attainment of an optimal level of functioning and 

quality of life.   
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