
Georgia State University
ScholarWorks @ Georgia State University

Psychology Dissertations Department of Psychology

5-26-2006

Hemispheric Differences in Numerical Cognition:
A Comparative Investigation of how Primates
Process Numerosity
Jonathan Paul Gulledge
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/psych_diss

Part of the Psychology Commons

This Dissertation is brought to you for free and open access by the Department of Psychology at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Psychology Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Gulledge, Jonathan Paul, "Hemispheric Differences in Numerical Cognition: A Comparative Investigation of how Primates Process
Numerosity." Dissertation, Georgia State University, 2006.
https://scholarworks.gsu.edu/psych_diss/12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71423176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fpsych_diss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/psych_diss?utm_source=scholarworks.gsu.edu%2Fpsych_diss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/psych?utm_source=scholarworks.gsu.edu%2Fpsych_diss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/psych_diss?utm_source=scholarworks.gsu.edu%2Fpsych_diss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=scholarworks.gsu.edu%2Fpsych_diss%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu
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NUMEROSITY 
 

by 
 

JONATHAN PAUL GULLEDGE 
 

Under the Direction of David A. Washburn 
 

ABSTRACT 
 

 
 Four experiments, using both humans and monkeys as participants, were 

conducted to investigate the similarities and differences in human and nonhuman primate 

numerical cognition.  In Experiment 1 it was determined that both humans and monkeys 

display a SNARC effect, with similar symbolic distance effects for both species.  In 

addition, both species were found to respond faster to congruent stimulus pairs.  In 

Experiment 2 both species were found accurately to recognize quantitative stimuli when 

presented for durations of 150 msec in a divided visual field paradigm.  Performance for 

humans and monkeys for numerals and dot-patterns was almost identical in terms of 

accuracy and response times.  In Experiment 3 participants were required to make 

relative numerousness judgments in a divided visual field paradigm.  Both species 

responded faster and more accurately to stimuli presented to the right visual field.  

Species differences appeared, with monkeys performing equally well on both trial types 

whereas the humans performed better on numeral trials than on dot trials.  In Experiment 

4 repetitive transcranial magnetic stimulation (rTMS) was combined with the divided 



 

visual field paradigm.  Accuracy was significantly disrupted for both species when 

compared to a no stimulation condition.   A facilitation effect was also evident with both 

species exhibiting significant decreases in response time for all trials.  Right-handed 

participants took longer to respond to stimuli presented to the left visual field.  These 

findings add to the body of knowledge regarding both the similarities and differences of 

how quantitative stimuli are processed by humans and monkeys. 

 

INDEX WORDS: Numerical Cognition, Numerosity, Transcranial Magnetic   

    Stimulation, rTMS, Numeric Processing, SNARC effect  
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Hemispheric Differences in Numerical Cognition: 

A Comparative Investigation of How Primates Process Numerosity 

 

 Whereas an interest in the numerical abilities of animals has existed for centuries, 

recent research has firmly established the numerical competence of various species of 

nonhuman primates.  Much of the early research involving the numerical competencies of 

animals was criticized as being a reincarnation of "Clever Hans" (Romanes, 1882, 1883).  

However, a review of currently available research clearly establishes nonhuman primates 

as apt pupils for demonstrating various levels of numerical competence (Beran, 2004; 

Boysen & Berntson, 1986; Brannon & Terrace, 1999; Matsuzawa, 1985; Menzel, 1960; 

Olthof, Iden & Roberts, 1997; Washburn & Rumbaugh, 1991; for more extensive reviews 

see Beran, Gulledge & Washburn, 2006; Boysen and Capaldi, 1993; and Davis and 

Perusse, 1991).  The majority of research involving the numerical abilities of nonhuman 

primates falls into one of four general categories: judgments of numerousness, ordinality, 

summation, or counting.   

Varieties of numerical cognition  

 Judgments of numerousness typically refer to participants’ selections of one group 

of objects over another on the basis of numerosity.  Numerousness judgments can take 

the form of either absolute or relative judgments.  Judgments of absolute numerousness 

require participants to respond to a fixed number of items from among other choices that 

differ in quantity.  For example, Hicks (1956) suggested that his subjects had a “concept 

of threeness” when he trained rhesus monkeys to choose cards containing 3 geometric 

patterns when the alternative cards contained either 1, 2, 4, or 5 geometric-patterns.   
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 Hayes and Nissen (1971) reported that Vicki, a common chimpanzee (Pan 

troglodytes), was able successfully to complete a match-to-sample version of a relative 

numerousness task.  Vicki was first presented with a sample card containing a small array 

of dots.  Later, she was presented with two cards from which to choose, one of which 

matched the sample in number of dots.  Both the size and placement of dots were 

randomized across all cards.  Vicki was able accurately to match the sample for quantities 

of three dots when the choices given to her were between sets of three and four.  

However, when she had to match from a sample of four dots and her choice was between 

four and five dots, she was unsuccessful.  Vicki was also unable to match a sample 

presented in the auditory mode.  She was unable to reproduce the same number of taps on 

a table that a human produced, even when presented with only two or three taps. 

 Matsuzawa (1985) showed that another common chimpanzee, Ai, could learn to 

choose the correct Arabic numeral key from an array when required to determine the 

quantity (1 to 6) of objects shown through a display window.  Also, when presented with 

an Arabic numeral, Ai was able to select the array with the correct quantity of objects 

from among several arrays.  

 In contrast to such studies of absolute numerousness judgments, relative 

numerousness discriminations simply require the subject to choose between two or more 

stimuli on the basis of which stimulus has the greater or lesser quantity of items.  Menzel 

(1960) reported that chimpanzees appear to have a natural tendency to evaluate food 

portions and to select the larger of the two.  Boysen and Berntson (1995) reported similar 

findings for chimpanzees during acquired food sharing (where animals share their food 

with others), with the animal allowed to make the choice reliably choosing the larger 
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food portion for itself.  Two chimpanzees, Sheba and Sarah, were trained to select 

between two arrays of candy (1 to 6 pieces).  One subject was to be the “selector” 

whereas the other was the “receiver.”  The selector was to choose one of the two arrays 

for delivery to the receiver, whereupon the selector would be given the remaining array.  

Therefore, the optimal strategy for the selector would involve choosing the lesser 

quantity array, resulting in the selector thereby receiving the greater quantity array.  

However, neither chimpanzee was able to select the lesser array consistently; that is, their 

choices resulted in receiving the smaller amount of reinforcers.  However, when Arabic 

numerals were substituted for the choice arrays, one of the animals, Sheba, evidenced 

more optimal performance by immediately selecting the smaller quantity numeral and 

thus receiving the larger reward. (See also Biro & Matsuzawa, 1999 for a similar result). 

 Thomas, Fowlkes, and Vickery (1980) trained squirrel monkeys to choose from 

two cards that contained different numbers of black circles (2 to 9).  Reinforcement was 

contingent upon the subject choosing the card that contained the smaller quantity of 

circles.  Training proceeded in the order 2 versus 9 (2:9), 2:8….2:3, 3:9, 3:8 and so on up 

to 8:9, or until failure to meet criterion of 75% correct in 500 trials.  Both monkeys met 

criterion through comparisons of 7:8, with one subject able to choose a card of 8 circles 

consistently over a card of 9 circles. 

 Rhesus monkeys (Macaca mulatta) have also been shown to exhibit a propensity 

for judgment of amounts (Washburn, 1994).  In a test of Stroop-like effects, the monkeys 

quickly learned reliably to choose a stimulus array containing more stimuli (letters or 

numerals) over an array containing fewer stimuli (e.g., the monkeys selected five Bs 

instead of four Cs).  They performed better than chance with randomly selected and 
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configured arrays, even if the smaller array contained numerals of greater value (for 

example, the monkeys selected five "2’s” over four “6’s).    

 Related to the capacity to make judgments of relative numerousness, nonhuman 

primates have also exhibited the ability to make ordinal judgments as well.  Ordinality 

refers to an ability to place objects in a series on the basis of some quantitative property 

(e.g., tallest to shortest, or least to greatest).  Boysen, Berntson, Shreyer, and Quigley 

(1993) taught three chimpanzees to order Arabic numerals (1 to 4) in proper ordinal 

sequence.  The apes were trained with adjacent pairs of numerals (e.g. 1:2, 2:3, 3:4) to 

choose the greater quantity of the pair.  When presented with a novel pairing (2:4), one 

chimpanzee, Sheba, responded accurately by selecting the numeral 4.  Later, after 

additional training, the other apes were also able to choose the correct numeral in the 

novel pair condition.  The experimenters concluded that with appropriate training 

chimpanzees could learn the proper serial order of symbolic stimuli.    

 In a series of experiments with two rhesus monkeys, Washburn and Rumbaugh 

(1991) presented the monkeys with two Arabic numerals on a computer monitor and 

required the monkeys to choose between the numerals by manipulating a joystick so as to 

bring the cursor into contact with one of the numerals.  Whichever numeral the monkey 

chose resulted in delivery of the corresponding quantity of fruit-flavored chow pellets 

(e.g., selection of the numeral 5 resulted in the delivery of 5 pellets).  Both monkeys 

tended to choose the greater quantity numeral within pairs that involved combinations of 

the numerals 1 to 9. One animal chose the greater number significantly above chance 

levels even on probe trials of unfamiliar pairings of numerals.  In a later test, both 

animals were presented with five numbers simultaneously and were allowed to choose 
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each of the numbers in their preferred sequence.  At each of the choices among arrays of 

5, 4, 3, and 2 numerals, both monkeys chose the greater quantity numeral at levels 

significantly better than would be expected by chance alone.  In other words, the 

monkeys tended to “count downward” in proper reverse ordinal sequence from the 

greatest to least quantity numerals in the array.  These results, which have now been 

replicated with dozens of additional rhesus macaques (Washburn, personal 

communication), suggesting that the monkeys may have learned a comparison strategy.  

They could have attached a value to each numeral as a result of the original training, and 

learned that they profited most by comparing each of the numerals and choosing the one 

with the largest value.  In support of this interpretation, consider again the findings of 

Washburn (1994) in which the monkeys selected the larger of two arrays of stimuli 

(letters or numerals).  The animals were able to do this, even when the larger array was 

made up of the smaller of the Arabic numerals (e.g., five 3s versus two 7s, where the 

correct response was the five-item array).  On such incongruous trials, response times 

were significantly slowed (compared to trials in which the identity of the letters was not 

incongruous with the number of items in the arrays), indicating that the Arabic numerals 

were meaningful symbols for the monkeys that represented quantities.  Gulledge (1999) 

also reported data that indicated that the numerals represented quantities for the monkeys 

in that the monkeys were able to judge pairs of stimuli of different stimulus types (e.g., 

dots versus numerals) to be of equal quantity. 

 In an influential replication of the earlier findings, Brannon and Terrace (1998) 

trained two rhesus monkeys to order arrays of visual stimuli under conditions that 

controlled for cues like surface area and brightness.  Monkeys were presented with 
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exemplars representing the numerosities 1 to 4 and were rewarded for responding in 

ascending numerical order.  To control for non-numeric cues, exemplars varied with 

respect to size, shape, and color.  Later, the monkeys were presented with exemplars for 

the novel numerosities 5 to 9 to which they also responded accurately in ascending order. 

Like Washburn and Rumbaugh, Brannon and Terrace concluded that their results 

indicated that rhesus monkeys can represent the numerosities 1 to 9 on an ordinal scale.           

 A third type of numerical ability that has often been attributed to nonhuman 

primates is the capacity for summation.  Summation is a process that allows organisms to 

make an accurate choice when asked to determine the greater numeric quantity between 

two or more pairs of stimuli. In a series of experiments, two common chimpanzees, 

Sherman and Austin, compared pairs of stimuli and choose the pair of stimuli 

representing the greater total quantity (Rumbaugh, Savage-Rumbaugh, & Hegel, 1987).  

Sherman and Austin selected accurately from two pairs of wells, each containing from 0 

to 4 chocolate chips, the pair of wells containing the larger sum of chocolate chips.  They 

did this without the benefit of a correction procedure (they received the chocolate chips 

from whichever pair of wells they chose).  Summation, in this instance, was defined as 

reliably “choosing one of a pair of quantities whose overall sum is greater than the sum of 

another pair of quantities for all possible pairs within a stated numerical range”  

(Rumbaugh et al., 1987, p. 107).  The authors pointed out that surface area was not 

controlled, therefore the subjects’ responses may have based on that variable rather than 

due to a quantitative discrimination (a shortcoming that was later addressed by Pérusse & 

Rumbaugh, 1990).  However, even if surface area were the relevant variable, the 

combining of discontiguous areas necessarily represented a summation response.  The 
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authors explicated these results as arising from the process of subitization.  Subitization is 

thought to be a process related to pattern matching.  When a small number of items are 

presented in an array, they may be identified in the same manner that one may recognize 

a pattern.  However, in this case the name of the pattern is actually a number.  To the 

extent that arrays and patterns are small (1 to 4 items), recognition is very rapid, accurate, 

and no formal enumeration is required.  The authors speculated that Sherman and Austin 

chose the larger sum of chocolates in the following manner:  First, the apes subitized the 

quantity of chocolates in each well for each pair of wells; next they summed the subitized 

amounts for each pair of wells; and finally, they compared the sums and made their 

choice based on the pair of wells that provided the greater reward.   

  In a follow-up study Rumbaugh, Savage-Rumbaugh, and Pate (1988) sought to 

determine whether the chimpanzees might have been either selecting the well with the 

greatest single number of chocolates or avoiding the well with the single least number of 

chocolates.  To test this possibility, chimpanzees Sherman and Austin were presented 

with pairs of wells in which one pair of wells contained a common quantity.  For 

example, one pair of wells contained four chocolates each whereas the other two wells 

contained quantities that differed from one another, with one being greater and the other 

less than the common quantity (e.g. 4:4 versus 2:5).  Quantities of chocolates 1 to 5 were 

used.  The results indicated that the chimpanzees were highly accurate both on trials 

where the common quantity was less than and greater than the other two quantities.  

These findings indicate that the chimpanzees were not focusing on a single well and 

choosing the pair that contained the greatest single amount or avoiding the well with the 

smallest single amount.     
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 Pérusse and Rumbaugh (1990) examined the influence of wells containing zero or 

one chocolate chip on summation.  They also investigated the consequences of 

eliminating the requirement to sum discontiguous areas by interspersing trials where only 

two wells were compared rather than four.  Performance by the chimpanzees improved 

when only two wells were present.   These results indicated that when the apes were 

forced to choose between pairs of wells they negotiated the distance between each pair of 

food wells and then summed the two pairs of wells.  Conversely, when only two wells 

were present the animals simply made a relative numerousness judgment in order to 

obtain the larger reward. 

 Olthof and collaborators (1997) used a similar paradigm to extend earlier findings 

that squirrel monkeys possess some level of numerical competence (Thomas & Chase, 

1980; Thomas, Fowlkes, & Vickery, 1980).  In one experiment, squirrel monkeys were 

allowed to choose between wells containing various amounts of food.  As in the study by 

Rumbaugh, Savage-Rumbaugh, & Hegel (1987), the animals reliably chose the well 

containing the larger total amount.  In a subsequent experiment the monkeys were 

required to choose between pairs of stimuli containing 2 numerals versus 2 numerals, 1 

numeral versus 2 numerals, and 3 numerals versus 3 numerals.  Arabic numerals 0, 1, 3, 

5, 7, and 9 were used.  The animals again reliably chose the pair with the greater sum. 

More recently, Beran (2001) investigated chimpanzees’ abilities for summation and 

numerousness judgment.  The apes were required to compare quantities of M&M’s 

dropped sequentially into a pair of opaque cups.  The chimpanzees were never able to 

view the quantities in their totality, and the candies were only visible, one at a time, 

before placement into one of two cups.  Despite these difficult conditions, the 
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chimpanzees were able to identify the cup containing the greater quantity.  Later research 

(Beran, 2004) revealed that the chimpanzees could also make accurate judgments when 

asked to compare a third visible array of candies to the quantities sequentially dispensed, 

but not visible, in the two cups.  Beran declared these findings to be evidence for an 

analogue-magnitude mechanism for representation of quantity similar to the one 

described by Dehaene and Cohen (1994). 

 The most controversial aspect of any discussion of the numerical abilities of 

nonhuman primates is the issue of whether animals are capable of counting.  On the 

surface, counting would seem to be a much simpler cognitive process than summation; 

however, verification of the mental activity of counting is much more problematic.  

Typically, counting is seen as a process that relies upon a concept of number which 

includes an understanding of both ordinality and cardinality.  Whereas the ability of 

several primate species to order quantities accurately is apparent, evidence for the ability 

to cardinate (one to one assignment of tags to a given array such that the last item tagged 

is the total number of items) quantities has proven to be much more elusive.  Boysen and 

Berntson (1989) tested a chimpanzee, Sheba, on her ability to summate in two counting 

tasks.  Sheba first learned to select the Arabic numeral corresponding to the total number 

of food items she found after visiting 2 or 3 foraging sites.  The foraging sites contained a 

total of 1 to 4 food items.  Later the food items were replaced with Arabic numerals (0, 1, 

2, or 3).  Sheba’s performance remained at levels near those for the earlier functional 

counting task.  Sheba’s performance in this final task would seem to preclude the 

possibility that her responses were perceptually based, as Arabic numerals do not lend 

themselves to subitization.  Given that Sheba has also shown evidence of ordinality 
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(Boysen et al., 1993) and that she has been shown to use acts akin to enumeration when 

attempting to determine numerosity of arrays of objects (Boysen, Berntson, Shreyer, & 

Hannan, 1995), the experimenters concluded that she is counting in much the same way 

as a human child. 

 Rumbaugh, Hopkins, Washburn, and Savage-Rumbaugh (1989) reported that 

another female common chimpanzee, Lana, was able to count.  Lana manipulated a 

joystick to remove the correct number of boxes from a computer screen corresponding to 

randomly selected Arabic numerals 1, 2, or 3.  In the final version of this task, no visual 

feedback was provided.  Lana was forced to rely only on her memory to determine when 

she had removed the correct number of boxes and when she should terminate a trial.  The 

authors concluded that this process must have entailed some form of ordinality and 

cardinality because the value of the target numbers (1 to 3) changed unpredictably 

throughout testing.  Furthermore, Lana’s skill for removing each box via manipulation of 

the joystick constituted an enumerative act on her part.  Therefore, Rumbaugh et al., 

(1989) inferred from these data that Lana was engaged in counting as she showed 

evidence of ordinality, cardinality, and enumeration.  Subsequent research by Beran, 

Rumbaugh, and Savage-Rumbaugh (1998) furthered these findings.  On a similar 

computerized task, a male common chimpanzee, Austin, was able to select accurately 

from arrays of random dots the quantity equal to a given target number (1 to 4). 

Cerebral localization of numerical cognition 

 These investigations and others have established that nonhuman primates are 

capable of impressive feats of numerical cognition, albeit for ranges and at levels of 

precision far below those characteristic of performance by humans.  In fact, it would 
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appear that many species of nonhuman primate (as well as other animals) respond to 

numerosity as naturally as they respond to other stimulus attributes such as shape, color, 

and size (Beran, 2001; Brannon & Terrace, 1998; Call, 2000; Dehaene, 1997; Hauser, 

2000).  The development of functional imaging techniques in recent years has made it 

possible to identify the neuro-anatomical correlates of cognitive functions in healthy 

humans, and, to a lesser extent, nonhumans.  With regard to numerical cognition (i.e., 

how numbers are mentally represented and processed), various theoretical proposals have 

been made for the cognitive components of number processing, but little is known as to 

the precise neural basis of these components.     

 Henschen’s (1927) finding that lesions in various brain areas resulted in 

difficulties for humans in the representation of numbers and their calculation led to the 

abandonment of a hypothesis of a unique “calculation center” within the brain.  

Numerous studies of patients with lesions to the left posterior regions of the brain have 

revealed dramatic calculation deficits (Dahmen, Hartje, & Bussing, 1982; Delazer & 

Benke, 1997; and Ferro & Betelho, 1980; Jackson & Warrington, 1986).  However, 

researchers have also found representation and calculation deficits in the presence of right 

posterior lesions (Dahmen et al., 1982; Gitelman, et al., 1999; Hécaen, Penfield, & 

Bertrand, 1956).  Similarly, Dimond and Beaumont (1972) found a right hemisphere 

advantage for calculation when using a divided-visual-field presentation.  In addition, 

other researchers have found similar representation and calculation deficits for frontal 

lobe lesions as well (Dahmen et al., 1982; Luria, 1966).  Each of the aforementioned 

studies serves to highlight the functional distribution of numeric representation and 

processing throughout the brain; however the inconsistency of these results is somewhat 
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nettlesome for those researchers hoping to find conclusive evidence for a hemispheric 

advantage for numeric processing. 

 Thus far there have been few neuroimaging studies that have focused on 

numerical cognition and its neuroanatomical correlates.  One of the earliest such studies 

was conducted in 1957 (Sokolov & Bu).  Ironically, Sokolov and Bu found no difference 

in global oxygen consumption and cerebral blood flow between numerical calculation 

and a resting condition. Risberg, Risberg, and Ingvar (1975) measured regional blood 

flow changes via an intra-carotid xenon injection technique, revealing an increase in 

frontal lobe activity during performance of a backward digit-span task.  A subsequent 

investigation (Roland & Friberg, 1985) revealed a posterior right hemisphere bias for 

processing during a repeated subtraction task. 

 Due to these inconsistencies, contemporary researchers have sought to overcome 

many of the technological and methodological flaws that may have compromised earlier 

results by using positron emission tomography (PET) or functional magnetic resonance 

imaging (fMRI).  However, in most cases researchers were concerned more with the 

particular functional aspects of the deficits rather than investigating the localization of the 

brain trauma.  Once again, however, the search for a dominant hemisphere or localization 

of function resulted in contradictory findings with some researchers finding a left-

hemisphere bias (Cippotti & de Lucy-Costello, 1993; Cohen & Dehaene, 1995a; McNeil 

& Warrington, 1996), others finding a right-hemisphere bias (Weddel & Davidoff, 1991), 

and still others reporting a bilateral frontal lobe bias (Fassotti, Eling, & Brener, 1992).    

 One of the first investigations using fMRI revealed significant activation of the 

middle frontal gyrus during subtraction, but curiously not during a counting task 
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(Burbaud, et al., 1995).  Further analysis revealed a strong left-hemisphere bias for right-

handed participants during the counting task with no such bias for left-handed 

participants.  One criticism of this study however, is that for technical and theoretical 

reasons only activity from the frontal lobes was recorded.  A similar study (Reid et al., 

2002) also compared cerebral activity during repeated subtraction and counting exercises, 

though over the entire cerebral cortex.  Their results showed extensive bilateral activation 

in the prefrontal cortex as well as bilateral posterior parietal activation.   Work by 

Dehaene, Spelke, and Pinel (1999) revealed that when compared to approximate 

calculation, verification of addition problems produced more activation in the inferior 

frontal lobe, the cingulate gyrus, the precaneus in the left-hemisphere, the parieto-

occipital sulcus and the middle temporal gyrus in the right hemisphere.  The task also 

resulted in bilateral activation of the angular gyrus.  Later work by Pinel and colleagues 

(1999) revealed a left-hemisphere bias when participants were asked to perform a number 

comparison task in which they had to declare whether a given number was greater or less 

than 5. 

 Researchers utilizing PET found that a repeated subtraction task, relative to rest, 

caused elevated activation in the parietal cortex, the prefrontal cortex, and the cerebellum 

bilaterally, as well as the left pre-motor and cingulate cortices, and the Supplementary 

Motor Area (SMA; Ghatan, Ingval, & Eriksson, 1998).  In a task that involved a more 

basic form of numerical processing, number comparison, participants were presented 

visually with pairs of single digits and were required either to compare or to multiply 

them mentally.  In both conditions the responses were given covertly.  The results 

showed bilateral activation of the lateral occipital cortices, the pre-central gyri, and the 
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SMA in both the comparison and multiplication conditions, whereas the left and right 

inferior parietal lobes were activated only in the multiplication condition (Dehaene & 

Cohen, 1994). 

 These results suggest that the left and right parietal lobes as well as the left frontal 

lobe play a substantial role in arithmetic processing.  However, there are numerous 

theoretical issues that must be taken into consideration when trying to draw conclusions 

from these results.  First, many of the tasks involved did not focus on clearly defined 

numerical processes such as approximate calculations.  Second, many of the tasks 

involved placed a heavy load on working memory.  Third, almost all of the studies 

required the participants to respond orally or in some overt manner that may have 

inadvertently caused activation of motor or vocal cortex thereby leading to less than 

convincing results.  Given these criticisms it is difficult to interpret whether cortical 

activation was due to numeric processing or representation, or possibly due to the more 

general processes involved such as working memory, attention, or language.  In an 

attempt to clarify the physiological correlates of numerical cognition Dehaene and Cohen 

(1994) have proposed a neuro-anatomical model of number processing.  This model 

implies that areas within the intra-parietal sulci bilaterally are the “cerebral localization of 

a category specific internal representation of numbers” (Chochon, Cohen, & van de 

Moortele, 1999, page 625) that is involved in calculation as well as in quantification 

operations, and in comparison of numerical magnitudes (Dehaene & Changeux, 1993).  

In his Triple-Code Model, Dehaene postulated that different types of numerical 

operations are processed by different areas of the brain (Dehaene, 1992, Dehaene & 

Cohen, 1994).  The hypotheses about these operations are summarized below. 
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TABLE 1. SUMMARY OF TRIPLE-CODE MODEL NEURAL CORRELATES 

(Dehaene & Cohen, 1994). 

Representation  Numerical Tasks   Localization________ 
 
Verbal    Processing number names  Left inferior frontal 
    Counting 
    Simple addition facts 
    Simple multiplication facts 
 
Visual    Processing Arabic digits            L-R Occipito-temporal 
    Parity judgments 
    Mental multi-digit operations 
 
Analog    Processing analog quantities  L-R inferior parietal  
    Numerical comparisons 
    Approximate calculations 
 
 At the functional level the Triple-Code model assumes three different types of 

representation directly interfaced by situation specific comprehensions and production 

mechanisms and connected by translation paths.  Each representation would specifically 

be used for a given type of numerical task.  A visual representation (i.e., strings of Arabic 

digits manipulated on a spatially extended representational medium) something akin to a 

mental “number line” would be used to process Arabic numerals in multi-digit operations 

and in parity judgments.  A verbal representation (i.e., syntactically organized sequences 

of number words) would be involved when hearing or reading number words, when 

counting, and when solving simple addition and multiplication problems.  These 

arithmetical facts would be stored and retrieved as declarative knowledge through verbal 

associations.  Finally, an analog representation (i.e., mental continuum oriented left to 

right, from small to large quantities, and compressed near the larger quantities, 

representing numerical quantities as distributions of activation) would give rise to 

approximate calculations and would give rise to judgments of number comparison 
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(Pesenti, Thioux, Seron, & De Volder, 2000).  In support of the Triple-code model, 

Dehaene and Cohen (1997) have recently described a double dissociation that is 

compatible with this theoretical hypothesis.  Two patients with normal number reading 

and writing, but with severe calculation deficits, were compared.  One patient was 

impaired in operations taxing quantity manipulation such as subtraction due to an inferior 

parietal lobe lesion, but showed preservation of rote multiplication abilities.  Conversely, 

the other patient exhibited deficits in operations taxing rote verbal memory due to a left 

subcortical lesion.    

 From a neuroanatomical standpoint the model is simplistic and theoretically 

driven.  Visual representations and analog representation are hypothesized to be 

processed in the occipto-temporal areas (close to the ventral visual pathway) in both 

hemispheres and in the inferior parietal lobes.  The verbal representations are theorized to 

be processed only in the left-hemisphere in the classic language areas.  Additionally, 

there are possible connections between the various representations as well as an 

interconnection between the left and right visual and analog representations via the 

corpus callosum.   

 These propositions of implementation of the Triple-code model mainly stem from 

a review of published single-case acalculia studies (Cohen & Dehaene, 1995b; Dehaene 

& Cohen, 1997; Cohen, Dehaene, & Verstichel, 1994).  However, results that do not 

necessarily support the Triple-code hypothesis do also exist.  Dehaene, Dupoux, & 

Mehler (1997) and Pesenti et. al., (2000) have provided data showing that arithmetical 

calculation may not rely on language functions, and, in fact, good calculation despite 

severe language problems has been described (Hermelin & O’Connor, 1990; Warrington 
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& Cipolotti, 1996).  There are several models based on experimental data that claim that 

arithmetical facts are not retrieved via verbal association, but by the activation of 

preverbal magnitudes (Gallistel & Gelman, 1992), stored arithmetic elements (Rickard, 

Healy, and Bourne, 1994), or semantic network nodes (Ashcraft, 1990, 1992, 1993; 

Siegler & Jenkins, 1989). 

 Several arguments have been offered to explain the discrepancies between the 

expectations of the Triple-code model and these results.  First, the parietal activation 

often seen during multiplication has been tentatively described as reflecting the need for 

semantic elaboration in some problems for which the answer was not directly retrieved 

from memory.  Indeed, performance greatly varies across problems and individuals, and a 

direct memory retrieval accounts for only 80% of the reported strategies.  Participants 

also have reported that they use strategies such as applications of rules, decomposition of 

difficult problems, or other more complex backup strategies (Bisanz, Morrison, & Dunn, 

1996; LeFevre, Saldsky, & Bisanz, 1996) that may require some processing of the 

magnitude information in the parietal cortex.  Second, from a methodological point of 

view, using a resting state as the control task for PET studies does not make it possible to 

distinguish the areas involved in number processing from those related to more general 

nonnumerical processes.  Indeed, participants may have simply been rehearsing the 

arithmetic problems seen previously during the rest period thereby masking or altering 

any possible effects. 

 It would appear then that the more complex the numerical operations we study, 

the more clouded the neuro-anatomical picture seems to be.  Is the scene just as 

ambiguous for more simple quantitative judgments?  Moyer and Landauer (1967) were 
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the first to measure response times (RTs) for number comparison.  They presented 

participants with pairs of digits and asked them to press a response key on the 

correspondent side of the largest digit (or on the side of the smallest).  They reported a 

distance effect; participants responded more slowly and made more errors when the two 

numbers were numerically close (e.g., 7 vs. 9) than when they were further apart (e.g., 3 

vs. 9).  This effect has been extensively replicated with both human and nonhuman 

participants.  The curve relating reaction time to numerical distance is a continuously 

decreasing line as numeric distance increases (e.g., Dehaene, 1989).  This distance effect 

remains even when 2-digit numbers are compared.  For instance, when comparing 

numbers to a standard of 65, 61 is classified more slowly than 59, which is itself slower 

than 51 (Dehaene, Dupoux, & Mehler, 1990; Hinrichs, Yurko, & Hu, 1981).  The 

distance effect does not disappear with training (Poltrock, 1989) and is observed early in 

childhood (Duncan & McFarland, 1980; Sekuler & Mierkiewicz, 1977).  Nonhuman 

primates also show this same distance effect when choosing the greater quantity from 

among two Arabic numerals (Gulledge, 1999: Washburn & Rumbaugh, 1991).  Thus the 

distance effect appears to be a universal characteristic of (human and nonhuman) 

elementary numerical cognition (Dehaene & Changeux, 1993).   

 Nothing in the visual appearance of digits betrays that 7 and 9 are conceptually 

more similar than 3 and 9.  Thus, the distance effect implies the existence of an abstract 

numerical representation of numbers that rationalizes numerical relations not obvious in 

the digit symbols.  The typical interpretation of the distance effect theorizes that the input 

numerals are mentally transformed into an analogous representation similar to a mental 

number-line (Dehaene & Changeux, 1993; Moyer & Landau, 1967; Restle, 1970).  
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Interestingly, Dehaene et al. (1993) showed that individuals were faster to respond to 

small numbers with the left hand and to large numbers with the right hand in a task 

requiring participants to respond based on numerosity, again lending credence to the 

existence of a mental number-line that represents quantities in a spatial fashion, with 

smaller numbers to the left of larger numbers.  The internal representation of two 

numbers close in quantity would be more similar or would overlap more than those of 

numbers that are numerically more distant, thereby explaining the distance effect.   

 For the sake of parsimony some models of number processing have assumed that 

the same magnitude representation is accessed regardless of the input format of the 

numerals (Dehaene, 1992; Glucksberg & McCloskey, 1992).  According to these models, 

the semantic representations of the Arabic numeral 6, the written word SIX, and the 

spoken word “Six”, are identical because the meaning of these symbols is expressed by 

the same mental magnitude.  Accordingly, the processing steps in the number comparison 

task can be decomposed into three major operations, 1) a notation-specific stimulus 

identification, 2) activation of the magnitude representation and retrieval of larger-

smaller relations, and 3) preparation and execution of the motor gesture assigned to the 

“larger” or “smaller” response (Dehaene, 1996).   

 Surprisingly, relatively little research has been conducted regarding the neuro-

anatomical correlates of numerical comparison and judgment.  Dehaene (1996) 

conducted one of the few investigations of the process and structures involved in making 

such judgments.  Dehaene collected event related potentials (ERPs) from participants 

while they were judging numerals to be either greater than or less than 5.  Results 

revealed the existence of a bilateral system for identifying Arabic digits and the 
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convergence of activation toward a right posterior system for magnitude comparison 

whereas there was a left-hemisphere bias for verbal presentation of numerals.  However, 

note that in this task there was also a demand placed on working memory resources by 

the participants having to keep “5” in mind.   

 In other experiments many different types of words (not just numeral-words) have 

elicited a left-lateralized bias (Dehaene & Akhavein, 1995; Neville, Kutas, & Chesney, 

1986).  PET studies have identified a left ventro-medial extra-striate area activated by the 

presentation of real words and pronounceable pseudo-words, but not by consonant strings 

or false-font stimuli (Petersen, 1990).  A lesion in this area produces pure alexia with 

letter-by-letter reading, suggesting a deficit of the visual word form (Shallice, 1988).  

Thus PET and ERP data seem to converge in isolating a left posterior ventral system 

related to word identification.  The system would first become specifically activated by 

words as opposed to digits around 110-160 milliseconds post-onset.  Additional evidence 

indicates that words and consonants are not discriminated until about 150 to 200 

milliseconds post-onset (Dehaene & Akhavein, 1995; Posner & McCandliss, 1993).   

 Why then would some researchers have found evidence for bilateral activation 

with Arabic digits?  In the left-hemisphere it seems likely that the same brain area is 

responsible for the identification of words and digits.  There is evidence that alexic 

patients with left-hemisphere lesions often have difficulty naming multi-digit Arabic 

numerals (Dehaene & Cohen, 1991).  However, a number of cases on record indicate that 

the identification of Arabic digits may be preserved even when word identification is 

impaired (Tranel, Damasio, & Damsaio, 1998; Cohen & Dehaene, 1995a; Dehaene & 

Cohen, 1991).  Some abilities for digit identification have remained after massive left-
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hemispheric lesions (Barbizet, & Bundefield, 1967; Dehaene & Cohen, 1991), and even 

left-hemispherectomy (Vargha-Khaden, & Polkey, 1992).  Dehaene (1996) found 

evidence for a right-hemisphere activation during digit identification and judgment.  

Accordingly, Dehaene postulated that the right-hemisphere activation found with Arabic 

digits may reflect the functioning of a right-hemisphere digit-identification system. 

 Are the left- and right-hemispheric identification processes redundant?  Data from 

neurospychology suggests that the two areas may play slightly different roles in numeric 

cognition.  The left-hemisphere may play a special role in phonological representation 

whereas the right-hemisphere may be involved with accessing numerical meaning 

without necessarily permitting patients to read aloud.  For example, patients NAU 

(Dehaene & Cohen, 1991) and GUI (Cohen, et al, 1994) both suffered from large 

posterior left-hemisphere lesions and the obligatory reading deficits.  When asked to 

name Arabic numerals, both had to count before naming the numeral, yet both were 

easily able to make accurate greater-than/less-than judgments about pairs of numerals.  

Patient GUI could not read aloud Arabic numerals, but was still able to name and 

understand familiar numerals such as 1789 (French Revolution) and 1918 (World War I), 

indicating preserved access to number meaning (Dehaene & Cohen, 1991).  More recent 

work by Cohen and Dehaene (1995a) demonstrated that a small lesion to the left posterior 

ventral region was sufficient to impair digit naming, but digit comprehension remained 

virtually intact.  These cases would seem to fit well with a theory of two systems for digit 

identification, one biased toward phonological retrieval and the other toward semantic 

access. 
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 Recall that Dehaene (1996) required participants to make greater-than/less-than 

judgments when comparing the visual Arabic numerals 1, 4, 6, and 9 and verbal numerals 

ONE, FOUR, SIX, and NINE to a standard of 5.  Participants were slower and made 

more errors when comparing two close quantities than when comparing two more distant 

quantities.  With regard to activation, a significant difference between near and distant 

trials emerged for sites located close to the parieto-occipito junction, with a significant 

right-hemispheric lateralization.  Most importantly, a similar pattern was found whether 

the numbers were presented in Arabic-numeral or verbal notation.  This finding 

suggested that the distance effect originates from a level of representation that is not 

dependent upon the physical and notational characteristics of the stimulus (Dehaene, 

1992; Glucksberg & McCloskey, 1992). 

 Previous research has shown the left parieto-occipito-temporal junction to be a 

critical site for acalculia in brain lesioned patients (Benton, 1987; Henschen, 1926; 

Warrington, 1982).   It is surprising that Dehaene (1996) obtained a similar localization 

of function albeit with a right lateralization.  As Dehaene pointed out however, these 

findings are consistent with several other investigations in which a significant right-

hemispheric contribution to magnitude comparison was also found.  First, numerous 

investigations with patients who have massive left-hemisphere damage have shown that 

knowledge of number magnitudes and of quantity relations is often preserved (Lanarés, 

Waeny, & Assal, 1987; Dehaene & Cohen, 1991).  Neuro-imaging studies have revealed 

both right and left inferior parietal lobe activation during calculation (Roland & Friberg, 

1985).  Third, a recent model of the development of numerical abilities of animals and 

human infants has underscored the natural relationship of number perception to object 
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localization and size perception abilities (Dehaene & Changeux, 1993).  Because the 

latter two depend on the integrity of the right parietal areas, it is perhaps plausible that 

number representation should follow a similar pattern. 

 Pesenti and colleagues (2000) used PET to study brain activation during 

magnitude comparison of numerals has revealed activation in the left inferior parietal 

lobule, the left intra-parietal sulcus, and the left superior lobule with some minor 

activation in the right superior lobule.  Indeed, these results confirm a greater 

participation of the left-hemisphere in comparison judgments, whereas the Triple-code 

model predicts a right-hemisphere predominance (Cohen & Dehaene, 1995b; Dehaene & 

Cohen, 1994, 1997).  At the anatomical level, the results of Pesenti and colleagues 

indicate that the critical area for numeric magnitude processing is in the left parietal lobe.  

These data fit well with that of a lesion study carried out by Takayama, Sugishita, and 

Akiguchi (1994) with similar results.  However, this location of function appears to be 

more posterior, superior, and lateralized than the area theorized by the Triple-code model 

(Dehaene, Dehaene-Lambertz, & Cohen, 1998; Pinel et al., 1999; Sathian et al., 1999).     

 When it comes to the hemisphere of activation for the internal representation of 

numbers for purposes of number comparison, the results are similarly inconsistent.  

Rushworth, Ellison, and Walsh (2001) suggested the many divergent results obtained in 

studies of hemispheric differences in number comparison may be due to the investigators 

using different reference numbers, different absolute numbers sizes, and different control 

conditions.  Stanescu-Cosson et al. (2000) reported left intra-parietal sulcus activation for 

numbers close to the reference number (5) and right intra-parietal sulcus activation for 

numbers far from the reference number.  Only two fMRI studies have used numbers 
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larger than 10 in a number-comparison task (Dehaene, Le Clec’H, & Cohen, 2000; 

Rickard, Romero & Basso, 2000).  Rickard and colleagues used number detection as a 

control task.  They reported reliable bilateral angular gyrus activation during number 

comparisons in some of their participants.  Dehaene and colleagues used a body-part-

comparison task as a control and found right intra-parietal sulcus activation for the 

number-comparison task.   

 Overall, the evidence suggests that the internal representation of numbers draws 

heavily on both working memory and attentional resources.  Numerous investigations 

have been reviewed herein and there seems to be no firm conclusion as to what particular 

brain areas are involved, or even what hemisphere (see Table 2.).  

 Numerous techniques have been employed by researchers that have yielded data 

showing activation in either or both hemispheres from the frontal lobe to the cerebellum 

and all areas between.  For the most part, findings have been inconsistent as to which 

cortical areas are active during numeric calculation and/or numeric judgment.  Many of 

the previous investigations, and lesion studies in particular, are “hampered” by the 

plasticity of the brain.  Following a brain injury, brain functions may reorganize in an 

attempt to compensate for lost abilities, and therefore the observations might yield 

inaccurate or tainted results.  Furthermore, cognitive capabilities might be globally 

impaired after a brain insult so that the patient might not be suited for extensive, detailed, 

testing of a given ability.  Additionally, patients will frequently have more than a single 

brain injury; therefore, the brain injury might be larger than the brain area under study, 

making the discovery of a correlation between regional brain function and disturbed 
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Table 2 

Summary of investigations of localization of function of numerical cognition 

 
Left-Hemisphere Activation 

Benton (1987) 
Burbaud (1998) 

Cippotti & de Lucy-Costello (1993) 
Cohen & Dehaene (1995a) 

Dehaene & Akhavein (1995) 
Dehaene & Cohen (1997) 
Delazer & Benke (1997) 
Ferro & Botelho (1980) 

Jackson & Warrington (1986) 
McNeil & Warrington (1996) 

Neville et al. (1986) 
Pesenti et al. (2000) 
Pinel et al. (1999) 
Warrington (1982) 

Right-Hemisphere Activation 

Dehaene (1996) 
Dehaene et al. (2000) 

Dimond & Beaumont (1972) 
Graham et al. (1982) 
Hecaen et al. (1961) 

Takayam et al. (1994) 
Weddel & Davidoff (1991) 

 
Bilateral Activation 

Dahmen et al. (1982) 
Dehaene (1996) 

Dehaene & Changeux (1993) 
Dehaene & Cohen (1994) 

Fassotti et al. (1992) 
Reid et al. (2002) 

Rickard et al. (2000) 
Roland & Friberg (1985) 

Sokolov et al. (1957) 
Stansco-Cosson et al. (2000) 
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behavior difficult to ascertain.  Finally, lesion studies with humans depend on the 

opportunistic and chance occurrence of a given brain injury, and thus cannot be planned 

in advance or designed with care, are generally limited to a single or few cases, and 

therefore cannot be empirically tested for confirmation.  Functional neuroimaging 

techniques such as PET have, at times, shown convincingly the association between 

certain behaviors and specific patterns of joint activation of cortical and subcortical 

structures.  Functional magnetic resonance imaging (fMRI) can add greater anatomical 

resolution and the temporal profile of the pattern of activation of such cortical networks 

for specific behaviors.  However, in the best of circumstances, these neuro-imaging 

techniques only provide supportive, correlational evidence of the neural network 

associated with a given behavior rather than direct, causal evidence.  Activation of a 

given neural network by a behavior can establish an association between neural activity 

and behavioral manifestations, but does not provide insight into the functional role that a 

given neural structure or its connections play in the behavioral manifestation.  In 

addition, different strategies in behavior are difficult to control for and might induce 

misleading results in such associative approaches of correlation between behavior and 

brain activity.  

 The major question of interest for the present research is do humans and 

nonhuman primates represent numerosity differently?  First, I sought to replicate with 

humans, and to extend to monkeys, the earlier findings of Dehaene (1993) that humans 

respond faster to smaller numbers presented on the left and faster to larger numbers on 

the right.  Second, I used a divided visual field paradigm to determine whether humans 

and monkeys represent numerals (symbolic stimuli) in a manner different from how they 
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represent random-dot patterns (analogue stimuli).  Finally, I utilized repetitive 

transcranial magnetic stimulation (rTMS) with both human participants and monkeys to 

extend and explicate earlier findings with regard to possible lateralization of numeric 

comparison abilities.   

Experiment 1: A Comparative Study of the Mental Number Line 

 This experiment was designed to replicate the finding that humans respond faster 

to smaller quantity numeric stimuli that are presented on the left side of visual fixation 

and faster to larger quantity numeric stimuli that are presented on the right side of visual 

fixation (Dehaene (1993).  Recall that this phenomena is often interpreted as confirming 

that humans represent numerosity in a number-line fashion with smaller quantities 

appearing on the left and greater quantities appearing to the right.  In addition, data were 

collected from rhesus monkeys in a similar task format and were analyzed to determine 

what, if any, similarities their response topography may have to that of humans.  In 

addition to numeric characters, arrays of dots were also presented in order to determine 

whether humans and nonhumans show the same response topography to both symbolic 

(i.e., Arabic numerals) and analog (random dot-pattern) stimuli. 

Method           

 Participants.  Participants were 12 students (average age 26.4 years, range 19 to 

36 years, 6 males) from Georgia State University.  In exchange for their efforts they each 

received one hour of research participation credit.  

 Data from 5 male rhesus monkeys (Macaca mulatta, ages 10 to 19 years, 2 were 

left-handed as determined by their preferred hand for joystick manipulation) performing 

identical tasks were also collected.  None of the animals were food deprived or reduced in 
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weight for purposes of this experiment.  Each animal was singly housed and had 

continuous access to water.  Each animal had an extensive history of successful 

completion of with computer-based numerical cognition tasks that required responses to 

be made via a joystick (Gulledge, 1999; Washburn & Rumbaugh, 1991; Washburn 1994).              

 Apparatus.  All participants were tested using the Language Research Center’s 

Computerized Test System (LRC-CTS; Rumbaugh, Richardson, Washburn, Savage-

Rumbaugh, & Hopkins, 1989).  The LRC-CTS consists of a joystick connected to a 

Compaq Pentium II computer.  All stimuli were presented on a 17-inch color monitor.  

The computer provided audio feedback, generated through an external speaker/amplifier 

for the participants, collected response time and accuracy data, and controlled delivery of 

97-mg fruit-flavored pellets (Research Diets) to the monkeys.             

 Tasks and Procedure for human participants.  Participants were asked to be seated 

with their backs positioned against the backrest of a standard office chair.  The distance 

from their eyes to the center of the computer monitor was then measured.  Chair position 

was then adjusted such that the distance between each participant’s visual midline and the 

center of the monitor was 43 cm.  At that time the position of the chair was marked so 

that the experimenter could determine whether any chair movement occurred during the 

experiment.  No participant was observed to alter the position of the chair during testing.  

Participants were read instructions as to how to perform the tasks.   Participants were first 

instructed (see appendix A) as to how to complete the trial-initiation sequence by 

manipulating the cursor (“+”), via the joystick, into a 2-cm diameter circle whereupon a 

pair of task stimuli was presented.  Task stimuli consisted of either a pair of 3 cm by 3 cm 

Arabic numerals (1-9) or a pair of random quantity (1-9) dot-patterns composed of white 
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dots each 1 cm in diameter.  Each member of the Arabic numeral stimulus pair subtended 

a visual angle of approximately 4.3 degrees when displaced 2 degrees from focus and 

when viewed from a distance of 43 cm.  The visual angle subtended by the random-dot 

patterns varied from a low of 1 degree for one dot to a high of 7 degrees for nine dots 

when viewed from a distance of 43 cm.  Participants were then instructed to bring the 

cursor into contact with the greater quantity stimulus.  Successful completion of a trial 

resulted in a rising tone sounding for 1 second.  An incorrect response resulted in 

presentation of a buzzing tone for 1 second.  Five seconds after a trial was completed, a 

new trial appeared on the computer screen.  Participants averaged completion of 208 

trials.  Afterward, participants were given time to ask questions regarding the task 

procedure.  Once all questions had been answered testing began.             

 Task and Procedure for nonhuman primates.  The five rhesus monkeys were 

tested in their home cages which were attached to test stations containing the joystick, 

computer monitor, pellet dispenser, and external speaker-amplifier.  The monkeys were 

allowed to roam freely throughout their home cages during testing.  However, in order to 

ensure that the viewing angle was comparable to that of the human subjects the monkeys 

were required to view the monitor through a Lexan viewing port.  The viewing port was 

constructed of 1.5 mm thick black opaque Lexan and was 60 cm long and 30 cm tall  

with a 12 cm by 18 cm open section through which the monkey could view the task 

stimuli.  Test station monitors were then positioned so that each monkey could only view 

the entire monitor at a distance of 43 cm or less.    

 As with the human participants, the monkeys were required to complete a trial 

initiation sequence by manipulating the cursor “+,” via the joystick, into a 3 cm diameter 
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circle whereupon the task stimuli were presented.  For successful completion of a trial the 

monkeys were rewarded with a 97 mg fruit-flavored chow pellet and a rising tone.  For 

unsuccessful trial completion the monkeys received only audio feedback in the form of a 

low tone.  The monkeys previous test history afforded them extensive knowledge of the 

current task (Gulledge, 1999; Washburn, 1994; Washburn & Rumbaugh, 1991).  

Results  

 Accuracy was very high for both human and nonhuman participants.  Mean 

accuracy for humans was 99.9% for all trials.  Whereas the monkeys made more errors, 

monkeys’ accuracy still averaged 92% across trial types.  Given these high accuracy 

levels, additional analyses were not conducted on this measure.  

 Congruent trials were defined as those in which the lesser quantity stimulus was 

presented on the left and the greater quantity stimulus was presented on the right (e.g., as 

would be expected in a number line).  A 2 stimulus type (numerals vs. dots) x 2 trial type 

(congruent vs. incongruent) x 2 species (humans vs. monkeys) analysis of variance 

(ANOVA) was conducted to assess the response time data.  Analysis revealed main 

effects for stimulus type, F(1, 15) = 12.63, p < .05, species, F(1, 15) = 7.45, p < .05, and 

trial type F(1, 15) = 11.32, p < .05.  A significant interaction between stimulus type and 

trial type was also found, F(1, 15) = 10.87, p < .05 (see Figure 1).  Planned comparisons 

revealed significant differences, t(16) = 2.74, p < .05, in mean response times for random 

dot-patterns for the congruent (1.12 seconds) and incongruent (1.48 seconds) trial types.  

No other comparisons were significant.   
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Mean Response Time as a Function of Trial Type and 
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Figure 1. 

 

 Symbolic distance effects were present, with species having longer response times 

as symbolic distance decreased (see Figure 2, and Appendixes A, B, C, and D).                         

Symbolic Distance Effects
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Discussion  

 Dehaene (1993) reported that humans respond faster to greater quantity numeric 

stimulus when they are presented on the right side of visual fixation.  He interpreted these  

results as further evidence that humans represent numerosity in a number-line fashion 

otherwise known as a Spatial-Numerical Association of Response Codes (SNARC) 

Effect.  The current research replicates these findings for humans as well as provides new 

evidence that nonhuman primates display this same SNARC effect.  In addition, symbolic 

distance effects were present for both species with increasing response times as the 

distances between the stimuli became smaller and smaller.  In other words, as the 

“distance” between the number line positions of the stimuli (both numeral and dot 

pattern) becomes smaller, it takes the participants longer to make a judgment as to which 

stimulus is larger in quantity.  This also provides further evidence for a number-line like 

representation strategy for both numerals and random-dot pattern stimuli.  Taken 

together, these findings suggest strongly that number magnitude is represented as a  

number line with an orientation from left to right.  

 Both humans and monkeys showed slower response times for judgments of the 

random-dot pattern stimuli.  As noted earlier, accuracy levels were high for both species 

regardless of stimulus type albeit with significantly slower response times for the 

random-dot pattern stimuli.  The author assumes that the differences in response time for 

the participants was due to execution of some type of  visual scanning process necessary 

to make judgments of dot pattern stimuli.  Humans showed significantly longer response 

times for incongruent dot pattern trials when compared to congruent dot pattern trials.  

This result would appear to indicate that humans also process analog stimuli in a number 
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line like fashion as well, albeit at significantly different response times than for numeric 

stimuli.  Symbolic distance effects were present for the analog stimuli as well with, once 

again, increased response times as the differences between the two comparison stimuli 

decreased.  Do humans represent dot patterns in an analog manner as the Triple-code 

hypothesis suggests?  Significant differences in RT were evident for dot patterns versus 

numerals thereby indicating that numeric and analog stimuli may indeed be processed 

differently—perhaps even, as the triple-code model suggests, in different regions of the 

brain.    

 Importantly, the monkeys showed a response bias similar to that found for 

humans, here and by Dehaene (1993).  Just as was found with the human participants, the 

monkeys responded faster on congruent trials than on the trials with stimuli presented in 

an incongruent fashion.  Given these data, it would appear that the monkeys represent 

numerosity in a way that is very similar to humans, possibly in a number-line like fashion 

as well.  Due to the fact that numerals are merely symbols used for representing 

quantities, response biases exhibited by the monkeys may also indicate the presence of a 

neurological system for symbolic representation much like that of humans. 

 Additionally, just as the human participants did, the monkeys showed a similar 

response bias for dot-pattern stimuli.  The monkeys exhibited longer response times for 

incongruent presentations than for congruent ones.  Accuracy remained high however, 

regardless of presentation type.  For this particular investigation however, the monkeys’ 

performance for all numerals, dot patterns, and across both congruent and incongruent 

presentations mirrored that of their human counterparts. 
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Experiment 2: Functional Cerebral Asymmetries of Numerical Recognition 

 As noted earlier, there is ambiguity in the literature regarding the laterality of 

various numerical cognition functions.  Indeed, the studies conducted seeking a 

localization of function for numerical judgments have produced divergent findings.  

Researchers at present, including proponents of the Triple-code model (Cohen & 

Dehaene, 1995b; Dehaene & Akhavein, 1995), disagree as to which hemisphere is more 

specialized for the processing required for numerical judgments.   Humans 

characteristically show a left-hemisphere advantage for production and comprehension of 

language, and accordingly show a left-hemisphere advantage for the recognition of 

linguistic symbols (e.g., words).  Do humans process numerals as they would other 

symbols or are numerals processed in a manner more consistent with the spatial 

specializations characteristic of the right cerebral hemisphere?  One can ask a similar 

question of the functional cerebral asymmetries that characterize numerical cognition by 

nonhuman animals, because numerous researchers have shown that several nonhuman 

primate species possess numerical abilities similar in quality to that of humans.  Is it 

possible that nonhuman primates may show similar hemispheric literalities to those of 

humans for symbolic numerical representation even without the presences of language 

skills? 

 All divided visual field (DVF) studies of cerebral organization depend upon the 

contralateral organization of the primary visual system.  Information concerning stimuli 

falling to the left of the visual fixation point (i.e., in the left visual field, or LVF) is 

initially projected to the right cerebral hemisphere, whereas information concerning 

stimuli to the right of the visual fixation point (i.e., right visual field, or RVF) is initially 
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processed in the left cerebral hemisphere.  Information is then distributed between 

regions of both cerebral hemispheres via the corpus collosum, so that the hemisphere 

ipsilateral to the visual field of presentation receives stimulation indirectly.  This gives 

one hemisphere (the hemisphere contralateral to the visual field in which the stimulus 

was flashed) privileged access to the visual stimulus with respect to time and quality.  Of 

course, the presentation of a stimulus outside central vision usually results in movement 

of the eyes (a saccade) to bring the stimulus into central or foveal vision, which in turn 

results in bilateral transmission of the image to the primary visual cortex of both 

hemispheres.  For this reason it is necessary to use brief exposures that present the stimuli 

used in DVF experiments for less than the time needed for such saccades to occur.  

Saccadic eye movements have been extensively studied and numerous extensive reviews 

are available (for example, see Alpern, 1971; Carpenter, 1978; Miles, 1936).  The use of 

exposure durations up to a maximum exposure of 150 msec precludes the possibility of 

eye movements to bring the stimuli into foveal vision (Dimond & Beaumont, 1972) 

thereby allowing for control of stimulus presentation to one visual field at a time. 

Method 

 Participants.  Nineteen undergraduate students participated in exchange for one 

hour of research credit.  Human participants were all right-handed, as determined by self-

report, with an average age of 23.4 years (range 18 to 33 years).  

 Data from 5 male rhesus monkeys (ages 10 to19 years, 3 right handed and 2 left 

handed as determined by the preferred hand for joystick manipulation) performing 

identical tasks were also collected.  These were the same animals that were tested in 

Experiment 1.  Again, the monkeys’ previous test history made them very familiar with 
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the demands of the current task.  Prior research (Gulledge, 1999; Washburn & 

Rumbaugh, 1991; Washburn 1994) afforded the monkeys familiarity with the task stimuli 

and extensive skill in making the relative numerousness judgments (RNJ) necessary for 

trial completion.   

 Apparatus.  The apparatus for humans and monkeys was identical to that used in 

Experiment 1.  

 Task and Procedure.  A recognition task with 150-msec presentations of 

lateralized stimuli was used to determine whether there are functional cerebral 

asymmetries in the processing of numeric information.  To ensure the midscreen fixations 

necessary to guarantee that stimuli were transmitted initially only to the contralateral 

hemisphere within the DVF paradigm, participants were required to complete a trial 

initiation sequence before the task began.  The cursor and a 3-cm diameter trial-initiation 

circle appeared on the monitor (see Figure 3a).  To begin a trial the participant 

maneuvered the cursor into the center of the circle (see Figure 3b).   

 When the cursor was centered in the circle, either a single Arabic numeral or a 

random-dot pattern was immediately presented for 150 msec (see Figure 3c) and then 

followed by a 4 x 5-cell black-and white-checkerboard pattern mask for 100 msec (see 

Figure 3d).  These stimuli were flashed either to the left or the right of fixation and were 

separated from the fixation stimulus by 8.6 degrees of visual angle when viewed from 43 

cm.  The numerals subtended a visual angle of 5 degrees, the dot arrays subtended a 

visual angle between 1 and 7 degrees depending upon the quantity of dots presented, and 

the mask subtended a visual angle of 7 degrees.  Immediately after the mask disappeared, 

a pair of stimuli of the same type (i.e., numerals if the target stimulus was a numeral, dot 
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arrays if the target stimulus was an array of dots) appeared on the monitor screen.  One 

stimulus appeared above the cursor, the other below (see Figure 3e).  One of the two 

stimuli was identical to the target stimulus, whereas the other was a randomly selected 

foil stimulus.  The participants were required to move the cursor, via the joystick, into 

contact with the stimulus that matched the originally presented target stimulus.  A rising 

tone sounded for a correct response and a buzzing tone sounded for incorrect responses. .  

The m 

 

 

   Figure 3a.             Figure 3b.             Figure 3c.              Figure 3d.              Figure 3e. 

Figure 3.  A schematic of a divided visual field matching-to-sample trial from Experiment 2  

 Human participants were required to sit in a straight-back chair with their backs 

against the lumbar support.  While they were sitting in the chair participants were asked 

to move their chair either closer to or further away from the monitor until their eyes were 

positioned 43 cm from the center of the screen, as measured by the experimenter.  Once 

proper chair position was established the experimenter placed tape behind the four legs of 

the chair to ensure that the participant did not change viewing positions during the 

experiment.  Participants were then read instructions on how to perform the tasks.  

Afterward, the participants were given time to ask questions regarding the instructions.  

Once all questions had been answered testing began.    

 Unlike the human participants, the monkeys received a pellet reward in addition 

to the audio feedback for successful completion of a trial. Again, for unsuccessful trial 

completion no pellet was given and a 50-Hz tone sounded for 3 seconds.  In order to 
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ensure that the monkeys were seated at the proper angle and distance for administration 

of DVF trials, the monkeys were required to view the monitor through a Lexan viewing 

port.  The viewing port was constructed of 1.5 mm thick black opaque Lexan and was 60 

cm long and 30 cm tall with a 12 cm by 18 cm open section through which the monkey 

could view the task stimuli.  Cage position and monitor position within the test station 

were then adjusted so that the viewing distance for the monkeys was 43 cm.  The 

monkeys underwent training on the tasks, in their home cages, until such time as their 

performance over the last 100 trials was significantly better than chance.  Each monkey 

reached the criterion level of performance in fewer than 1,800 trials.  Each of the 

monkeys was then required to complete 2,000 test trials. 

Results   

 Accuracy data for the recognition task were analyzed via a 2 (species) x 2 

(stimulus type) x 2 (visual field) ANOVA.  This analysis revealed a main effect for 

stimulus type, F(1, 22) = 8.81, p < .05, with humans and monkeys being more accurate 

for numerals (92% correct) than for random dot-patterns (85% correct).  A significant 

interaction between stimulus type and visual field of presentation was obtained, F(1, 22) 

= 6.57, p < .05 (see Figure 4).  Planned comparisons revealed that dots were recognized 

significantly more accurately when presented in the left visual field than the right visual 

field, t(23) = 3.25, p < .05.  In contrast, numerals were recognized significantly more 

accurately when presented in the right visual field, t(23) = -2.34, p < .05.    
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Figure 4. 

 Response time data for the recognition task were analyzed via a 2 (species type) x 

2 (stimulus type) x 2 (visual field) ANOVA.  This analysis revealed a main effect for 

species with the monkeys (mean response time 0.98 seconds) performing the task 

significantly faster than humans (mean response time 1.27 seconds), F(1, 22) = 3.87, p < 

.05.  A main effect for stimulus type was also evident, F(1,22) = 3.45, p < .05, with 

average response times for the random dot-patterns taking significantly longer (1.36  

seconds) than for the Arabic numerals (1.02 seconds).  A main effect was also found for 

visual field F(1, 22) = 4.33, p < .05, with processing occurring more quickly when stimuli 

were presented to the RVF (mean response times of 1.16 seconds versus 1.25 seconds 

when presented to the LVF). The analysis also revealed a significant interaction between 

stimulus type and visual field F(1, 22) = 5.32, p < .05 (see Figure 5).  Planned 

comparisons revealed significant differences in RT when comparing Arabic numerals in 

the left versus the right cerebral hemisphere t(23) = 3.47, p < .05.  No species interactions 

were evident. 
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Figure 5. 

Discussion 

 Both monkeys and humans accurately recognized quantitative stimuli when 

presented for durations of 150 milliseconds.  The Triple-code model (Dehaene & Cohen, 

1994) predicts that humans process Arabic digits as a visual representation predominately 

in the left cerebral hemisphere.  Data from the current experiment serve to support this 

conclusion for humans. Numerals were recognized significantly faster and more 

accurately when presented in the right visual field as compared to the left visual field.  It 

is assumed that humans process numerals better in the left hemisphere due to 

lateralization of language/symbolic function; however, no such lateralization has yet been 

reported for monkeys.  Notwithstanding, the similarities between the performance of the 

monkeys and humans in the current experiment is striking.  The monkeys recognized 

numerals with mean accuracy levels of 84% (LVF) and 90% (RVF), compared to 92% 

(LVF) and 96% (RVF) for the humans.  The mean response times for these match-to-

sample judgments were similarly patterned between the species, with monkeys requiring  
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1.02 seconds (LVF) and 0.94 seconds (RVF), compared to humans’ response times of 

1.37 seconds (LVF) and 1.17 seconds (RVF).  

 With regard to hemispheric differences in processing random dot-pattern stimuli, 

judgments were significantly more accurate when the stimuli were flashed to the left 

visual field (i.e., a right-hemisphere advantage for processing).  Again, this pattern is 

comparable across species: The monkeys’ accuracy and response times for the dot 

patterns presented to the left visual field were 84% correct with a mean RT of 1.17 

seconds, and 79% correct with a mean RT of 1.10 seconds when presented to the right 

visual field.  Accuracy and response times for the human participants’ were 88% correct 

with an RT of 1.49 seconds for left visual field presentations and 83% correct with an RT 

of 1.31 seconds for right visual field presentations.  The Triple-code model suggests that 

processing of such analog stimuli should be conducted via an analog representation and 

processed in both the left and right inferior parietal lobes, although the current data 

clearly suggest an advantage for the right-hemisphere.   

 Indeed, the only species difference observed in Experiment 2 was an overall 

difference in response times, with the monkeys performing the tasks significantly faster 

than the humans for both stimulus types.  Interestingly, both humans and monkeys 

completed trials with random dot-pattern stimuli with equivalent speed when presented to 

either visual field, but with greater accuracy when presented to the left visual field (e.g., 

processed in the right-hemisphere).  Is it possible that both monkeys and humans have a 

similar representation system for analog stimuli that is lateralized to the right-

hemisphere?  Importantly, the data clearly show that the only major species difference 

evident, at least with regard to quantitative stimulus recognition, is one for overall speed 
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of responding.  This phenomenon is robust and has been replicated by many researchers 

(see Washburn & Rumbaugh, 1997 for a review).   

Experiment 3: Functional Cerebral Asymmetries of  

Relative Numerousness Judgment 

 To date, little research has been published in which a DVF paradigm was used to 

examine hemispheric specializations in the processing of numeric stimuli (Dehaene et al., 

1997; Dimond & Beaumont, 1974).  No study has required relative numerousness 

judgments by humans or nonhuman animals of pairs of stimuli that are briefly and 

laterally presented.  It would appear that this technique would allow for determination as 

to whether either hemisphere possesses an advantage (faster and more accurate 

representation and processing) over the other for making numerical judgments, as a 

function of the type of numerical stimulus (analog dot arrays, Arabic numerals).  

According to the triple-code-model (Dehaene, 1992, Dehaene & Cohen, 1994) Arabic 

digits are presumably processed in either the left or right occipital or temporal lobe via a 

visual mental representation.  Conversely, analog stimuli are thought to be processed in 

the left and right inferior parietal lobes via an analog mental representation.  However, 

numeric comparisons are theorized to take place in either the left or right inferior parietal 

lobe as well also via an analog mental representation.  The model does not stipulate in 

which hemisphere this processing takes place or where analog comparisons might take 

place. 

Method 

 Participants.  Human participants were the same 19 volunteers from Experiment 

2.  They each participated in exchange for an additional one hour of research credit.  All 
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were right-handed, as determined by self-report, with an average age of 23.4 years and a  

range of 18 to 33 years.  

 Data were also collected from the same 5 male rhesus monkeys (ages 10 to19 

years, 3 right handed and 2 left handed) from Experiments 1 and 2.   

 Task and Procedure.  Human participants were required to sit in a straight-back 

chair with their backs against the lumbar support.  While they were sitting in the chair 

participants were asked to move their chair either closer to or further away from the 

monitor until their eyes were positioned 43 cm from the center of the screen, as measured 

by the experimenter with a tape measure.  Once proper chair position was established the 

experimenter placed tape behind the four legs of the chair to insure that the participant 

did not change viewing positions during the experiment.  Participants were then read 

instructions as to how to perform the tasks.  Afterward, the participants were given time 

to ask questions regarding the instructions.  Once all questions had been answered, 

testing began.    

 Participants were required to complete the same trial-initiation sequence as in 

Experiment 2 (see Figures 6a and 6b).  Once the trial-initiation sequence was completed 

the stimulus pair appeared in either the right or left third of the screen.  One stimulus 

appeared above the midline of the monitor, the other below (see Figure 6c).  Each 4 cm 

by 4 cm stimulus subtended 5 degrees of visual angle at a viewing distance of 43 cm.  

The stimuli consisted of unequal pairs of either Arabic numerals or random-dot patterns 

representing the quantities 1 through 9.  Arabic numeral stimuli were the same size, 

shape, and color as those used in Experiments 1 and 2.  Each of the dots in the random-

dot pattern stimuli was 1 cm in diameter and white in color.  The stimulus pair remained 
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on the screen for 150 ms, and then the stimuli were masked for 100 msec by  4 x 5 cell 

black-and-white checkerboard patterns (see Figure 6d).  Immediately following the offset 

of the mask, a two-choice response screen appeared.  The response screen appeared with 

the cursor in the center of the screen with red blocks 7 cm above and 7 cm below the 

cursor (see Figure 6e).  To declare the previously viewed upper stimulus greater in 

quantity participants were required to manipulate the cursor into contact with the upper 

block.  To declare the lower stimulus greater in quantity participants has to manipulate 

the cursor into contact with the lower block.  Correct responses were followed by a rising 

tone.  Incorrect responses were followed by a 3-second buzz.  Five seconds after 

completion of a trial the trial initiation stimulus reappeared in advance of beginning a 

new trial.   

 

 

 

    Figure 6a.                Figure 6b.                Figure 6c.                 Figure 6d.                Figure 6e. 

Figure 6a-e.  Schematic of a divided visual field relative numerousness trial from Experiment 3. 

 The monkeys received a pellet reward in addition to the audio feedback for 

successful completion of a trial. Again, for unsuccessful trial completion no pellet was 

given and a 50-Hz tone sounded for 3 seconds.  In order to ensure that the monkeys 

viewed the task stimuli at the proper angle and distance for administration of DVF trials, 

the Lexan viewing port from Experiment 2 was installed in the monkeys’ home cages.  

Cage and monitor position were again adjusted to ensure the proper viewing distance of 

43 cm. for all test sessions.  Monkeys underwent training on the tasks, in their home 

cages, until such time as their performance over the last 100 trials was significantly better 
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than chance.  Each monkey reached the criterion level of performance in fewer than 700 

trials.  Each of the monkeys was then required to complete 1,000 test trials.  

Results 

 Accuracy data for the relative numerousness judgment task were analyzed via a 2 

(species) x 2 (stimulus type) x 2 (visual field) ANOVA.  A main effect for stimulus type 

was present, F(1, 22) = 16.42, p < .05, with participants responding more accurately to 

the Arabic numeral stimuli (91% correct) than for the random dot-patterns (77% correct).  

A significant interaction between stimulus type and species also occurred, F(1, 22) = 

15.83, p < .05 (see Figure 7).  Planned comparisons revealed no significant differences in 

accuracy for the monkeys regardless of stimulus type, t(4) = 1.35, p > .05.  For human 

participants however, comparisons revealed significant differences, t(18) = 3.25, p < .05), 

in the accuracy of relative numerousness judgments (RNJs) with humans performing 

RNJs of Arabic numerals (98% correct) more accurately than for random dot-patterns 

(87% correct).  No other significant main effects or interactions were observed.   
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 Analysis of response time data revealed a main effect for visual field F(1, 22) = 

10.08, p < .05, with faster response times occurring with presentations to the right visual 

field (3.16 seconds for RVF presentation versus 3.50 seconds for LVF presentations).  A 

significant main effect for stimulus type was present F(1, 22) = 4.41, p < .05.  Mean 

response times were shorter for Arabic numerals (3.16 seconds) than for random dot-

patterns (3.58 seconds).  The stimulus type variable also interacted significantly with 

species, F(1, 22) = 12.05, p < .05 (see Figure 8).  Planned comparisons revealed no 

significant differences in the monkeys’ mean response times to Arabic numeral and  

random-dot pattern stimuli, t(4) = 0.98, p > .05.  Humans however, were significantly 

faster to judge the relative numerosity of Arabic numeral stimuli than dot-pattern pairs, 

t(18) = 3.84, p < .05.      

Mean Response Time by Stimulus 

Type and Species

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

Monkeys Humans

Species

R
e
s
p
o
n
s
e
 T
im
e
 

(S
e
c
o
n
d
s
)

Dots

Numbers

 

                                                               Figure 8. 

Discussion 

 Requiring participants to make relative numerousness judgments rather than 

simple recognition responses resulted in findings divergent from those of Experiment 2. 
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Both species remained faster and more accurate for numerals than dot patterns.  Both 

species continued to respond faster when stimuli were presented to the right visual field.  

But, the interaction between stimulus type and visual field found in Experiment 2 

disappeared.  Interestingly, stimulus type and species interactions were found for both 

accuracy and response time. 

 Analysis of monkeys’ accuracy for RNJs of numeral pairs and dot patterns 

showed no significant differences, although monkeys’ were slightly faster for 

comparisons presented to the right visual field.  Given these data, it appears that monkeys 

may have a left-hemisphere advantage for processing Arabic numerals and other types of 

quantitative stimuli.  Human participants also showed these same performance 

advantages. They too performed numeral comparisons significantly better than (faster 

and more accurately) dot pattern comparisons, particularly when presented to the right 

visual filed (e.g., processed in the left hemisphere.  It would appear then that both 

humans and monkeys share some basic numerical cognitive processes for representing 

and processing quantities.   

 According to the Triple-code model (Dehaene & Cohen, 1994), humans make 

visual representations of numeric quantity when they process Arabic digits, as in 

Experiment 2 when they were required to make an accurate recognition of numeric and 

quantitative stimuli; however, according to this model humans utilize analog 

representations when they are required to make numeric and quantitative comparisons. In 

this instance, for humans to complete the task correctly, a two-stage process may be 

needed.  Humans may first access visuospatial working memory resources in order to 

create an analog mental representation of the dot pattern shown on-screen in order to 
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make the comparison mentally,  then convert it to an Arabic numeral (perhaps by 

counting the dots), and then reference a visual representation “number line” before 

making a judgment as to which quantity is greater.  Such a processing strategy would 

account for at least a portion of the increase in response time by humans over that of 

monkeys.  The monkeys, who complete both stimulus types with equivalent speed, may 

possibly have the same type of representational strategy (analog) for all types of 

numerical tasks, as was suggested by Beran (2004) and Gulledge (1999). 

Experiment 4: Investigating Functional Cerebral Asymmetries With 

Repetitive Transcranial Magnetic Stimulation  

 Transcranial magnetic stimulation (TMS) represents a unique tool for 

investigating cortical brain function.  Traditionally, lesion studies have been the typical 

method by which questions of asymmetry, lateralization, and localization have been 

answered.  TMS represents a breakthrough in cortical investigation in that it allows for 

the creation of temporary and painless “virtual lesions” of cerebral cortex.  To date there 

have been relatively few published studies utilizing repetitive transcranial magnetic 

stimulation (rTMS) to disrupt cognitive function (Epstein et al., 1996; Epstein & 

Zangaladze, 1996; Fitzpatrick & Rothman, 2000; Göbel, Walsh & Rushworth, 2001; 

Hallet, 2000; Pascual-Leone, Tarazona, & Keenan, 1999).  Consequently, there are even 

fewer studies published utilizing animals as subjects, particularly nonhuman primates 

(O’Shea et al., 2004; Cantalupo, Gulledge, Washburn, & Hopkins, 2006).  A more 

widespread implementation of rTMS with nonhuman species would be valuable for both 

practical and theoretical reasons.  For example, rTMS clearly offers the possibility of 

avoiding most, if not all, of the typical limitations and shortcomings of more invasive 
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research techniques (e.g., lesion studies).  Moreover, rTMS animal studies would create a 

baseline for a direct comparison with findings from the abundant rTMS studies conducted 

with humans.  This comparative approach would, in turn, further our understanding of the 

relation of brain activity and behavior from a developmental viewpoint. 

 The lack of rTMS studies in nonhuman animals is likely due to many factors 

including high initial startup costs, novelty of apparatus and techniques, technical and 

procedural difficulties in implementing reliably the technology with different species.  

But, in recent years rTMS has become increasingly popular in human studies of the 

central motor pathways and the relationship between brain activity and behavior (Hallett, 

2000; Pascual-Leone, Davey, & Rothwell, 2002).  The application of rTMS to a given 

cerebral area results in the activation of the areas neurons and normal functioning of the 

area is painlessly, temporarily, and reversibly disrupted (Kircaldie , Pridmore, & Pascual- 

Leone, 1997; Pascual-Leone et al., 1999; Walsh & Cowey, 1998).  If the stimulated area 

is vital for the cognitive task at hand then performance is impaired or slowed due to the 

disruption of neural activity by the magnetic field.  If the stimulated area is not essential, 

the application of rTMS either has no effect or even results in facilitated performance 

(Cantalupo et al., 2006; Marzi et al., 2000; Oliveri, Rossini & Pasqualetti, 1999; Walsh et 

al., 1998).  Such facilitation is likely due to two causes.  First, rTMS-induced disruption 

of one cortical circuit may disinhibit competing cortical circuits (Oliveri et al., 1999; 

Walsh et al., 1998).  Secondly, rTMS is associated with a sound and tactile sensation and 

these tend to speed performance due to an intersensory localization effect (Marzi et al., 

2000).  In other words, rTMS may improve performance by serving to help the recipient 

focus on the task at hand through various attention provoking sensory stimulations. 
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 Numerous advantages are to be found when utilizing rTMS relative to traditional 

lesion studies for investigating brain-behavior relations.  TMS can be used with normal 

participants thereby eliminating the potential confounds of the presence of additional 

unknown brain lesions in patients.  TMS studies can be conducted acutely thereby 

avoiding possible reorganization of brain function often seen in lesion patients.  TMS 

studies can be repeated with the same participant, providing an opportunity for careful, 

controlled, experimental designs.  Multiple participants can be tested with the same 

experimental design thereby allowing for more powerful statistical evaluation of the 

results.  Different brain areas can be targeted across participants thereby allowing for 

precise mapping of the behavior disruption to a given brain area.  Finally, TMS allows 

for use of different behavioral tasks for the identification of the specific contribution of a 

given cortical area to a cognitive function (Pascual-Leone & Keenan, 1998). 

 Thus far, rTMS has primarily been utilized as an effective treatment of depression 

in humans (Avery, Claypoole & Robinson, 1999; Figiel, Epstein & McDonald, 1998; 

George, Wasserman & Kimbrell, 1997; Loo, Mitchell & Sachdev, 1999; Reid, Sajahan & 

Glabus, 1998; Triggs, McCoy & Greer, 1999).  Relatively few investigations have been 

conducted utilizing rTMS to assess the various neuroanatomical correlates of cognitive 

function.  However, Kosslyn, Pascual-Leone and Felician (1999) showed that visual 

imagery is impaired in humans when rTMS is localized to Broadman’s area 17 of 

cerebral cortex.  Boroojerdi, Phipps and Kopyler (2001) administered rTMS to the left 

and right prefrontal cortex (PFC) and over the left motor cortex during tests of memory 

and analogical reasoning.  Significant increases in response time were found with rTMS 

over the left PFC, but only in an analogy recall condition.  These findings indicate that 
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the left PFC is relevant to analogical reasoning and that rTMS applied to the PFC can 

slow down solution time in relation to application to posterior brain regions.  Mottaghy et 

al. (2002) attempted to determine whether working memory and prefrontal function in 

general might be segregated according to the informational domain (e.g., spatial versus 

object-based information).  Repetitive TMS was applied over the prefrontal cortex in 

normal males performing either a spatial or a face-recognition delayed-response task.  

Performance in the spatial task was disrupted by rTMS.  Disruption of the dorsolateral 

prefrontal cortex affected performance on both tasks.  Taken together, these findings 

provide evidence of domain-specific segregation of working memory functions in widely 

separated areas of prefrontal cortex.   

 At present, few investigations have been conducted using rTMS with humans or 

nonhumans to assess hemispheric organization with regard to numerical cognition.  

Göbel, Walsh, and Rushworth (2001) applied rTMS to the left or right angular gyrus 

while participants performed a number comparison task with numbers between 31 and 

99.  Repetitive TMS over the angular gyrus (parietal lobe) was found to disrupt 

performance on both the number comparison task as well as a visuospatial search task.  

Performance was particularly impaired for stimulation of the left angular gyrus (see 

Appendix E).  This result would seem to indicate that the left angular gyrus mediates a 

spatial representation of number.  Göbel concludes that this area of the parietal lobe may 

contribute to the representation of the mental number line.  Numerous researchers have 

concluded that the angular gyrus and its cerebral neighbors (the intraparietal and superior 

temporal sulci) are closely involved in visuospatial attention (Corbetta et al., 2000; 
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Gitelman et al., 1999; Rushworth, Ellison, & Walsh, 2001).  Therefore, the angular gyrus 

might be expected to play an important role in the spatial representation of quantity. 

 Recent evidence from neuroimaging studies has suggested that the left parietal 

lobe is an important cortical area for numeric representation by humans (Pesenti, et al., 

2000; Stansesco-Cosson, et al., 2000).  But to date, no investigations have been published 

pairing TMS and numerical cognition with nonhuman primates as participants that I am 

aware of.  However, recently researchers using TMS with rats attempted to identify the 

direct neuronal effects of rTMS on learning and memory (Kling, Yarits, Yamamoto, & 

Matsumiya, 1998).  Kling and colleagues studied rats that were allowed to drink 

distinctively flavored water that later received an IP injection of LoCl.  In phase 1, 

between drinking and the onset of mild malaise, the experimental group of rats received 

rTMS to the head whereas controls received an equivalent amount of stimulation on the 

back.  Later, when the flavored water was again presented, the experimental rats drank 

more thereby indicating that they had forgotten that the flavor was associated with illness.  

These results indicated that there was a mild retrograde memory disruption associated 

with TMS, but there was no evidence for any TMS-induced structural change within the 

brain causing the memory deficit.  Conversely, Yamada, Tamaki and Wakano, (1995) 

found no effects of rTMS in three monkeys performing a delayed-response task that 

required spatial short-term memory.                

 Therefore, rTMS provides a noninvasive and relatively painless method for 

stimulation of the cerebral cortex.  Repetitive transcranial magnetic stimulation can be 

used to disrupt the function of a given cortical target thereby creating a temporary 

“functional brain lesion.”  This process allows for the study of the contribution of a given 
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cortical region to a specific behavior.  With rTMS we can therefore effectively “knock 

out” portions of either the left or right-hemisphere in order to determine the effect on 

numeric and quantitative processing. 

Method 

 Participants.  Human participants were two graduate student volunteers from 

Georgia State University, one left-handed male and one right-handed female (mean age = 

28.5 years). 

  Nonhuman participants were two of the rhesus monkeys (103 & 104) from 

Experiments 1, 2, and 3.  Both had substantial experience completing joystick tasks while 

under restraint during rTMS application (Canatalupo et al., 2006).  One of these animals 

was left handed and the other was right handed, as assessed by the preferred hand for 

joystick manipulation.   

 Apparatus.  Both human and nonhuman participants were tested using the same 

computerized testing system (LRC-CTS) used in Experiments 1, 2, and 3.  However, 

additional hardware was necessary for administration of rTMS.  Stimulation for rTMS 

was provided by a Neopulse Transcranial Magnetic stimulator (Neotonus, Marietta, GA) 

generating cosine pulses at durations up to 190 microseconds. The stimulator consisted of 

two main components, the generator unit and the stimulating coil.  The generator unit 

provided manual controls for frequency of stimulation (1-50 Hz), intensity of stimulation 

(up to 1.5 Tesla, adjustable in 1% increments), and an external BNC connector through 

which the control unit could be piloted by an external device using a 5V TTL signal.  The 

stimulating coil produced a magnetic field distribution comparable to that of a 5 cm x 10 

cm figure-eight coil (Epstein et al., 1996).  
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 The stimulator was controlled externally by an IBM-compatible personal 

computer (Compaq Deskpro, Intel Pentium II processor) with a digital I/O interface card 

(Keithley PIO-12) connected to an 8-channel I/O module board (Keithley SRA-01).  One 

channel provided access to the 5 V signal directly from the PC for controlling the 

stimulator.  For testing with the monkeys, two other channels controlled externally 

powered dispensers via solid-state relays that enable delivery of two kinds of rewards (97 

mg fruit-flavored pellets and fruit juice) during testing with TMS.   

 TMS delivery for both human and nonhuman participants was controlled by a 

computer program module written using a Pascal-based, object oriented, visual 

programming tool (Borland Delphi, version 4, Cupertino, CA).  The program module 

allowed full run-time control and manipulation of (a) time onset, (b) duration and (c) 

frequency of TMS delivery.  The precision and reliability of the pulsed output generated 

by the program module was verified by means of a storage digital oscilloscope (Tektronic 

model 2221, Richardson, TX).  The module controlled also time of delivery and quantity 

of pellets and fruit juice following TMS and task performance by the monkeys.  The 

TMS program module could be used independently (e.g., for motor threshold assessment) 

or in full integration with computerized tasks. 

 Motor threshold assessment.  Nonhuman participants were seated in a rhesus 

monkey restraint chair (Primate Products Inc., Woodside CA) with minimal restraint.  

Human participants were seated in a standard office chair during motor threshold 

assessment.  Following common procedures in human studies (Reid, Chiappa, & Cross, 

2002) the stimulating coil was placed laterally to the vertex and pressed tangentially to 

the scalp over the hemisphere contralateral to the preferred hand for joystick 
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manipulation.  With the program module set for one second of TMS delivery at 5 Hz at 

50% of maximum output the optimal position for eliciting overt twitches of the subject’s 

hand and bicep was determined and marked on the subject’s scalp.  Subsequently, 

stimulus intensity was decreased in steps of one percent and stimulated ten times at every 

step on the marked position.  In this manner, motor threshold was assessed as the lowest 

stimulus intensity that elicited discernable hand and bicep twitches in at least five of ten 

consecutive stimulations.  For the monkeys, at the end of each stimulation, 1.5 oz of fruit 

juice was automatically delivered to the subject.  Each set of ten stimulations was 

followed by a one minute break.   For testing, all participants administered rTMS at 

levels 5% above motor threshold at 5Hz; this level is generally accepted as the optimum 

level for providing safe, temporary interference (Green) Pascual-Leone & Wasserman, 

1997).  

 Task and Procedure.  Both humans and monkeys completed the same task as in 

Experiment 3, but with the inclusion of rTMS of either the left or right cerebral 

hemispheres centered over the inferior parietal lobe.  The spatial resolution of the coil did 

not allow for precise stimulation of an area of cortex smaller than 5 cm X 10 cm, thereby 

negating the capability to specifically target the angular gyrus, therefore the parietal lobe 

was targeted.  Prior to testing, the magnetic coil was placed over the left and right parietal 

lobe of each subject.  With the coil in place, the position of the coil was then marked with 

white chalk to ensure proper placement of the coil during each trial.  After the 

participants completed the trial initiation procedure, the quantitative stimuli appeared for 

150 ms.  There was then a one-second interval between the offset of the stimulus pair and 

the appearance of the response screen.  During this one-second interval, rTMS 
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application occurred or there was no stimulation.  Immediately after the one-second 

interval, the response screen appeared thereby requiring the subjects to make a relative 

numerousness judgment. 

 For the RNJ task there were 12 trial types: Dots presented to the LVF with left- 

hemisphere magnetic stimulation, right-hemisphere magnetic stimulation, or no magnetic 

stimulation; dots presented to the RVF with left-hemisphere magnetic stimulation, right- 

hemisphere magnetic stimulation, or no stimulation; numerals presented to the LVF with 

left-hemisphere magnetic stimulation, right-hemisphere magnetic stimulation, or no 

magnetic stimulation; and numerals presented to the RVF with left-hemisphere magnetic 

stimulation, right-hemisphere magnetic stimulation, or no magnetic stimulation.  Trial 

type and order were randomized throughout testing.  Each monkey was required to 

perform approximately 20 trials of each type (at least 240 trials per animal).  Human 

participants were required to perform approximately 10 trials of each type. 

Results 

 Accuracy data were first analyzed via a 3 (TMS condition) x 2 (trial type) x 2 

(visual field) x 2 (species) analysis of variance.  The following TMS conditions were 

used: TMS to the same hemisphere as visual stimulation (e.g., rTMS of the right 

hemisphere on a trial with stimulus presentation in the left visual field), TMS to the 

hemisphere ipsilateral to visual stimulation (e.g., rTMS of the right hemisphere on a trial 

in which visual stimuli were flashed to the right of fixation), and no TMS (i.e., the coil 

positioned over the left or right hemisphere, but no magnetic stimulation delivered).  A 

main effect for TMS presentation was found, F(1, 2) = 21.15, p < .05 (see Figure 9).  

Post-hoc analysis revealed that performance in the no stimulation condition was 
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significantly better than in either stimulation condition, which in turn did not differ from 

one another (Tukey’s HSD = 8.87). 
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Figure 9. 

 A main effect for trial type was also found, F(1, 2) = 35.17, p < .05.  Performance 

was significantly better on the numeral comparisons (81% correct) than on the random 

dot-pattern comparisons (67% correct).  Interestingly, the analysis of visual field 

approached significance, F(1, 2) = 15.87, p = .058 (power = .562).  Consistent with the 

response time findings from Experiment 3, mean accuracy for stimuli presented to the left 

visual field was 72% correct, whereas accuracy for the right visual filed was 76% correct.  

Analysis revealed no significant interactions.  Because patterns of functional cerebral 

asymmetries may differ as a function of handedness (Hopkins & Washburn, 1994; 

Hopkins, Washburn, & Rumbaugh, 1989; Morris, Hopkins, & Rumbaugh, 1991) the 

accuracy data were subsequently analyzed using a 3 (TMS condition) x 2 (trial type) x 2 

(visual field) x 2 (preferred hand) ANOVA.  This analysis revealed no new main effects 

or interactions. 
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 Accuracy data were next analyzed with a 2 (visual field of presentation) x 2 

(hemisphere of rTMS stimulation) x 2 (trial type) x 2 (species) analysis of variance. The 

“no TMS” trials were not included in this analysis. A main effect for trial type was found, 

F(1, 2) = 13.94, p < .05.  A main effect for hemisphere of rTMS stimulation was also 

found, F(1, 2) = 5.22, p < .05). Both species performed better with right hemisphere 

rTMS stimulations than when rTMS was delivered to the left hemisphere.  A significant 

interaction was found between species and hemisphere of stimulation, F(1, 2) = 6.29, p < 

.05.  The monkeys’ performance was not significantly disrupted by stimulation to either 

hemisphere (69% correct for left hemisphere stimulations and 71% correct for right 

hemisphere stimulations), whereas the humans’ performance was most significantly 

disrupted by stimulation to the left hemisphere (69% correct for left hemisphere 

stimulations and 79% correct for right hemisphere stimulations).  There were no other 

significant main effects or interactions.     

 Response time data were first analyzed via a 3 (TMS condition) x 2 (trial type) x 

2 (visual field of presentation) x 2 (species) ANOVA.  Analysis of response times 

revealed a significant main effect for TMS condition, F(1, 2) = 23.615, p < .05.  

Response times on trials with application of rTMS were significantly slower than on 

trials with no rTMS application (mean RT of 708 msec on trials with rTMS application 

on same hemisphere as visual field of presentation, mean RT of 702 msec on trials in  

which rTMS and the visual stimuli were presented initially to opposite hemispheres, and 

516 msec with no rTMS stimulation.  A significant interaction between TMS and species 

was also evident, F(1, 2) = 19.284, p < .05 (see Figure 10).  Post-hoc analysis revealed 

that there were no differences in monkeys’ response times as a function of TMS 
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condition.  However, humans’ performance was significantly affected when presented 

with rTMS (Tukey’s HSD = 179.64 msec).  No other significant effects or interactions 

were found.  
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Figure 10. 

 Reaction time data were next analyzed with a 2 (visual field of presentation) x 2 

(hemisphere of rTMS stimulation) x 2 (trial type) x 2 (species) analysis of variance. A 

main effect for trial type was found, F(1, 2) = 10.11, p < .05.  A significant interaction 

was also found between species and hemisphere of stimulation, F(1, 2) = 6.29, p < .05.  

The monkeys’ performance was not significantly disrupted by stimulation to either 

hemisphere 615 msec. for left hemisphere stimulations and 623 msec. for right 

hemisphere stimulations) , whereas the humans’ performance was significantly more 

disrupted by stimulation to the left (762 msec.) rather than the right hemisphere (720 

msec.).  There were no other significant new main effects or interactions.   

 Because one monkey and one human were left handed, additional analyses of 

response times were conducted with a 3 (TMS condition) x 2 (trial type) x 2 (visual field 
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of presentation) x 2 (dominant hand). This analysis revealed a significant interaction 

between visual field of presentation and preferred hand, F(1, 2) = 88.92, p < .05 (see 

Figure 11).  Post hoc analysis revealed, as in Experiment 3, that right-handed participants 

were slower to respond to stimuli presented to the left visual field (750 msec) than the 

right visual field (610 msec; Tukey’s HSD = 115 msec).  Response times for left-handed 

participants were statistically equivalent regardless of visual field of presentation (613 

msec for LVF and 610 msec for the RVF). 
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Figure 11. 

  

Discussion 

 Application of rTMS disrupted numerical cognition.  What was surprising in these 

data is that the effect of magnetic stimulation did not interact with stimulus type or 

hemisphere, despite the fact that significant main effects of stimulus type and visual field 

were again observed in the accuracy data for this study.  Humans responded more slowly 

and less accurately on trials during which rTMS was administered, irrespective of the 
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hemisphere that was stimulated or the stimulus conditions of the RNJ task.  The monkeys 

also responded significantly less accurately on trials in which rTMS was presented, 

regardless of the stimulus type or visual field of presentation of the RNJ task.   

 Human participants suffered the greatest disruptions in performance.  Humans’ 

average response times for both same- and opposite-hemisphere rTMS application 

conditions were about 50% greater than those for the no-stimulation condition, whereas 

monkeys’ response times remained comparable across the three conditions.  Why would 

this be?  One could argue that perhaps the monkeys were much more acclimated to rTMS 

application than the humans as the cause for this difference in performance.  The 

monkeys had extensive experience undergoing TMS application whereas the human 

participants had relatively little, if any, experience under such conditions prior to this 

study.   Curiously, in the no-stimulation condition human response times were faster than 

those of monkeys, a rare occurrence indeed (e.g., Washburn & Rumbaugh, 1997).  The 

expectation of TMS, though painless, is likely an arousing event. Perhaps the humans fell 

victim to the Yerkes-Dodson Law in that they may have been over-aroused by TMS 

application.  This explanation might account for increases in RT for stimulation trials and 

improved performance on no-stimulation trials.   

 These findings also argue for interhemispheric competition in the cortical network 

of spatial attention of humans, but not necessarily for monkeys.  Consequently, human 

performance was affected by TMS application to either cerebral hemisphere with left-

hemisphere stimulation resulting in the greatest decreases in performance.   Such 

asymmetrical processing by humans would serve to be a huge advantage from a 

neurological standpoint as it would likely serve to nearly double cognitive capacity.  If 
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each cerebral hemisphere subsumes the lead role for different operations, but maintains 

communication with the other hemisphere, thereby providing for nearly twice as much 

processing capacity.  The monkeys, on the other hand, were equally affected by TMS 

application to either cerebral hemisphere, suggesting that the monkeys may have a 

redundant cortical system for processing quantities with neither hemisphere possessing a 

significant advantage over the other.   

 Curiously, response times in Experiment 4 averaged 645 milliseconds whereas 

response times for Experiment 3 averaged 3,375 msec, an 80% decrease in response time.  

This reduction occurred despite the fact that the same task was administered in 

Experiment 3.  There were however some procedural differences between the 

experiments, in addition to the use of rTMS in the fourth study.  In the present 

experiment, the humans used a joystick rather than a keyboard to respond.  Also, there 

was a 1-second delay for implementation of the TMS condition between offset of the 

stimulus pair and the response screen; however, the difference in mean RT between the 

studies is far greater than one second (2.73 seconds).  

 Other researchers have shown TMS to cause facilitative effects (Marzi et al. 1998;  

Oliveri et al., 1999; Walsh et al., 1998).  One explanation for such an effect is the 

possibility that rTMS on a given trial leads the participant to devote more attentional 

resources to the task at hand, thereby leading to a decrease in response time (Marzi et al., 

1998).  A second explanation for this facilitation was provided by Walsh et al. (1998) and 

Oliveri et al. (1999) who stated that TMS disruption of one cortical area may disinhibit 

competing cortical circuits thereby leading to faster responding.  This is precisely the 



63 

finding of Hilgetag, Theoret, and Pascual-Leone (2001) who reported a facilitation effect 

of rTMS over the ipsilateral parietal cortex of human participants. 

 For right-handed humans and monkeys, both dots and numerals were processed 

more rapidly when presented to the right visual field.  Interestingly, right-handed 

participants showed similar response times to those of left-handed individuals for both 

stimulus types when presented to the right visual field.  However, for stimuli presented to 

the left visual field, the right-handed humans and monkeys exhibited a significant 

increase in response time.  This increase in response time may possibly be due to a delay 

in processing necessitated by the contralateral organization of the cortical system.  Recall 

that information concerning stimuli falling to the left of the visual fixation point (i.e., in 

the left visual field) is initially projected to the right cerebral hemisphere, whereas 

information concerning stimuli to the right of the visual fixation point (i.e., right visual 

field) is initially processed in the left cerebral hemisphere.  Information is then distributed 

between regions of both cerebral hemispheres via the corpus collosum, so that the 

hemisphere ipsilateral to the visual field of presentation receives stimulation indirectly.  

This gives one hemisphere (the hemisphere contralateral to the visual field in which the 

stimulus was flashed) privileged access to the visual stimulus with respect to time and 

quality.  Right-handed participants are more likely to have left-hemisphere lateralized 

function for processing symbolic stimuli (e.g., Arabic digits) than are left-handed 

participants.  Previous research has shown that 96% of right-handed participants are left-

hemisphere dominant for language, whereas only about 70% of left-handed participants 

are left-hemisphere dominant for language (Rasmussen & Milner, 1977).  Therefore, the 

right-handed participants may have exhibited longer response times for stimuli presented 
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to the left visual field in part because they must wait for the transfer of quantitative 

representation from the right to the left hemisphere before responding.   

General Discussion 

 Numerous researchers have sought to determine whether human and nonhuman 

primates possess similar numerical skills, skills that are similar in quality if not kind.  In 

almost every case, nonhuman primates have shown themselves to be apt pupils for 

various tests of numerical competence. The present investigation is no exception.  In as 

much as the monkeys have rather limited cognitive skills when compared to those of 

humans, the monkeys have once again shown basic numeric abilities (e.g., RNJ’s of pairs 

of numerals and dot patterns <10 in quantity) to be quite similar to that of their human 

counterparts.  The real question however is whether these performance similarities are 

due to similar cortical structures or capabilities.   

 In this study, both species have displayed a propensity for more accurate 

responding to congruent than to incongruent stimuli.  Monkeys’ response times on such 

tasks are nearly identical to those of humans.  The slopes of the symbolic distance curves 

for the monkeys and humans were also almost identical.  Dehaene (1993) concluded that 

results like these (SNARC effects) occur because of a system of numeric representation 

that relies on a “mental number line” that is oriented left to right like a number-line with 

smaller quantities appearing on the left and greater quantities appearing to the right.  

From these data it would appear that both species represent numerosity in something akin 

to a number-line like fashion.  Both humans and nonhumans responded more quickly 

when presented with congruent stimuli.  Taken together, these findings argue strongly for 
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a cortical process of numeric representation and processing that is similar in both species, 

albeit one that is generally less accurate but faster for the monkeys 

 In an attempt to determine whether humans and monkeys differ with respect to 

hemispheric lateralization of numerosity, a divided visual field task was employed.  The 

results indicated that the human and monkeys responded in very similar ways.  Both were 

faster and more accurate in responding to numerals than to dots, and were faster and more 

accurate when stimuli were presented to the right visual field than the left visual field.  

Again, the results for the two species were generally similar; however for the first time in 

this investigation, species differences were apparent.  In terms of accuracy and response 

time, monkeys’ performance in the divided visual field paradigm was equivalent for both 

stimulus types.  Humans however, performed significantly better on the numeral trials 

than on dot-pattern trials.  This difference in performance likely occurs because humans 

are more familiar with numerals and more adept at symbolic (language) processing, 

whereas the monkeys are more familiar with the dot patterns.  This would account for the 

species differences in performance on these tasks in Experiment 2.  Recall that the 

performance of the humans and monkeys was almost identical although the monkeys 

showed consistently faster response times.  Humans may be slower because they must 

necessarily take time for a transfer of representation codes from the right-hemisphere to 

the left.  For example, patients NAU (Dehaene & Cohen, 1991) and GUI (Cohen, et al, 

1994) both suffered from large posterior left-hemisphere lesions.  When asked to name 

Arabic numerals, both had to count before naming the numeral, yet both were easily able 

to make accurate greater-than/less-than judgments about pairs of numerals.  Patient GUI 

could not read aloud Arabic numerals, but was still able to name and understand familiar 
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numerals such as 1789 (French Revolution) and 1918 (World War I), indicating 

preserved access to number meaning (Dehaene & Cohen, 1991).The monkeys, on the 

other hand, are not bound by such a transfer as they may have a redundant representation 

system active in both hemispheres.  This explains how the monkeys can display 

equivalent performance for stimuli presented to both visual fields whereas human 

performance is better for numerals when processed in the left hemisphere and better for 

dots when processed in the right hemisphere. 

 From a methodological standpoint, it might be advantageous to increase or 

decrease stimulation intensity in the TMS conditions to determine whether accurate 

performance can be further disrupted or whether response time facilitation can be further 

increased.  In addition, the use of a smaller coil would allow for stimulation of more 

focused areas of cortex thereby allowing for more definitive conclusions to be drawn 

about localization within a hemisphere as well as lateralization between the hemispheres. 

 Future research should concentrate on furthering the already robust findings 

reported here and elsewhere.  The inclusion of language-trained apes would provide an 

interesting link between the monkeys and the humans.  Monkeys, not bound by linguistic 

coding, already show impressive quantitative abilities, similar to those of humans.  The 

addition of language trained apes and apes with no language training to this research 

paradigm would promote a better understanding of the development of numerical 

competence as well as the accompanying neural correlates.   Indeed, if human laterality is 

driven by the left-hemisphere asymmetry for language, language trained chimpanzees 

might also show the quantitative processing biases exhibited by humans.  Conversely, 



67 

non-language trained chimps should show similar performance to that of the monkeys 

discussed within.   

 These findings serve to further elucidate the interspecies similarities and 

differences between human and nonhuman primates.  Once again nonhuman primates 

have shown themselves to possess complex cognitive abilities far beyond what many 

would have expected.  However small, these cognitive differences do exist, and would 

appear to be driven by our uniquely human skill with, and propensity for, language.  This 

research leads to the conclusion that human possess an important laterality advantage 

over nonhuman primates.  It is likely this specialization of function that allows us to be so 

adept at symbolic processing.  
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Appendix A. 

 

Symbolic distance effects for human and nonhuman primates on number trials. 

(SD)  Humans   Monkeys 

One (1)   1460 msec  1360 msec 
Two (2)   1310 msec  1280 msec 
Three (3)   1190 msec  1140 msec 
Four (4)   1160 msec  920 msec 
Five (5)   1180 msec  910 msec 
Six (6)    930 msec  850 msec 
Seven (7)   915 msec  850 msec 
Eight (8)   820 msec  860 msec 
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Appendix B. 

 

Symbolic distance effects for human and nonhuman primates on random-dot trials. 

(SD)  Humans   Monkeys 

One (1)   1520 msec  1480 msec 
Two (2)   1260 msec  1310 msec 
Three (3)   1190 msec  1090 msec 
Four (4)   1060 msec  1040 msec 
Five (5)   1180 msec  1030 msec 
Six (6)    910 msec  1070 msec 
Seven (7)   940 msec  960 msec 
Eight (8)   1240 msec  1070 msec 
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Appendix C. 

 

Symbolic distance effects for human and nonhuman primates on congruent trials. 
 
(SD)  Humans    Monkeys 

One (1)   1200 msec  1030 msec 
Two (2)   1090 msec  1030 msec 
Three (3)   1040 msec  970 msec 
Four (4)   1100 msec  900 msec 
Five (5)   950 msec  880 msec 
Six (6)    960 msec  930 msec 
Seven (7)   960 msec  890 msec 
Eight (8)   1050 msec  950 msec 
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Appendix D. 

 

Symbolic distance effects for humans and nonhuman primates on incongruent trials. 
 
(SD)  Humans    Monkeys 

One (1)   1390 msec  1230 msec 
Two (2)   1150 msec  1090 msec 
Three (3)   1080 msec  1050 msec 
Four (4)   1040 msec  1030 msec 
Five (5)   1070 msec  990 msec 
Six (6)    920 msec  970 msec 
Seven (7)   990 msec  980 msec 
Eight (8)   840 msec  970 msec 
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Appendix E. 

Coronal view of human brain with left angular gyrus highlighted. 
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In the first two examples the horizontal lengths of stimuli which subtend 5 degrees 

at viewing distances of 30 and 50 cm. are determined. First, an imaginary line is 

projected from the eye to the stimulus. This line is perpendicular to the viewing 

plane and it establishes two right triangles. The angles measured at the eye are each 

2.5 degrees.  

The TAN (Tangent) of 2.5 degrees equals .043. The TAN of an angle equals the 

length of the side opposite the angle divided by the length of the side adjacent to the 

angle. Therefore, in the example for the 30 cm. viewing distance, X (opposite side 

length) = (.043) * (30 cm.) = 1.31 cm. (1/2 the horizontal length of the stimulus). 

Multiply 2 * X to find the horizontal length of the stimulus which subtends 5 degrees 

at the 30 cm. viewing distance.  
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