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ABSTRACT 

 Neuroprosthetics is at the intersection of neuroscience, biomedical engineering, and 

physics. A biocompatible neuroprosthesis contains artificial neurons exhibiting 

biophysically plausible dynamics. Hybrid systems analysis could be used to prototype such 

artificial neurons. Biohybrid systems are composed of artificial and living neurons coupled 

via real-time computing and dynamic clamp. Model neurons must be thoroughly tested 

before coupled with a living cell. We use bifurcation theory to identify hazardous regimes 

of activity that may compromise biocompatibility and to identify control strategies for 

regimes of activity desirable for functional behavior. We construct real-time artificial 

neurons for the analysis of hybrid systems and demonstrate a mechanism through which 

an artificial neuron could maintain duty cycle independent of variations in period. 

INDEX WORDS: Hybrid systems, Real time systems, Hodgkin huxley, Neuronal dynamics, 
Electrophysiology, Dynamic clamp, Medicinal leech, Central pattern 
generator, Half center oscillator, Heartbeat, Bifurcation theory,  
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1. INTRODUCTION 

 Dysfunction in the operation of the nervous system can elicit behavioral disorder 

and disability that disrupts mobility and livelihood. Neuroprosthetics is a new, frontier 

discipline at the intersection of neuroscience and biomedical engineering which has proven 

itself efficient in returning hearing, sight, and mobility to people challenged by disabilities. 

In order to achieve a biocompatible neuroprosthesis, the artificial neurons must exhibit 

biophysically plausible dynamics. Hybrid systems analysis could be used to prototype such 

artificial neurons. Biohybrid systems are composed of artificial and living neurons coupled 

via real-time computing and dynamic clamp. Model neurons must be thoroughly tested 

before coupled with a living cell. We use bifurcation theory to identify hazardous regimes 

of activity that may compromise biocompatibility and to identify control strategies for 

regimes of activity desirable for functional behavior. We construct real-time artificial 

neurons for the analysis of hybrid systems and demonstrate a mechanism through which 

an artificial neuron could maintain duty cycle independent of variations in period. 

 One of its key goals is the design of neuroprostheses: implantable artificial devices 

restoring the functional dynamics of the corrupted neuronal circuit. There is a strong 

demand for a variety of tools for design and prototyping so that neuroprostheses can be 

manufactured at the industrial scale necessary for practical medical applications. They will 

be developed using the modern technology of computer-brain interface based on real time 

systems, e.g. dynamic clamp and hybrid systems analysis.  

 Hybrid systems combine the parameter controllability of mathematical modeling 

with the physical realism of electrophysiological experiments. This approach allows 

biomedical engineers to assimilate electrophysiological techniques into the process of 
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development. As such, the implementation of hybrid systems is facilitated by developments 

in dynamic clamp and real-time computing. These hybrid systems require software 

operating in real time on a timescale fast compared to the time constants of ionic currents 

involved. Designated real time controllers are necessary to fulfill these real time 

requirements. A real time controller is a computer that performs computational tasks on a 

strict schedule. Using such a system to control a dynamic clamp enables real time 

interaction between simulated and biological cells. Dynamic clamp has been used to 

implement artificial ionic currents in and synapses between living cells (Sharp et al., 1993; 

Dorval et al., 2001; Butera et al., 2001; Pinto et al., 2001). In hybrid systems, dynamic clamp 

provides the interface between the simulated and living neurons (Manor & Nadim, 2001). 

 The prototyping of a control system proceeds in several stages. First, we design a 

mathematical model which incorporates everything we know about the dynamics of the 

functional unit, the neuronal sub-circuit, or the neuron. Then we investigate the dynamics 

of the model. Different regimes of activity span a high dimensional parameter space in a 

typical Hodgkin-Huxley style neuronal model. We establish a subset of this space for which 

the resultant model activities share important traits with activity observed in the healthy 

neuronal system. Among the important characteristics are spike frequency, burst 

frequency, burst duration, coexistence of oscillations and silence, and other properties of 

excitability. Detailed analysis of these parameters’ space allows a researcher to select 

optimal parameter values for the task at hand. This process is repeated for the intended 

synaptic target of the artificial neuron. Next we can create a hybrid system and test the 

prototype for its functionality in reality. After any drawbacks and catastrophes of the 
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hybrid have been studied and classified, a new generation of the prototype is to be 

designed and tested. 

 Hybrid systems analysis is a powerful technique that has proven itself in 

neuroscience. It is useful as a prototyping tool for biomedical engineers. Previously, the 

technology has been used to identify the role of individual currents in specific cellular 

mechanisms(Sorensen et al., 2004; Olypher et al., 2006). The intent of prototyping may be 

to establish a certain stable regime of circuit activity, but it is hybrid systems analysis that 

we use to reveal the effect of explicitly defined ionic currents of the artificial cell on the 

activity of a neural circuit. By replacing a component of a living circuit with a 

computational cell, we may gain knowledge of its role in the circuit by manipulating 

parameters of artificial ionic currents. With prototyping, we seek to take the knowledge of 

the role of individual ionic currents and move an unhealthy circuit from a pathological 

regime to a healthy regime. We present a set of experiments performed on the leech heart 

interneuron as an example of prototyping and hybrid systems analysis. The first study 

utilizes a VLSI silicon artificial neuron in which Ih is tuned to examine its interaction with 

the synaptic current (Sorensen et al., 2004). The second study uses computational neurons 

built with the library we present in 8.2.3 to tune the slow Ca2+ current to show its role in 

supporting bursting activity (Olypher et al., 2006).  

Model Leech Heart Interneuron Synapse 

 The canonical model of the leech heart interneuron is composed of eight voltage 

gated currents and a leak current (Hill et al., 2001). The eight voltage gated currents are 

composed of thirteen gating variables. The mathematical model is composed of fourteen 

equations: one for the membrane potential and one each for the gating variables. The 
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hybrid system contains a synapse from the artificial cell onto the living cell and a synapse 

from the living cell onto the artificial cell. The synaptic current has a spike-mediated 

component and a slower modulating component, so the system requires an additional six 

differential equations:  

  

  

  

 , 

; . 

 The membrane potential of the living cell is recorded and passed into the model 

system where it is used to evaluate the synaptic current onto the artificial cell. The 

membrane potential of the artificial cell is used to evaluate the synaptic current onto the 

living cell, which is passed out of the system to be injected by an amplifier into the live cell. 

We are able integrate each of these operations with Euler’s method for numerical 

integration at 10 to 20 kHz on the DS1103 PPC board. At these frequencies, the artificial 

system performs sufficiently fast to produce biophysically plausible trajectories. 

Hybrid Systems Analysis 

 Observations with sharp intracellular electrodes have shown that the HNs spike 

tonically when pharmacologically isolated from the cholinergic synapse with bicuculline 

methiodide (Schmidt & Calabrese, 1992). However, recordings with extracellular 

electrodes under the same pharmacological conditions show that HNs burst endogenously 

(Cymbalyuk et al., 2002). The model shows evidence that a nonspecific leak current, 
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introduced by piercing the cell with a sharp electrode, is responsible for the onset of tonic 

spiking. In order to implement a hybrid system, a sharp electrode is used to inject an 

artificial current into the living cell. Even though the HN is an endogenously bursting cell, 

dynamic clamp experiments are performed while the cell is in a tonic spiking mode. 

Nevertheless, a mutually inhibitory artificial synapse by and onto a bursting model cell is 

sufficient to reinitiate antiphase bursting in the living HN (Sorensen et al., 2004; Olypher et 

al., 2006). We tune the hybrid system by manipulating parameters of the artificial cell to 

identify the mechanisms supporting the half center oscillator.  

 In order to establish a biophysically plausible hybrid half center oscillator, a certain 

amount of tuning is necessary. Key parameters for temporal regulation can be identified in 

an analysis of the parameter space ahead of time (Hill et al., 2001; Cymbalyuk et al., 2002), 

such that the artificial cell can be adapted to its intended synaptic target quickly at run 

time. The uncoupled artificial cell must exhibit slow oscillations of roughly the same 

duration as its living synaptic target; Olypher et al., (2006) adapted the leak current to this 

end. In order to appropriately model the activation of the synaptic current, the temporal 

characteristics of individual action potentials must be conserved between the model and 

the living cell. Due to VLSI transistor mismatch, Sorensen et al., (2004) were forced to 

adjust spiking characteristics by changing parameters of fast variables. 

 The heartbeat of the leech is controlled by a central pattern generator (CPG). The 

kernel of this CPG consists of pairs of bursting HN cells, which form half center oscillators. 

Each HN cell possesses an inhibitory and spike-mediated cholinergic synaptic current 

(Schmidt & Calabrese, 1992). As one cell bursts, the synaptic current onto the second cell 

suppresses the activity of the second cell, forming the quiescent phase between bursts. The 
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prolonged hyperpolarization during the interburst interval activates Ih and removes the 

inactivation of ICaS, the slow Ca2+ current (Hill et al., 2001). In this way, ISyn and Ih on the 

inhibited neuron control the interburst interval of that neuron (Sorensen et al., 2004). ISyn 

causes the hyperpolarization of quiescence and Ih produces the rebound to a depolarized 

state. Upon depolarization, the conductance of ICaS becomes very large and slowly dwindles 

as the current is inactivated (Olypher et al., 2006). This long lasting inward current 

supports the plateau depolarization of the burst and regulates the spike frequency. 

 The experiments that ascertain the role of Ih and ICaS encapsulate the core essence of 

prototyping. Sorensen et al. (2004) show that by decreasing gh in the artificial cell, the 

interburst interval of the artificial cell increases. Because the resistance of Ih to synaptic 

inhibition has decreased, the artificial cell takes longer to escape the quiescent phase. 

Consequently, the burst phase of the HN increases in duration due to the delayed inhibiting 

input. When gh is increased in the artificial cell, its resistance to inhibition increases, and 

the interburst interval of the artificial cell decreases in duration. Meanwhile, the burst 

duration of HN decreases because of the earlier onset of inhibition from the artificial cell. 

Olypher et al. (2006) describe the role of ICaS with a similar set of experiments. By 

decreasing the time constant of inactivation of ICaS, τh,CaS, the conductance of ICaS falls is 

inactivated at a greater rate in response to the depolarization of the burst, so the bursts are 

shorter, and the interburst interval of the presynaptic HN is shortened by the reduced 

synaptic inhibition. An increase in τh,CaS in the artificial cell allows ICaS to stay active for a 

longer period, and the burst duration is greater. The prolonged burst of the artificial cells 

leads to a prolonged synaptic current on the HN. The quiescent phase of the HN increases 

as well. 
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Prototype Reduced Heart Interneuron 

 We explore the role of a hyperpolarization activated current and a potassium 

current in the periodicity of a Hodgkin-Huxley style neuronal model, by manipulating the 

half activation voltage of each. The half activation of K+ currents has been shown to be 

regulated by dopamine and serotonin in the pyloric network (Peck et al., 2001). The half 

activation of Ih has been modulated by noradrenalin and serotonin in guinea-pigs and cats, 

by Ca2+ in ferrets, and by cAMP in ferrets and rats (McCormick & Pape, 1990; Luthi & 

McCormick, 1998; Luthi & McCormick, 1999).  

 Central pattern generators are neuronal networks that control different types of 

rhythmic movement. Many of these neuronal circuits maintain phase as the period of 

activity changes. Some examples are the network controlling swim behavior in the lamprey 

(Wallen & Williams, 1983), the leech heart beat (Wenning et al., 2003; Norris et al., 2006; 

Norris et al., 2007), the swim motor pattern in the leech (Friesen & Pearce, 1993), and the 

lobster pyloric rhythm (Hooper, 1997). Experimental and theoretical studies show that 

phase maintenance may be mediated by synaptic currents (Eisen & Marder, 1984; Nadim et 

al., 2003), and modeling evidence suggests that slow gating variables may also support 

phase maintenance (Hooper et al., 2009).  

 In the network controlling the heart beat of the leech, duty cycle is maintained 

independent of period as well as phase (Norris et al., 2006; Norris et al., 2007). By studying 

the role of these two currents in the maintenance of duty cycle, we show the role of 

neuromodulation in maintenance of function critical cell characteristics. We approach the 

problem of temporal coordination in central pattern generators by proposing a mechanism 

through which ionic currents intrinsic to a cell could maintain duty cycle. Ultimately, we 
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create a prototype artificial neuron with the ability to adapt an aspect of its intrinsic 

activity in response to external stimuli. 

 Our model is a variant on previously published pharmacologically reduced models 

of the leech heart interneuron (Cymbalyuk & Calabrese, 2001; Shilnikov & Cymbalyuk, 

2005). It is convenient to use this reduced model because the inducing pharmacological 

scenario (described below) allows the HN cell to continue to burst after being pierced with 

a sharp electrode. In this way, each of our modeling results could be verified 

experimentally by implementation of a hybrid system with dynamic clamp in a manner 

similar to Sorensen et al. (2004) and Olypher. et al. (2006).  

 In this manuscript, we describe an easy to learn and use technique with which to 

perform hybrid systems analysis. We include a library of functions that are sufficient to 

implement a typical dynamic clamp and to construct any Hodgkin-Huxley style model of a 

neuron. Then, we provide an example of a real-time implementation of the Hodgkin Huxley 

model of the squid giant axon. By manipulating the voltage dependency of activation in 

each of the slow currents in the reduced HN, we show the role of each in bursting activity. 

We describe general trends in periodicity as these parameters are varied. We identify 

congruent regimes of activity in which the duty cycle of bursting activity is preserved.  
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2. APPLICATION OF TECHNOLOGY FOR HYBRID SYSTEMS 

 The automotive, aerospace, and robotics industries rely on extensive prototyping of 

the control systems by using technologies of the real-time systems. The same technologies 

can be used for the development and testing of the neuroprostheses by using hybrid 

systems analysis. A number of dynamic clamp solutions exist that satisfy the requirements 

for real-time computation. Real-Time Linux Dynamic Clamp (Dorval et al., 2001) and now 

Real-Time eXperiment Interface (RTXI; www.rtxi.org) are open source platforms based on 

the real-time kernel extension for the Linux operating system. National Instruments 

(Austin, TX) produces several lines of real-time PXI data acquisition boards in addition to 

the LabVIEW software suite which has been utilized for dynamic clamp (Kullmann et al., 

2004). Milescu et al. (2008) have created a dynamic clamp extension for the QuB program 

(www.qub.buffalo.edu). 

 Hybrid systems need well defined control systems and a robust platform in order to 

operate effectively in real-time. Our models are built in Matlab & Simulink which is a 

programming environment for technical computing (The MathWorks, Inc., Natick, MA). 

Simulink has a graphically represented language with extensive libraries of functions for 

common mathematical and analytical tasks. Certain of these libraries, such as Real-Time 

Workshop, are dedicated to real-time and hardware targeted computing. We use dSPACE 

real-time boards: the DS1104 R&D and the DS1103 PPC. dSPACE, Inc. (Paderborn, 

Germany) produces and distributes a series of control system oriented real-time boards. A 

software package is bundled together with the dSPACE boards. It includes Real-Time 

Interface (RTI) and ControlDesk. RTI automatically utilizes block diagrams developed in 

Simulink into real-time code for dSPACE hardware. ControlDesk permits the building of a 

http://www.rtxi.org/�
http://www.qub.buffalo.edu/�
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graphical user interface with elaborate instrument panels that can be connected with 

corresponding model variables for interactive control of real-time application. dSPACE also 

provides a number of Simulink libraries for the design of control systems intended 

specifically for dSPACE hardware. 

 Our Simulink library is easy to use. Matlab & Simulink and the dSPACE hardware are 

over-the-counter and compatible with modern desktop computers. Additionally, LabVIEW 

provides a number of toolkits that allow Simulink models to be configured onto a number 

of National Instruments hardware targets. Our readymade templates for Hodgkin-Huxley 

type model components can be configured for a specific biological system and directly 

executed in real-time. 

dSpace Boards 

 The dSpace DS1104 R&D and DS1103 PPC controller boards are extensively used in 

the automotive, aeronautical, and robotics industries to prototype control systems. These 

controllers can be installed in most modern desktop computers. The DS 1104 runs a Power 

PC 603e microprocessor at 250 MHz with 32 MB of SDRAM and 8 MB of flash memory. A 

100-pin serial input/ output ribbon connects the board to the CP1104 data acquisition 

board. The CP1104 has 16 BNC ports. The input voltage range is ±10 V on eight analogue to 

digital conversion BNC ports. The first four ports are multiplexed over one channel with 16 

bits of resolution. Each of the four remaining ports has a dedicated channel with 12 bits of 

resolution. The eight output ports each have a range of ±10 V with 16 bits of resolution. 

Each has a dedicated digital to analogue conversion channel.  

 The DS1103 is a full sized ISA card. Alternatively, it can be housed in an external box 

with a PCI card adapter for the host PC. This larger board is equipped with a Power PC 
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750GX microprocessor running at 1 GHz with 32 MB local and 96 MB global SDRAM. Data 

acquisition is performed on the CP 1103 board which links to the DS1103 via 3 parallel 100 

pin serial ribbons. Thirty-two BNC ports are available over the range of ±10 V with 16 bits 

of resolution. Sixteen of the ports are analogue to digital input ports multiplexed over 4 

channels. The eight digital to analogue output ports each has a dedicated channel. 

 While the dSpace boards are primarily used to design and test airplane and car 

control systems, they are efficient controllers for prototyping hybrid systems. Hardware 

specifications allow a board to simulate model neurons with the speed and fidelity 

necessary for electrophysiological protocols. When paired with standard laboratory 

equipment such as the AxoClamp-2B (Axon Instruments, CA), a Simulink model can 

efficiently run dynamic clamp in real time on the DS1104 or DS1103. 

Introduction to Programming in Simulink 

 Our dynamic clamp is implemented as a Simulink block diagram. We provide a 

library of functions which can be used to tailor it to specific needs. We have included a 

model of an oscillatory leech heart interneuron as well as basic functions for the 

construction of Hodgkin-Huxley type neuronal models and functions to implement all 

standard dynamic clamp features. 

 Simulink is a graphical programming language for designing control systems in the 

MatLab programming environment. Operations and functions are represented by 

individual blocks or groups of blocks, and the flow of the program is made explicit by 

arrowed lines connecting each block. Blocks have input ports, where arguments and 

parameters are passed into the block, and output ports where the block returns the results 

of the operations or functions that it represents. Depending on the type of block, double 
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clicking on a block allows the user to access its properties and options, embedded code, or 

the embedded subsystem of blocks. Simulink comes with 15 basic libraries of blocks in 

addition to several specialized libraries. The basic libraries contain blocks for math 

functions and signal processing, while the specialized libraries are targeted for more 

specific applications such as real-time control.  

 A small set of basic blocks is sufficient to create a neuronal model based on the 

Hodgkin-Huxley formalism (Figure1A). Each of these blocks has a number of modes and 

functions that can be changed by the developer. The number of input ports and output 

ports depends on the block configuration. The Constant block supplies an unchanging 

signal of amplitude specified by the user. The Gain block multiplies its input signal by a 

factor specified by the user. This can be used in place of the Multiplication/ Division block. 

The Multiplication/ Division block is versatile; the number and type of inputs can be 

tailored to the task at hand. It accepts scalar, vector, or matrix input. It is also possible to 

specify element-wise or matrix operations. Setting this block with a single port that 

performs division is equivalent to obtaining the reciprocal for scalar inputs and performing 

matrix inversion on matrix inputs. Similarly, the Add/ Subtract block has variable input 

ports and acts on both scalar and vector inputs. The Integration block performs numerical 

integration. There both fixed step and variable step solvers available to the developer. The 

initial conditions for integration can be defined as a parameter internal to the box, or it can 

be passed in as an argument. The Math Function block can be set to compute exponents, 

natural logarithms, powers of ten, logarithms of base ten, complex amplitude, squares,  
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Figure 1. Basic blocks. In Simulink, programs are represented as diagrams built out of 
elemental blocks. Each block represents an individual operation. (A) A small number of 
blocks representing basic mathematical functions are sufficient to create Hodgkin-Huxley 
style neuronal models. (B) dSpace blocks provide Simulink models with a means to interact 
with real world systems. (B 1,2) Channels with dedicated BNC ports can be accessed with 
individual blocks. The number at the end of the block name corresponds to the channel 
number of the port on the CP1104 board. (B3) The 16 bit analogue to digital conversion 
channels are multiplexed. Internal block setting allow the developer to specify to which 
ports the block is connected. 
 

square roots, powers defined by input, complex conjugation, reciprocals, hypotenuses, 

remainders, modulus, transposes and complex conjugate transposes. The Trigonometric 

Function block can perform functions including sine, cosine, tangent, arcsine, arccosine, 

arctangent, hyperbolic sine, hyperbolic cosine, hyperbolic tangent, and hyperbolic 

arctangent.  

 These Simulink blocks are sufficient to create sophisticated neuronal models, but do 

not provide us with a tool to interact with external systems. In order for a model to be 

useful for hybrid systems, a control signal from the system must be passed to an amplifier 

and into a cell as current, and the amplifier must feed the membrane potential of the cell 

back to the model. We move the simulation of the system off of the desktop computer and 

onto a peripheral dSPACE board specialized for control systems. dSPACE has provided a set 

of Simulink blocks for writing data to and reading data from devices such as an amplifier. 
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By passing the desired control signal from a model into a dSPACE block, the signal is routed 

out through the data acquisition board to the amplifier. Similarly, a dSPACE block acts as a 

source in a Simulink block diagram by routing the membrane potential of the cell back onto 

the control board. Blocks compatible with the DS1104 board are located in the DS1104 

MASTER PPC library which is located in the dSPACE RTI1104 PPC directory in the Simulink 

library browser. dSPACE blocks allow the control system to interact with other devices via 

specific ports on the CP1104 (Figure 1B). The DS1104ADC_C5 block reads input from the 

board with 12-bit resolution. The C5 suffix indicates that the block corresponds to port five, 

but the block is applicable for ADC ports five through eight. The DS1104DAC_C1 block 

writes to the digital to analogue port on with 16-bit resolution and is applicable for all eight 

digital to analogue ports. For the DS1104DAC and DS1104ADC blocks, the user can specify 

the channel to which it is associated by changing the number in the suffix to the desired 

port number provided that it is within the applicable range. Finally, the DS1104MUX_ADC 

block reads from analogue to digital ports one through four at 16-bits. In order to specify 

which port or ports, it is necessary to change the settings of the block.  

Library for Dynamic Clamp 

 The dynamic clamp is a tool used to perform electrophysiological experiments by 

injecting current of with particular dynamical characteristics into a living cell. In this 

manner, an artificial current with the characteristics defined by the researcher can be 

introduced in addition to the existing set of ionic currents endogenous to the membrane. 

Alternatively, the dynamic clamp can be used to substitute an artificial current with 

desirable characteristics for an endogenous ionic current. A hybrid system uses the 
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dynamic clamp as the link between the computational and living aspects of the system in 

order to realize real time control of the temporal characteristics of neuronal dynamics. 

 Lets consider the hyperpolarization activated current (Ih) identified and measured 

(Angstadt & Calabrese, 1989) in the heart interneuron (HN) of the medicinal leech and then 

implemented in the canonical model of HN (Hill et al., 2001). The equations for the current 

and its activation are 

 ,     (1) 

 ,       (2) 

 ,          

and 

 ,          

such that  is the maximal conductance, Eh is the reversal potential, and  is the 

activation variable. The functions  and  are the steady state and time constant 

of activation. These types of models lend themselves to hierarchical organization. At the 

highest level, the model, environmental parameters and dSPACE links the data acquisition 

board are assigned. Descending into the model reveals a menagerie of blocks and 

subsystems.  

 A block diagram built to perform a specific task can be condensed into a single block 

so that complicated systems can be organized into a set of subsystems. A subsystem is a 

block diagram that is represented by a single block. Subsystems make it easy to 

conceptualize and organize the flow of operations in a block diagram by establishing a tree-

like hierarchy to functional model components. Mundane details of computation can be 
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sequestered to lower hierarchical levels while control parameters can be readily available 

for manipulation closer to the root of the model. 

 At the lowest organizational level, system functions are evaluated. The operations 

performed at this level are primarily the calculations of steady state membrane potentials 

and gating variable time constants. The steady state membrane potential of Ih (1) is a 

Boltzmann function (represented by  in Figure 2A). The corresponding block 

diagram is inserted into the subsystem block hnInfh. The parameter b is an argument of the 

function and an input port of the block. It will be assigned by a Constant block at a higher 

organizational level. Other parameters of the function, such as the Gain blocks set at 180 

and 500, can still be accessed from ControlDesk in real-time, but are left at this lower 

organizational level because there is no anticipation of accessing them. The steady state 

membrane potential for the activation of Ih is a unique function. The function for the 

voltage dependent time constant of activation, however, is used again and again in our 

model. From current to current, these functions are represented by the similar equations 

differing only in parameter values. Rather than build a dozen unique diagrams for time 

constant functions, a small set of equations can be reused to define many gating variables. 

A common equation for voltage dependent time constant (2) is also a Boltzmann function 

and contained in the subsystem block hnTau (represented by  in Figure 2B). In 

this case, each of the parameters is assigned at a higher organizational level so that the 

same block can be used in more than one gating variable.  

 The equation for the derivative of the activation of Ih is  (Figure 3A). The 

Simulink subsystem block for this equation is mh with one input port, V, for the membrane 

potential and one output port, mh, for the value of the gating variable. Inside the  
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Figure 2. Elemental Functions. (A) The function  denotes the steady state 
membrane potential of Ih. The block diagram equivalent to  is embedded in the 
subsystem block hnInfh. In this case, a single parameter is defined at a higher 
organizational level. (B) The voltage dependent time constant of activation of Ih can be 
written as , and its block diagram is embedded in the subsystem block hnTau. 
This function is not unique to Ih. By defining many parameters at a higher organizational 
level, this block can be used for different time constants in other subsystems of the same 
model.  
 

subsystem, the dynamics of the gating variable are defined by the steady state activation 

block hnInfh and the time constant block hnTau. At this hierarchical level, the parameters 

left undefined inside these blocks are passed in as arguments along with the membrane 

potential. It becomes important, when working in ControlDesk, to give these Constant 

blocks names that explicitly identify not only the parameter that each represents, but also 
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the specific current, variable, and function with which each is associated so that they may 

be differentiated from similar blocks in other subsystems.  

 Each ionic current is the product of its gating variable subsystems, maximum 

conductance, and driving force. Parameters for the maximal conductance and reversal 

potential are arguments to be passed into the system. Each ionic current subsystem has 

input ports for the membrane potential, the maximal conductance, and the reversal 

potential and output ports for the current and each of the intrinsic gating variables (Figure 

3B). The neuronal model integrates the negative sum of the ionic currents in order to 

produce a value for membrane potential. This membrane potential is then passed into the 

ionic current systems to produce values for gating variables, driving forces, and ultimately 

a new value for each ionic current. This system itself is condensed into the HN neuron 

subsystem (Figure 4).  

 The mutually inhibitory HNs form a robust half center oscillator. Our model utilizes 

a fast spike mediated synapse as the agent of this inhibition (Cymalyuk et al., 2002; Hill et 

al., 2001). The activation and modulation of ISyn are dynamical variables dependent on the 

presynaptic membrane potential. The driving force of the current, however, is a function of 

postsynaptic membrane potential. Spikes on the presynaptic cell lead to an increase in the 

conductance of the current, and the membrane potential of the postsynaptic cell 

determines how the cell will respond to the new current. The synaptic current on the 

postsynaptic cell is summed and integrated along with the intrinsic ionic currents of the 

membrane to produce a new value for the membrane potential. This new membrane 

potential is fed back into the intrinsic ionic current subsystems but is also passed out of the 

cell to determine the activation of the synapse onto the other cell. The neuronal subsystem  
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Figure 3. Higher Level Equations. (A) The activation variable for Ih is represented by the 
equation for  and can be put together using preexisting functions for steady state of 
activation and time constant of activation (see Figure 5). At this hierarchical level, 
constants left undeclared in constituent functions are assigned and passed into the 
appropriate input ports. (B) The current subsystem, Ih, has two outputs: values for mh and 
Ih. Functionally, the block is meant to evaluate the current, but it is convenient to pass out 
the activation variable as well, so that its dynamics can be recorded for further analysis. 
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HNwFastSyn implements the synaptic current by including the ISynS ionic current block 

and an additional input port for the presynaptic membrane potential. 

 A hybrid system has a living component as well as a computational component. An 

electrode placed inside of a neuron can read the membrane potential or inject current. Each 

of these processes is mediated by an amplifier and a data acquisition board, but these 

signals may be ultimately routed to a desktop computer. A procedure running in real-time 

allows a researcher to analyze captured data and directly control the dynamics of an 

injected current on the fly. By implementing our neuronal model in such a procedure, the 

model may interact with a living cell. The membrane potential of the living cell is read of 

the electrode and passed to the model running in real-time. This data feed is utilized to 

produce a synaptic response on the model neuron, and the response of the model cell is 

used to calculate a synaptic current which is then injected back into the living cell. The 

subsystem block MathAndLive demonstrates an implementation of just such a procedure 

on the DS1104 controller. 

 By connecting the voltage out and injected current command ports on an amplifier 

to the ADC and DAC ports on the CP1104 data acquisition board, the dSPACE ADC and DAC 

Simulink blocks provide a neuronal model direct access to its living counterpart. The 

membrane potential of the living cell is passed from the ADC block to the model cell where 

the live-to-math synapse is calculated. This current is summed with the intrinsic currents 

of the model neuron and integrated. Meanwhile, the membrane potential of the model cell 

is used to calculate the activation of the math-to-live synapse, and the membrane potential 

of the living cell is used to calculate the driving force of the current. The value of the  
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Figure 4. Neuronal model. This is the model hierarchical level: no system functions or 
state variables are calculated at a higher level. Each of the eight voltage gated currents is 
implemented as a subsystem block to keep the flow of the program uncluttered and allow 
maximum utilization of generic library functions. Conductance and reversal potential 
parameters are assigned at and each of the state variables are passed out to a higher 
organizational level for ease of access in ControlDesk. 
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current is passed into the DAC block, and the signal is fed from the CP1104 board into the 

injected current command port on the amplifier. 

Building Neuronal Models with Simulink for Real-time Systems 

 Consider the model of the squid giant axon (Hodgkin & Huxley, 1952). It includes a 

fast sodium current (INa), a delayed rectifier potassium current (IK), a leak current (IL), and 

an injected current (Iinj). The differential equation for membrane potential takes the form 

 , 

where the gating variables are defined as the differential equations 

 , ,  and , 

and the rate functions are 

 ,  ,  , 

 , ,  and , 

such that V is the membrane potential, n is the activation of the potassium current, m is the 

activation of the sodium current, and h is the inactivation of the sodium current. The 

maximal conductance of an ionic current and its reversal potential are  and . The 

parameter values used for maximal conductances are  = 36 mS/cm2,  = 120 mS/cm2, 

 = 0.3 mS/cm2, and the values used for reversal potentials are  = -12 mV,  = 115 

mV, and  = 10.13 mV.  

 Hodgkin-Huxley style neuronal models typically share a common structure. Gating 

variables are defined by voltage dependent rate functions, currents are defined by gating 

variables, and the membrane potential is computed by integrating the sum of the ionic 
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currents. The equations at each level of a model are often identical apart from numerical 

parameter values. Instead of building identical Simulink block diagrams for many functions 

in multiple currents, we choose to make block diagrams as generic as possible. If custom 

parameter values can be passed into different iterations of a single subsystem block, then 

that same block can be used to build more than one gating variable or ionic current. With 

this copy-and-paste style of programming, it is easy to compile libraries of multipurpose 

functions. 

 The dynamics of the squid giant axon model are determined by three channel 

opening rates and three channel closing rates. The reader will notice that of the six rate 

functions, there are only three unique equations. We have defined three functions such that 

each of the rate functions can be defined by choosing a function and providing the correct 

set of parameters: , , and 

. The functions , , and  are embedded in the 

subsystem blocks k1 , k2, and k3 with input ports for c, d, and the membrane potential 

(Figure 5). Block k1 corresponds to rates αn and αm; block k2 corresponds to rates βn, βm, 

and αh, and block k3 corresponds to the rate βh.  

 These rate functions and their associated parameters identify the otherwise generic 

gating variable derivative blocks. The gating variable blocks are used in much the same 

way; once the correct rate function and parameters are assigned, the derivative block can 

be dropped directly into the model. For example, the block dn%dt computes 

. At this level of organization, the derivative block calls the rate function 

blocks k1 and k2 and assigns the rate parameters for αn and βn (Figure 6). It uses the  
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Figure 5. Rate functions. Each of the six rate equations takes the form of one of three 
equations differing only in parameter values. With just three unique subsystem blocks, all 
six of the rates can be implemented in Simulink. (A) The block k1 represents function 

. This block is used for the rates αn and αm. Block k2 represents function 
 which corresponds to rates βn, βm, and αh. (C) Subsystem block k3 represents the 

function  which corresponds to βh. 
 

 



25 
 

 
Figure 6. Derivative equations. The maximal conductance of a current is determined by 
the component gating variables. The temporal characteristics of each of these gating 
variables are determined by a pair of rate functions. The rate function blocks are inserted 
into a generic derivative block, and the parameter inputs are specified. Take, for example, 
the  block. Blocks k1 and k2 are the appropriate rate equations for αn and βn, and the 
rate parameters  
 

current gating variable and membrane potential value to evaluate these functions and 

outputs the derivative of the gating variable with respect to time. Ionic current 

computation is a parallel process to gating variable computation in this model. The 

equations governing the conductances of the ionic currents are largely unique, so there is a 

dedicated box for each current. 

 In this model, integration is performed as a vector operation. The derivatives of each 

of the variables of state are multiplexed into a single signal and passed into the integrator. 

In the block diagram, the multiplexed signal is a darker connecting arrow (Figure 7). The 

actual operation of integration is performed on each derivative independently. There are 



26 
 

many methods for numerical integration. The simplest method is Euler’s algorithm where, 

given some initial value of a function , the derivative of the function is evaluated at 

discrete intervals of time in order to produce a numerical approximation of  as it evolves 

over time. Other methods may produce a more accurate approximation but often require 

that the function’s derivative be evaluated many times for  

 
Figure 7. Hodgkin-Huxley model. The Hodgkin-Huxley model of the squid giant axon 
implemented as a block diagram. The variable derivatives are multiplexed onto one signal, 
and the system is integrated as a vector. The resultant state variables are demultiplexed 
and passed into the system. Rather than multiple Integrator blocks operating at different 
hierarchical levels, integration is carried out at the model level of organization. Dark 
upright blocks are multiplexers and demultiplexers. Thick connecting arrows indicate 
multidimensional signals.  
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each iteration of integration. These methods may be undesirable for real-time simulation 

because of time constraints on the algorithm. 

Propensity to Hazardous Dynamics 

  For the parameter values provided by Hodgkin and Huxley, this model does not 

exhibit membrane potential oscillations. Brief depolarizing injected current pulses may 

elicit individual action potentials, and a constant depolarizing injected current may bring 

the cell into a regime of tonic firing. Moreover, for Iinj of sufficient amplitude, there exists a 

stable stationary state separated from the spiking regime by a stable manifold of a saddle 

type orbit (Guttman et al., 1980). Additional pulses of current may push the trajectory of 

oscillations beyond this orbit such that the membrane potential converges to the stable 

stationary state (Figure 8 A). Conversely, a current pulse of sufficient amplitude may push 

the trajectory outside of the basin of attraction of the stationary state, leading to membrane 

excitation and tonic spiking (Figure 8 B). This scenario can be tested by applying episodes 

of noise to the artificial Hodgkin–Huxley neuron.  

 First, though, we introduce a mechanism through which a model can interact with 

external processes. The dSpace PCI board will host the model, and its data acquisition 

channels will be available. Conveniently, the basic Simulink blocks and the dSpace data 

acquisition blocks may all be compiled to run in real-time. The DS1104MUXADC block 

reads input from the first four analogue to digital channels on the CP1104. This block will 

supply the noisy stimulus current used to switch the model from spiking to silence. The 

ADC block feeds directly into a gain block, so that the noise signal can be amplified to 

sufficient magnitude and is also modified by an offset current to keep the ambient stimulus 

signal at zero.  
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 After the model is compiled with Real Time Workshop, it is loaded onto the dSpace 

board. We provide an example ControlDesk layout, hazardhh.lay, that contains tools to 

interact with and control the model in real-time. It includes a plot and control panel to 

monitor and capture the membrane potential and stimulus current. The layout also  

 
Figure 8. Switching. A stimulus current may cause excitation from silence to tonic spiking 
or cause the annihilation of tonic spiking. (A) Stimuli fail to and then succeed in pushing the 
trajectory outside the unstable orbit. The model cell transitions from silence to spiking. (B) 
A brief stimulus pushes the trajectory inside the unstable orbit; tonic spiking collapses onto 
the stable fixed point. 
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includes two numerical input fields to control the amplitude of the stimulus current and the 

offset current. It may be necessary to zero the ambient stimulus current by adjusting the 

offset block so that a baseline stimulus current does not modify the dynamics of the cell. 

We found our input to be balanced with an amplitude gain of 200 and an offset current at 

1.5. 

 Using a conducting pin or wire, carefully touch the ADC1 port on the CP1104 and 

monitor the voltage and current traces in ControlDesk. As long as contact with the port is 

maintained, noisy excursions should be observed in the stimulus current. Notice that by 

simultaneously touching the electrode and the surrounding shield, a different waveform is 

produced. If initial contact with the electrode does not produce switching behavior, 

repetitive tapping may be sufficient, or it may be necessary to change the stimulus 

amplification and readjust the offset current (Figure 8).  
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4. PHARMACOLOGICALLY REDUCED LEECH HEART INTERNEURON 

Motivation 

 The model {INa, IK2, Ih} is based on a previously published model (Cymbalyuk & 

Calabrese, 2001; Shilnikov & Cymbalyuk, 2005). In order to reduce the mathematical 

complexity of the system, we simulate the activity of a heart interneuron in bath with Co2+ 

and 4-aminopyridine (4-AP). Application of Co2+ blocks Ca2+ currents and the synaptic 

current. Application of 4-AP blocks most of the K+ currents. The remaining currents in this 

model are the leak current (IL), the slow outward potassium current (IK2), the fast sodium 

current (INa), and a constant polarizing current. Our model also includes the 

hyperpolarization activated current (Ih) which is present in this pharmacological scenario 

but has not been previously represented in reduced models. Intracellular recordings in 

these conditions show slow seizure-like oscillations with periods that are tens of seconds 

long (Opdyke & Calabrese, 1994). 

 The membrane potential (V) and each of the ionic currents are modeled using 

Hodgkin-Huxley formalism. The gating variables are the activation of IK2 (mK2), the 

inactivation of INa (hNa), and the activation of Ih (mh). The activation of INa is taken to be 

instantaneous. It is modeled as the steady state curve of the activation of the current which 

is a function of V. The steady state curves of mK2 and hNa are also sigmoidal functions of V, 

and the steady state of mh is a modified sigmoidal curve. The time constants of mK2 and hNa 

are constant, and the time constant of mh is a function of V. The half activation value of a 

sigmoid function of V is the value of V at which the value of the function is one half. The half 

activation parameters for the activation of INa and hNa are not varied. The half activation 

parameters of mK2 (θK2) and mh (θh) are our control parameters.  
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 The slow variables in this system are mK2 and mh with time constants of 

approximately one and two seconds. As such, the temporal characteristics of these 

variables are instrumental in the dynamics of bursting activity. By systematically 

manipulating parameters that determine the dynamics of the slow variables, we can 

observe the range of bursting activity and bifurcations between qualitatively distinct 

regimes of neuronal activity. Bifurcation theory allows us to make predictions concerning 

the temporal characteristics of the dynamics of bursting nearby the critical transitions 

associated with the onset of bifurcation. 

Bifurcation analysis of the model {INa, IK2, Ih} was performed by shifting the half 

activation values of the two slow variables from the canonical values. While systematically 

varying these parameters, we observed the periodicity of bursting activity. The period of 

bursting activity is the time measured from the first spike of one burst to the first spike of 

the next. The burst duration is the time measured from the first spike of a burst to the last 

spike of that burst. The interburst interval is the time measured from the last spike of a 

burst to the first spike of the next burst, and the duty cycle is the ratio of burst duration to 

burst period.  



32 
 

 

Roles of IK2 and Ih 

We established the role IK2 plays in supporting bursting activity in a model lacking 

Ih. Shilnikov and Cymbalyuk (2005) showed that as the half activation parameter 

approaches a critical value at the border of bursting and tonic spiking, the burst duration 

grows in accordance with a saddle node for periodic orbits while the interburst interval 

remains largely unchanged. By shifting the half activation voltage away from the border of 

bursting and tonic spiking, we observed a range of bursting that is approximately 0.006 V. 

Bursting activity at the lower end of this range consisted of long bursts interrupted by 

short interburst intervals, but activity for larger values of θK2 consisted of short bursts with 

long quiescent phases (Figure 9A).    

Bursting activity transitions to tonic spiking at the border of bursting for lower 

values of θK2, and bursting activity transitions to quiescence at the border of bursting for 

higher values of θK2. We analyzed the evolution of activity with changes in θK2 by 

comparing the temporal characteristics of successive simulations (Figure 9B). Shilnikov 

and Cymbalyuk (2005) showed that for values of θK2 where the burst duration was very 

sensitive to changes in the control parameter, the interburst interval remained constant. 

Similarly, we observed that for values of θK2 where interburst interval of bursting activity 

was sensitive to θK2, the burst duration remained constant. Over the entire observed range 

of bursting, the spike frequency at the end of the burst fell between 5.4 and 5.7 Hz. 

 We introduced Ih and studied its role in bursting activity. The initial values we chose 

for θK2 and θh were -0.0006 and 0.047 V respectively. At these values, we observed bursting  
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Figure 9. Examples of activity and temporal characteristics while varying θK2. (A) Example 
trajectories over a 0.005 V range for θK2. The burst duration is larger for lower values of θK2, 
and the interburst interval is larger for lower values of θK2. (B) Temporal characteristics for 
trajectories computed at different parameter values. The period of bursting has a U-shaped 
dependence on θK2. Growth in burst duration is due to spike addition. Large jumps in final 
spike frequency correspond to spike addition or spike deletion events. 
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trajectories with burst durations and interburst intervals of approximately 2 seconds 

(Figure 10). By varying θh, we observed bursting over a range of 0.06 V. We found that Ih  

primarily modulated the interbust interval in this model (Figure 11A). At the border of 

bursting for lower θh (-0.004 V) we observed a transition to depolarized silence. At the 

border of bursting at θh=0.056 V, bursting transitioned to hyperpolarized silence. As θh 

approached the lower border for bursting, the burst duration roughly tripled and became 

irregular from burst to burst (Figure 11B). As θh approached the upper border of bursting, 

the interburst interval became very large. In both cases, either the burst duration or 

interburst interval was sensitive to changes in θh while the other remained roughly 

constant. Similar to the previous system, the final spike frequency fell in a narrow range as 

we varied θh. 
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Figure 10. Sample trajectory. Burst duration and interburst interval are approximately 2 
seconds for θK2= -0.0006 V and θh=0.047 V. 
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Figure 11. Examples of activity and temporal characteristics while varying θh. (A) Example 
trajectories over a range of values for θh. (B) Temporal characteristics for trajectories 
computed at different parameter values. Trajectories with irregular burst durations can be 
identified by the large standard deviations. Large jumps in final spike frequency 
correspond to spike addition or spike deletion events. 
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5. MAINTENANCE OF DUTY CYCLE 

 We used curve fitting to determine the laws that governed the evolution of temporal 

characteristics as bifurcation parameters approach critical values. Once identified, these 

laws allowed us to characterize the type of bifurcation the system undergoes at the critical 

value. Numerical methods allowed us to characterize the type of and compute parameter 

space coordinates for these bifurcations directly. We were able to re-characterize the 

control parameter of bifurcation as the distance along a line made up of points in the 

parameter space sharing the same duty cycle. 

Saddle-node Bifurcation 

 A saddle-node bifurcation for stationary states occurs when a fixed point is born, 

and separates into two fixed points. In the one dimensional case, a semi-stable fixed point 

separates into a stable and an unstable fixed point. In the case of two or more dimensions, a 

saddle-node is born and separates into a saddle and a node. In the case where a saddle-

node bifurcation occurs on an orbit, the orbit dies on the fixed point. It is possible to detect 

the approaching bifurcation by observing changes in the period of the orbit. For a given 

variable q, the derivative of q with respect to time approaches zero for a certain phase of 

the orbit as the bifurcation parameter x approaches a critical point c. As such, the orbit 

slows down when it passes near this bottleneck. As x approaches c, the period increases 

proportionally to one over the square root of the difference between the critical point and 

the control parameter: .  

 The fold limit cycle is similar to the saddle-node bifurcation for stationary states, but 

pertains to the birth of limit cycles. As the bifurcation parameter changes, a saddle periodic 

orbit is born; it promptly splits into a stable and an unstable cycle. Trajectories that pass 
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near a fold limit cycle experience a bottle neck in a similar way as trajectories that pass 

near a saddle-node for stationary states. Rather than spending more and more time nearby 

the stationary state, trajectories spend more and more time oscillating nearby the saddle 

periodic orbit. The period of these trajectories grows proportionally to one over the square 

root of the control parameter. This has been reported previously for the first example in 

the previous chapter (Shilnikov & Cymbalyuk, 2005). We observed a saddle-node 

bifurcation for stationary states for both cases presented in the previous chapter. As θK2 is 

varied towards the border of bursting and silence and θh is varied towards he border of 

bursting and hyperpolarized silence, the interburst interval of each grows in accordance to 

the saddle-node bifurcation (Figure 12).  

Control of bursting activity through coregulation of slow currents 

 We observed the behavior of the system by extending our analysis onto the plane of 

θh and θK2. The parameter θh was varied from -0.153 V to 0.147 mV, and θK2 was varied 

from -0.025 V to 0.010 V. For every value of θh observed, there was a finite window in θK2 

where bursting was possible. For values of θh above 0.010 V and below -0.053 V, changes in 

θh ceased to modulate bursting activity. When θh is above 0.057 V, θh drops below the range 

of bursting behavior. In other words, Ih activates below the lowest voltage in a burst, and 

the current is effectively shifted below the bursting activity. Further increases to θh are 

superfluous. Similarly, when θh is below -0.053 V, the curve for steady state of activation is 

close to one for the range of membrane potentials expected in a burst. In this case, Ih is 

always activated, and any further decrease in θh is inconsequential. 
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Figure 12. Interburst interval plotted against θh. The blue points represent values obtained 
from computed trajectories. The red curve is the plot of the function fitted to the data: (A) 
a=0.1454 and c=0.01861 (B) a=1.302 and c=-0.05601. 
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 We observed a complicated relationship between the periodicity of bursting 

behavior and the half activation parameters θh and θK2. Changes in period over the 

parameter space were the result of variations in interburst interval and/or burst  

duration. The periodicity was generally characterized by two cases: above and below a line 

at roughly 0.057 V in θh. The period generally increased for values of θh approaching this 

line from below. Period also grew in this region as θK2 decreased. The union of these two 

cases, where θK2 was near the point of burst termination for negative values and θh was 

near 0.057 V, showed a very sharp increase in period observed to around 30 s. The region 

above the line at 0.057 V shows no change in period with any change in the parameter θh, 

and since the activation of Ih was so hyperpolarized, the system was effectively reduced to 

three dimensions. Bursting was observed between the fold limit  

cycle and saddle-node bifurcations at -0.006 V and 0 V in θK2. As the bifurcation parameter 

approached either of these values, the period grew towards infinity. 

 As θK2 decreased towards burst termination, the peak burst duration observed can 

be broken into categories that correspond to three ranges for θh: below -0.053 V, between  

-0.053 V and 0.057 V and above 0.057 V. Below -0.053 V in θh, burst duration was wholly on 

the order of half a second. In this region below θK2 values of 0.008 V, burst duration was 

slightly longer on average but also became irregrular. Above –0.053 V in θh, the border of 

bursting behavior for lower values of θK2 dropped to around -0.006 V at the line where θh 

was 0.057. Additionally, the burst duration at the border increased as θK2 dropped and θh 

grew to the point where the border was defined by a fold limit cycle (Figure 13). Nearby 

this bifurcation, the period could be arbitrarily large. The burst duration increased 
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Figure 13. Bifurcation diagram. Points on the map corellate to values of θh and θK2 for which 
bursting was observed. Warmer colors correspond to higher duty cycle, and cooler colors 
correspond to smaller duty cycle. Excluded from this rule are the series of green points which 
have a duty cycle between 0.55 and 0.60. The black dotted line corresponds to a fold limit cycle. 
The upper black line is a saddle-node bifurcation. The lower black line is an Andronov-Hopf 
Bifurcation. 
 

monotonically to infinity as θK2 approached the fold limit cycle for values of θh above 0.057 

V.  

Maintenance of Duty Cycle 

 Further analysis was performed by computing the duty cycle of bursting behavior 

(Figure 13). Duty cycle is the ratio of burst duration to period: a neuron that exhibits 

bursting activity with a period of 30 s and burst duration of 15 s has a duty cycle of 0.5. We 
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observed high duty cycles were bursting terminated at lower values of θK2. Duty cycle did 

not vary with θh for values above 0.057 V. For values of θK2 close to the saddle-node 

bifurcation, the duty cycle approaches zero, and for values of θK2 close to the fold limit 

cycle, the duty cycle approaches one.  

 For values of θh below -0.053 V, a similar trend was observed. Greater values for 

duty cycle were found at the lower border of bursting in θK2, and lower values for duty  

cycle were found at the upper border of bursting in θK2. In neither case were we able to 

achieve arbitrarily large or small duty cycles. Between values above -0.053 V in θh, the peak 

value for duty cycle followed the border of bursting as θh grew to 0.057. For coordinates in 

the parameter space nearby the lower border of bursting in this region, duty cycle 

decreased most rapidly for coordinates moving away from the border up to approximate 

value of 0.004 mV in θK2. Beyond this point, further changes in duty cycle were primarily 

dependent on θK2. 

 We observed subsets of data points for which duty cycle remained constant despite 

smooth growth in the period of bursting (Figure 14). We were able to further characterize 

the bifurcation diagram by limiting observation to a small range of duty cycle (green points 

in Figure 13). We found an apparently continuous curve of equal duty cycle that was 

linearly dependent on θK2 and θh in the range between the saturation and removal of the 

activation of Ih. Above and below parameter values for which this saturation and removal 

occurred, equal duty cycle curves no longer varied with θK2.  

 Similar and congruent curves existed nearby in the parameter space for different 

duty cycles (Figure 15). Each curve is roughly parallel to the border of bursting defined by 

θK2 on the left of the diagram, and the border of bursting defined by θh across the top of the 
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Figure 14. Linear relationship. Burst duration and interburst interval maintain a linear 
relationship with period. Duty cycle does not vary. 
 

bifurcation diagram. These curves increased in period from the bottom of the bifurcation 

diagram where the activation of Ih is saturated to the top where Ih is no longer activated. 

Just as the period of bursting was no longer dependent on variations in θh above and below 

certain parameter values, the period along equal duty cycle curves no longer varied with θh 

above and below these values.  

 As each curve approached the point at which the activation of Ih is fixed at zero, the 

period grew proportionally to one over the square root of the distance along a curve of 

equal duty cycle (Figure 16). We characterized this distance by computing the distance of 

each data point along a linear fit line in the parameter space (Figure 15 and 16). The range  
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Figure 15. Congruent lines. We show four congruent lines of equal duty cycle. Each set of points 
was fitted to the form y=mx+b. The circular points correspond to a duty cycle between 0.81 and 
0.8 and fitted to m=-12.91 and b=-0.304. The triangular points correspond to duty cycles 
between 0.76 and 0.75 and fitted to m=-9.374 and b=-0.217. The square points correspond to 
duty cycles between 0.71 and 0.7 and fitted to m=-6.854 and b=-0.156. The pentagonal points 
correspond to duty cycles between 0.66 and 0.65 and fitted to m=-5.274 and b=-0.118. 
 

of bursting in parameter space contracts as Ih is shifted out of the bursting regime, and the 

period of bursting increases. The distance in parameter space from both the saddle-node 

bifurcation for stationary states, and the fold periodic orbit decreases with this contraction 

until Ih is no longer activated. Up to this point, trajectories on a line of equal duty cycle 

proportionally experience the ghost of both bifurcations so that burst duration and 
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interburst interval grow proportionally (Figure 14 and 16). Without compensation in Ih, the 

period cannot increase while duty cycle is maintained, and the bifurcations become entirely 

dependent on θK2. 

 
 
Figure 16. Congruent curve fits. Each set of points corresponds to a set of duty cycles, and a 
curve fit against the distance along the lines depicted in Figure 15. The distance of each point 
was computed by determining the projection of the data point onto the best fit line. The point 
with greatest period was considered the first point, and the euclidean distance of each point 
was measured from the first point. Each curve fit took the form y=a/√(x-b). (A) Duty cycle is 
between 0.81 and 0.8. a= 0.988 and b=-0.002. (B)Duty cycle is between 0.76 and 0.75. a=0.784 
and b=-0.002. (C)Duty cycle is between 0.71 and 0.7. a=0.629 and b=-0.001. (D) Duty cycle is 
between 0.66 and 0.65. a=0.514 and b=-0.002. 
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6. DISCUSSION 

 Our goal was to construct a biophysically plausible and biocompatible artificial 

neuron. We satisfied the real-time requirements of hybrid systems with Simulink’s Real 

Time Workshop and dSpace hardware. We showed the preservation of a behaviorally 

critical characteristic, constant duty cycle, in a neuronal model. 

 Neuroprosthetic devices will one day routinely treat neurological disorders by 

monitoring and regulating the electrical activity in the central nervous system. Such brain-

machine interfaces will need to be small, fast, and power efficient. The introduction of the 

analogue very-large-scale integration (aVLSI) neuron provides a framework for artificial 

cells and neural networks that satisfy these criteria (Mahowald & Douglas, 1991). Silicon 

neurons working in tandem with living networks have produced biologically valid patterns 

(Jung et al., 2001; Sorensen et al., 2004). The optimization of circuit design promises 

efficient and biocompatible VLSI chips (Rachmuth & Poon, 2008). The clinical distribution 

of these neuroprostheses will require industrial manufacturing of implants. Like any other 

industry, the neuronal models upon which these devices will be based will need to be 

tested before the production process begins. Testing could be done with a hybrid system: 

artificial neurons can be interfaced with biological neurons or networks of neurons with a 

dynamic clamp. By tuning characteristics of the artificial cell, an analysis of the hybrid 

system can reveal pathological or otherwise undesirable neuronal or network states. By 

prototyping neuroprostheses in this manner, a researcher can design an artificial cell that 

meets implant design parameters without compromising the dynamics of the biological 

component of the hybrid system. 
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 In order for a hybrid system to function properly, the artificial system must be 

simulated on a computer such that computational cell is able to respond to the living cell 

without interruption. These computational necessities are often accomplished with real-

time computing in which operations are performed on a strict schedule. While most 

modern desktop computers are capable of running real-time software, most modern 

operating systems are not real-time. Developers must rely on specialized products to 

implement real-time applications: a real-time operating system runs a program directly on 

the desktop computer or a program is run on a real-time peripheral device (a control 

board) that is controlled from the desktop computer. A prominent supplier of real-time 

control boards and support software is dSpace. dSpace products are commonly used for 

prototyping control systems in the robotics, automotive, and aerospace industries. dSpace 

software automatically utilizes a system designed in Simulink and executes it on a real-time 

control board. We realize hybrid systems by designing neuronal models in Simulink and 

using dSpace to implement these models in real-time. 

 Matlab & Simulink provide a high level programming language designed for 

technical and high performance computing. Simulink is a graphical programming 

environment; Simulink programs look like flow charts. Individual operations are 

represented as blocks, and blocks are connected with arrows showing how the output of 

one block is used by other blocks. Larger mathematical expressions may be contained by a 

single block so that, in our case, biophysical functions such as current, conductance, and 

driving force can each be represented as individual blocks. Even an inexperienced user can 

go from a set of equations or a conceptual flow chart to a sophisticated model quickly with 
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Simulink’s drag-and-drop programming style. As in any high level programming language, 

program components can be reused to reduce development time. 

 We provide a library of functions in Simulink sufficient to create a neuronal model. 

This library includes individually implemented artificial currents, voltage dependent 

steady state curves, and voltage dependent time constants. Moreover, these functions 

provide a template with which to construct novel neuronal models. Many of our functions 

are standardized so that each numerical parameter is specified by the user. By providing 

custom parameters based on experimentally measured ionic currents, a researcher could 

implement any number of currents not found in our library. These models are designed to 

be used as real-time control systems for a dynamic clamp. 

 In order for a neuroprosthesis to assume the role of some functional neuronal 

circuit, it must behave as though it is a functional neuronal circuit. That means that it must 

continue to have a functional role in its host as the local and global neuronal environments 

change over time. Factors such as fatigue, age, injury, and drug use can all change the way 

neuronal circuits and their synaptic targets function. Prosthetic activity must be robust so 

that the larger neuronal circuit remains resistant to degeneration. We use the numerical 

and analytical tools of dynamical systems theory to study the mechanisms through which 

these environmental factors enact neuromodulation in order to identify manifestations of 

pathology in model neurons.  

 Dynamical systems theory provides a theoretical foundation for sensitivity analysis 

in mathematical models. Qualitative aspects of a dynamical system can be revealed through 

mathematical analysis of critical parameter values and initial conditions in the context of 

perturbations and environmental noise. For example, there may exist multiple stable 
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regimes nearby each other in state space (multistability), or the activity of a system may 

change dramatically with small changes to sensitive parameters (catastrophe). Nearby 

certain of these catastrophes, the behavior of a system will obey specific laws governing 

periodicity. Regimes of activity that exist in a multistable or potentially catastrophic system 

are hazardous: small perturbations to the system may cause the system to switch to a 

different mode of activity. Multistability and catastrophes are not mutually exclusive. A 

catastrophe may manifest itself as one of many stable modes becomes unstable or 

disappears. Forearmed with the knowledge of the type activity that can be expected across 

a range of parameters, a researcher may design a model neuron in order to exclude or take 

advantage of certain regimes. 

 Multistability and catastrophes can be used to describe several facets of intrinsic 

neuronal dynamics and modulation. A neuron may exhibit bistability of stable regimes 

(Guttman et al., 1980; Paydarfar et al., 2006; Shilnikov et al., 2005). Such a cell could toggle 

between coexistent states upon stimulation. Using dynamical systems theory, a researcher 

may predict such bistability in a neuronal model. If the model is intended to fire indefinitely 

as a pacemaking oscillator, then bistability would be a pathological trait. On the other hand, 

bistability could be a functional trait if the model is intended to be an on-off switch that 

modulates some macroscopic behavior. A model neuron may switch from endogenous 

bursting to tonic spiking at a particular parameter value (Cymbalyuk et al., 2002). A 

researcher may implement this parameter as a slow variable dependent on the model’s 

synaptic input or state of activity in order to effect modulation of neuronal dynamics.  

  What distinguishes a model from a living cell is adaptation. The dynamics of specific 

neuronal processes, such as the activation of an ionic current, may be sensitive to the 
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behavioral state of that neuron. These activity-dependent processes in turn shape future 

neuronal activity states. This autoregulatory feedback allows a cell to maintain structural 

stability of functional regimes. Autoregulation is mediated by intracellular signals. A 

number of neuronal models exhibit long term neuromodulation based on intrinsic Ca2+ 

dynamics (LeMasson et al., 1993; Liu et al., 1994; Siegel et al., 1994). As long as functional 

behavioral regimes are stable, environmentally triggered excursions onto pathological 

regimes ultimately converge back onto more desirable solutions through the action of 

these characterizing variables. This model of neuromodulation lends itself to a hypothesis 

of homeostasis (Marder & Prinz, 2002). 

 Our model of the leech heart interneuron is a good candidate in which to study the 

role of modulation on and adaptation in a single cell. Parameters in Hodgkin-Huxley type 

models correspond to measurable characteristics of currents in living cells. By performing 

bifurcation analysis and continuation with characteristics that have been shown to change 

under neuromodulation, we may simulate the role of neuromodulation in neuronal 

dynamics. The half activations of hyperpolarization activated currents and potassium 

currents have been shown to vary in the presence of modulators (McCormick & Pape, 1990; 

Luthi & McCormick, 1998; Luthi & McCormick, 1999; Peck et al., 2001).  

 We performed parameter scans for temporal characteristics similar to Cymbalyuk et 

al. (2002). Previous studies, also with θK2, on similarly reduced models have shown blue-

sky catastrophe and Lukyanov-Shilnikov transitions from bursting to tonic spiking 

(Shilnikov & Cymbalyuk, 2005; Shilnikov et al., 2005). The activation of IK2 supports 

bursting. Ih in our model clearly acts in a modulatory role; the neuron bursts whether Ih is 

activated or not. Between the two currents, we have control over burst duration with θK2 
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and interburst interval with θh. We have shown that cell intrinsic adaptation may change 

period while duty cycle remains constant and that a negative correlation in the regulation 

of the two half activation parameters is required to affect duty cycle maintenance. We have 

created a prototype with which to implement a biohybrid system. Using real-time 

technology and dynamic clamp, we can study the role of Ih and IK2 in the dynamics of a 

living corollary to our model neuron.  
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7. CONCLUSION 

 We developed a library of Simulink S-functions to efficiently model neuronal 

dynamics in real-time.  

 We developed and analyzed model of an artificial neuron representing the leech 

heart interneuron under specific pharmacological conditions. 

 We showed duty cycle maintenance could be achieved through coregulation of a 

hyperpolarization activated current and a potassium current. Negative correlation between 

the half activation voltages allows the artificial cell to keep the duty cycle constant 

independent of changes in period from 2 to 13 s. 
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