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Optical Properties of In1-xGaxN epilayers grown by HPCVD 

by 

JIELEI  WANG 

 

Under the Direction of Nikolaus Dietz 

 

ABSTRACT 

Optical absorption spectroscopy has been applied to study properties such as the 

fundamental absorption edge and defect absorption centers of group III-nitride compound 

semiconductor epilayers. The investigation in this thesis focused on analyzing the band gap of 

indium-rich In1-xGaxN epilayers, which where grown by the high-pressure chemical vapor 

deposition (HPCVD) technique. Our results - together with literature data for gallium-rich In1-

xGaxN alloys indicate that the shift of the fundamental band gap of In1-xGaxN with composition x 

can be described with a bowing parameter of b = 2.2eV. Temperature dependent transmission 

measurements show that the band gap variation with temperature follows a S-shape behavior for 

small gallium concentration and shifts towards a Varshni type behavior for a higher gallium 

concentrations. The S-shape behavior is attributed to nanoscale compositional 

fluctuations/clustering in the ternary alloy system. The thicknesses of the measured In1-xGaxN 

epilayers have been analyzed through multilayer stack model calculations of the transmission 

spectra. The free electron concentration in the In1-xGaxN epilayers has been obtained from 

simulations of infrared reflectance spectra. 

 

INDEX WORDS: band gap, absorption, In1-xGaxN, transmission, multilayer stack model, S-

shape behavior 
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Chapter 1 Introduction 

Group III-nitride compound semiconductor materials - e.g. AlInGaN alloys - have 

recently become one of the most interesting research topics due to their use in optoelectronic 

devices operating in the infrared, red, green, blue, violet and ultraviolet spectral wavelength 

regions. This wide spectral range enables a number of application including high-density data 

storage, high capacity DVD, high-resolution color printing, full color displays, as well as 

chemical and biological agent detection techniques. Next to the unique optical properties, group 

III-nitride semiconductors exhibit high thermal and chemical stability and have high electron 

mobilities, which allows their applications in high power transistors or field effect transistors. 

During the last 30 years, significant progress in the material growth process and the 

development of GaN based optoelectronic devices. However, many fundamental physical 

properties of the III-nitrides are still unknown. Open questions concern relate for instance to the 

bulk, surface, and interface electronic properties. A very prominent uncertainty remains on the 

fundamental optical band gap of InN, which was up to the 90’s assumed to be around 2 eV[1]. 

Experimental progress in the growth of InN by MBE[2,3] and MOVPE[4] indicate that the 

fundamental band gap is more likely around 0.7 eV[4,5], which led to renewed efforts to 

understand the fundamental physical properties of the group III-nitride material system.   

The determination of optical properties and in particular of the dielectric function in the 

spectral range above the optical band gap (above the absorption edge) play an essential role for a 

better understanding of the materials properties. The energy position and relative amplitudes of 

specific absorption structures in the dielectric function are important parameter for improved 

band structure calculations. Together with complementary experimental data - for instance from 

Raman spectroscopy, infrared reflectance, atomic force microscopy, or transmission electron 
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microscopy - this investigation could contribute to a better microscopic understanding of the 

electronic properties. Furthermore, the measured optical properties are also a criterion for the 

crystal quality and/or the surface perfection. Whereas the band structure gives rise to certain 

absorption structures in the dielectric function of a material, the crystal quality typically leads to 

a reduction in the amplitude and an overall broadening of these structures.  

The band gap value of In1-xGaxN alloys can be tuned from 0.65eV[6] to 3.42eV[7], 

covering the whole visible wavelength spectrum as illustrated in Figure 1.1.  Though In1-xGaxN 

based multiple heterostructures with tailored compositions (values of x) are the basis for many 

optoelectronic devices such as LED or solar cells. 

 

Figure 1.1 Band gap of In1-xGaxxN as function of composition x, tuning from 0.7 eV to 3.5 eV. 

 

Presently, the most challenging task in utilizing the full potential of group III-nitride 

alloys lays in the formation of ternary or quaternary group III-nitride alloys (e.g. InGaN, InAlN, 

or InAlGaN) at processing conditions that allows the integration of epilayers having different 

compositions. Theoretical predictions suggest that for In1-xGaxN in a composition regime of 0.15 

< x < 0.85 spinodal decomposition may occur, leading to indium-rich and gallium-rich In1-xGaxN 

regions or nano-clusters. However, local structure studies of InGaN did not show any evidence 
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for strong phase segregation, despite signs of a weak phase segregation being observed[8]. 

Under ambient conditions, two different crystal structures are known for group-III 

nitrides.[9]  The thermodynamically stable phase is the hexagonal wurtzite structure. However, 

the cubic zincblende structure has been also stabilized by epitaxial layers. In both structures, the 

group-III atoms are coordinated by four nitrogen atoms and the other way around the nitrogen 

atoms are coordinated by four group-III atoms. The bonding geometry is determined by the sp3-

hybridisation of the common valence electrons. Thus, each atom is in particular also the center 

of a tetrahedron (see figure 1.2). These tetrahedrons arrange in planes, which consist of two 

interpenetrating hexagonal closest packed superlattices. The difference between both structures 

corresponds to the stacking sequence of the closest packed planes. While for the wurtzite 

structure the stacking sequence of these planes is ABABAB, the stacking sequence of the 

zincblende structure is ABCABC. The two stacking sequences are illustrated in figure 1.2. 

In the following, we will focus on the wurtzite structure, since this is the only structure 

studied in this thesis.  The wurtzite structure has a hexagonal unit cell, which contains six atoms 

of each element. Thus, two lattice constants ‘c’ and ‘a’ define the Bravais lattice. ‘c’ corresponds 

to the [0001] axis along the stacking direction of the hexagonal closest packed planes. ‘a’ is 

defined in the (0001) hexagonal closest packed planes and, thus, perpendicular to the c axis. Due 

to the 60° rotation symmetry in the hexagonal planes there exist three equivalent directions. 

These are the [1120] , the [1210] , and the [2110] , which correspond to the lattice vectors |a| ≡ 

|b| ≡ |c|. At this point we would emphasize that the Miller indices for the wurtzite structure also 

contain 3 entries for all these directions perpendicular to the c axis and a fourth for the direction 

parallel to the c axis. In order to consider the redundance in this notation, the sum over the first 

three numbers has to be zero. The space group for the wurtzite structure is P63mc (C6v
4 ) .[9] 
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Figure 1.2:  Schematic atomic arrangement of the first and second neighbors in the zinc blende 

and wurtzite crystal structure[9]. The large circles are group-III atoms and the small 

ones are N atoms. The two structures differ in only three of the twelve second 

neighbor atoms and even these are just rotated symmetrically by π/3. 

 
In the wurtzite structure, the tetrahedrical chemical bonds are approximately aligned to 

the main crystal axis (planes). One of these four chemical bonds lies exactly parallel to the c-axis 

of the crystal, where as the other three approximately arrange in the hexagonal closest packed 

planes. If hexagonal crystal fields (polarization effects) are neglected, these bonds are tilted by 

about 19 deg against the hexagonal planes. In this ideal case of a undisturbed tetrahedrical 

chemical bond arrangement the c/a ratio of the lattice vectors should be 1.633.  In real crystals 

the tetrahedrical chemical bond arrangement could be disturbed by through the crystal fields, 

which leads to variation on the c/a ratio. 

The fact that the hexagonal wurtzite phase is the thermodynamically most stable 

structure, the wurtzite phase is also characterized as α-GaN, and α-InN, respectively (the cubic 

zincblende structure is denoted as β-phase).  The room temperature lattice parameters for the α- 
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and β-phase of GaN and InN - together with the respective fundamental band gap energy - are 

summarized in Table 1.1. 

 α-GaN β-GaN α-InN β-InN 
a [Å] 3.189 4.52 3.537 4.98 
c [Å] 5.185 - 5.704 - 

Eg [eV] 3.42 3.2 - 3.3 0.65 - 0.9 ? ?  
Table 1.1:  Lattice constants and fundamental band gaps of InN and GaN at room 

temperatures[10-12]. 

  

The further outline of this thesis is as follows: 

In chapter 2, the experimental setup for the optical characterization of the thin film 

structures is described, including data acquisition and error analysis. 

In chapter 3, the experiment result of the transmission and absorption spectra are 

presented for a selected number of In1-xGaxN epilayers grown with different composition x and 

varying process parameters such as V-III precursor ratio, or growth temperature. 

Chapter 4 will provide a discussion of the experiment results and an outlook for further 

work. 
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1.1 Optical absorption spectroscopy 

Absorption spectroscopy refers to spectroscopic techniques that measure the absorption 

of radiation, as a function of frequency or wavelength, due to its interaction with a sample. The 

sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption 

varies as a function of frequency, and this variation is the absorption spectrum. Absorption 

spectroscopy is performed across the electromagnetic spectrum. 

Absorption spectroscopy is employed as an analytical chemistry tool to determine the 

presence of a particular substance in a sample and, in many cases, to quantify the amount of the 

substance present. Infrared and ultraviolet-visible spectroscopic techniques are particularly 

common in analytical applications. Absorption spectroscopy is also employed in studies of 

molecular and atomic physics, astronomical spectroscopy and remote sensing. 

There is a wide range of experimental approaches to measuring absorption spectra. The 

most common arrangement is to direct a generated beam of radiation at a sample and detect the 

intensity of the radiation that passes through it. The transmitted energy can be used to calculate 

the absorption. The source, sample arrangement and detection technique vary significantly 

depending on the frequency range and the purpose of the experiment. 

 

Transmission spectroscopy 

Transmission spectroscopy is related to Absorption Spectroscopy through the Beer 

Lambert’s law. This technique can be used for solid liquid, and gas sampling. Transmission 

spectroscopy compares light passed through the sample with light entering the sample. The 

transmitted intensity depends on the sample thickness, absorption coefficient α of sample, 
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interfacial reflection coefficients, bulk and interface scattering, the angle of incident, crystal 

orientation, etc. 

 

1.2 Beer-Lambert’s Law 

The Beer-Lambert’s Law describes empirically the amplitude reduction of an 

electromagnetic (EM) wave due to absorption in a medium.  Upon propagating a distance ‘d’ in 

the medium, the initial intensity I1 of the EM wave will be reduced to   

 
 
I2 = I1 ⋅ e

−α ( E ) id
,  (1.1)

 
whereα (E )  is the absorption coefficient of the medium. Fig. 1.3 schematically illustrate light 

path. The initial intensity I1 is related to the incoming intensity I0 via I1=I0(1-R), R, taking in 

account the reflectance at the ambient-medium interface.  

 

Figure 1.3 Beer-Lambert’s Law. 
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1.3 Band gap shift as a function of the composition x of In1-xGaxN 

 

For many ternary semiconductor material such as In1-xGaxN, Al1-xGaxN, there is a 

correlation between the band gap value and the composition x. According to previous work and 

this work, it is shown that the correlation is not a linear behavior but a bowing behavior, which 

shows the band gap value is lower than that in a linear behavior. 

There are three contribution to the bowing behavior[13].  

1. Volume deformation (VD) term represent changes in the band gaps due to the 

compression of GaN and dilation of InN from their individual lattice constants to the 

alloy value a. 

2. Charge exchange (CE) is calculated from the change in gaps bringing together GaN with 

InN forming In1-xGaxN with all atoms on unrelaxed zinc-blende lattice sites 

3. Structural relaxation (SR) term represent changes in passing from the atomically 

unrelaxed to the relaxed alloy 

In addition, doping and material defect structures can result in further inaccuracies in the 

analysis of bowing parameter. There are two types of absorptions for semiconductor: intrinsic 

and extrinsic. Intrinsic transitions refer to band-to-band absorption, excitonic absorption, free 

carrier absorption, inner shell electron absorption and phonon absorption. Band to band 

absorption is responsible for the fundamental absorption edge of the material since it is strong at 

and above the band edge region. Extrinsic absorptions take place either in the band edge region 

or FIR region. In the band edge region, valence band to donor, acceptor to conduction band and 

acceptor to donor transitions (as is shown in figure 1.4) are taking place.[23] So in the band edge 
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region, the extrinsic absorptions take place which causes the band gap value is lower than it is 

expected. And the acceptors and donors are mainly due to the doping or some defect structure. 

That’s basically how the bowing behavior is coming from for the ternary semiconductor 

material. 

The measured bowing parameters vary from 1 to 5 eV according to work reported in 

literature[14-20]. 

 

 

Figure 1.4 Electronic transitions for a direct semiconductor. 

 

1.4 Band gap shift as function of temperature of In1-xGaxN 

It has also been reported that there is a temperature dependence of band gap of In1-xGaxN. 

One is s-shaped behavior[21] which shows that the band gap drop, increase and again drop when 

the temperature is increasing. The other is Varshni behavior[22], which shows only a redshift of 

band gap when the temperature is increasing. 
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1.4.1 s-shape behavior 

The mechanism of s-shaped behavior has been discussed in reference [21], based on 

photoluminescence (PL) measurements on InGaN/GaN multiple quantum wells (MQW’s) and 

their and analysis. As depicted in Fig. 1.5, the temperature dependent PL spectra for typical 

InGaN/GaN MQW’s show a ‘S-shape’ shift of peak position.  The main emission peak shows an 

S-shaped shift with increasing temperature solid circles. The spectra are normalized and shifted 

in the vertical direction for clarity 

 

Figure 1.5 PL spectra for InGaN/GaN MQW’s in the range from 10 - 300 K.[21] 

 
This  ‘S-shape’ behavior is is attributed to local potential variations and carrier 
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localization in the MQWs, a situation schematically illustrated in Fig. 1.6.  
 

 

Figure 1.6 Schematic view of mechanism of S-shape behavior[23]. 

 
The effect of nanoscale inhomogeneities on the free carriers for the three temperature 

ranges is as followed:   
 

(i) 10K < T < 70K range: Since radiative recombination processes are dominant, the free 

carrier lifetime increases. Potential fluctuations - due to nanoscale inhomogeneities / 

defects causes the recombining of the free carriers down in to lower energy tail states, 

which reduces the higher energy side emission and produces a redshift in the peak 

energy position with increasing temperature. 

(ii) 70K < T < 150K range: The dissociation rate is increased and other nonradiative 

processes become dominant, the carrier lifetimes decrease with increasing 

temperature and are independent of the emission energies. Due to the decreased 

lifetime, these carriers recombine before reaching the lower energy tail states, leading 

to a blueshift in the peak energy. 

(iii)  For temperatures larger 150K, nonradiative recombination processes become dominant 

and the lifetimes are almost constant. The photo-generated free carriers are less 

affected by the fast change of carrier lifetime so the blueshift behavior becomes 

smaller. Hence the redshift prevails in this temperature range.  
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1.4.2 Varshni behavior 

A typical temperature-dependent behavior of the PL peak position for undoped GaN can 

be described by a ‘Varshni’ behavior as shown in Fig. 1.7[24]. 

 

Figure 1.7 Varshni behavior of undoped GaN[24]. 

The Varshni relation[7] for the temperature dependence of semiconductor band gaps is 

 
Eg (T ) = E0 −α ⋅T 2 / (T + β)

     (1.2) 

In the Varshni equation, α and β are fitting parameters. And they are special for each type 

of material. 

The mechanisms of Varshni behavior according to previous work are the following 
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two[22]: 

1. The lattice constant will change when the temperature is changed[25,26] and theoretical 

calculations[26] show that the effect is linear with temperature at high temperatures. At 

low temperatures the thermal expansion coefficient is nonlinear with T. 

2. The major contribution comes from a shift in the relative position of the conduction and 

valence bands due to a temperature-dependent electron lattice interaction. Theoretical 

treatments[16,27] show that this leads to a temperature dependence of the following 

form: 

         T << θ :   ΔEg ∝T 2

and   
         T >> θ :   ΔEg ∝T

 

where Θ is the Debye temperature. 
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1.5 Theory of Multilayer stack model 

1.5.1 Dielectric function of Sapphire, InN, GaN, and In1-xGaxN 

Several models to approximate the dielectric function of InN and GaN have been reported 

in literature [28-30]. In this work, a modified ‘model dielectric function’ (MDF) approach taken 

from reference[27,31,32] has been used for GaN.  This modified MDF approach describes best 

the anisotropic behavior of GaN and InN with hexagonal symmetry and perpendicular 

polarization. The data provided for InN are not correctly given and are adjusted as discussed in 

more detail below. Takeuchi et al.[33] used the same concept to establish the optical dielectric 

function for the ternary AlxGa1-xN alloys system between its binaries GaN and AlN. The relative 

simple analytical expressions in the MDF approach provide a good agreement with experimental 

data.   

The complex dielectric function as a function of energy E can be described by the sum of 

terms corresponding to one-electron contributions to four critical points (E0, E1A, E1B, E1C) as it 

is expressed in the following general formula 

ε(E) = ε0 (E) + ε0x (E) + ε1(E) + ε1x (E) + ε∞                (1.3) 

The dielectric functions ε (E )  of InN, GaN and In1-xGaxN can be parameterized via the 

critical points E0 and E1β (with β=A, B, C).  ε0x(E) and ε1x(E) are excitonic contributions at those 

critical points and E is the energy of the incident light. 

Under the parabolic band assumption, the contribution of  three-dimensional M0 critical 

point E0 is given by 
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ε0 (E) = AE0

−3/2χ0
−2[2 − (1+ χ0 )

1/2 − (1− χ0 )
1/2 ]

 (1.5)
 

where      
χ0 =

E + iΓ0

E0     

A and Γ0 are the oscillator strength and damping constants of the E0 transition 

respectively.  

The excitonic contributions at E0 critical point are given by 

 
ε0x (E) =

A0
ex

m3

1
E0 − (G0

3D / m2 ) − E − iΓ0m=1

∞

∑
             (1.6) 

where A0
ex

 is the three-dimensional (3D) exciton strength parameter and G0
3D the 3D exciton 

binding energy 

The contributions of the two-dimensional (2D) M0 critical points E1β are given by 

 
ε1(E) = − B1βχ1β

−2 ln(1− χ1β
2 )

β=A,B,C
∑

 (1.7) 

 
χ1β =

E + iΓ1β
E1β                        (1.8) 

with B1β and Γ1β are the strengths and damping constants of the E1β transitions, respectively. 

The Wannier type 2D exciton contributions to the critical E1β points are given by 

 
ε1X (E) =

B1β
X

(2m −1)3
1

E1β − [G1β
2D / (2m −1)2 ]− E − iΓ1βm=1

∞

∑
β=A,B,C
∑

 (1.9) 
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where B1β
X and G1β

2D are the strengths and the binding energies of the excitons at E1β, 

respectively. 

It has been shown that Gaussian broadening is a much better approximation for the 

broadening caused by electron-phonon and electron-impurities scattering. In this work, the 

damping constant Γ at critical point E0 is replaced by the Γ’ which is Gaussian broadening. 

Γ '(E) = Γ exp −α
E − Eg

Γ
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

             (1.10) 

where α and Γ are adjustable model parameters, while Eg is the energy of the critical point at 

which transition occurs. 

Additional oscillator around E0 : 

εabi (E) =
Sabi

Eabi
2 − E2 − iEΓabi

i = 1,2,3
     (1.11) 

where Sabi, Eabi and Γabi are the strength, energy position and damping constant of the oscillators, 

respectively.  

Then the dielectric function is modified as 

ε '(E) = ε(E) + εab1(E) + εab2 (E) + εab3(E)       (1.12) 
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Parameter GaN InN 
ε∞ 0.426 1.500 
A 41.251 3.000 
Γ0 0.287 0.300 
α0 1.241 1.241 
E0 3.550 0.700 

B1A 0.778 1.100 
B1B 0.103 0.700 
B1C 0.920 0.550 

B1A
X 2.042 1.042 

B1B
X 1.024 0.624 

B1C
X 1.997 1.400 

Γ1A 0.743 0.300 
Γ1B 0.428 0.380 
Γ1C 0.440 0.320 

G1A
2D 0.0003 0.0003 

G1B
2D 0.356 0.356 

G1C
2D 1.962 1.962 

E1A 6.010 5.350 
E1B 8.182 6.290 
E1C 8.761 6.750 
A0

ex 0.249 0.010 
G0

3D 0.030 0.020 
Eab1 3.900 3.900 
Sab1 0.000 29.00 
Γab1 5.200 5.200 
Eab2 7.900 7.900 
Sab2 0.000 10.00 
Γab2 0.600 0.600 
Eab3 8.650 8.650 
Sab3 0.000 17.00 
Γab3 0.700 0.700 

 

Table 1.2 Calculated parameters of GaN[27], InN(this work). 
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Figure 1.8 Imaginary part and real part of the dielectric function of GaN. 

 

Figure 1.9 Imaginary part and real part of the dielectric function of InN. 
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The dielectric function of InN is constructed according to work[5] 

To construct the dielectric function of In1-xGaxN, the MDF oscillator equations are 

parameterized as function of composition x.  The modified ε0x oscillator for In1-xGaxN is given 

for example as: 

ε0x (hω ,  x) =  A0
ex (x)
m3

1
E0 (x) − [G0

3D (x) / m2 ]− hω − iΓ0 (x)m=1

∞

∑        (1.13) 

where 

E0 (x)   =  x ⋅E0 (GaN)    +  (1-x) ⋅E0 (InN)      - b ⋅x ⋅ (1-x)
A0

ex (x)  =  x ⋅A0
ex (GaN)   +  (1-x) ⋅A0

ex
(InN)   

G0
3D (x) =  x ⋅G0

3D (GaN)  +  (1-x) ⋅G0
3D

(InN) 

Γ0 (x)   =  x ⋅ Γ0 (GaN)    +  (1-x) ⋅ Γ0 (InN) 

 

b is the bowing parameter. Except the fundamental band gap value, all the other parameters for 

In1-xGaxN are constructed using the linear extrapolation. The ε1(x), ε1x(x), εabi(x) and ε∞(x) for In1-

xGaxN are parameterized in the same way. 



 

20 
 

 

Figure 1.10 Dielectric function of In1-xGaxN with x=0.5 

The dielectric function of sapphire is described by a Sellmeier equation expression[34] of 

form 

 
ε sapphire = 1+

A ⋅ λ2

λ2 − B
+
C ⋅ λ2

λ2 − D
+
E ⋅ λ2

λ2 − F  (1.14) 

with the Sellmeier coefficients A= 1.0237980, B= 0.0037759, C= 1.0582640, D= 0.0122544, E= 

5.2807920, F= 321.36160. 
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1.5.2 Transmission and reflection in an multi-layered medium (Multilayer Stack theory) 

The electromagnetic (EM) wave propagation at an interface between two media with 

different dielectric functions is given through the boundary conditions in the dynamic Maxwell 

Theory and subject of numerous publications.[35,36] In order to formulated the boundary 

conditions for the transmitted and incident EM wave is spilt with respect to the plane incidence 

into perpendicular and parallel field components.  The reflection and transmission coefficients 

are analyzed with respect to these perpendicular and parallel field components. 

 

Figure 1.11: Schematic illustration of the incident, reflected and transmitted EM wave 

components with respect to the plane of incidence ( 
n ) at an interface form by materials 

labeled as ‘n’ and ‘n+1’, with their dielectric functions εn  and εn+1 , respectively.  

According to electrodynamic theory reflection and transmission coefficients are the 

following rpe and tpe are the coefficients when the electric field is perpendicular to the plane and 

rpa and tpa are the ones when the electric field is parallel to the plane. Now n is set to 1. 
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� 

rpe =
Er
Ei

=
n2 ⋅cosϕ0 − n2

2 − n1
2 ⋅ sin2ϕ0

n2 ⋅cosϕ0 + n2
2 − n1

2 ⋅ sin2ϕ0

           (1.15) 

 
t pe =

Et
Ei

=
2n1 ⋅ cosϕ0

n2 ⋅ cosϕ0 + n2
2 − n1

2 ⋅ sin2ϕ0   (1.16) 

 
rpa =

Er
Ei

=
n2
2 ⋅ cosϕ0 − n1 ⋅ n2

2 − n1
2 ⋅ sin2ϕ0

n2
2 ⋅ cosϕ0 + n1 ⋅ n2

2 − n1
2 ⋅ sin2ϕ0     (1.17) 

 
t pa =

Et
Ei

=
2n1 ⋅n2 ⋅ cosϕ0

n2
2 ⋅ cosϕ0 + n1 ⋅ n2

2 − n1
2 ⋅ sin2ϕ0      (1.18) 

n in the equations above is the refraction index. When normal incident and with n2=ε, 

reflection and transmission coefficient is simplified to equation 1.15 and 1.16 

 
r =

ε2 − ε1
ε1 + ε2         (1.19) 

 
t =

2 ⋅ ε1
ε1 + ε2        (1.20) 
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Figure 1.12 Multilayer stack. 

Figure 1.12 depicts stratified structure that consists of a stack of 1, 2,...n parallel layers 

sandwiched between two semi-infinite ambient 0 and substrate n+1 media. r01, r12, r23, rn(n+1), t01, 

t12, t23, t(n-1)n ,tn(n+1) are the reflection and transmission coefficients at different interfaces of two 

films, respectively. For example, r23 is the reflection coefficient at the interface of film 2 and 

film 3. Let all media be linear homogeneous and isotropic and dj and εj are the thickness and the 

dielectric function of the jth layer, respectively.  

Let E+(z) and E-(z) denote the complex amplitudes of the forward and backward traveling 

plane waves at an arbitrary plane z. So the total field at z can be described by: 

 

E(z) =
E+ (z)
E− (z)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥    (1.21) 

Now we have two planes z’ and z” parallel to the layer boundaries. Then E(z’) and E(z”) are 

correlated in a form: 

 

E(z ') =
E+ (z ')
E− (z ')

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

S11 S12
S21 S22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E+ (z")
E− (z")

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= S ⋅E(z")

 (1.22) 

where 

 

S =
S11 S12
S21 S22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥        (1.23) 

We choose z’ and z” to lie immediately on opposite sides of the j(j+1) interface. So 

between layers j and j+1 equation of E(z) becomes 
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E(z j+1 − 0) = I j ( j+1)E(z j+1 + 0)

      (1.24) 

where Ij(j+1) is a 2 by 2 matrix, which describes the j(j+1) interface alone. Now if z’ and z”  are 

chosen inside the jth layer at its boundaries, equation of E(z) becomes 

 
E(z j + 0) = LjE(z j + dj − 0)

        (1.25) 

where Lj is another 2 by 2 matrix which describes the characteristic of the jth layer alone whose 

thickness is di. For only the reflected wave in the ambient and the transmitted wave in the 

substrate can be detected, so it’s necessary to relate their fields to those of incident and 

transmitted wave. By taking the planes z’ and z” to lie in the ambient and substrate media, 

immediately adjacent to the 01 and n(n+1) interfaces respectively, equation of E(z) can be 

written in the form of: 

  
E(z1 − 0) = SE(zn+1 + 0)

     (1.26) 

in which S is a scattering matrix and it represents the overall reflection and transmission 

properties of the stratified structure. S can be expressed as a product of the interface and layer 

matrixes I and L as follows: 

 

S = I01L1I12 ⋅ ⋅ ⋅ Lj I j ( j+1) ⋅ ⋅ ⋅ LnIn(n+1)
          (1.27) 

According to the boundary condition, matrix I at the j(j+1) interface and L for the jth 

layer can be obtained: 
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I j ( j+1) = 1 / t j ( j+1)( ) 1 rj ( j+1)
rj ( j+1) 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

         (1.28) 

 

Lj =
eiβ 0
0 e− iβ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥      (1.29) 

where   
β =

2πdj ε j

λ  (1.30) 

β, dj, εj are the phase factor, thickness and the dielectric function of the jth layer, respectively. 

So the overall scattering matrix S of the stratified structure can be found by matrix 

multiplication and equation of E(z) can be expanded as: 

 

E(z1
+ − 0)

E(z1
− − 0)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

S11 S12
S21 S22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E(zn+1
+ ) + 0
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥       (1.31) 

The overall reflection and transmission coefficients of the stratified structures are: 

 

R =
E(z1

− − 0)
E(z1

+ − 0)
=
S21
S11       (1.32) 

 

T =
E(zn+1

+ ) + 0
E(z1

+ − 0)
=
1
S11       (1.33) 

 

 

        The scattering matrix for this system can be obtained as 
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S =  
S11 S12

S21 S22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = ei(β1 +β2 + ⋅⋅⋅β j + ⋅⋅⋅+βn )

t01 ⋅ t12 ⋅ ⋅ ⋅ t j ( j+1) ⋅ ⋅ ⋅ tn(n+1)

⎛

⎝⎜
⎞

⎠⎟
•  

1 r01

r01 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
• 1 0

0 e− i2β1

⎡

⎣
⎢

⎤

⎦
⎥ •

1 r12

r12 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                 .....  • 1 0
0 e− i2β j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
•

1 rj ( j+1)

rj ( j+1) 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
• .....• 1 0

0 e− i2βn
⎡

⎣
⎢

⎤

⎦
⎥ •

1 rn(n+1)

rn(n+1) 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  (1.34) 

 

Theoretical transmission then can be easily obtained by T=t·t*(when normal incident and 

t* is conjugate of t) 
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1.5.3 Calculation result and experimental result 

 

Figure 1.13 Calculation and comparison with experimental result of the GaN template of 509L. 
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Figure 1.14 Calculation and comparison with experimental result 509L. 

 

509L ε∞ thickness Eg x 
GaN 

template 5.4 900nm 3.40eV 1.00 

InGaN 
layer 5.0 190nm 2.02eV 0.67 

 

Table 1.3 Calculation results for transmission spectrum from sample 509L. 

 

Figure 1.13 and 1.14 show both the experimental and calculated results of transmission 

spectra of 509L GaN template and 509L sample. Red curves are the calculated curves and the 

blue ones are the experimental curves. The calculated result agrees well with the experimental 
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result including the interference fringes and the absorption edge.  The detailed parameters, such 

as the film thicknesses d, additive constant ε∞, band gap value Eg, and composition x are listed 

in table 1.3. 

 

 



 

30 
 

Chapter 2 Experimental setup 

 

Figure 2.1 Experimental setup of room temperature transmission measurement. 

 

Figure 2.2 Experimental setup of temperature dependence transmission measurements. 
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Figure 2.1 depicts a schematic view of the experimental setup for transmission 

measurement. This setup is consist of a light source (Halogen lamp), lenses, an edge filter, a 

sample holder a monochromator, a detector and to reduce the noise level of the detector (PMT 

and InGaAs detector), a chopper and a lock-in amplifier. 

In this thesis work, transmission measurements have been performed from 3.00eV to 

0.75eV to observe the absorption properties of In1-xGaxN. The samples are In1-xGaxN grown on 

GaN template which is the GaN grown on sapphire. Halogen lamp is used as light source and 

transmitted light is collected using photomultiplier tube (PMT) and Indium Gallium Arsenide 

(InGaAs) detector. Different filters are applied in different region. From 580nm to 850nm, 

OG550nm filter is used to block the second order of band edge of GaN.  

Figure 2.2 depicts a schematic view of the experiment setup for temperature dependence 

transmission measurements. It’s very similar to the room temperature transmission experiment 

setup. Halogen lamp is used as light source and PMT and InGaAs detector are used. What is 

different is that the monochromator was placed before the sample while in the former one the 

monochromator was placed after the sample. In this one, the temperature of the sample is varied 

from 4K to room temperature or higher using Helium flow and a heater. Experiments were done 

at the temperatures of 4K, 20K, 70K, 130K, 210K and 300K. In both experiments, the 

monochromator was used to select a certain wavelength. But the difference is in the first 

experiment, the monochromator selects the wavelength of light after the light comes out of the 

sample and in the second one the monochromator selects the wavelength before the sample. 

Sample 558L and 385L are measured with Ga percentage 15% and 10%, respectively. They are 

grown by HPCVD system and the parameters are listed in the next chapter 
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Figure 2.3:   Experimental procedure to obtain the transmission spectrum of a InGaN layer 

Figure 2.3 shows the experiment procedure for both experiments. First, the transmitted 

spectrum of the template (GaN grown on sapphire) is taken. And then the transmitted spectrum 

of the sample (In1-xGaxN grown on template) is taken.  Since I1 and I2 can be written in the 

product of functions of the light source, monochromator, optical elements, detector and the 

transmission of In1-xGaxN and GaN layer: 

 
I1 = flightsourcei fmonochromator i felements i fdetector iTtemplate  

 
I2 = flightsourcei fmonochromator i felements i fdetector iTtemplateiTInGaN  

So the transmission of the In1-xGaxN layer can be obtained by dividing I1 by I2. 
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Chapter 3 Results 

 

 

3.1 Room temperature transmission measurement results of a set of In1-xGaxN samples 

 

 
Sample # 

Ga 
Composition 

x 

Growth 
Temperature 

(0C) 

Reactor 
Pressure 

(bar) 

 
V/III-ratio 

440L 0.47 876 15.31 1250 
443L 0.70 876 15.31 1253 
449L 0.35 876 15.31 2025 
509L 0.40 874 15.24 1462 
557L 0.15 843 15.51 2998 

 

Table 3.1 Growth parameters of a set of samples grown by High-pressure Chemical Vapor 

Deposition system. 

 

Table 1 shows the set of In1-xGaxN samples grown by the High-pressure Chemical Vapor 

Deposition system with different compositions x which were analyzed in this work. 
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Figure 3.1 Transmission spectrum of In1-xGaxN with different Ga composition. 
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Figure 3.2 Absorption spectrum of In1-xGaxN with different Ga composition. 

 

Figure 3.1 shows the transmission spectra of InGaN layers of three different gallium 

compositions. The absorption spectra in figure 3.2 were extracted from the transmission spectra 

using the Beer Lambert’s law. In figure 3.2 the interception of the slope of the absorption curve 

and the energy axis is the band gap value. Linear fit to the slope of the curve is used to get the 

band edge of the material from the interception of the slope and the energy axis. 
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x 0 0.15±0.11 0.30±0.08 0.47±0.13 0.60±0.06 0.70±0.05 1 
Eg[ev] 0.65 0.94±0.11 1.50±0.35 1.35±0.09 2.05±0.12 2.38±0.02 3.42 

 

Table 3.2. Band gap values of different In1-xGaxN with different x. 

 

Figure 3.3 Band gap value vs. Ga composition x. 

Table 3.2 lists the values of the band gap energy determined for various compositions. 

Figure 3.3 is a graph of the band gap value against the composition x and from which we 

can see the correlation between band gap value and composition x is not a linear but a bowing 

behavior. The red squares are the experimental data and the red curve is the fitting of the bowing 

behavior using the formula below. Hence the band gap value of In1-xGaxN can be calculated in 

the form of the following formula where a bowing parameter is applied here: 
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(3.1) 

 

The bowing parameter calculated here is 2.2±0.1eV, which is somewhat higher than the 

recent reported bowing parameter of 1.6 eV by Goldhahn et al.[37].  As mentioned in the first 

chapter, there are large variations in the reported values of the bowing parameter due to the lack 

of sufficient good InGaN alloys. Since the bowing parameter is affected by the strucutrual layer 

quality, the defect density and types of defects in the alloys, as well as the doping level, the 

reported values of the bowing parameter depends strongly by the growth methods used and even 

from the growth facility.   

 

3.2 Temperature dependence of the band gap of In1-xGaxN 

Table 3.3 summarizes the growth parameter/conditions of the InGaN epilayers analyzed 

by temperature-dependant absorption spectroscopy. These measurements were performed to 

study the fundamental band gap shift as function of temperature and how potential crystal 

imperfections affect this shift.   

 
Sample # 

Ga 
Composition 

x 

Growth 
Temperature 

(0C) 

Reactor 
Pressure 

(bar) 

 
V/III-ratio 

385L 0.10 876 9.25 1122 
558L 0.15 837 15.51 2998 

Table 3.3 Growth parameters of the samples for the temperature dependent measurements. 

 

Figure 3.4 depict the transmission spectra of the In0.85Ga0.15N/GaN/Sapphire structure 

(sample # 558L) measured from 4K up to 300K.   The computed absorption spectra of sample 

558L are show in Figure 3.5 for the temperatures of 4K, 20K, 70K, 130K, 210K and 300K.  The 

Eg = x ⋅Eg
GaN + (1− x) ⋅Eg

InN − b ⋅ x ⋅ (1− x)
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absorption spectra are plotted in terms of alfa2 over energy, which allows to estimate the band 

gap values from a linear slope fit of the spectra and its intercept with the energy x-axis. The 

estimated band gap values as function the temperature are shown in the inset in Fig. 3.5. The 

analysis shows that the band gap values decrease with increasing temperature, following a 

Varshni type behavior.  

 

 

Figure 3.4 Transmission spectra of sample 558L In0.85Ga0.15N for different temperatures. 
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Figure 3.5 Temperature dependence of absorption spectra and the relation between the band gap 

value and the temperature of sample 558L In0.85Ga0.15N. 

 
 

Figure 3.6 depict the transmission spectra of the In0.9Ga0.1N/GaN/Sapphire structure 

(sample # 385L) measured from 4K up to 300K.   The calculated absorption spectra of sample 

385L are show in Figure 3.7 for the temperatures of 4K, 20K, 70K, 130K, 210K and 300K.  As 

before, the band gap values as function of temperature as estimated from a linear slope fit from 

the alfa2 over energy plot and its intercept with the energy x-axis.  The analyzed band gap values 

are depicted in the inset in Fig. 3.7, showing a ‘S-shape’ type of behavior with increasing 

temperature.  
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Figure 3.6 Transmission spectra of sample 385L In0.9Ga0.1N. 
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Figure 3.7 Temperature dependence of absorption spectra and the relation between the band gap 

value and the temperature of sample 385L In0.9Ga0.1N. 
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Chapter 4 Discussion 

 

Figure 3.1 depicts the room temperature transmission spectra of In1-xGaxN with different 

Ga compositions. The amplitudes of the transmission spectra vary due to different surface and 

interfacial roughnesses in the different samples, which affects the scattering coefficients of the 

surface and the interfaces between the multilayer stack. These interfacial imperfections also 

affect the reflectance amplitudes on each interface, reducing the overall transmission and 

reflectance values observed. As mentioned in the first chapter, the interfacial scattering affects 

the transmission and causes different maximum amplitude of transmission for different samples. 

Since these are interfacial effects, the estimated absorption edge of th InGaN should be not 

directly affected. 

Figure 3.2 shows the absorption spectra of In1-xGaxN layers with various Ga composition. 

The spectra were derived from the transmission spectra using Beer Lamberts Law given in 

chapter 1. The figure shows clearly the different slopes for the absorption edges for the various 

Ga compositions. The band gap values are estimated from the slope intercept with the energy x-

axis.  The estimated fundamental band gap values are plotted as a function of composition x of 

In1-xGaxN in figure 3.3, showing a nonlinear behavior for the band gap value with Ga 

composition x. The values are lower than in a linear correlation, requiring a negative bowing 

parameter for the correct description. At present, the exact origin and other contributions to the 

bowing parameter are not knows.  As indicated in chapter one, structural and point defects 

dopants, and doping levels may strongly affect the fundamental absorption edge and with it the 
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estimated band gap values. These contributions might explain an overestimate of the bowing 

parameter, which was estimated in this work to 2.2±0.1eV.   

Figure 3.4 and 3.6 show the transmission spectra for the temperature dependent 

measurements of the InGaN samples 558L and 385L, respectively. As shown in these two 

figures, the minimum transmission values are not zero in the high-energetic region, which is due 

to the detector noise limitation. These regions in the spectra were excluded from the analysis of 

the absorption spectra, which are shown in figures 3.5 and 3.7, respectively. 

Figure 3.5 depicts the evolution of the absorption edge for sample 558L In0.85Ga0.15N 

over a temperature range from 4 to 300K. It shows that the band gap decreases with increasing  

temperatures, which overall form is described by a Varshni-type behavior.  

However, a care analysis shows that form is composed of an Varshni-type behavior with 

and super-imposed s-shape behavior. From 4 to 70K, the band edge is redshifted by 40meV. 

From 70 to 210K, the band edge is only redshifted by 5meV,  and from 210 to 300K, it is again 

redshifted 25meV. If a linear backgroup is subtracted from the curve, an s-shape behavior is 

observed. So, both varshni and s-shape behavior exist from the result of this experiment for 

sample 558L.  

Figure 3.7 depicts how the gap changes when the temperature is changed for sample 

385L In0.9Ga0.1N. It shows that the band gap value decreases 37meV from 4K-70K, and in the 

range of 70K-130K, the band gap values increases for 110meV. When the temperature is further 

increased from 130K, the band gap value decreases 97meV. An s-shape behavior is clearly seen 

in the analysis of this measurement. 
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Appendix 

Transmission calculation Program using MDF and multilayer stack approach 

eps0=1;             %epsilon of the ambient 
ds=400e-6;          %the thickness of the sappire 
GaNepsinf=5;      %epsilon infinity of GaN 
AG = 41.251;        %the ocillator strength of the first ocillater 
E0G=3.62;            %critical point of E0 
gam01G=0.287;       %broadening parameter of the first ocillator 
A0exG = 0.249;      %the ocillator strength of the second ocillater (exiton contribution around 
E0) 
G03dG=0.03;         %binding energy of the exiton 
gam1G =[0.743;0.428;0.44];      %broadening parameters for the third ocillator  include three 
critical points E1G(1:3) 
E1G =[6.01;8.182;8.761];        %values of the three critical points 
B1G=[0.778;0.103;0.92];         %ocillator strength of the third ocilator 
B1xG =[2.042;1.024;1.997];      %the ocillator strength of the fourth ocillater (exiton 
contribution around three critical points E1G) 
G12dG=[0.0003;0.356;1.962];     %binding energy of the exiton around three critical points E1G 
alp0G=2.241;                    %a constant in Gaussian broadening 
  
  
% five additional ocillator to make the calculation fit with the experiment data (not from 
literature) 
% s is ocillator strength, E is the position of the ocillator, gam is the 
% broadening parameter of the ocillator 
  
sab4=0.2; 
Eab4=2.7; 
gamab4=0.8; 
  
sab3=0.22; 
Eab3=2.3; 
gamab3=0.8; 
  
  
sab1=0.7; 
Eab1=1.67; 
gamab1=0.9; 
  
sab5=0.3; 
Eab5=1.2; 
gamab5=0.8; 
  
sab2=1.4; 
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Eab2=0.5; 
gamab2=0.5; 
  
A0exI = 0.001; 
G03dI=0.024; 
  
%Sellmeier Equation form Dimitriev et al. "Handbook Of Nonlinear Optical 
%Chrystals" Springer 1999, p.81 
%Constants are from I.H.Malitson "Refraction And Dispersion Of Synthetic 
%Sapphire" J.Opt.Soc.Am.55, 1205 - 1209 (1965) 
Asapphire = 1.0237980; 
Bsapphire = 0.0037759; 
Csapphire = 1.0582640; 
Dsapphire = 0.0122544; 
Esapphire = 5.2807920; 
Fsapphire = 321.36160; 
  
dg=9e-007; 
data=load('509LS.dat'); 
d11=data(:,1); 
d22=data(:,2); 
llp=size(d11); 
lp=llp(1); 
  
TT=zeros(1,lp); 
x=zeros(1,lp); 
k=0; 
GaNeps=zeros(1,lp); 
Sapeps=zeros(1,lp); 
dd=zeros(2,lp); 
GaNi=zeros(1,lp); 
GaNr=zeros(1,lp); 
  
for wl=304:2:1700, 
    k=k+1; 
     
    E=1239.8/wl; 
    x(k)=wl; 
    l=wl*1e-9; 
     
     
    %GaN dielectric function 
     
    gam0G=gam01G*exp(-alp0G*(((E-E0G)/gam01G)^2)); 
    X0G=(E+1i*gam0G)/E0G; 
    GaNeps0=AG*(E0G^(-1.5))*X0G^(-2)*(2-sqrt(1+X0G)-sqrt(1-X0G)); 
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    GaNeps0x=0; 
    for m = 1 :100, 
        GaNeps0x = GaNeps0x + (A0exG/(m^3*E0G - m*G03dG - m^3*E - m^3*1i*gam0G)); 
    end 
     
    GaNeps1=0; 
    X1G = [(E + 1i * gam1G(1))/E1G(1); (E + 1i * gam1G(2))/E1G(2) ;(E + 1i * 
gam1G(3))/E1G(3)]; 
    for m = 1 : 3, 
        GaNeps1 = GaNeps1 + (B1G(m)*X1G(m)^(-2)*log(1-X1G(m)^2)); 
    end 
    GaNeps1 = -1 * GaNeps1; 
     
    GaNeps1x=0; 
    for m = 1 : 3, 
        sum = 0; 
        for n = 1 : 100, 
            sum = sum + (B1xG(m)/(((2*n-1)^3)*(E1G(m)-(G12dG(m)/((2*n-1)^2))-E-
1i*gam1G(m)))); 
        end 
        GaNeps1x = GaNeps1x + sum; 
    end 
     
    GaNepso1=sab1/((Eab1^2-E^2)-1i*E*gamab1); 
    GaNepso2=sab2/((Eab2^2-E^2)-1i*E*gamab2); 
    GaNepso3=sab3/((Eab3^2-E^2)-1i*E*gamab3); 
    GaNepso4=sab4/((Eab4^2-E^2)-1i*E*gamab4); 
    GaNepso5=sab5/((Eab5^2-E^2)-1i*E*gamab5); 
     
    GaNepsf = 
GaNeps0+GaNeps0x+GaNeps1+GaNeps1x+GaNepsinf+GaNepso1+GaNepso2+GaNepso3+Ga
Nepso4+GaNepso5; 
    GaNeps(k)=conj(GaNepsf); 
     
    ls=l*1000; 
    Sapeps(k)=1 + (Asapphire*(ls^2)/(ls^2-Bsapphire)) + (Csapphire*(ls^2)/(ls^2-Dsapphire)) + 
(Esapphire*(ls^2)/(ls^2-Fsapphire)); 
     
     
    ps1=(2*pi*dg*sqrt(GaNeps(k)))/l; 
    ps2=(2*pi*ds*sqrt(Sapeps(k)))/l; 
    %unpolarized light rp, rs are the same. 
     
    r01=(sqrt(eps0)-sqrt(GaNeps(k)))/(sqrt(eps0)+sqrt(GaNeps(k))); 
    r12=(sqrt(GaNeps(k))-sqrt(Sapeps(k)))/(sqrt(GaNeps(k))+sqrt(Sapeps(k))); 
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    r23=(sqrt(Sapeps(k))-sqrt(eps0))/(sqrt(eps0)+sqrt(Sapeps(k))); 
     
    t01=2*sqrt(eps0)/(sqrt(eps0)+sqrt(GaNeps(k))); 
    t12=2*sqrt(GaNeps(k))/(sqrt(GaNeps(k))+sqrt(Sapeps(k))); 
    t23=2*sqrt(Sapeps(k))/(sqrt(Sapeps(k))+sqrt(eps0)); 
     
    t1=t01; 
    t2=t12*exp(-1i*ps1); 
    t3=t23*exp(-1i*ps2); 
     
     
    m1=[1 r01;r01 1]; 
    m2=[1 r12;r12*exp(-1i*2*(ps1)) exp(-1i*2*ps1)]; 
    m3=[1 r23;r23*exp(-1i*2*(ps2)) exp(-1i*2*ps2)]; 
     
    M=m1*m2*m3; 
    a=M(1,1); 
     
    tt=t1*t2*t3/a; 
    TT(k)=tt*conj(tt); 
    InNi(k)=-imag(InNeps(k)); 
    InNr(k)=real(InNeps(k)); 
  GaNi(k)=-imag(GaNeps(k)); 
  GaNr(k)=real(GaNeps(k)); 
end 
  
plot(x,TT,x,d22); 
  
dd(:,1)=d11; 
dd(:,2)=TT; 
xlswrite('fit509LS.xls', dd); 
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