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ABSTRACT 

Memory impairments are common in individuals with temporal lobe epilepsy 

(TLE). This is understandable given that temporal lobe brain structures involved in TLE 

play a central role in encoding memories.  It is widely accepted that individuals whose 

seizure focus is in the left temporal lobe (LTLE) tend to have verbal memory 

impairments, whereas individuals whose seizure focus is in the right temporal lobe 

(RTLE) tend to have visuospatial memory impairments.  However, evidence of 

functional subdivisions within the left and right temporal lobes in both the animal and 

human literature suggest that more specific subtypes of memory impairment may exist 

in TLE based on differences in seizure foci.  The aim of this study was to identify more 



 

specific subtypes of memory-impairments in patients with intractable TLE using several 

measures of memory functioning and cluster analysis.  Identification of more specific 

memory subtypes in TLE could have prognostic significance for patients and contribute 

to our knowledge about the organization of memory systems of the human brain.  

Four memory subtypes were identified in this sample:  1) patients with mild to 

moderate figural memory deficits; 2) patients with moderate to severe figural memory 

deficits, mild facial recognition deficits, and mild attention/concentration deficits; 3) 

patients with severe figural memory deficits and mild verbal episodic memory deficits; 

and 4) patients with no episodic or semantic memory deficits.  Unexpectedly, the 

subtypes found did not exhibit the expected pattern of verbal memory impairments with 

left temporal lobe damage/dysfunction or visuospatial memory impairments with right 

temporal lobe damage/dysfunction. However, consistent with the literature, there was a 

trend towards some clusters with better verbal memory having higher left hippocampal 

volumes; and a trend towards one cluster with facial recognition deficits having lower 

anterior temporal lobe volumes.  

Small sample sizes in this study limited the ability to clearly validate many of the 

cluster differences, particularly differences in brain volumes. Nevertheless, the results of 

this study support the hypothesis that subtypes of memory impairment do exist in 

patients with TLE. With larger sample sizes, it is plausible that additional subtypes may 

be found, or the characteristics of the subtypes found may become clearer.   
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The term “epilepsy” refers to a group of neurological disorders whose central 

feature is recurrent unprovoked seizures (i.e., sudden, transient disturbances of 

electrical activity in the brain).  Epilepsy can be classified into two broad categories: 1) 

generalized epilepsy, in which seizures typically begin simultaneously in both cerebral 

hemispheres; and 2) partial epilepsy, in which seizures originate in one or more 

localized foci.  The most common type of partial epilepsy is temporal lobe epilepsy 

(TLE), which comprises approximately 40% of adult epilepsy cases (Alessio et al., 

2004).  

Impairments in cognitive functioning are relatively common in epilepsy patients.  

In fact, these deficits are often more debilitating than the seizures themselves (Rausch 

& Langfitt, 1997).  The nature of these deficits varies depending upon which areas of 

the brain are impacted by the disorder.  In individuals with TLE, mild to moderate 

deficits have been reported in intelligence, academic achievement, language functions, 

visuospatial functions (Hermann, Seidenberg, Schoenfeld, & Davies, 1997), executive 

functions, and motor speed (Oyegbile et al., 2004); however, memory impairments are 

particularly prominent.  This is because the temporal lobe brain structures involved in 

TLE play a central role in consolidating information into memory.  

The term “memory” actually refers to a collection of mental abilities that depend 

on several systems in the brain.  Four hypothesized memory systems that have been 

suggested are: 1) episodic memory; 2) semantic memory; 3) short-term memory; and 4) 

procedural memory.  Episodic memory refers to knowledge about specific, personally-

experienced events.  Some examples include remembering a conversation at a party, 

remembering where one’s car is parked, or remembering a list of items to buy at the 



 2 

grocery store.  Semantic memory refers to general factual knowledge, such as the 

name of the first president of the United States, the color of grass, or the meaning of the 

word “bird.”  Short-term or immediate memory refers to a limited-capacity system that 

temporarily holds information in awareness while it is processed in some way.  For 

example, one might rehearse a phone number in short-term memory until it can be 

written down.  Finally, procedural memory refers to a system for storing behavioral 

algorithms, such as the steps involved in riding a bicycle, or knitting a sweater.  

In patients with TLE, procedural memory and short-term memory are typically 

intact (Squire, Stark, & Clark, 2004), whereas episodic memory is frequently impaired.  

This is because encoding of episodic memories appears to depend particularly on brain 

structures in the right and left medial temporal lobes.  (These structures will be 

discussed in more detail shortly.)  Deficits in semantic memory have also been reported 

in patients with TLE (e.g., Giovagnoli, Erbetta, Villani, & Avanzini, 2005; Tröster et al., 

1995), which is not surprising given that the semantic memory system also depends on 

temporal lobe structures. However, the vast majority of research in TLE is focused on 

episodic memory, with a secondary focus on semantic memory.  Whether there are 

subtypes of TLE based on their pattern of memory deficits is the focus of this study.  

It is important to add here that, although encoding of episodic and semantic 

memories depends particularly upon the temporal lobes, other structures outside the 

temporal lobes also contribute to the formation of episodic memories (e.g., midline 

diencephalic structures, and the frontal lobes; Johnson, Saykin, Flashman, McAllister, & 

Sparling, 2001).  Some of these structures, such as the mamillary bodies, are believed 

to play a direct role in the encoding of memories (Martin et al., 1998). Other areas of the 
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brain are thought to play more of a supporting role.  For example, the frontal lobes may 

contribute to an individual’s performance on memory tasks through their impact on 

attention and organizational strategies.  It is difficult, if not impossible, to parcel out the 

impact of these structures on memory performance.  As a result, there are no pure 

measures of memory.  So-called episodic memory tasks are labeled thus because they 

are believed to tax the episodic memory system more heavily than other cognitive 

abilities; however, these tasks most certainly draw on other cognitive abilities as well.      

The remainder of this introduction is divided into three sections. Section one 

covers episodic memory. It begins with a general overview of the structure of the 

episodic memory system. This is followed by more detailed information regarding verbal 

episodic memory, including a description of tasks used to assess verbal episodic 

memory, a description of brain structures important for verbal episodic memory 

formation, and a brief review of the literature on verbal episodic memory in patients with 

TLE.  Next, more detailed information on visuospatial episodic memory is provided, 

including a description of tasks used to assess visuospatial memory, a description of 

brain structures important for different aspects of visuospatial memory, and a brief 

review of the literature on visuospatial episodic memory in patients with TLE.   

Section two of this introduction covers semantic memory. It begins with a 

description of tasks used to assess semantic memory. This is followed by a description 

of the areas of the brain thought to be most important for semantic memory formation, 

and a brief review of the literature on semantic memory in patients with TLE.  

Section three of this introduction covers other factors which might impact 

memory performance in patients with epilepsy.  These factors include seizure variables 
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(age at onset of seizures, and duration of seizures) and demographic variables 

(educational level, and sex).  The introduction concludes with the aims and hypotheses 

of the present study.  

Episodic Memory 

As was noted earlier, the episodic memory system depends particularly upon 

structures within the medial temporal lobes.  These structures include the hippocampal 

formation (including the hippocampus proper, the dentate gyrus, and the subicular 

complex), and portions of the parahippocampal gyrus (including the entorhinal, 

perirhinal, and parahippocampal cortices; Squire et al., 2004).  The left and right 

hippocampal regions are of particular interest to epilepsy researchers.  This is because 

these structures appear to play a prominent role in seizure propagation, and surgical 

removal of a malfunctioning hippocampus renders many medically-refractory patients 

seizure-free (Schwarcz & Witter, 2002).  However, a growing body of research has also 

been published on the role of the perihippocampal cortical regions (such as the 

perirhinal cortex and entorhinal cortex) in episodic memory (O’Brien, Bowden, 

Bardenhagen & Cook, 2003; Weintrob, Saling, Berkovic, Berlangieri & Reutens, 2002). 

These structures lie adjacent to the hippocampi within the mesial temporal lobes and 

are connected to the hippocampus (directly in the case of the entorhinal cortex, and 

indirectly in the case of the perirhinal cortex via relays in the entorhinal cortex; O’Brien 

et al., 2003).  

Numerous studies have been published showing a relationship between neuronal 

volume of these brain structures and memory performance.  Many of these studies have 

been conducted with TLE patients, approximately 40-70% of whom exhibit unilateral or 
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bilateral reduction in hippocampal neuronal volume compared to normal controls 

(Reminger et al., 2004).  This is a condition known as hippocampal sclerosis (HS).  In 

some TLE patients, similar patterns of neuronal loss have also been reported in the 

perirhinal cortex (PrC) and the entorhinal cortex (EC). Thus, the term “mesial temporal 

sclerosis” (MTS) is sometimes used instead of hippocampal sclerosis. In patients with 

TLE, greater hippocampal sclerosis is associated with lower preoperative memory 

(Alessio et al., 2004).  In addition, it has been found that patients with greater left HS 

are less likely to suffer a verbal memory decline following left temporal lobectomy 

(Hermann, Wyler, Somes, Berry, & Dohan, 1992; Trenerry, Westerveld, & Meador, 

1995).  Hippocampal sclerosis has also been found to be related to intellectual function 

and language (Alessio et al., 2004; Trenerry, Westerveld, & Meador, 1995).  

It is generally accepted that left temporal structures are more important in 

memory for verbal information, whereas right temporal structures are more involved in 

memory for visuospatial information (Barr, 1997; Dige & Wik, 2001; Gleissner, 

Helmstaedter, & Elger, 1998; Glogau, Ellgring, Elger & Helmstaedter, 2004).   Milner 

(1966) was one of the first researchers to describe the presence of material-specific 

deficits in patients following unilateral temporal lobectomy.  Since that important early 

study, many researchers have reported deficits in verbal memory performance in 

epilepsy patients whose seizure focus is in the left temporal lobe (LTLE; Alessio et al., 

2004; Baxendale, 1997; Lacritz, et al., 2004) and deficits in visuospatial memory in 

patients whose seizure focus is in the right temporal lobe (RTLE; Barr, 1997; Dige & 

Wik, 2001).  The link between left temporal lobe structures and verbal abilities, and right  
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temporal lobe structures and visuospatial abilities, has been found not only in epilepsy 

patients, but also in patients with probable Alzheimer’s disease (de Toledo-Morrell et al., 

2000).  

The association between right temporal structures and visuospatial memory is 

not as robust as the association between left temporal structures and verbal memory 

(Alessio et al., 2004; Baños et al., 2004; Barr, 1997).  One explanation for this finding is 

that visuospatial memory may have more widespread or bilateral representation in the 

brain (Alessio et al., 2004).  An alternative hypothesis is that individuals may be 

particularly likely to encode some visual information verbally during visuospatial memory 

tasks. For example, when asked to memorize a figure, a person might think, “It is a 

rectangle divided into four equal parts with a triangle attached to the right side.”  In 

support of this hypothesis, visual deficits are more easily demonstrated in children with 

RTLE, presumably because they have not yet learned to use a verbal encoding strategy 

(Jambaqué, Dellatolas, Dulac, Ponsot, Signoret, 1993; Nolan et al., 2004).   

In summary, the episodic memory system appears to depend particularly on 

several structures within the medial temporal lobes, including the hippocampal 

formation and portions of the parahippocampal gyrus (e.g., the perirhinal cortex).  The 

hippocampus has been a primary focus in published research on episodic memory 

impairment in TLE because this structure appears to play a central role in seizure 

propagation.  However, there is evidence that different temporal lobe structures are 

important for different aspects of episodic memory.  Rather than examining the 

individual contributions these structures make to episodic memory, most TLE 

researchers have focused on differences in memory performance between patients with 
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left temporal lobe damage or dysfunction versus memory performance in patients with 

right temporal lobe damage or dysfunction.  It is generally accepted that left temporal 

lobe structures are more important for verbal memory impairments, whereas right 

temporal lobe structures are more important for visuospatial memory.  However, the 

literature demonstrating verbal memory impairments in patients with left hemisphere 

damage or dysfunction is more robust.  

Verbal episodic memory.  Verbal episodic memory is often assessed by 

reading a short story or a list of words to the patient who is then asked to recall as much 

of the information as he or she can remember.  Recall trials are often administered 

immediately after the to-be-remembered information is presented and again after a 

delay.  Other data that are often collected include the percent of information retained 

between immediate and delayed recall trials, and learning efficiency (ability to benefit 

from repetition).  Another common verbal episodic memory task assesses memory for 

word pairs.  In this task, a list of unrelated word pairs is read to the patient. The patient 

is then provided with the first word in each pair and is asked to recall the second word.  

Recall trials are administered immediately after the to-be-remembered information is 

presented and again after a delay.  

A small number of studies have been published demonstrating involvement of 

the perirhinal cortex in verbal episodic memory.  For example, Weintrob, Saling, 

Berkovic, & Reutens (2007) reported impaired memory for word pairs in a small sample 

of patients who underwent left perirhinal cortex resection with sparing of the 

hippocampus.  Similarly, Alessio et al. (2006) observed that asymmetry between left 

and right perirhinal cortex volumes predicted performance on measures of verbal 
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memory in a sample of TLE patients.  (As noted earlier, decreased neuronal volume is 

an index of sclerosis.)  However, the number of studies published on the role of the 

perirhinal cortex in verbal episodic memory is limited.  

In contrast, numerous studies have demonstrated a relationship between 

performance on verbal episodic memory tasks and hippocampal volume (Bell, 

Hermann, & Seidenberg, 2004; Griffith, Pyzalski, Seidenberg, and Hermann, 2004; 

Martin et al., 1999).  Most often, left hippocampal volume is associated with 

performance on verbal memory tasks. For example, in patients with both left and right 

TLE, Bell et al. found that left but not right hippocampal volume was associated with 

delayed recall of prose, immediate and delayed recall of word pairs, and immediate and 

delayed verbal memory indices on the Wechsler Memory Scale –III (WMS-III).   

Other studies have shown that right, left, and bilateral hippocampal volumes are 

all significant predictors of verbal episodic memory performance. For example, Griffith et 

al. (2004) found that left, right, and bilateral hippocampal volumes all predicted percent 

retention scores on a measure of memory for word pairs (WMS-III Verbal Paired 

Associates Percent Retention).  

Still other studies have only found a relationship between verbal episodic 

memory performance and bilateral hippocampal lobe volumes.  For example, Griffith et 

al. (2004) found that bilateral, but not unilateral, hippocampal volumes predicted percent 

retention scores on a task of memory for stories (WMS-III Logical Memory Percent 

Retention score); and Reminger et al. (2004) found that bilateral, but not unilateral, 

hippocampal volume significantly predicted delayed recall of stories (Logical Memory II).  

Similarly, Sawrie, Martin, Gilliam et al. (2001) found that patients with LTLE scored 
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significantly lower than patients with RTLE on the WMS-III Logical Memory percent 

retention only when bilateral hippocampal atrophy was present.  LTLE patients with 

normal hippocampal volumes or unilateral hippocampal atrophy on MRI performed 

similarly to patients with RTLE.    

Despite the large body of research demonstrating a relationship between 

hippocampal volume and verbal episodic memory, some studies have not found a 

relationship between the two.  O’Brien et al. (2003) found that only the difference 

between left hippocampal and left perirhinal cortex volumes significantly predicted 

verbal memory scores (the WMS-III composite Verbal Memory Index score and a 

Logical Memory composite score) in patients with TLE.  Left or right perirhinal or 

hippocampal volumes alone were not significant predictors. Similarly, Weintrob et al. 

(2002) found that resting glucose uptake in the left perirhinal cortex was associated with 

performance on a task of memory for word-pairs, whereas hippocampal volume did not 

explain any additional variance in memory scores. 

In summary, many (but not all) studies have demonstrated a relationship 

between verbal episodic memory performance and hippocampal volume.  Though most 

published studies have demonstrated a relationship between memory performance and 

left hippocampal volume, relationships between right and bilateral hippocampal volumes 

and memory performance have also been reported in the literature.  Much less research 

has been published on the role of other temporal lobe structures in verbal episodic 

memory; however, there is some evidence that the left perirhinal cortex is also involved 

in verbal episodic memory.  Much more is known about the role of the perirhinal cortex 
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and other temporal lobe structures in visuospatial memory performance, thanks 

primarily to the animal research literature.  These studies will be reviewed briefly below.   

Visuospatial episodic memory.  Three different types of tasks are commonly 

used to assess visuospatial memory: 1) figural memory tasks, 2) facial recognition 

tasks, and 3) spatial memory tasks.  Figural memory is assessed by showing a patient 

simple shapes or complex figures, and then asking him or her to draw the figure(s) from 

memory.  Facial recognition is frequently assessed by showing a patient a series of 

photographs of unfamiliar faces, and then asking him/her to discriminate between novel 

and previously presented faces.  Spatial memory has been assessed using several 

different paradigms including: 1) maze learning tasks, 2) memory for block sequences, 

and 3) virtual reality navigation tasks.  

Much of our knowledge about the brain structures important for visuospatial 

memory comes from the animal research literature.  There is evidence from these 

studies that there are functional subdivisions within the medial temporal lobes, such that 

the hippocampus is particularly important in spatial memory and associative recognition 

memory (e.g., recognizing an object and where it was seen before; Parkinson, Murray, 

& Mishkin, 1988), whereas the perirhinal cortex is important in object recognition 

memory (e.g., simply recognizing an object as familiar, but not recollecting information 

about where or when it had been previously presented; Meunier, Bachevalier & Mishkin, 

1997; Brown & Aggleton, 2001). 

For example, in rats, hippocampal lesions (Abe, Ishida, Nonaka, &  Iwasaki, 

2009; Stubley-Weatherly, Harding, & Wright, 1996) and kindling of the dorsal 

hippocampus (Hannesson et al., 2005) have been shown to disrupt spatial memory, 
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whereas perirhinal lesions (Abe et al., 2009) and kindling of the perirhinal cortex in rats 

have been shown to impair object recognition memory (Hannesson et al., 2005).  

Winters, Forwood, Cowell, Saksida & Bussey (2004) found that complete excitotoxic 

lesions of the hippocampus in rats resulted in spatial memory impairment with 

preserved object recognition memory, whereas excitotoxic lesions of the perirhinal 

cortex resulted in object recognition memory deficits with preserved spatial memory.  

Congruently, in rhesus monkeys, lesions restricted to the perirhinal cortex have been 

found to result in severe impairment in visual recognition memory (Meunier, 

Bachevalier, Mishkin, & Murray, 1993).   

Consistent with the animal research literature, both Ross & Slotnick (2008) and 

Staresina & Davachi (2008) have found fMRI activation of the hippocampus in human 

subjects during tasks of associative recognition memory, whereas perirhinal cortex 

activation was observed during nonassociative, item-memory tasks or during memory 

tasks in which association was limited to item-related features (such as the color of the 

item).   

With respect to face recognition, there is evidence that these tasks rely on still 

different temporal lobe structures than spatial memory tasks (Barr 1997).  This evidence 

originates from research in visual cognition and the neurosciences which has identified 

a ventral system for encoding and storing properties of objects, such as shape color and 

texture (the “what” system), and a dorsal system for processing spatial properties, such 

as orientation and location (the “where” system; Ungerleider & Mishkin, 1982).   

In humans, analogous systems have been identified.  For example, a ventral 

memory system, which includes the fusiform gyrus and anterior temporal pole, appears 
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to play a role in facial recognition.  Damasio, Tranel, & Damasio (1990) describe a 

disorder caused by bilateral lesions to the temporal pole (“amnestic associative 

prosopagnosia”) in which perception of faces is preserved, but recognition of faces is 

impaired.  Bengner, Siemonsen, Stodiek, & Fiehler (2008) found that combined T2 

values for the hippocampus and fusiform gyrus were significantly correlated with 

immediate recognition of faces in a sample of epilepsy patients.  In addition, lower right 

than left T2 relaxation times in the fusiform gyrus was significantly related to better face 

recognition. Dissociation of the “what” and “where” systems in individuals with TLE has 

been reported by Barr (1997), who found impaired facial recognition, but preserved 

spatial abilities in a group of RTLE patients compared to LTLE patients.  In addition, 

Hermann, Seidenberg, Wyler, & Haltiner (1993) reported dissociation of these two 

systems in patients following temporal lobectomy.  Specifically, facial matching abilities 

mediated by the ventral system were reportedly compromised by right anterior temporal 

lobectomy, whereas dorsal system functions were spared.   

Most studies in the human epilepsy literature; however, are focused on 

differences between patients with LTLE and RTLE on measures of visuospatial memory 

rather than on the contribution of specific temporal lobe brain structures to visuospatial 

memory.  As was noted earlier, it is widely accepted that patients with right temporal 

lobe dysfunction perform worse on tasks of visuospatial memory than patients with left 

temporal lobe dysfunction.  Many studies have been published in support of this 

hypothesis.  For example, Bengner et al., (2008) and Barr (1997) found that RTLE 

patients performed significantly worse on a facial recognition memory test (the Denman 

Facial Recognition Test) than patients with LTLE.  Jokeit et al (1997) found that patients 
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with RTLE performed significantly worse than LTLE patients on delayed free recall of a 

complex figure.  Smith and Milner (1981) and Petrides (1985) have reported spatial 

learning deficits in right temporal lobectomy patients.   

Many studies; however, have demonstrated that patients with TLE are impaired 

on visuospatial tasks, regardless of the side of their seizure focus.  For example, 

Glikmann-Johnston et al. (2008) found that both right and left TLE patients performed 

significantly worse than controls on three different spatial memory tasks assessed via a 

virtual-reality paradigm.  However, there were no differences in performance between 

patients with a left temporal seizure focus versus patients with a right temporal seizure 

focus. Glogau et al. (2004) and Reminger et al. (2004) found that adults with RTLE and 

LTLE performed significantly worse than controls on a task of face memory. On 

measures of figural memory, Lacritz et al. (2004) found that adults with both left and 

right TLE  performed in the borderline to low average range, and significantly worse 

than a standardization sample in both immediate and delayed free recall.  Similarly, 

McConley et al. (2008), and Kneebone, Lee, Wade and Loring (2007) found no 

significant differences between LTLE and RTLE patients on a task of figural memory.  

What is most interesting about these last two studies; however, is that they found 

stronger associations between left temporal lobe function and performance on this task.  

Kneebone and colleagues speculated that this may be due to the verbalizability of many 

of the test’s components.  Finally, it should be noted that some studies report no 

relationship between right TLE and visuospatial memory deficits (Alessio et al., 2004; 

Chelune, Naugle, Luder, & Awad, 1991; Hermann et al., 1995; Naugle et al., 1994).  
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In summary, there is evidence that different temporal lobe structures contribute to 

different aspects of visuospatial memory.  Much of this evidence comes from the animal 

research literature.  The results of these studies suggest that: 1) the hippocampus plays 

an important role in spatial memory and associative recognition memory, 2) the 

perirhinal cortex plays an important role in object recognition memory, and 3) the 

anterior temporal lobes and the fusiform gyri play an important role in facial recognition.  

Similar findings have been reported in the human literature; however, the results are 

less clear.  This is partly because the majority of research is focused on differences 

between patients with damage or dysfunction in the right versus left temporal lobes. 

Many studies have demonstrated that right temporal lobe structures are more important 

for visuospatial information; however, a significant body of research has demonstrated 

that patients with both left and right temporal lobe damage or dysfunction perform poorly 

on visuospatial memory tasks.  These results may be due to more widespread 

representation of visuospatial memory in the brain, functional reorganization of the 

brain, or verbal encoding of some aspects of visuospatial tasks.    

Semantic Memory 

It has been hypothesized that the semantic memory system is a primitive 

memory system from which the episodic memory system evolved (Tulving, 1972).  Both 

memory systems depend particularly on structures within the temporal lobes. However, 

there is some controversy as to whether certain mesial temporal lobe structures are 

more important for semantic versus episodic memory.  Vargha-Khadem et al. (1997) 

and Mishkin, Vargha-Khadem, and Gadian (1998) propose that encoding of semantic 

memory depends primarily upon the entorhinal and perirhinal cortices, whereas 
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encoding of episodic memory depends primarily on the hippocampus.  In support of 

their hypothesis are recent case reports of patients who appear to have intact semantic 

memory after sustaining early limited hippocampal damage (Baddeley, Vargha-

Khadem, & Mishkin, 2001; Vargha-Khadem et al., 1997).  These case studies led 

Tulving and Markowitsch (1998) to propose a model of memory in which: (1) encoding 

of episodic memories depends upon the semantic memory system, but not vice-versa; 

and (2) that retrieval of semantic memories or episodic memories can be supported by 

either of the two systems or both of them.  The functional subdivisions of the 

hippocampus and perirhinal cortex proposed by Vargha-Khadem et al. is consistent with 

the animal research literature which has demonstrated a greater role of the perirhinal 

cortex in simple recognition memory tasks (recognizing an object that has been 

presented before) and a greater role of the hippocampus in associative memory tasks 

that require remembering a stimulus and the context in which it was presented (e.g., 

where it was presented and/or with what other stimuli). 

 An alternative model of semantic memory has been proposed by  

Squire and Zola (1998).  In their “sole route of entry” model of memory, they propose 

that semantic memories are merely episodic memories that are subject to repetition or 

habit formation (Knowlton & Squire, 1995).  Thus, they propose that encoding of 

episodic and semantic memory depends similarly on medial temporal lobe structures.   

In support of this model, they argue that amnestic patients invariably exhibit both 

impairment in episodic memory and a failure to update semantic memory.  Furthermore, 

they argue that in case reports such as those published by Vargha-Khadem et al. 

(1997) patients did exhibit semantic memory impairments in addition to episodic 
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memory impairments; and they maintain that the researchers were unable to prove that 

these semantic memory impairments were, in fact, milder than the accompanying 

episodic memory impairments. Even if it could be proven that semantic memory was 

less impaired than episodic memory impairments in these patients, Squire et al. (2004) 

hypothesized that this might be explained by functional reorganization that occurred due 

to the early age at which this patients sustained hippocampal damage.  In other words, 

these patients may have developed an atypical method of acquiring semantic 

memories.  Thus, it remains to be determined whether the perirhinal cortex and 

hippocampus are specialized for encoding semantic and episodic memories, 

respectively. 

 The literature on semantic dementia, a disease in which semantic memory is 

impaired while aspects of episodic memory are preserved, suggests that other temporal 

lobe regions are important for semantic memory.  In particular, there has been much 

interest in the role of the temporal pole in semantic memory.  Patients with semantic 

dementia have been found to exhibit neuronal loss in the temporal pole (Galton et al., 

2001; Mummery et al., 1999).  Left temporal pole volume (and inferior and middle 

temporal gyri volume), but not medial temporal lobe volumes, were found to correlate 

with semantic naming and category fluency tasks in patients with semantic dementia 

and in patients with Alzheimer’s disease (Galton et al., 2001).  Similarly, in a group of 

patients with various forms of temporal lobe damage, Schmolck, Kensinger, Corkin & 

Squire (2002) found that impairment on a battery of semantic knowledge tasks was 

related to the extent of damage to anterolateral temporal cortex and not medial temporal 

structures.  
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In the epilepsy literature, several studies have been published demonstrating 

semantic memory deficits in patients with TLE.  Messas, Mansur, and Castro (2008) 

found that both right and left TLE patients performed significantly worse than controls on 

measures of confrontation naming of nouns, word-picture matching, and word list 

generation.  In addition, patients with left TLE showed deficits on measures of word 

definition compared to both controls and right TLE patients. Tröster et al. (1995) 

reported that semantic verbal fluency was impaired in both right and left TLE patients 

relative to controls, but patients with LTLE exhibited the greatest impairment.  Finally, 

Giovagnoli et al. (2005) reported that LTLE patients performed significantly worse than 

both RTLE patients and controls on several measures of semantic memory.  In the 

Giovagnoli study, the type of semantic deficits seemed to vary based on foci location.  

Specifically, LTLE patients with lateral temporal lobe foci were impaired on a picture 

naming task, whereas patients with mesial temporal lobe foci were impaired on a task 

requiring semantic decision making.   

In summary, there is some controversy as to whether certain mesial temporal 

lobe structures are more important for semantic versus episodic memory. Some 

researchers have argued that encoding of semantic memory depends primarily upon 

the entorhinal and perirhinal cortices, whereas encoding of episodic memory depends 

primarily on the hippocampus (Vargha-Khadem et al., 1997; Mishkin et al., 1998). 

Others have argued that encoding of episodic and semantic memory depends similarly 

on medial temporal lobe structures (Squire & Zola, 1998).  There is also evidence, 

particularly in the semantic dementia literature, that the left temporal pole is important in 

semantic memory.  In the epilepsy literature, most published studies have focused on 
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the role of a left versus right temporal lobe seizure focus in semantic memory.  In 

general, these studies have demonstrated semantic memory impairments in patients 

with both right and left temporal lobe seizure foci.  However, deficits in patients with left 

seizure foci appear to be more severe.  

Other Factors Associated with Memory Impairment in Epilepsy 

In addition to differences in seizure foci, other factors that have been found to 

impact memory functioning in TLE patients include their age at seizure onset, frequency 

of seizures, duration of epilepsy (time since diagnosis), and antiepileptic drug (AED) 

polypharmacy (Alessio et al., 2004). Earlier seizure onset has been associated with 

greater and more diffuse cognitive impairment (Dodrill & Matthews, 1992).  For 

example, Lespinet, Bresson, N’Kaoua, Rougier, and Claverie (2002) found that 

individuals with early TLE onset (0-5 years) exhibited significant global cognitive deficits 

including deficits in both verbal and visuospatial memory.  In contrast, individuals with 

late onset TLE exhibited more circumscribed deficits.  Specifically, late onset RTLE 

adults tended to be impaired on visuospatial memory tasks, whereas late onset LTLE 

adults were primarily impaired on verbal memory tasks.  

Longer history of seizures has also been associated with poorer prognosis.  For 

example, in a sample of 96 TLE patients, Oyegbile and colleagues (2004) found that a 

longer history of seizures was associated with impaired performance on measures of 

intelligence, memory, language, visuoperceptual, and motor tasks.  This finding was 

significant even when controlling for number of anti-epileptic drugs, history of status 

epilepticus, and number of generalized tonic-clonic seizures.  Similarly, in a selective 
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literature review, Dodrill (2004) concluded that losses in mental abilities occur over time 

in patients with uncontrolled seizures.   

Educational level has been another important variable when considering the 

impact of TLE on cognitive functioning.  Oyegbile et al. (2004) found that the 

relationship between duration of epilepsy and cognitive impairment was attenuated in 

patients with greater than 12 years of education.  Similarly, Lespinet et al. (2002) found 

that educational level was a significant predictor of verbal and visuospatial memory 

scores in a group of 56 unilateral temporal lobe epilepsy patients.   

Even a patient’s sex has been reported to interact with memory functioning in 

TLE.  Results of several studies suggest that verbal memory is less lateralized in 

women than in men.  For example, Trenerry, Jack, Cascino, Sharbrough, and Ivnik 

(1995) found that both left and right hippocampal volume significantly predicted verbal 

memory performance in women, but not in men.  Helmstaedter, Kurthen and Elger 

(1999) found that LTLE men exhibited the expected pattern of impaired verbal memory 

performance, whereas LTLE women exhibited greater impairment in visuospatial 

memory.  Geckler, Chelune, Trenerry and Ivnik (1993) found that women performed 

significantly better than men on measures of verbal memory following left temporal 

lobectomy.   

In summary, variables other than seizure foci that have been found to impact 

memory performance in patients with TLE include age at onset of seizures, duration of 

seizure disorder, educational level, and sex.  Earlier seizure onset has been associated 

with greater and more diffuse cognitive impairment, whereas later onset of seizures has 

been associated with more circumscribed deficits.  A longer history of seizures (time 
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since diagnosis) and fewer years of education have both been associated with poorer 

memory performance.  And, finally, sex has been associated with differences in verbal 

memory lateralization (i.e., verbal memory may have more bilateral representation in 

women than in men).  

Purpose of Study 

Based on this review of the literature, it is reasonable to expect that subtypes of 

memory impairment exist in TLE patients based on differences in their seizure foci and 

the other variables which have been associated with memory performance described 

above. However, the past failure to identify such subtypes might be due to either 

memory measures that lack discriminative validity  (McConley et al., 2008; Loring et al., 

2008; Raspall et al., 2005; Wilde et al., 2001), or to an invalid classification system.  

Classification has been identified as “a fundamental problem area” in neuropsychology 

because how patients are classified impacts their treatment and prognosis, but also 

validates our theoretical models regarding brain function (Morris & Fletcher, 1988, p. 

641).  In epilepsy research, the common practice of clinically classifying patients based 

on temporal or extratemporal seizure focus, or even left versus right temporal seizure 

focus, may not be the best classification system for understanding their differences on 

measures of memory functioning, deciding on treatments, or predicting prognosis.  For 

example, one recent study investigated the validity of separate auditory delayed and 

immediate indices on the Wechsler Memory Scale –III (WMS-III) in a sample of 88 TLE 

patients who were classified based on right or left seizure focus (Bell et al.,  2004). The 

researchers concluded that most patients did not exhibit a significant discrepancy 

between the delayed and immediate indices. Thus, they concluded that it would be 



 21 

appropriate to combine these indices in TLE patients. However, at the same time it is 

significant to note that 13% of the patients in that study did exhibit a significant 

discrepancy between these scores (obtaining a delayed index score >13 point lower 

than their immediate index) and might have represented a specific subtype of TLE.  

However, the existence of this subtype would have been concealed by more traditional 

group level comparisons of memory performance (e.g., LTLE vs. RTLE). One potential 

problem with missing such subtypes is that these patients may have different treatment 

prognoses.  In addition, the identification of reliable subtypes of memory impairment in 

TLE could increase our knowledge about the more specific organization of memory 

systems of the human brain. 

With this in mind, the aim of the present study was to use a quantitative 

classification method, cluster analysis, to identify subtypes of memory-impairments in 

patients with TLE.  To the author’s knowledge, only one other study has used such an 

approach to identify different cognitive phenotypes in patients with TLE.  In that study, 

Hermann, Seidenberg, Lee, Chan, and Rutecki (2007) reported obtaining three 

cognitive phenotypes in a sample of patients with TLE.  Though these researchers 

compared patients’ performance on a number of different cognitive variables in addition 

to memory (e.g., executive functioning, processing speed, and language), the three 

groups obtained by these researchers were described as having mild, moderate, and 

severe memory impairment.   

In the present study, it was hypothesized that five subtypes of TLE would be 

identified. Subtype 1 was expected to display verbal episodic memory deficits, which 

may be related to restricted lesions of the left hippocampus and later seizure onset. 



 22 

Subtype 2 was expected to display both verbal episodic and semantic memory deficits 

due to more widespread left temporal lesions including perirhinal and anterior temporal 

pole regions. Subtype 3 was expected to show deficits in figural episodic memory and 

spatial memory, which may be due to restricted right hippocampal lesions and later 

seizure onset.  Subtype 4 was expected to show global visuospatial memory deficits 

(figural episodic, spatial, and face recognition), which may be related to more 

widespread right temporal involvement including the hippocampus, perirhinal cortex, 

and anterior temporal pole.  Finally, subtype 5 was expected to show global verbal and 

visuospatial memory deficits, which may be related to earlier seizure-onset and bilateral 

temporal lobe lesions. 

In addition to the above subtypes, it was expected that patients with seizure 

onset at an earlier age would demonstrate more global impairment (verbal plus 

visuospatial deficits) than patients with later seizure onset.  It was also expected that 

longer history of seizures and lower educational level would be associated with poorer 

performance on the neuropsychological test variables. Finally, it was expected that right 

temporal lobe volumes would predict verbal memory performance in women, but not 

men.   



 23 

Method 

Sample and Participant Selection 

This study was a retrospective chart review of 163 consecutive adult outpatients 

with intractable epilepsy.1  All patients underwent neuropsychological evaluation of their 

seizure disorder at Emory University’s Center for Rehabilitation Medicine prior to 

January, 2006.  Patients with a documented medical history of TBI, or with a mass 

lesion such as tumor, arteriovenous malformation, or heterotopia were excluded.  

Demographic and clinical characteristics of the initial sample are presented in 

Table 1.  The mean age was 35.9 (SD = 12.0, range 18 to 67). The sample was 

comprised of 89 females (55%) and 74 males (45%).  Mean Full Scale IQ (assessed 

with either the Wechsler Adult Intelligence Scale – Third Edition [Wechsler, 1997] or the 

Wechsler Abbreviated Scale of Intelligence [Wechsler, 1999]) was 92.8 (SD = 17.4, 

range 52 – 134).  Mean years of education was 13.4 (SD = 2.5, range 8 – 20 years).  

The racial composition of the sample was 79% Caucasian (n = 128), 18% African-

American (n = 29), 1% Hispanic (n = 2), <1% Pacific Asian (n = 1), and 2% were 

classified as “other” (n = 3).  

Table 1   

Demographic and Clinical Characteristics of Participants M (SD) 

  Initial sample (N = 163) Final sample (n = 67) 

Age 35.9 (12.0) 35.5 (11.7) 

Sex (% male)           45          42 

Years of Education 13.4   (2.5) 13.6   (2.3) 

Full Scale IQ 92.8 (17.4) 93.9 (16.5) 

Age at onset 18.2 (14.5) 16.3 (11.8) 

Duration of epilepsy 17.5 (12.3) 18.8 (13.6) 

 

                                                 
1
 This study was reviewed and approved by both the Georgia State University Institutional Review Board and the 

Emory University Institutional Review Board. 
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With respect to seizure characteristics, the mean age of patients at the onset of 

their seizure disorder was 18.2 years (SD = 14.5, range 1-52 years).  Duration of 

patients’ seizure disorders ranged from 1 to 54 years (M = 17.5, SD = 12.3).  

Information on seizure frequency was not available.  Patients were classified by 

epilepsy syndrome based on one or more of the following diagnostic techniques: 

inpatient EEG monitoring, MRI, PET, and intracarotid amobarbital procedure (“Wada  

test”).  Based on these techniques, four epilepsy syndromes were identified in this 

sample: (a) 125 patients had a diagnosis of partial epilepsy with impairment of 

consciousness, (b) 6 patients had a diagnosis of partial epilepsy without impairment of 

consciousness, (c) 27 patients had a diagnosis of generalized convulsive epilepsy, and 

(d) 6 patients had a diagnosis of generalized nonconvulsive epilepsy.  

Of these 163 patients, only those who had been administered all of the highest 

loading measures on an initial principal components analysis of the neuropsychological 

assessment battery were included in subsequent analyses.  This resulted in a final 

sample of 67 patients. Demographic and clinical characteristics for these patients can 

be found above in table 1.  The sample was comprised of 39 females (58%) and 28 

males (42%) ranging in age from 18 to 66 (M = 35.5, SD = 11.7).  Mean Full Scale IQ 

(assessed with either the Wechsler Adult Intelligence Scale – Third Edition or the 

Wechsler Abbreviated Scale of Intelligence) was 93.9 (SD = 16.5, range 57-130). The 

mean education level was 13.6 years (SD = 2.3, range 8-20).  The racial composition of 

this sample was 81% Caucasian (n = 54), 18% African-American (n = 12), and 1% 

Pacific Asian (n = 1).  Six patients were left-handed; the remaining 61 patients were 



 25 

right-handed.  Information was not available for most patients regarding their dominant 

hemisphere for language.  

With respect to seizure characteristics for the final sample, the mean age of 

patients at the onset of their seizure disorder was 16.3 years (SD = 11.8, range 1-52 

years).  Duration of patients’ seizure disorders ranged from 1 to 54 years (M = 18.8, SD 

= 13.6).  All but 11 patients (84%) had an identified temporal lobe seizure focus or had  

been diagnosed with temporal lobe damage or dysfunction.  With respect to epilepsy 

syndrome: (a) 55 patients were diagnosed with partial epilepsy with impairment of 

consciousness, (b) 3 patients were diagnosed with partial epilepsy without impairment 

of consciousness, and (c) 9 were diagnosed with generalized convulsive epilepsy (see 

Table 2).  Information on areas of identified brain damage/dysfunction for the patients, 

based on EEG and/or neuroimaging, can be found in Table 2.  

Fifty-nine patients (88%) were being treated with anti-seizure medications at the 

time of their neuropsychological evaluation.  Information was not always available in the 

patient charts regarding the specific medications prescribed or whether patients were 

undergoing polytherapy versus monotherapy.  

 Table 2     

Epilepsy Syndrome and Areas of Identified Brain Damage/Dysfunction for Final Sample 

Area of 
damage/dysfunction Epilepsy syndrome  

  
Partial with 

IOC* 
Partial 

without IOC* 
Generalized 
convulsive Total: 

None 3 0 4 7 

Right temporal 19 1 3 23 

Left temporal 20 1 2 23 

Bilateral temporal 10 0 0 10 

Left frontal 1 0 0 1 

Bifrontal 1 0 0 1 

Right parietal 1 1 0 1 

     Total: 55 3 9 67 

* IOC = impairment of consciousness    
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Neuropsychological Assessment and Measures 

Participants were tested individually in a quiet room with as few distractions as 

possible.  Tests were administered by a neuropsychology practicum student, intern, or 

fellow, or by a psychometrist trained in test administration.  For the present study, 

measures were selected from an approximately 6-hour test battery that was typically 

administered during one testing session.  

For the initial principal components analyses, test battery measures were chosen 

which were thought to represent the different domains of memory functioning in the 

theoretical model reviewed.  These included measures of verbal episodic memory, 

figural memory, facial recognition memory, semantic memory, short-term memory, and 

spatial memory.  The following tests were used: (a) the California Verbal Learning Test 

– Second Edition (CVLT-II; Delis, Kramer, Kaplan & Ober, 2000); (b) The Logical 

Memory, Verbal Paired Associates, Faces, Digit Span, and Spatial Span subtests from 

the Wechsler Memory Scale – Third Edition (WMS-III; Wechsler, 1997); (c) The 

Tombaugh administration of the Taylor Complex Figure (Tombaugh, Schmidt & 

Faulkner, 1992); (d) The Boston Naming Test (BNT; Goodglass & Kaplan, 1983); and 

(e) the Vocabulary subtest from either the Wechsler Adult Intelligence Scale – Third 

Edition (WAIS-III; Wechsler, 1997) or the Wechsler Abbreviated Scale of Intelligence  

(WASI; Wechsler, 1999).  Published (normative sample referenced) z-score means and 

standard deviations for both the initial sample and the final sample on these variables 

can be found in Table 3.  Mean test scores for the 96 patients who were excluded from 

the final sample did not differ significantly from the mean test scores for the 67 patients 

in the final sample.  Detailed information about these measures follows.  
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Table 3     

Sample Means and Standard Deviations on Principal Components Analysis Variables  

Test 
Initial sample  

(N = 163) 
Final sample  

(n = 67) 

  M SD M SD 

WAIS-III Digit Span Forward -0.76 1.02 -0.62 0.95 

WAIS-III Digit Span Backward -0.57 0.92 -0.47 0.96 

WMS-III Spatial Span Forward -1.06 0.78 -0.85 0.80 

WMS-III Spatial Span Backward -1.21 0.73 -1.24 0.80 

WMS-III Faces Immediate Recognition -0.42 1.12 -0.32 1.19 

WMS-III Faces Delayed Recognition -0.36 1.05 -0.29 1.08 

WMS-III Logical Memory Immediate Recall -0.31 1.07 -0.18 1.02 

WMS-III Logical Memory Delayed Recall -0.47 1.08 -0.34 1.04 

WMS-III Verbal Paired Associates Imm. Recall -0.67 1.12 -0.67 1.15 

WMS-III Verbal Paired Associates Delayed Recall -0.57 1.11 -0.55 1.02 

Taylor Complex Figure 1st Recall -1.06 1.19 -0.94 1.08 

Taylor Complex Figure 2nd Recall -1.74 1.76 -1.65 1.56 

Taylor Complex Figure 3rd Recall -2.58 2.80 -2.38 2.34 

Taylor Complex Figure 4th Recall -2.52 2.92 -2.14 2.38 

Taylor Complex Figure Delayed Recall -2.56 2.90 -2.22 2.59 

CVLT Trial 1 -0.77 1.06 -0.69 0.95 

CVLT Trial 2 -0.66 1.00 -0.54 0.94 

CVLT Trial 3 -0.75 1.21 -0.63 1.21 

CVLT Trial 4 -0.82 1.24 -0.60 1.28 

CVLT Trial 5 -0.84 1.22 -0.69 1.24 

CVLT Trials 1-5 Total Correct -0.12 1.01 0.02 0.98 

CVLT Short Delay Free Recall -1.01 1.45 -0.81 1.37 

CVLT Long Delay Free Recall -1.10 1.44 -0.94 1.51 

Boston Naming Test -2.36 2.24 -2.15 2.22 

WAIS-III or WASI Vocabulary -0.53 2.05 -0.41 -2.11 

Means and SDs are for published z-scores for all tests    

 

California Verbal Learning Test – Second Edition (CVLT-II).  The CVLT-II was 

included as a potential measure of verbal episodic memory.  This test consists of five 

learning trials of a 16-word list followed by short and long delay recall trials.  Eight 

variables from this measure were included in the principal components analysis: (a) 

number correct for each of five learning trials; (b) Total Correct for trials 1 through 5; (c) 

Short Delay Free Recall; and (d) Long Delay Free Recall.  Because the CVLT-II manual 

does not provide norms for the total number correct for trials 1 through 5, z-scores for 
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that variable were calculated based on a subset of 115 participants from the normative 

sample that was used to assess the test-retest reliability of the CVLT-II (Woods, Delis, 

Cobb-Scott, Kramer, & Holdnack, 2006).   

Split half reliability coefficients for this test (based on splitting immediate recall 

trials) ranged from .89 to .94 in a sample ranging in age from 16 to 89 (Delis et al., 

2000).  Test retest reliability for the five individual learning trials ranged from .57 to .82, 

and was .82 for total number correct in trials 1-5.  For short and long delay free recalls, 

test-retest reliabilities were .81 and .88, respectively.  The CVLT has been used 

successfully to discriminate between patients with right and left TLE (Loring et al., 

2008).  This test has also shown utility in both the measurement of memory decline after 

temporal lobectomy (Hermann et al., 1994) and in the prediction of memory decline 

based on presurgical performance (Davies, Bell, Bush, & Wyler, 1998).   

Wechsler Memory Scale –Third Edition (WMS-III). 

Logical Memory.  Two additional potential measures of verbal episodic memory, 

the Logical Memory subtest and the Verbal Paired Associates subtest from the 

Wechsler Memory Scale –Third Edition (WMS-III), were included in this study.  The 

Logical Memory subtest requires that patients learn two short stories that are presented 

orally.   Two variables were selected for the principal components analysis, consisting of 

the Immediate Recall and Delayed Recall variables.  In a sample of adults ages 18-69, 

split-half reliability coefficients (Spearman-Brown corrected) for the Logical Memory 

subtest were reported to range from .85 to .90 for the Immediate Recall variable, and 

from .73 to .84 for the Delayed Recall variable (Wechsler, 1997).  Test-retest reliability 
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was reported to be .77 for both Immediate and Delayed Recall in a sample ranging in 

age from 16 to 54.  

Verbal Paired Associates.  The Verbal Paired Associates subtest requires that 

patients learn a list of word pairs that are presented orally.  Two variables were selected 

for the principal components analysis, consisting of the Immediate Recall and Delayed 

Recall variables.  Split-half reliability coefficients were reported to range from .91 to .95 

for the Immediate Recall variable, and from .79 to .88 for the Delayed Recall variable 

(Wechsler, 1997).  Test-retest reliability was .77 for the Immediate Recall variable and 

.73 for the Delayed Recall variable.  

The Wechsler Memory Scales are said to be among the most reliable and best-

validated measures of auditory-verbal memory (Wechsler, 1997).  Scores on the Logical 

Memory subtest have been used successfully in previous research to discriminate 

patients with left TLE from patients with right TLE (Moore & Baker, 1996).  In volumetric 

studies of patients with TLE, left hippocampal volume has been found to significantly 

correlate with performance on the Logical Memory Immediate and Delayed Recall 

variables (Reminger et al., 2004; Martin, et al., 1999); and left hippocampal volume 

minus left perirhinal volume has been found to predict scores on a Logical Memory 

immediate and delayed composite score (O’Brien et al., 2003).  With respect to the 

Verbal Paired Associates subtest, left hippocampal volume has been found to predict 

significant variance in both Immediate and Delayed Recall scores in patients with TLE; 

and right hippocampal volume has been found to predict significant variance in the 

Delayed Recall score (Griffith et al., 2003).  
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Faces.  Facial recognition memory was potentially assessed using the Faces 

subtest from the WMS-III.  In this subtest, the patient is shown a series of photographs 

of unfamiliar faces and told to remember the faces.  Immediate and Delayed 

Recognition is tested by showing patient another series of photographs consisting of 

novel and previously presented faces.  The patient is asked to say “yes” if the 

photograph is of one of the faces (s)he was asked to remember earlier, or “no” if it is 

not.  Both the Immediate and Delayed recognition scores were selected for the principal 

components analysis.  

In a sample of adults ages 18-89, split-half reliability coefficients (Spearman-

Brown corrected) were reported to range from .65 to .80 for the Immediate Recognition 

variable, and from .66 to .83 for the Delayed Recognition variable (Wechsler, 1997).  

Test-retest reliability was reported to be .64 for Immediate Recognition and .58 for 

Delayed Recognition in a sample ranging in age from 16 to 54.  In a sample of epilepsy 

patients, Delayed Recognition has been found to correlate significantly with right 

hippocampal volume (Bell, 2004).   

Spatial Span.  Spatial memory was potentially assessed using the Spatial Span 

task from the WMS-III.  This subtest consists of two tasks, Spatial Span Forward and 

Spatial Span Backward.  During the Spatial Span Forward task, an array of identical 

blocks is placed between the examiner and the patient. The examiner points to a 

sequence of blocks and then the patient is asked to point to the blocks in the same 

order.  The Spatial Span Backward task is identical to Spatial Span Forward except the 

participant is asked to point to the blocks in the reverse order from the original 

presentation.  The sequences are presented in pairs and range in length from 2 to 8 
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blocks.  Maximum span forward and maximum span backward were used for the 

principal components analysis.  Test-retest reliability was .60 for the forward span total 

score, and .59 for the backward span total score in a sample ranging in age from 16 to 

54 (Wechsler 1997).  

Two studies were found which examined the performance of TLE patients on this 

subtest.  In the most recent study, Wilde et al. (2001) found no significant differences 

between right and left TLE patients on this task.  In the earlier study, Rausch and Ary 

(1990) found that patients who had undergone temporal lobectomy did not show 

impairment on this task.  Thus, they concluded that mesial temporal lobe structures are 

not critical for this task. This is consistent with the classification of this task as a test of 

short-term memory and/or attention. However, for lack of a better measure, it is 

hypothesized that this test might also tap spatial episodic memory for the purposes of 

the present study.  

Taylor Complex Figure.  The Tombaugh administration of the Taylor Complex 

Figure was selected as a potential measure of figural episodic memory (Tombaugh et 

al., 1992).  This test requires the patient to draw a complex design from memory, with 

the expectation that (s)he will recall an increasing number of details with each timed 

exposure to the figure over four learning trials.  Five variables were selected for the 

factor analysis: trials 1 – 4 recall scores, and delayed recall. In a sample of 407 adults 

ranging in age from 20 to79, internal consistencies (Chronbach alphas) for the first 

learning trial, the last learning trial, and the delay trial were .92, .94, and .94 

(Tombaugh, et al., 1992).   
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Although no studies were found that examine the performance of TLE patients on 

this task, some studies have found that a similar visuospatial memory task, the Rey-

Osterrieth Complex Figure, distinguishes between patients with right and left TLE 

(Frank & Landeira-Fernandez, 2008; Breier, et al., 1996; Loring, Lee, & Meador, 1988). 

Despite the lack of research on the use of this measure with TLE patients, the 

Tombaugh administration of the Taylor Complex Figure is believed to be more 

comparable than the Rey-Osterrieth figure to the verbal episodic memory tasks 

administered in this study.  Specifically, as with the verbal episodic memory tasks 

included in this study, the Taylor Complex Figure: (a) consists of several learning trials, 

(b) exposure to the material is time-limited, and (c) patients are told in advance that they 

will be asked to recall the material again later.  In contrast, during administration of the 

Rey-Osterrieth figure: (a) test-takers are not warned they will have to recall the figure, 

(b) the figure is only presented once prior to the recall trials, and (c) exposure to the 

figure varies depending upon the time it takes for test-takers to copy it.     

Boston Naming Test.  The Boston Naming Test (BNT; Goodglass & Kaplan, 

1983) was included in this study as a potential measure of verbal semantic memory.  

The BNT is a confrontation naming task in which the patient is presented with a series 

of line drawings ranging from simple, high-frequency vocabulary (e.g., “chair”) to low-

frequency words (e.g., “calipers”).  The patient is given credit for items that are correctly 

names within 20 seconds. Test-retest reliability after 8 months was reported to be .94 in 

a sample of 51 adult epileptics (Sawrie, Chelune, Naugle, & Lüders, 1996).  Scores on 

this measure have been used successfully in previous research to discriminate patients 

with left TLE from patients with right TLE (Busch, Frazier, Lampietro, Chapin, & Kubu, 
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2009; Loring et al., 2008; Oyegbile, et al., 2004; Raspall et al., 2005; Schefft, Testa, 

Dulay, & Yeh, 2003).  It has also been found that epilepsy patients with hippocampal 

atrophy have significantly lower scores on this test than patients without hippocampal 

atrophy (Alessio et al., 2004).  

Wechsler Intelligence Scales. 

Vocabulary.  The Vocabulary subtest from the Wechsler Abbreviated Scale of 

Intelligence (WASI) or the Wechsler Scale of Adult Intelligence – Third Edition (WAIS-

III) was included as another potential measure of semantic memory.  This subtest 

assesses the patient’s ability to define words.  Test-retest reliability for this subtest 

ranged from .90 to .98 in a sample ranging in age from 17 to 89.  The split-half reliability 

coefficient for this subtest was found to be .83. in a sample of 27 individuals with 

temporal lobe epilepsy (Zhu, Tulsky, Price & Chen, 2001).  An earlier version of this 

subtest (from the WAIS-R) has been shown to statistically discriminate between patients 

with left and right TLE (Hermann et al., 1995). 

Digit Span.  Short-term verbal memory was potentially assessed using the Digit 

Span subtest.  This task consists of two portions: Digit Span Forward and Digit Span 

Backward.  In the Digit Span Forward task, the examiner verbally presents a series of 

random digits to the patient, who is then asked to repeat the digits in order.  The Digit 

Span Backward task is identical to the forward span task except the patient is required 

to produce the digits in the reverse order to that presented. Items are presented in pairs 

and range from 2 to 9 digits in the Digit Span Forward task and from 2 to 8 digits items 

in the Digit Span Backward task.  Longest span forward and longest span backward 
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were used for the principal components analysis. Test retest stability coefficients for this 

test were in the .80s in a sample ranging in age from 16 to 89 (Wechsler, 1997).  

No published studies were found which examined WAIS-III Digit Span 

performance in patients with TLE. Two studies were found which examine TLE patients’ 

performance on the Digit Span subtest of the original WAIS.  In the most recent study, 

no significant differences were reported between right and left TLE patients (Schneider, 

Nowack, Fitzgerald, Janati & Souheaver, 1993).  In the earlier study, Kupke and Lewis 

(1986) reported that the WAIS Digit Span subtest statistically discriminated between 

control subjects and “moderately impaired” but not “mildly impaired” patients with 

epilepsy.  However, 80% of these “moderately impaired” patients had a history of 

distinct neuropathology such as head trauma, brain tumor, neurodegenerative disease, 

or history of lobectomy.  In addition, a third of the “moderately impaired” patients had 

signs of anticonvulsant toxicity. Thus, it is unclear whether the observed differences 

were related to the patients’ temporal lobe epilepsy, or to medical factors separate from 

the patients’ seizure disorders. 

Brain Volume Assessment (for Validation of Clusters)      

For a subset of patients, MRI scans had been acquired in the course of their 

routine clinical care.  Often, but not always, these scans were obtained as part of an 

evaluation for temporal lobectomy.  When MRI scans were available, brain volumes of 

selected temporal lobe structures (left and right hippocampi, left and right perirhinal 

cortices, and left and right anterior temporal lobes) were calculated for each patient 

using MRI volumetry.  MRI volumetry is an index of neuronal volume, and has been 

shown to be a more accurate measure of brain disease than qualitative MRI readings 
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made by trained neurologists (Cendes et al., 1993).  Inclusion criteria for MRI scans 

included: 1) digitally recorded, high-resolution, T1-weighted, 3-D gradient echo scans in 

a coronal plane orientation (512 x 512 image size); 2) slice thicknesses less than or 

equal to 2 mm; and 3) scans taken within 18 months of the neuropsychological 

assessment.  Twenty-six scans met the above inclusion criteria.  All scans were 

obtained using a Phillips Gyroscan Intera 1.5 –Tesla scanner (Philips International, 

Eindhoven, Holland), and were acquired within 17 months of the neuropsychological 

assessment (M = 4.6, SD = 4.5, range 0 – 17 months).  The sample ranged in slice 

thickness from 1.0 mm to 2.0 mm.   

In volumetric studies, it is common to restrict the range of MRI slice thicknesses 

in one sample to 0.5 mm. This is because a large disparity in slice thicknesses makes 

direct comparison of MRI scans problematic. For example, 1.0 mm scans produce twice 

as many samples as 2.0 mm scans which effectively doubles obtained brain volumes. 

To address this issue, all obtained brain volumes were multiplied by MRI slice thickness 

(as per Watson et al., 1992).  This method was chosen to help compensate for the small 

available sample of MRIs in the present study.  Because this method involves some 

estimation of brain volume, particularly with thicker MRI slices, it introduces some error 

into the analyses.  However, because the estimation is based on samples taken at 

regular intervals throughout the brain structures of interest, it is likely to be reasonably 

accurate.  

For comparison purposes, MRI scans were also divided into two groups for 

volumetric analysis.  The first group consisted of: 1) scans with 1.0 mm slice 

thicknesses in which every other slice was measured, and 2) scans with 2.0 mm slice 
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thicknesses (“slicegroup 1;” n = 15).  The second group consisted of scans with slice 

thicknesses between 1.25 mm and 1.5 mm (“slicegroup 2;” n = 11).  The results of these 

analyses were not significantly different from the analyses of all the MRI scans 

combined into one group and multiplied by slice thickness.  Therefore, for the sake of 

brevity, these results are contained in Appendix A.  

To control for individual differences in total brain volume, all MRI volumes were 

divided by the patient’s coronal intracranial volume (ICA) at the level of the anterior 

commissure.  This method has been shown to be effective at reducing the variability in 

medial temporal lobe volume measurements (Gold & Squire, 2005).  

The number of slices available for analysis varied, depending upon the structure 

and slice thickness; however, a minimum of 10 slices were analyzed per structure.  In 

previous research, it has been found that a sampling frequency of 6 to 10 slices is 

needed to achieve 95% accuracy in volume measures, depending upon whether the 

structure is “regular” or “irregular” (O’Brien et al., 2003).  Thus, sufficient slices were 

obtained in this study to achieve a high degree of accuracy.  

Six primary regions of interest were analyzed: 1) bilateral hippocampi, 2) bilateral 

perirhinal cortices, and 3) bilateral anterior temporal lobes.  In addition, the following 

combinations of primary regions of interest were analyzed: 1) right plus left 

hippocampus, 2) right minus left hippocampus, 3) right plus left perirhinal cortex, 4) right 

minus left perirhinal cortex, 5) right plus left anterior temporal lobe, 6) right minus left 

anterior temporal lobe, 7) left hippocampus plus left perirhinal cortex, 8) right 

hippocampus plus right perirhinal cortex, 9) the sum of right hippocampus and right 

perirhinal cortex minus the sum of left hippocampus and perirhinal cortex, 10) the sum 
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of bilateral hippocampi and perirhinal cortices, 11) the sum of right hippocampus, 

perirhinal cortex, and anterior temporal lobe, 12) the sum of left hippocampus, perirhinal 

cortex, and anterior temporal lobe, 13) the sum of right hippocampus, perirhinal cortex, 

and anterior temporal lobe minus the sum of left hippocampus, perirhinal cortex, and 

anterior temporal lobe, 14) the bilateral sum of hippocampi, perirhinal cortices, and 

anterior temporal lobes.  Images were analyzed using MRIcro software version 1.40 

(copyright Chris Rorden 1999-2005).  This program allows for manual tracing of the 

brain regions of interest (ROIs).    

Volumetric analyses of the regions of interest were performed by the author, who 

was blind to epilepsy diagnosis.  To establish intra-rater reliability, the author retraced 

the ROI volumes of 5 scans (19% of the sample) on separate occasions.  Based on 

these multiple tracings, intra-rater reliabilities (both intraclass correlations and Pearson-

product-moment correlations) ranged from 0.96 to 1.00 (see Table 4).  

Table 4 
Intra-Rater Reliabilities for the Six Regions of Interest (ROIs) 

ROI 
Pearson product-moment 

correlation Intraclass correlation 

left hippocampus 0.99 0.99 

right hippocampus 0.99 0.99 

left perirhinal cortex 1.00 0.99 

right perirhinal cortex 0.97 0.97 

left anterior temporal lobe 0.98 0.97 

right anterior temporal lobe 0.96 0.96 

 

Because a second rater trained in volumetric analysis was not available, 

interrater reliabilities could not be established.  However, in previous research it has 

been found that intraobserver and interobserver variability were of “minor importance” in 

volumetric analysis (Insausti et al., 1998).  Instead, biological variations accounted for 

most of the variability in brain volume. 
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Definition of hippocampal boundaries.  The hippocampal region of interest 

included the entire hippocampal formation (including the subiculum, the dentate gyrus, 

and the hippocampus proper) as these structures are nearly indistinguishable on MR 

images.  Boundaries for this structure were based on those provided in a 2001 Power 

Point presentation by Samantha L. Free (National Society for Epilepsy MRI unit, 

Epilepsy Research Group, Institute of Neurology, University College, London).  In 

addition, feedback on tracing accuracy on a sample of scans was provided by a 

researcher experienced in volumetric analysis on a sample of scans (Leonardo Bonilha, 

M.D., Ph.D., of the Medical University of South Carolina).   

Tracing began rostrally where the hippocampus first appeared below the 

amygdala.  In the most anterior slices, the CSF in the temporal horn was used to mark 

the lateral and superior boundaries (between hippocampus and amygdala).  The medial 

and inferior boundaries consisted of the curve of white matter underlying the 

hippocampus and extending over to the CSF of the ambient cistern.  As the uncus 

began to disappear, the medial boundary became the CSF.  Moving posteriorly, the 

white matter of the alveus was included in the superior ROI if it appeared integral to the 

hippocampus.  If the alveus was difficult to separate from the overlying white matter, it 

was excluded from the ROI.  In the most posterior slices, the white matter of the 

parahippocampal gyrus was used as the inferior boundary of the hippocampal ROI.  

The white matter of the temporal stem and/or the CSF in the temporal horn was used as 

the lateral boundary of the ROI.  The CSF of the ambient cistern continued to serve as 

the medial boundary. In the most posterior slices, the fornices provided the superior limit 
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of the ROI.  Tracing ended posteriorly on each side with the slice in which the ipsilateral 

fornix was longest.   

 Definition of perirhinal cortex boundaries.  A detailed description of the 

measurement protocol used in tracing the perirhinal cortex can be found in Insausti et 

al. (1998).  Briefly, tracing began in the slice closest to 2 mm anterior to the limen 

insulae.  The ventrolateral border, prior to the appearance of the limen insulae, was the 

lateral edge of the collateral sulcus.  At the level of the limen insulae, the most medial 

point of the parahippocampal gyrus was used as the dorsomedial border.  The lateral 

border, in most cases, was at the lateral edge of the collateral sulcus (see Insausti et 

al., 1998, for variations based on anatomical differences).  Tracing ended 4 mm 

posterior to the posterior limit of the gyrus intralimbicus.  Here the medial border was 

drawn where an imaginary line from the white matter underlying the presubiculum and 

parasubiculum would extend medially to touch the pial surface.  The lateral boundary 

was the same as that used in more rostral slices.  

Definition of anterior temporal lobe boundaries.  Tracing began caudally at 

the first slice anterior to the perirhinal cortex ROI to prevent overlap in ROIs.  Tracing 

ended rostrally at the most anterior slice in which the boundaries of the temporal lobe 

could be clearly visualized.  

Statistical Analyses 

 Principal components analysis.  To evaluate the underlying measurement 

model for this study, neuropsychological test scores were analyzed via a principal  
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components analysis with varimax rotation.  This analysis was conducted using the 

SPSS 15.0 for Windows software package (copyright SPSS, Inc., Chicago, IL 1989-

2006).   

Sample-referenced z-scores were chosen over raw scores for this analysis 

because their common metric facilitated comparison of performance across the various 

cognitive domains. These scores were found to have reasonably normal distributions, 

and were free from outliers (i.e., the z-scores ranged from -3.03 to 3.09).   

It was expected that 6 components would emerge representing: short-term 

memory, verbal episodic memory, verbal semantic memory, figural episodic memory, 

facial recognition memory, and spatial memory.  However, the analysis resulted in only 

five components with eigenvalues greater than 1.  These five components appeared to 

correspond to the domains of memory listed above with the exception of a spatial 

memory component.  Indicators of factorability, including Bartlett’s Test of Sphericity 

and negative partial correlations, were good.  Furthermore, inspection of the residuals 

suggested that the obtained solution was good.   

The two highest loading variables on each of the five components (in order of 

variance accounted for) were: (a) CVLT Trials 1-5 total and CVLT Long Delay Free 

Recall; (b) Taylor Complex Figure 3rd recall and Taylor Complex Figure 4th recall; (c) 

Digit Span Forward and Digit Span Backward; (d) WMS-III Faces Delayed Recognition 

and WMS-III Faces Immediate Recognition; (e) WMS-III Logical Memory Immediate 

Recall and Boston Naming Test.  The loadings of these variables obtained from the 

rotated component matrix are shown below in Table 5.  The highest loading measure  
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from each component was used as classification attributes for subsequent cluster 

analyses; and the second highest loading measure was used for cross-validation 

studies. 

Table 5      

Highest Loading Measures on the Five PCA Components  

Test Component 

  1 2 3 4 5 

CVLT Trials 1-5 Total Correct 0.920 0.174 0.172 0.237 0.075 

CVLT Long Delay Free Recall 0.848 0.148 0.158 0.194 0.242 

Taylor Trial 3 0.154 0.934 0.152 0.130 0.045 

Taylor Trial 4 0.134 0.930 0.103 0.114 0.046 

Digit Span Forward 0.131 -0.005 0.816 0.154 0.036 

Digit Span Backward 0.233 0.144 0.765 0.100 0.177 

Logical Memory Immed. Recall 0.498 0.246 0.101 0.737 0.071 

Boston Naming Test 0.240 0.210 0.254 0.688 0.261 

Faces Delayed Recog. 0.158 0.117 0.180 0.246 0.758 

Faces Immediate Recog. 0.045 0.132 0.128 0.297 0.752 

 

Cluster analysis.  Cluster analyses were conducted using the Clustan Graphics 

8.02 software package (copyright 2005 by Clustan Ltd., Edinburgh, Scotland).  Two 

hierarchical agglomerative algorithms were used (Ward’s method and average linkage) 

to ensure that classification of subjects was internally consistent and reliable (Morris et 

al., 1998).   Squared Euclidean distance was selected as the index of pairwise 

similarity-dissimilarity between subject profiles.  Euclidean distance or squared 

Euclidean distance is used predominantly in published health psychology research 

(Clathworthy, Buick, Hankins, Weinman, and Horne, 2005).  This method was chosen 

over Pearson’s correlation, the other similarity measure commonly used in research, 

because it takes into account elevation of scores rather than just the profile of scores 

when grouping subjects.  

There is no well-validated or standard approach to determining the optimal 

number of clusters in a cluster-analytic solution.  Therefore, several approaches were 
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used to decide on the optimal number of clusters.  Initially, a range of optimal clusters 

was identified by examining the agglomeration schedule for both clustering methods.  

Only late stages in the hierarchies were examined for two reasons: 1) to keep the 

number of clusters reasonably small, and 2) to maintain reasonable sample sizes within 

each cluster.  The hierarchies were examined for relatively large increases in the sum of 

squares coefficients after relatively small increases at previous stages.  A sudden jump 

in the sum of squares coefficient is a sign that combination of the two previous clusters 

created a heterogeneous cluster that contains extensive variance (Morris, Blashfield & 

Satz, 1981).  The clusters preceding these jumps were then selected for further 

analysis.  

After a range of optimal clusters was identified for each clustering method, the k-

means iterative partitioning method was used to optimize the results (as per Milligan, 

1980).  Iterative partitioning methods start with the multiple initial solutions and 

reevaluate each individual within each cluster to determine whether that individual best 

fits into the original cluster or another cluster.  Relocation through iterative partitioning is 

desirable when using hierarchical agglomerative methods because hierarchical 

agglomerative methods do not correct errors in the placement of an individual within an 

early forming cluster, even though the patient may fit a later forming cluster much better 

(Morris et al., 1998).  Once these relocation evaluations were completed, chi square 

analyses were used to compare the results from the two clustering methods (Morris et 

al., 1998).  

Concordance between the two clustering methods was then calculated by tallying 

the number of patients assigned to the same cluster for each method.  Good 
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concordance was defined as 80% or greater agreement between the two clustering 

methods.  Clusters having good concordance were selected for further analyses.  

Because optimal cluster sizes were the same for both Ward’s method and the average 

linkage method, and because both methods were found to have good overall 

concordance, clusters obtained using Ward’s method with k-means iterative partitioning 

were selected for the remaining analyses.  

After optimal cluster sizes had been identified, patient profiles within and across 

clusters were visually inspected and characterized in terms of their neuropsychological 

deficits.  Mild impairment was defined as a published (normative-sample-referenced) z-

score between -1.0 and -1.99.  Moderate impairment was defined as a z-score between 

-2.0 and -2.99.  Severe impairment was defined at a z-score below or equal to -3.0.  For 

each patient, the number of impaired scores (a z-score of -1.0 or less) on the five 

neuropsychological classification variables was tallied. Patients were coded as having: 

a) no deficits, b) mild to moderate deficits (impairment on 1 or 2 tests), or c) moderate to 

severe deficits (impairment on 3 to 5 tests.  Pearson chi-square analyses were then 

used to determine whether the clusters differed in terms of number of deficits.   

A series of multivariate analyses of variance (MANOVAs) was used to determine 

whether clusters significantly differed on the five classification variables.  For these 

profile comparisons, z-scores based on each test’s normative sample were used rather 

than z-scores based on the original epilepsy sample.  This is because z-scores based 

on the epilepsy sample would have masked or minimized the presence of deficits 

relative to a normal population.   
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Assessment of internal and external validity of clusters.  One-way analyses 

of variance with Bonferroni post-hoc pairwise comparisons were used to compare 

clusters on demographic composition (age, and education level) and on clinical seizure 

features (age at onset and duration of epilepsy).  Pearson chi-square analyses were 

used to determine whether clusters differed significantly in terms of sex.  It should be 

noted that, due to the small size of this sample, some of these analyses resulted in a 

violation of chi-square rules (e.g., in some cases >20% of cells had and expected value 

of less than 5 and/or the minimum expected count was less than 1).   

Additionally, MRI volumetric data were analyzed for cluster members when 

available.  It was hypothesized that cluster differences in seizure foci would result in 

significant differences in ROI brain volumes.  Thus, patient clusters were subjected to a 

series of ANOVA’s with Bonferroni post-hoc tests to determine whether the groups 

significantly differed on the MRI volumetric measures as predicted.  

Cluster analysis of alternative classification variables.  The cluster analyses 

described above were repeated using the second-highest loading neuropsychological 

test scores from the initial principal components analysis.   Cluster assignment on these 

alternative classification variables was then compared to cluster assignment on the 

original classification variables.  As the original and the alternative classification 

variables were highly correlated, this was not a strong test of internal validity.  

Nevertheless, this approach was superior to an evaluation based solely on the original 

classification variables.  
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Comparison of cluster analysis and neuropsychological classification of 

patients.  Based on patients’ patterns of performance on the 25 neuropsychological test 

variables used in the initial principal components analysis, the author independently 

sorted patients into four groups: 1) verbal memory deficits only, 2) visuospatial memory 

deficits only, 3) both verbal and visuospatial memory deficits, and 4) neither verbal nor 

visuospatial memory deficits.  Pearson’s chi-square was used to assess whether the 

neuropsychological classification of patients was related to how patients were clustered 

using Ward’s method (k-means refined).  In addition, MANOVA was used to determine 

whether the groups obtained by neuropsychological classification differed significantly 

on the five classification variables used for the initial cluster analysis.  

Comparison of cluster analysis and neuroradiological classification of 

patients.  Patients were sorted into 4 groups based on neurologists’ and/or radiologists’ 

localization interpretations of EEG and/or neuroimaging results. These groups were: 1) 

left temporal lobe damage/dysfunction, 2) right temporal lobe damage/dysfunction, 3) 

bilateral temporal lobe damage/dysfunction, and 4) no temporal lobe 

damage/dysfunction.  Pearson’s chi-square was used to assess whether 

neuroradiological classification of patients was related to how patients were clustered 

using Ward’s method (k-means refined).  In addition, MANOVA was used to determine 

whether the groups obtained by neuroradiological classification differed significantly on 

the five classification variables used for the initial cluster analysis. 

To assess the validity of the neuropsychological and neuroradiological 

classifications of patients, brain volumes for these groups were also analyzed using 

one-way analysis of variance with Bonferroni post-hoc pairwise comparisons. 
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Results 

Cluster Analysis 

 Selection of optimal cluster size.  The highest loading test variables from each 

of the five components obtained from an initial principal components analysis were used 

for cluster analyses. These variables were: (a) CVLT Trials 1-5 total; (b) Taylor Complex 

Figure 3rd recall; (c) Digit Span Forward; (d) WMS-III Faces Delayed Recognition; (e) 

WMS-III Logical Memory Immediate Recall.  Inspection of the agglomeration schedules 

for the two methods resulted in the same three potential solutions for each method 

(cluster sizes 2, 3, and 6). After k-means iterative partitioning, concordance in 

classification of patients was assessed for the two methods. Concordance was found to 

be 100% for both the 2 and 3 cluster solutions. For the 6-cluster solutions, 84% (n = 56) 

of patients were assigned to the same cluster using both Ward’s method (k-means 

refined) and Average Linkage method (k-means refined). Thus, the two methods had 

good concordance at the cluster sizes.  

Due to the high concordance between Ward’s method and the Average Linkage 

method after k-means iterative partitioning, and for simplification in presenting results, 

the remaining analyses are presented only for the clusters obtained using Ward’s 

method. 

Cluster performance on classification and demographic variables. 

 Two-cluster solution.  In the 2-cluster solution, cluster 1 exhibited mild 

impairment on the Taylor Complex Figure 3rd recall variable, whereas cluster 2 exhibited 

severe impairment on that variable.  Though the two clusters performed within normal 

limits on the other four neuropsychological variables, cluster 2 consistently performed 
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one or more standard deviations below cluster 1. Cluster means and standard 

deviations on the classification variables are presented in Table 6.  In addition, profiles 

for the two clusters can be found in Figure 1.  

 Pearson chi-square analysis indicated that patients in cluster 1 had fewer test 

scores in the impaired range (z ≤ -1.00) than patients in cluster 2 (χ² = 36.3, df = 2, p < 

.001).  Specifically, inspection of the contingency table revealed that all fifteen patients 

who were classified as having no deficits were placed in cluster 1, whereas 24 out of 25 

patients classified as having moderate to severe deficits (i.e., impairment on 3 to 5 

tests) were placed in cluster 2. The 27 patients classified as having mild to moderate 

deficits (i.e., impairment on 1 or 2 tests) were more evenly distributed between cluster 1 

(n = 15) and cluster 2 (n = 12).  

Table 6   

Means of Two Clusters on Neuropsychological Tests M (SD) 

Test variable Cluster 1 (n = 31) Cluster 2 (n = 36) 

CVLT Trials 1-5 Total Correct*  0.84 (0.44) -0.70 (0.71) 

Taylor Complex Figure, Trial 3* -1.02 (1.47) -3.54 (2.33) 

WMS-III Digit Span Forward* -0.19 (0.80) -0.98 (0.93) 
WMS-III Logical Memory Immediate 
recall*  0.46 (0.72) -0.74 (0.92) 

WMS-III Faces Delayed recognition*  0.31 (1.08) -0.82 (0.78) 

      

*Differences were significant between clusters, p <.001  
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Figure 1. Performance of two clusters on classification variables. 

 A one-way MANOVA was used to compare the two cluster groups on the five 

classification variables. A significant effect of group was obtained, F(5, 61) = 39.99, p < 

.001; Pillai’s Trace = .77; partial eta squared = .77.  Using a Bonferroni adjusted alpha 

level of 0.01, univariate effects were significant for all five classification variables. 

Specifically, cluster 1 scored significantly higher on all five neuropsychological variables 

than cluster 2 (p < 0.001). 

With respect to demographic and seizure variables, patients in cluster 1 (the 

“higher functioning” cluster) had significantly more years of education, F(1, 65) = 5.52, p 

= .02, and significantly higher IQ scores, F(1, 65) = 19.69, p <.001, than patients in 

cluster 2. Means and standard deviations are presented in Table 7.  There was also a 

trend toward patients in cluster 2 (the “lower functioning” cluster) having a longer 
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duration of illness than patients in cluster 1, F(1, 64) = 3.30, p = .07. The two clusters 

did not differ with respect to current age or age at onset of their seizure disorder. 

Pearson’s chi-square analysis indicated that there was a significant relationship 

between cluster assignment and sex (χ² = 3.86, df = 1, p = .05).  Specifically, inspection 

of the contingency table revealed that 19 of the 28 (68%) males were assigned to 

cluster 2. Females were more evenly distributed between cluster 1 and cluster 2 (56% 

and 44%, respectively).   

Table 7   

Two Cluster Demographic and Seizure Characteristics M (SD) 

  Cluster 1 (n = 31) Cluster 2 (n = 36) 

Age  33.35 (11.21) 37.25 (11.98) 

Sex (% male)*  29 53 

Years of Education*  14.29   (2.13) 13.00   (2.33) 

IQ* 102.5  (12.05) 86.61 (16.43) 

Age at onset  17.10 (11.25) 15.71 (12.44) 

Duration of epilepsy (yrs)  15.53 (13.26) 21.54 (13.51) 

* Differences were significant between clusters, p ≤ .05 

 Three-cluster solution.  In the 3-cluster solution, cluster 1 exhibited mild 

impairment on the Taylor Complex Figure 3rd Recall variable, and average performance 

on the other four neuropsychological variables. Cluster 2 demonstrated moderate 

impairment on the Taylor Complex Figure 3rd Recall variable and mild impairment on 

both Delayed Facial Recognition and Digit Span Forward. Cluster 3 demonstrated 

severe impairment on the Taylor Complex Figure 3rd Recall variable and mild 

impairments on the Logical Memory Immediate Recall and the CVLT Trials 1-5 Total 

Correct variables. (see Table 8). Profiles for the three clusters can be found in Figure 2.  

Pearson chi-square analysis indicated that patients in cluster 1 had fewer test 

scores in the impaired range (z ≤ -1.00) than patients in clusters 2 and 3 (χ² = 41.23, df 

= 4, p < .001).  Specifically, inspection of the contingency table revealed that all fifteen 
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patients who were classified as having no deficits were placed in cluster 1, whereas 16 

out of 25 (72.7%) patients classified as having moderate to severe deficits (i.e., 

impairment on 3 to 5 tests) were placed in cluster 3. The remaining 9 patients with 

moderate to severe deficits were placed in cluster 2. The 27 patients classified as 

having mild to moderate deficits (i.e., impairment on 1 or 2 tests) were more evenly 

distributed between the three clusters (n = 13, 8, and 6, respectively).  

Table 8    

Means of Three Clusters on Neuropsychological Tests M (SD)   

Test variable 
Cluster 1  
(n = 28) 

Cluster 2  
(n = 17) 

Cluster 3  
(n = 22) 

CVLT Trials 1-5 Total Correct*  0.82 (0.43)  0.02 (0.74) -1.00 (0.61) 

Taylor Complex Figure, Trial 3* -1.07 (1.52) -2.29 (2.20) -4.10 (2.27) 

WMS-III Digit Span Forward* -0.11 (0.79) -1.47 (0.56) -0.60 (0.94) 

WMS-III Logical Memory Imm. Recall*  0.49 (0.75)  0.04 (0.33) -1.21 (0.86) 

WMS-III Faces Delayed Recognition*  0.45 (1.00) -1.06 (0.59) -0.65 (0.88) 
*Differences were significant between clusters, p <.001  
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Figure 2. Performance of three clusters on classification variables. 
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A one-way MANOVA was used to compare the three cluster groups on the five 

classification variables (see Table 9). A significant effect of group was obtained, F(10, 

122) = 19.58, p < 0.001, Pillai’s Trace = 1.23, partial eta squared = .62.  Using a 

Bonferroni adjusted alpha level of 0.01, univariate effects were significant for all five 

classification variables (p < 0.001; Bonferroni post-hoc comparisons can be found in 

Appendix B).  

Table 9    

Significant Differences on Classification Variables for 3-Cluster Solution 

Test variable df F Significance 

CVLT Trials 1-5 Total Correct 2,64 61.13 0.001 

Taylor Complex Figure, Trial 3 2,64 14.54 0.001 

WMS-III Digit Span Forward 2,64 15.43 0.001 

WMS-III Logical Memory Immediate recall 2,64 36.2 0.001 

WMS-III Faces Delayed recognition 2,64 18.51 0.001 

 

Specifically, patients in cluster 1 scored significantly higher than patients in 

clusters 2 and 3 on the CVLT Trials 1-5 Total variable. Patients in cluster 1 also scored 

higher than patients in cluster 2 on the Digit Span Forward and the Faces Delayed 

Recognition variables, and they scored higher than patients in cluster 3 on the Taylor 

Figure 3rd Recall variable and the Logical Memory Immediate Recall variable. Patients 

in cluster 2 scored higher than patients in cluster 3 on four of the five classification 

variables (CVLT Trials 1-5 Total, Digit Span Forward, Taylor Figure 3rd Recall, and 

Logical Memory Immediate Recall). 

With respect to demographic and seizure variables, patients in cluster 1 had 

significantly more years of education than patients in cluster 3, F (2, 64) = 3.50, p = .04. 

Means and standard deviations are presented in Table 10.  Patients in cluster 1 also 

had significantly higher IQ scores than patients in cluster 2 and cluster 3, F(2, 64) = 

10.12, p < .001.  Chi square analysis of the three clusters showed that there was a 
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significant relationship between cluster assignment and sex (χ² = 9.70, df = 2, p = .01). 

Inspection of the contingency table showed that 15 of 28 males (54%) were assigned to 

cluster 3, whereas only 7 out of 39 females (18%) were assigned to that cluster. The 

three groups did not significantly differ in terms of age, age at onset of epilepsy, or 

duration of epilepsy.  

Table 10    

Three Cluster Demographic and Seizure Characteristics M (SD) 

  Cluster 1 (n = 28) Cluster 2 (n = 17) Cluster 3 (n = 22) 

Age   33.89 (11.47) 36.59 (11.50) 36.55 (12.46) 

Sex (% male)*   32 24 68 

Years of Education*   14.43   (2.15) 13.24   (1.68) 12.82 (2.67) 

IQ* 103.04 (12.12) 90.76 (14.45) 84.82 (17.40) 

Age at onset   17.84 (11.02) 14.00 (13.00) 16.32 (12.16) 

Duration (years)   15.27 (13.62) 22.59 (13.86) 20.22 (13.03) 

* Differences were significant between clusters, p < .05 

 Six-cluster solution.  In the 6-cluster solution, only patients in cluster 3 scored 

within normal limits on all five neuropsychological variables (see Table 11).  Patients in 

clusters 1 and 2 demonstrated isolated moderate or mild deficits on the Taylor Complex 

Figure 3rd Recall variable, respectively.  Cluster 4 demonstrated severe deficits on the 

Taylor Complex Figure 3rd Recall variable and mild deficits in both Delayed Facial 

Recognition and Digit Span Forward.  Cluster 6 demonstrated severe deficits on the 

Taylor Complex Figure 3rd Recall variable and mild deficits on both the CVLT Trials 1-5 

variable and the Logical Memory Immediate Recall variable.  Finally, patients in cluster 

5 demonstrated isolated mild deficits on Digit Span Forward.  Profiles for the 6 clusters 

can be found in Figure 3.   
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Table 11       

Comparison of six clusters performance on neuropsychological tests M (SD) 

Test variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

  (n = 10) (n = 14) (n = 8) (n = 10) (n = 11) (n = 14) 

CVLT Trials 1-5 0.02 0.71 1.12 0.48 -0.53 -1.21 

  Total Correct* (0.58) (0.38) (0.30) (0.73) (0.76) (0.53) 

Taylor Complex Figure -2.46 -1.39 -0.40 -3.24 -0.98 -4.91 

  Trial 3* (1.82) (1.27) (1.05) (2.30) (1.58) (2.25) 

Digit Span Forward* 0.54 -0.80 0.56 -1.22 -1.32 -0.94 

  (0.38) (0.48) (0.39) (0.63) -0.69 (0.91) 

Logical Memory -0.17 0.55 0.58 0.20 -0.24 -1.60 

   Immediate Recall* (0.53) (0.81) (0.75) (0.39) (0.52) (0.81) 

Faces Delayed -0.60 0.43 1.37 -1.20 -0.73 -0.76 

   Recognition* (0.35) (0.67) (0.90) (0.48) (0.84) (0.96) 

*Differences were significant between clusters, p < .001 
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Figure 3. Performance of six clusters on classification variables. 
 

Due to the small sample sizes in the 6-cluster solution, number of tests in the 

impaired range was collapsed into two levels for chi-square analyses. Level one 

consisted of patients with 0 or 1 test in the impaired range (n = 31). Level two consisted 
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of patients with 2 to 5 tests in the impaired range (n = 36). Pearson’s chi-square 

analysis indicated that there was a significant relationship between cluster assignment 

and number of tests in the impaired range (χ² = 38.065, df = 5, p < .001). Inspection of 

the contingency tables showed that clusters 1, 2, and 3 had significantly more patients 

with 0 or 1 test in the impaired range than patients with 2 to 5 tests in the impaired 

range (see Table 12).  In contrast, clusters 4, 5, and 6 had significantly more patients 

with 2 to 5 tests in the impaired range than patients with 0 or 1 test in the impaired 

range.    

Table 12    

Chi-Square Contingency Table: 6-Clusters by Level of Impairment 

  
0 or 1 impaired 

score 
2 to 5 impaired 

scores Total 

Cluster 1 8 2 10 

Cluster 2 11 3 14 

Cluster 3 8 0 8 

Cluster 4 2 8 10 

Cluster 5 2 9 11 

Cluster 6 0 14 14 

Total 31 36 67 

 

A one-way MANOVA was used to compare the six cluster groups on the five 

classification variables. A significant effect of group was obtained, F(25, 305) = 8.38, p < 

0.001, Pillai’s Trace = 2.046, partial eta squared = .407.  Using a Bonferroni adjusted 

alpha level of 0.01, univariate effects were significant for all five classification variables 

(p < 0.001). Bonferroni post-hoc comparisons can be found in Appendix C.   

With respect to demographic and seizure variables, there were significant 

differences in IQ scores for the six clusters, F(5, 61) = 12.56, p < .001.  Bonferroni post-

hoc comparisons can be found in Appendix D.  In addition, there was a trend towards 

cluster 3 members having more years of education, F(5, 61) = 2.21, p = .06, than cluster 
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6.  Means and standard deviations are presented in Table 13.  The six clusters did not 

differ significantly in terms of age, duration of epilepsy, or age at onset of epilepsy.  Chi-

square analysis indicated no relationship between cluster assignment and sex.  

Table 13       

Six Cluster Demographic and Seizure Characteristics M (SD)     

 Cluster 1 Cluster 2  Cluster 3 Cluster 4 Cluster 5 Cluster 6 

  (n = 10) (n = 14) (n = 8) (n = 10) (n = 11) (n = 14) 

Age  29.1 36.14 34.75  35.7 38.09 37.43 

    (9.32) (13.03) (10.42)    (7.39) (13.72) (13.53) 

Sex (% male) 60 14 50 20 45 64 

Years of Education 13.5 13.71 15.63 13.9 13.27 12.43 

    (2.37)   (1.86)   (2.00)    (2.03)  (1.74)   (2.90) 

IQ*  99.40 105.00 110.00  91.50 88.73 75.64 

    (9.90)    (8.84)   (9.02)  (12.13) (16.75) (13.19) 

Age at onset  15.52   16.78 16.02 16.57 15.99 16.83 

    (9.36)   (14.48)   (8.58)  (10.35)  (13.47) (13.88) 

Duration (years)  13.58  17.92 18.73 19.13 22.1 20.6 

   (12.35)   (16.25) (11.39)  (10.59)   (16.84)  (13.43) 

*Differences were significant between clusters, p <.001  

Assessment of Internal and External Validity of Clusters 

Volumetric Analysis of Clusters 

MRI volumes for the six primary regions of interest (ROIs) and the fourteen ROI 

combinations (right plus left volumes, right minus left volumes, etc.) were compared for 

the cluster groups using one-way ANOVAs.  When sample sizes allowed, one-way 

MANOVAs were used to compare the cluster groups on just the six primary regions of 

interest.  Bonferroni post-hoc pairwise comparisons were used where applicable.  All 

MRI volumes were multiplied by slice thickness to correct for differences in slice 

thickness (For comparison purposes, these analyses were repeated with MRI scans 

divided into two groups based on slice thickness. See Appendix A for the results of 

those analyses.)   

For the 2-cluster solution, left hippocampal volumes were significantly greater, 

F(1, 24) = 4.961, p = .036, for patients in cluster 1 (M = .3539, SD = .06, n = 15) than 
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patients in cluster 2 (M = .3024, SD = .06, n = 11).  However, this difference was not 

significant when a Bonferroni corrected p value of .0025 was applied. The two groups 

did not significantly differ on any other brain volume measures.  

When a one-way MANOVA was used to compare MRI volumes for the two 

groups on just the six primary ROIs (i.e., volumes for the left and right hippocampus, left 

and right perirhinal cortex, and left and right anterior temporal lobe), no significant effect 

of group was obtained.  Univariate tests indicated that left hippocampal volumes were 

significantly greater, F(1, 23) = 4.692, p = .041, for patients in cluster 1 than patients in 

cluster 2.  However, this difference was not significant when a Bonferroni corrected p 

value of .008 was applied.  

A one-way ANOVA for the 3-cluster solution indicated that patients in cluster 1 

(M = .35, SD = .06, n = 14) had significantly higher, F(2, 23) = 3.86, p = .036, left 

hippocampal volumes than patients in cluster 3 (M = .27, SD = .05, n = 5;). In addition, 

patients in cluster 3 had significantly higher, F(2, 23) = 4.02, p = .033, right anterior 

temporal lobe volumes (M = 2.18, SD = .56, n= 5) than patients in cluster 2 (M = 1.51, 

SD = .11, n = 6).  However, these differences were not significant when a Bonferroni 

corrected p value of .008 was applied.  

For the 6-cluster solution, ANOVA was used to compare MRI volumes for only 

three clusters (clusters 1, 4, and 6) due to small sample sizes for the other clusters. 

Cluster 4 had significantly higher, F(2, 15) = 4.62, p = .027, left hippocampal volume (M 

= .37, SD = .05, n = 5) than cluster 6 (M = .27, SD = .06, n = 4).  However, cluster 6 had 

significantly higher, F(2, 14) = 4.27, p = .036, right anterior temporal lobe volume (M = 
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2.37, SD = .43) than cluster 4 (M = 1.59, SD = .22).  However, these differences were 

not significant when a Bonferroni corrected p value of .008 was applied.  

Cluster Analysis of Alternative Classification Variables 

Cluster analyses were repeated using the five second-highest loading test 

variables from the original principal components analysis.  Using Ward’s clustering 

method, 6 potential solutions were identified by examining the agglomeration schedule 

(cluster sizes 2, 3, 4, 6, 9, and 10).  

After k-means iterative partitioning, cluster membership assignment using Ward’s 

clustering method was compared on these alternative classification variables to 

membership assignment on the original classification variables.  The 2-cluster solution 

had good concordance with 85% (n = 57) of patients being assigned to the same 

cluster.  In contrast, only 60% of patients (n = 40) were assigned to the same cluster in 

the 3-cluster solution.  Similarly, only 55% of patients (n = 37) were assigned to the 

same cluster for the 6-cluster solution.  

Clinical Classifications Compared to Cluster Assignment 

 Neuropsychological classification of patients.  Based on visual inspection of 

the 25 neuropsychological test scores used for the initial principal components analysis, 

patients were classified as having visuospatial deficits only (n = 21), verbal deficits only 

(n = 3), verbal and visuospatial deficits (n = 25), or no verbal or visuospatial deficits (n = 

18).  This classification of patients was based on clinical judgment rather than a formal 

algorithm.  Generally, a patient was considered to have deficits if he/she obtained a 

norm-referenced z-score of -1.00 or less on one or more delayed recall variables, or -

1.00 or less on more than one learning trial.  However, the pattern of scores was also 
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considered. For example, a mildly impaired score on the first one or two learning trials 

was considered to reflect poor attention rather than poor memory when scores on 

subsequent trials were well within the average range.  Thus, a patient with this pattern 

of performance would not be classified as having a memory impairment. Pearson’s chi-

square was used to assess whether this neuropsychological classification of patients 

was related to how patients were clustered using Ward’s method (k-means refined). 

Due to the small number of patients classified as having only verbal deficits, these 

cases were not included in the analyses.  

For the two-cluster solution, there was a significant relationship between this 

neuropsychological classification of patients and classification of patients using Ward’s 

clustering method (χ² = 35.18, df = 2, p < 0.001).  Specifically, 24 out of 25 patients 

(96%) classified as having both verbal and visuospatial deficits were placed in cluster 2 

using Ward’s method (see Table 14).  Seventeen out of eighteen patients (94.4%) 

classified as having no verbal or visuospatial deficits were placed in cluster 1 using 

Ward’s method.  Patients classified as having visuospatial deficits only, however, were 

evenly distributed between cluster 1 (n = 11) and cluster 2 (n = 10).  

Table 14    

Comparison of Ward's Method 2-Cluster Assignment With   

Neuropsychological Classification   

Clinical classification Cluster 1 Cluster 2 Total 

visuospatial deficits 11 10 21 

verbal and visuospatial deficits 1 24 25 

no verbal or visuospatial deficits 17 1 18 

verbal deficits 2 1 3 

     Total: 31 36 67 

 

For the 3-cluster solution there was also a significant relationship between 

neuropsychological classification of patients and how patients were clustered using 
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Ward’s method (χ² = 37.84, df = 4, p < 0.001). Again, the relationship appeared to be 

driven primarily by the “verbal plus visuospatial deficits” group and the “no verbal or 

visuospatial deficits” group.  Specifically, 17 out of the 25 patients classified as having 

both verbal and visuospatial deficits were placed in cluster 3; and 16 of the 18 patients 

classified as having no verbal or visuospatial deficits were placed in cluster 1 (see Table 

15).  

Table 15     

Comparison of Ward's Method 3-Cluster Assignment With  

Neuropsychological Classification     

Clinical classification Cluster 1 Cluster 2 Cluster 3 Total 

visuospatial deficits 9 8 4 21 

verbal and visuospatial deficits 1 7 17 25 

No verbal or visuospatial deficits 16 2 0 18 

verbal deficits 2 0 1 3 

     Total: 28 17 22 67 

  

The relationship between the neuropsychological classification of patients and 

how patients were clustered using Ward’s method was also significant for the 6-cluster 

solution, (χ² = 43.18, df = 10, p < 0.001).  Inspection of the contingency table for the 6-

cluster solution revealed that cluster 6 (n = 14) had a much higher number of patients 

with both verbal and visuospatial deficits (n = 13) than clusters 1 through 5 (see Table 

16).  Clusters 1, 4, and 5 had the second highest number of patients classified as 

having both verbal and visuospatial deficits, with 4 patients each. It is also significant to 

note that only one patient in cluster 6 was not classified as having both verbal and 

visuospatial deficits.   
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Table 16        

Comparison of Ward's Method 6-Cluster Assignment with Neuropsychological Classification 

Clinical classification 
Cluster 

1 
Cluster 

2 
Cluster 

3 
Cluster 

4 
Cluster 

5 
Cluster 

6 Total 

visuospatial deficits 3 6 1 6 4 1 21 
verbal and 
visuospatial deficits 4 0 0 4 4 13 25 
no verbal or 
visuospatial deficits 3 7 6 0 2 0 18 

verbal deficits 0 1 1 0 1 0 3 

     Total: 10 14 8 10 11 14 67 

 

Clinically classified patients were also compared on the five neuropsychological 

classification variables using one-way MANOVA. Due to the small sample size (n = 3), 

patients classified as having verbal deficits only were not included in this analysis. A 

significant effect of group was obtained, F(10, 116) = 8.76, p < 0.001, Pillai’s Trace = 

0.86, partial eta squared = .430.  Using a Bonferroni adjusted alpha level of 0.01, 

univariate effects were significant for four of the five classification variables (p < 0.001, 

see Table 17). 

Table 17    

z-scores on Classification Variables for Neuropsychologically Classified Groups M (SD) 

Test variable Type of deficit(s) 

  
Visuospatial 

(n= 21) 

Verbal + 
Visuospatial  

(n = 25) 
None  

(n = 18) 

CVLT Trials 1-5 Total Correct*  0.45 (0.71) -0.87 (0.65)  0.79 (0.53) 

Taylor Complex Figure, Trial 3* -2.52 (1.74) -4.06 (2.24) -0.29 (0.77) 

Digit Span Forward -0.81 (0.83) -0.84 (0.95) -0.14 (0.93) 

Logical Memory Immediate Recall*  0.11 (0.79) -0.95 (0.98)  0.61 (0.53) 

Faces Delayed Recognition* -0.49 (0.98) -0.85 (0.78)  0.50 (1.04) 

Differences were significant between groups, p < 0.001  

 

Patients clinically classified as having visuospatial deficits only had significantly 

higher scores on the CVLT Trials 1-5 Total, the Logical Memory Immediate Recall, and 

the Taylor Figure 3rd Recall variables compared to patients classified as having both 

verbal and visuospatial deficits. However, they had significantly lower scores on the 
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Taylor Figure 3rd Recall and the Faces Delayed Recognition variables than patients 

classified as having no deficits.  

Patients clinically classified as having both verbal and visuospatial deficits scored 

significantly lower on the CVLT Trials 1-5 Total, the Logical Memory Immediate Recall, 

and the Taylor Figure 3rd Recall variables than patients classified as having visuospatial 

deficits only and patients classified as having no deficits.  They scored lower than 

patients classified as having no deficits on the Faces Delayed Recognition.  There was 

also a trend toward these patients scoring lower on the Digit Span Forward variable 

than patients classified as having no deficits (the difference was significant if a 

Bonferroni correction was not applied).  These groups did not differ significantly on 

demographic (age, sex) or seizure characteristic variables (age at onset, duration of 

epilepsy). 

Volumetric analysis of neuropsychologically classified groups.  Brain 

volumes were compared for patients who were clinically classified as having 

visuospatial deficits only (n = 7), verbal plus visuospatial deficits (n = 10), or no verbal or 

visuospatial deficits (n = 8).  All MRI volumes were multiplied by slice thickness to 

correct for differences in slice thickness (For comparison purposes, these analyses 

were repeated with MRI scans divided into two groups based on slice thickness. See 

Appendix E for the results of those analyses.).  Due to the small number of patients 

classified as having verbal deficits only (n = 1), this group was not included in these 

analyses. Brain volumes for the three groups were analyzed using one-way ANOVA 

with Bonferroni post-hoc pairwise comparisons.  Patients classified as having both 

verbal and visuospatial deficits (M = .29, SD = .06) had significantly lower, F(2, 22) = 
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4.50, p = .023, left hippocampal volumes than patients classified as having neither 

verbal nor visuospatial deficits (M = .36, SD = .05).  However, this difference was not 

significant when a Bonferroni corrected p value of .0025 was applied.  In addition, there 

was a trend towards patients with both verbal and visuospatial deficits (M = .05, SD = 

.08) having a greater discrepancy, F (2, 22) = 3.40, p = .052, between right and left 

hippocampal volumes (right volume minus left volume) than patients with no verbal or 

visuospatial deficits (M = -0.03, SD = .05). There were no other significant differences in 

brain volume for the three groups. 

When a one-way MANOVA was used to compare MRI volumes for the three 

groups on just the six regions of interest (i.e., volumes for the left and right 

hippocampus, left and right perirhinal cortex, and left and right anterior temporal lobe), 

no significant effect of group was obtained.  Univariate tests indicated that left 

hippocampal volumes were significantly smaller, F (2, 21) = 4.327, p = .027, for patients 

classified as having both verbal and visuospatial deficits than for patients classified as 

having neither verbal nor visuospatial deficits.  However, this difference was not 

significant when a Bonferroni corrected p value of .008 was applied.  

Neuroradiological classification of patients.  External validity of cluster 

assignment was also assessed by sorting patients based on independent neurologists’ 

and/or radiologists’ localization interpretations of EEG and/or neuroimaging results and 

comparing the neuroradiological classification to classification based on Ward’s method.  

Four groups were obtained based on neuroradiological classification: 1) right temporal 

lobe dysfunction (n = 23), 2) left temporal lobe dysfunction (n = 23), 3) bilateral temporal 
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lobe dysfunction (n = 10), and no temporal lobe dysfunction (n = 11).  More specific 

localization information was not available. 

For the two-cluster solution, Pearson’s chi-square test indicated there was no 

significant relationship between the neuroradiological classification of patients and how 

patients were clustered using Ward’s method. However, inspection of the contingency 

table revealed that 8 out of 10 patients classified as having bilateral temporal lobe 

involvement were placed in cluster 2 using Ward’s method; and 8 out of 11 patients 

classified as having no temporal lobe dysfunction were placed in cluster 1 (see Table 

18). Patients classified as having either right or left temporal lobe dysfunction were 

more evenly distributed between the two clusters.  

Table 18    

Comparison of Ward's Method 2-Cluster Assignment With   

Neuroradiological Classification 

Neuroradiological classification Cluster 1 Cluster 2 Total 

Right temporal dysfunction 12 11 23 

Left temporal dysfunction 9 14 23 

Bilateral temporal dysfunction 2 8 10 

No identified area of dysfunction 8 3 11 

     Total: 31 36 67 

 

For the three-cluster solution, there was a significant relationship between 

neuroradiological classification of patients and cluster assignment using Ward’s method 

(χ² = 14.42, df = 6, p = 0.03).  Inspection of the contingency table (see Table 19) 

revealed that 20 of the 23 patients classified as having right temporal dysfunction were 

concentrated in clusters 1 (n = 10) and cluster 2 (n = 10). Similarly, 20 of the 23 patients 

classified as having left temporal dysfunction were concentrated in cluster 1 (n = 9) and 

cluster 2 (n = 11). Six of the 10 patients classified as having bilateral damage were 



 64 

concentrated in cluster 3; and 7 of the 11 patients classified as having no temporal 

dysfunction were concentrated in cluster 1.  

Table 19     

Comparison of Ward's Method 3-Cluster Assignment With   

Neuroradiological Classification     

Physicians' classifications Cluster 1 Cluster 2 Cluster 3 Total 

Right temporal dysfunction 10 10 3 23 

Left temporal dysfunction 9 3 11 23 

Bilateral temporal dysfunction 2 2 6 10 

No identified area of dysfunction 7 2 2 11 

     Total: 28 17 22 67 

 

For the 6-cluster solution, there was also a significant relationship between 

neuroradiological classification of patients and cluster assignment using Ward’s method 

(χ² = 32.84, df = 15, p = 0.005).  Analysis of the contingency table, revealed that 14 of 

the 23 patients classified as having left temporal lobe damage or dysfunction were 

concentrated in clusters 2 and 6; and 5 of the 11 patients having no identified area of 

damage or dysfunction were placed in cluster 3 (see Table 20).   

Table 20      

Comparison of Ward's Method 6-Cluster Assignment With  

Neuroradiological Classification 

  Presence of Temporal Lobe Damage   

 Right Left Bilateral None Total 

Cluster 1 6 4 0 0 10 

Cluster 2 4 6 2 2 14 

Cluster 3 2 1 0 5 8 

Cluster 4 6 2 1 1 10 

Cluster 5 5 2 3 1 11 

Cluster 6 0 8 4 2 14 

     Total: 23 23 10 11 67 

 

Patients classified by the presence or absence of temporal lobe 

damage/dysfunction were also compared on the five neuropsychological classification 

variables using one-way MANOVA.  A significant effect of group was obtained, F(15, 

183) = 2.447, p = 0.003, Pillai’s Trace = 0.501, partial eta squared = .167.  Using a 
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Bonferroni adjusted alpha level of 0.01, univariate effects were significant for two of the 

five classification variables (CVLT Trials 1-5 Total and Logical Memory Immediate 

Recall).  Group means and standard deviations can be found in Table 21. 

Table 21     

z-Scores on Classification Variables for Groups Classified by EEG/Imaging M (SD) 

Test variable Presence of temporal lobe damage/dysfunction 

  
Left  

(n = 23) 
Right 

 (n= 23) 
Bilateral 
 (n = 10) 

None  
(n = 11) 

CVLT Trials 1-5 Total* -0.25 (1.06)  0.37 (0.62) -0.72 (0.81)  0.50 (1.07) 

Taylor Figure, Trial 3 -2.99 (2.12) -1.80 (1.92) -2.56 (2.71) -2.13 (3.11) 

Digit Span Forward -0.66 (0.97) -0.65 (1.10) -0.75 (0.56) -0.32 (0.91) 

Logical Memory Imm. Recall* -0.39 (1.09)  0.09 (0.51) -1.17 (0.89)  0.58 (1.08) 

Faces Delayed Recognition -0.41 (0.93) -0.54 (1.01) -0.37 (1.19)  0.51 (1.20) 

Differences were significant between groups, p < .01   

 

Specifically, patients classified as having left temporal lobe damage/dysfunction 

scored significantly lower on the Logical Memory Immediate Recall variable than 

patients classified as having no temporal lobe damage/dysfunction. Patients classified 

as having right temporal lobe damage/dysfunction scored significantly higher on the 

CVLT Trials 1-5 Total and the Logical Memory Immediate Recall variables than patients 

classified as having bilateral temporal lobe damage/dysfunction. There was a trend 

toward these patients scoring significantly lower on the Faces Delayed Recognition 

variable than patients classified as having no temporal lobe damage/dysfunction. 

Finally, patients classified as having bilateral temporal lobe damage/dysfunction scored 

significantly lower on the CVLT Trials 1-5 Total and the Logical Memory Immediate 

Recall variables than patients classified as having no temporal lobe 

damage/dysfunction.  The groups did not differ significantly on demographic (age, sex) 

or seizure characteristic variables (age at onset, duration of epilepsy). 
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Volumetric analysis of neuroradiologically classified patients.  One-way 

ANOVA’s were also used to compare MRI volumes of patients grouped by area of 

cortical damage or dysfunction based on EEG and/or neuroimaging.  All MRI volumes 

were multiplied by slice thickness to correct for differences in slice thickness. (For 

comparison purposes, these analyses were repeated with MRI scans divided into two 

groups based on slice thickness. See Appendix F for the results of those analyses.)  No 

significant differences in brain volumes were found for patients diagnosed with left 

temporal lobe damage or dysfunction (n = 13; including patients diagnosed with bilateral 

temporal lobe damage) compared to patients not diagnosed with left temporal lobe 

damage or dysfunction (n = 13; including patients with no identified area of damage or 

dysfunction).  Nor were there any significant differences between patients diagnosed 

with right temporal lobe damage or dysfunction (including patients diagnosed with 

bilateral damage or dysfunction) compared to patients not diagnosed with right temporal 

lobe damage or dysfunction (including patients with no identified area of damage or 

dysfunction).  Likewise, no significant differences in brain volumes were found when 

patients were separated into four groups based on area of damage or dysfunction (left 

temporal, n = 8; right temporal, n = 8; bilateral, n = 5; and no identified area of damage 

or dysfunction, n = 5).  
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Discussion 

There is strong evidence in the literature to support the existence of memory 

impairments in patients with temporal lobe epilepsy (TLE).  This is not surprising given 

the fact that the temporal lobe brain structures involved in TLE play a central role in 

consolidating information into memory.  It is widely accepted that patients whose 

seizure focus is in the left temporal lobe (LTLE) tend to have verbal memory 

impairments, whereas patients whose seizure focus is in the right temporal lobe (RTLE) 

tend to have visuospatial memory impairments (though there are many exceptions to 

this rule).  However, in both the animal and human literature, there is evidence of 

functional subdivisions within the left and right temporal lobes such that different brain 

structures are important for different types of verbal and visuospatial memory.  Thus, it 

is reasonable to expect that more specific subtypes of memory impairment may exist in 

TLE based on differences in seizure foci within the left and right temporal lobes.  In 

addition, variables such as age at onset of seizures, duration of seizure disorder (time 

since diagnosis), educational level, and sex have been associated with different 

patterns of memory performance in patients with TLE.  The aim of the present study 

was to identify more specific subtypes of memory-impairments in patients with TLE 

using a variety of different neuropsychological measures of memory functioning and 

quantitative cluster analytic methods.  Such an improved and more specific TLE 

classification system could have prognostic significance for patients and could 

contribute to our knowledge about the organization of memory systems of the human 

brain. 
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Based on a review of the literature, it was hypothesized that 5 memory-based 

subtypes would emerge from the cluster analyses.  The hypothesized subtypes 

consisted of: 1) patients with isolated verbal episodic memory deficits, 2) patients with 

both verbal episodic and verbal semantic memory deficits, 3)  patients with isolated 

deficits in figural episodic memory and spatial memory, 4) patients with global 

visuospatial memory deficits (figural episodic, spatial, and face recognition), and 5) 

patients with global verbal and visuospatial memory deficits.  However, the cluster 

analyses resulted in three different potential classification solutions, consisting of 2, 3, 

and 6-clusters (i.e., memory subtypes).   

Across all three cluster solutions, a total of four memory subtypes were identified 

in this sample:  1) patients with mild to moderate figural memory deficits; 2) patients with 

moderate to severe figural memory deficits, mild facial recognition deficits, and mild 

attention/concentration deficits; 3) patients with severe figural memory deficits and mild 

verbal episodic memory deficits; and 4) patients with no episodic or semantic memory 

deficits.  The three clustering solutions are described in more detail below.  

Two-Cluster Solution 

In the two cluster solution, patients appeared to be clustered into a higher 

functioning group (cluster 1) and a lower functioning group (cluster 2).  Though both 

cluster means were in the impaired range relative to normative data on a test of 

visuospatial memory (the Taylor Complex Figure 3rd recall variable), the cluster 1 mean 

was only in the mildly impaired range, whereas the cluster 2 mean was in the severely 

impaired range.  On the other 4 neuropsychological classification variables, means for 

both clusters were in the normal range; however, cluster 1 consistently performed 1 or 
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more standard deviations above cluster 2.  In addition, inspection of the individual 

patient profiles revealed that patients who had no test scores in the impaired range 

were placed exclusively in cluster 1.  In contrast, 24 out of 25 patients with impaired 

scores on at least 3 of the classification variables were placed in cluster 2.  

 The external validity of these clusters was supported by the finding that patients 

in the higher-performing cluster 1 had significantly more years of education than 

patients in the lower-performing cluster 2.  In addition, independent neuropsychological 

classification of patients also differed for the two groups as would be expected.  

Specifically, individuals in cluster 1 were statistically more likely to be classified as 

having no verbal or visuospatial deficits. In contrast, individuals in cluster 2 were 

statistically more likely to be classified as having both verbal and visuospatial deficits.  

When classified based on neuroradiological data, there was a trend toward patients in 

cluster 1 being classified as having no identifiable temporal lobe damage or dysfunction, 

whereas there was a trend for patients in cluster 2 to be classified as having bilateral 

temporal lobe damage or dysfunction.  

On demographic variables, cluster 2 had a significantly higher percentage of 

males than females.  The two clusters did not differ significantly differ in terms of age, 

duration of illness, or age at onset of illness.  Contrary to expectation, the two clusters 

did not show any significant differences in temporal lobe brain volumes, though there 

was a trend towards higher left hippocampal volumes in cluster 1.   

Three-Cluster Solution 

 In the three-cluster solution, patients generally appeared to be clustered into 

mildly impaired (cluster 1), moderately impaired (cluster 2), and more severely impaired 
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(cluster 3) groups.  However, these groups do not appear to simply represent a 

continuum of severity of memory impairment because the pattern of memory 

impairment was different for the three groups.  Cluster 1 exhibited only mild deficits in 

visuospatial memory.  Cluster 2 exhibited moderate deficits in visuospatial memory plus 

mild deficits in both short-term memory/attention (Digit Span forward) and delayed facial 

recognition.  And cluster 3 exhibited severe deficits in visuospatial memory, plus mild 

deficits in verbal memory (Logical Memory Immediate Recall and CVLT Trials 1-5 Total 

Correct). Inspection of the individual patient profiles revealed that all 15 patients who 

had no test scores in the impaired range were placed in cluster 1.  In contrast, 16 out of 

25 patients with impaired scores on at least 3 of the classification variables were placed 

in cluster 3 (the remaining 9 cases were placed in cluster 2). 

The external validity of these clusters was supported by the finding that patients 

in the highest-performing cluster 1 had significantly more years of education than 

patients in the lowest-performing cluster 3.  Independent neuropsychological 

classification of patients also differed for the three groups as would be expected. 

Specifically, 68% of the patients classified as having both verbal and visuospatial 

deficits were placed in cluster 3; and 89% of the patients classified as having no verbal 

or visuospatial deficits were placed in cluster 1. There was also a significant relationship 

between neuroradiological classification of patients and cluster assignment using 

Ward’s method.  Specifically, 64% of the patients classified as having no temporal 

dysfunction were concentrated in cluster 1.  Sixty percent of the patients classified as 

having bilateral damage were concentrated in cluster 3. Cluster 3 had a significantly 
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higher percentage of males than females.  However, the three clusters did not differ 

significantly differ in terms of age, duration of illness, or age at onset of illness. 

Contrary to expectation, differences in brain volumes for the three clusters did 

not continue to reach significance when a Bonferroni correction was applied.  However, 

there was a trend towards cluster 1 patients having higher left hippocampal volumes 

than patients in cluster 3.  This might be related to the fact that verbal memory deficits 

were found in cluster 3, but not cluster 1.  Similarly, there was a trend towards patients 

in cluster 3 having higher right anterior temporal lobe volumes than patients in cluster 2. 

This might be related to the fact that visuospatial memory deficits were limited to figural 

memory in cluster 3, but included both figural and facial recognition deficits in cluster 2. 

These results are consistent with Hermann et al. (2007) who reported obtaining a 

3-cluster solution in a group of patients with TLE.  Though Hermann et al. examined 

patients’ performance on a number of different cognitive variables in addition to memory 

(e.g., executive functioning, processing speed, and language), the 3 groups obtained in 

that study were also generally described as having mild, moderate, and severe memory 

impairment.  Also consistent with Hermann et al., the three clusters obtained in this 

study showed different patterns of impairment on the classification variables.  This 

suggests that the clusters obtained in both studies do not merely represent a continuum 

of severity of cognitive impairment.  

Six-Cluster Solution 

The six-cluster solution most closely corresponds, at least in terms of the number 

of clusters, to the five memory subtypes that were hypothesized at the beginning of this 

study.  In addition, the expected patterns of memory impairment were found in a few, 
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but not all, of these clusters.  Reviewing the original study hypotheses in order: 

Hypothesis 1 stated that a cluster would emerge with “isolated verbal episodic memory 

deficits, which may be related to restricted lesions of the left hippocampus and later 

seizure onset.”  Similarly, hypothesis 2 stated that a cluster would emerge with “both 

verbal episodic and verbal semantic memory deficits due to more widespread left  

temporal lesions including perirhinal and anterior temporal pole regions.”  Contrary to 

expectation, none of the six clusters demonstrated isolated verbal episodic memory 

deficits.  

The failure to identify a subgroup of TLE patients with isolated verbal memory 

deficits is consistent with other published studies, which demonstrate that even patients 

with verified left temporal lobe epilepsy show deficits in both verbal and visuospatial 

memory tasks (Wilde et al., 2001).  This might account for a discrepancy that was found 

in the present study between neuropsychological classification of patients and 

neuroradiological classification of patients.  Specifically, half of the patients classified as 

having isolated left temporal lobe damage or dysfunction based on neuroradiological 

data, were classified as having both verbal and visuospatial deficits based on 

neuropsychological test scores.  If left hemisphere brain structures are more important 

for verbal memory and right hemisphere structures more important for visuospatial 

memory, patients with isolated left temporal lobe damage or dysfunction should have 

isolated verbal memory deficits.  One explanation for the unexpected verbal plus 

visuospatial deficits is that verbal strategies may have been used to encode the 

visuospatial stimuli used in this study (Jambaqué, 1993; Nolan, 2004), thereby putting 

patients with verbal memory impairment at a broader cognitive disadvantage.  Another 
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explanation for this finding is that visuospatial memory may have more widespread or 

bilateral representation in the brain (Alessio et al., 2004).  

Hypothesis 3 stated that a cluster would emerge with “deficits in figural episodic 

memory and spatial memory, which may be due to restricted right hippocampal lesions 

and later seizure onset.”  Spatial memory could not be assessed due to the lack of a 

valid measure in the available assessment battery; however, two clusters were found 

which exhibited isolated figural episodic memory deficits (clusters 1 and 2).  Contrary to 

expectation, these clusters did not appear to exhibit the isolated right hemisphere 

damage/dysfunction that was predicted.  Based on neuroradiological classification, only 

60% of patients in cluster 1 were classified as having isolated right temporal lobe 

damage or dysfunction. The remaining 40% were classified as having isolated left 

temporal lobe damage. In cluster 2, 29% of patients were classified as having isolated 

right temporal lobe damage and 43% were classified as having isolated left temporal 

lobe damage or dysfunction. 

Isolated visuospatial deficits have been reported in patients with isolated left 

temporal lobe damage or dysfunction (Gleissner, Helmstaedter, and Elger, 2002).  

However, these deficits have been associated with early onset of seizures and 

attributed to functional reorganization of the brain.  This could not account for the 

findings in the present study where the 6 clusters did not differ significantly in terms of 

age at onset, and only two of the ten patients classified as having isolated left temporal 

lobe damage or dysfunction had onset of their seizure disorder before age 14.  

Hypothesis 4 predicted the emergence of a cluster with “global visuospatial 

memory deficits (figural episodic, spatial, and face recognition), which may be related to 
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more widespread right temporal involvement including the hippocampus, perirhinal 

cortex, and anterior temporal pole.”  Patients in cluster 4 most closely correspond to this 

hypothesis, exhibiting severe deficits in visuospatial memory and mild deficits in facial 

recognition.  In addition, there was a trend towards patients in cluster 4 having lower 

right anterior temporal lobe volumes than patients in cluster 6.  This might account for 

the impairment in facial recognition that was found in cluster 4 but not cluster 6.   

Contrary to expectation, however, only 6 of the 10 patients in cluster 4 were 

classified based on neuroradiological data as having isolated right temporal lobe 

damage or dysfunction.  As for the remaining four patients, two were classified as 

having isolated left temporal lobe damage, one was classified as having bilateral 

temporal damage, and one was classified as having no temporal lobe damage or 

dysfunction.  It is hard to account for the isolated visuospatial deficits in the two patients 

with isolated left temporal lobe damage.  These patients did not have onset of their 

seizure disorders at an early age, so functional reorganization is unlikely.  As for the 

patient with no identified temporal lobe damage or dysfunction, there was evidence of 

bilateral frontal lobe damage or dysfunction which may have accounted for her impaired 

performance.  Specifically, it has been found that performance on complex figure 

memory tasks is positively correlated with organizational skills, which are believed to 

depend upon the frontal lobes (Newman & Krikorian, 2001).  

Hypothesis 5 predicted the emergence of a cluster with “global verbal and 

visuospatial memory deficits, which may be related to earlier seizure-onset and bilateral 

temporal lobe lesions.”  Cluster 6 most closely resembles this pattern of impairment on 

neuropsychological tests with mild impairment on verbal memory tasks and severe 
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impairment on a task of visuospatial memory. As would be expected there was a trend 

for this cluster to have lower left hippocampal volumes than cluster 4 which did not 

exhibit verbal memory impairment, and higher right anterior temporal lobe volumes than 

cluster 4 which exhibited impairment in facial recognition memory. Furthermore, 13 of 

the 14 patients in this cluster were independently classified as having both verbal and 

visuospatial memory deficits based on neuropsychological data.   

However, contrary to the initial hypothesis, 8 of the 14 patients in this cluster 

were independently classified based on neuroradiological data as having isolated left 

temporal lobe damage or dysfunction.  This is consistent with some studies in which 

impairment in visuospatial tasks has been reported in patients with unilateral LTLE.  For 

example, Glikmann-Johnston et al. (2008) found that both right and left TLE patients 

performed significantly worse than controls on three different spatial memory tasks 

assessed via a virtual-reality paradigm.   

The failure to find the expected bilateral temporal lobe dysfunction in these 

patients with both verbal and visuospatial memory deficits might be attributable to 

insensitivity of current imaging methods.  According to Squire and Zola (1998, p. 210) 

“Even high resolution MRI cannot detect cell loss that is easily detected in histological 

examinations.”  It is also possible that the theory on which this study’s hypotheses are 

based, namely that left temporal structures are important for verbal memory and right 

temporal structures are important for visuospatial memory, is not accurate or is accurate 

only under certain circumstances.  This would account for the large number of published 

studies which failed to demonstrate verbal and visuospatial memory impairments in 

patients with LTLE and RTLE, respectively.  
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Two unexpected clusters emerged in the 6-cluster solution. The first, cluster 3, 

exhibited no deficits on any of the neuropsychological classification variables.  

Congruently, 5 of the 11 patients classified as having no identified area of brain damage 

or dysfunction based on neuroradiological data were placed in cluster 3.  In addition, 6 

of the 8 patients in this cluster were independently classified as having neither verbal 

nor visuospatial deficits based on neuropsychological data. With respect to 

demographic variables, there was a trend towards the unimpaired cluster 3 members 

having more years of education than the most impaired cluster 6.  

Although the identification of an unimpaired cluster was not predicted, in 

retrospect, it is not surprising that such a group was identified.  When analyzed as a 

group, TLE patients frequently demonstrate memory impairments.  However, at the 

individual level, not all patients demonstrate these deficits.  Typically, these findings are 

not discussed in the literature, where the focus is on group-level differences.  For 

example, in a sample of patients with left or right hippocampal atrophy described by 

Alessio et al. (2006) 11 of their 39 patients exhibited no impairments on measures of 

general memory, verbal memory, and visuospatial memory.  This finding was not 

mentioned in the text, but was embedded in a table of individual test scores.  The lack 

of memory impairments in some patients may be due to a number of factors, including 

different etiologies, differences in seizure foci, lower frequency of seizures, and 

combination of anti-epileptic drugs used.   

The second unexpected cluster, cluster 5, exhibited isolated mild deficits on Digit 

Span Forward despite the fact that all but one patient was classified as having some 

form of temporal lobe damage or dysfunction based on neuroradiological classification.  
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Typically, patients with TLE have preserved short term memory; and even patients with 

large mesial temporal lobe lesions perform within normal limits on the Digit Span 

subtest (Squire et al., 2004).  It may be that the discrepant findings in the present study 

are due to differences in temporal lobe seizure foci.  For example, perhaps the temporal 

lobe damage/dysfunction in these individuals was limited to more anterior and lateral 

temporal structures, whereas mesial temporal lobe structures important for memory 

may have been spared.  However, this hypothesis could not be confirmed as more 

specific localization information was not available for these patients.  

In summary, three potential clustering solutions were identified in this sample. In 

a two cluster solution, patients appeared to be classified into higher-functioning and 

lower-functioning groups.  In a three-cluster solution, different subtypes of memory 

impairment began to emerge. The three subtypes in this solution consisted of: 1) 

patients with mild figural memory deficits, 2) patients with moderate figural memory 

deficits, mild facial recognition deficits, and impaired attention/concentration, and 3) 

patients with severe figural memory deficits plus verbal episodic memory deficits.  In a 

six-cluster solution, the same subtypes of memory impairment were found, except that 

there were two clusters with isolated figural memory deficits (one cluster had mild 

deficits, the other had moderate deficits). In addition two clusters emerged with no 

episodic or semantic memory deficits (one cluster exhibited isolated deficits in short 

term memory/attention, the other cluster performed within normal limits on all 

classification variables).   

Contrary to expectation, the clusters found in this study did not exhibit the 

expected pattern of memory lateralization.  Specifically, patients in clusters with isolated 
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visuospatial memory impairments were not significantly more likely  to be classified as 

having isolated right temporal lobe damage or dysfunction based on neuroradiological 

data.  In addition, no clusters emerged with isolated verbal memory impairments, 

despite the fact that twenty patients were classified as having isolated left temporal lobe 

damage or dysfunction based on neuroradiological data.  On an individual level, only 

one of the twenty patients classified as having isolated left temporal lobe damage or 

dysfunction based on neuroradiological data showed the expected pattern of isolated 

verbal memory impairment.  Only 9 of 22 patients classified as having isolated right 

temporal lobe damage or dysfunction showed the expected pattern of isolated 

visuospatial memory impairments.  These findings call into question the theory that left 

temporal lobe structures are specialized for verbal memory whereas right temporal lobe 

structures are specialized for visuospatial memory. 

It still remains to be determined whether different temporal lobe structures are 

important for different aspects of verbal and visuospatial memory.  In the present study, 

MRI data were not available for many patients.  This limited the ability to correlate 

differences in neuropsychological test performance with differences in brain volume.    

However, consistent with the literature, there was a trend towards some clusters with 

better verbal memory having higher left hippocampal volumes than clusters with poorer 

verbal memory.  In addition, a trend towards higher anterior temporal lobe volumes was 

found in one cluster with circumscribed figural memory deficits compared to a cluster 

with both figural memory deficits and facial recognition deficits, as would be expected 

based on a review of the literature.  
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Although MRI was the imaging technique available for this study, the number of 

patients without any clear evidence of lesions, and its inconsistent mapping onto the 

subtypes raises the question whether it was an adequate method for subtype validation.  

Though improvements in MRI technology over the last decade have enabled the 

detection of even tiny epileptogenic lesions, these techniques still fail to identify any 

lesions in approximately 20% of patients (Siegel, 2004). It has been suggested that 

other physiological measures may be more sensitive to memory functions than MRI 

volumetry.  For example, there is evidence that PET is a more sensitive interictal 

imaging technique than MRI.  Though at least 30% of TLE patients have no evidence of 

hippocampal sclerosis on MRI, many of these patients have prominent focal or regional 

hypometabolism on PET scans (Carne et al., 2004).  Another method which may be 

useful in epilepsy research, magnetic resonance spectroscopy (MRS), has been shown 

to be more sensitive to neurocognitive function than MRI in early stage Alzheimer’s 

disease (Shiino, et al., 1993) and HIV (Meyerhoff, 1993).  In a sample of TLE patients, 

Sawrie, Martin, Knowlton et al. (2001) found a relationship between verbal memory and 

magnetic resonance spectroscopy (MRS), but not MRI.  Thus, for future studies the use 

of imaging methods other than MRI should be considered. 

Future validation studies will also be needed to determine whether patients within 

different subtypes of memory impairment have different cognitive courses, or 

prognoses.  Although the present study did not look at cognitive course as a function of 

group membership, Herman et al. (2007) found that patients with epilepsy had a poorer 

cognitive course than controls across all cognitive domains over a 4-year period, and 
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that lower-functioning clusters had a poorer cognitive course than higher-functioning 

clusters.   

Ultimately, it also remains to be determined whether treatment outcomes differ 

for patients depending upon their pattern of memory impairment.  It is already known 

that patients who have higher preoperative verbal memory have a higher risk for 

postoperative memory decline following left temporal lobectomy (Chelune et al., 1991).  

It is also possible that treatment outcomes differ for patients who represent different 

subtypes on verbal or visuospatial memory tests. Such information would be valuable 

for clinical decision making.   

This study is unique in that, to the author’s knowledge, only one other study 

(Hermann et al., 2007) has been published using cluster analytic methods to classify 

epilepsy patients based on their cognitive profiles.  In that study, indices for a number of 

different cognitive domains were examined; and verbal and visuospatial memory tasks 

were collapsed into an “immediate memory” index score and a “delayed memory” index 

score.  In contrast, in the present study, patients were classified based on their profiles 

on a variety of different verbal and visuospatial memory tasks.  This enabled more 

specific subtypes of memory impairment to be identified.  

Another unique feature of this study was that it compared three different 

classification systems: 1) cluster analysis, 2) clinical classification based on 

neuropsychological test scores, and 3) clinical classification based on neuroradiological 

data.  Overall, both clinical classification methods showed good concordance with 

classification based on cluster analysis, although concordance for some clusters was 

much better than others.  Concordance between cluster analysis and 
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neuropsychological classification appeared to be highest in patients classified as having 

both verbal and visuospatial deficits and in patients classified as having no deficits.  

Concordance between neuroradiological classification and cluster analysis appeared to 

be highest in patients classified as having bilateral temporal lobe damage/dysfunction 

and in patients classified as having no temporal lobe damage/dysfunction.  

Several factors which may have impacted the results of this study should be 

mentioned. First, because this study was based in retrospective chart review, the 

neuropsychological measures used for cluster analyses were limited to those 

administered as part of a standard test battery.  As a consequence, spatial memory 

could not be adequately assessed in this sample.  Though the Spatial Span subtest of 

the WMS-III was conceptualized as a measure of spatial memory for the purposes of 

this study, it loaded on what appeared to be a short term memory/attentional component 

in an initial principal components analysis. The two highest-loading tests on that 

component were Digit Span Forward and Digit Span Backward.  

Second, small sample sizes resulted in the violation of assumptions for some 

statistical analyses and, more importantly, may have limited power when the 6-cluster 

solution was evaluated.  Small sample sizes also made it necessary to use multiple 

one-way ANOVAs, rather than MANOVAs for many of the analyses.  Because of the 

large number of comparisons that were made, Bonferroni corrections were used.  While 

this greatly reduces the likelihood of Type I errors, it could be argued that these 

corrections were overly conservative and may have resulted in some actual differences 

being missed.     



 82 

Third, the sample in this study consisted of patients with intractable epilepsy.  As 

patients with intractable seizures only represent 20% of the epilepsy population, these 

findings may not generalize to the remaining 80% of the population whose seizures are 

well-controlled.  In addition, the small sample sizes in this study may have resulted in a 

biased sample, which limits its representativeness to patients with TLE.  Patients with 

TLE are a heterogeneous group due to differences in seizure etiology (e.g., 

malformations, tumors, and traumatic brain injury), seizure frequency, seizure severity, 

and age at onset.  The current sample may have had unique characteristics compared 

to those found in previous studies.  Thus, with larger sample sizes, it is plausible that 

additional subtypes of memory impairment in TLE may be found, or the characteristics 

of the subtypes found may become clearer in some instances.   

 Even with those limitations, the results of this study support the hypothesis that 

subtypes of memory impairment do exist in patients with temporal lobe epilepsy.  Some 

of these subtypes showed the expected localized differences in brain volume or trends 

towards expected differences; however, small sample sizes limited the ability to clearly 

validate all of their differences.  It is conceivable that additional subtypes of memory 

impairment may be identified in future studies, particularly with larger sample sizes and 

with the inclusion of better measures of spatial memory.  
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Appendix A: Volumetric analysis of clusters  

(MRI scans divided into two groups based on slice thickness) 

As a measure of external validity, MRI volumes for the six primary regions of interest 

(ROIs) and the fourteen ROI combinations (right plus left volumes, right minus left 

volumes, etc.) were compared for the cluster groups using one-way ANOVAs.  When 

sample sizes allowed, MRI volumes for just the six primary regions of interest were 

compared for the cluster groups using one-way MANOVA.  Bonferroni post-hoc pairwise 

comparisons were used where applicable.  All scans were divided into two groups for 

volumetric analysis.  The first group consisted of scans with slice thicknesses between 

1.25 mm and 1.5 mm (“slicegroup 2;” n = 11). The second group consisted of: 1) scans 

with 1.0 mm slice thicknesses in which every other slice was measured, and 2) scans 

with 2.0 mm slice thicknesses (“slicegroup 1;” n = 15). The results of these analyses are 

found below.   

“Slicegroup 1” (1mm and 2mm MRI Scans Only) 

For the 2-cluster solution, patients in cluster 2 (n = 6) had significantly higher, 

F(1, 13) = 5.01, p = .043, left perirhinal volumes (M = .12, SD = .02) than patients in 

cluster 1 (M = .09, SD = .03, n = 9).  However, this difference was not significant when a 

Bonferroni corrected p value of .0025 was applied. The two groups did not significantly 

differ on any other brain volume measures.  

Similarly, when a one-way MANOVA was used to compare MRI volumes for the 

two clusters on just the six primary regions of interest (i.e., volumes for the left and right 

hippocampus, left and right perirhinal cortex, and left and right anterior temporal lobe) 
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no significant effect of group was obtained and univariate tests were not significant 

when a Bonferroni corrected p value of .008 was applied. 

A one-way ANOVA for the 3-cluster solution, showed that the clusters differed 

significantly on two of the MRI variables. Specifically, patients cluster 1 had significantly 

higher, F(2, 11) = 7.30, p = .010, right anterior temporal lobe volumes (M = .92, SD = 

.21, n = 6) than patients in cluster 2 (M = .79, SD = .03, n = 5). Patients in cluster 3 had 

a significantly higher, F(2, 11) = 6.26, p = .015, combined right hippocampal, perirhinal, 

and anterior temporal lobe volume (M = 1.61, SD = .13) than patients in cluster 1 (M = 

1.21, SD = .22) and patients in cluster 2 (M = 1.12, SD = .11).  However, these 

differences were no longer significant after a Bonferroni corrected p value of .0025 was 

applied.  MANOVA could not be performed for the 3-cluster solution due to small 

sample size.  In addition, volumetric analysis by cluster was not performed for the 6-

cluster solution due to small sample size.  

“Slicegroup 2” (1.25 – 1.5 mm MRI Scans Only) 

One-way ANOVAs were used to compare patients in the 1.25 – 1.5 mm MRI 

slice thickness group (slicegroup 2) on the MRI variables. For the 2-cluster solution, 

patients differed significantly on one of the MRI variables. Specifically, cluster 1 had 

significantly higher, F(1, 9) = 5.135, p = .05, right anterior temporal lobe volumes (M = 

1.42, SD = .27, n = 6) than cluster 2 (M = 1.12, SD = .09, n = 5). However, this 

difference was no longer significant after a Bonferroni corrected p value of .0025 was 

applied.  For the 3-cluster solution, there were no significant differences in brain volume; 

however, samples sizes were small and disparate (2, 3, and 6).  Volumetric analysis by 

cluster was not performed for the 6-cluster solution due to small sample size. 
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Appendix B: Bonferroni Post-Hoc Comparisons: Significant Group Differences on 
Classification Variables for the Three-Cluster Solution 

 

      

Dependent Variable 
(I) 

Wards3R 
(J) 

Wards3R 
Mean Difference 

(I-J) Std. Error Sig. 

CVLT Trials 1-5  1 2* 0.80492 0.17855 0.001 

   3* 1.82936 0.16545 0.001 

  2 3* 1.02444 0.18753 0.001 

Digit Span forward 1 2* 1.35540 0.24404 0.001 

  2 3* -0.86647 0.25630 0.004 

Taylor 3
rd

 recall 1 3* 3.02154 0.56061 0.001 

  2 3* 1.80135 0.63542 0.018 

 Logical Memory  1 3* 1.69968 0.20293 0.001 

immediate recall 2 3* 1.25182 0.23001 0.001 

Faces delayed  1 2* 1.51132 0.26924 0.001 

Recognition   3* 1.10523 0.24947 0.001 
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Appendix C: Bonferroni Post-Hoc Comparisons: Significant Group Differences on 
Classification Variables for the Six-Cluster Solution 

 

Classification 
Variable 

(I) 
Wards6R 

(J) 
Wards6R 

Mean Difference 
(I-J) Std. Error Sig. 

CVLT Trials 1-5  1 3 -1.10914 0.26890 0.002 

   6 1.22956 0.23471 0.001 

 2 5 1.23936 0.22840 0.001 

   6 1.92040 0.21426 0.001 

 3 5 1.65766 0.26341 0.001 

   6 2.33870 0.25124 0.001 

 4 5 1.01879 0.24769 0.002 

    6 1.69984 0.23471 0.001 

Taylor Complex 1 6 2.45098 0.74342 0.024 

Figure, 3rd recall 2 6 3.51643 0.67864 0.001 

 3 4 2.84250 0.85169 0.022 

   6 4.51250 0.79578 0.001 

  5 6 3.93273 0.72344 0.001 

Digit Span Forward 1 2 1.33100 0.26189 0.001 

  4 1.75300 0.28287 0.001 

  5 1.85964 0.27637 0.001 

   6 1.47886 0.26189 0.001 

 2 3 -1.35250 0.28033 0.001 

 3 4 1.77450 0.30003 0.001 

  5 1.88114 0.29391 0.001 

   6 1.50036 0.28033 0.001 

 Logical Memory  1 6 1.43071 0.27848 0.001 

Immediate Recall 2 6 2.14286 0.25422 0.001 

 3 6 2.17821 0.29810 0.001 

 4 6 1.79671 0.27848 0.001 

  5 6 1.35390 0.27100 0.001 

Faces Delayed  1 2 -1.02614 0.30708 0.021 

Recognition   3 -1.97525 0.35180 0.001 

 2 4 1.62814 0.30708 0.001 

  5 1.15442 0.29882 0.004 

   6 1.19000 0.28032 0.001 

 3 4 2.57725 0.35180 0.001 

  5 2.10352 0.34462 0.001 

    6 2.13911 0.32871 0.001 
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Appendix D: Bonferroni Post-Hoc Comparisons:  

Significant IQ Differences for the 6-Cluster Solution 

 

(I) Wards6R (J) Wards6R 
Mean Difference 

(I-J) Std. Error Sig. 

1 6 23.75714 4.98944 0.001 

2 5 16.27273 4.85534 0.021 

  6 29.35714 4.55471 0.001 

3 4 18.50000 5.71612 0.029 

 5 21.27273 5.59945 0.005 

  6 34.35714 5.34088 0.001 

4 6 15.85714 4.98944 0.035 
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Appendix E: Volumetric Analysis of Groups Classified Based on 

Neuropsychological Test Performance (MRI Scans Divided Into Two Groups 

Based on Slice Thickness) 

Brain volumes for the six primary regions of interest (ROIs) and the fourteen ROI 

combinations (right plus left volumes, right minus left volumes, etc.) were compared for 

patients who were clinically classified as having visuospatial deficits only, verbal plus 

visuospatial deficits, or no verbal or visuospatial deficits.  Due to the small number of 

patients classified as having verbal deficits only, this group was not included in these 

analyses. Brain volumes for the three groups were analyzed using one-way ANOVA.  

One-way MANOVAs could not be used in any analyses due to small sample sizes.  

Bonferroni post-hoc pairwise comparisons were used applicable.  All MRI scans were 

divided into two groups for volumetric analysis.  The first group consisted of scans with 

slice thicknesses between 1.25 mm and 1.5 mm (“slicegroup 2;” n = 11). The second 

group consisted of: 1) scans with 1.0 mm slice thicknesses in which every other slice 

was measured, and 2) scans with 2.0 mm slice thicknesses (“slicegroup 1;” n = 15). The 

results of these analyses are found below.   

“Slicegroup 1” (1mm and 2mm MRI Scans Only) 

 There were no significant difference in the brain volumes of patients with: 

visuospatial deficits only (n = 4), with both verbal and visuospatial deficits (n =6), or with 

no verbal or visuospatial deficits (n = 5).  

“Slicegroup 2” (1.25 – 1.5mm MRI Scans Only) 

There was a trend towards significantly smaller, F(2, 7) = 5.59, p = .035, right 

anterior temporal lobe volumes in patients who were classified by the author as having 
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both verbal and visuospatial deficits (M = 1.54, SD = .20, n = 4) compared to patients 

who were classified as having neither verbal nor visuospatial deficits (M = 2.34, SD = 

.53, n = 3).  There was also a trend towards the sum of their right hippocampal, 

perirhinal, and anterior temporal lobe volumes (M = 2.03, SD = .21) being significantly 

smaller, F(2, 7) = 5.40, p = .038, than in patients who were classified as having neither 

verbal nor visuospatial deficits (M = 2.86, SD = .52). However, these differences were 

no longer significant after a Bonferroni correct p value of .0025 was applied.  One-way 

MANOVA could not be used due to the small sample sizes.  
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Appendix F: Volumetric Analysis of Groups Classified by 

EEG/Neuroimaging (MRI Scans Divided into Two Groups Based on Slice 

Thickness) 

Brain volumes for the six primary regions of interest (ROIs) and the fourteen ROI 

combinations (right plus left volumes, right minus left volumes, etc.) were compared 

using one-way ANOVAs for patients grouped by area of cortical damage or dysfunction 

based on EEG and/or neuroimaging. Bonferroni post-hoc pairwise comparisons were 

used where applicable.  All MRI scans were divided into two groups for volumetric 

analysis.  The first group consisted of scans with slice thicknesses between 1.25 mm 

and 1.5 mm (“slicegroup 2;” n = 11). The second group consisted of: 1) scans with 1.0 

mm slice thicknesses in which every other slice was measured, and 2) scans with 2.0 

mm slice thicknesses (“slicegroup 1;” n = 15). The results of these analyses are found 

below.   

“Slicegroup 1” (1mm and 2mm MRI Scans Only) 

Patients who were diagnosed with left temporal lobe damage or dysfunction 

based on EEG and/or neuroimaging (n = 8) did not differ significantly from patients not 

diagnosed with left temporal lobe damage or dysfunction (n = 7) on any of the temporal 

lobe MRI volumes. 

“Slicegroup 2” (1.25 – 1.5mm MRI Scans Only) 

Patients in slicegroup 2 who were diagnosed with left temporal lobe damage or 

dysfunction based on EEG and/or neuroimaging (n = 5) had lower mean left temporal 

MRI volumes than subjects not diagnosed with left temporal lobe damage or dysfunction 

(n = 6; see Table E1).  However, after a Bonferroni corrected p value of .0025 was 
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applied, there was only a trend towards significance for the following MRI variables: 1) 

left hippocampal volume F(1, 9) = 13.86, p = .005; 2) bilateral hippocampal volume, F(1, 

9) = 9.78, p = .012; 3) left hippocampal plus left perirhinal volume, F(1, 9) = 11.87, p = 

.007; and 4) combined bilateral hippocampal and perirhinal volumes, F(1, 9) = 9.33, p = 

.014. One-way MANOVA could not be used due to small sample size.  

For both slicegroup 1 and slicegroup 2, subjects diagnosed with right temporal 

lobe damage or dysfunction based on EEG and/or neuroimaging (n = 7 and n = 6, 

respectively) had lower mean right temporal MRI volumes than subjects not diagnosed 

with right temporal lobe damage or dysfunction (n = 8 and n = 5). However, none of the 

volume differences were significant.   
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