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ABSTRACT 

 

Previous studies have shown that many students have misconceptions about basic concepts in 

physics which persist after instruction.  It has been concluded that one of the challenges lies in 

the teaching methodology.  To address this, Georgia State University (GSU) has begun teaching 

studio algebra-based physics.  Although many institutions have implemented studio physics, 

most have done so in calculus-based sequences.  Additionally, the unique environment of GSU’s 

population as a diverse, urban research institution is considered.  The effectiveness of the studio 

approach for this demographic in an algebra-based introductory physics course was assessed.  

This five-semester pilot study presents demographic survey results and compares the results of 

student pre- and post-tests using the Force Concept Inventory (FCI).  FCI results show that 1) the 

studio approach yields higher learning gains than the conventional course, 2) there are significant 

performance differences among ethnic groups, and 3) a gender gaps exists regardless of 

instructional method. 

 

INDEX WORDS: Physics education research, PER, Studio physics, Interactive engagement, 

Force Concept Inventory, FCI, Gender performance, Gender gap, Demographic survey, Ethnic 

differences, Urban institution, Algebra-based physics, Georgia State University, Item analysis, 

Two-way ANOVA, Normalized gain, Instructional method, Pre-test post-test design 
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1 INTRODUCTION 

 

1.1 History of Physics Education Research 

Physics Education Research, as an area of academic study, is a relatively new field.  The 

pioneering work in the field of Physics Education Research can be traced back to the founders of 

the American Association of Physics Teachers: Paul Klopsteg of the University of Minnesota, 

Homer Dodge of the University of Oklahoma, and F. T. Richtmeyer of Cornell University 

(Phillips, 1977).  They were interested in the challenges of teaching physics.  The dawn of the 

“space race” and the Atomic Age at the end of the Second World War spurred on a national 

interest in improving the quality of science education and curricular improvements that would 

benefit both students and teachers of physics.  It soon was recognized in the 1960’s and 1970’s 

that there was a need for curriculum reform on a national scale that would require the input of 

those involved in the behavioral sciences and the field of education to help better understand the 

needs of the student and to better train a cadre of quality teachers.  As early as 1956, Jerrold 

Zacharias, professor of physics at Massachusetts Institute of Technology (Lopez, R. & Schultz, 

T., 1991) also had deep concerns about science education.  Jerrold along with physicists Francis 

Friedman of MIT, Philip Morrison of Cornell University, and Bob Karplus of University of 

California at Berkeley, led K-12 science education reform.  As time progressed into the 1990s, 

educators and professors in the field of physics started to focus research and collect data around 

the processes and methodologies of teaching physics.  This body of research began to be referred 

to as “Physics Education Research” or simply, PER. 

“Physics education research differs from traditional education research in that the 

emphasis is not on educational theory or methodology in the general sense, but rather on student 
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understanding of science content” (McDermott, 2001).  Physics Education Research as a field 

seeks to improve existing techniques and to bring about new and innovative methods for the 

teaching of physics. Those involved in PER aim to make physics instruction synonymous with 

student learning of physics and how to apply it.  They seek to maximize the effectiveness in 

methodology and educational value for the sake of the student.  In other words, PER seeks to 

teach and communicate physics in a pedagogically sound manner that has a demonstrable 

positive effect on student learning.  At its center, the field focuses on getting the students to 

understand the applications of physics; it is not focused merely on problem-solving ability.  One 

underlying PER goal is that the science students begin to share the interest and enthusiasm that 

physicists have for their work, whether those students intend to become future physicists or 

aspire to other goals. 

What has been discovered around the world is that the traditional, didactic approach to 

teaching does not yield the highest student learning gains (Reddish, E., Saul, J., & Steinberg, R., 

1998).  Physics teachers from the primary to the post-secondary level of the educational process 

have observed the pedagogical limitations of the lecture approach alone.  Pedagogy which 

utilizes an integrated, collaborative, activity-based learning environment has repeatedly been 

shown to be the way students learn best, thus, the onset of different teaching methods for physics 

curriculum, such as Peer Instruction (PI), Technology Enabled Active Learning (TEAL), 

Student-Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP), and 

Studio Physics.  

Physics Education Research is motivated to increase student engagement and conceptual 

grasp of physics while not negating its appreciation for conducting and reporting its research in a 

rigorous, scientific manner.  It is the intense desire of those who study and practice the ideas of 
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PER to throw off the stigma that this type of research should be considered as “soft science” 

(McDermott, 2001).  Indeed, it is this demand for scientific rigor and credibility that places PER 

within the mandate of physics departments, rather than education departments.   

 David Hestenes, Oersted Medal recipient and professor emeritus of physics at Arizona 

State University stated, “I have since seen PER emerge as a credible discipline in its own right, 

with a growing body of reliable empirical evidence, clarification of research issues, and most 

important of all, an emerging core of able and committed researchers within physics departments 

across the country…. It is a serious program to apply to our teaching the same scientific 

standards that we apply to physics research” (Hestenes,1998). 

 Lillian McDermott, also an Oersted Medal recipient and professor of physics at the 

University of Washington is considered by many scholars to be the recognized leader in physics 

education reform efforts.  University and colleges across the country widely use the textbooks 

developed by McDermott’s Physics Education Group: Physics by Inquiry (Wiley, 1996) and 

Tutorials in Introductory Physics (Prentice Hall, 2002).  She has also been instrumental in 

developing accurate testing procedures.  Robert Beichner, who consulted for GSU in the design 

of its studio classroom, is the developer of the Student-Centered Activities for Large Enrollment 

Undergraduate Programs (SCALE-UP) Project (Beichner, 2006).  It is a studio-style 

environment that promotes scientific investigation of physics problems through group 

interaction.  Nearly 100 institutions around the world have adopted SCALE-UP as a model to 

implement in their learning environments.   

Another alternative to conventional instruction methods has been introduced by Professor 

Eric Mazur of Harvard University: Peer Instruction (PI) model for collaborative learning 

methods.  The Peer Instruction approach is student-centered and inquiry-based learning that is 
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supplemental to class lectures.  Mazur’s research has led to the development of an instructional 

supplement known as ConcepTests (Mazur, 1997).  His approach is to use Peer Instruction along 

with the ConcepTests during the lecture. The ConcepTest is administered throughout his lectures 

to allow his students to interact in small groups about the concepts covered in the lecture.  

Subsequently, they are given a form of “pop quiz” to see how the lecture, along with the student 

interaction, has impacted the students’ grasp of the concept presented.  As a methodology, PI’s 

adoption increases annually across the county (Lasry, 2008).  Similar to studio physics, PI’s 

results continue to show significant increases in students’ conceptual understanding as compared 

to the conventional, didactic approach (Lasry, 2008).   

1.2 Philosophical Values of PER 

 As an academic discipline, PER derives its epistemological framework (how we know 

what we know when we study physics education) from constructionism (currently, used 

interchangeably with “constructivism”) in which, it is believed that students learn best when they 

derive meaning, and hence, learning, as a community (Crotty, 2003).  E. F. Redish (1999) calls it 

the constructivism principle: “Individuals build their knowledge by processing the information 

they receive, building patterns of association to existing knowledge.”  It is from this sense, then, 

that studio physics seeks to challenge students to think scientifically through inquiry, critical 

thinking in a collaborative setting, and communicating with each other throughout the process of 

scientific investigation (Wilhelm, 2007).  Utilizing this framework, students are able to grasp the 

concepts much faster and with much better results.  

With this in mind, the traditional approaches to transferring knowledge from instructor to 

student flies in the face of the values of today’s student.  Studio physics and other collaborative, 

interactive, peer-based instructional models that are based on constructivism are more adequately 
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aligned with the generational values of today’s university student.  If the goal of education is 

based upon the desire for the student to gain mastery of the subject, the methods of how that is 

done must be re-examined from time to time to ensure that the instructor is adequately 

transferring our instruction and adequately received by the student.  This is what PER in general, 

and studio physics in particular, are all about:  physics must be student-centered, not instructor-

centered. 

The cultural diversity and differing epistemological frameworks may not be accounted 

for in a traditional, lecture-based classroom.  For example, a student raised in a culture of group 

and family interaction informing learning, or an experiential approach to learning, would find the 

traditional physics classroom a cold and uninviting place to learn.  The ensuing struggle to grasp 

concepts in this type of environment would significantly hinder that student from performing 

well.  Studio physics seeks to provide that alternative to the conventional approach that would 

provide that student with an environment and a community to aid learning at the conceptual 

level.   

1.3 Studio Physics 

“Studio physics” is the name given to various types and models of collaborative, activity-

based, interactive, student-centered learning environments.  The pedagogical method is based 

upon the pioneering work of Jack Wilson of Rensselaer Polytechnic Institute (Wilson, 1994).  

Because of the success of studio methods, many institutions have revamped the way introductory 

physics courses are taught.  A full understanding of what “studio physics” is comes with the 

understanding of what the “conventional” physics course is.  In the conventional course, the 

instructor gives a typical lecture in a lecture room.  It is characterized primarily by passive-

learning in which there is minimal student interaction and engagement.  However in the studio 
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classroom, the students become active-learners and the instructor lectures minimally.  Studio 

physics is also marked by PER-based materials, computer simulations to enhance conceptual 

understanding, and graduate assistants on hand for individual student help. 

Classroom Design 

The design of the GSU studio classroom is largely based on Beichner’s (2007) SCALE-UP 

model.  Located in Georgia State’s Classroom South building, the studio/workshop classroom is 

a multimedia, interactive learning environment.  The most important technological presence in 

the studio classroom is the roundtables (Gaffney, 2008).  There are six of these tables, each fitted 

with 9 chairs, equipped with internet-accessible laptops.  Every wall is covered with whiteboards 

to allow optimal space for working on concepts and problems and for displaying that work to 

peers and the instructor.  The classroom is also fitted with cameras and microphones throughout.  

Figure 1.1 shows portions of the studio classroom at GSU. 

 

•  

Figure 1.1  The studio classroom at Georgia State University.  The room is characterized by 
roundtables and whiteboards.  Each of the six roundtables seats 3 groups of 3 students for a total 
of 54 students.  Fitted with cameras, microphones, and laptop computers, the room is well-
equipped for active-learning. 
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Evidence for the efficacy of active-learning pedagogies, like the studio format, is vast. 

(Buck, J. & Wage, K., 2005; Johnson, D., Johnson, R., & Smith, K., 1998; Prince, M., 2005; 

Springer, L., Stanne, M., & Donovan, S., 1999).  Some of the most noted programs of 

universities that have adopted studio-style classrooms are the Workshop Physics Project at 

Dickinson College, the TEAL project at Massachusetts Institute of Technology, the physics 

program at University of California at Davis, and SCALE-UP at North Carolina State University.  

Other institutions with research groups offering PER in its PhD physics programs are Harvard 

University (Eric Mazur), Ohio State University (Ken Wilson), University of Maryland (Joe 

Redish), University of Washington (Lillian McDermott), University of Colorado at Boulder, and 

North Carolina State University (Robert Beichner).  Georgia State University (GSU) has now 

joined in on the quest to improve introductory physics courses.  In the Fall 2008 semester, studio 

physics was implemented, modified, and elaborated on based on Beichner’s SCALE-UP model. 

1.4 Georgia State University and PER 

Georgia State University, the second-largest research institution in the University System 

of Georgia, has embarked upon a significant opportunity to research the effects of the studio 

learning environment on a unique demographic.  There has been very little study devoted to an 

undergraduate student demographic where Blacks and Asians constitute a majority.  There is 

even less research on the success of a studio physics environment implemented at a non-

residential, urban institution.  Such an opportunity exists here at Georgia State.  To capture and 

illustrate this uniqueness, demographic data from the past 16 years is provided in Appendix C.  

The general trends are that White student enrollment is decreasing and Black and Asian student 

enrollment is increasing.  For the Fall 2009 semester, Appendix D reveals that there were 22,385 

undergraduate students enrolled.  Of this amount, 41% were White, 36% were Black, and 12% 
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were Asian (other ethnic groups are not presented in this study because of their low percentages 

in enrollment and in registration in Physics 1111).  The unique demographic of GSU’s 

undergraduate population can open up a world of possibilities in terms of studio physics’ effects 

on the performance and conceptual understanding of these two ethnic groups.   

The fact that GSU is a predominantly non-residential institution introduces another 

variable in evaluating the efficacy of studio physics at Georgia State.  The opportunity to see 

what can be learned about student learning in an open, transient environment like the one that 

exists here at GSU could have implications on the university itself, the Physics department, and 

the field of PER research as a whole. 
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2 DATA AND ANALYSIS 

 

2.1 Experimental Methods and Design 

Comparisons were made using gains in student understanding based on mechanics 

concepts.  Results showed that both conventional and studio student populations began the 

algebra-based introductory physics course (PHYS1111) with similar content knowledge.  The 

questions to be answered in this study are:  

1.  Does instructional method (conventional versus studio) affect learning gains? If so, by how  

     much? 

2.  What is the effect of studio physics instructional methods on various ethnic groups? 

3.  Are there differences in the effects of these instructional methods based on gender? 

Study Design 

 The sample consisted of students from 5 consecutive semesters (Fall 2008 – Spring 2010) 

who took both pre- and post-tests of the Force Concept Inventory (Hestenes, D., Wells, M., & 

Swackhamer, G., 1992). The data include 29 classes taught by 8 different instructors. The 

students (N = 785) were enrolled in Physics 1111, the first sequence of GSU’s algebra-based 

introductory physics course.  The study employed a pre-test - post-test design.  The groups were 

named as conventional students (Nc = 431) and studio students (Ns = 354).  There were no 

statistically significant differences between the two groups.  The pre-test was given within the 

first week of the semester, and the post-test was given during the last three weeks. 

 Two types of studies are being conducted.  The first study is a longitudinal study in 

which comparisons between conventional and studio test scores are made for all five semesters.  

This assesses the success of studio physics’ implementation at GSU, overall.  The second study 
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is a cross-sectional study in which a snapshot of the sample, using the Fall 2009 semester, is 

investigated to assess ethnic and gender test score differences.  In this study, the sample subset is 

comprised of conventional and studio students, where the sample sizes are Nc = 121 and Ns = 

136, respectively. 

2.2 Assessment Tools and Statistical Tests  

 As previously stated, the main purpose of Physics Education Research is to increase the 

effectiveness of physics teaching practices.  But how is this effectiveness accurately measured?  

The test chosen to assess GSU’s sample is the Force Concept Inventory.  Its wide use, 

accessibility, credibility, and validity make it the appropriate instrument (Savinainen, A., & 

Scott, P., 2002).  The revised FCI is being used in the Physics 1111 course in the form of a pre-

test and post-test to determine the improvement, or lack of improvement, in students’ conceptual 

understanding. 

The Force Concept Inventory 

The Force Concept Inventory, better known as FCI, was created by Halloun and Hestenes 

of the Department of Physics at Arizona State University (Hestenes, Wells, & Swackhamer, 

1992).  It is a multiple-choice test designed to assess students' understanding of basic Newtonian 

physics.  Emphasizing qualitative reasoning, the FCI consists of 30 items related to force and 

motion concepts in which there is no numerical computation involved.  The six areas it primarily 

focuses on are kinematics, Newton’s three laws, the principle of superposition, and types of 

forces (Savinainen & Scott, 2002).  Each question on the FCI offers only one correct Newtonian 

solution (Hestenes et al, 1992). The incorrect possible answers that are presented as “common-

sense distracters” are based upon student's misconceptions about that particular topic.   

 The precursor to the FCI was the Mechanics Diagnostic Test (MDT).  The MDT’s purpose 
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was to assess students’ understanding and knowledge of basic mechanics concepts.  The Kuder-

Richardson reliability coefficient was 0.86 for the MDT pre-test and for post-test use it was 0.89, 

which indicated that the MDT was extremely reliable.  Though the MDT was shown to be a 

consistently reliable test, the developers desired an inventory that tested students’ 

misconceptions of Newtonian physics (Savinainen & Scott, 2002).  Therefore, the FCI was 

developed and initially published in 1992.  The FCI provided researchers with a reliable tool that 

gave a more complete view of the many misconceptions in Newtonian physics, in a systematic 

format (Hestenes et al, 1992).  In the beginning phases of its use, the FCI revealed dramatic 

results on students completing an introductory college level physics course: “Nearly 80% of the 

students could state Newton’s Third Law at the beginning of the course.  FCI data showed that 

less than 15% of them fully understood it at the end” (Hestenes, 1998).  Needless to say, having 

been in use over the last 15 years, the FCI “is now credited with stimulating reform of physics 

education” (Evans, L. & Hestenes, D., 2001), and the instrument is a powerful tool for improving 

both the learning and teaching mechanics.  

The latest version of the FCI was developed in 1995 (Savinainen & Scott, 2002).  This 

revised test is claimed to have “fewer ambiguities and a smaller likelihood of false positives” 

(Hake, 1998).  The FCI is available in nine languages: Chinese, English, Finnish, French, 

German, Malaysian, Spanish, Swedish, and Turkish. 

 R. R. Hake is famous for his work of surveying over six thousand students (Hake 1998) 

and for defining the normalized gain.  Also called the Hake factor, or Hake gain, the normalized 

gain is the ratio of the actual gain to the maximum possible gain (Sahin, 2009): 

€ 

g =
actual_ gain

maximum_ possible_ gain
=
(posttest _ score) − (pretest _ score)
(maximum _ score) − (pretest _ score)

 

This gap-closing measure is based on the work of Fran Gery (Bao, 2006).  Hake used normalized 
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gain to describe the change in a student’s performance, after instruction.  When g = 0 (same pre- 

and post-test score), the indication is that the student has not learned any Newtonians concepts.  

On the other hand, g = 1 implies that the student has learned everything they need to know (in 

Newtonian concepts).    

T-test of the Differences  

 T-tests are used to compare the means of two populations (students in conventional physics 

and students in studio physics).  Because neither population mean is known, a sample has been 

taken from both populations to perform a two-sample t-test.  The type of t-test performed is the 

independent t-test: the students in both traditional and studio populations have no connection of 

consequence to each other. 

ANOVA Statistical Tests 

 Analysis of Variance (ANOVA) is a statistical method that compares group means on a 

dependent variable.  Used by most PER researchers, it is a powerful statistical test that is 

sensitive to the differences among the groups being compared.  There are different types of 

ANOVAs depending on the number of independent variables (or factor) that the study 

incorporates.  Appropriately called “factorial analysis of variance”, a multiple factor ANOVA is 

used when two or more independent variables and their interaction are being analyzed.  For the 

cross-sectional study, three separate two-way ANOVAs are performed using the software SPSS 

17.0 (Statistical Package for the Social Sciences 17.0).  The output tables display the quantities 

used to calculate the F statistic.  Although these terms are comparatively unimportant, their 

values determine the most important numbers: the three F-ratios.  F-ratios for ANOVAs are 

always upper-tailed, so critical values for F are provided only for α = .05 and α = .01. 
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Two-way ANOVAs are performed on the data.  Performing a two-way ANOVA not only 

answers if there is a single effect on the independent variables and the gain, but it demonstrates if 

there exists an interaction between the independent variables themselves.  An interaction effect is 

the effect of the two independent variables (gender and ethnicity) working together on the 

dependent variable (gain score) (Huck, 2008).  This is distinguished from the main effect of 

gender and ethnicity individually. 

Post hoc Tests 

  A post hoc test has to be performed when an ANOVA reveals a statistically significant 

difference between the means of the populations being considered and the null hypothesis is 

rejected.  These tests employ statistical procedures that analyze every possible pair of means. It 

then determines if the differences are significant (Huck, 2008).  There are a variety of post hoc 

tests (all named after their developers) to choose from.  Typically, they are chosen based on the 

design of the ANOVA.   

 The three post hoc tests used in this study are the Tukey Honest Significant Difference 

(HSD) Test, Simple Effects Analysis, and the Student-Newman-Keuls test.  In the Tukey post 

hoc test, the differences between the means of all of the groups will be determined first.  Then 

for each, the difference score is compared to a critical value (the HSD value) to determine if the 

difference is statistically significant.  The Simple Effects Analysis is a post hoc test in which 

single degree of freedom comparisons are done on the subeffects.  This test is done when there is 

a significant interaction effect.  The Student-Newman-Keuls (SNK) post hoc test is 

recommended when there are only three means being compared (Cardinal, R. & Aitken, M., 

2005).  In this test, the sample means are ordered from smallest to largest and tested at specific 

levels of significance. 
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3 RESULTS AND DISCUSSION 

 

3.1 Conventional Versus Studio 

 The longitudinal part of the study has a design in which FCI and demographic data are 

collected on multiple occasions from the same population, Physics 1111 students.  It is an 

ongoing effort in assessing the effectiveness of studio physics.  Thus far, this five-semester pilot 

study has shown that studio physics is an effective instructional method at GSU.  Figure 3.1 and 

Table 3.1 display the normalized FCI gains. 

 
Figure 3.1  Average normalized FCI gain per semester.  This figure compares the average gains 
of conventional and studio classes.  The first semester of studio implementation reflects similar 
gains in both modes; each successive semester reflects increased studio gains as compared to 
conventional. 
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Table 3.1  Average normalized FCI gain per semester with standard error of the mean.  <g> = 
average normalized gain.  The table displays results for conventional and studio classes. 
 

Semester Conventional <g> Studio <g> 
Fall 2008 0.13 ± .03 0.11 ± .03 

Spring 2008 0.16 ± .03 0.25 ± .03 
Summer 2009 0.20 ± .04 0.30 ± .03 

Fall 2009 0.26 ± .02 0.42 ± .02 
Spring 2010 0.23 ± .02 0.30 ± .02 

 
 Figure 3.1 shows upward trends in learning gains for both conventional and studio classes.  

However, the increase in learning gain of the conventional classes is not statistically significant.  

Over time, the gains may level out.  Additionally, the phasing out of part-time instructors and 

instructor awareness of the study may have contributed to the improvement in both conventional 

and studio classes.   

 The average normalized gain <g> for conventional instruction nationally is 0.25, and for 

interactive engagement instruction is between 0.36 and 0.68 (Mazur, 1997).  Table 3.1 shows 

that GSU’s gains are comparatively low.  A contributing factor to this is students having little 

prior physics knowledge coming into the course: average pre-score for GSU is 7.6 out of 30.  

 The t-test found that the difference in normalized gain between conventional students (M = 

.21, SD = .21) and studio students (M = .33, SD = .24) was statistically significant at the .05-

level, t(700.898) = -4.431, p < .001.  GSU’s results mimic Hake’s results from his 6000-student 

survey of the FCI (Hake, 1998).  His study, which compared traditional and interactive 

engagement classes, showed that conventional classes had normalized gains in the range 0.19-

0.27 and interactive engagement classes had normalized gains in the range 0.34-0.62. 

 The effects size for this independent-samples t-test is:  
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where  and  are the sample means and and are the standard deviations.  The numerator 

is the absolute value of the mean difference, and the denominator is the square root of the 

average of the variances.  Effect size is a descriptive statistic that measures the extent of the 

difference under investigation (Huck, 2008).  For this study, the result is  = .54 which is a 

medium effect.  Cohen’s (1998) proposed values for d are: 

       0.2 ≡ small effect 
       0.5 ≡ medium effect 
       0.8 ≡ large effect 
 

2 x 5 ANOVA Results (Instructional Method Over 5 Semesters) 

 A two-way 2 x 5 ANOVA was performed to see the effect of semesters as an independent 

variable.  The ANOVA output is shown in Table 3.2. All three effects were statistically 

significant:  the main effect of instructional method, F(1, 775) = 16.288, p < .001, MSE = 0.046, 

the main effect of semester, F(4, 775) = 15.933, p < .001, MSE = 0.046, and the interaction 

effect of both factors, F(4, 775) = 2.992, p < .05, MSE = 0.046.  When the interaction effect is 

statistically significant in an ANOVA, the main effects have to be dismissed.  This signifies that 

the effect on one factor is not the same at the levels of another; thus the statistical significance 

varies across semesters.  Because of this significant interaction, we must test simple effects 

(Maxwell, S. & Delaney, H.).  A post hoc test using single degree of freedom comparisons 

identify which subeffects (semesters) are contributing to the significant interaction effect. 

(Myers, J. & Weel, A., 2003). 
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Table 3.2  2 x 5 ANOVA statistics for normalized gain.  IM = instructional method, df = degrees 
of freedom, F=F-ratio, Sig.= p-value.  IM and semester are the two main effects and IM x 
semester is the interaction effect.  All three effects have significant F-ratios (p < .05). 
 

 
 Figure 3.2 shows the gap between conventional and studio normalized means. The first 

semester of implementation of studio was the only semester where the average normalized gain, 

<g> = .11, was lower than the that of the conventional class, <g> = .13. Table 3.3 shows the 

single degree of freedom comparisons identifying the statistical significance of the gaps.  Equal 

variances are not assumed in this simple effects analysis.  

 

 
Figure 3.2  Average normalized FCI gain per semester (as a line graph).  This figure depicts the 
gap in conventional and studio learning gains.    
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Table 3.3  Simple effects analysis.  The table shows three semesters with statistically significant 
differences (p < .05) in normalized gains.  IM = instructional method, C = conventional students, 
S = studio students, SD = standard deviation, df = degrees of freedom, Sig. = p-value. 

  

 The analysis reveals that the semesters that have statistically significant differences in 

normalized gain (between studio and conventional classes) are Spring 2009, Fall 2009, and 

Spring 2010.  The sample sizes for conventional and studio classes were equivalent for Spring 

2009.  For the last two semesters of the study, the studio physics classroom was fully functional.  

Topic Differences 

Table 3.4 shows the average normalized gain by topic for both conventional and studio 

students. The normalized gains were taken by averaging the scores for the items of each specific 

topic.  It reveals that there were differences on the FCI related to the topics covered.  While it is 

still evident that studio gains are higher overall, there is a substantial learning gain (<g> = 0.74) 

for Newton’s third law concepts.  Conversely, it is also shown that both instructional methods 

are weak in teaching Newton’s second law concepts.  The normalized learning gains for 

conventional and studio are 0.10 and 0.21, respectively.  Topic item analysis has revealed where 

instructors need to intervene.     



  19 

Table 3.4  Fall 2009 average normalized gain by topic.  The five basic areas covered on the FCI 
yield different learning gains.  The difference in learning gains between conventional and studio 
students is <g>s - <g>c.  

  
  

Just as studio students showed higher average normalized gains on overall FCI scores, the 

same holds true when looking at student gains by specific topic.  There are two topics that stand 

out above the others.  There is a 25% difference in normalized gain on kinematics and a 22% 

difference in normalized gain on Newton’s third law items.  It appears that studio physics is 

more successful in its ability to help students grasp and understand specifically on these two 

Newtonian topics than methods employed in the conventional physics classroom.  Further 

discussion about topic differences continues in the following section on gender gap.  A look at 

the historical and current views on gender performances prompts this study to probe into a 

specific item analysis to detect differences.   

3.2 Ethnic and Gender Differences 

 Fall semester of 2009 was chosen as the semester to do a more in-depth investigation of 

conventional and studio learning gains.  Not only were the differences in gains statistically 

significant, but this particular semester was chosen because it had the largest number of classes 

to do the statistics and because it had an equivalent number of classes (four conventional classes 

and four studio classes) participating in the study.  Additionally, the students who participated 

signed informed consent forms, and they each completed a demographic survey (see Appendices 
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A and B to view the forms).  Moreover, issues associated with implementation of studio during 

the first two semesters were resolved, and the format was fully functional by the Fall 2009 

semester. 

ANOVA tests were performed to compare instructional method, ethnicity, and gender 

with gain scores.  Both normalized gain and raw gain were calculated for each student.  

Normalized gain is most widely used in PER FCI studies; however because of the nature of the 

normalized gain calculation, students with higher pre-test scores get higher normalized gain even 

if their raw gain is equivalent to another student’s.  For example, Student 1 gets a raw score of 8 

on the pre-test and a raw score of 24 on the post-test, yielding a raw gain of 53%.  Student 2 gets 

a raw score of 5 on pre-test and 21 on the post-test, again yielding a raw gain of 53%.  

Conversely, when the normalized gains are calculated, their values are 73% for Student 1 and 

64% for Student 2.  It measures the fraction of the available improvement that is obtained.  There 

has been ongoing discussion and debate over the use of normalized gain to assess learning gain 

(Coletta, V. & Phillips, J, 2005; Marx, J. & Cummings, K., 2007; Willoughby, S. & Metz, A., 

2009); however, it is still considered the standard measurement in PER to calculate normalized 

learning gain.  Normalized gain is stable against random guessing and can be used without a 

mathematical correction (Bao. 2007).  Thus, although we present raw gains in the cross-sectional 

study, we use normalized gains to quantify and assess most of the results. 

Table 3.5 shows the average FCI scores for each gender and ethnic group, based on 

conventional and studio instruction.  Several trends are identified.  Female students come into the 

Physics 1111 course with lower pre-test scores (<Pre>conventional = 0.23, <Pre>studio = 0.20) than 

the male students (<Pre>conventional = 0.33, <Pre>studio = 0.30).  Black students come into the 

course with the lowest prior physics knowledge (<Pre>conventional = 0.20, <Pre>studio = 0.19) 
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compared to the White students (<Pre>conventional = 0.32, <Pre>studio = 0.26) and Asian students 

(<Pre>conventional = 0.25, <Pre>studio = 0.27).  Another observation is that Asian students have the 

lowest raw and normalized learning gains.  Their gains are substantially lower in the 

conventional classes (<G> = 0.13, <g> = .17).  The statistical significance of these gender and 

ethnic differences was determined. 

 
Table 3.5  Average FCI scores by gender and ethnicity.  Demographic data from the Fall 2009 
sample is tabulated for average raw pre-test scores <Pre>, average raw post-test scores <Post>, 
average raw gain <G>, average normalized gain <g>, and sample size. 
 

 

2 x 2 ANOVA Results (Gender Differences) 

A two-way 2 x 2 ANOVA showed that the main effect of instructional method on 

normalized gain scores was statistically significant, F(1, 253) = 30.768, p < .001, MSE = 0.056.  

Studio students received higher normalized gain scores than conventional students.  The 

ANOVA also revealed a statistically significant main effect of gender such that male students 
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received higher normalized gain than female students, F(1, 253) = 4.995, p < .05, MSE = 0.056.  

There was no interaction. 

 
Table 3.6  2 x 2 ANOVA statistics for normalized gain. IM = instructional method, df = degrees 
of freedom, F=F-ratio, Sig.= p-value.  IM and gender are the two main effects (both are 
significant, p < .05) and IM x gender is the interaction effect (not significant, p > .05). 

 
2 x 3 ANOVA Results (Ethnic Differences) 

 A two-way 2 x 3 ANOVA found a main effect of ethnicity on normalized gains, F(2, 223) 

= 4.091, p < .05, MSE = 0.057, a main effect of instructional method, F(1, 223) = 29.824, p < 

.001, MSE = 0.057, and no interaction.  Analyzing raw gains, a 2 x 3 ANOVA did not identify 

any statistically significant main effect of ethnicity or interaction effect between instructional 

method and ethnicity.  It did however find a main effect of instructional method on raw gains, as 

it did with normalized gains. 

Table 3.7  2 x 3 ANOVA statistics for normalized gain. IM = instructional method, df = degrees 
of freedom, F=F-ratio, Sig.= p-value.  IM and ethnicity are the two main effects (both are 
significant, p < .05) and IM x ethnicity is the interaction effect (not significant, p > .05). 
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As previously stated, two-way ANOVAs were performed for raw gains also.  The same 

design was incorporated: a 2 x 2 ANOVA for instructional method by gender, and a 2 x 3 

ANOVA for instructional method by ethnicity.  The main effect of instructional method was 

statistically significant, p < .001; however, gender and ethnicity main effects were not 

significant.  Moreover, the interaction effect of instructional method and gender (similarly, 

instructional method and ethnicity) was not statistically significant for raw gain scores, p > .05. 

Given the significant results of the two-way ANOVAs, it becomes important to analyze 

more details about the FCI scores.  The following analyses will look at specific information 

concerning topics on the FCI, gender gaps on  pre-test and post-test scores, and ethnic 

distinctions as evidenced by group averages.  

Ethnic Differences 

 The 2 x 3 ANOVA (Table 3.7), showed that the differences in normalized gain between 

ethnic groups (main effect) were statistically significant (p < .05).  Differences in raw gain were 

not statistically significant (p > .05).  Table 3.5 displays ethnic group averages for FCI pre-test 

scores, post-test scores, raw gain, and normalized gain.  The following observations have been 

made: 

• Asian students have the lowest raw gains on the FCI (0.13 for conventional classes and 

0.29 for studio classes in comparison to White students and Black students who had gains 

of 0.20 in conventional classes and 0.33-0.34 in studio classes). 

• Black students have the lowest FCI pre-test scores, while White students had the highest 

(5.8 out of 30 for Black students, 7.7 for Asian students, and 8.9 for White students). 
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• White students have the highest normalized gains on the FCI.  For example, in the 

conventional courses, White students had a normalized gain of 0.32 while the gain was 

0.24 and 0.17 for Black and Asian students, respectively. 

The SNK post hoc test for ethnicity did not detect exactly where the differences lie statistically, 

but much is to be gained by the aforementioned observations.   

Black students had just as much raw gain as the White students.  As GSU recruits, 

enrolls, and graduates many Black students, and will most likely continue to in the future, studio 

physics can help GSU in its appeal and the future performance of this major segment of its 

student body.  Conversely, the raw gain scores of Asian students showed that, while they 

achieved better grades in the courses, the improving of their grasp of force concepts between pre- 

and post-tests was minimal.  Moreover, although the studio format is more effective for all three 

ethnic groups, it is slightly less effective for Asian students.  It may be that there exists a 

language barrier due to many Asian students being non-native English speakers.  Further 

research needs to be done to discover what, if any, impact a language barrier may have on Asian 

students.  This can be accomplished by adding a question on the pre-test survey to determine 

which students may not benefit from the group interaction due to unfamiliarity with speaking 

English. 

Considering the fact that Asian and Black students constitute a majority in the studio 

classroom, the effort to improve introductory physics teaching at GSU must be continued and 

could have the greatest effects on students who may be underserved in conventional instructional 

settings. As GSU seeks to be well-rounded in its approach to offering quality education to its 

students, studio physics is and can continue to be a major contributor to that institutional and 

departmental goal. 
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Gender Differences 

 “Gender gap” is the term used to describe the difference in test scores of male and 

female students (Kahle, J. & Meece, J., 1994).  Historically, males outperform females on 

science tests.  Many factors have been subjected to debate as to why this gap persists: from 

biological differences to social differences (Jovanovic, J. & Dreves, C., 1995). Traditionally 

speaking, females have not grasped concepts at the same rate or levels as their male counterparts 

(Lorenzo, et. al., 2006).  While straying away from the possible causes of this disparity, PER 

research has shown that the gender differences can be helped by alternative methodologies.  

Harvard University pioneered a study on gender gap issues and found that cooperative learning 

techniques decreased this gap in FCI scores (Lorenzo, M., Crouch, C., and Mazur, E., 2005).  In 

some instances, their study demonstrated that the gender gap was totally eliminated.  It has 

become pertinent to physics education researchers to assess the effects of interactive engagement 

methods on the gender gap and to determine its success at reducing or eliminating the gap.  Most 

research on gender gap in physics is done for the calculus-based sequences.  Recent studies on 

this issue have been done at the University of Colorado (Kost, L., Pollock, S. & Finkelstein, N., 

2009; Pollock et al, 2007 ), Harvard University (Lorenzo et al, 2006), and the University of 

Minnesota (Docktor & Heller, 2008).  They investigate the effects of instructional method on the 

gender gap.  Harvard University has shown that interactive engagement methods reduce, and in 

some cases, eliminate the gender gap; while University of Colorado showed that it had little 

effect.  

The current study pilots an effort to investigate these effects for the algebra-based physics 

course.  The other unique difference in this study is that the sample is female-dominated.  The 
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majority of the research showing that males outperform females (Kahle & Meece, 1994), is done 

in male-dominated contexts.   In these studies (Kost et al, 2009, Docktor & Heller, 2008), males 

account for nearly 75% of the classes sampled. However, the male make-up of GSU’s physics 

courses is under 50%.  Similar to the University of Colorado study (Kost et al, 2009), GSU’s 

gender gap persists in the studio environment.  Figure 3.3 shows the pre-test and post-test gender 

gaps for conventional and studio students. But unlike their study, this gap is slightly higher on 

post-test scores.  In the conventional student group, the gap is 9.7% on the pre-test and 10.3% on 

the post-test.  In the studio group, the gender gap is 9.3% on the pre-test and 10.7% on the post-

test.  These differences are not significant.  Further analysis concerning the gender gap was 

performed on the FCI scores.  Table 3.8 along with Figures 3.3, 3.4, and 3.5 show the obtained 

data.  It cannot be said that GSU’s studio physics reduces or eliminates the gender gap.  

Figure 3.3  Gender gap in FCI scores.  Pre-test and post-test gender gaps are shown for 
conventional and studio students.  Student performance is averaged for the Fall 2009 semester 
(N=257: Nmale=94, Nfeamle=163).  
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Table 3.8  Pre-test and post-test percentage scores per item.  Scores are tabulated for male and 
female students in conventional and studio classes for the Fall 2009 semester. 
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Figure 3.4  Fall 2009 gender performance on the FCI for conventional students (N=121).  The 
top graph shows the percentage of male and female conventional students who got each question 
correct on the pre-test.  The bottom graph shows the post-test scores.  The gender gap varies per 
question, although males achieve higher FCI scores overall. 
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Figure 3.5  Fall 2009 gender performance on the FCI for studio students (N=136). The top graph 
shows the percentage of male and female studio students who got each question correct on the 
pre-test.  The bottom graph shows the post-test scores.  The gender gap varies per question, 
although males achieve higher FCI scores overall. 
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Although there is clearly an overall gender gap in pre-test FCI scores that persist in post-

instruction, there is evidence that the gap is eliminated on certain items (questions) on the FCI. 

Table 3.9 tabulates the results of the percentage of students in conventional and studio classes 

that got each item correct.  

Table 3.9  Fall 2009 item analysis by topic.  This table shows the pre-test and post-test 
percentage scores for conventional and studio students.  Results show percentage of students in 
the two samples that got each item correct.  
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The gender item analysis revealed areas where the gender gap remained unaffected; but 

particularly, it revealed an area in which the gender gap is nearly eliminated.  Based on Figure 

3.5, nearly the same number of male and female students gets item numbers 4, 16, and 28 

correct.  Table 3.9 is used to match these item numbers with the corresponding topic.  Those item 

numbers represent Newton’s third law concepts. Evidently, studio physics is successful in 

decreasing the gender gap in FCI post-test scores on the topic of Newton’s third law.  While no 

other areas on the FCI seem to be affected, this study indicates that studio physics techniques can 

be helpful for instructors, both in the conventional classroom and the studio physics classroom, 

in assisting students to grasp concepts, especially as it relates to Newton’s third law. Future 

studies are needed as the sample size increases to determine statistical significance and to 

determine other topics that yield potential differences. 
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4 CONCLUSION 

 

4.1 Summary 

This study demonstrates the effects of studio physics on student conceptual 

understanding of Newtonian concepts.  Conventional and studio students were no different in 

their knowledge and understanding of basic physics concepts coming into the course.  But the 

normalized learning gain in the FCI scores clearly shows that the conceptual understanding of 

students in the studio physics class is better than that of the students in the conventional class.  

As students are involved in the interaction and integrative methods employed in the studio 

physics classes, their conceptual understanding of Newtonian physics is increased between their 

pre-tests and post-tests.  These findings indicate that a difference in approach is not simply a 

faddish idea that is innovation for innovation’s sake.  This study supports the findings of 

physicists all over the country, as referenced in Chapter 1:  an interactive, collaborative, activity-

based learning environment yields significantly higher learning gains than the traditional, 

didactic approach to teaching. 

 The current study revealed evidence that studio physics is an effective instructional 

method in an algebra-based introductory physics course at an urban institution.  This work 

supports the findings of previous studies in Physics Education Research.  The Force Concept 

Inventory has shown that student conceptual understanding of basic physics concepts is 

increased.  This instrument will be used in a continuous manner to evaluate and improve the 

effectiveness of instructional strategies.  Secondly, this study revealed that studio physics does 

play a small role in lessening the gender gap in FCI scores on Newton’s third law items more 

than conventional physics.  While not offering suggestions or drawing conclusion related to 
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studio physics and female student performance, this study does suggest that studio physics 

techniques relating to integrative, collaborative, community-based learning methods can inform 

instructors on places within existing introductory physics courses where these methods can be 

used appropriately to increase student conceptual understanding.  Thirdly, this pilot study was 

able to see some differences in the performance and conceptual grasp of physics concepts among 

several ethnic groups that GSU serves in its introductory physics courses.  This research has 

shown that students exposed to studio physics, and in a larger sense, the methodologies of PER 

on a broad scale, increase in their understanding and application of basic concepts of physics.  

Increasingly, as the generational values of the students who are entering universities are rejecting 

authority and traditional approaches, studio physics is an effective way to meet these students 

“where they are” epistemologically and to see them gain mastery in those basic concepts in the 

contexts of community and in a constructivist framework. 

4.2 Implications and Limitations 

The implication of finding a difference in learning gain with studio physics is that 

Georgia State University can and should continue to offer the studio approach to teaching 

physics.  As students better grasp the concepts and gain some sense of accomplishment and 

mastery, the implication is that studio physics can help to serve a certain demographic of student 

who would be underserved in the conventional classroom. 

 One limitation in the current study that should be considered is that only an algebra-based 

course, Physics 1111, has been investigated.  This research adds to only a small amount of 

research that has been done in algebra-based physics instruction.  The findings of this study will 

be helpful in expanding other PER investigations at the undergraduate level and lower.  While 

that body of knowledge is still underdeveloped and under-researched, in order to expand the 
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research efforts of GSU’s Physics Education Group, studio physics needs to be implemented in 

Physics 2211, the calculus-based course.  In a contextual and longitudinal sense, GSU and the 

Physics department would greatly benefit from studying how studio physics could be used in 

terms of student mastery at that level.  Could interactive engagement techniques succeed at GSU 

in a calculus-based course?  Would the interaction among students yield gain in a course that is 

more in-depth and detailed?  The resulting research could even be used as a tool for identifying 

and recruiting students to pursue physics as major, both on the undergraduate and graduate 

levels, based upon a set of criteria that could be developed from student performance on some 

advanced form of an analysis tool. 

 Another limitation is that studio physics has lent itself to significant gains to student 

learning, retention, and performance among students at other institutions; however, it must be 

pointed out that these other institutions have embraced PER and its innovative and alternative 

methods at the institutional and departmental levels.  When those schools and their physics 

departments embrace PER methods in the sense of funding, staffing, scheduling, and space 

allocations, they have been able to capitalize upon the gains that they have found.  Similarly, as 

GSU’s physics department as a whole continues to embrace PER philosophically, the research 

shows that students can be better serviced.  As the methodologies are pursued in such a way as to 

have an impact on its undergraduate and graduate students within the department and across the 

other disciplines that take the courses, GSU could greatly improve student appreciation for and 

application of basic physics concepts.   

4.3 Future Work 

The results of this study are just the beginning of a wide range of work to be done in 

Physics Education Research at GSU.  The opportunity is a vast one and an exciting one.  This 
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pilot study has given us an array of questions to yet be answered.  As the work continues and the 

sample size increases by semester, we plan to gain more details about GSU’s unique 

demographic and its performance in introductory physics. 

One of the most significant results of this study is the low average normalized gains of 

the Asian students.  An investigation into this phenomenon, of whether the difference in Asian 

FCI scores is due to a language barrier, needs to be performed.  We speculate that the Asian 

students in the study are not native English speakers.  We plan to incorporate an additional 

question on the demographic survey that identifies each student’s native language. 

Additionally, we hope to gain more information on what impact students’ prior exposure 

to physics may have on the learning gains.  The plan is to do correlation studies on math 

preparation, college major, and prior physics knowledge with learning gains.  These results will 

add another dimension to the study. 

Developing a learning gain assessment in the second semester of introductory physics 

(Phys 1112 – Electricity & Magnetism) is another item on the research agenda.  An Electricity & 

Magnetism pre-assessment instrument is needed in the PER community.  GSU’s PER group 

plans to investigate the development and validation of such a tool. 
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APPENDIX B 

Information Survey 

 
 

Name________________________________________________ 
 
What is your present school year status? 
__ Freshman  
__ Sophomore     
__ Junior  
__ Senior  
__ Post-bac 
 
What is your major?  
_______________________________________________________ 
 
Have you taken a Physics class before and if so where? 
__ Never 
__ High School 
__ College/University 
 
Have you taken Pre-calculus and if so where? 
__ Never 
__ High School 
__ College/University 
  
Have you taken Calculus and if so where? 
__ Never 
__ High School 
__ College/University 
 
What is your present age? 
______ 
 
What is your sex? 
__ Male 
__ Female 
 
What is your race/ethnicity? Mark one or more. 
__ American Indian or Alaska Native 
__ Asian 
__ Black or African American 
__ Hispanic or Latino 
__ Native Hawaiian or Other Pacific Islander 
__ White 
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