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ABSTRACT 

 

CONTINGENT CLAIM PRICING WITH APPLICATIONS TO  

FINANCIAL RISK MANAGEMENT 

BY 

Hua Chen 

2008 

 

Committee Chair: Samuel H. Cox and Shaun Wang 

Major Academic Unit: Department of Risk Management and Insurance 

 

This is a multi-essay dissertation designed to explore the contingent claim pricing theory with 

non-tradable underlying assets, with emphasis on its applications to insurance and risk 

management. In the first essay, I apply the real option pricing theory and dynamic programming 

methods to address problems in the area of operational risk management. Particularly, I develop 

a two-stage model to help firms determine optimal switching triggers in the event of an influenza 

epidemic. In the second essay, I examine mortality securitization in an incomplete market 

framework. I build a jump-diffusion process into the original Lee-Carter model and explore 

alternative model with transitory versus permanent jump effects. I discuss pricing difficulties of 

the Swiss Re mortality bond (2003) and use the Wang transform to account for correlations of 

the mortality index over time. In the third essay, I study the valuation of the non-recourse 

provision in reverse mortgages. I model the various risks embedded in the HECM program and 

apply the conditional Esscher transform to price the non-recourse provision. I further examine 

the premium structure of HECM loans and investigate whether insurance premiums are adequate 

to cover expected claims. 
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1 
Introduction and Overview 
 

 

A contingent claim, or derivative security, is defined as a financial instrument whose future 

payoffs are contingent on the behaviors of some “underlying” assets. The theory of contingent 

claim pricing is the cornerstone of the modern theoretical and empirical research in financial 

economics. It is designed to measure risk and assign appropriate premiums for risk bearing. 

Contingent claim pricing, therefore, is inextricably linked with risk analysis and risk 

management.  

The research on contingent claim pricing is especially important to practitioners in financial 

markets, because it has shed new insights into how potential financial derivatives might be 

priced and hedged. With the rapid development of the contingent claim pricing theory, there are 

more derivative securities to be designed and introduced to the market, and firms are more 

willing to use these securities as a tool to hedge financial risks they are facing with. The 
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explosive growth of financial derivative market drives the research on contingent claim pricing 

even further, because the goal of this research is to improve the pricing and hedging of these 

securities. The purpose of my dissertation is to explore the theory of contingent claim pricing 

with emphasis on its application to the field of financial risk management. 

Contingent claim pricing theory has a long and illustrious history, which can be traced back 

to Bachelier (1900). He was the first to model the fluctuations of assets prices by the Brownian 

motion and attempt to price derivatives. Unfortunately, the impact of Bachelier’s work was not 

recognized by economists for over fifty years until key contributions were made by Samuelson 

(1965) and Samuelson and Merton (1969). They model stock prices using the geometric 

Brownian motion, which reflects the limited liability (non-negative) property of share prices. In 

the early 1970s, when Black, Scholes and Merton applied the geometric Brownian motion and 

Ito calculus to the problem of option pricing and hedging, a completely definite and rigorous 

theory of option pricing was created. The option pricing theory facilitates the subsequent rapid 

expansion in the trading of financial derivatives, and leads directly to a general theory of 

contingent claim pricing related to a wide variety of financial instruments.  

Contingent claim pricing theory is established on the non-arbitrage condition, that is, the 

absence of risk-free opportunities for making profits without any initial investment. For some 

derivative securities, such as forward contracts, the payoffs can be replicated by the underlying 

asset and a risk-free asset using a static trading strategy. Under this circumstance, the absence of 

arbitrage can lead to an exact pricing formula without any additional assumption. For other types 

of derivatives including options, the no-arbitrage restriction can only determine bounds on the 

option’s price. An additional assumption regarding the probability distribution of the underlying 

asset’s return is necessary for valuing such derivative contracts. Assuming the underlying’s 
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return follows a continuous-time diffusion process and investors can trade continuously, Black, 

Scholes and Merton show that a portfolio can be created to dynamically replicate the payoff and 

fully hedge the risk of the contingent claim. In the absence of arbitrage, the hedge portfolio’s 

return must be riskless, which results in a partial differential equation (PDE) the contingent 

claim’s price must satisfy. Solving this PDE subject to appropriate boundary conditions 

determines a unique price for the contingent security. 

Contingent claim’s price can also be derived using the martingale pricing approach, which 

was developed by Cox and Ross (1976), Harrison and Kreps (1979), and Harrison and Pliska 

(1981). They argue that in a complete market, the non-arbitrage condition ensures the existence 

of a unique risk-neutral measure (equivalent martingale measure) such that the discounted 

underlying asset’s price is a martingale under this measure. The contingent claim’s price can be 

obtained by calculating the expected payoff under the risk-neutral measure and discounting it 

back to time zero using risk-free rates. Of course, under these conditions the stochastic discount 

factor (pricing kernel) also exists uniquely. We can get the contingent claim’s price by 

calculating the expected payoff under the physical probability distribution and discounting by the 

stochastic discount factors. 

A direct application of the optional pricing theory is the regime switching problem, which is 

pioneered by Mossin (1968) and generalized by Brennan and Schwarz (1985) and Dixit (1989). 

They defined the concepts of option to enter and option to abandon as part of the firm’s value, 

and solve the entry and exit trigger prices as indicators for firms’ decision policies. Their work 

was extended in many ways and finalized by Brekke and Oksendal (1994). In my first essay, “An 

Option-Based Operational Risk Management on Pandemics”, I apply the real option pricing 

theory to the area of operational risk management. Particularly, I propose a two-stage model to 
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help firms determine the optimal switching triggers in the event of an influenza pandemic. This 

research is motivated by current concerns about the possible outbreak of avian influenza 

pandemics and the Center of Disease Control and Prevention (CDC)’s instructions to “set up 

authorities, triggers, and procedures for activating and terminating the company’s response plan, 

altering business operations (e.g. shutting down operations in affected areas)”. 1 In the first stage, 

I propose a regime-dependent epidemic model to simulate the spread of the virus, depending on 

whether the firm is active or inactive. In the second stage, I view the reactivation decision as a 

call option and the suspension decision as a put option, and use the dynamic programming 

approach to determine the optimal switching thresholds. Numerical examples and sensitivity 

analysis are provided to illustrate the effects of a flu attack.  

Influenza pandemics not only bring substantial financial losses to businesses because of the 

interruption of regular operations, but also have a severe impact on life insurers or reinsurers. 

According to Weisbart (2006), a moderate influenza pandemic similar to the 1957 and 1968 

outbreaks could cost U.S. life insurers $31 billion in additional death claims, and a severe one 

similar to 1918 pandemic could cost up to $133 billion. How to hedge the mortality risk caused 

by catastrophic events, such as influenza pandemics, becomes a key issue for the life insurance 

industry. Traditionally, these risks are shared by insurers or reinsures. More recently, mortality 

securitization creates a new way of transferring mortality risks to capital markets. The markets 

for mortality bonds are far from complete, since the underlying is a public mortality index based 

on a certain population, which is not traded in the market. In a complete market, there exists a 

self-financing trading strategy which can replicate all contingent claims at any time. As a result, 

there exists one and only one equivalent martingale measure that we can use to price securities. 
                                                        
1 See CDC. 2005. Business Pandemic Influenza Planning Checklist. Available at 
http://www.pandemicflu.gov/plan/business/businesschecklist.html 
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In an incomplete market, however, there are non-attainable contingent claims. In other words, 

there are cash flows which cannot be replicated by self-financing trading strategies. How to 

value the mortality-linked securities and hedge mortality risks in an incomplete market attracts 

my attention. 

There are mainly two approaches for security valuation in an incomplete market. The first 

method extends the risk-neutral pricing to an incomplete market (see Milevsky and Promislow, 

2001; Dahl, 2004; Dahl and Møller, 2005; Miltersen and Persson, 2005). The financial economic 

theory tells us the arbitrage-free condition ensures the existence of risk-neutral measures, even in 

an incomplete market. However, the risk-neutral measure is not unique in this case. The 

problems are which risk-neutral measure should we pick for valuation purposes, and how can we 

construct hedging strategies for non-attainable contingent claims to “minimize the risk”? Cairns, 

Blake and Dowd have a detailed discussion on this issue and take the EIB longevity bond as an 

example (see Cairn, Blake and Dowd, 2006a, 2006b).  

With the convergence of financial and insurance markets, there has been a major increase in 

the trading and securitization of insurance risks. Techniques used in insurance pricing are being 

considered for pricing derivative contracts in financial markets. The second approach uses a 

distortion operator to create a risk-adjusted distribution, and obtain the fair value of securities 

under this risk-adjusted measure. There are a few distortion operators we can choose from, such 

as the Wang transform (Wang, 2000, 2002, 2003) and the Esscher transform (Esscher, 1932). 

Examples of using the Wang transform include Lin and Cox (2005), Dowd, Blake, Cairns and 

Dawson (2006), Denuit, Devolder and Goderniaux (2007), and the example of employing the 

Esscher transform can be seen in Siu, Tong and Yang (2004), Li, Boyle, Hardy and Tan (2007). 

Both of the distortion operators have attractive features and are widely used in pricing insurance 
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and financial products. I will focus on the distortion approach here.   

My second essay studies the design and valuation of mortality securitization in an 

incomplete market framework. In this essay, I propose a generalized Lee-Carter model with 

transitory jump effects, in order to capture the mortality deterioration caused by catastrophic 

events. I also examine alternative models with permanent jump effects, and find that modeling 

mortality via permanent jump effects underestimates the market price of mortality risk. I use the 

Swiss Re mortality bond in 2003 as an example to show how to apply my mortality model and 

the Wang transform to value mortality-linked securities. Pricing the Swiss Re mortality bond is 

difficult because the mortality index is correlated across countries and over time. Cox, Lin and 

Wang (2006) employ normalized multivariate exponential tilting to take into account correlations 

across countries. I show in this essay how to account for correlations of the mortality index over 

time by simulating the mortality index and changing the measure on paths. 

We have to admit that mortality deterioration caused by catastrophic events is perhaps a 

one-in-100 years’ incidence. However, one can observe a clear trend of mortality improvement 

over the past hundreds of years. It has also been evident that mortality is improving in a 

stochastic way. Longevity risk is referred to as the uncertainty in the aggregate morality 

improvement. The mortality improvement place strains not only on fiscal sustainability of social 

security systems, but also on individuals’ capacity to accumulate enough private savings to 

finance their retirement. The reverse mortgage, as one financial innovation to provide elderly 

homeowners cash flows until their deaths, has attracted public attention. My third essay 

examines the mechanism of the reverse mortgage, and analyzes various risks embedded in its 

non-recourse provision. Particularly, I extend the generalized Lee-Carter model with permanent 

jump effects to capture the longevity risk, and model the house price index in the GARCH 
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framework. I employ the conditional Esscher transform to price the non-recourse provision, 

which can be written as a series of exchange options with different times to maturity. I further 

examine the premium structure of reverse mortgage loans and investigate whether insurance 

premiums are adequate to cover expected claims. I find that the Federal Housing Administration 

(FHA) collects higher premiums than normally needed, on average, and the Home Equity 

Conversion Mortgage (HECM) program is sustainable.  

To sum up, my three essays study the contingent claim pricing theory and its applications to 

financial risk management. The structure of my thesis can be viewed clearly in Figure 1.1. 

Figure 1.1: The Structure of My Thesis  

       

I contribute to the existing literature in several aspects. In my first essay, I make the first 

attempt to apply real option pricing to help a firm make the operational decisions when an 

influenza pandemic severely depletes its work force. I illustrate how firms’ values might be 

affected by the embedded real options, and offer an applicable method for large businesses to 

implement suspension-reactivation strategy. An unexpected influenza pandemic may also impose 

Essay 2 
Mortality Derivative 

Payoff: Call Option Spreads 
Method: The Wang Transform 

Essay 3 
Longevity Derivative 

Payoff: Sum of Exchange Options 
Method: Conditional Esscher Transform 

Contingent 
Claim Pricing 

Essay 1 
Firm Valuation 

Payoff: Cash Flows + Real Options 
Method: Dynamic Programming 
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great challenges on life insurance industries. In my second essay, I propose a generalized Lee-

Carter model with jumps to capture extreme mortality events and apply the proposed model in 

pricing mortality bonds via the Wang Transform. In addition, I present a pricing strategy that 

accounts for the correlation of the mortality index over time. Mortality improvement is on the 

other side against mortality deterioration. In my third essay, I show that my proposed mortality 

model can also be used to capture the rare longevity events, but it should be adapted with 

permanent jump effects. I analyze the risks underlying reverse mortgage products and price the 

non-recourse provision using the conditional Esscher transform.  
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2 
An Option-based Operational Risk 
Management on Pandemics 
 

 

        In a financial market, a call option gives the buyer the right but not the obligation to buy a 

stock (or other underlying assets) at a specified price (strike price) on a specified date (maturity 

date). The holder determines whether or not to exercise the option on the maturity date when the 

stock price is observed. The option is more valuable when there is more uncertainty, i.e., when 

the volatility term of the underlying asset is greater. We live in an uncertain world. Business 

managers need to make strategic investment decisions with an unforeseen future. A firm with an 

opportunity to invest is holding an option analogous to a financial call option—it has the right 

but not the obligation to buy an asset at some future time of its choosing. Business managers are 

making contingent decisions—decisions to invest or disinvest that depend on unfolding events. 

To address the analogy with options on financial assets, the opportunities to acquire real assets 
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are sometimes called “real options”. In light of real options that seem to be everywhere, 

nowadays theorists and practitioners unanimously believe that we should consider these real 

options when analyzing corporate decisions. The celebrated Black-Scholes option pricing theory 

can be adapted for applications to strategic investments in the real world. In this chapter, I 

employ the real option approach to study firms’ optimal strategic decisions in the event of an 

influenza pandemic. 

  

2.1. Introduction 

There were a total of 31 pandemics occurring in the past 500 years and 3 in the past century, 

of which the 1918-1919 “Spanish flu”, the most severe one, killed up to 50 million people 

worldwide and 500,000 in the United States (Rasmussen, 2005). Historic data have shown that 

influenza pandemics happen with frightening regularity and occur every 30 to 50 years (Knapp, 

2006). Given this pattern, the possibility of another pandemic attack is not considered remote. 

Ever since the isolated outbreaks of avian influenza in 2003, scientists have been particularly 

worrying about the influenza A (H5N1) virus.  

The CDC predicts 2 to 7 million deaths and medical treatment for tens of millions people 

even in a moderately severe scenario (Jia and Tsui, 2005). Although pandemics attack the 

insurance industry severely, their impacts on any other business organizations are startling as 

well. Businesses would probably be shut down for the purpose of quarantine; people would be 

reluctant to expose themselves to crowds; corporate earning would plunge which would further 

trigger defaults on corporate debts; besides, there is a likely crash in consumer confidence. The 

World Bank claims if the impact of a moderately severe pandemic were to last for a year, the 

economic loss would be $100 to $200 billion for the U.S., and around $800 billion globally 
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(WBEAPR, 2005). The Congressional Budget Office (CBO, 2005) estimates that a severe 

influenza pandemic would result in a loss of 5 percent of GDP compared with what it would 

otherwise have been.2 

Dynamics of human epidemics is an important topic in epidemiology and mathematical 

biology. An enormous literature has been developed in this field, the history of which can be 

traced back to pioneers such as Kermack and McKendrick (1927). Ever since the publication of 

Bailey (1957), mathematical epidemiology has grown rigorously. A wide variety of epidemic 

models have been mathematically formulated, analyzed and empirically fitted (see reviews in 

Dietz, 1967; Wickwire, 1977; Becker, 1978; Dietz and Schenzle, 1985; Hethcote, 1994). 

Basically, they can be classified into two main streams: deterministic models and stochastic 

models. In essence, the spread of a disease through a given population is a stochastic process. 

Nevertheless, deterministic models may often be used to obtain acceptable approximations for 

relatively large populations. Whereas these deterministic models are relatively easy to work with 

using numerical methods, I prefer stochastic models since they usually provide more information 

about the intrinsic variability of the system.  

Recently, new interest arises in research using epidemic modeling as a decision aid for 

optimal control policies such as immunization, worker furloughs, and quarantines. Based on a 

deterministic epidemic model, Finkelstein, Smart, Gralla and d’Oliveira (1981) construct a 

decision system under which alternative public immunization strategies can be compared. They 

find that vaccinating the population at large is sometimes favored over targeting at the highest-

risk groups. Meltzer, Cox and Fukuda (1999) employ Monte Carlo mathematical simulations and 

reach the same conclusion. Jia and Tsui (2005) use SARS as a case study to quantify the impact 
                                                        
2 Congressional Budget Office. 2005. A Potential Influenza Pandemic: Possible Macroeconomic Effects and Policy 
Issues. 
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of various control policies. These models, however, only evaluate the effectiveness of control 

measures on pandemics based on national needs, and conduct cost/benefit analysis from the 

macroeconomic perspective. They provide neither operating instructions for large businesses to 

prepare for pandemic risks, nor any insights as to the triggers for implementing optimal control 

strategies.  

Operational risk is defined as the risk of loss resulting from inadequate or failed internal 

processes, people and systems, or from external events (Basel Committee, 2004). 3  Influenza 

pandemic is one of the examples. In the event of influenza pandemics, businesses play an 

especially important role in protecting employees’ health as well as minimizing the economic 

losses to the whole society. Business continuity planning has become a key component of 

operational risk management. It emphasizes the maintenance of critical operations and services 

during a crisis or a timely recovery of business after a disruption. Companies that provide 

infrastructure services, such as power and telecommunications, should devote significant 

resources to ensure continued operations during a crisis. Firms in financial sectors, like banks or 

insurance companies, also have a special responsibility to plan for business continuity and 

maintain the stability of the financial system. In order to assist businesses to plan for the 

outbreak of a pandemic, the HHS (Department of Health and Human Services) and the CDC has 

developed a checklist, which identifies necessary activities for large businesses to prepare for the 

impact and establish policies for implementation during a pandemic.4 In particular, it requires 

businesses to “set up authorities, triggers, and procedures for activating and terminating the 

company’s response plan, altering business operations (e.g. shutting down operations in affected 
                                                        
3 Basel Committee on Banking Supervision. 2004. International Convergence of Capital Measurement and Capital 
Standards. Bank for International Settlements. 
4 CDC. 2005. Business Pandemic Influenza Planning Checklist. Available at 
http://www.pandemicflu.gov/plan/business/businesschecklist.html  
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areas).”  

This essay is motivated by current concerns about the possible outbreak of avian flus and 

the CDC’s instructions for large businesses. Basically, these are the questions I want to address:  

• In the event of an infectious disease such as an influenza epidemic, should a profit 

maximizing firm continue to operate with the loss of productivity of its employees, or 

suspend the business (or parts of its business) temporarily in order to avoid contagion?  

• Does a firm’s intention to maximize its value contradict with the purpose of controlling 

the disease? 

• And most important of all, what are the optimal triggers for firms to implement the 

suspension-reactivation strategy?  

I propose a two-stage model in order to answer these questions. The intuition is 

straightforward. In the first stage of the model, I adapt a simple susceptible-infective (SI) model 

to describe the dynamics of an epidemic that spreads in a given company (or parts of its 

businesses). I accommodate external contagion and possible deaths in this model and modify it 

to a stochastic process. The productivity of an employee is reduced once he/she gets infected. 

The disease will spread and the fraction of the infective is increasing over time, which 

diminishes the revenue of the company due to the decrease in average productivity. When the 

fraction goes above a certain high threshold (mothballing threshold thereafter), the manager may 

want to temporarily suspend its business (or parts of its business in the most affected areas) and 

send employees, whether infected or non-infected, back home. The separation of the employees 

may help to control the disease. When the fraction of the infective drops to a certain low 

threshold (reactivation threshold thereafter), the manager may want to call the employees back to 

work and continue the business. Therefore, a regime-switching model is employed in the second 
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stage to determine these optimal switching thresholds. The regime switching model is based on 

the theory of real option valuation and can be solved by dynamic programming methods. I will 

discuss this in detail in the methodology part. 

My results suggest that given the parameter values in this study, it is optimal for the firm to 

lay up the business (or parts of its business) when the fraction of infected employees is higher 

than 27%, and to reactivate the operation when the fraction drops to 5%. Considering uncertainty 

in the future, firms are more conservative about the decisions of suspension and reactivation. 

Upon the condition that firms incur lump sum costs when switching between regimes, sensitivity 

analysis shows that the mothballing threshold increases with the switching costs. On the contrary, 

the reactivation threshold decreases with the costs. By implementing disease control measures, 

firms can increase their values in both regimes, and thereby control contagions at the same time 

as maximizing their profits. 

The rest of this chapter is organized as follows. In section 2.2, I modify the SI model to 

describe the spread of the virus in a large bushiness. In section 2.3, I discuss the real option 

pricing and the regime switching model. Dynamic programming is presented as a methodology 

in section 2.4. I provide numerical results based on the modified SI model and extend the 

analysis to the modified SIR model in section 2.5 and 2.6. Conclusions and discussions are given 

in section 2.7.   

 

2.2. Stage I: The Regime-Dependent Stochastic Epidemic Model 

In this section, I adapt a simple SI  model to simulate the spread of the virus, which may 

depend on the regime that the firm is currently in. It is noteworthy that although I consider the 

case of a manufacturing firm here, the same model can be applied to firms providing critical 
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services, such as infrastructure services and financial services. Actually, it is more reasonable to 

regard the firm as a division or parts of a large business that is in the affected areas. 

 

2.2.1. The Susceptible-Infective (SI) Model 

        Almost all epidemic models share the common feature, that is, dividing the modeled 

population into different groups (susceptible, infective, and recovered, etc), and studying the 

disease transmission between different groups. The simplest epidemic models only consider two 

categories: susceptible ( S ) and infective ( I ). The class S  denotes the group of individuals who 

are healthy but susceptible to a certain disease. In an environment exposed to the virus, some 

people may be infected with the disease (with or without symptoms) and are capable of 

transmitting the disease to others. These people are considered in the class I . I refer readers to 

Bailey (1957) and Bartholomew (1973) for more details.  

The SI  model considers a mild, short-lived epidemic (e.g. influenza) in a closed population. 

That is, there is no entry into or departure from the population. Given the time scale of influenza 

epidemics, demographic turnover (birth or death) is not considered. Moreover, the SI model 

assumes that the disease does not confer immunity. In other words, the recovered people may 

have access to the virus and are likely to get infected again. The transition dynamics of the SI 

model is illustrated in Figure 2.1. 

Figure 2.1: The Simple SI Model 

 

Let tS  and tI denote the fractions of population that reside in the state S  and I , 

Susceptible 
( S ) 

Infective 
( I ) 

Recovery rate γ  

Infection rate β  
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respectively, as a function of time, the dynamics of the disease evolves as follows:  

⎩
⎨
⎧

−=
−=

tt

tttt

IS
dtISIdI

1
)( γβ

,                                                   (2.1) 

or,      

dtIIIdI tttt ])1([ γβ −−= .                                                (2.2)  

The transition rate β  between the state S  and the state I  is referred to as the infection rate 

within the population, which is simply the rate at which susceptible individuals become infected 

by an infectious disease. The transition rate γ  is called the recovery rate, which is the inverse of 

the average duration of the infective period.  

 

2.2.2. The Modified SI Model Allowing for External Contagions 

Note that I am considering a large business organization instead of the whole population. 

The spread of the disease within the business is not only affected by the interaction between the 

susceptible and the infective employees in the firm, but also influenced by some external sources. 

The susceptible employees are inevitably getting in touch with the outside world, and thereby are 

subjected to infection. I use α  denote the infection rate from external sources. Within a small 

time interval of length tΔ , the additional increase of the infective from the external infection 

should be tStΔα . The dynamics of the disease within the firm can be expressed as follows: 

dtIIIIdI ttttt )]1()1([ −+−−= αγβ .                                               (2.3) 

 
Figure 2.2: The Modified SI Model Allowing for External Contagions 
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2.2.3. The Modified SI Model Allowing for External Contagions and Deaths 

        When considering a mild epidemic and a relatively large population, the assumption that 

there is no death from the disease is reasonable, and the SI  model can often be used to obtain 

acceptable approximations. However, if we are faced with a severe pandemic like the 1918 flu, 

or when we consider the disease transmission in a large business, we need to modify the classical 

SI  model to allow for deaths caused by the disease.  

Figure 2.3: The Modified SI Model Allowing for External Contagions and Deaths 

 

        Assume that the firm can hire new employees in order to make the working force constant, 

and the new employees fall into the class S . Let δ  be the constant rate of fatality in the class I , 

the modified SI  model allowing for external contagions and deaths is as follows: 

dtIIIIIdI tttttt ])1()1([ δαγβ −−+−−= .                                    (2.4) 

 

2.2.4. The Modified Stochastic SI Model 

        To convert the deterministic model to a stochastic model, we have to introduce an 

assumption concerning the diffusion function. The most reasonable assumption is that the 

random variation is greater in the center region than in the extreme cases. This suggests that the 
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variation term is proportional to )1( tt II − . The change in tI  follows the rule 

ttttttttt dWIcIdtIIIIIdI )1(])1()1([ −+−−+−−= δαγβ ,                      (2.5) 

where  c  is a small positive constant, and tW  a standard Brownian motion.  

 

2.2.5. The Regime-Dependent Modified Stochastic SI Model  

        The above discussions are based on the assumption that the firm is active and does not 

implement disease control policies. Note that the evolution of the epidemics may tie up with the 

strategic decisions the manager makes. Firms can use some disease control policies to alter the 

value of parameters such as β  and γ , and reduce the spread of the contagion. For instance, 

when the epidemic breaks out, the firm may adopt some immunization programs to lower the 

infection rate between the infective and the susceptible. When some employees in the company 

get infected, the manager can screen the suspected infective and mandate the immediate full-paid 

leave. Particularly, if the number of the infective increases and hits a predetermined point, the 

firm can temporarily suspend the business and send all the employees back home. I focus on the 

analysis of the suspension-reactivation strategy in this study. Therefore, I adapt the modified SI 

model further to accommodate two regimes: active and inactive.  

        I denote by r  the regime of the firm ( 1=r  if the firm is active and 2=r  if the firm is 

inactive). Let 1γ  be the recovery rate when firm is active. The corresponding epidemic model is 

1 if        ,)1(])1()1([ 1 =−+−−+−−= rdWIcIdtIIIIIdI ttttttttt δαγβ .            (2.6) 

        When the firm is inactive, the person-to-person transmission from internal sources is cut off 

(i.e., 0=β ). The contagion will be controlled and the infective will be recovered with a higher 

recovery rate 2γ  ( 12 γγ > ). Assuming the external infection rate α  and the death rate δ  remain 

the same, the dynamics of the disease when the firm is inactive turns out to be 
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  2 if          ,)1(])1([ 2 =−+−−+−= rdWIcIdtIIIdI ttttttt δαγ .              (2.7) 

To conclude, the epidemic model can be described as 

tttt dWrIdtrIdI ),(),( σμ += ,                                                (2.8) 

where  
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and  

)1(),( ttt IcIrI −=σ .                                                (2.10) 

 

2.3. Stage II: Real Option Pricing and Regime-Switching Models 

2.3.1. Real Option Pricing  

        In finance, the net present value (NPV) approach serves as the building-blocks for most 

analysis, such as investment decisions, capital structure decisions, and valuation of firms. 

However, as recognized by most researchers and practitioners, the traditional NPV approach fails 

to account for real options that are embedded in business strategic decisions, and thereby always 

underestimates firm value. Implicitly, the NPV approach assumes that “either the investment is 

reversible” or “if the investment is irreversible, it is a now or never proposition” (Dixit and 

Pindyck, 1994). That is, firms have the ability to withdraw the investment project and recover all 

the initial costs if the economic situation turns adversely. If the firm does not undertake the 

investment now, it will not be able to implement it in the future. However, investment 

opportunities in the real world do not always meet these conditions. Most investments are 

partially or completely irreversible. In other words, investment expenditures become sunk costs 

once firms make the move, and firms cannot retrieve the costs in full amounts later on. In 
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addition, firms have the managerial flexibility to defer the investment until new information 

arrives. Therefore, firms can analyze the desirability of the investment project further using the 

newly acquired information. The ability to delay an irreversible investment can affect the 

decision to invest, and thereby undermines the simple NPV rule (Dixit and Pindyck, 1994). A 

firm with an investment opportunity is analogous to holding a call option. It can either exercise 

the option (make the investment), or hold the option and wait for new information arriving. 

When the firm chooses to invest right now, it gives up the option value—possibility of waiting 

for new information that might affect the investment decision itself. The lost option value is an 

opportunity cost that must be included when we calculate the NPV. Real options are inherently 

present in any strategic decision where firms have the managerial flexibility to alter its course, i.e. 

expansion, contraction, delay, or abandonment (Brealey, Myers and Marcus, 2001). 

 

2.3.2. Regime-Switching Models 

        Regime-switching models often arise in real option valuation, the history of which can be 

traced back to Mossin (1968). The simplest regime-switching models are optimal stopping 

problems, with the American option pricing as a well known example. More complicated models 

are later discussed by McDonald and Siegel (1986), allowing for movement back and forth 

among different regimes. Brennan and Schwarz (1985) apply the Black-Scholes formula to value 

the active and inactive firms. They argue that the inactive firm has the option to invest and its 

value is equivalent to the value of this call option, with strike price equal to the entry cost. 

Likewise, the active firm has the option to exit the market and its value is determined by its 

current profit and the option to abandon. Considering the value-matching conditions and the 

smooth-pasting conditions, Dixit (1989) further obtains a pair of price thresholds for the entry-
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exit decisions. During the 1990’s, the baseline Dixit’s model was extended in many directions. 

Allowing for the possibility of laying-up or scrapping the project, Dixit and Pindyck (1994) 

consider four price thresholds for investment, laying-up, reactivation and scrapping. Ekern 

(1993) relaxes the extreme assumption of complete irreversibility, and assumes restricted number 

of switches between states. Brekke and Oksendal (1994) introduce diminishing production 

capacity over time into the model and solve the model as a special case of sequential optimal 

stopping problem. Bar-Ilan and Strange (1996) consider the time delay between the decision to 

invest and the start of the production, and include one more state of nature (under construction) 

into the model.  

 

2.3.3. Regime-Switching in My Example 

Basically, the essence of regime-switching models is to determine the optimal switching 

thresholds across different regimes in order to maximize a certain value function. Suppose that 

the manager cannot tell if an employee is infected individually (it may be due to lack of expertise, 

or too costly to do so), but he has some technique that can help him know the fraction of the 

infective tI . 5  The manager wants to determine two optimal switching thresholds, HI  

(mothballing threshold) and LI  (reactivation threshold), such that if tI  is above HI , the manager 

suspends the production temporarily and offers full-paid leave for all employees6, and if tI  is 

lower than LI , the manger calls back all the employees and reactivates the production. I make 

the above assumptions in order to avoid adverse selection and a moral hazard problem. 

Otherwise, some of the infective would pretend to behave normally if they cannot get paid 
                                                        
5 For example, he may use daily released data of disease cases, outpatient visits or hospitalization in this affected 
region to obtain a proxy of the fraction, which is acceptable especially when the disease is spreading rapidly in the 
region.  
6 The full-paid leave is suggested by the HHS and the CDC in the Business Pandemic Influenza Planning Checklist.  
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during the suspended period, and the non-infected employees would pretend to be infected in 

order to enjoy more leisure without being detected.  

I normalize the productivity of a non-infected employee to unity, and assume that the 

productivity will drop to a given level 1<k  once the employee gets infected. N  is the total 

number of employees in the firm. The price of the product, P , can be viewed as given, because I 

only consider one firm in a competitive market. The variable cost and fixed cost are denoted by 

VC  and FC , respectively. Note that wages for the workers are contained in the fixed cost FC  

because I consider full-paid leaves. In addition, there is a penalty cost E  to the firm for every 

infected employee when the firm is in the active regime. The penalty cost may come from the 

employees’ complaints and reluctance to work, or the firm’s loss of reputation in the future. 

Therefore the cash flow function can be defined as: 

⎩
⎨
⎧

=−
=××−−−××−+××

=
 2 if                                                                                 ,
 1 if    ,)(])1([

),(
rFC
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rI ttt
tπ .        (2.11)   

It implies that the cash flow to the firm, ),( rI tπ , is a function of the fraction of the infective, and 

it also depends on the regime variable.  

Suppose the firm incurs a mothballing cost M  when switching from the active to inactive 

regime, and reactivation cost A  when switching from the inactive to active regime, but there is 

no cost to remain in the current regime. Let ijC  denote the lump-sum cost of switching from 

regime i  to j . The cost matrix is hence defined as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
0
A

M
C .7 The discount rate is given as 

ρ .  

The manager desires to maximize the expected discounted cash inflows less any switching 

costs incurred over an infinite time horizon, by choosing the optimal regime at each moment. 

                                                        
7 To avoid the possibility of “an infinite money machine”, we assume 0≥+ AM .   
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That is,  
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where ij
kt  are the times at which the agent switches from regime i  to j . 

 

2.4. The Methodology: Dynamic Programming  

2.4.1. Comparison between Dynamic Hedging and Dynamic Programming 

        To solve the regime-switching problems, we mainly have two techniques. “They are in fact 

closely related to each other, and lead to identical results in many applications. However, they 

make different assumptions about financial markets, and the discount rate that firms use to value 

future cash flows” (Dixit and Pindyck, 1994). The first one is the extension of financial option 

pricing theory. I call it dynamic hedging approach here. If we can find a portfolio of traded assets 

which can perfectly replicate the returns from the investment project at any time, the value of the 

investment project must be equal to the value of the replicating portfolio if there is no arbitrage 

opportunity. This approach requires a highly liquid market where the risks embedded in the 

investment opportunity can be dynamically hedged, which can be quite demanding. The second 

method is the so-called dynamic programming. The beauty of this approach is that decisions over 

a multiple period horizon can be broken up into a series of decisions over a single period horizon. 

This allows us to derive the individual’s optimal decisions by starting at the last period and 

working backwards toward the present, if the planning horizon is finite. If the planning horizon 

is infinite, we can derive a recursive formula for every period. The solution always exists and is 

guaranteed through numerical approximation. If the underlying assets cannot be traded in 

markets, dynamic programming still works since the objective value function can simply reflect 
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the decision maker’s subjective value of risk (Dixit and Pindyck, 1994). The disadvantage is that 

it assumes a constant discount rate ρ , which is specified exogenously.  

 

2.4.2. The Recursive Dynamic Programming  

        In this section, I briefly discuss the dynamic programming approach. I refer interested 

readers to Miranda and Fackler (2002) and Fackler (2004) for further discussion. Suppose that 

there are m  regimes (i.e., },...,2,1{ mr = ). An agent obtains cash flow streams ),( rxπ  per unit 

time, which depends on both the discrete regime variable r  and on a continuous state variable x  

( x  can also be a vector of state variables). The dynamics of the state variable(s) x  can be 

described by: 

tt dWrxdtrxdx ),(),( σμ += .                                         (2.13) 

The agent can move from regime i  to j  at a lump-sum cost of ijC , but there is no cost to remain 

in the current regime, i.e., 0iiC = . Similarly, in order to avoid the possibility of infinite profits, it 

must be true that 0≥+ jiij CC . The discount rate is ρ .  

        Dynamic programming is based on the principle of optimality. As Bellman (1957) says, “An 

optimal policy has the property that, whatever the initial state and decision are, the remaining 

decisions must constitute an optimal policy with regard to the state resulting from the first 

decision.” The principle of optimality can formally be expressed in the form of the Bellman 

equation. 

Let us consider for a short time period of length tΔ . Denote ),( rxV  the maximum 

attainable sum of current and expected future rewards of time t , given that the agent is in regime 

r .  In the interior of the non-switch regions, the Bellman equation for the discrete time problem 
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can be written as follows:8 
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Multiplying both sides of equation (2.14) by tt ΔΔ+ /)1( ρ  and rearranging, we can get 
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Taking the limits of this expression at 0→Δt  yields the continuous time version of the 

Bellman equation: 

dt
rxdVE

rxrxV t ),(
),(),( += πρ .                                              (2.16) 

Equation (2.16) has an intuitive economic interpretation. Note that V  can be thought of as 

the value of an asset on a dynamic project. The Bellman equation states that the total rate of 

return on the asset in regime r , Vρ , must equal the current income flow to the project, ),( rxπ , 

plus the expected rate of capital gain, 
dt

rxdVEt ),(
. 

Denote xV  and xxV  the first and the second derivatives of V , respectively. By Ito’s Lemma, 
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Taking expectations on both sides of equation (2.17) and dividing by dt , we obtain 
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t σμ += .                         (2.18) 

Substituting equation (2.18) into (2.16) results in the following form of the Feynman-Kac 
                                                        
8 In the interior of the no-switch regions, no action is taken during the interval tΔ , so there is no maximization on 
the right-hand side of this equation. 
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equation: 

),(),(),(
2
1),(),(),( 2 rxrxVrxrxVrxrxV xxx πσμρ =−− .                       (2.19) 

At the boundary point *x , supposing it is optimal to switch from regime i  to regime j , the 

value function must satisfy two conditions at such a point. The first is a value-matching 

condition, which will hold no matter whether the switching points are optimal or not. Namely, 

the value before switching must be equal to the value after switching less the switching cost: 

)(),(),( *** xCjxVixV ij−= .                                              (2.20) 

The second is a smooth-pasting condition that is satisfied at the optimal switching points. 

That is, the marginal value before switching must equal the marginal value after switching minus 

the marginal cost of switching. Let C ′  denote the marginal cost function, the smooth-pasting 

condition can be expressed as follows:  

)(),(),( *** xCjxVixV ijxx
′−= .                                            (2.21) 

. 

2.5. Numerical Illustrations 

2.5.1. Parameter Calibration 

The purpose of this study is to build a theoretical framework and provide a quantitative 

approach for business managers to prepare for pandemics. The precise calibration of parameters 

in the model is important, but beyond the scope of this study. Although “a large number of 

published sources offer empirical data from previous outbreaks of influenza in the U.S”, 

Finkelstein et al. (1981) mention that “the various data sources are uneven in quality and do not 

reflect readily comparable study designs and data collection methodology”. Therefore, I skip the 

step of parameter estimation from empirical epidemic data, and directly choose the disease 



 27

parameter values based on previous empirical work.  

Smith and Moore (2000) study the spread of the Hong Kong flu (1968) in New York City 

and obtain the estimation of the infection rate 6.0=β .9 Finkelstein et al. (1981) set β  equal to 

0.75 for “compatibility with empirical data reported for actual influenza epidemics occurring in 

1957 and 1968”. Till now, the human-to-human spread of H5N1 has been limited, inefficient and 

unsustained. Human beings possess little or no immune system against the H5N1 virus. 

Scientists are worried that the H5N1 virus could be able to mutate one day and spread easily 

among the population. In order to reflect scientists’ concern, I set the infection rate β  equal to 1 

in this work.  

As to the recovery rate, it is defined as the reciprocal of the average number of days of the 

infective period. The commonly reported duration of influenza ranges from 1 to 5 days, therefore 

the recovery rate should change from 0.2 to 1. Smith and Moore (2000) use the average duration 

of 3 days and obtain the recovery rate to be 0.33; Cobb (1998) use the value of 0.4; and 

Finkelstein et al. (1981) set it equal to 0.5. I select the recovery rate in the active regime, 1γ , to be 

0.4, and that in the inactive regime, 2γ , equal to 0.6, to reflect the fact that the recovery rate 

should be higher when workers are separated from each other. The values of external 

transmission rate α  and the volatility coefficient c  are selected based on Cobb (1998), where he 

suggests 02.0=α  and 1.0=c . 

        The Department of Homeland Security predicts 16 million deaths from the attack of a 

possible H5N1 avian influenza, assuming a mortality rate of 20 percent and 80 million 

illnesses.10 Therefore, I set the fatality rate δ  to be equal to 0.2.  

                                                        
9 Smith and Moore. 2005. The SIR Model for Spread of Disease.  
    Available at: http://www.math.duke.edu/education/ccp/materials/diffcalc/sir/index.html 
10 Available at: http://www.globalsecurity.org/security/ops/hsc-scen-3_flu-pandemic-deaths.htm 
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The values of the other parameters used in this paper are set as follows. I choose these 

values to make economic sense and render the sensitivity analysis in the following sections more 

evident: 11 

Discount rate: 0.05ρ =  

Productivity of an infective: 5.0=k   

Total number of employees: 1000=N  

Price of the product: 3P =  

Variable cost: 1=VC   

Fixed cost: 500=FC   

Penalty cost: 5=E  

Mothballing cost: 300=M   

Reactivation cost: 300=A . 

 

2.5.2. The Stationary Probability Distribution of the Epidemic Process 

People are concerned by what will happen to the disease if no action is taken, i.e. no regime 

switching nor other controls. Will it spread over the population or die out gradually? What is the 

possible fraction of people who are infected by the disease? In order to answer these questions, 

we need to examine the distribution of tI  and get some statistical information. 

Generally, suppose we are working with the variable of interest, tx . It behaves according to 

a stochastic differential equation:  

                                                        
11 For example, we could choose a relatively bigger value for the switching costs. At this time, our economic 
rational on the sensitivity analysis is still correct. However, we may get a zero reactivation threshold and it remains 
unchanged when we try to increase the switching cost. We, therefore, may not see the expected effect of increasing 
the switching costs.  
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tt dWxdtxdx )()( σμ += .                                                   (2.22) 

The probability density function of such a random variable, ),( txf , depends not only on 

the random variable itself, but also on time t . The evolution of the probability density function is 

presented in the form of the Kolmogorov forward equation: 
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∂ .12                                 (2.23) 

An explicit solution to this equation is not always available in general. Therefore, I turn to 

the stationary probability density function when the process reaches equilibrium (i.e., 0=
∂
∂

t
f ). 

Wright (1938) has developed a formula to calculate the stationary probability density function: 
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where ψ  is a constant such that 1)( =∫
∞

∞−

dxxf . 

For the example here, I am interested in the stationary distribution of the variable tI , where  

IIIIII δαγβμ −−+−−= )1()1()(  and )1()(2 IcII −=σ . Substituting into the Wright’s 

formula, I obtain  
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12 See Cobb (1998) for more details.  
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Figure 2.4: The Stationary Probability Density Function 

 

        Figure 2.4 shows the stationary probability density function, )(If . The antimode and mode 

of the stationary probability density function have important economic meanings. 13  The 

antimode indicates a threshold beyond which the epidemic is likely to spread, while the mode is 

the most likely fraction of the infective in the whole population. Given the parameter values, I 

obtain %60.221 =I  and %40.352 =I . It implies that the epidemic is unlikely to spread unless 

more than 22.6% of the workers are infected. It is most likely that 35.4% of the employees would 

get infected should the epidemic spread. 

 

2.5.3. The Effect of Uncertainty: Stochastic versus Deterministic  

                                                        
13 By solving the equation 0)( =′ If , we can get the antimode βα /)(2

1 −−−= cddI , 

mode βα /)(2
2 −−+= cddI , where βαδγβ 2/)2( cd +−−−=  
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Based on the MATLAB implementation proposed by Fackler (2004)14, I solve the above 

regime-switching problem by dynamic programming. The value functions and marginal value 

functions are displayed in Figures 2.5 and 2.6. 

Given the parameters above, it is optimal for the firm in the active regime to suspend 

business temporarily when the fraction of infected employees is higher than 27%. In the inactive 

regime, however, it is optimal to reactivate anytime the fraction drops to 5%. If there is no 

uncertainty with regard to the dynamics of the epidemic, i.e. 0=c , the epidemic model in stage I 

becomes deterministic. The corresponding thresholds are 27% and 3% respectively, by my 

calculation.  

Figure 2.5: Value Functions of the Stochastic Model 

 

 

 

                                                        
14  I use the Optimal Switching Solver in the CompEcon Toolbox. It is publicly available at 
http://www4.ncsu.edu/~pfackler/compecon/newtools.html 
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Figure 2.6: Marginal Value Functions of the Stochastic Model 

 

Figure 2.7: Comparison of Value Functions: Stochastic v.s. Deterministic 
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This observation implies that firms are more conservative on the suspension-reactivation 

decisions when they take into account the uncertainty in the future. In the stochastic case, firms 

will not come back to operation until the fraction drops by 2 points below 5% (the reactivation 

threshold in the deterministic case). The difference here also represents the effects of real options. 

It is the uncertainty in the future that makes the options valuable. It is the existence of real 

options which makes firms behave differently relative to the deterministic case. I graph the value 

functions in both the deterministic and stochastic models in Figure 2.7. The finding is consistent 

with the theory of real option valuation: A firm’s value is usually underestimated under the 

traditional NPV approach. 

 

2.5.4. The Effect of Switching Costs on Switching Thresholds 

I now examine the effect of changing the mothballing cost and reactivation cost on the 

switching thresholds.  

Table 2.1: The Effect of Changing the Switching Costs 
 

Initial parameters 
M=300, A=300 

Mothballing threshold 
( HI =27%) 

Reactivation threshold 
( LI =5%) Conclusions 

M=400, A=300 28% 4% HI   increases with M 

LI  decreases with M 

M=300, A=400 28% 4% HI  increases with A 

LI  decreases with A 

 

       First, let us consider the impact of an increase in the mothballing cost. As shown in Table 2.1, 

the mothballing threshold HI   increases to 28% and the reactivation threshold LI  drops to 4%, 

when M  rises to 400 and A  remains at the original level. The effect of the mothballing cost on 

the mothballing threshold HI  is straightforward: when the mothballing cost increases, the firm 
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needs to pay more when it switches to the inactive regime. Thus, the manager is more reluctant 

to suspend the business, and the mothballing threshold increases as a result. The influence of the 

mothballing cost on the reactivation threshold LI  might need further consideration. Intuitively, 

the increase in the mothballing cost M  decreases the reactivation threshold LI  according to the 

mirror image effect. That is, the firm might reactivate the production with less willingness, if it 

has to pay a large amount of lump sum costs when the fraction of the infective increases in the 

future, otherwise it would rather stay in the inactive regime.   

        It seems that the change of the reactivation cost A  has similar effects to the change of the 

mothballing cost M . The reactivation threshold LI  decreases with the reactivation cost A , since 

the firm is more reluctant to reactivate the production as the reactivation cost increases. The 

mothballing threshold HI  increases with the reactivation cost A . That is because the firm 

suspends the production with some reluctance to lose its option value. Considering the possibility 

that the fraction of the infective might drop in the near future, the firm could avoid paying the 

reactivation cost again by remaining in the active regime. Therefore, the larger the reactivation 

cost, the larger the option value and the greater the reluctance to suspend. 

Figure 2.8 and 2.9 can help us observe the comparative results more clearly. The switching 

thresholds change like step functions, and the mothballing cost and the reactivation cost have 

almost the same effects on the switching thresholds. 
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Figure 2.8: The Effect of Increasing the Mothballing Cost 

 

Figure 2.9: The Effect of Increasing the Reactivation Cost 
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2.5.5. The Effect of Disease Control Strategies 

One of the purposes of modeling epidemics is to provide a rational basis for policies 

designed to control the spread of a disease. A firm could adopt different strategies which aim to 

alter the parameters in the epidemic model, so that the disease could be controlled. For instance, 

the firm could reduce the infectious contagion among its employees by adopting internet 

conferences and phone meetings. It can screen the suspected infective and mandate an immediate 

leave for those who are thought to pose a risk. It could immunize some or all of the employees 

by vaccination. It can also initiate an information session to raise public awareness of higher 

disease prevalence and inform its employees of some preventive measures. All these control 

strategies are aiming at 

• decreasing the internal infection rate β ; 

• increasing the recovery rate γ ; 

• decreasing the external infection rate α ; 

Interestingly, firms can implement these control policies at little cost, but can benefit a lot 

from these strategies. As shown in Figure 2.10, when the firm adopts some strategies to decrease 

the internal infection rate β  from 1 to 0.8, the value of the firm increases significantly in both 

regimes. Similar results can be obtained if I increase the rate of recovery γ  or decrease the rate 

of external transmission α  (see Figures 2.11 and 2.12, respectively). Therefore, firms can 

maximize their values at the same time as controlling the disease.  
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Figure 2.10: The Effect of Decreasing the Internal Infection Rate  

 

Figure 2.11: The Effect of Increasing the Recovery Rate 
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Figure 2.12: The Effect of Decreasing the External Infection Rate  

 

 

2.6. Extensions and Open Questions 

2.6.1. The Modified SIR Model Allowing for External Contagions and Deaths 

        Previous analysis is based on the modified SI model, where I only consider two categories 

(susceptible and infective) and have one state variable ( tI ). In this section, I extend the model to 

accommodate three classes (susceptible, infective and recovery) and deal with two state variables 

( tS  and tI ). The SIR  model is originally proposed by Kermack and McKendrick (1927). They 

assume there is no entry into or departure from the population, and no birth or death in the course 

of the epidemics. In addition, they introduce a new class R (recovered): all the infective are 

assumed to get recovered and falls into this class. Figure 2.13 shows the transition dynamics 

among these three classes. Note that the evolving process of the disease in the SIR model is 

irreversible. Once a person gets infected, he/she will end up with recovery and obtain the 
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immunity to the disease permanently: the infective will not fall into the class S again. 

Figure 2.13: The Classic SIR Model 

 

Let tR  denote the fractions of population that reside in the class R  at time t , the 

qualitative relationships among tS , tI , and tR  are given by the following system of differential 

equations:  
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        When considering infection from external sources and possible deaths from the disease, the 

transition of the disease among the three classes can be shown in Figure 2.14. 

Figure 2.14: The Modified SIR Model Allowing for External Contagions and Deaths 

 

        Now, the modified SIR  model can be expressed as follows: 

Susceptible 
( S ) 

Infective 
( I ) 

Internal Infection rate 

β  

 Recovery rate  
γ  

Recovered 
( R ) 

 
dtI tδ  dtI tδ  

External Infection rate 
α  

New hired Deaths 

Susceptible 
( S ) 

Infective 
( I ) 

Recovered 
( R ) Infection rate 

β  

 Recovery rate  
γ  
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2.6.2. Open Questions to the Stochastic SIR Models 

        In order to accommodate uncertainty in the evolution of the epidemics, we need to extend 

the above deterministic model to a stochastic one. Jia and Tsui (2005) use discrete random 

variables such as Poisson and binomial to capture the stochastic transitions between different 

states. I doubt the validity of their approach, since the discrete stochastic transitions are not 

inherently consistent with the continuity from the SIR model. One of the referees suggests that I 

add stochastic terms to tS  and tI  , driven by Brownian motions tW1  and tW2 , respectively. 

Questions arise as to the function forms of volatility terms for the SIR model. Different 

assumptions can be made, such as: 

• The volatility is proportional to the state variable, i.e., S1σ  and I2σ , as in the geometric 

Brownian motion model; 

• The volatility is proportional to the square root of the state variable, i.e., S1σ  and 

I2σ , as in the CIR model; 

• The volatility is greater in the center region than in the extreme cases, i.e., )1(1 SS −σ  

and )1(1 II −σ ; 

        In addition, we have to impose several restrictions such that 10 ≤≤ S , 10 ≤≤ I , and 

10 ≤+≤ IS . Although the third assumption about the random variation looks the most 

reasonable since it satisfies the first two restrictions, it doesn’t guarantee the third restriction. 

Besides, the two Brownian motions tW1  and tW2  may be correlated with each other. We need to 
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figure out the appropriate correlation coefficient. Below, I just show a numerical example which 

generates seemingly reasonable results. More research is needed to explore a stochastic model 

which can better describe the dynamics of a disease.  

 

2.6.3. An Example for Optimal Switching Boundaries 

        Suppose tW1  and tW2  are two independent Brownian motions (Again, tW1  and tW2  are not 

necessary to be independent). When the firm is active, the dynamics of the disease is  
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When the firm is inactive, it is  

 2 if                        ,
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        When the system is controlled by two state variables, we can obtain two optimal switching 

boundaries, as shown in Figure 2.15. The lower line represents the points for which it is optimal 

to switch from the inactive to active regime, and the upper line represents the points for which it 

is optimal to switch from the active to inactive regime. I also examine the effect of changing 

switching costs on the optimal switching boundaries. As I expect, the upper boundary move 

upward when the reactivation cost increases, and move downward when the reactivation cost 

decreases (see Figure 2.16 and 2.17). The mothballing cost has similar impacts on optimal 

switching boundaries (see Figure 2.18 and 2.19). 
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Figure 2.15: Optimal Switching Boundaries 

 

Note: I set 1.021 == σσ  

Figure 2.16: The Effect of Increasing the Reactivation Cost on the Optimal Switching Boundaries 
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Figure 2.17: The Effect of Decreasing the Reactivation Cost on the Optimal Switching Boundaries 

 

Figure 2.18: The Effect of Increasing the Mothballing Cost on the Optimal Switching Boundaries 
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Figure 2.19: The Effect of Decreasing the Mothballing Cost on the Optimal Switching Boundaries 

 

 

2.7. Conclusions and Discussions 

The dynamics of human epidemics is an important topic in epidemiology and mathematical 

biology. A vast literature has developed in these fields, but it seems that little of it addresses 

epidemic risks for private enterprises with large numbers of employees. Epidemic models may 

provide some insights as to the effectiveness of control measures such as immunization, worker 

furloughs, and quarantines. Modeling may lead to optimal rules for implementing these strategies. 

In this chapter, I make the first attempt to build a two-stage model to analyze how firms can 

manage the risk associated with pandemics that can severely attack their workforce. In the first 

stage, I propose a simple regime-dependent epidemic model to allow for external contagion and 

deaths from the disease. In the second stage, I use the fraction of the infective in a given firm as a 

decision aid to construct an optimal suspension-reactivation strategy. Dynamic programming is 
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discussed and the optimal switching thresholds are found by numerical approximation. My two-

stage model has practical implications for a large business to set up triggers for activating and 

terminating response plans in the event of an influenza pandemic. My approach is consistent 

with the CDC’s recommendations and can be viewed as a quantitative implementations. 

Given the parameter values, the firm should suspend the business (or part of its business) 

when the infected workers account for 27% of the total work force, and reactive the operation 

when the fraction of the infective drops to 5%. Certainly, these triggers of suspension or 

reactivation are firm-specific: they rely on many factors involved in this model and are different 

for different firms. However, the economic rationale is universal. When faced with uncertainty in 

the future, the existence of real options makes firms more valuable. At the same time, firms are 

more conservative about the decisions of suspension and reactivation. If firms incur lump sum 

costs when switching between different regimes, the mothballing threshold increases with the 

switching costs while the reactivation threshold decreases with the costs.  

Firms are motivated by the goal of profit maximization. An infected employee not only has 

a lower productivity, but also delivers the virus to other people in the company. Firms need to 

implement different strategies to decrease the internal infection rate, increase the recovery rate, 

or decrease the rate from external transmission. While these strategies aim at the control of the 

epidemic, firms’ values are also increasing in both regimes. Disease control and firms’ value 

maximization can be obtained simultaneously in my model. 

Many large businesses provide health and life insurance to employees. However, the 

insurance contract is normally for administrative services only. Firms may buy a stop-loss 

coverage, but even then they bear substantial risk of a flu epidemic. Therefore, firms are also 

motivated to control the disease in order to reduce their losses from the claims for medical and 
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death benefits. In the benefit/cost analysis, I only consider the lost productivity due to restricted 

activity and premature mortality. A further analysis should include other disease-related costs 

such as hospitalization, physician services, and prescription drugs.  
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3 
Modeling Mortality with Jumps: Transitory 
Effects and Pricing Implication to Mortality 
Securitization 
 

 

        Option pricing theory is built on the assumption that the payoff of the option can be 

replicated using the underlying asset and riskless lending or borrowing. While this is perfectly 

justifiable in the context of listed options on traded stocks, it becomes less defensible when the 

underlying asset is not traded. I have shown in chapter 2 how to apply the real option theory to 

maximize a firm’s value and determine regime switching triggers. In this chapter, I further 

explore how to price contingent claims with non-tradable underlying assets. This research is 

motivated by the rapid expansion of the mortality securitization market. The payoff of mortality 

bonds is based on a mortality index of a certain population, which is not tradable and has low or 

no correlation with financial market variables. Consequently, we cannot create a portfolio 
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consisting of bonds or stocks to replicate the payoff of mortality bonds. Therefore, the pricing of 

mortality bonds must be examined in an incomplete market framework.  

In this chapter, I incorporate a jump-diffusion process into the original Lee-Carter model, 

and use it to forecast mortality rates and analyze mortality securitization. I compare alternative 

models with transitory versus permanent jump effects, and find that the transitory jump effect 

model is more appropriate for extreme mortality risk modeling. I use the Swiss Re mortality 

bond in 2003 as an example to illustrate how to apply the distortion measure approach to value 

mortality-linked securities in an incomplete market.  

 

3.1. Introduction 

Mortality risk management is fundamental to life insurance and pension industries. 

Mortality models are crucial as a means of quantifying these risks and providing the basis of 

pricing and reserving. Traditionally reinsurance, and more recently, securitization, provide a 

means of transferring or hedging mortality risks. Naturally mortality models are fundamental to 

these transactions. 

A wide variety of stochastic models have been proposed for modeling the dynamics of 

mortality over time. Cairns, Blake and Dowd (2006a) provide a detailed overview and 

categorization. Most of the literature in this field is in the framework of short-rate models, 

among which continuous time models focus on the spot force of mortality and discrete time 

models concentrate on the spot mortality rates. Continuous time models (e.g., Milevsky and 

Promislow, 2001; Dahl, 2004; Dahl and Møller 2005; Miltersen and Persson 2005; Biffs, 2005; 

Schrager, 2006) help us understand the evolution of mortality rates over time, but are relatively 

intractable at present. I prefer discrete time models because they are easy to implement in 
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practice.  

The Lee-Carter model is among the earliest discrete time models. Lee and Carter (1992) 

model the central mortality rates to be log-linearly correlated with a time-dependent mortality 

factor, and adjust for age-specific effects using two sets of age-dependent coefficients. In this 

way, the model captures both the mortality trend overall and the age-specific changes on 

different age groups. Thus it describes the development of the mortality curve over time quite 

well. The age adjustment is necessary, because mortality improvement varies across age groups. 

Moreover, the short-term mortality shocks, such as the 1918 influenza pandemic, attack different 

groups with different intensities. I will discuss these two points in detail in the data section. The 

Lee-Carter approach has been extended by Brouhns, Denuit and Vermunt (2002), Renshaw and 

Haberman (2003), Denuit, Devolder and Goderniaux (2007), and further revisited by Li and 

Chan (2007). Recently, Cairns, Blake and Dowd (2006b) propose a two-factor model for 

mortality modeling and morality-linked security pricing. The first factor equally affects mortality 

at all ages, whereas the second factor’s effect on mortality is proportional to age. Based on their 

model setup, the mortality curve is increasing in ages, which does not reflect the fact that 

mortality rates of infants and children are much higher than those at middle ages. In addition, 

their model does not allow mortality jumps.  

Mortality jumps must be taken into account in mortality securitization modeling, because 

the rationale behind selling or buying mortality-linked securities is to hedge mortality risks (Cox, 

Lin and Wang 2006). Nevertheless, most of papers on this topic, as in Cairns, Blake and Dowd 

(2006b), ignore mortality jumps (see Renshaw, Haberman and Hatzoupoulos, 1996; Sithole, 

Haberman and Verrall 2000; Milevsky and Promislow, 2001; Dahl, 2004; Denuit, Devolder and 

Goderniaux, 2007). Even if they recognize that short-term catastrophe shocks may cause 
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mortality jumps, they do not model mortality jumps explicitly. For example, Lee and Carter 

(1992) treat the 1918 influenza pandemic as a highly unusual event and employ an intervention 

model to remove its influence. Li and Chan (2007) regard pandemic events as non-repetitive 

exogenous intervention too, and implement outlier detection and adjustment to unveil the “true” 

model underlying the outlier-free mortality series. 

To my knowledge, there are only a few papers considering mortality jumps in mortality 

securitization modeling. Biffis (2005) uses affine jump-diffusions to address the risk analysis and 

market valuation of life insurance contracts in the continuous time framework. Cox, Lin and 

Wang (2006) find that mortality jumps do have a significant effect on mortality modeling. They, 

however, model the age-adjusted death rates instead of the mortality curve. Thus their model 

fails to represent age-specific changes of mortality rates. In addition, they model the jump 

process with permanent effects on mortality rates, although many mortality jumps are caused by 

short-term catastrophic events and only have transitory effects. 

In this chapter, I propose to incorporate a jump-diffusion process into the Lee-Carter model, 

restricting mortality jumps to have one-period effects. I fit the model to US age-specific 

mortality rates and forecast the development of the mortality curve. I show that the model with 

jumps outperforms that without jumps, and the model with permanent jump effects induces big 

deviations in parameter estimation compared with that with transitory jump effects. I then 

discuss the outlier-adjusted Lee-Carter model presented by Li and Chen (2007) to further explore 

the source of mortality jumps. I find that the so-called “outliers” are actually very important to 

our morality securitization modeling, and we cannot delete the outliers from our time-series data 

in order to establish a proper model for pricing mortality-linked securities. I use the Swiss Re 

mortality bond (2003) as an example of pricing the mortality-linked securities, and illustrate that 
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the model with permanent jump effects results in large pricing distortions. 

In an incomplete insurance market, there are mainly two approaches for security valuation. 

One way is to adapt the arbitrage-free pricing framework of interest-rate derivatives to the 

valuation and securitization of mortality risk. Cairns, Blake and Dowd have a detailed discussion 

on this issue and give as an example the pricing of the EIB longevity bond (see Cairn, Blake and 

Dowd 2006a, 2006b). The second method is to use a distortion operator to create an equivalent 

risk-adjusted distribution, and obtain the fair value of the security under this risk-neutral measure. 

Examples of this approach, based on the Wang transform (Wang 2000, 2002), include Lin and 

Cox (2005), Dowd, Blake, Cairns and Dawson (2006), Denuit, Devolder and Goderniaux (2007). 

The Swiss Re mortality bond (2003) covers mortality risks across countries and over time, which 

makes the valuation problem very difficult. Previous research (e.g. Cox, Lin and Wang, 2006) 

employ the normalized multivariate exponential tilting, which is a generalization of the Wang 

transform, to take into account correlations across countries. They, however, modify the contract 

terms by linking the principal repayment with the maximum of the mortality index in three years, 

and ignore correlations over time. In this chapter, I employ the Wang transform and make the 

first attempt to account for correlations of the mortality index over time. The basic idea is to 

forecast the mortality index on paths and change the measure on each path to get the risk-

adjusted mortality index. 

The remaining of this chapter proceeds as follows. In section 3.2, I provide an overview of 

the mortality securitization market and examine the general design of mortality bonds. In section 

3.3, I describe the data and demonstrate historical facts for further motivation of the problem. In 

section 3.4, I propose a generalized Lee-Carter model with transitory jump effects, and discuss 

the outlier-adjusted Lee-Carter model to justify the necessity of modeling mortality with jumps. 
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A numerical example of pricing the Swiss Re mortality bond (2003) is given in section 3.5. 

Concluding remarks and discussions are provided in section 3.6. 

 

3.2. Mortality Securitization Overview 

3.2.1. Functional Transform from Risk Warehousing to Risk Intermediation 

        In general, there are two types of mortality risks we need to consider. The first is longevity 

risk, which refers to the uncertainty in the future improvement in mortality rates. If the realized 

mortality rates are much lower than the assumed mortality rates in premium pricing and reserve 

calculations, annuity providers and pension plans will incur large losses. The second is short-

term catastrophic shocks, which are caused by catastrophic events and result in much higher 

mortality rates than would normally be experienced. The 1918 Spanish flu killed up to 50 million 

people worldwide and 500,000 in the United States (Rasmussen 2005). The earthquake and 

tsunami in 2004 resulted in 300,000 dead and missing across southern Asia and eastern Africa 

(Cox, Lin and Wang 2006). 

        Traditionally, these types of risks are shared by insurers or reinsurers via reinsurance and 

retrocession, respectively. Insurers (or reinsurers) issue risk hedging products, warehouse the 

risks on balance sheets and bear the risks by holding equity capital. Although investors in the 

capital markets serve as the ultimate risk bearers by holding the stocks of insurance companies, 

they typically do not have the option of buying particular financial securities originated by the 

insurers (Cowley and Cummins, 2005). With the growth of insurance markets, insurers badly 

need additional risk-bearing capacity. However, capacity of the reinsurance market is often 

limited as possible transaction partners usually already have similar risks in their books. Also, 

retrocession would require a reinsurer to disclose its own business to potential competitors. 
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Therefore, raising new capital can be expensive.  

The Alternative Risk Transfer (ART) provides theoretical fundamentals for a capital market 

solution. Insurers and reinsurers are now stepping away from the traditional risk warehousing 

function towards risk intermediation function. They repackage the risk hedging products and 

originate different types of financial securities that are passed through to the capital market. As a 

result, much less risk is retained in the business of insurers or reinsurers, which enables them to 

operate more efficiently as well as increase underwriting capacity (Froot, 2000; Cowley and 

Cummins, 2005; Lin and Cox, 2008). In the past few decades, insurance companies have 

successfully transferred the catastrophic risk in the property-liability business to financial 

markets by issuing CAT bonds (Cummins, Lalone and Phillips 2004). More recently, various 

mortality bonds (or longevity bonds) have been designed and/or issued to transfer mortality risk 

(or longevity risk) into the capital market. Mortality-linked securities have little or no 

correlations with the financial market, thereby providing new sources of diversification for 

investors.  

 

3.2.2. Market Overview and General Design of Mortality Securitization 

The idea of mortality securitization was first proposed by Samuel H. Cox in a talk in 1998. 

Cox, Pedersen and Fairchild (2000) mention this idea in their paper. However, Blake and 

Burrows (2001) may be the first to propose the structural design of longevity bonds explicitly. 

The bonds are designed so that coupon payments are contingent on the percentage of a certain 

population cohort surviving some further period. The longevity bonds allow annuity providers to 

hedge against aggregate longevity risk: if annuitants live longer than anticipated, the insurance 

companies would incur losses due to longer payment periods, but they would also receive greater 
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coupon payments for holding longevity bonds to offset the losses (Denuit, Devolder and 

Goderniaux, 2007). A more extensive discussion of mortality-linked derivatives is provided by 

Blake, Cairns and Dowd (2006), who present the various forms of longevity bonds, swaps, 

futures, and options, and investigate their potential uses.  

The Swiss Re mortality bond issued by the Swiss Reinsurance company in 2003 is the first 

mortality securitization transaction. It was designed as a hedge for a life reinsurer: it expanded 

Swiss Re’s capacity to pay catastrophic mortality losses. Possibly inspired by the successful 

securitization of mortality risks, the European Investment Bank (EIB) offered the first longevity 

bond in November 2004 to hedge the longevity risk for pension planners and annuity providers. 

Although this particular deal failed to be launched because of insufficient demand, it did attract 

public attention and provided an instructive case study (Blake, Cairns and Dowd, 2006).  

Investors’ demand to mortality bonds seems to be very high. Ever since the first issue of the 

Swiss Re mortality bond in 2003, insurers or reinsurers have made another four mortality bond 

transactions in order to reduce their extreme mortality exposures, with a total volume exceeding 

$1.2 billion (Bauer and Kramer, 2006). A detailed overview of mortality securitization 

transactions is summarized in Table 3.1. While they differ in many aspects, such as tranche sizes, 

credit ratings, trigger levels, premium spreads, maturities and covered areas, the basic structure is 

the same. Figure 3.1 demonstrates the general design of mortality securitizations.  
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Table 3.1: Comparison of Five Mortality Securitization Transactions in the Market 

 

 

Source: Revised from Bauer and Kramer (2007) 

Time Nov. 2003 Apr. 2005 May 2006 Nov. 2006 
Issued by Vita Capital Ltd. Vita Capital II Ltd. Tartan Capital Ltd. Osiris Capital Ltd. 
Arranged by Swiss Re Swiss Re Goldman Sachs Swiss Re 
Protection for Swiss Re Swiss Re Scottish Re AXA 
Class A B C D A B B1 B2 C D 
Tranche Size $400m $62m $200m $100m $75m $80m €100m €50m €150m €100m 
Attachment 130% 120% 115% 110% 115% 110% 114% 114% 110% 106% 
Detachment 150% 125% 120% 115% 120% 115% 119% 119% 114% 110% 
Premium (bps) 135 90 140 190 19 300 20 120 285 500 
Maturity 3 years 5 years 3 years 4 years 

Covered Areas US 70%, UK 15%, F 7.5%, 
Italy 5%, CH 2.5% 

US 62.5%, UK 17.5%, DE 7.5%,  
Japan 7.5%, CAN 5% US 100% F 60%, J 25%, US 15% 

Time Dec. 2006 
Issued by Vita Capital III Ltd. 
Arranged by Swiss Re 
Protection for Swiss Re 
Class A-IV A-V A-VI A-VII B-I B-II B-III B-V B-VI 
Tranche Size $100m $100m €55m €100m $90m $50m €30m $50m €55m 
Attachment 125% 125% 125% 125% 120% 120% 120% 120% 120% 
Detachment 145% 145% 145% 145% 125% 125% 125% 125% 125% 
Premium (bps) 21 20 21 80 110 112 110 21 22 
Maturity 4 years 5 years 4 years 5 years 4 years 5 years 4 years 5 years 4 years 
Covered Areas US 62.5%, UK 17.5%, DE 7.5%, Japan 7.5%, CAN 5% 
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Figure 3.1: The General Design of Mortality Securitization 

 

Source: Revised from Cowley and Cummins (2005) 

 

The originator, which is usually an insurer or reinsurer, set up a special purpose vehicle 

(SPV) in order to accomplish the transaction. The SPV is a passive financial intermediary that 

exists to create a “pure play” security, issue the security to investors, insulate investors from the 

sponsor’s credit risk, and provide tax and accounting benefits to the sponsor (Cowley and 

Cummins, 2005). The originator pays premiums to the SPV in return for a contingent claim 

payment. The SPV issues debt securities to investors in the capital markets, and pays periodic 

coupon payments to them. Securities issued by the SPV are usually structured to several tranches 

in order to attract different types of investors. The proceeds from the sale of the notes are used to 

buy high quality securities as collateral. In many cases, it is desirable to pay a floating rate of 

interest to debt investors, even though the underlying assets may pay interest at a fixed rate. In 

order to hedge the interest rate risk, the SPV usually enters into a swap transaction. The fixed 

interest rate is swapped for a floating rate tied to a widely used index such as LIBOR. Mortality 
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bonds are similar to CAT bonds, except that payoffs of mortality bonds are based on adverse 

mortality experiences. It is possible to write a securitization on a portfolio of insured lives. There 

are a large number of deals in which a closed block of life insurance policies or annuities are 

securitized. These are actually asset securitizations. The insurer is selling its future profits on the 

block. In this case, investors are concerned about moral hazard problems. This can be solved by 

hiring a third party to audit the losses of the insurer, but it would add a lot to the transaction costs. 

In today’s market, “pure” mortality securitizations base the payoffs of mortality bonds on a 

public mortality index of a certain population. If the defined mortality index falls below a certain 

trigger level (or attachment point), parts of the principal will be withdrawn and paid to the 

originator, and any remaining principal will be returned to investors at maturity. As discussed by 

Cowley and Cummins (2005), there is always a tradeoff between the moral hazard problem and 

basic risk. Linking the payoff of mortality bonds to a population index has the advantage of 

reducing investors’ concern about moral hazard problems, but it also introduces basis risk since 

the insurer’s mortality experience could deteriorate significantly more than that of the index. For 

this reason, mortality bonds are likely to appeal to large, diversified insurers or reinsurers.  

 

3.3. Data Descriptions and Historical Facts: Further Motivation 

The mortality data is from the National Center for Health Statistics (NCHS). The NCHS 

reports the age-adjusted death rate and age-specific death rate per 100,000 population (2000 

standard) for selected causes of death from 1900 to 2003.15 Age-adjusted death rates are used to 

compare relative mortality risks across groups and over time; they are indices rather than direct 

measures. The age-specific death rates are tabulated for age 0, age group 1-4, then 10-year 

groups 5-14, 15-24, up to 75-84, and the age group 85 and over. Selected causes include heart 
                                                        
15 Source: http://www.cdc.gov/nchs/datawh/statab/unpubd/mortabs.htm 
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disease, cancer, stroke, influenza and pneumonia. 

Table 3.2 provides evidence of mortality improvement. Overall, the age-adjusted death rate 

by all causes decreased to 832.7 per 100,000 in 2003, which is 33.1% of the 1990’s level (2518.0 

per 100,000). However, the improving mortality has variant effects across age groups. The 

mortality rates for age group 1-4 fell to 1.6% of its initial value, but that for age group 85 and 

over only dropped to 55.9% of its initial value. These proportions differ by a factor of 35 at the 

extremes! A proper mortality model should capture this age-specific effect of mortality 

improving on all ages.  

Table 3.2: Mortality Improvements by Different Age Groups 

Age groups 1900 2003 Ratio Age groups 1900 2003 Ratio 

All 2518.0 832.7 0.331 35-44 1023.1 201.6 0.197 

<1 16244.8 700.0 0.043 45-54 1495.4 433.2 0.290 

1-4 1983.8 31.5 0.016 55-64 2723.6 940.9 0.345 

5-14 385.9 17.0 0.044 65-74 5636.1 2255.0 0.400 

15-24 585.5 81.5 0.139 75-84 12330.0 5463.1 0.443 

25-34 819.8 103.6 0.126 >=85 26088.2 14593.3 0.559 

 
Note: The “all” row is the age-adjusted death rate by all causes per 100,000, from NCHS reports HIST293 and 
GMWK293R. The other rows are the age-specific death rates per 100,000, from NCHS reports HIST290 and 
GMWK290R. The mortality improvement ratio is calculated by the author. 
 

The trend of mortality improvement is further demonstrated in Figure 3.2. In addition, 

Figure 3.2 compares the dynamics of age-adjusted death rates by all causes to that by influenza 

and pneumonia from 1900 to 2003. Although the death rates caused by influenza and pneumonia 

become small after 1950 (less than 0.00005), which makes the comparison difficult to visualize, 

we can still observe the similar pattern of fluctuations of death rates by all causes and by flu in 

the first half of the past century. The two curves even jump at the same time, which is 

remarkably evidenced in year 1918. The correlation coefficient between the two curves is 0.9116, 



 59

which also indicates a close correspondence between flu-caused deaths and all deaths. Deaths 

caused by flu account for 9.4% of all deaths before 1950 on average, 3.4% from 1950 to 2003, 

and 6.3% for the whole period examined. In 1918, this proportion reaches its historic peak at 

24.1%. The high correlation between the two curves and high portion of deaths caused by flu 

suggest that we should not exclude flu events when modeling the mortality.  

Figure 3.2: U.S. Age-adjusted Death Rates (per 100,000) by All Causes and by Influenza and Pneumonia 

 

Note: Data are from NCHS reports HIST293 and GMWK293R 

 
The high correlation between deaths by flu and all deaths is more evident if we examine 

age-specific death rate data. I calculate the correlation coefficient between death rates by all 

causes and death rates by flu across different age groups for each year from 1900 to 2003, which 

is shown in Figure 3.3. The correlation is above 0.95 for most of the time with only a few 

exceptions, and it averages to 0.9787. Interestingly, the correlation falls to the lowest value of 

0.86 in 1918, which indicates the 1918 Spanish flu has different effects on the death rates of 

different age-groups. The age-specific effect of the flu attack on death rates is revealed in more 
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detail in Table 3.3. The 1918 influenza pandemic raised the mortality rate by 30% overall. It 

affected the age groups 15-24 and 25-34 the most, whereas for individuals aged 55 and over the 

death rates decreased a little bit. A proper mortality model should reflect the age-specific effect 

of short-term catastrophic shocks on mortality.  

Figure 3.3: Correlation Coefficients between Age-specific Death Rates (per 100,000) by All Causes and by 
Influenza and Pneumonia 

 
Note: Age-specific death rates are from NCHS reports HIST290 and GMWK290R. The correlation coefficients are 
calculated by the author.  
 
Table 3.3: Changes of Death Rates (per 100,000) for Each Age Group 
 

Age groups 1917 1918 Ratio Age groups 1917 1918 Ratio 

All 1397.1 1810 1.296 35-44 900.8 1339.3 1.487 

<1 10457.2 11167.2 1.068 45-54 1385.6 1524.1 1.1 

1-4 1066 1573.5 1.476 55-64 2678.6 2648.1 0.989 

5-14 256 412.8 1.613 65-74 5728.4 5505 0.961 

15-24 468.9 1070.6 2.283 75-84 12386.2 11295.7 0.912 

25-34 649.1 1643.5 2.532 >=85 24593.6 22213.5 0.903 

 
Note: Data are from NCHS report HIST290 and GMWK290R. I calculate the mortality improvement ratios. 
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3.4. Mortality Modeling: the Generalized Lee-Carter Model 

3.4.1. The Lee-Carter Model Overview 

Ever since Lee and Carter presented their original work in 1992, the Lee-Carter model has 

been widely used in mortality trend fitting and projection. The Census Bureau population 

forecast has used it as a benchmark for the long-run forecast of U.S. life expectancy. The two 

most recent Social Security Technical Advisory Panels have suggested the Trustees to adopt this 

method or other methods consistent with it (Lee and Miller, 2001). 

 Let txm ,  denote the central death rate for age x  at time t . The model decomposes this time 

series of age-specific death rates into two sets of age-specific constants xa  and xb , and a time-

varying mortality factor tk  (Lee and Carter referred to tk  as the mortality index. In order to 

distinguish tk  and the mortality index defined in securitization contracts, I call tk  the mortality 

factor thereafter). Mathematically, the Lee-Carter model can be represented as follows: 

txtxxtx ekbam ,, )ln( ++= ,                                               (3.1) 

where xa  represents the age pattern of death rates, xb  represents age-specific reactions to tk , and 

txe ,  is the error term which captures the age-specific effects not reflected in the model.  

        The Lee-Carter model cannot be fitted by the ordinary least square approach, because all 

variables on the right side of equation (3.1) are unobservable. Moreover, this model is 

overparameterized, that is, the solution is determined up to a linear transformation (Lee and 

Carter, 1992). To obtain a unique solution, normalization conditions are imposed such that the xb  

terms sum to unity and the tk  terms sum to zero, i.e.,  

0  and  1 == ∑∑
t

t
x

x kb .                                               (3.2) 
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Under the normalized conditions, xa  becomes the average value of )ln( ,txm  over time, i.e.,  

∑
=

=
T

t
txx m

T
a

1
, )ln(1 ,                                                  (3.3) 

where T  is the length of the time series of mortality data.  

Lee and Carter suggest a two-stage procedure to solve this problem. In the first stage, the 

singular value decomposition (SVD) method is applied to the matrix of xtx am −)ln( , , to obtain 

estimates of xb  and tk . In the second stage, the tk  factors are re-estimated by iteration given the 

values of xa  and xb  obtained in the first step, such that the implied number of deaths equals the 

actual number of deaths, i.e.,  

( )∑ +=
x

txxtxt kbaPopD )exp(, ,                                       (3.4) 

where tD  is the actual total number of deaths at time t , and txPop ,  is the population in age 

group x  at time t .  

Based on the U.S. mortality data for different age groups from 1900 to 2003, I implement 

this two-stage procedure, report the fitted values of xa  and xb  for 11 age groups in Table 3.4, and 

plot the final estimates of the mortality factor tk  in Figure 3.4. Generally, the mortality rates of 

young age groups respond more rapidly when the mortality factor tk  changes. As I expect, the 

mortality factor tk  is decreasing over time, which shows the trend of mortality improvement. 

The big jump around 1918 is caused by the severe influenza pandemic in that year.  
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Figure 3.4: Dynamics of the Mortality Factor tk  from the Lee-Carter Model 

 

Table 3.4: Fitted Values of xa  and xb (SVD) from the Lee-Carter Model 

Age group xa  xb  

Under 1 -3.3935 0.14501 

1-4 -6.2072 0.19673 

5-14 -7.1833 0.14942 

15-24 -6.2877 0.10037 

25-34 -5.9837 0.10531 

35-44 -5.4745 0.085801 

45-54 -4.7734 0.060443 

55-64 -4.0071 0.046024 

65-74 -3.2289 0.041927 

75-84 -2.4146 0.040345 

85 over -1.6084 0.028619 
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3.4.2. Modeling tk  with a Jump-Diffusion Process: Permanent v.s. Transitory Effects? 

To make forecasts of the mortality factor tk , we need to choose an appropriate model to fit 

tk . Cox, Lin and Wang (2006) combine a geometric Brownian motion and a compound Poisson 

process to model the age-adjusted mortality rates for the U.S. and the U.K. Their model cannot 

be applied here. First, the mortality factor tk  decreases from positive to negative values. This 

property restrains us from modeling it with a geometric Brownian motion, because a geometric 

Brownian motion will never become negative when starting from a positive value. Instead, a 

process driven by a standard Brownian motion may be applicable. Second, Cox, Lin and Wang 

(2006) include jumps into the stochastic differential equation, which makes the jumps have 

persistent effects on mortality rates. However, most of mortality deteriorations are caused by 

short-term catastrophic events such as the 1918 Spanish flu and the 2004 earthquake and tsunami, 

and only have transitory effects on mortality rates. We can observe mortality rates pop up when 

the catastrophic events happen, and fall back to the normal level when the events end. I agree 

that we need to include mortality jumps in mortality securitization modeling, but I believe we 

need to assume different jump effects in different pricing scenarios. A model with permanent 

jump effects may be suitable for pricing longevity derivatives, but it is not appropriate for pricing 

mortality bonds. Therefore, I model the mortality factor tk  with a standard Brownian motion and 

a discrete Markov chain with jumps which only have transitory effects. For the purpose of 

comparison, I also present the model with permanent jump effects in Appendix 3A. 

Let tN  be the total number of jumps during the time interval ),0( t , and suppose there is at 

most one jump event in each time period ),( tht − . Therefore, tN  can be expressed as a discrete 

Markov chain with 00 =N  and the transition path: 
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.                                   (3.5) 

        Let htttht NNN −− −=],[  be the number of jumps occurring in the period ),( tht − , then 

],[ thtN −  is a Bernoulli random variable with the probability of jump p . 

Denote tk~  the mortality factor when there is no jump events. It can be driven by a standard 

Brownian motion: 

tt dWdtkd σμ +=
~ ,                                                     (3.6) 

where μ  and σ  are the instantaneous rate of change and the instantaneous volatility of the 

mortality factor when there is no jumps, and tW  is a standard Brownian motion with mean 0 and 

variance t .  

If a jump occurs in the interval ),( tht − , i.e., 1],[ =− thtN ,  I assume the jump sizes ],[ thtY −  are 

identically independently distributed normal variables with mean m  and standard deviation s , 

and ],[ thtY −  is independent of the Brownian motion tW . The jump ],[ thtY −  makes the actual 

mortality factor tk  change from tk~  to ],[
~

thtt Yk −+ , that is,  

],[
~

thttt Ykk −+= .                                                        (3.7) 

If there is no jump in the interval ),( tht − , i.e., 0],[ =− thtN , we have 

tt kk ~
= .                                                                 (3.8) 

(3.7) and (3.8) can be combined and written in one equation 

],[],[
~

thtthttt NYkk −−+= .                                                (3.9) 

Therefore, the dynamics of the mortality factor tk  can be completely expressed as 
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By integrating the first equation in (3.10) from t  to ht + , we obtain 

][~~
thttht WWhkk −++= ++ σμ .                                     (3.11) 

From the second equation in (3.10), we can derive 

        ],[],[
~

htthtththt NYkk ++++ +=  

                ],[],[][~
htthttthtt NYWWhk +++ +−++= σμ  

       ],[],[],[],[ ][ htthttthtthtthtt NYWWhNYk +++−− +−++−= σμ                                              (3.12)                         

Let thtt kkz −= + . If we have a time series of K  observations of tk , there will be 1−K  

observations of z ’s values with time interval equal to 1=h . tz  and htz +  can be expressed as 

],[],[],[],[][ thtththtthttthtt NYNYWWhz −−+++ −+−+= σμ ,                                                       (3.13) 

],[],[]2,[]2,[2 ][ htthtthththththththt NYNYWWhz +++++++++ −+−+= σμ .                                        (3.14) 

If 0],[ =+httN , then tz  is independent of htz + . If 1],[ =+httN , then tz  is correlated with htz +  

because of the ],[ httY +  part. It is noteworthy that we cannot use the traditional maximum 

likelihood estimation to calibrate the parameters when the data are not independent.16 Instead, we 

should use conditional probabilities to derive the log-likelihood function, which is so-called 

Conditional Maximum Likelihood Estimation (CMLE). Detailed derivation of the log-likelihood 

function is included in Appendix 3B. 

 

                                                        
16 Lin and Cox (2008) try to combine a geometric Brownian motion with a Markov chain to capture the transitory 
effect of mortality jumps. However, they don’t take into account the correlations of the data, which may bring big 
errors in their maximum likelihood estimation and cause the estimation results to deviate from the true values. If we 
don’t consider the correlations of the data, then the parameter estimates are u = -0.2172, σ = 0.4018, m = -3.2391, 
s = 0, p = 0.0098. 
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Table 3.5: Parameter Estimates via Conditional Maximum Likelihood Estimation 
 

Model with jumps -transitory effect: ln(L) = -62.52 

Parameter Estimate Parameter Estimate 

μ  -0.2173 σ  0.3733 

m  0.8393 s  1.4316 

p  0.0436 LRT Statistics 63.49 

Model with jumps -permanent effect: ln(L) = -65.47 

Parameter Estimate Parameter Estimate 

μ  -0.2172 σ  0.3872 

m  -0.3062 s  2.3133 

p  0.0396 LRT Statistics 57.60 

Model without jumps : ln(L) = -94.27 

Parameter Estimate Parameter Estimate 

μ  -0.2172 σ  0.6043 
 
Note: The critical value for the chi-square distribution (d.f =3, alpha=0.01) is 11.34. Therefore, our likelihood ratio 
test rejects the model without jump at the significance level of 0.01.  
 

The upper panel of Table 3.5 reports the parameter estimates for the model with transitory 

jump effects. The expected rate of change of the mortality factor, μ , is -0.2173, which implies 

the mortality factor tk  decreases by 0.2173 per year on average. The negative sign of μ  is 

consistent with the fact that the U.S. population mortality improves over time. The instantaneous 

volatility is equal to 0.3733. The probability that there is a jump in a given year is equal to 

0.0436.  

I also estimate the parameters for the model with permanent jump effects,17 the results of 

which are shown in the middle panel of Table 3.5. The instantaneous mean and volatility of the 

mortality factor are roughly the same as before, while there are significant differences in the 

                                                        
17 See Appendix 3A for the model with permanent jump effects. 
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mean and variance of the jump severity distribution between two models. The frequency of 

jumps decreases from 0.0436 to 0.0396. I will show later that modeling jumps with permanent 

effects brings a large pricing error in mortality securitizations. 

The estimation results for the model without jumps are in the lower panel of Table 3.5. The 

instantaneous mean of the mortality factor is unchanged, while the instantaneous volatility 

increases to 0.6043, which is an increment by 61 percent, because the model without jumps 

incorporates the variations caused by the jump process into the volatility term. I report the values 

of the log-likelihood functions for different models in Table 3.5, and perform the likelihood ratio 

test. The test rejects the model without jumps at the significance level of 1%. 

 

3.4.3. Evidence from the Outlier-adjusted Lee-Carter Model: Do Outliers Matter? 

I have already shown that a jump-diffusion process fits the mortality factor tk  better than 

the model without jumps. The next question is where the mortality jumps come from. Before 

answering this question, let us briefly review the work done by Li and Chan (2005, 2007). They 

argue that mortality series are often contaminated with discrepant observations, which may result 

from recording or typographical errors, or from non-repetitive exogenous interventions such as 

pandemics or hostilities. In order to reveal the “true” mortality trend, they perform a systematic 

time-series outlier analysis for the mortality data in the U.S. and Canada, and fit the adjusted 

outlier-free mortality series to the Lee-Carter model. For the U.S. data from 1900 to 2000, they 

find 7 outliers, which occurred in year 1916, 1918, 1921, 1928, 1936, 1954 and 1975, 

respectively. These outliers are closely related to or resulted from influenza epidemics according 

to their explanations, except for the data in 1954 and 1975.  

Do the mortality jumps in my model mainly come from the flu events? Do these outliers 



 69

really stand outside the mortality trend? I delete the outliers found by Li and Chan from the 

original mortality data, estimate the mortality factor tk  again (Figure 3.5), and compare the 

results for the model with transitory jump effects and that without jumps (Table 3.6). I find that 

after eliminating the outliers the mortality factor tk  declines more smoothly and does not show 

significant jumps in the evolution process. In addition, when I fit the mortality factor using the 

model with transitory jump effects, the probability of a jump in a given year p  becomes zero, 

which actually makes the model with jumps equivalent to the model without jumps. I therefore 

infer that the mortality jumps arise from these so-call “outliers”, which are mostly caused by flu 

epidemics. 

Figure 3.5: Dynamics of the Mortality Factor tk  from the Outlier Adjusted Lee-Carter Model 

 
Note: Mortality data in year 1916, 1918, 1921, 1928, 1936, 1954, and 1975 are deleted according to the outliers 
analysis of Li and Chan (2007) 
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Table 3.6: Parameter Estimates via Maximum Likelihood Estimation, using the Outlier-free Mortality Data 
 

Model with jumps -transitory effect: ln(L) = -48.38 

Parameter Estimate Parameter Estimate 

μ  -0.2317 σ  0.4005 

m  -0.3774 s  0.9316 

p  0   

Model without jumps : ln(L) = -48.38 

Parameter Estimate Parameter Estimate 

μ  -0.2317 σ  0.4005 

Likelihood Raito Test (LRT) statistics =0 
 
Note: Based on the likelihood ratio test, I cannot reject the model without jumps at the 99% significance level. 
Actually, for the model with transitory jump effects, the estimated values of m  and s  are not very stable if I choose 
different initial values. However, the value of the log-likelihood function remains unchanged. 
 

Is it appropriate to exclude the outliers when we model the death rates for the purpose of 

pricing mortality-linked securities? As Chan (2002) recognizes, “Whether or not it is appropriate 

to adjust the data for outliers depends on the purpose to which the model so derived will be 

used… If…the model will be used in an application for which extreme stochastic fluctuations are 

important (such as pricing catastrophe risks…), then a model which is sympathetic to outliers in 

the data ought to be used.”18 We have witnessed the high correlation between deaths caused by 

flu and deaths by all reasons in the data section, and recognized that mortality jumps mostly 

result from influenza epidemics. I believe that outliers should not be neglected and that mortality 

jumps should be explicitly modeled in mortality securitization, since the rationale behind selling 

or buying mortality securities is to hedge mortality risks. Historic data shows that influenza 

pandemics happen with frightening regularity, occurring every 30 to 50 years (Knapp, 2006). We 

should not view the pandemic as a one-time event which will never happen again.  

                                                        
18 See Chan (2002), page 559-560 
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3.5. Mortality-Linked Securities Pricing: A Numerical Example 

3.5.1. The Swiss Re Mortality Bond and Pricing Difficulties 

Modeling mortality jumps seems more important for securities linked to short-term 

catastrophic risks. Ignoring mortality jumps may cause us to underestimate the probability of 

having a catastrophic event, and overestimate the variation of the mortality factor (see Table 3.5), 

which may bring large errors in pricing mortality-linked securities and calculating risk premiums. 

I, therefore, take the Swiss Re mortality bond (2003) as an example to show how to apply the 

model here to mortality securitizations. 

The Swiss Re transaction is diagramed in Figure 3.6. The Swiss Reinsurance company is 

the largest reinsurance company in the world. In order to reduce its exposure to catastrophic 

mortality risks, it issued its first pure mortality bond transaction through a SPV called Vita 

Capital. The issue size was $400 million. It is a three-year deal: the bond was issued in 

December 2003 and matured on 1 January 2007. Coupons are paid quarterly at a rate of three-

month U.S. dollar LIBOR plus a spread of 135 basis points. Vita Capital executed a swap 

transaction to swap Swiss Re’s fixed premium payment for LIBOR. The principal repayment is 

at risk and contingent on a weighted mortality index based on five countries, males and females, 

and different age-groups19. If the mortality index does not exceed 1.3 times the 2002 base level 

during any of the three years, the principal is fully repayable. Otherwise, investors will receive a 

reduced principal repayment if the mortality index exceeds this threshold, and will get nothing 

back if the index is above 1.5 times the base level.   

 

                                                        
19 The five countries are U.S., U.K., France, Italy and Switzerland. The weights assigned to each country are: U.S. 
70%, U.K. 15%, France 7.5%, Italy 5%, Switzerland 2.5%. 



 72

Figure 3.6: The Contract Design of the Swiss Re Mortality Bond (2003)  

 

Source: Revised from Blake, Cairns and Dowd (2006) 
 
 

Let tq  denote the mortality index at year t , and 0q  be the 2002 base level of the mortality 

index, then the payoff schedule of this bond is shown as follows: 
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where the loss ratio in year t  is defined as 
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There are two difficulties we need to deal with in order to value the Swiss Re mortality 

bond. First, the mortality index defined in the contract is a weighted average across five 

countries. The correlation of mortality risks across countries makes the pricing problem difficult. 

Cox, Lin and Wang (2006) solve this problem by adopting the normalized multivariate 

Debt Investors Swiss Re Vita Capital Ltd. 

LIBOR 

Principal $400m 

Mortality index 

Up to $400m without 
extreme mortality events 

Up to $400m upon 
extreme mortality events 

LIBOR + 135bps 

Swap Counterparty 

 Premiums 

Fixed Return 
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exponential tilting to take into account correlations across countries. Second, the principal 

repayment of the Swiss Re mortality bond is based on the experience of the mortality index in 

three consecutive years. The correlation of the mortality index over time makes the problem even 

more difficult. Cox, Lin and Wang (2006) take the maximum of the mortality index in three 

years and link the principal repayment to this maximum value. In this way, they actually ignore 

the correlation over time and change the multiple-period problem into a single-period problem. 

In this chapter, I adopt the Wang transform and find a way to take into account correlations 

of the mortality index over time. For simplicity, I assume the mortality index only depends on the 

U.S. mortality rates and is weighted across different age groups. The weight is determined by the 

year 2000 standard population. However, my methodology can be easily extended to the case 

where the mortality index is weighted by countries and age-groups, using multivariate 

exponential tilting.   

 

3.5.2. The Methodology: from Exponential Tilting to the Wang Transform 

Exponential tilting, as a general method for neutralizing the statistical distribution, is 

broadly consistent with much of the current literature on no-arbitrage pricing of contingent 

claims (Duffie, 1992; Heston, 1993; Karatzas and Shreve, 1992; Gerber and Shiu, 1996). It is 

widely applicable in pricing risks embedded in loan defaults, mortgage refinancing, electricity 

trading, weather derivatives, and catastrophic insurance (Wang, 2007).  

        Consider two risks X  and Y . The exponential tilting of X  with respect to Y  is defined as: 

[ ]
[ ])exp(

|)exp()()(*

YE
xXYExfxf XX λ

λ =
= ,                                          (3.17) 

where Xf  and *
Xf  represent the probability density function of X  before and after the 

exponential tilting, respectively.  
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        The ratio 
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is the Radon-Nikodym derivative of *
Xf  with respect to Xf .  

        For the exponential tilting in equation (3.17), we do not have a consistent interpretation of 

the λ  parameter; the scale and shape of the reference variable Y  can significantly impact the 

result of the exponential tilting. In order to get a consistent interpretation of λ , Wang (2003) 

propose a normalization procedure of the reference variable Y  through percentile-matching. That 

is, he defines ))((1 YFZ Y
−Φ=  as a normalized variable of Y , and implement a normalized 

exponential tilting of X  with respect to reference Y  as follows: 

[ ]
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= ,                                    (3.19) 

where 0λ  is the parameter corresponding to Z . 

        Under the assumption that X  and Y  have bivariate normal copula with a correlation 

coefficient of ρ , the normalized exponential tilting in equation (3.19) is reduced to the Wang 

transform: 

[ ]λ−ΦΦ= − ))(()( 1* xFxF XX ,                                           (3.20) 

where 0ρλλ = . See Wang (2003) for a proof and further discussions. 

One important feature of the Wang transform is that it preserves the normal and lognormal 

distribution. Specifically, if X  has a normal ),( 2σμ distribution, then after the Wang transform 

X  is still normally distributed with λσμμ +=*  and σσ =* . If X  has a lognormal ),( 2σμ  

distribution, then X  is still a lognormal variable with λσμμ +=*  and σσ =*  after the Wang 

transform. This property enables the Wang transform to replicate the CAPM if the return for an 
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underlying asset has a normal distribution and recover the Black-Scholes formula if the return for 

the underlying asset is lognormally distributed. For this reason, Wang refers to λ  as the market 

price of risk. I will follow him and call λ  the market price of risk thereafter.  

The Wang transform produces a risk-adjusted CDF )(* xFX  for a given asset X  with CDF 

)(xFX . Calculating ][* XE , the expected value of X  under )(* xFX , and discounting it back to 

time zero using the risk-free interest rate, we can get the fair value of the asset X . 

 

3.5.3. The Pricing Framework and Numerical Results 

Recall that in the model section, I work with the following dynamics under the physical 

probability measure P : 
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Assuming the Brownian motion tW , the jump severity Y , and the jump frequency N  are 

independent with each other, I apply the Wang transform to tW , Y , and N  respectively. Under 

the risk-adjusted measure Q , *
tW  is normally distributed with mean t1λ  and variance t , *

],[ thtY −  is 

normally distributed with mean sm 2λ+  and variance 2s , and *
],[ thtN −  is a Bernoulli random 

variable with the probability of jumps *p , where ])1([1 3
1* λ−−ΦΦ−= − pp .20 21 

                                                        
20 Here I denote the variables after the Wang transform with subscript *, which indicates that the distribution of the 
variable changes in the risk-adjusted measure.  
21 Note that the market price of risk increases with the time horizon, i.e., t1λλ = , where 1λ  represents the 

market price of risk per annum. ),(~),(~),(~ 11
* ttNtttNttNWt λλλ × . See Wang (2002) for more 

detailed discussions on this issue. 
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Mathematically, the dynamics of the mortality factor under Q  becomes 
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Here the parameter 1λ , 2λ  and 3λ  represent the market prices of risk associated with the 

Brownian motion, the jump severity and the jump frequency, respectively. Because we have an 

incomplete market for mortality-linked securities, the values of 1λ , 2λ  and 3λ , and thus the 

choice of the risk-adjusted measure Q , are not unique. 

I use the following procedure to calculate the market prices of risk of the Swiss Re mortality 

bond (2003) based on the Wang transform. 

• Because the mortality factor tk  is correlated over time, we cannot simulate tk  for each 

year independently. We need to simulate the path of the mortality factor tk  ( =t  2004, 

2005, and 2006). I do this by 10,000 times, using the jump-diffusion process (3.21) and 

the parameter estimates shown in the upper panel of Table 3.5. 

• I use the Wang transform to change the mortality factor tk  from the physical probability 

measure P  to the risk-adjusted probability measure Q , and obtain the values of *
tk  on 

each path under Q  , given initial values of the market prices of risk 1λ , 2λ  and 3λ .  

• I calculate the mortality rates for different age groups according to the formula 

)exp( **
, xtxtx bkam +=  under Q . The year 2000 standard population and corresponding 

weights are used to compute the weighted average mortality index *
tq  under Q  for each 
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year. 22 

• I calculate the loss ratio, *
tloss , under Q  by the equation (3.16), and compute the risk-

adjusted expected value of the principal repayment of the Swiss Re mortality bond as of 

the period T . 
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• I discount the coupon payments each period and the principal repayment back to the 

beginning of year 2004, using the risk-free rates.23 Setting the discounted expected 

payoff equal to the issue size of the Swiss Re mortality bond $400 million, I obtain the 

market prices of risk, 1λ , 2λ  and 3λ , via the numerical iteration such as the Quasi-

Newton method. 

Note that we have one mortality bond price and need to estimate three market prices of risk. 

Therefore, we cannot solve 1λ , 2λ  and 3λ  simultaneously. As Cairns, Blake and Dowd (2006b) 

demonstrate, we can estimate 1λ , 2λ  and 3λ  by fixing two of them and solving for the third. We 

can also assume the market prices of risk are equal, i.e., λλλλ === 321 , and solve for λ  

consequently, which is the method used by Cox, Lin and Wang (2006).24 

                                                        
22 The year 2000 standard population and corresponding weights can be obtained from the technique notes of the 
NCHS report GMWK293R. The weight is 0.013818 for age under 1 year, 0.055317 for age 1-4, 0.145565 for age 5-
14, 0.138646 for age 15-24, 0.135573 for age 25-34, 0.162613 for age 35-44, 0.134834 for age 45-54, 0.087247 for 
age 55-64, 0.066037 for age 65-74, 0.044842 for age 75-84, 0.015508 for age 85 and over. 
23 I use the US Treasury yield rates on December 30, 2003 as the risk-free rates. I calculate the coupon payment by 
assuming it is paid annually, because I don’t have quarterly data for US Treasury yield rates.  
24 The purpose of this paper is to propose an appropriate mortality model and develop a valuation strategy to account 
for the pricing difficulties of the Swiss Re mortality bond. For simplicity, I only consider one transaction which 
occurred in 2003. Actually, the Swiss Reinsurance company issued another 3 mortality bonds in 2006. My model 
and pricing strategy can be easily extended to multiple-transaction situations. One can find optimal 1λ , 2λ  and 3λ  

by minimizing the target function 2
321 ]),,(ˆ[ ii PP −∑ λλλ  , where ),,(ˆ

321 λλλiP  is the modeled price of the 

i -th issue depending on the parameters 1λ , 2λ  and 3λ , and iP  is the actual market quote for the i -th transaction. 
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Table 3.7: Implied Market Prices of Risk for Different Models 

1λ  5.1449 0 1.5000 

2λ  0 3.4808 1.5000 Model with transitory jumps 

3λ  0 0 1.5000 

1λ  4.6408 0 0.8072 

2λ  0 2.0006 0.8072 Model with permanent jumps 

3λ  0 0 0.8072 

Model without jumps 1λ  2.9921   

     

        Based on the par spread of the Swiss Re bond 1.35%, the implied market prices of risk for 

different models are shown in Table 3.7.25 It is noteworthy that what I estimate here are the 

market prices of risk associated with the Brownian motion, the jump severity, and the jump 

frequency for the mortality factor tk , instead of the true mortality rates. Because the mortality 

factor tk  has a much larger scale than the true mortality rates ( tk  changes from 10.6 in 1900 to -

11.8 in 2003, and the age-adjusted mortality rate changes from 0.02518 in 1990 to 0.00833 in 

2003), it is not surprising to see that the market prices of risk estimated here have high values.  

Under the model with transitory jump effects, if I assume that the risk associated with the 

jump process is diversifiable, i.e., 032 == λλ , the market price of risk associated with the 

Brownian motion is 5.1449. If there is no systematic risk of the Brownian motion and the jump 

frequency, i.e., 031 == λλ , the market price of risk associated with the jump severity is 3.5004. 

Of course, these can be regarded as the extreme cases. If I assume λλλλ === 321 , I can solve 

for 5.1=λ . 

I notice that when I switch to the model with permanent jump effects, the estimated market 
                                                        
25 I don’t report the case where there is only systematic risk associated with the jump frequency. For the model with 
transitory jumps, our estimation results show that it is not enough to only adjust the distribution of the jump 
frequency.  
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prices of risk drop dramatically in each case. This can be explained by the large difference in the 

volatility of the jump severity distribution and the difference in the intrinsic model setup. First, if 

I model mortality jumps to have permanent effects, the jump effects accumulate over time. 

Therefore, the forecasted mortality rates are more inclined to reach the predetermined threshold 

level, which indicates a higher risk on the principal repayment. Second, the volatility of the jump 

severity is 2.3133 in the model with permanent jump effects, while it is 1.4316 in the model with 

transitory jump effects (see Table 3.5). The higher volatility of the jumps in the former model 

raises the risk further. When the par spread of the Swiss Re is fixed at 1.35%, the higher risk 

imposed on the principle repayment, the lower market price of risk I obtain. Therefore, modeling 

mortality rates with permanent jump effects underestimates the market prices of risk.  

I come to the model without jumps at last. The estimated market price of risk associated 

with the Brownian motion is 2.9921, which is much lower than that for the model with jumps, 

whether the jumps have permanent or transitory effects. The model without jumps overestimates 

the variation of the mortality factor while underestimating the probability of catastrophic events. 

I suspect that the effect of overestimating the variation dominates the effect of underestimating 

the catastrophic probability, which brings down the market price of risk associated with the 

Brownian motion. 

 

3.6. Conclusions and Discussions 

In this chapter, I give a deep discussion of mortality modeling and mortality-linked security 

pricing. A good stochastic mortality model for pricing mortality-linked securities should meet 

the following criteria, while none of the previous research addresses all these problems. 

• The model should capture both the mortality trend over time and the age-specific 
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changes for different age groups. Modeling the age-adjusted mortality rates is not 

enough, since the payoffs of mortality-linked securities sometimes depend on a 

mortality index based on different age groups.  

• The model should incorporate a mortality jump process explicitly. Mortality jumps 

caused by short-term catastrophic events, such as the 1918 Spanish Flu, cannot be 

ignored because the rationale of mortality securitizations is to hedge extreme mortality 

risks. 

• Adverse mortality jumps have transitory effects on mortality rates. It is inappropriate to 

model adverse mortality jumps with permanent effects, especially when we value 

mortality bonds, because most of adverse mortality jumps are caused by short-term 

catastrophic events and the effects should fade away after one or several periods. 

• The model with transitory jump effects introduces correlations of the data. When 

estimating the parameters in the model, we cannot simply assume the data are 

independent and use the traditional maximum likelihood estimation. 

I extend the work of Cox, Lin and Wang (2006), and address all of the problems mentioned 

above. I make the first attempt to incorporate a jump process into the Lee-Carter model and 

discuss in detail how to model the mortality factor tk  with transitory jump effects. Second, I 

derive the conditional log-likelihood function and estimate the parameters via CMLE, provided 

that the data are correlated over time. Big estimation errors occur if we assume the data are 

independent, which is the problem in previous studies (e.g., Lin and Cox, 2008). Third, I 

compare the model with permanent jump effects to that with transitory jump effects, and 

demonstrate how the difference will cause a large pricing distortion. Finally, this study 

contributes to the existing literature by showing how to account for correlations of the mortality 
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index over time when pricing the Swiss Re mortality bond (2003). The basic idea is to simulate 

the paths of the mortality index and change measures on paths.  

A line of future research may focus on how to decide an “optimal” transform in an 

incomplete market. As suggested by Cox, Lin and Wang (2006), although the change of 

measures is not unique in an incomplete market, we can try to apply the minimum martingale 

transform to find a strategy that minimizes the variance of the payoff risk. Second, I ignore the 

issue of parameter uncertainty in this paper. I simulate the mortality index using estimates of the 

parameters, assuming these parameter estimates are true values without ambiguity. Another line 

of future research is to relax this assumption and consider the valuation and hedging of 

mortality-linked securities under parameter uncertainty.  
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4 
Valuation of the Non-Recourse Provision in 
Reverse Mortgages: 
Understanding and Modeling the Risks 
 

 

Although we cannot predict the mortality deterioration caused by some randomly occurring 

catastrophic events, we have seen a steadily increasing life expectancy over the last several 

decades. In the United States, the recorded life expectancy at birth was 60.95 in 1933. It 

increased to 77.87 in 200426. Since the 1970’s, the reduction of death rates among the elderly has 

become the main factor driving continued gains in life expectancy in developed countries. These 

mortality improvements place strains not only on fiscal sustainability of social security systems, 

but also on individuals’ capacity to accumulate enough private savings to finance their retirement 

(Wang, Valdez and Piggott, 2007). The reverse Mortgage, recognized as an important financial 

vehicle to supplement current social security systems for the elderly, has attracted considerable 

                                                        
26 According to the data from Human Mortality Database.  



 83

attention recently. In this chapter, I investigate the structural design and embedded risks in 

reverse mortgages. As a step toward further discussion of pricing mortality-linked securities in 

an incomplete market, I employ the conditional Esscher transform to value the non-recourse 

provision of a reverse mortgage.   

 

4.1. Introduction 

According to the statistics from the U.S. Census Bureau, more than 34 million Americans 

live above age 65. That number is expected to increase to 71 million by the year 2030, which 

will account for 19.6% of the population.27 With the retirement of baby-boomers and the increase 

in the share of the elderly in the population, the retirement programs in the U.S. face an “aging-

population tsunami” and significant future imbalances consequently. In addition, the shift of 

pension plans from defined benefit (DB) to defined contribution (DC) and the declining 

contribution levels from employers impose big challenges on financial budgets of the aged 

population after their retirement. The elderly may not only receive reduced monthly incomes, but 

also experience rising health-care costs and decreasing pension plan benefits. It is increasingly 

difficult for them to maintain financial independence and the standard of living. However, the 

American Housing Survey shows that more than 12.5 million elderly have no mortgage debt, and 

the median value of the unmortgaged homes is $127,959.28 “House rich and cash poor” is the 

phrase often used to describe their dilemma. 

Since the 1970s, academics and practitioners have sought to create mortgage instruments to 

enable elderly homeowners to borrow by using the equity in their homes as collaterals, which are 

                                                        
27 U.S. Census Bureau. International database. Table 094.  
    Available at http://www.census.gov/population/www/projections/natdet-D1A.html 
28 American Housing Survey for the United States: 2005, Current Housing Reports. H150/05. U.S. Department of 
Housing and Urban Development and U.S. Census Bureau. Aug. 2006, P156 
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referred to as reverse mortgages. Providers of reverse mortgages advance a lump sum or periodic 

payments to elderly homeowners. The loans accrue with interests and are settled only when 

borrowers die, sell or vacate their homes to live elsewhere. Borrowers enjoy the favorable merits 

of reverse mortgages in several aspects. First, it allows homeowners to convert their home equity 

into cash flows without having to move out of the properties. Second, borrowers have no 

obligation to repay the loans as long as they are alive or reside in their homes. Finally, the 

repayments are capped with the proceeds from the sale of the properties. When a loan is 

terminated, if the loan balance is larger than the property value (usually referred to as crossover 

risk), the provider recovers only up to the sale price of the property. This is the so-called non-

recourse provision.  

In 1989, after the Department of Housing and Urban Development (HUD) introduced the 

Home Equity Conversion Mortgage (HECM) program, reverse mortgages became widely 

available in the United States. There are three major reverse mortgage programs in the U.S. 

market, which are the HUD’s HECM, Fannie Mae’s Home Keeper program, and Financial 

Freedom’s Cash Account Plan. In late 2006, the Lifestyle Plan was introduced in the states of 

California, Oregon and Washington, and the plan was expected to be available nationally during 

2007. Among them, the HECM program is considered the safest and the most popular program 

in the U.S., since it is insured by the U.S. federal government and accounts for 95 percent of the 

market share. For this reason, I focus on analyzing the HECM program in this study. 

The main purpose of this study is to develop a framework to model the embedded risks, 

value the non-recourse provision, and calculate the present value of insurance premiums in the 

HECM program. As pointed out by Phillips and Gwin (1992), the lending feature of reverse 

mortgages subject loan providers to multiple risks. An increase of the lifespan of the loan 
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resulted from mortality improvement or reduced mobility rates will impose a higher crossover 

risk. A rise in interest rates will speed up the rate at which the loan accumulates, and will 

possibly hit the crossover point earlier. Finally, a depressed real estate market will worsen the 

value of the home. Most of the existing literature on risk modeling in the HECM program has 

two major flaws. First, some of them use period life tables, and thus neglect the dynamics of 

mortality rates (see Tse, 1995; Zhai, 2000; Weinrobe, 1988; Szymanoski, 1994). Moreover, 

almost all of previous studies ignore longevity risk and do not model the mortality improvement 

jumps explicitly. I employ the generalized Lee-Carter model proposed in Chapter 3 to model the 

mortality rates and construct dynamic life tables for pricing the non-recourse provision and 

calculating insurance premiums. It is noteworthy that I adapt the Lee-Carter model to incorporate 

permanent jump effects instead of transitory jump effects, since the main concern of reverse 

mortgage providers is the longevity risk, which is persistent over time. Second, traditional 

HECM models assume house prices are driven by a geometric Brownian motion (e.g., 

Szymanoski, 1994; Ma, Kim and Lew, 2007; Wang, Valdez and Piggott, 2007). However, I find 

that house price returns exhibit strong autocorrelation and varying volatility over time, which is 

inconsistent with the “memoryless” feature of geometric Brownian motions. Therefore, I follow 

Li, Boyle, Hardy and Tan (2007)’s work by using an ARIMA-GARCH model to fit house price 

returns.  

The non-recourse provision in reverse mortgages can be viewed as offering borrowers a 

series of European exchange options with different times to maturity (Chinloy and Megbolugbe, 

1994). Valuation of the non-recourse provision requires us to create an equivalent martingale 

measure in an incomplete market, since multiple risks are involved in reverse mortgages. The 

adoption of the GARCH model for house price returns suggests that the change of probability 
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measure via the conditional Esscher transform be applicable in this circumstance. Till now, there 

is a substantial literature for option valuations in the GARCH framework since the pioneering 

work of Duan (1995). He introduces the notion of locally risk-neutral valuation relationship 

(LRNVR), which preserves the one-period-ahead (local) conditional variances of the stock-price 

dynamics. Siu, Tong and Yang (2004) adopt the conditional Esscher transform to the valuation of 

derivatives under the general class of GARCH models. They recover Duan’s pricing results, 

assuming the GARCH innovations are conditionally normal. Li, Boyle, Hardy and Tan (2007) 

apply Siu et al.’s pricing framework, when the conditional mean equation is given by an ARMA 

process, to price the No-Negative-Equity-Guarantee in equity release markets in the U.K. Their 

approach can be extended slightly here to value the non-recourse provision of reverse mortgages 

when the mean equation follows an ARIMA process.  

In order to protect lenders of reverse mortgages from possible losses, the Federal Housing 

Administration (FHA), which is one part of HUD’s Office of Housing, charges insurance 

premiums from borrowers, and pays insurance claims to lenders in case the loan balance exceeds 

the equity value at the time of settlement. Theoretically, the present value of expected premiums 

should be equal to the value of the non-recourse provision, under the actuarial equivalence 

principle. I examine the premium structure of HECM loans and investigate whether insurance 

premiums are adequate to cover expected claims. I find that the collected premiums exceed the 

actuarial present value of claim payments to lenders. The HECM program is sustainable.  

The rest of this chapter is organized as follows. In section 4.2, I review the basic facts of 

reverse mortgages, using HECM as an example, and develop the pricing formula for the non-

recourse provision and insurance premiums. In section 4.3, I discuss various risks involved in the 

HECM program. I build a model for longevity risk and provide details on how to construct a 
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dynamic life table in section 4.4. I review the literature on house price dynamics and model 

house price returns as an ARIMA-GARCH process in section 4.5. In section 4.6, I discuss the 

conditional Esscher transform and provide the pricing framework. I value the non-recourse 

provision and calculate the present value of insurance premiums consequently. Finally, section 

4.7 concludes.     

 

4.2. The HECM Program and the Non-Recourse Provision 

The HECM program was authorized by HUD in the Housing and Community Development 

Act of 1987. Since 1990, there are more than 308,000 elderly homeowners taking advantage of 

the HECM program.29 The market even booms at an incredible rate recently. According to the 

national Reverse Mortgages Lenders Association, 37,829 HECM loans were originated in 2004, 

representing a 109% jump over the previous year and nearly 500% growth since 2001. The 

growth continued in 2005 when 43,131 HECM loans were approved (Wang, Valdez and Piggott, 

2007). Currently, it has become the most popular program of its kind in the U.S. Over 95 percent 

of all reverse mortgage borrowers choose the HECM products (Ma and Deng, 2006). This 

section reviews the basic facts of the HECM program, to prepare for further discussions in 

modeling and pricing sections later on.    

 

4.2.1. Borrower Requirements 

Under the HECM program, borrowers must be at least 62 years of age, living in a single-

family property that meets HUD’s minimum property standard. They must own their homes free 

and clear, which implies that any home purchase mortgage must be fully repaid either prior to 

                                                        
29 Sioris, N. Over 300,000 HECM Reverse Mortgages Closed. June 28, 2007.  
    Available at http://www.letyourhomepayyou.com/2007/06/over-300000-hecm-reverse-mortgages.html 
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HECM or from the initial proceeds of the HECM product. Before closing, borrowers must attend 

counseling where third parties will explain the financial implications of entering into the HECM 

program as well as other options that may be available. 

 

4.2.2. Payment Options 

These are the payment options that borrowers can choose from: 

• Lump sum – The borrower receives the entire available principal limit at closing. 

• Line of credit – Installments are made at times and in amounts of the borrower’s 

choosing until the line of credit is exhausted. 

• Tenure – Equal monthly payments are made as long as the borrower lives and continues 

to occupy the property as a principal residence. 

• Term – Equal monthly payments are made for a fixed period of months selected by the 

borrower. 

• Modified tenure – Combination of line of credit with monthly payments for as long as 

the borrower remains in the home. 

• Modified term – Combination of line of credit with monthly payments for a fixed 

period of months selected by the borrower. 

 

4.2.3. Initial Principal Limit 

The initial principal limit (IPL) is the initial loan amount that may be extended to a 

borrower by a lender, which equals the present value of the monthly payments offered to 

borrowers (Deutsche Bank, 2007). In the case of a lump sum option, it is the amount of cash 

advance that a borrower can get at the time of loan origination. It is determined by the age of the 
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borrower, the expected interest rate, and the adjusted property value, which is the minimum of 

the appraised value of the property and the mortgage limit imposed by FHA for one-family 

house in that specific area.  

 

4.2.4. Interest Rate Options 

The interest rate charged on the loan may be fixed or adjustable, with annual or monthly 

adjustments linked to the one-year Treasury bill rate. However, 99% of the HECM loans issued 

to date had an adjustable interest rate, largely because Fannie Mae (Federal National Mortgage 

Association), which has purchased nearly all of the loans issued under the program, does not 

purchase fixed-rate loans. 

 

4.2.5. The Termination Time  

To prevent involuntary displacement of elderly homeowners, the HECM loan does not 

require any repayment until a borrower sells the property, moves out, or dies. A borrower also 

has the option of prepaying the loan without any penalty. A foreclosure can only take place when 

a borrower discontinues paying monthly property taxes and insurance, or fails to maintain the 

property up to a minimum maintenance level. 

 

4.2.6. The Non-Recourse Provision 

The HECM loan is a non-recourse debt. When the loan terminates, if the net proceed from 

the sale of the property is sufficient to pay the outstanding loan balance, the remaining cash 

usually belongs to the borrower or his/her beneficiaries. If the sale proceed is not enough to 

cover the loan balance, the non-recourse provision prevents the lender from pursuing other assets 
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belonging to the borrower, apart from the house.  

Denote tL  the outstanding balance of the loan and tH  the value of the mortgaged property 

at a random time t . If the loan is due at time t , the borrower pays tL  if tt LH ≥ , and tH  if 

tt LH < , under the non-recourse provision. The cash flow function of the borrower can be 

written as follows:  

⎩
⎨
⎧

≥−
<−

=
ttt

ttt

LHL
LHH

repayment
         ,
        ,

 

                                )0,max( ttt HLL −+−= .                                   (4.1) 

        Equation (4.1) means the non-recourse provision is equivalent to writing the borrower an 

European exchange option which changes the mortgaged property value tH  for the loan 

outstanding balance tL . The borrower, therefore, is holding a debt position and an exchange 

option. At the time of termination, the borrower needs to pay the loan balance, but he or she gets 

the payoff from the exchange option at the same time. Note the termination time t  is random 

here. More precisely, the non-recourse provision is equivalent to writing the borrower a series of 

European exchange options with different times to maturity (Chinloy and Megbolugbe, 1994; Li, 

Boyle, Hardy and Tan, 2007). Let ω  be the highest attained age, the payoff from the non-

recourse provision written on a cohort group aged x  can be expressed as follows: 

[ ]∑
−−

=

−
+ −=

1

0

)0,max(Value
x

t
tt

rt
txxtQ HLeqpE

ω

,                             (4.2) 

where r  is the risk-free interest rate, xt p  is the probability that an individual aged x  will 

survive another t  years, txq +  is the probability that an individual aged tx +  will die in one year, 

and QE  denotes the expectation under the risk-adjusted measure Q . 
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4.2.7. Insurance Premiums 

In order to protect lenders from possible losses if non-repayment occurs, as well as to 

guarantee borrowers receiving monthly payments if lenders default on the loans, HUD provides 

mortgage insurance for the HECM program. Two insurance options are available for lenders to 

choose from, which are the assignment option and the shared premium option. However, none of 

the lenders choose the shared premium option because Fannie Mae does not purchase these loans. 

With the assignment option, FHA collects all the insurance premiums and the lender is allowed 

to assign the loan to FHA when the loan balance equals the adjusted property value. FHA takes 

over the HECM loan and pays an insurance claim to the lender covering his/her losses. By 

choosing this option, lenders are effectively shifting the collateral risk to HUD.  

The mortgage insurance premiums (MIP) are paid by borrowers and include an upfront 

premium of 2% of the adjusted property value and an annual rate of 0.5% of the loan outstanding 

balance as long as the loan is active. Mathematically, the insurance premiums can be calculated 

as 

( )∑
−−

=

−+=
1

1
0 005.002.0Premium

x

t
t

rt
xt LepH

ω

.                           (4.3) 

 

4.3. Modeling Insurance Risks in the HECM Loans 

Reverse mortgages differ from traditional forward mortgages in the way that the 

outstanding loan balance grows due to principal advances, interest accruals, and other loan 

charges over the life of the loan, which can been observed from Figure 4.1. The loan balance 

may grow to exceed the property value at the time of termination because of multiple risks. 
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Figure 4.1: Comparison between a Forward Mortgage and a Reverse Mortgage  

 

Source: This figure is revised from Deutsche Bank Report (2007) 

 

4.3.1. The Termination Risk  

If a borrower lives a longer time than the expected lifespan, the principal advances and 

interest accruals will continue, which may lead the loan balance above the sale proceed of the 

property. In other words, lenders of reverse mortgages are faced with longevity risk. The 

mobility rate has the same effect on reverse mortgage products. Borrowers may move out of their 

homes because of their health conditions, marriage, divorce, death of the spouse, disasters, or 

simply the desire to live in another place. The mobility rate for the U.S. population is observed to 

decrease with age initially, but starts to increase after a certain old age such as 80 (Zhai, 2000). 

However, there is little data for us to calibrate the mobility rate for HECM borrowers. HUD 

simply assumes that the mobility rates are approximately 30 percent of the mortality rates in the 

HECM model (see, e.g., Rodda, Lam and Youn, 2004; Deutsche Bank Report, 2007). In other 

words, the termination rates are roughly 1.3 times the death rates. I use the same assumption in 
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this study.  

 

4.3.2. The Interest Rate risk 

HECM loans almost exclusively opt for adjustable interest rates, therefore the variation of 

interest rates imposes additional uncertainty on HECM insurers. The rise of interest rates can 

result in a higher rate of interest accruals on the loan balance than anticipated, which increases 

the possibility of non-repayment when the loan eventually terminates. In this study, I choose a 

fixed interest rate with a risk adjustment, as most of the HECM models did. The question is: 

what is the appropriate risk premium in order to equate the value of the non-recourse provision to 

the present value of insurance premiums? I will answer this question in section 4.6.   

 

4.3.3. The House Price Depreciation Risk 

The uncertainty in house price depreciation rates is another risk we need to consider. If the 

house price remains stagnant or grows at a lower rate than anticipated, the outstanding loan 

balance at maturity may exceed the sale proceed of the property. Lenders may suffer from the 

losses and file insurance claims with the FHA. The house price depreciation risk is only partially 

diversifiable, because pooling mortgage products nationally only minimizes the risk of regional 

economic recession, but cannot diversify the risk of national economic recession. Additionally, 

the house price index is not a stationary time-series variable, which implies a simple risk 

adjustment is not applicable (Szymanoski, 1994).  

 

4.4. Modeling the Longevity Risk 

        Longevity risk is defined as the uncertainty of mortality improvement in the future. It exists 
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in both individual and aggregate levels (MacMinn, Brockett and Blake, 2006). Individuals may 

face longevity risk of outliving their resources. However, they can insure against the risk through 

the social security systems, defined benefits plans, and private annuity products. Pension plans 

and insurers can diversify the longevity risk at the individual level following the law of large 

numbers, assuming lives are independent. In the aggregate sense, longevity risk is referred to as 

the fact that people of some certain population might live longer, on average, than expected. For 

instance, Hardy (2005) points out that the life expectancy for men aged 60 is 5 years’ longer in 

2005 than it was anticipated in the mortality projection made in the 1980s. Such risk breaks 

down the risk pooling mechanism and becomes non-diversifiable, making the provision of risk 

management tools increasingly difficult. 

The traditional HECM model uses period life tables and therefore fails to capture the 

dynamics of longevity risk over time. In addition, it does not model the mortality improvement 

jumps explicitly. In the HECM program, an unexpected mortality improvement will increase the 

life expectancy and affect the premium pricing persistently. For example, heart disease is one of 

the leading causes of death in the United States. It accounts for 28.5 percent of the total death in 

2002 according to the report of National Center of Health Statistics (Vol. 53, No. 5, October 

2004). If there were a breakthrough of medicine protecting people from heart attack, the 

mortality rates would decrease substantially and the effects of mortality improvement would last 

for a long period, even forever. In chapter 3, I built a jump-diffusion process in the Lee-Carter 

framework and explored the models with permanent versus transitory jump effects. I found that 

the model with transitory jump effects is more appropriate for mortality risk (or short-term 

catastrophic risk), because most of adverse mortality jumps are caused by catastrophic events 

and only have short-term effects. Likewise, I believe that the generalized Lee-Carter model with 
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permanent jump effects is applicable for longevity risk, since the main concern of reverse 

mortgage lenders is the aggregate mortality improvement risk that seems to be due to lasting 

factors which impact the whole population for a long time. 

Because I have already discussed the generalized Lee-Carter model with jumps in detail in 

chapter 3, I only briefly state the steps I am doing here: 

• Model the central death rates txm ,  by the classical Lee-Carter Model,  

txtxxtx ekbam ,, )ln( ++= ,                                                 (4.4) 

and estimate the parameters xa , xb  and tk  following the two-stage procedure. 

• Model the time series tk  by a jump-diffusion process with permanent jump effects, 

tttt NYdWdtpmdk ++−= σμ )( ,                                         (4.5) 

and estimate the parameters μ , σ , p , m  and s  via MLE. 

• Forecast the mortality factor tk  ( ,...3,2,1=t ) in 1,000 paths according to the discrete 

approximation 

1111 ++++ ++−+= ttttt NYZpmkk σμ ;                             (4.6) 

where tZ  is a standard normal random variable. 

• Obtain the forecasts of central death rates in 1000 paths 

)exp(, txxtx kbam += .                                               (4.7) 

• Construct the dynamic complete life table for every year. That is, calculate tyq ,  

( ,...3,2,1=t ), the probability that an individual aged y  will die in one year at time t  

(see Appendix 4A for details). 
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4.5. Modeling the House Price Depreciation Risk 

4.5.1. The House Price Index 

The underlying asset of the HECM product is the mortgaged property value. However, the 

mortgaged property is infrequently traded in the market and we seldom have historical data on 

each individual mortgaged property, which leaves us some difficulties on the pricing issue. 

Fortunately, we can mitigate this problem by resorting to the house price indices that reflect 

changes in residential property in a particular geographical region, since what we really care 

about is house price returns. In this study, I choose the nationwide House Price Index (HPI) from 

1975 to 2007. The HPI is published by the Office of Federal Housing Enterprise Oversight 

(OFHEO) on a quarterly basis, and measures average price changes on single-family residential 

properties.  It is based on a modified version of the weighted, repeated sales methodology, which 

was first proposed by Bailey, Muth and Nourse (1963), and later extended by Case and Shiller 

(1987, 1989). Repeated transactions of single-family houses are reviewed so that for each 

property, at least two mortgages were originated and subsequently purchased by Freddie Mac or 

Fannie Mae since January 1975. The use of repeated sales on the same property helps to control 

for differences in the quality of the houses in the sample. For this reason, the HPI is a “constant 

quality” house price index. As of December 1995, there were over 6.9 million repeated 

transactions in the national sample. Because of the breadth of the sample, it provides more 

information than is available in other house price indices. For more questions and comparison 

with other house price indices, I refer interested readers to the new released 2007 Q4 House 

Price Index Report.30 

 

                                                        
30 Office of Federal Housing Enterprise Oversight (OFHEO). 2008. 4Q 2007 House Price Index Report, available at 

http://www.ofheo.gov/media/pdf/4q07hpi.pdf 
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4.5.2. Housing Price Dynamics Review 

        In recent years, numerous studies model the dynamics of house prices. The main analytical 

issues examined by these studies include testing housing market efficiency, pricing contingent 

claims embedded in mortgages and mortgage-backed securities, and establishing a hedging 

mechanism for house price volatility (Cho, 1996). The consensus in the literature is that the 

house value is arguably not a stationary series. Variation of individual property values around the 

average increases over time.  

       Cunningham and Hendershott (1984), Kau, Keenan and Muller (1993) model property 

values as a geometric Brownian motion. The HUD also adopts this model framework in its 

HECM program, and assumes that property values appreciate with a 4 percent mean and a 10 

percent standard deviation (Quercia, 1997). Under this model setup, nonstationarity arises from 

the fact that the cumulative house price appreciation rate over time is normally distributed, with 

mean and standard deviation growing over time. In addition, the house price appreciation is a 

random walk and has no memory, which means that previous values do not help in the prediction 

of future values.  

       However, tests of efficient market hypothesis (EMH) in the real estate markets provide us 

with contradictory results. The history of the housing literature on this topic goes back only 

about 20 years to the studies by Hamilton and Schwab (1985) and Linneman (1986). Since then, 

numerous studies have tested the EMH in the housing markets in the United States and other 

countries. Case and Shiller (1989) reject the weak-form efficiency in the U.S. housing market by 

pointing out the positive autocorrelation effects in both the changes in house prices and after-tax 

excess returns. Hosio and Pesando (1991), Ito and Hirono (1993) investigate the Toronto and 

Tokyo housing markets, respectively, and get similar results. The Institute of Actuaries (2005) 
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also finds that there are positive autocorrelations in the Nationwide House Price Index in the U.K. 

Autocorrelations in the house price index actually give the price series some memory and allows 

speculative price bubbles, as well as mean reversion, to occur (Szymanoski, 1994).  

Therefore, it is natural to apply time-series analysis to the real estate market. Particularly, 

the development of ARCH (autoregressive conditional heteroskedasticity) models relaxes the 

assumption of constant error variance, which can nicely explain the increasing volatility of house 

price dynamics. ARCH models were introduced by Engle (1982) and generalized as GARCH 

(Generalized ARCH) by Bollerslev (1986). These models are widely used in various branches of 

econometrics, especially in financial time series analysis. Chinloy, Cho and Megbolugbe (1997), 

Nothaft, Gao and Wang (1995) apply GARCH models in analyzing house price volatilities.  

 

4.5.3. ARMA(R,M) – GARCH(P,Q) 

        To developing a GARCH model, we have to consider two specifications—one for the 

conditional mean and one for the conditional variance. 

        The conditional mean model ),( MRARMA  can be expressed as 

t

M

j
jtj

R

i
itit XcY εεθφ +++= ∑∑

=
−

=
−

11
,31                                     (4.8) 

where R  is the order of the autocorrelation terms, M  the order of the moving average terms, iφ  

the thi -order autocorrelation coefficient, jθ  the thj -order moving average coefficient, and tε  the 

Gaussian innovations. 

        Let 1−Φ t  be the information set containing all the information up to time 1−t . Denote 2
tσ  

                                                        
31 The eigen values }{ iλ  associated with the characteristic AR polynomial R

RRR φλφλφλ −−−− −− ...2
2

1
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lie inside the unit circle to ensure stationarity. Similarly, the eigen values associated with the characteristic MA 
polynomial M

MMM θλθλθλ ++++ −− ...2
2

1
1  must lie inside the unit circle to ensure invertibility. 
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the conditional variance of the innovations given 1−Φ t , i.e., ]|[ 1
22

−Φ= ttt E εσ . The conditional 

variance model ),( QPGARCH  for the innovations can be written as 
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where P  is the order of the GARCH terms, Q  the order of the ARCH term, iα  the thi -order 

GARCH coefficient, and jβ  the thj -order ARCH coefficient.  

        Let tX  be the time series of the quarterly HPI from 1975 Q1 to 2007 Q4. I transform the 

data into the log-arithmetical return series, )ln()ln( 1−−= ttt XXY , in order to analyze the house 

price returns. From Figure 4.2, the log return series is obviously not stationary. I implement the 

Augmented Dickey-Fuller (ADF) test, as well as the Phillips-Perron (PP) test. Both the ADF 

statistic (-0.1975) and PP statistic (4.1293) are higher than the critical values at the significance 

level of 5%, which means that the tests fail to reject the null hypothesis of a unit root in the 

return series. Therefore, we need to difference the return series to account for the order of 

integration. The return series becomes stationary after taking the first difference (see Figure 4.3), 

and the unit root tests confirm this result (ADF=-10.36413, PP=-18.64109).  
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Figure 4.2: The HPI Log Returns 

 

Figure 4.3: The First Difference of HPI Log Returns 

 

        The Box-Jenkins (1976) approach gives us a guide on how to identify an appropriate 

ARMA(R,M) model for the first difference of log returns (denoted as tDY  thereafter). I plot the 
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sample autocorrelation coefficients (ACF) and partial autocorrelation coefficients (PACF) of 

tDY  in Figure 4.4 and 4.5, respectively. The sample ACFs are almost zero after one lag, and the 

sample PACFs die off after two lags. It seems that ARMA (2,1) would be appropriate for the 

tDY  series. However, after fitting tDY  with ARMA(2,1), I find that the constant term, AR(1) 

term, and MA(1) term are statistically insignificant at the 5% significance level. Therefore, more 

trials with other combinations of R  and M  are needed. The Akaike (AIC) and Bayesian (BIC) 

information criterion can be used as a guide for the appropriate lag order selection. After several 

trials, I find that ARMA (2,0) without the constant term makes a good fit. The coefficients of 

AR(1) and AR(2) terms are both highly significant. In addition, the AIC and BIC reach the 

lowest values (see Table 4.1).   

Figure 4.4: ACFs of the First Difference of HPI Log Returns 

.  
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Figure 4.5: PACFs of the First Difference of HPI Log Returns 

 

Table 4.1: Parameter Estimates of Several ARMA Models 

Parameter Value Standard Error T-statistic 

ARMA(2,0) without constant term 

AR(1) 0.46137 -0.068178 -6.7672 

AR(2) -0.34567 0.074713 -4.6267 

AIC -911.8226 BIC -903.2200 

ARMA (2,0) 

C -0.00028119 0.00063945 -0.4397 

AR(1) -0.46248 0.069209 -6.6824 

AR(2) -0.34666 0.074457 -4.6559 

AIC -910.0270 BIC -898.5569 

ARMA(2,1) 

C -0.0001719 0.00043235 -0.3976 

AR(1) -0.16342 0.17813 -0.9174 

AR(2) -0.25641 0.10365 -2.4739 

MA(1) -0.35463 0.18916 -1.8747 

AIC -911.7503 BIC -897.4126 
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        After fitting a candidate ARMA specification, we should verify that there are no remaining 

autocorrelations that the model has not accounted for. Figure 4.6 plots the autocorrelations of 

innovations in the selected model. Almost all the ACFs are within the 95% confidence interval, 

which indicates that ARMA(2,0) without the constant term captures most of the autocorrelation 

effects in the tDY  series. I further verify this by implementing the Ljung-Box-Pierce Q-Test (see 

the upper panel of Table 4.2). When examined for up to 1, 5, and 10 lags of the ACFs at the 5% 

significance level, no significant correlation is present after fitting the tDY  series by ARMA(2,0) 

without a constant, 

Figure 4.6: ACFs of Innovations of ARMA(2,0) without the Constant Term 

 

        I also plot the ACFs of the squared innovations in Figure 4.7, in order to examine the 

existence of ARCH effects. It demonstrates that, although the ACFs of the innovations exhibit 

little correlation, the ACFs of the squared innovations are still significantly correlated. The 

Ljung-Box-Pierce Q-Test on the squared residuals (the middle panel of Table 4.2) and Engle’s 

ARCH test on the residuals (the lower panel of Table 4.2) show significant evidence in support 
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of ARCH effects.  

Figure 4.7: ACFs of Squared Innovations of ARMA(2,0) without the Constant Term 

 

Table 4.2: Q-Test and ARCH Test for the ARMA(2,0) Model without the Constant Term 

 Lag Statistic Critical Value P-Value 

1 0.6773 3.8415 0.4105 

5 9.2737 11.0705 0.0986 Ljung-Box-Pierce Q-Test for the 
Innovations 

10 15.6112 18.3070 0.1113 

1 3.9002 3.8415 0.0483 

5 14.1623 11.0705 0.0146 Ljung-Box-Pierce Q-Test for the 
Squared Innovations 

10 20.5822 18.3070 0.0242 

1 5.9467 3.8415 0.0147 

5 10.1580 11.0705 0.0709 Engle’s ARCH Test for the 
Innovations 

10 11.2282 18.3070 0.3400 

     
 

In most applications, GARCH(1,1) is enough to capture the ARCH effects. I keep 

ARMA(2,0) without the constant term for the conditional mean, and use GARCH(1,1) to model 
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the conditional variance. Parameter estimates and corresponding statistics are reported in Table 

4.3. All the coefficients are highly significant except for d , the constant term in the GARCH 

model. Figure 4.8 shows that the standardized innovations (the innovations divided by the 

conditional standard deviations) become uncorrelated. In addition, almost all the ACFs of the 

squared standardized innovations fall in the 95 percent confidence interval (see Figure 4.9), 

which indicates that my model sufficiently explains the ARCH effects. The results of hypothesis 

testing in Table 4.4 confirm the qualitative checks above. The Q-test on the standardized 

innovations fails to reject the null hypothesis that there is no autocorrelation up to 10 lags. The 

Q-test on the squared standardized innovations and the ARCH test on the standardized 

innovations come to the same conclusion that conditional heteroskedasticity has disappeared 

after the model fitting.  

Table 4.3: Parameter Estimates for the ARMA(2,0) – GARCH(1,1) model 

Parameter Value Standard Error T-statistic 

AR(1) -0.42727 0.083495 -5.1174 

AR(2) -0.34979 0.086188 -4.0584 

d 4.0059e-006 3.3928e-006 1.1807 

GARCH(1) 0.79897 0.12364 6.4620 

ARCH(1) 0.10319 0.069692 1.4806 
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Figure 4.8: ACFs of Standardized Innovations of ARMA(2,0) + GARCH(1,1) 

 
 

Figure 4.9: ACFs of Squared Standardized Innovations of ARMA(2,0) + GARCH(1,1) 
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Table 4.4: Q-Test and ARCH Test for the ARMA(2,0) – GARCH(1,1) Model 

 Lag Statistic Critical Value P-Value 

1 0.6668 3.8415 0.4142 

5 5.5319 11.0705 0.3545 Ljung-Box-Pierce Q-Test for the 
Standardized Innovations 

10 12.4285 18.3070 0.2574 

1 0.1049 3.8415 0.7461 

5 2.4678 11.0705 0.7813 Ljung-Box-Pierce Q-Test for the 
Squared Standardized Innovations 

10 3.7699 18.3070 0.9571 

1 0.1639 3.8415 0.6856 

5 2.2089 11.0705 0.8196 Engle’s ARCH Test for the 
Standardized Innovations 

10 2.0212 18.3070 0.9962 

 

4.6. The Pricing Framework 

4.6.1. From Exponential Tilting to Conditional Esscher Transform 

        Recall that in chapter 3, I discussed the exponential tilting of X  with respect to the 

reference variable Y , which is defined as 

[ ]
[ ])exp(
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= ,                                        (4.10) 

where Xf  and *
Xf  represent the probability density function of X  before and after the 

exponential tilting, respectively.  

        We leave much flexibility in the choice of reference variable Y . Particularly, if we choose 

the reference Y  to be the risk X  itself, the exponential tilting is reduced to the famous “Esscher 

transform” formula: 
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        The Esscher transform was introduced by Esscher (1932) and has become a time-honored 
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tool in actuarial science. More recently, it has been applied to pricing financial and insurance 

securities in an incomplete market. Creating an equivalent martingale measure by the Esscher 

transform is justified by maximizing the expected power utility of an economic agent (Gerber 

and Shiu, 1994). See Pafumi (1997), Shiryaev (1999), Yao (2001), McLeish and Reesor (2003), 

and Yang (2004) for a rigorous theoretical background and more discussions.  

        Buhlmann, Delbaen, Embrechts and Shiryaev (1996) generalize the Esscher transform to 

stochastic processes and introduce the concept of the conditional Esscher transform. In terms of 

probability density functions, the conditional Esscher transform is defined as 
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The pricing results under the conditional Esscher transform can be justified within the 

dynamic framework of utility maximization problems. Siu, Tong and Yang (2004) employ the 

conditional Esscher transform to price derivatives, assuming the underlying asset returns follow 

GARCH processes. Li, Boyle, Hardy and Tan (2007) follow the same line to price the No-

Negative-Equity-Guarantee in the U.K. equity release market, which is similar to the non-

recourse provision of reverse mortgage programs in the U.S. I adapt their pricing framework 

when the underlying asset return follows an ARIMA-GARCH process. 

 

4.6.2. Change of Measure Based on the Conditional Esscher Transform 

Let ),,( PΦΩ  be a complete probability space, where P  is the data-generating probability 

measure. Define two filtrations },,,,1,0{)( TttFF ∈=  and },,,,1,0{)( TttGG ∈=  on this probability space. 

The first filtration F  is related to the development on the house price index, and tF  can be 

interpreted as the information obtained from observing the index up to time t . The second 
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filtration G  contains the information about the borrower of the revere mortgage, and tG  can be 

interpreted as the morality experience up to time t . In addition, the third filtration is defined as 

},,,,1,0{)( Ttt ∈Φ=Φ , where ttt GF ∨=Φ . It means that tΦ  is the smallest σ -algebra that includes 

both tF  and tG . This has the usual interpretation that, at time t , we have access to the combined 

information concerning both the development of the house price index and the mortality 

experience up to time t . Hence, Φ  includes all the available information.  

Let )(xT  denote the termination time of a reverse mortgage initiated to an individual aged 

x . For simplicity, assume )(xT  is stochastically independent of the housing price index, tH , 

under the physical probability measure P . On the one hand, because the IPL is predetermined at 

the time of loan origination, the scheduled cash advances to borrowers are not reduced when 

property values fall. Smart borrowers will take advantage of this feature of reverse mortgages 

and won’t have the incentive of refinancing during a recession. On the other hand, when property 

values rise, although borrowers have the incentive of refinancing, high release costs on the old 

mortgage and high closing costs on a new mortgage severely reduce the cash advances available 

under a new mortgage, which dampens borrowers’ incentive of refinancing. See Lin and Tan 

(2003), Rodda, Lam and Youn (2004) for more discussions.  

In section 4.5, I fit the first difference of house price returns, tDY , using an ARMA(2,0)-

GARCH(1,1) process, i.e., 

tttt DYDYDY εφφ ++= −− 2211 , 

where ),0(~| 2
1 ttt N σε −Φ and 2

11
2

11
2

−− ++= ttt d εβσασ .  

Let 2211 −− += ttt DYDY φφμ , then tDY  is normally distributed with mean tμ  and variance 

2
tσ , given the information set 1−Φ t . That is, ),(~| 2

1 tttt NDY σμ−Φ . Note that tμ  and tσ  are not 
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random given the information 1−Φ t . Consequently, the house price return series 

),ˆ(~| 2
1 tttt NY σμ−Φ  under the physical measure P , where 1ˆ −+= ttt Yμμ .  

Define a sequence },...,1,0{}{ Ttt ∈Λ  with 10 =Λ , and for 1≥t ,  

∏
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,                                         (4.13)               

for some constants tλλλ ,...,, 21 . Buhlmann, Delbaen, Embrechts and Shiryaev (1996) prove that 

},...,1,0{}{ Ttt ∈Λ  is a martingale.  

        Let tP  be the restriction of the measure P  on the information tΦ , where PPT = . The fact 

},...,1,0{}{ Ttt ∈Λ  is a martingale allows us to construct a family of measures },...,2,1{}{ TttQ ∈  such that 

ttt dPdQ Λ= , ttt QQ Φ= + |1 , and a probability measure TQQ =  on the sample space ),( ΦΩ . See 

Siu, Tong and Yang (2004), Li, Boyle, Hardy and Tan (2007) for more details. 

        In order for Q  to be a risk-neutral probability measure which is equivalent to the physical 

measure P  on the same sample space ),( ΦΩ , I choose a sequence of parameters  

),...,2,1(,
2
1

2 Tt
r

t

tq
t =−

−
=

σ
μ

λ , such that the following set of equations are satisfied: 

)exp(]|);[exp( 1 rYE t
q
ttQt

=Φ −λ ,                                     (4.14) 

where r  is the risk-free interest rate.33  

Under the risk-adjusted measure Q , we have the following properties: 

• ⎟
⎠
⎞

⎜
⎝
⎛ −Φ −

22
1 ,

2
1~| tttt rNY σσ ;  

• xt
PQ ptxTtxT =>=> ))((Pr))((Pr ; 

                                                        
33 I refer interested readers to Buhlmann et al. (1996) for a detailed proof. 
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• )(xT  is stochastically independent of tH  under Q ; 

The first property states exactly that the dynamics of tY  under the risk-adjusted measure is 

the same as that under the physical measure, except that the mean is shifted by an amount of 

2

2
1ˆ tt r σμ −+−  (see Appendix 4B for proof). The second property indicates the change of 

measure from P  to Q  does not affect the marginal distribution of the remaining lifetime of the 

reverse mortgage. Finally, the last property states that the independence between the termination 

time of loans and a priori given real estate market is preserved under Q . 34 

 

4.6.3. Numerical Illustrations 

        Recall the value of the non-recourse provision can be expressed as 

[ ]∑
−−

=
+=
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0

Value
x

t
ttxxtQ VqpE

ω

,                                                    (4.15) 

where )0,max( tt
rt

t HLeV −= −  is the discounted payoff of an European exchange option 

matured at time t ,  exchanging tH  for  tL .         

Suppose all home exits occur in the mid-year and let δ  denote the average delay in time 

from the point of home exit until the actual sale of the property. Therefore, the time to maturity 

of the European exchange option is δ++ 5.0t . The value of the non-recourse provision becomes 

[ ]∑
−−

=
+++=

1

0
5.0Value

x

t
ttxxtQ VqpE

ω

δ .                                          (4.16) 

        When the borrower dies in the future, the lender needs to sell the property and pay the 

transaction cost. Suppose the transaction cost is κ percent of the property value, then the 

                                                        
34 Property 2 and 3 arise from the fact that the Radon-Nikodym derivative, ttt dPdQ /=Λ , used to obtain the 

probability measure Q  is a function of tY , and hence is independent of )(xT .  
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discounted payoff of the European exchange option is 

)0,)1(max( 5.05.0
)5.0(

5.0 δδ
δ

δ κ ++++
++−

++ −−= tt
tr

t HLeV .                           (4.17) 

Further considering the rental yields from the property as dividends, we can adjust the 

option formula to accommodate rental yields. Assuming g  is the rental yield per year, the 

discounted payoff of the European exchange option becomes 
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At maturity, the house value is  
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and the loan balance is  

( ) )5.0(
005.0 02.0 δ

δ
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++ += tu
t eLHL ,                                     (4.20) 

where u  is the interest rate charged on the mortgage loan.35  

        Substituting (4.19) and (4.20) into equation (4.18), I obtain:  
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        The key assumptions that I make for the numerical illustration are as follows. 

• The average delay in time from the point of home exit until the actual sale of the 

property is six months, i.e., 5.0=δ  . 

• The transaction cost of selling the house is 6 percent of the property value, i.e., %6=κ . 

• In the HECM program, the risk-free interest rate is usually the 10 year U.S. Treasury 

rate. It is 3.91% per annum at 01/02/2008, which is equivalent to an interest rate of 

3.84%, compounded continuously, i.e., %84.3=r . 

                                                        
35 In the HECM program, the loan balance increases with interest accruals and insurance premiums. 
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• The interest rate charged on the loan is 4.71% per annum, which is equal to the one 

year constant maturity Treasury (CMT) rate of 2.71% plus a lender’s spread margin of 

150 bps and an additional HUD mortgage insurance premium of 50 bps. It is equivalent 

to 4.60% on a continuously compounding basis, i.e., %6.4=u . 

• The rental yield is 2% per annum, compounded continuously, i.e., %2=g . 

• The initial house value is assumed to be $300,000, i.e., 000,300$0 =H . 

• I consider the lump sum payment option. Therefore, the loan amount 0L  is equal to the 

initial principle limit (IPL). IPL can be obtained using the online reverse mortgage 

calculator on Financial Freedom’s website, assuming the property is located in 

Philadelphia, Zip code 19104. 36 

I first simulate the tDY  series for 1000 paths and transform tDY  to tY  on each path. 

Applying the pricing framework discussed above, I change the probability measure from P  to 

Q  on each path of tY , and then calculate the value of the non-recourse provision according to 

equation (4.16) and (4.21).  

I also calculate the total insurance premiums collected by FHA for the purpose of 

comparison. Recall the insurance premiums consist of two parts, both paid by the borrowers: an 

up-front charge of 2% of the adjusted property value37, and an annual rate of 0.5% of the 

outstanding loan balance for the life of the loan. Mathematically, it can be expressed as 
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xt eLHepH

ω

.                  (4.23) 

                                                        
36 Available at http://www.financialfreedom.com/calculator/Input_new.asp 
37 The adjusted property value is the lesser of the appraised property value and the maximum loan limit. The 
maximum loan limit is placed by FHA depending on the geographical area of the borrower’s house, taking into 
account the value of the house. For simplicity, we assume here the property value is always less than the maximum 
loan limit.    
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The simulation results are shown in the panel of Scenario 1 in Table 4.6. Several 

observations here: 

• Initial loan amount increases as the age at loan origination increases. This is reasonable 

because other conditions equal, the risk of reverse mortgages ultimately depends on 

when the maturity event occurs and for how long the loan has been accruing. The elder 

borrower has a shorter life expectancy, therefore the lender faces less longevity risk and 

can advance more cash amounts to the borrower.  

• For the same reason, the value of the non-recourse provision decreases dramatically as 

the age at loan origination goes up. When the initial age is 62, the non-recourse 

provision is worth $8,219. This figure drops to $915 for a borrower at age 90.  

• The insurance premiums also decrease with the age at loan origination. We can see that 

when the initial age increases, the borrower gets more cash advances, pays less 

insurance premiums, and can spend more money to improve the living standard of his 

or her life.       

• Theoretically, the value of the non-recourse provision should equal the insurance 

premiums the borrower pays to FHA in order to limit his/her liability to the property 

value. However, the present value of insurance premiums calculated based on current 

premium structure is far more than the actuarial present value of benefits. I report the 

ratio of the present value of insurance premiums to the value of non-recourse provision 

in Table 4.6. The ratio is 2.90 when the initial age is 62. It increases at an accelerating 

rate with the initial age of the borrower. When the borrower is 90 years old at the time 

of closing, the present value of insurance premiums collected by the FHA reaches 13.42 

times the value of the non-recourse provision. 
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    The U.S housing market has been experiencing the biggest slump recently. According to 

OFHEO Director James B. Lockhart, “The year 2007 showed the first four-quarter decline in the 

purchase-only index since its earliest data in 1991.” Prices fell between the third and fourth 

quarters of 2007 in every state except Maine. When compared with the data in the fourth quarter 

of 2006, house prices in the fourth quarter of 2007 depreciated by 6.6% in California, 5.9% in 

Nevada, and 4.7% in Florida (OFHEO, 2008). 38 It is interesting to ask what would happen if the 

value of the property had a sudden decrease at time of loan origination.  

    I analyze the effects of initial property values on the values of non-recourse provision and 

insurance premiums under different scenarios, assuming that the house price depreciates by 5%, 

10%, 15% and 20%, respectively, at the time of closing. I predict that the present value of 

insurance premiums should decrease with the initial property value. That is because the house 

price depreciation at time of closing brings down the initial loan amount the borrower can obtain. 

The present value of insurance premiums decreases consequently, as the premium in each period 

is proportional to the outstanding loan balance. I predict the value of non-recourse provision 

should decrease with the initial property value, too, since it is simply the counterpart of insurance 

premiums and should behave similarly in response to the house price depreciation. Figure 4.10 

confirms my predictions. However, it is noteworthy that the house price depreciation has little 

effect on the ratios of insurance premiums to the values of non-recourse provision (see Figure 

4.11). 

 

 

 

 
                                                        
38 OFHEO. 2008. 4Q 2007 House Price Index Report, available at http://www.ofheo.gov/media/pdf/4q07hpi.pdf 



 116

Table 4.5: Values of the Non-recourse Provision and Insurance Premiums in Different Scenarios 

Age at Origination 62 65 70 75 80 85 90 

Scenario 1: Initial Property Value 0H = $300,000 

0L  161,293 168,470 180,498 193,513 206,964 220,316 233,047 

Value 8,219 8,071 5,319 3,967 2,414 1,592 915 

Premium 23,811 22,286 19,796 17,550 15,713 14,110 12,282 

Premium/Value 2.90 2.76 3.72 4.42 6.51 8.87 13.42 

Scenario 2: Initial Property Value Decreases by 5%. 0H = $285,000 

0L  156,835 163,828 175,549 188,233 201,347 214,368 226,791 

Value 8,125 7,990 5,292 3,973 2,448 1,631 952 

Premium 23,004 21,525 19,107 16,927 15,144 13,586 11,809 

Premium/Value 2.83 2.69 3.61 4.26 6.19 8.33 12.40 

Scenario 3: Initial Property Value Decreases by 10%. 0H = $270,000 

0L  148,135 154,768 165,889 177,928 190,382 202,758 214,581 

Value 7,658 7,532 4,989 3,745 2,307 1,537 898 

Premium 21,746 20,351 18,071 16,013 14,330 12,859 11,181 

Premium/Value 2.84 2.70 3.62 4.28 6.21 8.37 12.46 

Scenario 4: Initial Property Value Decreases by 15%. 0H = $255,000 

0L  139,435 145,708 156,229 167,628 179,417 191,148 202,371 

Value 7,191 7,074 4,685 3,518 2,166 1,444 843 

Premium 20,488 19,177 17,034 15,100 13,516 12,133 10,552 

Premium/Value 2.85 2.71 3.64 4.29 6.24 8.41 12.52 

Scenario 5: Initial Property Value Decreases by 20%. 0H = $240,000 

0L  130,735 136,648 146,569 157,318 168,452 179,538 190,161 

Value 6,724 6,616 4,382 3,289 2,025 1,350 789 

Premium 19,230 18,004 15,997 14,185 12,702 11,406 9,923 

Premium/Value 2.86 2.72 3.65 4.31 6.27 8.45 12.58 
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Figure 4.10:  Values of the Non-recourse Provision and Insurance Premiums in Different Scenarios 

 

Note: I graph 5 scenarios with the initial property value equal to $300,000, 285,000, 270,000, 255,000 and 240,000, 
respectively. The -o- line denotes present values of insurance premiums at different ages. It decreases with the initial 
property value. The -*- lines denotes the values of the non-recourse provision at different ages. It decreases with the 
initial property value, too.   
 
Figure 4.11:  Ratios of Insurance Premiums to Values of the Non-recourse Provision in Different Scenarios 
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        In the above analysis, I assume the lender’s margin is 150 bps. Here comes the next 

question: what is the actuarially fair risk premium that the lender should assess? In other words, 

what is the lender’s margin that makes the present value of insurance premiums equal to the 

value of the non-recourse provision? Obviously, it depends on the initial age of the borrowers. I 

use Broyden’s method to find out the actuarially fair risk premium and report it in Table 4.6. The 

finding is that the lender can achieve a much higher margin based on the current HECM 

insurance premium structure. The margin increases from 442 bps to 885 bps when the borrower’s 

initial age changes from 62 to 90. It is explained by the fact that FHA charges more insurance 

premiums than the actuarial present value of claim payments. The intrinsic risk implied by high 

insurance premiums is correspondingly high. As a result, the lender can charge a higher risk 

margin on the loan balance.  

Table 4.6: The Lender’s Margin When 0H = $300,000 

Age at Origination 62 65 70 75 80 85 90 

Lender’s Margin (bps) 442 437 513 560 646 768 885 

 
Note: Assume the initial property value equals $300,000, located in Philadelphia, Zip code 19104. 
 

4.7. Conclusions and Discussions 

The market for reverse mortgage products has started growing rapidly as an effective 

solution to the “Home Rich and Cash Poor” dilemma. As pointed out in the Deutsche Bank 

Report (2007), “A larger number of originators, increased interest in securitization, and the aging 

population will lead to a more competitive and efficient origination.” The HECM program has 

favorable features and provides protection to both borrowers and lenders. On the one hand, 

borrowers benefit from the non-recourse provision which limits borrowers’ liability to the 

mortgaged property value. On the other hand, lenders are protected from the possible losses by 
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the FHA insurance program. In this study, I model the various risks embedded in the HECM 

program and create an equivalent martingale measure to price the non-recourse provision. I 

further compare the value of the non-recourse provision with the present value of insurance 

premiums. I find that the premiums of HECM loans are adequate to cover expected claims. The 

FHA makes profits on the expected value basis.   

The complexity of valuation problems comes from the fact that the HECM products are 

involved with multiple risks. I analyze longevity risk, mobility risk, and house price depreciation 

risk in this study. However, there are other risks we need to take into account, for example, basis 

risk, interest rate risk, and refinancing risk. First, the heart of pricing the non-recourse provision 

lies on modeling the dynamics of the underlying asset: the property value. I used the House Price 

Index to model house price returns, since each mortgaged property is infrequently traded in the 

market and does not have enough historical data available for us to analyze. Basis risk arises 

because the fluctuation of individual mortgaged property value may deviate from the HPI 

dynamics. Second, I assume a constant interest rate plus a lender’s margin for the life of the 

HECM loans so that I can determine the conditional Esscher parameters and create the risk-

adjusted probability measure for pricing purposes. However, we do not live in a simple world 

with a flat term structure subject only to additive shifts (Boehm and Ehrhardt, 1994). Therefore, 

we do need to model the stochastic interest rates with a more realistic term structure, for instance, 

the Vasicek model (Vasicek, 1977) or CIR model (Cox, Ingersoll and Ross, 1985). Finally, the 

termination time of a reverse mortgage should be determined by a multiple-decrement model, 

considering mortality risk, mobility risk and refinancing risk. Similar to the refinancing of 

forward mortgages, reverse mortgages become refinanceable when interest rates decline or house 

prices increase. I assumed that the refinancing rate is zero in this study. However, as the reverse 
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mortgage market expands and matures, we will see higher refinancing rates. Further research 

based on a multiple decrement termination model is warranted.   
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Appendix 2A: Numerical Approximation for the Optimal Switching Models 

 

Optimal switching models generally require numerical approximations. We can 

approximate the value function by a linear combination of n known basis functions.That is, 

∑
=

≈
n

j
jj rxrrxV

1
),()(),( φθ ,                                               (2A.1) 

where ),( rxjφ defines the basis function and )(rjθ  is the corresponding coefficient in 

regime r ),...,1( nj = . If we take the switching points as given, the values of )(rjθ  can be 

obtained by solving the Feynman-Kac equation: 
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πφσφμρφθ      (2A.2) 

at n  collocation nodes ix  ),...,1 ( ni = , along with the non-optimality side conditions.  

        The basis functions can be chosen such as monomial basis (i.e., ,...,,,1 32 xxx ), Chebychev 

polynomial basis, linear spline basis, and cubic spline basis. And the optimality conditions can be 

used to solve the switching points by a root-finding algorithm.  

        In principle, the collocation equation may be solved using any nonlinear equation solution 

method. For example, one can write the collocation equation as a fix-point problem )(1 θυθ −Φ=  

and employ function iteration, which uses the iterative update rule 

)(1 θυθ −Φ← .                                                         (2A.3) 

Alternatively, one may write the collocation equation as a root finding problem 0)( =−Φ θυθ  

and solve for θ  using Newton’s method, which employs the iterative update rule 

[ ] [ ])()( 1 θυθθυθθ −Φ′−Φ−← − .                                         (2A.4) 

Here )(θυ′  is the nn×  Jacobian of the collocation function υ  at θ .  
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Appendix 3A: The Log-likelihood Function for the Model with Permanent Jump Effects 

 

If I assume that the jump events have permanent effects on mortality modeling, the 

dynamics of tk  can be expressed as 
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It can be simplified to 

(3A.2)                          .)( ],[],[ dtttdttttt NYdWdtpmdk ++++−= σμ  

By integrating both sides from t  to ht + , we can get 
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If 0],[ =+httN the variable ( )0],[ =+httt Nz  will be normally distributed with 

mean hpmM n )( −= μ , and variance hSn
22 σ= . 

If 1],[ =+httN the variable ( )1],[ =+httt Nz  will be normally distributed with 

mean mhpmM y +−= )(μ , and variance 222 shS y += σ . 

The density function of tz , denoted by )( tzf , can be written in terms of conditional 

probabilities: 
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If I have a time series of K  observations of tk , there will be 1−K  observations of z ’s 

values with time interval equal to h=1. The log-likelihood function can be expressed as follows: 
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Appendix 3B: The Log-likelihood Function for the Model with Transitory Jump Effects 

 

Recall in section 3.4.2, I defined 

],[],[],[],[][ thtththtthttthtt NYNYWWhz −−+++ −+−+= σμ ,                                  (3B.1) 

],[],[]2,[]2,[2 ][ htthtthththththththt NYNYWWhz +++++++++ −+−+= σμ ,                   (3B.2) 

If 0],[ =+httN , then tz  is independent on htz + . If 1],[ =+httN , then tz  is correlated with htz +  

because of the ],[ httY +  part. Under the conditional maximum likelihood estimation, the likelihood 

function can be obtained as follows: 

        ),...,( 121 −Kzzzf  

    ),...,,(),...,( 2212211 −−−= KKK zzzfzzzzf  

    ),...,(),...,()( 321321221 −−−−−= KKKKK zzzfzzzzfzzf  

    )()()...()( 1123221 zfzzfzzfzzf KKKK −−−−= ,                                                                       (3B.3) 

Therefore, the log-likelihood function is: 

        ),...,(ln 121 −Kzzzf  

 )(ln)(ln...)(ln)(ln 1123221 zfzzfzzfzzf KKKK ++++= −−−− ,                                         (3B.4) 

Next, I will derive )( tht zzf + and )( 1zf  respectively.  

If 0],[ =+httN , then )][ ]2,[]2,[2 hththththththt NYWWhz +++++++ +−+= σμ .                                (3B.5) 

)0,0( ]2,[],[ == ++++ hththttht NNz  will be normally distributed with mean hM nn μ= , and 

variance hSnn
22 σ= . )1,0( ]2,[],[ == ++++ hththttht NNz  will be normally distributed with mean 

mhM ny += μ , and variance 222 shSny += σ .  
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If 1],[ =+httN , I add equations (3B.1) and (3B.2) together and simplify to get 

],[],[]2,[]2,[2 ][2 tktthththththtthttht NYNYWWhzz −−++++++ −+−++−= σμ .                                   (3B.6) 

If no mortality jump event occurs during the period ),( tht −  and )2,( htht ++ , the 

variable )0,1,0,( ]2,[],[],[ === +++−+ hththttthttht NNNzz will be normally distributed with mean 

hzM tnyn μ2+−=  and variance hSnyn
22 2σ= .  

Similarly, )0,1,1,( ]2,[],[],[ === +++−+ hththttthttht NNNzz will be normally distributed with 

mean mhzM tyyn −+−= μ2  and variance 222 2 shS yyn += σ . 

)1,1,0,( ]2,[],[],[ === +++−+ hththttthttht NNNzz  will be normally distributed with mean 

mhzM tnyy ++−= μ2  and variance 222 2 shSnyy += σ . 

)1,1,1,( ]2,[],[],[ === +++−+ hththttthttht NNNzz  will be normally distributed with mean 

hzM tyy μ2+−=  and variance 222 22 shS yy += σ . 

The conditional density function of tht zz + , denoted by )( tht zzf + , can be written as 

)( tht zzf +  

)0,0Pr()0,0( ]2,[],[]2,[],[ ===== +++++++ hththtthththttht NNNNzf  

)1,0Pr()1,0( ]2,[],[]2,[],[ ====+ +++++++ hththtthththttht NNNNzf  

)0,1,0Pr()0,1,0,( ]2,[],[],[]2,[],[],[ ======+ +++−+++−+ hththttththththttthttht NNNNNNzzf

)0,1,1Pr()0,1,1,( ]2,[],[],[]2,[],[],[ ======+ +++−+++−+ hththttththththttthttht NNNNNNzzf  

)1,1,0Pr()1,1,0,( ]2,[],[],[]2,[],[],[ ======+ +++−+++−+ hththttththththttthttht NNNNNNzzf  

)1,1,1Pr()1,1,1,( ]2,[],[],[]2,[],[],[ ======+ +++−+++−+ hththttththththttthttht NNNNNNzzf  
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The variable )0,0( ]2,1[]1,0[1 == NNz  will be normally distributed with mean hM nn μ=ˆ , and 

variance hSnn
22ˆ σ= .  

The variable )0,1( ]2,1[]1,0[1 == NNz  will be normally distributed with mean mhM yn −= μˆ , 

and variance 222ˆ shS yn += σ  

The variable )1,0( ]2,1[]1,0[1 == NNz  will be normally distributed with mean mhM ny += μˆ , 

and variance 222ˆ shSny += σ  

The variable )1,1( ]2,1[]1,0[1 == NNz  will be normally distributed with mean hM yy μ=ˆ , and 

variance 222 2ˆ shS yy += σ  

The density function of 1z , which is denoted by )( 1zf , can be written as: 

    )( 1zf  

)0,0Pr()0,0( ]2,1[]1,0[]2,1[]1,0[1 ===== NNNNzf  

)0,1Pr()0,1( ]2,1[]1,0[]2,1[]1,0[1 ====+ NNNNzf            

)1,0Pr()1,0( ]2,1[]1,0[]2,1[]1,0[1 ====+ NNNNzf  

)1,1Pr()1,1( ]2,1[]1,0[]2,1[]1,0[1 ====+ NNNNzf  
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Substituting the formulas of )( tht zzf + and )( 1zf  into the log-likelihood function (3B.4), I 

can calculate the log-likelihood function numerically.  
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Appendix 4A: Construction of the Dynamic Complete Life Table 

 

We have 11 age groups:  

,...}86,85{
},84,...,76,75{

......,
},14,...,6,5{

},4,3,2,1{
},0{

11

10

2

1

0

=
=

=
=
=

g
g

g
g
g

 

The question is: given tkm , , the central-death-rates for the age group kg  at time t , how to 

obtain tyq , , the probability that an individual aged y  will die in one year at time t ?  

I use the following notations here (for simplicity, I omit the subscript t ).  

ω : The highest attainable age. Suppose ω  = 110; 

km : Central-death-rate for the age group kg ; 

kx : The first age in the age group kg ;  

kkk xxn −+1: ; 

yl : Expected number of survivors to age y ; 

yd : Expected number of deaths between ages y  and 1+y ; 

yn L : The total expected number of years lived between ages y  and ny + ; 

yq : Probability that an individual aged y  will die in one year. 

Assuming that the function yl  is linear over the interval 1+≤≤ kk xyx , we have: 

)(
1+

−
−

−=
kkk xx

k

k
xy ll

n
xy

ll ,                                        (4A.1) 
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and  

k

kk
x

k

xx
y d

n
ll

d =
−

= +1 ,                                               (4A.2) 

for all kgy∈  

Now we need to use the central death rate km  to determine 
kxq .  

∫
+

=
1k
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yxn dylL ∫
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          2/2

0
kxxk
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xxk ndlntdtdln
kk
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kk
−=−= ∫  .                                                                     (4A.3) 

Then  

kk

kk
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xx
k L
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m 1+

−
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2/2
kxxk
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ndln
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kk

k

−
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2/1
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x

qn
q

−
= .                                                           (4A.4) 

Solving for 
kxq , I obtain 

2/1 kk

k
x mn

m
q

k +
=  

The probability yq  for age kgy∈  is determined by 
kxq : 

k

k

kk

k

kkk
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x

xkx

x
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Appendix 4B: Change of Measure via the Conditional Esscher Transform 

    Given ( )2
1 ,ˆ~| tttt NY σμ−Φ  under P , prove ⎟

⎠
⎞

⎜
⎝
⎛ −Φ −

22
1 ,

2
1~| tttt rNY σσ  under Q  via the 

conditional Esscher Transform. 

 

Proof: 

        The conditional Esscher transform can be described as: 

[ ]1
11 |)exp(

)exp(
)|()|(

−
−− Φ

Φ=Φ
ttt

t
tPtQ YE

y
yfyf

tt λ
λ

                                (4B.1) 

        It immediately follows that the moment generating function of tY  given 1−Φ t  under the 

measure Q  is given by 

[ ]1|);exp( −Φ tttQ zYE
t

λ [ ] ⎥
⎥
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= −
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tttP

tt
tP YE
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[ ]
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|)exp(
|))exp((

−

−

Φ

Φ+
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tttP

tttP

YE
YzE

t

t

λ
λ

.                                     (4B.2)           

        Because ( )2
1 ,ˆ~| tttt NY σμ−Φ  under P , the moment generating function of tY  given 1−Φ t  

under the measure P  is given by 

⎟
⎠
⎞

⎜
⎝
⎛ +=Φ −

22
1 2

1exp]|)[exp( zzzYE ttttPt
σμ .                                  (4B.3) 

        Substituting equation (4B.3) into equation (4B.2)), we obtain 

[ ]1|);exp( −Φ tttQ zYE
t
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                                                                    ⎟
⎠
⎞

⎜
⎝
⎛ ++= 222

2
1)(exp zz tttt σλσμ  .                         (4B.4)) 

        Therefore, 

[ ] ⎟
⎠
⎞

⎜
⎝
⎛ ++=Φ −

22
1 2

1exp|);exp( t
q
tttt

q
ttQ YE

t
σλσμλ .                             (4B.5) 

        In order for Q  to be an equivalent martingale measure, we need to have: 

[ ] )exp(|);exp( 1 rYE t
q
ttQt

=Φ −λ .                                            (4B.6) 

    Equating the above two equations, we can solve  

),...,2,1(,
2
1

2 Tt
r

t

tq
t =−

−
=

σ
μ

λ .                                          (4B.7) 

        Substituting equation (4B.7) into (4B.5), we obtain 

[ ] ⎟⎟
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+⎟

⎠
⎞

⎜
⎝
⎛ −=Φ −
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1 2

1
2
1exp|);exp( zzrzYE ttt

q
ttQt

σσλ ,                         (4B.8) 

which means the random variable tY , given the information 1−Φ t , is normally distributed with 

mean 2

2
1

tr σ−  and variance 2
tσ  under Q . 
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