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PHOTOIONIZATION OF THE POTASSIUM ISOELECTRONIC SEQUENCE: Ca
+
 

AND TRANSITION METAL IONS  

 

by 

 

AYAO MAMERT SOSSAH 

 

 

Under the Direction of Steven T. Manson 

 

ABSTRACT 

 

Photoionization cross section calculations are performed for the ground 

([Ne]3s
2
3p

6
3d 

2
D e

2/3 ) and the first two excited ([Ne]3s
2
3p

6
3d 

2
D e

2/5  and [Ne]3s
2
3p

6
4s 

2
S e

2/1 ) states of potassium-like transition metal ions (Sc
+2

, Ti
+3

, V
+4

, Cr
+5

, Mn
+6

, Fe
+7

), 

along with photoionization calculations for K-like Ca
+
 ions in the ground ([Ne]3s

2
3p

6
4s 

2
S e

2/1 ) state and the first two excited ([Ne]3s
2
3p

6
3d 

2
D e

2/3  and [Ne]3s
2
3p

6
3d 

2
D e

2/5 ) states.  

The discrete N-electron final state ion system orbitals are generated using the computer 

program AUTOSTRUCTURE; 24 configurations are included in the configuration-

interaction (CI) calculation for transition metal ions, and 30 configurations for the case of 

Ca
+
 ions.  The initial and final (N+1)-electron wavefunctions are generated using R-

matrix along with photoionization cross sections.  In addition to the non-relativistic (LS-



 

 

coupling) R-matrix, we have used the relativistic (Breit-Pauli) R -matrix method to carry 

out these calculations to focus on relativistic effects.  Relativistic and non-relativistic 

results are compared to demonstrate the influence of relativistic effects.  The prominent 

3p → 3d giant resonances are analyzed and identified, and our calculated positions and 

widths are compared with experimental results for K-like ions such as Ca
+
, Sc

+2
 and Ti

+3
.  

In the case of lower Z (22  Z  20) ions (Ca
+
, Sc

+2
 and Ti

+3
), the photoionization cross 

section spectra are dominated by the giant (3p  3d excitation) resonances, while in 

cases of higher Z (26  Z  23) ions (V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

), the 3p  3d resonances 

lie below the ionization threshold, and the cross sections are dominated by 3p
5
3d nd and 

3p
5
3d n’s Rydberg series of resonances.  Comparison of the Ca

+
, Sc

+2
 and Ti

3+
 results 

with available theoretical and experimental data shows good agreement. 
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partial cross section to the j=3/2 final state, (c) the partial cross section to the 

j=1/2 final state. 
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Figure 4.16 Calculated Breit-Pauli photoionization cross sections of the excited 
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D e

2/5  

state of Cr
+5

 showing, (a) the partial cross section to the j=7/2 final state, (b) 

the partial cross section to the j=5/2 final state and (c) the partial cross section 

to the j=3/2 final state. 

114 

   

Figure 4.17 Calculated Cr
+5

 photoionization cross sections showing (a) non-relativistic 

(LS-coupling) cross sections from the initial ground state 
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, (b) the total for 
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2/3  state, and (c)the total for the excited 
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D e

2/5  state. 
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Figure 4.18 Non-relativistic calculations on Mn
+6 showing (a) initial 

2
D

e
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asymmetry parameter  energy dependence for d  p and d  f 

transitions, and (b) the main line cross sections for photoionization of Mn
+6

 

2
D

e
 initial state leaving the residual (target) Mn

+7
 ion in the ground state 

2 63 3s p  
1
S

o
. 

117 

   

Figure 4.19 Calculated Breit-Pauli photoionization cross sections of the ground 
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D

e
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of Mn
+6

 showing, (a) the partial cross section to the j=5/2 final state, (b) the 

partial cross section to the j=3/2 final state, (c) the partial cross section to the 

j=1/2 final state. 

   

Figure 4.20 Calculated Breit-Pauli photoionization cross sections of the excited 
2
D e

2/5  

state of Mn
+6

 showing, (a) the partial cross section to the j=7/2 final state, (b) 

the partial cross section to the j=5/2 final state and (c) the partial cross section 

to the j=3/2 final state. 
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Figure 4.22 Non-relativistic calculations on Fe
+7 showing (a) initial 

2
D

e
 ground state 

asymmetry parameter  energy dependence for d  p and d  f 

transitions, and (b) the main line cross sections for photoionization of Fe
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Figure 4.23 Calculated Breit-Pauli photoionization cross sections of the ground 
2
D

e

2/3 state 

of Fe
+7

 showing, (a) the partial cross section to the j=5/2 final state, (b) the 

partial cross section to the j=3/2 final state, (c) the partial cross section to the 

j=1/2 final state. 
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Figure 4.24 Calculated Breit-Pauli photoionization cross sections of the excited 
2
D e

2/5  

state of Fe
+7

 showing, (a) the partial cross section to the j=7/2 final state, (b) 

the partial cross section to the j=5/2 final state and (c) the partial cross section 

to the j=3/2 final state. 
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Figure 4.25 Calculated Fe
+7

 photoionization cross sections showing (a) non-relativistic 

(LS-coupling) cross sections from the initial ground state 
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, (b) the total for 
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Figure 5.1 Calculated photoionization cross sections of Ca
+ from 23.0 to 41.0 eV: (a) 

initial 
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e
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e
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D
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+
 showing, (a) the partial cross section to the j=5/2 final state, (b) the 
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D

e

2/3 cross section, dominated by the 
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(metastable) 
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Figure 5.7 Calculated Breit-Pauli photoionization cross sections of Ca
+
 ions showing, (a) 
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2
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Figure 5.8 Experimental state-selective measurements of absolute photoionization cross 
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+
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respectiviely.  The upper spectra (a) and (b) are recorded directly, wheareas (c) 

and (d) are derived from these.  The structures marked by asterisks in (d) are 

experimental artifacts. 

159 
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, (b) ground state Sc
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CHAPTER 1. 

INTRODUCTION 

 Open-shell atoms represent more than 70% of the total number of elements in the 

atomic periodic table, but atomic data involving the dynamics of open-shell atoms and 

their ions are far fewer than their proportion in the periodic table.  This lack of data is 

mainly due to the serious challenge that both theorists and experimentalist have faced 

while working on open-shell atoms.  Considering the whole group of open-shells atoms, 

open d- and f-subshell atoms and ions have drawn much less attention so far compared to 

open s- and p-subshell atoms.  However, during the last few decades, the advent of third 

generation synchrotron radiation sources [1] and the extremely rapid development of 

computational power have produced significant advances in the investigation of 

dynamical atomic processes, and open d- and f-subshell atoms and ions have been subject 

to increasing interest both theoretically and experimentally.  Among the dynamical 

process of interest is the response of these atoms and ions to ionizing radiation, the 

photoionization process, which is of interest as a fundamental process of nature, along 

with applications to a number of areas of science and technology, most notably the 

modeling of plasmas, astrophysical and otherwise. 

 In this work we report on the first stage of a study of the photoionization of the 

3d-electron atoms and ions (transition metals and Ca
+
 ions).  These atoms and ions hold 

particular interest owing to the open 3d-subshell which allows the possibility of giant 

dipole resonances [2] resulting from 3p→3d Δn=0 transitions.  Our study begins with 

scandium, motivated by its position in the group of open 3d-subshell elements in the 

periodic table.  The ground state of scandium, in fact, has a single electron in the 3d 



2 

 

subshell outside closed subshells, [Ar]3d4s
2
, and is the first and simplest transition metal 

atom.  Thus, an understanding of the photoionization of scandium, with a single electron 

in the open 3d subshell, can serve as a springboard to the understanding of the 

photoionization of all of the 3d transition metal atoms and ions generally. 

 However, the photoionization quite complicated, owing to the proximity of the 3d 

and 4s levels, so that there is significant mixing in the initial state among 3d4s
2
, 3d

2
4s 

and 3d
3
 configurations which, in turn, leads to a plethora of final state configurations, 

thereby complicating the giant dipole resonances.  Calculations in this energy region have 

been performed using various theoretical methodologies [3-5], none of which give 

satisfactory agreement with experiment [2,6-8].  Thus, we turn to an even simpler system, 

the Sc
+2

 ion for the initial investigation.  The Sc
+2

 system, the simplest atomic system 

with an open d-shell, has a ground state structure given by [Ar]3d, isoelectronic to 

potassium, but with a valence 3d electron rather than a 4s.  Another reason for the choice 

of doubly-ionized scandium is the existence of experimental work [9,10] to benchmark 

the theoretical results.  Note that theoretical work using both nonrelativistic and 

relativistic R-matrix methods to study Sc
+2

 has been reported [11,12], but poor agreement 

with experiment was found.  Clearly, further theoretical study is required to bring the 

calculated and measured cross sections into agreement.   

In addition to Sc
+2 

phtoionization calculations, we have extended our investigation 

along the potassium isoelectronic sequence up to z=26 including Ti
+3

, V
+4

, Cr
+5

, Mn
+6

, 

Fe
+7

 and Ca
+
; we must note here that the presence of Ca

+
 ions in our investigation with 

those K-like transition metals ions (Sc
+2

, Ti
+3

, V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

) is explained by 

the fact that the excited (metastable) state electronic structure of Ca
+
 is given by [Ar]3d; 
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therefore Ca
+
 is a 3d-electron ion in its excited state.  This work is to be considered as 

part of a broader effort (our research group project) to produce accurate data in order to 

understand atomic processes involving open d-subshell atoms.   

The photoionization of an atomic system A (Ca
+
, Sc

+2
, Ti

+3
, V

+4
, Cr

+5
, Mn

+6
 and 

Fe
+7

) is given schematically as  

 A + hν → A
+
 + e,               (1) 

which is the direct photoionization pathway.  In addition, however, the photoionization 

can proceed through an intermediate resonance; this pathway is represented as 

 A + hν → (A)
*
 → A

+
 + e.                                       (2) 

While we are primarily interested in photoionization of those various atomic systems 

(Ca
+
, Sc

+2
, Ti

+3
, V

+4
, Cr

+5
, Mn

+6
 and Fe

+7
) in their ground state, in this work, the initial 

states of Sc
+2 

(Sc III) and Ti
+3

 (Ti IV) considered in the nonrelativistic calculations are 

both the ground [Ne]3s
2
3p

6
3d 

2
D

e
 state and the excited [Ne]3s

2
3p

6
4s 

2
S

e
 metastable state.  

This is because the measurements were performed upon a mixture of ground and 

metastable states in the case of Sc
+2

 ions so both cross sections are required in order to 

make a meaningful comparison with experiment.  In the relativistic case the initial states 

for Sc
+2 

and Ti
+3 

are the ground [Ne]3s
2
3p

6
3d 

2
D e

2/3 plus the first two excited states 

[Ne]3s
2
3p

6
3d 

2
D e

2/5  and [Ne]3s
2
3p

6
4s 

2
S e

2/1 .  For the four other members of the 

potassium-like transition metal ions (V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

), the initial states in the 

nonrelativistic (LS coupling) calculations only contain the ground ([Ne]3s
2
3p

6
3d 

2
D

e
) 

state while in the relativistic (Breit-Pauli) calculations initial states are the ground 

([Ne]3s
2
3p

6
3d 

2
D e

2/3 ) and the first excited state ([Ne]3s
2
3p

6
3d 

2
D e

2/5 ).  For Ca
+
 

calculations, initial states in the nonrelativistic operations are both the ground 
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[Ne]3s
2
3p

6
4s 

2
S

e
 state and the excited (metastable) [Ne]3s

2
3p

6
3d 

2
D

e
 state, while in the 

relativistic calculations initial states are the ground state ([Ne]3s
2
3p

6
4s 

2
S e

2/1 ) plus the 

first two excited states ([Ne]3s
2
3p

6
3d 

2
D e

2/3  and [Ne]3s
2
3p

6
3d 

2
D e

2/5 ). 

The states of the final state ion A
+
 (Ca

+2
, Sc

+3
, Ti

+4
, V

+5
, Cr

+6
, Mn

+7
 and Fe

+8
) are 

known in R-matrix language as the target states, with N=18 electrons for each of A
+
 ions; 

those target ions are combined with the free electron to form the total final state, an N+1 

= 19 electrons system.  By dipole selection rules, the total final state (target state + 

unbound electron) can have (nonrelativistic) symmetries 
2
P

o
, 

2
D

o
 and 

2
F

o
, i.e., the 

nonrelativistic allowed transitions are given by 

 

 
2
D

e
 → 

2
P

o
, 

2
D

o
, 

2
F

o
, 

 
2
S

e
 → 

2
P

o
.                                   (3) 

 

In the relativistic case, the transitions (3) become 

 

 
2
D e

2/3 + hν → 
2
P o

2/1 , 
2
P o

2/3 , 
2
D o

2/3 , 
2
D o

2/5 , 
2
F o

2/5 , 

 
2
D e

2/5 + hν → 
2
P o

2/3 , 
2
D o

2/3 , 
2
D o

2/5 , 
2
F o

2/5 , 
2
F o

2/7            (4) 

 
2
S e

2/1 + hν → 
2
P o

2/1 , 
2
P o

2/3 . 

 

  The target state A
+ 

(Ca
+2

, Sc
+3

, Ti
+4

, V
+5

, Cr
+6

, Mn
+7

 and Fe
+8

) orbitals, in the 

present work, are obtained by using the program AUTOSTRUCTURE [13,14].  The 

target state wave functions and their energy levels are determined from configuration-

interaction (CI) calculations.  The non-relativistic (LS-coupling scheme) and the 
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relativistic (Breit-Pauli) R-matrix methods [14,15] are employed to carry out the 

photoionization cross section calculations.  In addition to the photoionization 

calculations, the resonances in the region of the giant 3 3p d  excitations are analyzed 

(position, width and identification) using the QB code [16-18].  Theoretical 

photoionization cross section and resonance analysis results are compared with available 

experimental data [7-10,19]. 

  The R-matrix method is one of the most effective and widely applied methods in 

studying dynamical processes involving atoms and molecules, and the atomic R-matrix 

programs have a long history; it is worth, before reporting our work, saying some words 

on the evolution of those programs through the last decades.  As it was reported by P. G. 

Burke and collaborators [20,21], R-matrix theory was first introduced in 1946 by Wigner 

[22,23], then in 1947 by Wigner and Eisenbud [24] in fundamental papers describing 

nuclear resonance reactions.  These and other early woks, applying R-matrix theory in 

nuclear physics, were comprehensively reviewed in 1958 by Lane and Thomas [25], in 

1959 by Breit [26], and in 1969 by Mahaux and Weidenmüller [27].  In the early 1970s, R 

-matrix theory was introduced and developed as an ab initio procedure for calculating 

electron atom scattering cross sections, where the Coulomb interaction between the 

electrons and the nuclei, unlike the nuclear interactions, are known exactly [20,21,28,29], 

and now it is the method most frequently applied for the determination of various atomic 

properties [30].  The computational volume by Burke and Berrington [31] includes the 

major papers in R-matrix theory except the very recent ones, along with a comprehensive 

list of calculations using this method.  The Opacity Project [32] and the Iron Project [33] 

are among the most successful worldwide projects undertaken with extensive use of the 
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general R-matrix package [34] published by Berrington et al in 1974.  This version was 

subject to many modifications; many subroutines were rewritten to increase efficiency 

and user friendliness [35], and to include relativistic effects [36].  The suite of codes that 

emerged from those changes was the RMATRIX-I published in 1995 [15].  In 

RMATRIX-II, there were more radical changes, with particular emphasis placed on 

improving the efficiency of the angular-momentum package.  This suite of code is now 

parallelized, and is published as PRMAT [37] published in 2002.  Fully relativistic 

versions of both atomic structure (GRASP [38-40]) and collision packages (DARC 

[41,42]) exist, but DARC applications have been rare compared to RMATRIX-I, and 

mostly limited to heavy and highly ionized systems.  In 2006 the B-Spline atomic R-

matrix codes were published by O. Zatsarinny [30]; this package, compared to the 

classical (Belfast) R-matrix codes, has significant improvements in the way that non-

orthogonal orbitals can be used to represent both the bound and continuum one-electron 

orbitals, and the R-matrix basis function are defined by a set of B-Splines. 

 In a book published in 1967 [43], Marr summarized many years of theoretical and 

experimental knowledge on photoionization, and described the most important 

applications.  In 1976 Burke published a general overview [44] of different theoretical 

approaches to atomic photoionization including quantum defect theory, the Hartree-Fock 

approximation, the random phase approximation, configuration interaction theory and 

many body perturbation theory.  Starace (1987 and 1996) presented reviews of trends and 

status of atomic photoionization [45,46].  In 1990, Amusia published a book devoted to 

the investigation of the interaction of atoms with electromagnetic radiation [47].  The 
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attention, in these works, is given to the low and intermediate photon energy region 

where the probability of photon absorption and photoionization is the largest.        

  This report contains, in terms of structure, six chapters and appendices beginning 

with chapter 1 as introduction. In chapter 2 we introduce the R-matrix theory and its 

application to photoionization; also included are all the theoretical tools used in 

calculations reported in this work.  Chapter 3 is about the study of the photoionization of 

the doubly-charged scandium ions (Sc
+2

) where we present description of calculations, 

results and discussion and conclusion about this specific case.  In chapter 4 we study the 

photoionization of potassium-like transition metal ions (Ti
+3

, V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

).  

Chapter 5 presents the photoionization study of ground and excited states of Ca
+
 ions 

(calculations, results and discussion and conclusion); with emphasis on the physical 

meaning of those results in terms of this specific dynamical process (photoionization) 

involving 3d electron atoms and ions.  The concluding remarks and observations are 

reported in chapter 6, and the appendices contain brief description of the structure of the 

R-matrix package and sample input files for atomic structure (AUTOSTRUCTURE) and 

R-matrix codes for some cases treated in this work.           
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CHAPTER 2. 

THEORY 

2.1. Units 

As was reported by Berrington et al [15], most of the equations are expressed in 

atomic units (a.u.).  The unit of length is the Bohr radius a0 = 5.29177 × 10
-11

 m, and the 

unit of energy is the Hartree energy Eh = 4.35975 × 10
-18

 J.  Others units of energy 

frequently used are  Rydberg (Ry) and electron-Volt (eV), and 1 Eh = 2 Ry 27.2114 eV.  

By considering Ry as the unit of energy, the energy levels of hydrogen atom are En = -

1/n
2
, and the energy of a free electron is k

2
 where k is the wave number in a.u..  For  

temperature T in K, the Boltzmann‟s constant KB is such that KBT  (T/157890) Ry.  The 

speed of light, in a.u., has the value of 137.036 which is the reciprocal of Sommerfeld‟s 

fine structure constant .  Cross sections have the units of area, and photoionization cross 

sections are usually given in Megabarns (Mb) with 1Mb = 10
-22

 m
2
.   

 
 

2.2. Non-relativistic R-matrix Theory 

2.2.1. Equation of Motion 

Here we consider a system that consists of an N-electron atomic target plus one 

electron that is initially bound and finally free in the case of photoionization [48,49], and 

represents the colliding electron in a scattering process.  The electromagnetic interaction 

between those charges particle is assumed to be the only phenomenon determining the 

behavior of the system.  Since all information on the system is contained in the 

wavefunction, we are required to solve the time-independent Schrödinger equation with 

appropriate boundary conditions. 

 H
N+1

 = E ,                                                                                                         (5) 
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where   is the wavefunction, E the total energy, and H
N+1

 the Hamiltonian of the (N+1)-

electrons system. 

The non-relativistic (N+1)-electrons Hamiltonian in a.u. can be written as: 

 
1 1

1 2

1

1 1

2

N N
N

n

n m nn nm

Z
H

r r
,                                                                         (6) 

where rn is the electronic radius vector drawn from the atomic nucleus with atomic 

number Z, and rnm = |rn-rm| the inter-electronic distance.  We assume that the nucleus is 

infinitely heavy, and can be considered as point charge.  The first two terms of this 

Hamiltonian are the one-electron terms, and represent the sum over the electron kinetic 

energy and the electron-nucleus Coulomb attraction.  The last term is called the two-

electron term, and represents the Coulomb repulsion between pairs of electrons.  The 

expansion of 1/rnm in spherical harmonics is written as the following: 

 *

1

1 4
ˆ ˆ( ) ( )

2 1
n m

nm

r
Y r Y r

r r
,                                                                    (7) 

where r< and r> = min and max (rn, rm), and standard techniques are used to evaluate the 

angular integrals.  The wavefunction , that are solutions of equation (5), are built as 

linear combination of antisymmetric products of one–electron functions in spherical polar 

coordinates. 

2.2.2. Target States 

To consider the photoionization of an N + 1 electron system, we start with the 

wave functions of the states of the N-electron final state system (known as target states 

for historical reasons) [15], constructed by introducing a set of N-electron states, and 

possibly pseudo-states, i , that are eigenfunctions of the equation 
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 N N

i i iH E ,                                                                                                      (8) 

with energies N

iE  given by 

N N

i j i ijH E .                                                                                            (9)   

i  is usually written as a configuration-interaction (CI) expansion in terms of some basis 

configuration functions i , 

1 2 1 2( , ,..., ) ( , ,..., )i N ik k N

k

x x x b x x x ,                                                                         (10)  

where j j jx r  stands for the spatial position and spin of the j
th

 electron, and ikb  are the 

i  configuration mixing coefficients found by diagonalizing the target Hamiltonian 

matrix.  The configuration functions i  are constructed from a bound orbital basis set 

consisting of self-consistent field (SCF) orbitals plus some additional pseudo-orbitals 

included to model electron correlation effects.  For a given i  configuration function, 

each one-electron orbital is a product of a radial function, a spherical harmonic and a spin 

function: 

 
1

( , ) ( ) ( , ) ( )l

l

m

nlm s nl l so r m P r Y X m
r

.                                                                 (11) 

Those orbitals form an orthonormal set, and their radial parts Pnl(r) satisfy the 

orthonormality relations, 

   
0

( ) ( )
i j i j i jn l n l n l n l n nP P P r P r dr .                                                                   (12) 

The radial functions Pnl(r) must be input to the R-matrix programs, and are obtained from 

atomic structure packages such as CIV3 [50], SUPERSTRUCTURE [13,53], or 

AUTOSTRUCTURE [14,51,52].  
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2.2.3. Channels, symmetries and selection rules 

There are some constraints involved in combining the scattering or bound electron 

with the target or core, and more constraints come from the selection rules for an electric 

dipole transition where the system absorbs a photon. 

2.2.3.1. Conservation of Total Angular Momentum and Parity 

Target N-electrons states are labeled by orbital angular momentum L
t
, spin 

angular momentum S
t
 and parity 

t
.  These states are constructed from linear 

combinations of configuration state functions which have the same (orbital and spin) 

angular momenta and parity.  A target state can be distinguished by the CSF 

(configuration state function) mixing coefficients, and it has a particular energy.  The 

(N+1)-electron or target + electron system is also characterized by total orbital angular 

momentum L, total spin angular momentum S, and overall parity .  L is obtained by 

coupling vectorially L
t
 and l

e
, the orbital angular momentum of the additional electron; S 

is formed by coupling S
t
 and s

e
, the spin angular momentum (1/2) of the additional 

electron.  One way of doing the above vectorial coupling is to apply the usual triangular 

relation: |L
t
 – l

e
|  L  L

t
 +l

e
, where the difference between each L is 1.  Each triplet of 

quantum numbers L, S and  are referred to as a “„symmetry”.  Thus the symmetry of the 

(N+1)-electron system is composed of possible “channels” which are the different ways 

of coupling L
t
S

t t
 and l

e
s

e e
 to obtain LS .  

In a scattering process, the symmetry is conserved; the channel will change for an 

inelastic scattering, but will not for an elastic scattering.  In a photoionization 

phenomenon, the dipole transition process involves absorption of a photon of angular 
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momentum 1 and a change of parity; the symmetry (LS ) is not conserved, but the total 

spin S is conserved. Consequently photoionization from a specific bound state limits the 

number of symmetries in the calculation to two or three. 

2.2.3.2. Conservation of Energy 

Considering E as the total energy and N

iE  the energy of the target state coupled to 

the ith channel in a.u.  The scattering electron channel energy 2

ik , in Ry, is given by 2

ik  = 

2(E - N

iE ).  An open channel has 2

ik  > 0, a closed channel has 2

ik  < 0, and at the channel 

threshold 2

ik  =0.  In a photoionization process with photon energy  in Ry and an initial 

state energy 1

0

NE  in a.u., then the photoelectron energy 2

ik  in Ry is given by 2

ik  = 2  + 

2( 1

0

NE  - N

iE ), where  is the photon energy in a.u.. 

2.2.4. Partition of Configuration Space 

The R-matrix theory is based on partitioning the configuration space describing 

the photoionization process into two regions (internal and external regions) by a sphere of 

radius a centered on the target nucleus [24]; in each of these two regions, the process has 

distinctively different physical properties; therefore the wavefunction describing the 

process have region-dependent representation.  In the internal region (r  a), with r 

representing the relative coordinate of the photoelectron and the target nucleus, electron 

exchange and correlation between the photoelectron and the N-electron target are 

important, and the (N+1)-electron collision complex has the same behavior as a bound 

state.  As a consequence, a configuration interaction (CI) expansion of this complex, 

similar to that used in bound state calculations, is adopted.  In the external region (r > a), 

with a chosen large enough so that the charge distribution of the target is contained inside 
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the sphere, electron exchange between the photoelectron and the target is negligible; the 

photoelectron moves in a simple long-range potential of the target.  On the boundary the 

R-matrix links those two regions.  The N-electron target orbitals equation (11) must 

vanish in the external region; in practice this means, for all bound orbitals included in the 

calculations, the radius a is chosen such that | Pnl(r=a) | < , where  is some small 

number. 

2.2.5. Internal Region 

In the internal region, the (N+1)th electron is considered, in quantum mechanics, 

as undistinguishable from the N target electrons.  Since, in this region, the (N+1)-electron 

complex behaves in a similar way to a bound state, the total wavefunction that is solution 

to equation (5) is expanded in a configuration interaction basis which takes the following 

general form: 

1 2 1 1 1 1 1 1 1

1

1
ˆ( , ,..., ) ( ,..., ; ) ( ) ( ,..., )ik N ijk N N N ij N jk j N

ij jN

ψ x x x A c x x r σ u r d χ x x
r

   (13) 

for each set of quantum numbers S, L and .  In equation (13), j is the continuum basis 

index for a particular k, i is the channel index indicating a pair (L
t
S

t t
, l

e
s

e e
) coupled to 

get the total orbital and spin angular momenta S, L and parity .  The ix  denote the 

spatial îr  and the spin iσ coordinates of the ith electron.  A is the antisymmetrization 

operator (
11

2

1

1 1
N

n

n

N ) which takes account of the exchange effects between the 

target electrons and the free electron, and the i  are the channel functions obtained by 

coupling the target state i  defined by equations (9) and (10) and the angular and spin 

functions of the continuum electron to form states of the same total angular momentum 
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and parity.  The functions iju  (the only non-zero functions in equation (13) at the surface 

boundary r = a) are the radial continuum basis orbitals representing the unbound electron.  

Finally the iχ  represent the quadratically integrable (L
2
) functions, formed from the 

bound orbitals, and included to ensure completeness of the total wavefunction and to 

allow for electron correlation effects.  The parameters ijkc  and jkd  are calculated by 

diagonalizing the (N+1)-electron Hamiltonian within the inner region of the R-matrix 

box: 

 N+1

k k' k kk'ψ H ψ = E δ .                                                                                       (14) 

The finite range of this integration (from r = 0 to r = a) is indicated by the use of 

round brackets in equation (14).  The (N+1)-electron Hamiltonian operator H
N+1

 is now 

projected onto the space of the functions k.  If we write equation (13) in a more 

convenient form [15,48] 

 k kψ V ,                                                                                                    (15) 

where  denote collectively the basis functions i ijA u  and j , and the kV  denote 

collectively the coefficients ijkc  and jkd ; then the Hamiltonian matrix elements are 

determined by 

 1

' '

NH H .                                                                                         (16) 

To evaluate the above matrix elements, we proceed as in equation (9), except that 

now all radial integrals involving continuum orbitals are taken over the finite range of r 

(inside the internal region).  The diagonalization of this matrix leads to the eigenvector 
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kV  (i.e. the coefficients ijkc  and jkd  in equation (13)), together with the eigenvalues kE  

in equation (14). 

2.2.6. Continuum Orbitals 

We now consider the form adopted for the radial continuum basis orbitals uij(r) in 

expression (13).  For each angular momentum li, the uij(r) generally are chosen to be 

solutions of the zero-order radial differential equation that follows 

 
2

2

02 2

( 1)d
( ) ( ) ( )

dr i

i i
ij ij ijn nl

n

l l
V r k u r P r

r
,                                             (17) 

and satisfying the fixed (homogeneous) boundary conditions 

 (0) 0iju ,  
( )

ij

ij r a

dua
b

u a dr
;                                                                (18) 

where b is an arbitrary constant which is usually taken to be zero, a is the radius of the 

sphere defining the internal region, and 
2

ijk  are the eigenvalues in Rydberg.  The 

summation index n, in equation (17), goes over the reduced radial physical orbitals 

( )
inlP r  used to construct the target states included in expansion (13) for the given li.  

0 ( )V r  is a zero-order potential which, near the nucleus, behaves like 2Z/r; it is normally 

chosen to be the static potential of the target.  The Lagrange multipliers, ijn , ensure that 

the continuum orbitals are orthogonal to bound orbitals ( )
inlP r  of the same angular 

symmetry; they are chosen so that the orthogonality constraints  

 
0

( ) ( ) 0
i

a

ij nlu r P r dr                                                                                             (19) 

are satisfied for all j and n.  It follows that the radial continuum basis orbitals uij 

generated that way are mutually orthogonal, and can be normalized so that 
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 ' '
0

( ) ( )
a

ij ij jj
u r u r dr .                                                                                          (20) 

It follows, from this and equation (12), that orbitals  

 
min max 1 2,......, , , ,........

i in l n l i iP P u u          with min 1in l                                             (21) 

form a complete set of functions over the range r = 0 to r = a for each il .  The bound and 

continuum orbitals defined in this way, as well as the k  basis expansion in equation 

(13), are all independent of the total (N+1)-electron energy.  A detailed discussion of the 

equation (17) has been given  by W. D. Robb [54]. 

2.2.7. Derivation of the R-matrix  

For any total (N+1)-electron system energy E, the total wavefunction , that 

satisfies equations (5), in the internal region and the R-matrix on the boundary, can be 

established using a theory developed by Burke et al [20,21,28].    is expanded in terms 

of the basis k in equation (13) as 

 Ek k

k

Ψ = A ψ ,                                                                                                     (22) 

where the energy dependence is carried through coefficients EkA  knowing that k are 

energy independent. 

In order to determine the EkA , we start from the relation 

 N+1 N+1

k k k kψ H ψ - ψ H ψ = E - E ψ |ψ ,                                               (23) 

which follows from equations (5), (14) and (22).  Only the kinetic energy operator 

contributes to the left hand side of this equation, and so we obtain 

 2 2

k N+1 N+1 k k k

1
- N +1 ψ ψ - ψ ψ = E - E ψ |ψ

2
.                           (24) 
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We can simplify equation (24) by noting that the only non-zero contribution 

occurs when the operator 2

1N
 acts on the continuum orbitals.  Using equation (22), we 

obtain 

' ' '

'

2 2

1 1 1 1 1 1

1

2
i j j iik N N N N N ik NEk jk jk

ijk

A w r w r w r w r  

  |k kE E ,                                                                                 (25) 

where ikw  is defined by 

 
1 1

( ) ( ) |iik ijk ij k

j

w r c u r
r r

.                                                                     (26)                   

We also define the reduced radial wavefunction of the scattered electron in 

channel i at energy E: 

 
1 1

( ) ( ) |ii Ek ik

k

F r A w r
r r

.                                                                     (27) 

In equations (26) and (27) the integration is carried out over all electron space and 

spin coordinates except the radial coordinate r of the scattered electron.  Using the 

orthonormality condition on the i , we obtain 

 
2 2

2 2

1 d d

2 dr dr
ik i i ik k Ek

i

w F F w E E A .                                         (28) 

Applying the Green‟s theorem, and using the boundary conditions in equation (18), we 

obtain 

 
d1

( )
2 d

i
ik i k Ek

i r a

F b
w a F E E A

r a
.                                                      (29) 

This allows us to extract the EkA  coefficients: 
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1 d1

( )
2 d

i
Ek k ik i

i r a

F
A E E w a a bF

a r
.                                                   (30) 

Multiplying by jkw , and summing over k we obtain, using equation (27), 

 
d

( ) ( )
d

j

i ij j

j r a

F
F a R E a bF

r
,                                                                     (31) 

where we have introduced the R-matrix, whose elements are defined by 

 
( ) ( )1

( )
2

ik jk

ij

k k

w a w a
R E

a E E
.                                                                              (32)  

Equations (31) and (32) are the basic equations describing the solution of the (N+1)-

electron (electron-target) problem in the internal region.  The surface amplitudes ( )ikw a  

and the poles kE  of the R-matrix are obtained directly from the eigenvectors and 

eigenvalues of the Hamiltonian matrix defined by equation (14).  The R-matrix is 

obtained for all energies by diagonalizing 1NH  once for each set of quantum number L S 

and parity  of the electron-target system.  The logarithmic derivative of the reduced 

radial wavefunction of the scattered electron on the boundary of the internal region is 

given by equation (30), and is to be matched across the boundary to the external region. 

2.2.8. Buttle Correction 

Since the radial continuum basis orbitals ( )iju r  satisfy homogeneous boundary 

condition in equation (18), it is necessary to add a “Buttle correction” to the R-matrix 

expansion (32) in order to obtain accurate results.  This correction, first introduced by 

Buttle [55], rectifies the omission of high-lying pole terms in expansion (32).  In practice, 

it is only necessary to correct the diagonal elements of the R-matrix since the off-diagonal 

elements oscillate in sign, and converge rapidly.  If cn  radial continuum basis orbitals are 
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included for a given orbital angular momentum il , then the Buttle correction to the 

diagonal elements of the R-matrix at the energy 2

ik  is given by 

 

2 21
0

2

2 2 0 2 2
1 1

( ) ( )d1 1
( , )

( ) d

c

c

n
ij ijc i

ii c i

j n jij i i ij ir a

u a u aua
R n k b

a k k u a r a k k
,           (33)  

where ( )iju r  and ijk  refer to the jth eigensolution of equation (17), and 0

iu is the solution 

to the zero-order differential equation (17) at the channel energy 2

ik  of interest without 

applying the boundary condition in equation (18); in those conditions, equation (17) 

becomes 

 
2

2 0

02 2

( 1)d
( ) ( ) ( )

dr i

i i
ij i ijk kl

k

l l
V r k u r P r

r
.                                             (34) 

In place of equation (32), we therefore use the Buttle corrected R-matrix: 

 2
( ) ( )1

( ) ( , )
2

ik jk c

ij ii c i ij

k k

w a w a
R E R n k

a E E
.                                                       (35) 

2.2.9. External Region Solution 

In the external region, electron exchange and correlation effects between colliding 

electron and target electrons are negligible, and the scattered electron is outside the atom 

or ion, and can be considered distinct from the N target electrons.  The total wavefunction 

is expanded in the form 

1 2 1 1 1 1 1

1 1

1
ˆ( , ,..., ) ( ,..., ; ) ( )

n

iN N N N i N

i N

ψ x x x x x r σ F r
r

, r a ,                   (36) 

where n is the number of channel functions i  retained in equation (13), but no 

antisymmetrisation is required.  Substituting this expansion into the Schrödinger equation 

(5), and projecting onto the channel functions i  then yields the following set of coupled 
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second-order differential equations, satisfied by the reduced radial functions ( )iF r of the 

form 

2
2

2 2
1

( 1)d 2
( ) 2 ( ) ( )

dr

n
i i

i i ij j

j

l l z
k F r V r F r

r r
,    1,i n  ( r a ),             (37) 

Here il  and 2

ik  are the channel angular momenta and energies, and the potential matrix 

ijV  is given by 

*1

, 1 1 1
1 1

4 1
ˆ ˆ( )

2 1

N N

i j i jij m N m N m

m m

V r r Y r Y r r
r

,           (38) 

where we have expanded 
1

, 1m Nr  using equation (7) with 1m Nr r  r.  Defining the long 

range potential coefficients ija  in terms of Legendre polynomials as 

, 1

1

cos
N

i jij m m N

m

a r P ,                                                                    (39) 

and noting that 
0

ija  = ijN  because of the orthonormality of the i , the differential 

equations (37) reduce to 

max2
2

2 2 1
1 1

( 1)d
( ) 2 ( )

dr

n
iji i

i i j

j

al l z
k F r F r

r r r
,                                           (40) 

where z = Z - N is the residual target charge, and the multipole expansion of the long-

range potential is limited to max  terms since the range of  for which ija  0 is 

determined by the angular momenta of the channels i and j.  In practice we include only 

contributions from  = 1 and  = 2; from the fact that the function i  are small for 

r a  [56,57].  From this we can write 

 
2

( )ij

z
V r

r
  for r a .                                                                   [41]       



21 

 

The multipole potentials are therefore small perturbations.  

2.2.9.1. Asymptotic Form of the Scattered Electron Wavefunction 

             Equation (40) can be integrated outwards using the R-matrix boundary conditions 

of equation (31) at r = a, and then fitting to an asymptotic expansion which can accurately 

represent solutions to equation (40) [58,61].  In the asymptotic region (r  ), the 

reactance K-matrix, which is a real symmetric matrix, describes the asymptotic form of 

the wavefunction for the scattered electron; the boundary conditions at infinity [55] are 

 

1

2 sin cos open channels
( )

exp closed channels
~ i i ij i ij

ij
r

i ij

k K
F r ,                                 (42)  

where the second index j on ijF  distinguishes the na linearly independent solutions of 

equation (40); na is the number of open channels, and 

1
ln 2 arg 1 i

2

ln 2

i i i i i i i

i

i

i i i

i

k r l k r l

z

k

z
k r k r

k

.                                                    (43)  

2.2.9.2. Asymptotic Form of the Photoelectron Wavefunction 

The asymptotic boundary conditions for photoionization are that the continuum 

wavefunction must have the asymptotic form corresponding to a Coulomb modified 

plane wave in the final state channel and to ingoing-waves in all open channels.  It was 

first explained by Breit and Bethe [62], and was used by Henry and Lipsky [63] and 

Burke [44].  The photoelectron wavefunction boundary conditions at infinity can be 

written in terms of the matrix K in matrix notation as 
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 F (r) ~
r

(2/ k)
1/2

(sin  +cos  K)(I +iK)
-1

.                                                          (44)  

The wavefunction in the external region can only be calculated with a full 

determination of the reactance matrix K that appears in equation (42); to do so we need to 

find the wave function at the boundary (r = a). 

2.2.10. Matching of Solutions - with open channels 

In previous sections (2.2.7 and 2.2.9) the wavefunction in each of both internal 

and external regions has been specified; now we need to link these two regions to 

complete the solution.  In matrix formulation, the internal region wavefunction in 

equation (31) becomes, with the prime to specify (d/dr): 

 F = aR.F’ – bR.F ( )r a .                                                                            (45)  

To relate the n n dimensional R-matrix with the na na dimensional K-matrix 

defined in equation (42), we introduce n + na linearly independent solutions sij(r) and 

cij(r) of equation (40) satisfying the boundary conditions 

 ,

,

( ) sin 1, 1,

( ) cos 1, 1,

( ) exp 1, 1,

~ a

a

ij i ij a

ij i i j n a
r

ij i i j n a

s r i n j n

c r i n j n

c r i n j n n

,                                           (46)    

where i  and i  are given by equation (43).  We expand the reduced radial wavefunction 

( )ijF r  as a linear combination of these asymptotic solutions: 

 F = s + cK (r  a).                                                                                          (47)   

Differentiating: 

F’ = s’ + c’K,                                                                                                       (48) 

and substituting this into equation (45) to match the internal and external region solutions 

on the boundary so we can eliminate F and F’: 
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s +cK = aR(s’ + c’K) – bR (s + cK).                                                                   (49) 

Solving for K let: 

A = -s + aR(s’ - 
b

a
s),  B = +c - aR(c’ - 

b

a
c),                                          (50) 

then 

BK = A or K = B
-1

A,                                                             (51) 

which completes the evaluation of the reactance matrix K; it represents the asymptotic 

form of the  wavefunction, and contains information for internal and external regions. 

2.2.11. Electron Collision Cross Section 

From the reactance matrix K scattering observables can be determined.  We can 

then define the na na dimensional S-matrix and T-matrix in terms of K-matrix by: 

S = (1 + iK)(1 – iK)
-1

  and T =  2iK(1 – iK)
-1

.                                                     (52) 

The total electron collision cross section for a transition from an initial state i to final 

state j is given, in atomic units, by 

 
2

2
ζ( , ) (2 1)(2 1)

2 (2 1)(2 1)
i

LS

ji

LS l lji i i

i j L S T
k L S

.                                (53) 

In this equation, Li and Si are the target orbital and spin angular momenta, and li and lj are 

the incident and scattered electron orbital angular momenta.  The whole calculation has to 

be repeated in the internal, external and asymptotic regions for all significant L, S and  

values that are conserved in the collision. 

2.3. R-matrix Theory of Photoionization 

The extension of the R-matrix theory of electron-atom scattering to treat atomic 

photoionization was first make by Burke and Taylor [48], and developed further by 

Berrington et al [15,35,56].  
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2.3.1. Matching of Solutions – all channels closed 

The internal region wavefunction and the external region equations for closed 

channels are exactly as described in Sections 2.2.7 and 2.2.9.  However, in the bound 

state problem, the wavefuncton satisfies different asymptotic boundary conditions from 

the free-state solutions discussed in Section 2.2.10, and this leads to a different matching 

condition. 

When all of the channels are closed, we can define n linearly independent 

solutions of the external region equation (40).  These satisfy the boundary conditions in 

equation (46): 

 ,( ) exp 1, 1,~ij i i j
r

c r i n j n ,                                                            (54) 

where  is given by equation (43).  We can expand the required solutions in terms of 

these solutions [cf. equation (47)]: 

 ( )iF r = cx = 
1

( ) 1, ( )
n

ij j

j

c r x i n r a .                                                   (55) 

The coefficient jx  can then be determined by substituting this expression for iF  into 

equation (45), which leads to the following n homogeneous equations [cf. equation (51)]: 

 cx = aRc’x – bRcx.                                                                                             (56) 

Solving for x let 

 B = c – aR(c’ – 
b

a
c),                                                                                           (57) 

which implies Bx = 0 = 
1

1,
n

ij j

j

B rx i n .                                                               (58) 

These equations have only nontrivial solutions at the negative energy eigenvalues 

corresponding to the bound states of the electron-atom system.  The condition for a 
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solution is det B = 0.  An iterative procedure for the energy has to be adopted to achieve 

this matching which involves the use of successive linearisations [57,64] to carry out the 

calculation in the vicinity of the R-matrix poles. 

2.3.2. Differential Cross Section 

The differential cross section for initial state i to final state f, with photoelectron 

ejected into solid angle d  in direction k̂ , is defined by 

 
dζ 1

d

if

ifW
F

,                                                                                                       (59) 

where F is the incident photon flux and W the transition probability per unit time into a 

group of states with energies in the region E  dE.  From Fermi‟s golden rule we have 

  
22

if fi fW T ,                                                                                               (60) 

where f  is the density of states at energy E.  Here we are using the S.I. units.  Note that 

this is first order perturbation theory, and it is valid as long as the time t, during which the 

perturbation fiT  acts, satisfies the conditions 1ifW t  and 2dEt .   

The transition amplitude fiT  for photoionization to a final state with total energy 

E is 

 intfi fE iT H ,                                                                                            (61) 

where the final state wavefunction is fE , and the initial bound state wavefunction is i  

with energy Ei.  

The interaction part of the Hamiltonian intH  in equation (61) is an additional term 

in the expression of the (N+1)-electron system Hamiltonian (6) characterizing the 

interaction between the atomic system and the electromagnetic field described by the 
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vector potential ( , )n tA r .  intH  can be expressed in terms of the vector potential ( , )nA r t  

as   

 
1

int

1

( , ).
N

n n

n

ie
H t

mc
A r ,                                                                                    (62) 

where there are N+1 electrons in the system.  We now write 

 ( )

0
ˆ( , ) complexconjugateni t

n t A erA r ε
k.r ,                                                       (63) 

where ε̂  is the polarization vector of the photon beam, and where the first term in 

equation (63) corresponds to photon absorption and the second term (complex conjugate) 

to photon emission.  0A  is the complex amplitude.  The incident flux F can be expressed 

[65] in terms of the Poynting vector P and the complex amplitude 0A  by 

 
2

0

1
F P A

h c
.                                                                                            (64) 

We need to normalize wavefunctions in expression (61); the normalization of the 

initial state wavefunction i  is obtained according to 

 1i i ,                                                                                                        (65) 

and we define the finale state continuum wavefunction fE  normalization by 

 ' ' '

'( )fE f E ff
E E ,                                                                               (66) 

corresponding to the density of states factor f  = 1 in equation (60). 

For wavelengths of interest, 1nk.r , this is known as the dipole approximation; 

therefore the exponential in equation (63) can be replaced by unity.  Combining previous 

equations, we obtain the velocity form of the differential cross section for 

photoionization: 
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V 2 2
2

2

dζ 2
ˆ.

d

if

fE V i

e

m c
D ,                                                                        (67) 

where we use the dipole velocity operator 

 
1

1

N

V n

n

D .                                                                                                        (68) 

We can derive the dipole length form of the cross section using the operator identity  

 
d 1

,
d i

n n
n H

m t

p r
r                                                                                            (69) 

to give 

 
3

2dζ 8
ˆ.

d

L

if

fE L i
c

D ,                                                                           (70) 

where LD  is the dipole length operator; 

 
1

1

N

L n

n

D r .                                                                                                          (71) 

Working now in atomic units, and using  as photon energy expressed in a.u., the 

expressions for differential cross section in both forms (length and velocity) become 

 
2

2 2

0

dζ
ˆ4π αa ω .

d

L

if

fE L iD ,                                                                      (72) 

 and 

 

V 2 2
2

0
dζ 4π αa

ˆ.
d ω

if

fE V iD ,                                                                        (73) 

where 0a  is the Bohr radius of the  hydrogen atom, and  the fine-structure constant. 

We must note that if exact wavefunctions are used, the dipole length and dipole 

velocity cross sections are identical.  However, equations (72) and (73), in general, give 

different results, and the magnitude in the difference is often considered as an indication 



28 

 

of the accuracy of the approximation.  In addition to these two approximations, there is a 

third one defined by Chandrasekhar in 1945 [66] using the acceleration form of the dipole 

operator.  The acceleration form emphasizes on the wavefunction in the vicinity of the 

nucleus, and usually gives less accurate results than the first two also the dipole velocity 

and acceleration forms involve derivative of approximate functions therefore their 

accuracy might be lower than the length form.  Detailed discussion about length and 

velocity formulas has been carried out by Starace [67,68] who argued for choosing length 

results over velocity results in certain model Hamiltonians.  This discussion continued 

with Grant [69], and then with Grant and Starace [70] who resolved their difference.  In 

general, the dipole length matrix elements have their important contribution from 

relatively large r in the asymptotic region of the wavefunction, dipole velocity matrix 

elements from intermediate r, and dipole acceleration from near the nucleus.   

2.3.3. Reduced Matrix Elements 

The reduced dipole matrix a D b  between states a and b is expressed by the 

Wigner-Eckart theorem [71,72] (using convention of Fano and Racah [73]) as 

  
1/ 2

1 1

(2 1)

( ; ) a b

a
a b a L b L

b a L

L
L D L L M D L M

C L lL M
,                                           (74) 

where   identifies a component of the dipole vector.  When  =0, the operator on the 

right hand side of equation (74) represents the dipole length or the dipole velocity 

operator from equations (68) and (71) multiplied by the photon polarization vector ε̂  

with projection .  The reduced dipole matrix element is the sum of two contributions: 

(I)D  from the internal region ( r a ) and (O)D  from the external region ( r a ), and can 

be written as 
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(I) (O)( , )D a b a b D DD .                                                                         (75) 

To evaluate each of those two contributions, we need to consider two physical 

states a  and b  with expansion coefficients akA  and 'bk
A  as shown in equation (22).     

2.3.3.1. Internal Region Contribution 

The internal region contribution to equation (75) is defined as 

'

'

(I) ( ) '( , ) ( , )I

a b ak bk
kk

D a b A M k k AD ,                                                (76) 

where 

'

' (I)( , ) k k
M k k D .                                                                                   (77) 

To evaluate this, let  denote collectively the basis functions, and the kV  denote 

collectively the coefficients ijkc  and jkd  in equation (13).  Then we define a reduced 

matrix D with elements 

' '

(I)D D .                                                                                           (78) 

We can thus write equation (77) in the following matrix form: 

'

' T( , ) k k
M k k V DV .                                                                                             (79) 

The EkA  coefficients in equation (76) are given by equation (30), which, with b=0 (its 

usual value in practice) can be written as 

1 d1
( )

2 d

i
Ek k ik

i r a

F
A E E w a

r
                                                                 (80) 

      
11

2
kE E

a
w

T
R

-1
F, 

where we have used equation (31), and where the w and R matrices are given by 

equations (26) and (35).  Defining diagonal matrices Ga and Gb with diagonal elements 
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11

2
Ek kG E E

a
,                                                                                           (81) 

equation (75) becomes 

 (I) * -1 -1( , ) T T

a a a a b b b bD a b F R w G MG w R F .                                                               (82) 

The F matrices are given by equations (47) and (55) depending on whether free states or 

bound states are involved, and are considered in more detail in following subsections. 

2.3.3.2. External Region Contribution 

  In the external region, we neglect the antisymmetrisation, and using the length 

operator, we can put: 

 D = R + r,                                                                                                            (83) 

where R is the operator for a transition in the target, and r that for a transition by the 

outer electron.  We then obtain the external region contribution as 

 (O)

' ' ' '

'

( , ) |ii ia i b ii ia i b

ii

a b F F F FD r ,                                                 (84) 

where  

 ' ' ' '
ˆ

ii i i ii i iandR r .                                                            (85) 

In equation (85), i  represents the channel function in expansion (13).  The coefficient 

'ii  is non-zero only if there is an optically allowed transition between the target states 

belonging to channels i and 'i , and if 'i il l ; the coefficient 'ii  is purely algebraic, and is 

non-zero only if the channels i and 'i  belong to the same target state, and if ' 1i il l . 

In the case where the initial states are strongly bound, and can be neglected for r > a, the 

significant contribution comes from the internal region.  However, in the case of 
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photoionization of excited states and photodetachment of negative ions, a significant 

contribution to the dipole matrix elements will come from the external region [48]. 

2.3.4. Oscillator Strengths 

 From calculations of dipole matrix elements, we can now define the line-strength 

for a dipole transition between state a and state b with respective energies (Ry) Ea and Eb 

in the length and velocity formulations: 

 
L

2

L

22

V V

( , )

( , ) 4 b a

S b a b D a

S b a E E b D a

.                                                                   (86) 

The oscillator strength is a dimensionless quantity ( , )f b a  defined by 

 
1

( , ) ( , )
3

a b ag f b a E E S b a ,                                                                           (87) 

where ag  is the statistical weight or degeneracy of the initial state: (2 1)(2 1)a aS L  or 

(2 1)aJ  according to which coupling scheme we are using.  The wavefunction 

appearing in the expression for reduced dipole matrix elements in equation (86) must 

satisfy boundary conditions in equation (54). 

2.3.5. Photoionization Cross Section 

2.3.5.1. Initial State Wavefunction 

  The boundary conditions satisfied by i  correspond to an asymptotically 

decaying wave in all channels, and it can be expanded in terms of the R-matrix basis in 

the internal region defined by equation (13).  The appropriate expansion follows from 

equation (22); and this leads to 

 i k ki

k

ψ A ,                                                                                                     (88) 
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where the coefficients kiA  are determined by solving the differential equation in the 

external region, subject to the bound state boundary conditions discussed above [equation 

(54)], and matching to the R-matrix boundary condition at r = a as in equation (80).  The 

basis functions kψ  are defined by equation (13), and the initial bound state i  is an 

eigenstate of the total orbital angular momentum L, the total spin angular momentum S 

and the parity .  

2.3.5.2. Final State Wavefunction 

 The boundary conditions satisfied by the final state wavefunction ˆ( )fE k  

correspond to a plane wave in the direction of the ejected electron momentum k̂ , and 

ingoing waves in all open channels.  In the non-relativistic case (LS coupling), ˆ( )fE k  

can be expanded in the form 

1/ 2

ˆ ˆ( ) i exp( iζ ) ( ) ( ; ) ( ; 1/ 2)
lf f

f l L l f f S ff f f f

f l f

ml

fE l L L l S S f

l m L

Y LM M m SM Mk = k C C ,        (89)                                                 

where f  is an eigenstate of total orbital angular momentum L and total spin angular 

momentum S, the 
1 2

12 12 1 2( ; )
j j

j m m mC  are Clebsch-Gordan coefficients, 
f ff f L SL S M M  are 

the quantum numbers defining the final state of the ion, ˆ( )
l f

l f

m
Y k  is the spherical harmonic 

[74] describing the ejected electron, and ζ arg ( 1 i )
fl f fl  with ( ) /f fZ N k . 

We can then expand f  in the form 

f k kf

k

ψ A ,                                                                                                   (90)      
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where the coefficients kfA  are determined by solving the differential equation in the 

external region, subject to the free state boundary conditions discussed above [equation 

(44)], and matching to the R-matrix boundary condition at r = a as in equation (80).  

 The final continuum state wavefunction ˆ(fE k)  involves a summation over all L 

and  values which give a significant contribution to the photoionization cross section 

defined by equations (72) and (72), where the total spin S is conserved by the dipole 

operators in those equations. 

2.3.5.3. Expression of the Total Cross Section 

 Let us consider a transition from an initial bound state i  with energy iE  to a final 

free state f of energy ωf iE E  (ω  is the photon energy in Rydbergs), and leaving the 

final ion in a state defined by f fL S ; the differential cross section for photoionization is 

obtained by substituting equations (89) into either equation (72) or (73), and using 

equation (74) with Fano and Racah notation.  After averaging over the initial magnetic 

quantum numbers, and summing over the final magnetic quantum numbers, we find  

 

' '

'

'
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'
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'

'

0

1 1

dζ 4π αa q
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i f f i

L

l l L L

l

C l C l W Ll L l W L L L l

YD D k

,              (91)                   

where q =  in the length approximation, and q = 1/  in the velocity approximation. 

 In the case of photoionization by an umpolarized light, the total cross section can 

be obtained by integrating equation (91) over all ejected electron angles, and averaging 
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over photon polarization .  In this case, only l = 0 contributes, and we obtain the total 

cross section as 

 
2 2

2
0

1

4π αa q
ζ =

3 2 1
f

if f i

l LiL
D .                                                                      (92) 

The approach of Berrington et al [15] consists of using the dipole matrix elements 

to define a generalized line strength similar to equation (86) for transition from an initial 

bound state i  with energy iE  to a final free state f of energy ωf iE E  (ω  is the 

photon energy in Rydbergs): 

 

L

V

2

L

2
2

V

( , )

( , ) 4ω

f

f

f f f

Ll

f f f

Ll

S E i Ll E D i

S E i Ll E D i

.                                                                  (93) 

The photoionization cross section is then obtained (length or velocity form) as 

 
2 2

04π αa ω
ζ =

3
if S

g
,                                                                                                  (94) 

where g is the statistical weight of the initial bound state, and the generalized line-

strength is calculated using final state wavefunctions normalized per unit energy in Ryd.  

The constant part in equation (94) is 2 2

04π αa /3 2.689.......Mb .                                                                                             

2.3.6. The Thomas-Reiche-Kuhn Sum Rule 

 An interesting rule about the oscillator strength distribution [75] is the Thomas-

Reiche-Kuhn [76,77] sum rule given by 

 
d

S(0)= d 1
dn

n
E

n

f
f E N

E
,                                                                           (95) 
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where 
n

 is the sum over the discrete states with oscillator strength nf , and N+1 is the 

number of electrons in the initial state.  We note that the summation appearing in 

equation (95) can be broken down into partial sums over excitations out of each subshell, 

and is to be carried out over all energy levels of the atom or ion (all the eigenstates of the 

Hamiltonian of the atom or ion), including continuum states [72].     

2.4. Relativistic R-matrix Theory 

Relativistic effects become important in both the target wavefunction and the 

scattered electron (photoelectron) wavefunction as the charge of the nucleus increases, 

even for low energy electron scattering (photoionization).   

 For electrons with kinetic energies far below the rest energy 2 511KeVmc , the 

Breit-Pauli Hamiltonian 

 1 1 1

BP REL

N N NH H H ,                                                                                           (96) 

 introduced by Bethe and Salpeter [78] for the case of one- and two-electrons, is 

sufficient to determine the equation of motion.  In equation (96), 1NH  is the non-

relativistic Hamiltonian given by equation (6), and 1

REL

NH  gives rise to perturbative 

contributions whose relative magnitudes are low powers of .  In the expression of 1

REL

NH , 

we only retain the one-electron terms resulting from the reduction of the Dirac equation 

to Breit-Pauli form up to order 2 4α Z , i.e. the mass-correction term, the one-electron 

Darwin term and the spin-orbit term. 

 The low-Z Breit-Pauli Hamiltonian for an (N+1)-electron system can then be 

written as 

 1 1 1 1 1

BP mass D SO

N N N N NH H H H H ,                                                                   (97) 
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where each of the one-electron Breit-Pauli terms can optionally be included: 

 
2 1

1 4

mass

1

α
(mass-correction)

8

N
N

n

n

H                                                    (98) 

 
2 1

1 2

D

1

α Z 1
(Darwin)

8

N
N

n

n n

H
r

                                                       (99) 

 
2 1

1

SO 3
1

.α Z
(spin-orbit)

2

N
N n n

n n

H
r

l s
                                                   (100) 

We note that the non-fine-structure part of the Hamiltonian  

1 1 1 1

nfs mass D

N N N NH H H H                                                                               (101)    

commutes with L
2
, S

2
, Lz, Sz and parity, whereas 1

BP

NH  and 1

SO

NH  only commute with J
2
, 

Jz and parity.   

 By including the spin-orbit interaction, the (N+1)-electron R-matrix basis 

functions are defined as in equation (13), but for each total angular momentum J and 

parity.  A pair-coupling scheme 

 and /iJ l = K JK 1 2                                                                        (102) 

is used to evaluate the matrix elements [79,80], where iJ  is the total angular momentum 

of the target state, l  is the orbital angular momentum of the incident electron and ½ the 

spin of the incident electron.  In this approach, Hamiltonian matrices and dipole matrices 

are first determined in LS-coupling, and then transformed using a unitary transformation 

to pair-coupling.                   

 

 

 



37 

 

2.5. Quantum Defect and Rydberg Series 

 Atomic spectra often reveal phenomena associated with a Rydberg series [75]; 

those are states where one of the electrons is in an nl orbital, with n describing a sequence 

of values.  For such a series, a useful concept is that of quantum defect parameter .  In 

atomic hydrogen the ionization energy (IE) is 1/(2n
2
) au.  In complex neutral systems, the 

effective charge would be the same as in hydrogen at large r.  As n increases, the mean 

radius becomes larger, and the probability of the electron being in the hydrogen-like 

potential increases.  Thus, an effective quantum number n* = n -  could be defined such 

that 

 
2

1
IE( )

2( ν)
nl

n
.                                                                                            (103) 

 In general, when we are not dealing with neutral systems, equation (103) must be 

modified to 

 

2
1 1

IE( )
2 ν

Z N
nl

n
.                                                                                    (104) 

 Quantum defect theory (QDT) has been developed to use in collision problems, 

and has been used for photoionization calculations.  From one-channel the QDT was 

extended to many-channel problem (MQDT) [81].  For non-relativistic MQDT, if a level 

with principal quantum number n has total energy E, and has a core state with energy Ei 

for channel i and residual charge z, then the effective quantum number qi are related to 

those previous quantities by 

 

2

1

2
i

i

z
E E

q
,                                                                                               (105) 

and the quantum defects ν i  for this level are defined as 
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 νi in q .                                                                                                         (106) 

 

 

2.6. Resonance Analysis Theory with the QB Program 

2.6.1. The Role of Resonances 

In many cases, photoionization cross sections are dominated by resonances 

(autoionizing states) in certain energy ranges.  As we have schematically shown it in 

equations (1) and (2), the photoionization process can proceed through either the direct 

pathway (1) or through an intermediate resonance state (2), and interference between 

these two routes occurs, giving rise to well-known absorption line profile which is 

represented [82,83] by the formula 

 

2

a b2

ε
ζ=ζ ζ

1 ε

q
.                                                                                           (107)  

In equation (107), ε=2(E -E ) /r , Er  is the resonance energy,  is the resonance width, 

q  is the line profile index that defines the line shape, and aζ  and bζ  are background 

cross sections which are slowly varying with energy. 

 Resonances are built automatically into photoionization cross section through the 

behavior of the final state wavefunction ˆ( )fE k  which must have sufficiently versatile 

description to allow both routes in equations (1) and (2) to be adequately represented.  

This means, in practice, the final state wavefunction must contain both the open channels 

into which the resonance decays and the closed channels corresponding to the appropriate 

Rydberg series or resonance [44]. 
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 Let us consider resonance transitions from initial state a characterized by total 

angular momentum Ja and parity a to a final continuum state b characterized by total 

angular momentum Jb and parity b.  The oscillator strength for these resonance 

transitions can be obtained from photoionization cross section abζ  by 

 ab2 2 E
0

1
(a b) ζ dE

4π αa r

f ,                                                                      (108) 

where transitions ( a b ) are governed by the dipole selection rules. 

2.6.2. The QB Program: Theory 

 The QB method [16-18] is based on the eigenphase fitting procedure that uses R-

matrix theory to determine the energy variation of the reactance K-matrix or its 

eigenphases analytically rather than numerically.  From R-matrix theory described above, 

we know that the connection between the internal region and the external region is made 

via the matrix R [32,35] which has dimension n n , with n representing the total number 

of channels retained in the close-coupling expansion (13).  We also described in previous 

sections how other quantities such as the reactance matrix K and the scattering matrices 

(S and T) are obtained: see equations (51) and (52).  The K-matrix is a real symmetric 

matrix of dimension a an n , with an  being the number of open channels. 

 By diagonalizing the matrix K in the space of an  open channels, we obtained aaK  

with eigenvalues λ i , then 

 Twhere 1aaK X = X X X = ,                                                                 (109) 

where  is diagonal with elements λ i .  The eigenphase in each channel is then defined as  

 1δ tan λ , 1,i i ai n ,                                                                                     (110) 
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and the eigenphase sum δ  is the sum over equation (110).  In theoretical calculations, a 

resonance manifests itself by a rapid increase by  rad in the total eigenphase sum, 

superimposed on a background [16,17].  Since a resonance has a finite width, the change 

in eigenphase sum may not be exactly  because of the background variation.  Therefore 

a resonance position is identified as the energy at which the eigenphase sum increases 

most rapidly, i.e. has maximum gradient dδ/dE=δ', and this is how the QB method locates 

resonances. 

 To calculate the resonance width with the QB method, we consider the Breit-

Wigner [84] form of the eigenphase sum 

 
EE

Γ/2
tan(E)δδ(E)

r

1
_

 ,                                                                               (111)  

where Er is the resonance energy, Γ the resonance width and 
_

δ  is the background 

eigenphase.  Differentiating twice, evaluating at E=Er and assuming the background 

varies slowly over the resonance profile, i.e. 
_

'δ << Γ
-1

, we get the width as  

 )(E2/δΓ r

' ,                                                                                                     (112)    

which means at resonance the width is related to the inverse of the eigenphase derivative. 

 The QB method requires an analysis of 'δ (E) , and exploits the analytic properties 

of R-matrix theory.  Using matrix notation, equation (35) defining R-matrix elements 

with the Buttle correction is written 

 -1 T

Buttle(E) (E)R Rwε w ,                                                                               (113) 

where ε  is a diagonal matrix with elements kE E .  The energy derivative of the R-

matrix is obtained analytically by differentiating equation (113), and this leads to 
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 -2 T

Buttle(E) (E)R' R'wε w .                                                                            (114) 

The derivative R'  is required in the definition of the derivative of the K-matrix K' , 

which is obtained by differentiating equation (51), and substituting for A and B from 

equation (50); this suggests defining an an n  matrix Q as follows: 

 (E) ( ' ' ) ( ' ' )Q s R s+ Rs' c R c+ Rc' K ,                                                (115) 

where the dot mean d/dr, and the prime d/dE; this implies 

 1(E)K' B Q .                                                                                                   (116) 

 aaK'  is required in the definition of the eigenphase sum derivatives, which are 

given by differentiating equations (109) and (110). 

 T'(E) aaX K' X ,                                                                                             (117) 

 
2 1 '

1

δ '(E) (1+λ ) λ
an

i i

i

.                                                                                        (118) 

From those equations, it is clear that the evaluation of δ'(E)  requires data from R-matrix 

calculations.     

2.7. Photoelectron Angular Distributions 

 For low energy photoionization, where the electric dipole approximation is 

excellent, it has been shown [85,86] from very general principles, conservation of angular 

momentum and parity, that for linearly polarized light acting upon an umpolarized target 

atom, the photoelectron angular distributions can be expressed as a linear combination of 

the Legendre polynomials 0 (cos( )) 1P θ  and 
2

2 (cos( )) (3cos ( ) 1) / 2P θ θ , where c is 

the angle between the photoelectron propagation and the photon polarization directions.  

Accordingly, the differential cross section for photoionization of the ith shbshell of an 

umpolarized target by linearly polarized photon can be written [87] as 
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2

ζ ζ
1 (cos( ))

4π

i i
i

d
β P θ

d
,                                                                              (119) 

where ζi  is the total subshell cross section, and iβ , which contains all of the dynamical 

angular distribution information, is known as the asymmetry parameter.  From equation 

(119), it is clear that ζi  determines the overall intensity of the process.  Equation (119) 

also shows that, since 21/ 2 (cos( )) 1P θ , then iβ is limited to the range 1 2iβ  

for all cases, since the differential crass section cannot be negative for any value of . 

 But linearly polarized incident light is not the only possibility.  For example, 

unpolarized light may be considered as equivalent to a linear superposition of incoherent 

equal intensity linearly polarized beams oscillating along perpendicular x and y axes [88].  

In this case, and taking the photon beam along the z-axis, the differential cross section 

can now be written 

 2

ζ ζ
1 (cos( ))

4π

i i
i z

d
β P θ

d
                                                                               (120) 

for unpolarized photons where 2 is the angle between photon and photoelectron 

directions.  This same result is true for circularly polarized light. 

 Note that, in both equation (119) and (120), the dependence of the differential 

cross section on the asymmetry parameter iβ vanishes at the angle  at which 2(cos( ))zP θ  

vanishes, i.e., where cos
2
( )=1/3.  At this angle, known as the “magic” angle (roughly 

54 ), the differential cross section of equation (119) or equation (120) is given by ζ / 4πi .  

Thus, measurements at this “magic” angle provide a method of measuring total cross 

sections using photoelectron spectroscopy without collecting the electrons with 4  

geometry. 
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 Both the subshell cross section, ζi , and the asymmetry parameter, iβ , are 

generally energy- dependent [85].  The cross section, ζi , which is proportional to the 

sum of the absolute squares of the dipole matrix elements for transitions from the initial 

state to the various allowed final states, derives its energy dependence from the 

dependence of the dipole matrix elements on energy.  The asymmetry parameter, iβ , is 

expressed as a ratio, and is more complicated; the energy dependence comes about from 

interference of the matrix elements of the alternative possible photoionization channels so 

that the details of the relative magnitudes and phases of the various dipole matrix 

elements are crucial.  An obvious corollary is that for a photoionization process 

consisting of only a single possible channel, iβ  must be energy-independent and 

determined only by geometrical factors: angular momentum geometry.     

2.8. Model Potentials 

 In target containing a large number of electrons, an appreciable saving of 

computational effort can be achieved by replacing the interaction of the valence and 

continuum electrons with the closed shell core by a model potential [15].  This allows the 

calculation to proceed solely in terms of the valence and continuum electrons.   

 Consider the case of N-electron atom.  If there are cN -electrons in the closed 

shell core, then there are cM N N  valence electrons.  The Hamiltonian equation (6) 

becomes 

 
1 1

1 2

1

1 1
( )

2

M M
N

n n

n m n nm

H V r
r

,                                                               (121) 

where ( )V r is the model potential with specific form left to the user, but limits at zero 

and infinity are well known: 
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0

( ) / and ( ) /~ ~
r r

V r Z r V r z r ,                                                             (122) 

where, as usual, Z is the nuclear change, and z = Z-N is the residual target charge.  The 

basis states kψ  of expansion (13) are now (M+1)-electrons functions, where  are built 

from the valence orbitals.  However, it should be noted that for the purpose of 

orthogonalisation, in the determination of the continuum orbitals, the complete set of one-

electron bound orbitals (including core functions) are required to be read into the code at 

the first stage. 

 

 



45 

 

CHAPTER 3. 

PHOTOIONIZATION OF DOUBLY CHARGED SCANDIUM IONS 

3.1. Description of the Calculations 

The target states of Sc IV (Sc
+3

) orbitals were generated using the code 

AUTOSTRUCTURE [13,14,51,52].  Each of the single-particle spectroscopic orbitals 

(1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p) and the pseudo-orbitals ( 4 ,4 ,5 ,5 ,5d f s p d ) radial wave 

functions was determined using the Thomas-Fermi statistical model radial functions 

calculated within the program.  Using these orbitals, a configuration-interaction (CI) 

expansion of the Sc IV configuration functions to obtain the N-electron target states was 

performed.  The set of configuration functions included five spectroscopic 

configurations, 2 63 3s p , 2 53 3 3s p d , 2 53 3 4s p s , 2 53 3 4s p p  and 63 3 3s p d , and correlation 

configurations that, to begin with, included all one- and two-electron replacements of the 

n = 3 orbitals of the ground state of Sc
+3

.  To make the subsequent photoionization 

calculation more tractable, correlation configurations with very small coefficients in the 

CI expansions were removed, leaving us with 19 correlation configurations.  Specifically, 

the correlation configurations included are 2 53 3 4s p d , 2 53 3 4s p f , 2 53 3 5s p s , 

2 53 3 5s p p , 2 53 3 5s p d , 2 4 23 3 3s p d , 2 43 3 3 4s p d p , 2 43 3 4 4s p s p , 2 43 3 4 4s p p d , 

2 43 3 3 4s p d f , 2 43 3 4 4s p s f , 2 43 3 4 4s p p f , 2 3 33 3 3s p d , 2 3 23 3 3 4s p d s , 2 3 23 3 4 4s p s p , 

5 23 3 3s p d , 53 3 3 4s p d s , 53 3 3 4s p d p , 4 33 3 3s p d .  Thus, a total of 24 configurations 

corresponding to 558 LS terms were included in the nonrelativistic calculation; for the 

relativistic (BP) calculation, the relativistic spin-orbit, Darwin and mass correction terms 

were added to the Hamiltonian and the resulting CI yielded LSJ terms constructed from 

the LS terms.  



46 

 

 To get some idea of the accuracy of the N-electron target state energies, the 

calculated and (J-averaged) experimental (NIST) [89] energy levels relative to the ground 

state of Sc
+3

 states are shown in table 3.1, and reasonable agreement with experiment is 

seen. 

Table 3.1: Calculated and experimental (NIST) [89] energy levels in  

Rydbergs f6r states of Sc IV (Sc
+3

) relative to the ground state. 

 

 

 

Sc IV state 

 

 

Cal. energy level 

 

 

Exp. energy level 

 

2 63 3s p  
1
S

e
 0.00000 0.00000     

2 53 3 3s p d  
3
P

o
 2.18292 2.18451 

2 53 3 3s p d  
3
F

o
 2.30121 2.29462 

2 53 3 3s p d  
1
D

o
 2.44422 2.43695 

2 53 3 3s p d  
3
D

o
 2.45179 2.44940 

2 53 3 3s p d  
1
F

o
 2.46904 2.47003 

2 53 3 4s p s  
3
P

o
 3.05900 3.04732 

2 53 3 4s p s  
1
P

o
 3.09385 3.07537 

2 53 3 3s p d  
1
P

o
 3.18474 3.14392 

2 53 3 4s p p  
3
S

e
 3.35462 3.38750 

2 53 3 4s p p  
3
D

e
 3.42229 3.45029 

2 53 3 4s p p  
3
P

e
 3.46903 3.49331 

2 53 3 4s p p  
1
P

e
 3.46290 3.49495 

2 53 3 4s p p  
1
D

e
 3.45571 3.50529  

2 53 3 4s p p  
1
S

e
 3.69386 3.62238 

63 3 3s p d  
3
D

e
 3.95760 3.91567 

63 3 3s p d  
1
D

e 

 

4.08921 

 

4.02822 
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 Two separate photoionization cross section calculations were performed.  

In the first, relativistic effects were neglected, and the calculation was carried out with the 

LS-coupling non-relativistic R-matrix codes [14,15].    In the first sum in equation (13), 

only the terms arising from the spectroscopic configurations are included which 

abnegates the possibility of pseudo-resonances.  In the (purely discrete) second sum, 

however, all of the terms from the 24 N-electron configurations, coupled to all of the 

single-particle orbitals, both spectroscopic and correlation, are included in the set of iχ . 

The initial state wave function, in each case, was constructed from the N-electron 

target states to include the main configuration, 3s
2
3p

6
3d or 3s

2
3p

6
4s, along with all single 

electron promotions out the 3s, 3p and the outer shell (3d or 4s), along with all double 

promotions of the type 3s
2
3p

5
nln‟l‟, and the important double promotions of the 

3s
2
3p

4
3d

2
nl variety.  Other possible two-electron promotions were omitted to insure that 

the ground state was not overcorrelated as compared to the target states, i.e., to balance 

the calculation.  The terms arising from these states formed the basis of a large CI 

calculation to obtain the initial state wave function.  In table 3.2 are presented the 

threshold energies of the two nonrelativistic states of doubly-ionized scandium (Sc
+2

), the 

[Ne]3s
2
3p

6
3d 

2
D

e
 state and the excited [Ne]3s

2
3p

6
4s 

2
S

e
 metastable state, along with the 

corresponding three relativistic initial states, the ground state [Ne]3s
2
3p

6
3d 

2
D e

2/3 plus the 

first two (metastable) excited states [Ne]3s
2
3p

6
3d 

2
D e

2/5  and [Ne]3s
2
3p

6
4s 

2
S e

2/1 .  

Comparing our theoretical ionization potentials with experimental data [9,10], also shown 

in the table 3.2, it is evident that agreement between theory and experiment is rather 

good. 
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 Table 3.2: Sc III (Sc
+2

) states threshold energy in eV compared to experiment [9,10].  

  

 

State 

            

 

Calculation 

 

 

Experiment 

 

 

Error (%) 

 

 

Abundance (%) 

 
2
D

e
 24.71 24.74 0.12 75.3 

2
S

e
 21.86 21.59 1.23 24.7 

2
D e

2/3  24.73 24.75 0.08 20.7          

54.6  2
D e

2/5  24.70 24.73 0.12 

2
S e

2/1  

 

21.86 

 

21.59 

 

1.25 

 

24.7 

 

 

In both LS and BP calculations, the R-matrix box radius was 21.81 au, and 34 

basis orbitals were used to represent the continuum for each value of the angular 

momentum.  The QB method [16-18] is adopted in this work to determine the resonance 

energies and widths.  The QB method works in the R-matrix environment (see subsection 

2.6 above). 

3.2. Results and Discussion 

3.2.1. Non-relativistic (LS coupling) Calculations 

The experimental Sc
+2

 sample contains 75.3 % of 
2
D

e
 (ground level) and 24.7 % 

of 
2
S

e 
(excited level) [9, 10], and those state fractions are used in determining the total 

photoionization cross sections of Sc
+2

 to compare with experiment.  We present the total 

photoionization cross sections of Sc
+2

 as a result of combining the photoionization cross 

sections of the two levels using their respective abundances in the experimental Sc
+2

 

sample, however, figures 3.1(a) and 3.1(b) respectively illustrate the individual 

photoionization cross sections from excited 
2
S

e
 and ground 

2
D

e
 states of Sc

+2
; since, in 
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both cases, the photoionization cross sections obtained using length and velocity forms 

agree very well, only one form (length) is displayed here and in all subsequent figures. 

Figure 3.1(c) shows the total cross sections of the weighted mixture of ground and 

excited Sc
+2 

(75.3 % of 
2
D

e
 and 24.7 % of 

2
S

e
) from threshold to 68.0 eV.  In the region 

of photon energy below 30.0 eV, there are no resonances in the total photoionization 

cross sections; only the direct photoionization process is possible here.  The threshold 

cross section has a value of 1.81 Mb.  Between photon energy 30.0 eV and 50.0 eV, we 

have a mixture of direct nonresonant and indirect resonance processes, and it is evident 

that the resonance excitations are dominant in this region where the cross section can 

reach hundreds of Mb; this is the region of giant, 3p → 3d, resonances.  These 3p → 3d 

resonances are so strong because they represent Δn=0 transitions, and, since the spatial 

extent of a wave function is determined largely by the principal quantum number, n, the 

3p and 3d wave functions occupy substantially the same region of space, resulting in 

significant overlap and a rather large dipole matrix element.  The photoionization cross 

section in this region is dominated by resonances which decay via autoionizing processes 

leading to the ground 2 63 3s p  
1
S

e
 state of Sc

+3
.  Above 50.0 eV photon energy, the 

photoionization cross section exhibits complex resonance structure, and this can be 

explained by the fact that the photon energy in this region is high enough to produce, 

through resonance excitation followed by autoionization, both ground and excited states 

of Sc
+3

 including 
2 63 3s p  

1
S

e
, 

2 53 3 3s p d  
3
P

o
, 

2 53 3 3s p d  
3
F

o
,  etc., i.e., ionization plus 

excitation.  
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Figure 3.1: Calculated photoionization cross sections of Sc
+2

: (a) initial 
2
S

e
 excited state, 

(b) initial 
2
D

e
 ground state, and (c) total photoionization cross sections obtained from a 

weighted sum of (a) and (b) showing the two strongest resonances at energies 37.17 and 

42.04 eV.  Note the complex resonance structure at photon energies above 45 eV.   

 

It is worth noting that most of the characteristics of the Sc
+2

 photoionization cross 

section spectrum originate from the ejection of the 3d electron (or 4s for the excited 

state), leading to the ground state of the target, 
2 63 3s p  

1
S

e
.  Up to a photon energy of 

54.40 eV, only this channel is open; consequently other channels play minor roles in 

defining the photoionization cross section in the energy range considered in this work  
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Figure 3.2: Calculated photoionization cross section for the weighted sum of 
2
S

e
 and 

2
D

e
 

initial states for the satellite transitions leaving the Sc
+3

 ion in the (a)
2 53 3 3s p d  

3
F

o
  

excited state and (b)  
2 53 3 3s p d  

3
P

o
  excited state, along with (c) the main line transition 

to the  
2 63 3s p  

1
S

o
  ground state of Sc

+3
.   

 

(threshold to 68.0 eV).  Figure 3.2 is illustrative of the importance of the main line 

2 63 3s p  
1
S

e
 [figure 3.2(c)] compared to the satellite lines

2 53 3 3s p d  
3
P

o
 and 

2 53 3 3s p d  
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3
F

o
 [figures 3.2(b) and 3.2(a)].  Note particularly the vertical scales of figures 3.2(a) and 

3.2(b) as compared to figure 3.1(c).  

Figure 3.3 shows comparison between our LS results and the experimental data 

[9,10] for photon energies from 29 to 53.0 eV for the weighted average of 
2
D

e
 and 

2
S

e
 

initial states.  The theoretical results have been broadened by a 40 meV width Gaussian to 

account for experimental resolution.  The two strongest and broadest resonances of Sc
+2

 

arise from 
2
D

e
 and 

2
S

e
 symmetries, and are located respectively at 37.17 eV and 42.04 

eV, as seen in figure 3.3(a).  Experimental results [9,10] showed those resonances were 

positioned at 37.13 eV and 41.80 eV (see figure 3.3(b).  Since this calculation is a non-

relativistic operation (LS coupling), relativistic effects, such as fine structure splitting, are 

not included, and the absence of the spin-orbit interaction term in the calculation can be 

observed in figure 3.3(a) where the theoretical photoionization cross section spectrum 

doesn‟t show any splitting.  Above 45.0 eV both photoionization cross section spectra 

3.3(a) and 3.3(b) reveal differences even though they are less clear than in lower photon 

energies.  Despite the use of non-relativistic R-matrix method in this first part of this 

work, our results reproduce experimental results better than any previous theoretical 

works [11,12] to the best of our knowledge; particularly if we consider the most 

prominent resonance positions.  Deviations obtained here are smaller than those in 

previous theoretical calculations [11,12], relativistic or non-relativistic. As far as absolute 

magnitudes are concerned, for reasons that shall be discussed below, we believe that the 

reported experimental cross sections are too small by a factor of 1.632.  Thus, the 

experimental cross section shown in figure 3.3(b) has been multiplied by that factor.  
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With this factor, the dominant resonances in the 37 eV and 42 eV regions are seen to be 

in excellent agreement.  

 

Figure 3.3: Sc
+2

 photoionization cross sections from 29 to 53.0 eV for a weighted 

average of 
2
D

e
 and 

2
S

e
 initial states; (a) theory (LS-coupling) and (b) modified experiment 

[9,10].  Note the difference between the two spectra due to the absence of the spin-orbit 

interaction from the theoretical calculation.  The experimental cross section has been 

multiplied by a factor of 1.632 for reason discussed below.  

 

 The QB methodology is used to analyze resonances in terms of energies, widths 

and transitions. The results of our calculations are compared in table 3 with the 

experimental data [9,10].  The resonance widths obtained in our calculation are in good 
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agreement with experimental data, as seen in table 3.3.  For example the two strongest 

photoionization resonances have theoretical widths of 850.4 meV and 146.6 meV, and 

the corresponding experimental widths are 847 and 148 meV respectively.  In the 

theoretical resonance structure, we observe various widths from a very narrow (3.4 meV) 

to a very broad (850.4 meV).  Since the nonrelativistic LS calculation omits fine structure 

splittings, our major resonance structure and identifications, in the region of giant 

resonances, appear simpler than experimental [9,10].  For the ground state Sc
+2

 (
2
D

e
), 

nine resonances have been identified in the photon energies from 29 to 45 eV [table 3.3 

and figure 3.4(b)].  The spectrum of the excited state Sc
+2

 (
2
S

e
) shows less complexity 

than the 
2
D

e
 case, and we only have three resonances between 30 and 45 eV [table 3.3 

and figure 3.4(a)].  

Many resonances in the photoionization cross section spectra exhibit an 

asymmetric shape, i.e., a Fano profile; this is due to the interference between the direct 

photoionization channels and the resonant channels.  Figure 3.4 also shows that the two 

strongest resonances have great differences in their shapes.  The 
2
D

e
 3p

5
3d (

3
F)4s 

2
F

o
 

resonance in figure 3.4(b) is highly asymmetric while the transition  
2
S

e
   3p

5
3d (

1
P)4s 

2
P

o
 in figure 3.4(a) has a nearly symmetric line shape; this occurs because the underlying 

continuum is so small for the  
2
S

e
 initial state, a 4s → εp transition, as opposed to the 

much larger 3d → εf, εp continuum cross section for the 
2
D

e
 initial state. 
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Table 3.3: Theoretical and experimental resonance energies Eres (eV), widths (mev) 

and the corresponding transitions.  

 

            This Calculation 
Transition Experiment 

Eres  
 

Eres  

 

29.89 

 

143.5 

 
2
D

e
  3p

5
(3d

2
 
1
G) 

2
F

o
 

 

30.03 

 

142 

31.33 115.7 2
D

e
  3p

5
(3d

2
 
1
D) 

2
F

o
 

31.66 116 

34.25 64.5 2
D

e
  (3p

5
3d 

3
F)4s 

2
F

o
 

34.73 53 

36.05 3.4 2
D

e
  (3p

5
3d 

1
F)4s 

2
F

o
 

  

37.17 850.4 2
D

e
  3p

5
(3d

2
 
3
F) 

2
F

o
 

37.13 847 

44.04 8.6 2
D

e
  (3p

5
3d 

3
P)4d 

2
P

o
 

  

44.07 75.5 2
D

e
  (3p

5
3d 

3
P)4d 

2
F

o
 

  

32.75 46.1 2
D

e
  (3p

5
3d 

3
P)4s  

2
P

o
 

33.22 48 

39.63 4.5 2
D

e
  3p

5
(3d

2
 
3
P) 

2
P

o
 

39.63 4.6 

42.00 6.5 2
D

e
  3p

5
(3d

2
 
1
S) 

2
P

o
 

  

36.81 4 5 2
S

e
   3p

5
(3d

2
 
3
P) 

2
P

o
 

  

39.18 6.5 2
S

e
   3p

5
(4s

2
 
1
S) 

2
P

o
 

39.26 6.0 

42.04 

 

146.6 

 

2
S

e
   (3p

5
3d 

1
P)4s 

2
P

o 

 

41.80 

 

148 
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Figure 3.4:  Calculated (LS) Sc
+2

 photoionization cross section and resonance 

identifications between 29 and 45 eV for (a), initial 
2
S

e
 state, and (b), initial 

2
D

e
 state. 

Both plots appear simpler than the experimental curves because of the absence of fine-

structure splittings in these LS calculations.  For simplicity 3p
5
 is omitted from each of 

the resonance designations, 

3.2.2. Relativistic (Breit-Pauli) Calculations 

 When the spin-orbit interaction is considered, the experimental +2Sc  ion beam 

[9,10] consists of three components, presented in table 3.2: 24.7 % 
2
S e

2/1 , 20.7 % 
2
D e

2/3  

and 54.6 % 
2
D e

2/5 .  In the nonrelativistic case, discussed above, the 
2
D fractions were 

simply combined.  These fractions are used to obtain the theoretical total photoionization 

cross section for Sc
+2

 for a meaningful comparison with experiment.  The calculated 
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relativistic (Breit-Pauli) cross sections for the photoionization of the Sc
+2

 
 2

S e

2/1  initial 

state is shown in figure 3.5.  The individual 
2
S e

2/1  → 
2
P o

2/3 and 
2
S e

2/1  → 
2
P o

2/1  cross 

sections are presented in figures 3.5(a) and 3.5(b) respectively, while the total is given in 

figure 3.5(c).  As in the non-relativistic case, the photoionization spectrum is dominated 

by autoionizing resonances.  Among the most important resonances are 
2
S e

2/1  → 3p
5
(4s

2
 

1
S) 

2
P o

2/3  [figure 3.5(a)] and 
2
S e

2/1  → 3p
5
(4s

2
 

1
S)  

2
P o

2/1  [figure 3.5(b)] located at 39.01 

and 39.52 eV respectively; experimentally [9,10], their positions are 39.26 and 39.77 eV, 

which means both resonances are shifted to lower energy by about 0.25 eV.  These are 

among the largest deviations between theory and experiment found, in terms of resonance 

energies.  However, the calculated relativistic energy splitting between these two 

resonances of 0.51 eV agrees exactly with experiment.  Both resonances arise from the 

splitting of LS resonance shown in figure 3.4(a) at 39.18 eV, identified in LS-coupling as 

2
S

e
  3p

5
(4s

2
 
1
S) 

2
P

o
.  Dominating the 

2
S e

2/1  cross section, however, are clearly the giant 

3p 3d resonances identified as 
2
S e

2/1  → (3p
5
3d 

1
P)4s 

2
P o

2/3  in figure 3.5(a) and 
2
S e

2/1  → 

(3p
5
3d 

1
P)4s 

2
P o

2/1  in figure 3.5(b); their positions and widths are 42.04 eV and 144 meV,  

and 42.06 eV and 138 meV, respectively.  Although the relativistic interactions cause a 

splitting of these two resonances, the splitting is so much smaller than the widths that it is 

unobservable.  Experimentally, the sum of these resonances is found at 41.80 eV with a 

width of 148 meV.  Thus, the theoretical resonance energy is again too high by about 

0.25 eV, but the width is in excellent agreement with experiment.  
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Figure 3.5: Calculated Breit-Pauli photoionization cross sections of the excited 
2
S

e

2/1 state 

of 
+2Sc  showing, (a) the partial cross section to the j=3/2 final state, (b) the partial cross 

section to the j=1/2 final state, and (c) the total 
2
S

e

2/1 cross section, dominated by the   

resonance at 42.04 eV.  For simplicity 3p
5
 is omitted from each of the resonance 

designations. 

 

   The Breit-Pauli results for the photoionization of the ground 
2
D e

2/3  state of Sc
+2

 

are presented in figure 3.6.   Note that, in the relativistic realm, L is no longer a good 

quantum number so that the final states of the system, the Sc
+3

 ion plus photoelectron, 

can be characterized only by total angular momentum, j, strictly speaking.  Thus, from 
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the 
2
D e

2/3  ground state, transitions to final states with j =5/2, 3/2 and 1/2 are allowed, and 

these cross sections are shown in figures 3.6(a), 3.6(b) and 3.6(c) respectively; the total 

2
D e

2/3  photoionization cross section is shown in figure 3.6(d).  Resonances are seen to 

dominate the cross section, although the direct nonresonant photoionization channel is 

strong enough for interference to occur and produce the asymmetric line shapes, Fano 

profiles, observed in the cross sections [figures 3.6(a) and 3.6(d)].  The most prominent 

resonance is located at 37.10 eV with 837 meV width, and it is due to transition 
2
D e

2/3  → 

3p
5
(3d

2
 
3
F) 

2
F o

2/5 .  This decays via a super-Coster-Kronig transition ( 5 2 63 3 3p d p e ) 

that is also observed in the photoionization cross sections of the [Ne]3s
2
3p

6
3d 

2
D

e
 states 

of ground state Ti
+3 

[19,90-95] and metastable Ca
+
 [19,93,96-102]; as long as the 3p →3d 

excitation energy is above the 3d threshold, this channel is open and results in this broad 

giant resonance.  When the excitation energy is below the 3d ionization threshold, this 

decay channel is closed, and this is the case for K-like higher Z ions starting with V
+4

 

(see next section).  Our theoretical results show good agreement with experimental data 

[9,10] that place this resonance at 37.14 eV with 847 meV width.  An illustration of the 

relativistic effects in the 
2
D e

2/3  cross section is the splitting leading to the transitions 

2
D e

2/3  → 3p
5
(3d

2
 
3
P) 

2
P o

2/1  and 
2
P o

2/3 .  at 39.59 eV [figure 3.6(c)] and 39.68 eV [figure 

3.6(b)] respectively; both correspond to the LS-coupling transition 
2
D

e
  3p

5
(3d

2
 
3
P) 

2
P

o
 

at 39.63 eV  seen in figure 3.4(b). 
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Figure 3.6: Calculated Breit-Pauli photoionization cross sections of the ground 
2
D

e

2/3 state 

of 
+2Sc  showing, (a) the partial cross section to the j=5/2 final state, (b) the partial cross 

section to the j=3/2 final state, (c) the partial cross section to the j=1/2 final state, and (d) 

the total 
2
D

e

2/3 cross section, dominated by the 3p
5
(3d

2
 
3
F) 

2
F o

2/5  resonance at 37.10 eV.  

For simplicity 3p
5
 is omitted from each of the resonance designations. 

 

In figure 3.7, the calculated Breit-Pauli results for the corresponding 

photoionization cross section for the excited 
2
D e

2/5  state, where the partial cross sections 

for j = 7/2, 5/2 and 3/2 final states are shown in figures 3.7(a), 3.7(b) and 3.7(c) 
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respectively.  The total photoionization cross section for the 
2
D e

2/5  initial state is shown in 

figure 3.7(d).  The strongest resonance, located at 37.22 eV in figure 3.7 (a), and due to 

transition 
2
D e

2/5  → 3p
5
(3d

2
 

3
F) 

2
F o

2/7 , has a width of 852.4 meV (847 meV 

experimentally); it is of substantially the same width as the corresponding 

2
D e

2/3 resonance (837 meV width) in figures 3.6(a) and 3.6(d).  Another noteworthy 

feature of the 
2
D e

2/5  cross section is the relativistic (spin-orbit) splitting of LS resonances.  

To the LS-coupling transition 
2
D

e
  (3p

5
3d 

3
F)4s 

2
F

o
 , located at 34.24 eV in figure 

3.4(b), correspond two relativistic transitions, 
2
D e

2/5  → (3p
5
3d 

3
F)4s 

2
F o

2/5 , seen in figure 

3.7(b) at 34.34 eV, and 
2
D e

2/5  → (3p
5
3d 

3
F)4s 

2
F o

2/7 , seen in figure 3.7(a) at 34.11 eV.  

Additional fine structure splitting is illustrated in transitions 
2
D e

2/5  → 3p
5
(3d

2
 
3
P) 

2
P o

2/3  in 

figure 3.7(c) at 39.65 eV, and 
2
D e

2/3  → 3p
5
(3d

2
 

3
P) 

2
P o

2/3  in figure 3.6(b) at 39.68 eV; 

these transitions are due to the same resonance from different initial states.  Thus the 

splitting is exactly the fine structure splitting between 
2
D e

2/3  and 
2
D e

2/5  which is 0.03 eV 

in this calculation (0.024 eV in the experiment [9,10]).  A similar situation arises for the 

transitions to the (3p
5
3d  

3
P)4s 

2
P o

2/3 resonance from the 
2
D e

2/3  and 
2
D e

2/5 initial states in 

figures 3.6(b) and 3.7(c); again these transitions are separated by 0.03 eV.  

Note that, in the results of the relativistic calculations, the existence of the 

resonances identified as 
2
D e

2/5  → (3p
5
3d 

3
D)4s 

2
D o

2/5 , seen in figure 3.7(b) at 36.26 eV, 

2
D e

2/3  → 3p
5
(3d

2
 
3
F) 

2
D o

2/5 , seen in figure 3.6(a) at 40.18 eV, 
2
D e

2/3  → 3p
5
(3d

2
 
3
F) 

2
D o

2/3  

seen in figure 3.6(b) at 40.20 eV and 
2
D e

2/5  → 3p
5
(3d

2
 
3
F) 

2
D o

2/5 , seen in figure 3.7(b) at 

40.15 eV, their narrow widths notwithstanding, those resonances mark an important 
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difference between relativistic and non-relativistic calculations.  Specifically, they are 

forbidden in the nonrelativistic LS calculation because the 2 2e oD D  channel only 

opens at a photon energy of 54.48 eV.  Below this energy, in the 29.0 to 45.0 eV range, 

the only open channels for the photoionization of the 3p
6
3d 

2
D initial state are 3p

6
εp 

2
P 

and 3p
6
εf 

2
F.  As mentioned above, however, in the relativistic regime, L is no longer a 

good quantum number; only total angular momentum j is.  Thus, the (LS-forbidden) 
2
D3/2 

and 
2
D5/2 final states of the Sc

+3
 ion-plus-photoelectron system are not pure, but are 

mixed with the (LS-allowed) 
2
P3/2 and 

2
F5/2 respectively, i.e., mixed with allowed states 

of the same j.  These resonances demonstrate that relativistic interactions affect the 

results beyond shifts and splittings of resonances and thresholds. 

A summary of positions, widths and identifications of the major resonances 

obtained in the relativistic Breit-Pauli calculation is given in table 3.4, along with a 

comparison with available experimental data [9,10].  In general the agreement is quite 

good, especially for the 3p
5
3d

2
 resonances as regards both position and width.  Note that 

some of the resonances listed in table 3.4 can be reached by more than one initial state in 

the experimental mixture, and one, 3p
5
(3d

2
 
3
P) 

2
P o

2/3 , can be excited from all three initial 

states.  They are listed more than once for purposes of comparison with the experimental 

results, and they are listed at different photon arises simply because each of the three 

initial states has a different ionization energy so that differing photon energies are 

required from each of these initial states to excite a particular resonance, i.e., the 

difference in the resonance energies for a given resonance state in the table is just the 

difference in the binding energies of the initial states of the transitions.      
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Figure 3.7: Calculated Breit-Pauli photoionization cross sections of the first excited 

2
D e

2/5  state of 
+2Sc  showing, (a) the partial cross section to the j=7/2 final state, (b) the 

partial cross section to the j=5/2 final state, (c) the partial cross section to the j=3/2 final 

state, and (d) the total 
2
D

e

2/3 cross section, dominated by the 3p
5
(3d

2
 
3
F) 

2
F

o

2/7  resonance 

at 37.22 eV.  For simplicity 3p
5
 is omitted from each of the resonance designations. 
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Table 3.4: Theoretical (relativistic Breit-Pauli) and experimental resonance energies Eres 

(eV), widths (meV) and the corresponding transitions.   

 

 

This Calculation 

 

          Transitions 

 

Experiment  

 

 
 

 

 Eres             

 

 

 
                  

Eres  

 

     

             

5.3 36.75            

 

2
S

e

2/1   3p
5
(3d

2
 
3
P) 

2
P

o

2/1    

4.0 36.83            

 

2
S

e

2/1   3p
5
(3d

2
 
3
P) 

2
P

o

2/3    

6.3 39.52            

 

2
S

e

2/1   3p
5
(4s

2
 
1
S) 

2
P

o

2/1  39.77 6.0 

7.1 39.00            

 

2
S

e

2/1   3p
5
(4s

2
 
1
S) 

2
P

o

2/3  39.26 7.2 

138.0 42.06        

 

2
S

e

2/1   (3p
5
3d  

1
P)4s  

2
P

o

2/1    

144.0 42.04        

 

2
S

e

2/1   (3p
5
3d  

1
P)4s  

2
P

o

2/3  41.80 148 

44.9 32.64          

 

2
D

e

2/3   (3p
5
3d 

3
P)4s  

2
P

o

2/1  33.22 45                         

42.5 32.79          

 

2
D

e

2/5    (3p
5
3d 

3
P)4s  

2
P

o

2/3  33.37 48        

42.3 32.82          

 

2
D

e

2/3   (3p
5
3d 

3
P)4s  

2
P

o

2/3    

5.3 39.59            

 

2
D

e

2/3   3p
5
(3d

2
 
3
P) 

2
P

o

2/1  39.63 4.6 

3.9 39.65            

 

2
D

e

2/5   3p
5
(3d

2
 
3
P) 

2
P

o

2/3  39.69 3.8 

3.9 39.68            

 

2
D

e

2/3   3p
5
(3d

2
 
3
P) 

2
P

o

2/3  39.71 2.6 

126.2 29.88        

 

2
D

e

2/3   3p
5
(3d

2
 
1
G) 

2
F

o

2/5  30.03 142 

149.6 29.95        

 

2
D

e

2/5   3p
5
(3d

2
 
1
G) 

2
F

o

2/7  30.17 142 

127.2 31.57        

 

2
D

e

2/3   3p
5
(3d

2
 
1
D) 

2
F

o

2/5  31.66 116     

101.5 31.16        

 

2
D

e

2/5   3p
5
(3d

2
 
1
D) 

2
F

o

2/7  31.27 111 

64.9 34.37          

 

2
D

e

2/3   (3p
5
3d 

3
F)4s  

2
F

o

2/5  34.73 53 

63.1 34.13          

 

2
D

e

2/5   (3p
5
3d 

3
F)4s  

2
F

o

2/7  34.50 44 

64.9 34.34          

 

2
D

e

2/5   (3p
5
3d 

3
F)4s  

2
F

o

2/5    

1.1 36.02            

 

2
D

e

2/3   (3p
5
3d 

1
F)4s  

2
F

o

2/5    

5.2 

 

36.04            

 

 

2
D

e

2/5   (3p
5
3d 

1
F)4s  

2
F

o

2/7  
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Table 3.4: (continued)  

 

 
 

Eres  
                   

 

            Eres 

 

35.99 

 

1.1 

 
2
D

e

2/5   (3p
5
3d 

1
F)4s  

2
F

o

2/5  

 

 

 

 

35.66 0.8 2
D

e

2/5   (3p
5
3d 

1
D)4s  

2
D

o

2/5    

36.26 0.7 2
D

e

2/5    (3p
5
3d 

3
D)4s  

2
D

o

2/5    

37.10 837.0 2
D

e

2/3   3p
5
(3d

2
 
3
F) 

2
F

o

2/5  37.13 847 

37.22 852.4 2
D

e

2/5   3p
5
(3d

2
 
3
F) 

2
F

o

2/7    

37.07 837.0 2
D

e

2/5   3p
5
(3d

2
 
3
F) 

2
F

o

2/5  
  

44.06 71.6 2
D

e

2/3   (3p
5
3d 

3
P)4d  

2
F

o

2/5    

44.11 75.5 2
D

e

2/5   (3p
5
3d 

3
P)4d  

2
F

o

2/7    

43.73 8.1 2
D

e

2/5   (3p
5
3d 

3
P)4d  

2
D

o

2/5    

44.09 8.3 2
D

e

2/5   (3p
5
3d 

3
P)4d  

2
P

o

2/3    

44.84 148 2
D

e

2/5   (3p
5
3d 

1
P)4s  

2
P

o

2/3    

43.94 2.1 2
D

e

2/3   (3p
5
3d 

3
P)4d  

2
P

o

2/1    

40.18 0.7 2
D

e

2/3   3p
5
(3d

2
 
3
F) 

2
D

o

2/5  40.21 0.8 

40.20 0.3 2
D

e

2/3   3p
5
(3d

2
 
3
F) 

2
D

o

2/3    

40.15 

 

0.8 

 

2
D

e

2/5   3p
5
(3d

2
 
3
F) 

2
D

o

2/5  

 

40.19 

 

0.9       

 

  

Additional results to complete the Sc
+2

 resonance analysis are the list of line 

strengths and oscillator strengths for five of the major resonances chosen from table 3.4, 

and this is shown in table 3.5.  As expected and can be seen in table 3.5, transitions with 

j = 1 (
2
D e

2/3   3p
5
(3d

2
 
3
F) 

2
F o

2/5 , 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/7  and 
2
S e

2/1   (3p
5
3d  

1
P)4s  

2
P o

2/3  ) have stronger line strength and oscillator strength than transitions with j = 0 

(
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/5  and  
2
S e

2/1   (3p
5
3d  

1
P)4s  

2
P o

2/1 ). 
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Table 3.5: Sc III (Sc
+2

) line strength (S) and oscillator strength (f) for five of the major 

resonances.  

  

 

    Transitions 

 

j  

 

       S(a.u.) 

 

  f    

 
2
D e

2/3   3p
5
(3d

2
 
3
F) 

2
F o

2/5  
 

1 

 

3.404 

 

   0.516 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/7  1 4.323   0.550 
2
S e

2/1   (3p
5
3d  

1
P)4s 

2
P o

2/3  1 6.071    1.564     

2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/5  0 0.204 
   0.031                        

 

2
S e

2/1   (3p
5
3d  

1
P)4s 

2
P o

2/1  
0 

 

1.730 

 

      0.789                                   

 

  

A very useful check upon the magnitude of photoionization cross sections is the 

Thomas-Reiche-Kuhn sum rule [75-78] which states that the sum of the oscillator 

strengths (integral over the continuum part) to all possible final states from a given initial 

state of an atom or atomic ion is exactly equal to the number of electrons in the initial 

state.  It has also been found that the sum rule is true to an excellent approximation 

subshell by subshell [103].  Since the photoionization cross section is simply a 

multiplicative constant times the (differential) oscillator strength [103], the total oscillator 

strength represented by the photoionization cross section can be easily calculated.  In the 

present case, it is expected that the cross section should include almost all of the strength 

from the 3p
6
 subshell owing to the giant 3p → 3d resonances which all occur in the 

continuum; for the outer shell electron, on the other hand, most of the oscillator strength 

will likely occur in the discrete, i.e., photoexcitation rather than photoionization.  Owing 

to these considerations, the total oscillator strength in the photoionization cross of Sc
+2

 

from threshold to 68 eV should be a bit under 6, the number of 3p electrons.  Our 
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calculated oscillator strength is 5.293, which is certainly of the correct magnitude.  

Performing the same calculation on the experimental results, we find a measured 

oscillator strength of 3.244, which is too low; we cannot account for the missing 

oscillator strength.  Thus, we believe that the overall magnitude of the measured cross 

section is too small and should be multiplied by a factor of 5.293/3.244 = 1.632 to bring 

the oscillator strength to a reasonable value.  In our comparison with experimental cross 

sections, therefore, we have used this modified experimental cross section. 

The comparison between the two theoretical calculations (non-relativistic and 

relativistic) and the (modified) experimental data from 29 to 53.0 eV is shown in figure 

3.8. The Breit-Pauli calculations [figure 3.8(b)] give good agreement with experimental 

data [9,10] [figure 3.8(c)] while the LS coupling calculations [figure 3.8(a)], in spite of 

the absence of fine structure splitting, give a fairly accurate idea about positions of major 

resonances in the cross section.  The most important features of the Sc
+2

 photoionization 

experimental results [figure 3.8(c)] are well reproduced by the present Breit-Pauli 

calculations [figure 3.8(b)], although small deviations in some resonance positions 

remain.  
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Figure 3.8: Sc
+2

 photoionization cross sections from 29 to 53.0 eV for a weighted 

average of 
2
D

e
 and 

2
S

e
 initial states; (a) theory (LS-coupling), (b) theory (relativistic 

Breit-Pauli), and (c) modified experiment [9,10].   The experimental cross section has 

been multiplied by a factor of 1.632 for reason discussed in text. 

 

3.3. Conclusion 

 Photoionization calculations have been performed for Sc
+2

, the simplest atomic 

system containing a d-electron in the ground state.  The calculations have been carried 

out using the nonrelativistic (LS-coupling) and the relativistic (Breit-Pauli) R-matrix 

methods.  Our results showed that the cross section is dominated by 3p → 3d giant 

resonances.  Rather good agreement was found between experiment and theory for the 
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positions and widths of the major resonances.  The overall magnitudes of the 

experimental and theoretical cross sections differed considerably, and a sum rule analysis 

seemed to indicate that the experimental cross section was too small; multiplication by a 

factor of 1.632, indicated by the sum rule analysis, brought experiment and theory into 

quite good agreement. 

The effects of relativistic interactions (notable the spin-orbit effect) were 

highlighted by comparison of the nonrelativistic and relativistic calculations.  It was 

found that, in addition to shifts and splitting of various resonances, relativistic effects 

were important in that various transition that were forbidden at the LS-coupling level of 

calculation, became possible when relativistic interactions were introduced.  

Nevertheless, our results show that the non-relativistic R-matrix method using LS 

coupling, despite the exclusion of relativistic effects, is still reasonably good for 

investigating atomic processes such as photoionization at intermediate Z.  However, 

relativistic (Breit-Pauli or Dirac) R-matrix is required for good quantitative agreement 

with experimental data.  In the following section, we extend our calculations to other 

members of the Sc
+2

 isoelectronic sequence: Ti
+3

, V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

. 
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CHAPTER 4. 

PHOTOIONIZATION OF POTASSIUM-LIKE TRANSITION METAL IONS: Ti
+3

, 

V
+4

, Cr
+5

, Mn
+6

 AND Fe
+7

 

4.1. Description of the Calculations 

 Calculations about each of the K-like transition metal ions (Ti
+3

, V
+4

, Cr
+5

, Mn
+6

 

and Fe
+7

) are performed the same way as those of the Sc
+2

 ions described in the 

subsection 3.1.  Therefore we will not repeat what is already said in that subsection, but 

we will report relevant results obtained in those calculations beginning with the target 

states energy levels and ionization threshold for each of the five K-like transition metal 

ions we are interested in here. 

 The target states energy levels (relative to the ground state energy level in each 

target ion) are shown in tables 4.1 through 4.5, and the five target (N-electron system) 

ions are Ti
+4

, V
+5

, Cr
+6

, Mn
+7

 and Fe
+8

 which all have the same number of electrons (18) 

as Sc
+3

.  Our results (target state energy levels) are compared with experimental data 

from NIST [89], and reasonable agreement is obtained. 
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Table 4.1: Calculated and experimental (NIST) [89] energy levels in  

Rydbergs f6r states of Ti V (Ti+4
) relative to the ground state. 

 

Ti V state    J       This work            Exp. [89] 

2 63 3s p  
1
S

e
 0 0.00000 0.00000     

2 53 3 3s p d  
3
P

o 

 

 

0 

1 

2 

2.48367 

2.49314 

2.51236 

2.50087 

2.50937 

2.52704 
2 53 3 3s p d  

3
F

o 

 

 

4 

3 

2 

2.61161 

2.62770 

2.64390 

2.61785 

2.63401 

2.64977  
2 53 3 3s p d  

1
D

o

 2 2.79307 2.79644 
2 53 3 3s p d  

3
D

o 

 

 

3 

1 

2 

2.79831 

2.80346 

2.80676 

2.80150 

2.81811 

2.81976      
2 53 3 3s p d  

1
F

o

 3 2.82873 2.83799 
2 53 3 3s p d  

1
P

o

 1 3.62858 3.60242 
2 53 3 4s p s  

3
P

o 

 

 

2 

1 

0 

3.95653 

3.98314 

4.00869 

3.95799 

3.98086 

4.01016 
2 53 3 4s p s  

1
P

o

 1 4.06424 4.04377 
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Table 4.2: Calculated and experimental (NIST) [89] energy levels in  

Rydbergs f6r states of V VI (V+5
) relative to the ground state. 

 

V VI state        J        This work      Exp. [89] 

2 63 3s p  
1
S

e
 0 0.00000 0.00000     

2 53 3 3s p d  
3
P

o 

 

 

0 

1 

2 

2.78103 

2.79375 

2.81965 

2.80806 

2.81941 

2.84295 
2 53 3 3s p d  

3
F

o 

 

 

4 

3 

2 

2.93927 

2.95902 

2.98018 

2.94132 

2.96123 

2.98180 
2 53 3 3s p d  

1
D

o

 2 3.13522 3.14514 
2 53 3 3s p d  

3
D

o 

 

 

3 

1 

2 

3.13776 

3.15819 

3.16395 

3.14857 

3.17929 

3.17417      
2 53 3 3s p d  

1
F

o

 3 3.18936 3.19530 
2 53 3 3s p d  

1
P

o

 1 4.09529 4.05910 
2 53 3 4s p s  

3
P

o 

 

 

2 

1 

0 

4.96331 

4.99552 

5.03216 

4.97811 

5.00577 

5.04678       
2 53 3 4s p s  

1
P

o 

             

1 

 

5.07103 

 

5.08155 
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Table 4.3: Calculated and experimental (NIST) [89] energy levels in  

Rydbergs f6r states of Cr VII (Cr+6
) relative to the ground state. 

 

Cr VII state 
 

         J       This work 
 

       Exp. [89] 
 

2 63 3s p  
1
S

e
  0 0.00000 0.00000     

2 53 3 3s p d  
3
P

o 

 

 

0 

1 

2 

3.08740 

3.10359 

3.13659 

3.10905 

3.12358 

3.15423 
2 53 3 3s p d  

3
F

o 

 

 

4 

3 

2 

3.26237 

3.28577 

3.31244 

3.25817 

3.28212 

3.30845  
2 53 3 3s p d  

1
D

o

 2 3.48487 3.48725 
2 53 3 3s p d  

3
D

o 

 

 

3 

1 

2 

3.48439 

3.51075 

3.52008 

3.48776 

3.51592 

3.52311      
2 53 3 3s p d  

1
F

o

 3 3.54768 3.54689 
2 53 3 3s p d  

1
P

o

 1 4.54066 4.49287 
2 53 3 4s p s  

3
P

o 

 

 

2 

1 

0 

6.09112 

6.12937 

6.17853 

6.09508 

6.12761 

6.18326 
2 53 3 4s p s  

1
P

o 

 

1 

 

6.23461 

 

6.22040 
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Table 4.4: Calculated and experimental (NIST) [89] energy levels in  

Rydbergs f6r states of Mn VIII (Mn+7
) relative to the ground state. 

 

Mn VIII state                J                 This work                Exp. [89] 

 
2 63 3s p  

1
S

e
 

 

0 

 

0.00000 

 

0.00000     

2 53 3 3s p d  
3
P

o 

 

 

0 

1 

2 

3.38869 

3.40853 

3.44898 

3.40502 

3.42372 

3.46273 
2 53 3 3s p d  

3
F

o 

 

 

4 

3 

2 

3.57785 

3.60668 

3.64054 

3.57967 

3.59878 

3.63198  
2 53 3 3s p d  

3
D

o 

 

 

3 

1 

2 

3.82429 

3.86001 

3.87317 

3.82162 

3.85773 

3.86961      
2 53 3 3s p d  

1
D

o

 2 3.83193 3.82565 
2 53 3 3s p d  

1
F

o

 3 3.90310 3.89595 
2 53 3 3s p d  

1
P

o

 1 4.98231 4.91368 
2 53 3 4s p s  

3
P

o 

 

 

2 

1 

0 

7.32145 

7.36632 

7.43203 

 

7.34572 

 
2 53 3 4s p s  

1
P

o 

 

1 

 

7.48992 

 

7.45872 
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Table 4.5: Calculated and experimental (NIST) [89] energy levels in  

Rydbergs f6r states of Fe IX (Fe+8
) relative to the ground state. 

 

Fe IX state 
 

     J 
 

            This work 
 

           Exp. [89] 
 

2 63 3s p  
1
S

e
 0 0.00000 0.00000     

2 53 3 3s p d  
3
P

o 

 

 

0 

1 

2 

3.67965 

3.70493 

3.75661 

3.69767 

3.72084 

3.76963 
2 53 3 3s p d  

3
F

o 

 

 

4 

3 

2 

3.88917 

3.92096 

3.96265 

3.88026 

3.91216 

3.95324  
2 53 3 3s p d  

3
D

o 

 

 

3 

1 

2 

4.15474 

4.19913 

4.21974 

4.15184 

4.19744 

4.21567      
2 53 3 3s p d  

1
D

o

 2 4.16740 4.16223 
2 53 3 3s p d  

1
F

o

 3 4.25345 4.24494 
2 53 3 3s p d  

1
P

o

 1 5.39438 5.32676 
2 53 3 4s p s  

3
P

o 

 

 

2 

1 

0 

8.62148 

8.67325 

8.76097 

 

8.66159 

 
2 53 3 4s p s  

1
P

o 

             

1 

 

8.82007 

 

8.79892 
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For each of those K-like transition metal ions, the final (N+1) electron system 

continuum wave function is expressed in the form shown in equation (13).  In the first 

sum in equation  (13), only the terms arising from 3 spectroscopic configurations 

( 2 63 3s p , 2 53 3 3s p d  and 2 53 3 4s p s ) are included which abnegates the possibility of 

pseudo-resonances; those 3 configurations give rise to 9 LS terms corresponding to 17 

LSJ levels (see tables 4.1 through 4.5).  In the (purely discrete) second sum, however, all 

of the terms from the 24 N-electron configurations, coupled to all of the single-particle 

orbitals, both spectroscopic and correlation, are included in the set of i .  

In table 4.6 are presented the threshold energies of the nonrelativistic states of 

each of the five K-like transition metal ions (Ti+3, V
+4, Cr+5, Mn

+6and Fe+7), the 

[Ne]3s
2
3p

6
3d 

2
D

e
 state, along with the corresponding two relativistic initial states, the 

ground state [Ne]3s
2
3p

6
3d 

2
D e

2/3  plus the first (metastable) excited state [Ne]3s
2
3p

6
3d 

2
D e

2/5 .  For the Ti
+3

 ions particularly, we have a third relativistic initial state 

([Ne]3s
2
3p

6
4s 

2
S e

2/1 ) that is added to these calculations.  Comparing our theoretical 

ionization potentials with experimental data [89], also shown in the table, it is evident 

that agreement between theory and experiment is rather good. 

Since this part of our work is about K-like transition metal ions (Ti
+3

, V
+4

, Cr
+5

, 

Mn
+6

 and Fe
+7

), it is interesting to see how the energy gap (fine structure splitting) 

between 
2
D e

2/3  and 
2
D e

2/5  levels changes as the nuclear charge Z of those ions increases 

along the sequence.  In table 4.7, we present a comparison between calculated and 

experimental fine structure splitting (energy gap) corresponding to the two relativistic 

levels 
2
D e

2/3  and 
2
D e

2/5 . 
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Table 4.6: K-like ions (Ti+3, V
+4, Cr+5, Mn

+6and Fe+7) states threshold energy in eV 

compared to experiment [89]. 

 

 Ions 
 

State 
 

Calculation 
 

          Experiment 
 

                 % Difference        
 

  Ti
+3 

 

 

 

2
S e

2/1  33.356 33.300 0.168  
2
D

e 
43.281 43.243 0.087        

2
D e

2/3

 
43.317 43.267 0.117        

2
D e

2/5

 
 43.257 43.220 0.085        

  V
+4 

 

 

2
D

e
 65.248 65.242 0.009        

2
D e

2/3

 
65.293 65.281 0.018        

2
D e

2/5

 
65.199 65.204 0.007      

  Cr
+5 

 

 

2
D

e
 90.646 90.576 0.077       

2
D e

2/3

 
90.718 90.635 0.091        

2
D e

2/5

 
 90.581 90.518 0.069        

  

Mn
+6 

 

 

2
D

e
 119.118 119.120 0.016       

2
D e

2/3

 
119.218 119.203 0.012       

2
D e

2/5

 
119.027 119.037 0.008       

  Fe
+7 

 

 

2
D

e
 151.029 150.956 0.048      

2
D e

2/3

 
151.146 151.070 0.050     

2
D e

2/5

 

150.883 150.843 0.026        
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Table 4.7: Calculated and experimental [89] fine structure splitting energy gap E (eV) 

between 
2
D e

2/3  and 
2
D e

2/5  levels for K-like ions (Sc
+2, Ti

+3
, V

+4
, Cr

+5
, Mn

+6
 and Fe

+7
).  

  

 Ions 

            

   Z 

 

Calculated E 

 

Experimental E 

 

Sc
+2 21 0.030 0.024   

Ti
+3 22 0.059 0.047      

V
+4 23 0.094 0.077 

Cr
+5 24 0.137 0.117 

Mn
+6 25 0.191 0.166 

Fe
+7 26 0.263 0.227     

 

4.2. Results and Discussion 

 Among transition metal ions of the potassium isoelectronic sequence (Ti
+3

, V
+4

, 

Cr
+5

, Mn
+6

 and Fe
+7

) studied in this chapter, the Ti
3+

 is the most extensively investigated 

experimentally and theoretically [19,90-95] because of the presence, in the 

photoionization cross section spectra, of the giant (3p  3d excitation) resonances as it 

was observed in Sc
+2

 case studied previous chapter; in consequence we first report on the 

photoionization cross sections of Ti
3+

 with non-relativistic and relativistic calculations.  

We must note, concerning the photoionization of Ti
+3

, that existing theoretical and 

experimental works have reached good agreement especially the two recent calculations 

(Gorczyca et al [94] and Eissner et al [95]) showed excellent agreement with experiment 

[19]; however both theoretical works are limited to the lower photon energy region 

(threshold to 45.3 eV) while the energy range in the experiment was from threshold to 

49.5 eV. 
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4.2.1. Photoionization of Ti
+3

 Ions 

4.2.1.1. Non-relativistic (LS coupling) Calculations 

In the non-relativistic calculations of Ti
+3

 ions, the initial states of this ion are 

represented by the ground [Ne]3s
2
3p

6
3d 

2
D

e
 and the first excited [Ne]3s

2
3p

6
4s 

2
S

e
 states.  

In figures 4.1 and 4.2, we present results of the non-relativistic calculations for photon 

energy from 3d electron threshold (43.28 eV) to 83.0 eV, and figures 4.1 shows the 

photoionization cross sections from threshold to 51.0 eV while figure 4.2 is about 51.0 to 

83 eV.  Figures [4.1(a) and 4.2(a)] and [4.1(b) and 4.2(b)] respectively illustrate the 

individual photoionization cross sections from excited 
2
S

e
 and ground 

2
D

e
 states of Ti

+3
; 

since, in both cases, the photoionization cross sections obtained using length and velocity 

forms agree very well, only one form (length) is displayed here and in all subsequent 

figures.   

In the Ti
+3

 excited 
2
S

e
 state, the 4s electron ionization (33.35 eV) threshold cross 

section (not seen in figure 4.1(a)) is 0.695 Mb.  For photon energy below 45.0 eV [figure 

4.1(a)], there are no resonances in the excited 
2
S

e
 state photoionization cross section; only 

the direct photoionization process is possible here, and leads to [( 2 63 3s p  
1
S

e
) p] 

2
P

o
 

final state of the (N+1) electron system.  Above 45.0 eV, we enter the 3p electron 

excitation region characterized by the presence of series of Rydberg resonances 

associated with 3p electron photoexcitation [figures 4.1(a) and 4.2(a)] such as [(3p
5
nd) 4s 

2
P

o
] and [(3p

5
n’s) 4s 

2
P

o
].  These two sequences of Rydberg resonances contains the most 

important features of the Ti
3+

 excited 
2
S

e
 state photoionization cross sections spectrum 

[figure 4.1(a)], among them, we note the resonance located at 48.62 eV (with 18.5 meV 
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width), and attributed to transition 
2
S

e
   3p

5
(4s

2
 
1
S) 

2
P

o
 and the remarkably large and 

broad resonance feature in figure 4.1(a) at 49.09 eV (with 186.4 meV width); this peak 

reaches 1556 Mb, and is attributed to transition 
2
S

e
   (3p

5
3d 

1
P)4s 

2
P

o
 that is followed 

by autoionization (decay) to the ground 2 63 3s p  
1
S

e
 state of Ti

+4
.  Figure 4.2(a) displays 

higher order members of those rydberg series of resonances originated from 3p electron 

photoexcitation to higher principal quantum numbers [(3p
5
nd) 4s 

2
P

o
] and [(3p

5
n’s) 4s 

2
P

o
] with n  4 and n’  5.  They are mixed, and decay to the [( 2 63 3s p  

1
S

e
) p 

2
P

o
] 

continuum.  The limit of those two sequences is the excited target Ti
+4

 (3p
5
4s 

1
P

o
) state at 

energy 98.55 eV (98.23 eV from experiment [89]).  Due to dipole transition selection 

rules, only the transition 
2
S

e
  

2
P

o
 is allowed; this confers to the outer 4s electron, in 

this photoionization of Ti
+3

 excited 
2
S

e
 state case, a role of “spectator” since it only 

contributes to angular momentum coupling with its spin.  The very limited number of 

resonances observed in this case is illustrative of this fact.    

For the ground 
2
D

e
 state of Ti

+3
, the photoionization cross sections in figures 

[4.1(b) and 4.2(b)] exhibit far more complex structure than the excited 
2
S

e
 state of Ti

+3
.  

At the threshold (43.28 eV), the cross section is 56.0 Mb [figure 4.1(b)]; for photon 

energy in the vicinity of the threshold the cross section is a mixture of direct nonresonant 

and indirect resonance processes, and it is evident that the resonance excitations are 

dominant in this region where the cross section can reach hundreds of Mb.  For photon 

energy up to 51 eV [figure 4.1(b)], the cross section is dominated by giant, 3p → 3d 

resonances; these 3p → 3d resonances are so strong because they represent Δn=0 

transitions, and, since the spatial extent of a wave function is determined largely by the 

principal quantum number, n, the 3p and 3d wave functions occupy substantially the 
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same region of space, resulting in significant overlap and a rather large dipole matrix 

element.  The photoionization cross section in this region is dominated by resonances 

which decay via autoionizing processes leading to the ground 2 63 3s p  
1
S

e
 state of Ti

+4
.  In 

this region, the direct photoionization contribution to the cross section is quite small; thus 

the giant resonances are fairly symmetric since any asymmetry is due to interference 

between the resonant and nonresonant amplitudes.  The direct photoionization cross 

section for the outer 3d electron, has been calculated [104] for Ti
3+

 at 45 eV to be 2.2 Mb, 

more than an order of magnitude smaller than the present result for the total (direct and 

indirect photoionization cross sections) of about 27.0 Mb (30.0 Mb experimentally [19].  

Among the most prominent resonances in figure 4.1(b) are the resonance at the threshold 

(located at energy 43.64 eV with a width of 1.27 eV), indentified as the 
2
D

e
  3p

5
(3d

2
 

3
F) 

2
F

o
 transition, the resonance at 44.59 eV (41.8 meV width) identified as 

2
D

e
  

(3p
5
3d 

3
P)4s  

2
P

o
 and the resonance at 47.73 3V (5.9 meV width) attributed to 

2
D

e
  

3p
5
(3d

2
 

3
P) 

2
P

o
.  are the dominant resonances originating from 3p photoexcitation; they 

are the lowest members of the series of Rydberg resonances start from the threshold and 

continue to the higher energy region [figure 4.2(b)] with higher principal quantum 

numbers.  Examples of the higher members of these series of Rydberg resonance, [(3p
5
nd

 

) 3d 
2
P

o
, 

2
F

o
] and [(3p

5
n’s

 3
P

o
) 3d 

2
P

o
, 

2
F

o
] with n  3 and n‟  4 are displayed in both 

figures 4.1(b) and 4.2(b).   

The series of Rydberg resonances interfere with direct photoionization continua 

2 63 3s p  
1
S

e
 ( f, p), and converge to the six Ti

+4
 

2 53 3 3s p d  thresholds starting with 
3
P

o
 at 

a photon energy of 77.16 eV to 
1
P

o
 at 92.62 eV (92.23 eV from experiment [89]).  In the 

region above 77.16 eV [figure 4.2(b)], the photon energy is high enough to produce, 
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through resonance excitation followed by autoionization, both ground and excited states 

of Ti
+4

 including 2 63 3s p  
1
S

e
, 2 53 3 3s p d  

3
P

o
, 2 53 3 3s p d  

3
F

o
,  etc., i.e., ionization plus 

excitation; the continuum cross sections (direct process) comprise 2 63 3s p  
1
S

e
 ( f, p), 

2 53 3 3s p d  
3
P

o
 ( d, s), 2 53 3 3s p d  

3
F

o
 ( d, s) and so forth.  

It is noteworthy that most of the characteristics of the Ti
3+

 photoionization cross 

sections spectrum originate from the ejection of the 3d electron (or 4s for the excited 

state), leading to the ground state of the target, 2 63 3s p  
1
S

e
.  Up to a photon energy of 

77.16 eV, only this channel is open; consequently other channels play minor roles in 

defining the photoionization cross section in the energy range considered in this work, at 

least for the LS coupling calculations part: threshold to 88.0 eV.  Figure 4.3 is illustrative 

of the importance of the main line 2 63 3s p  
1
S

e
 [figure 4.3(c)] compared to the satellite 

lines 2 53 3 3s p d  
3
P

o
 and 2 53 3 3s p d  

3
F

o
 [figures 4.3(b) and 4.3(a)] in the photoionization 

cross sections of the ground [Ne]3s
2
3p

6
3d 

2
D

e
 of Ti

+3
.  Note particularly the vertical 

scales of figures 4.3(a) and 4.3(b) as compared to figure 4.3(c). 
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Figure 4.1: Calculated photoionization cross sections of Ti
+3 from threshold to 51.0 eV: 

(a) initial 
2
S

e
 excited state showing the strongest resonance 

2
S

e
   (3p

5
3d 

1
P)4s 

2
P

o
 at 

energy 49.09 eV and (b) initial 
2
D

e
 ground state showing the strongest resonance 

2
D

e
  

3p
5
(3d

2
 
3
F) 

2
F

o
 at energy 43.64 eV.  Note the cut-off in resonance structure at threshold 

in (b). 
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Figure 4.2: Calculated photoionization cross sections of Ti
+3

 from 51.0 to 83.0 eV: (a) 

initial 
2
S

e
 excited state showing the rydberg series of resonances [(3p

5
nd

 1
P

o
) 4s 

2
P

o
] and 

[(3p
5
n’s

 1
P

o
) 4s 

2
P

o
] with n  4 and n’  5 and (b) initial 

2
D

e
 ground state showing series 

of Rydberg resonances  [(3p
5
nd

 
) 3d 

2
P

o
, 

2
F

o
] and [(3p

5
n’s

 3
P

o
) 3d 

2
P

o
, 

2
F

o
] with n  4 and 

n’  5. 
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Figure 4.3: Calculated photoionization cross section of the ground [Ne]3s
2
3p

6
3d 

2
D

e
 

initial state for the satellite transitions leaving the Ti
+4

 ion in the (a)
2 53 3 3s p d  

3
F

o
  

excited state and (b)  
2 53 3 3s p d  

3
P

o
  excited state, along with (c) the main line transition 

to the  
2 63 3s p  

1
S

o
  ground state of Ti

+4
.   
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The photoelectron angular distributions asymmetry parameter beta ( ) 

dependence on energy is presented in figure 4.4 for both the ground [Ne]3s
2
3p

6
3d 

2
D

e
 

and the excited [Ne]3s
2
3p

6
4s 

2
S

e
 states of Ti

+3
 ions.  Figure 4.4(a) shows the asymmetry 

parameter  for the excited [Ne]3s
2
3p

6
4s 

2
S

e
 state, and as we can see there is no energy-

dependence here since  = 2 .  This can be understood by the fact, in non-relativistic 

calculations (LS coupling approach),  = 2 for s  p transition; the variation of  with 

energy requires at least two outgoing channels with differing energy dependences to 

interfere with one another [85].  The photoionization of [Ne]3s
2
3p

6
4s 

2
S

e
 state leads to 

one final state only: [( 2 63 3s p  
1
S

e
) p 

2
P

o
].  The asymmetry parameter  dependence on 

energy can be clearly seen in figure 4.4(b) where we are presenting the case of the ground 

[Ne]3s
2
3p

6
3d 

2
D

e
 of Ti

+3
.  This is a non-relativistic operation, therefore Photoionization 

of the 
2
D

e
 state involves 2 transitions (d  p and d  f) leading to final states[( 2 63 3s p  

1
S

e
) p 

2
P

o
] and [( 2 63 3s p  

1
S

e
) f 

2
F

o
]; since we have at least two channels,  is energy 

dependent [figure 4.4(b)]. 
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Figure 4.4: Calculated Ti
+3

 asymmetry parameter beta (p) curves for photon 

energy from threshold to 77.0 eV: (a) initial 
2
S

e
 excited state showing  = 2 for s 

 p transition and (b) initial 
2
D

e
 ground state showing  energy dependence 

for d  p and d  f transitions. 

 

In figure 4.5 we show comparison between our LS results and the experimental 

data from Schippers et al [19] for photon energies from 43.3 to 49.5 eV for the ground 

2
D

e
 initial state.  The theoretical results have been broadened by a 18.0 meV width 

Gaussian to account for experimental resolution.  The unique strongest and broadest 

resonance of Ti
+3

 ground state (
2
D

e 
symmetry) is located at 43.64 eV, as seen in figure 

4.5(a).  Experimental results [19] showed this resonance was positioned at 43.46 eV (see 
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figure 4.5(b).  Since this calculation is a non-relativistic operation (LS coupling), 

relativistic effects, such as fine-structure splitting, are not included, and the absence of 

the spin-orbit interaction term in the calculation can be observed in figure 4.5(a) where 

the theoretical photoionization cross section spectrum doesn‟t show any splitting, and 

looks far simpler than the experimental counterpart in figure 4.5(b).  We can compare, at 

this effect, the single superimposed resonance feature at 44.58 eV, due to transition 
2
D

e
 

 (3p
5
3d 

3
P) 4s  

2
P

o
, in figure 4.5(a) to the double superimposed resonance structures 

that are observed at 44.42 and 44.61 eV respectively in figure 4.5(b).  It is clear, from this 

early comparison between non-relativistic results and experimental data [19] shown in 

figure 4.5, that the introduction of relativistic effect with the Breit-Pauli calculations is 

necessary to reproduce experimental results.  Not only do those relativistic effects allow 

the introduction of spin-orbit interaction leading to fine structure splitting, but also the 

dipole transition 
2
D

e
  

2
D

o
 can be accounted for in our theoretical results since, for the 

range of photon energy considered in the Ti
+3

 experiment [19] (threshold to 49.5 eV), this 

transition is forbidden in LS coupling approach.  The striking difference between figures 

4.5(a) and 4.5(b) in the energy region 47.5 to 48 eV is a concrete illustration of the 

influence of relativistic effects through the allowed transition 
2
D

e
  

2
D

o
.  
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Figure 4.5: Ti
+3

 photoionization cross sections from 43.3 to 49.5 eV for the ground 
2
D

e
 

initial state; (a) theory (LS-coupling) and (b) experiment (Schippers et al [19]).  Note the 

difference between the two spectra due to the absence of the spin-orbit interaction and the 

possibility of 
2
D

e
  

2
D

o
 transition from the theoretical calculation. 

 

4.2.1.2. Relativistic (Breit-Pauli) Calculations 

 With the introduction of the spin-orbit interaction in our calculations with the use 

of the Breit-Pauli R-matrix method, initial states of the Ti
3+

ion are represented by the 

ground [Ne]3s
2
3p

6
3d 

2
D e

2/3  state, the first excited [Ne]3s
2
3p

6
3d 

2
D e

2/5  state and the 

second excited [Ne]3s
2
3p

6
4s 

2
S e

2/1  state.  The calculated relativistic (Breit-Pauli) cross 
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sections for the photoionization of Ti
+3

 in the excited
 2

S e

2/1  initial state is shown in figure 

4.6.  The individual 
2
S e

2/1  → 
2
P o

2/3 and 
2
S e

2/1  → 
2
P o

2/1  cross sections are presented in 

figures 4.6(a) and 4.6(b) respectively, while the total is given in figure 4.6(c).  

 

Figure 4.6: Calculated Breit-Pauli photoionization cross sections of the excited 
2
S

e

2/1 state 

of Ti
+3

 from 46.0 to 52.0 eV showing, (a) the partial cross section to the j=3/2 final state, 

(b) the partial cross section to the j=1/2 final state, and (c) the total 
2
S

e

2/1 cross section, 

dominated by the   resonance at 49.09 eV.  For simplicity 3p
5
 is omitted from each of the 

resonance designations. 
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As in the non-relativistic case, the photoionization spectrum is dominated by 

autoionizing resonances.  Among important resonances in figure 4.6 note the very narrow 

resonances due to transitions 
2
S e

2/1  → 3p
5
(4s

2
 

1
S) 

2
P o

2/3  [figure 4.6(a)] and 
2
S e

2/1  → 

3p
5
(4s

2
 
1
S)  

2
P o

2/1  [figure 4.6(b)] located at 48.57 eV (5.2 meV width) and 48.73 eV (26.9 

meV width) respectively.  Both resonances arise from the splitting of LS resonance 

shown in figure 4.1(a) at 48.62 eV (see above), identified in LS-coupling as 
2
S

e
  

3p
5
(4s

2
 

1
S) 

2
P

o
.  Dominating the 

2
S e

2/1  cross section, however, are clearly the giant 

3p 3d resonances identified as 
2
S e

2/1  → (3p
5
3d 

1
P)4s 

2
P o

2/3  in figure 4.6(a) and 
2
S e

2/1  → 

(3p
5
3d 

1
P)4s 

2
P o

2/1  in figure 4.6(b); their positions and widths are 49.09 eV and 192.7 

meV,  and 49.12 eV and 175.2 meV, respectively.  Although the relativistic interactions 

cause a splitting of these two resonances, the splitting is so much smaller than the widths 

that it is unobservable.  In the experiment conducted by Schippers et al [19], on the 

photoionization of Ti
3+

, the excited 
2
S e

2/1  state was not part of the target beam because it 

is significantly excited (by 9.96 eV) compared to the ground 
2
D e

2/3  state, while in the case 

of Sc
2+

 the 
2
S e

2/1 state was part of the target beam because it is only 3.16 eV above the 

ground
 2

D e

2/3  state [9,10].  In the experiment on the photoionization of Ti
3+ 

reported by 

Ryabtsev et al [92], however, the excited 
2
S e

2/1  state was included as part of the target.  

From this experiment, resonances, originating from transitions 
2
S e

2/1  → 3p
5
(4s

2
 
1
S) 

2
P o

2/3  

[figure 4.6(a)] and 
2
S e

2/1  → 3p
5
(4s

2
 

1
S)  

2
P o

2/1  [figure 4.6(b)], were found at 48.64 and 

48.69 eV (24.8 meV width for each of them) respectively; it is clear that our theoretical 

results (48 55 and 48.73 eV) are in rather good agreement with the experimental data 
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from Ryabtsev et al [92] for those particular resonances.  For the strongest and broadest 

resonance feature in the excited Ti
3+

 
2
S

e
 state photoionization cross section, the two spin-

orbit components of the 
2
S

e
   (3p

5
3d 

1
P)4s 

2
P

o
, there are no experimental or previous 

theoretical results to compare with.  However we can say that both resonances are just 

equivalent to one single resonance attributed to transition 
2
S

e
   (3p

5
3d 

1
P)4s 

2
P

o
, and 

this resonance was observed in photoionization of the ground [Ne]3s
2
3p

6
4s 

2
S e

2/1  state of 

Ca
+
 [19,93,96-102] and in the excited [Ne]3s

2
3p

6
4s 

2
S e

2/1  state of Sc
+2

 [9-11,93], and in 

each of those cases, this resonance is very broad and strong with respective positions 

33.19 eV and 41.80 eV (experimental data [19,93]).  Consequently, from Ca
+
 to Sc

+2
, this 

resonance position, compared to the 4s electron ionization threshold (11.87 eV in Ca
+
 and 

21.59 eV in Sc
2+

), changes from 21.32 to 20.21 eV [19,93].  This tendency in the 

resonance position to get closer and closer to the 4s electron threshold, as the nuclear 

charge Z increases, should continue with Ti
3+

 and higher Z potassium-like ions; our 

theoretical calculations places it at 15.74 eV from the 4s electron threshold (33.35 eV).  

The width of this specific resonance, on the contrary, increases from Ca
+
 to Sc

+2
 (92.0 

and 147 meV); our calculated width (this work) is about 193.0 meV; which is in 

agreement with the trend in resonance width to augment as the nuclear charge Z of those 

ions increases.  this strong 
2
S

e
   (3p

5
3d 

1
P)4s 

2
P

o
 transition has an oscillator strength 

[103] in our calculation of 2.17 out of a total oscillator strength for 3p photoabsorption of 

6, i.e., this transition accounts for about 36.17 % of the total 3p oscillator strength, an 

enormous contribution.  

The Breit-Pauli results for the photoionization of the ground 
2
D e

2/3  state of Ti
+3

 

are presented in figure 4.7 for photon energy from threshold to 49.5 eV.  From the 
2
D e

2/3  
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ground state, transitions to final states with j =5/2, 3/2 and 1/2 are allowed, and these 

cross sections are shown in figures 4.7(a), 4.7(b) and 4.7(c) respectively; the total 
2
D e

2/3  

photoionization cross section is shown in figure 4.7(d).  For photon energy between the 

3d ionization threshold (43.31 eV) and 49.5 eV, resonances are seen to dominate the 

cross section, although the direct nonresonant photoionization channel is strong enough 

for interference to occur and produce the asymmetric line shapes, Fano profiles, observed 

in the cross sections [figures 4.7(a) and 4.7(d)].  The most prominent resonance is located 

at 43.544 eV with 1.28 eV width, and it is due to the 
2
D e

2/3  → 3p
5
(3d

2
 

3
F) 

2
F o

2/5  

transition, a j = 1 transition.  This resonance decays via a super-Coster-Kronig [105,106] 

transition (
5 2 63 3 3p d p e ) that is also observed in the photoionization cross sections 

of the excited (metastable) [Ne]3s
2
3p

6
3d 

2
D

e
 states of Ca

+
 [19,93,96-102] and the ground 

[Ne]3s
2
3p

6
3d 

2
D

e
 state of Sc

+2 
[9-11,19,93,107,108]; as long as the excitation energy is 

above the 3d threshold, this channel is open and results in this broad giant resonance.  

When the excitation energy is below the 3d ionization threshold, this decay channel is 

closed, and this is the case for K-like higher Z ions starting with V
4+

 (see below).  Our 

theoretical results show good agreement with experimental data [19] that place this 

resonance at 43.460 eV with 1.5 eV width.  We note that, compared to the 3d electron 

ionization threshold, the experimental positions of this resonance are [19,93] 19.16 eV in 

metastable Ca
+
, 12.38 eV in ground state Sc

2+
 and 0.22 eV in Ti

3+
; our calculations (this 

work), show it at positions 19.17, 12.44 and 0.31 eV respectively, which is rather good 

agreement. 
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Figure 4.7: Calculated Breit-Pauli photoionization cross sections of the ground 
2
D

e

2/3 state 

of Ti
+3

 showing, (a) the partial cross section to the j=5/2 final state, (b) the partial cross 

section to the j=3/2 final state, (c) the partial cross section to the j=1/2 final state, and (d) 

the total 
2
D

e

2/3 cross section, dominated by the 3p
5
(3d

2
 
3
F) 

2
F o

2/5  resonance at 43.54 eV.  

For simplicity 3p
5
 is omitted from each of the resonance designations. 

 

Other important resonances in the photoionization 
2
D e

2/3  state of Ti
3+ 

include the 

2
D e

2/3   (3p
5
3d 

3
P)4s 

2
P o

2/1  ( j = -1) located at 44.453 eV (44.4 meV width), seen in 



95 

 

figure 4.7(c), and the 
2
D e

2/3   (3p
5
3d 

3
P)4s  

2
P o

2/3  ( j = 0) resonance at 44.688 eV (40.4 

meV width), seen in figure 4.7(b).  Note the weakness of the 
2
P o

2/3  resonance in terms of 

strength and width compared to the 
2
P o

2/1  resonance.  Additional resonances resulting 

from 
2
D e

2/3  photoionization include 
2
D e

2/3   3p
5
(3d

2
 

3
P) 

2
P o

2/1  at 47.681 eV (4.3 meV 

width) shown in figure 4.7(c), 
2
D e

2/3   3p
5
(3d

2
 
3
P) 

2
P o

2/3  at 47.676 eV (6.1 meV width) 

seen in figure 4.7(b), 
2
D e

2/3   3p
5
(3d

2
 
3
F) 

2
D o

2/5  located at 47.531 eV (1.4 meV width) in 

figure 4.7(a), and 
2
D e

2/3   (3p
5
3d 

3
F)4s 

2
F o

2/5  at 46.030 eV (3.5 meV width) in figure 

4.7(a).  Note that the 
2
D

e
  

2
D

o
 photoionizing transitions are forbidden in this energy 

range without the introduction of relativistic effects; there is no 
2
D

o
 continuum since the 

ionization of the 3d electron leads only to 
2
P

o
 and 

2
F

o
 continua.   

In figure 4.8, we present the calculated Breit-Pauli results for the corresponding 

photoionization cross section for the excited 
2
D e

2/5  from threshold to 49.5 eV, and the 

partial cross sections for j = 7/2, 5/2 and 3/2 final states are shown in figures 4.8(a), 

4,8(b) and 4.8(c) respectively.  The total photoionization cross section for the 
2
D e

2/5  

initial state is shown in figure 4.8(d).  The strongest resonance, located at 43.718 eV 

[figure 4.8 (a)], 
2
D e

2/5  → 3p
5
(3d

2
 

3
F) 

2
F o

2/7 , has a width of 1.3 eV (1.5 eV 

experimentally); it is of substantially the same width as the corresponding 

2
D e

2/3 resonance (1.28 eV) at 43.544 eV [figure 4.7(a)].  Most resonances seen in figure 

4.8 for the Ti
+3

 
2
D e

2/5  cross sections have their equivalent already listed in the case of Ti
+3

 

2
D e

2/3  discussed above; among then are 
2
D e

2/5  → 3p
5
(3d

2
 

3
F) 

2
F o

2/5  seen at 43.484 eV 

[figure 4.8(b)] with j = 0, 
2
D e

2/5   (3p
5
3d 

3
P)4s  

2
P o

2/3  ( j = -1) located at 44.628  eV 
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[figure 4.8(c)] and 
2
D e

2/5   3p
5
(3d

2
 

3
P) 

2
P o

2/3  at 47.616 eV [figure 4.8(c)].  Another 

example of j = 0 but with L = 0 , 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
D o

2/5  is seen in figure 4.8(b) at 

47.471 eV.  Further, there are 
2
D e

2/5   (3p
5
3d 

1
F)4s 

2
F o

2/5  at 47.917 eV (23.7 meV 

width) [figure 4.8(b)] and 
2
D e

2/5   (3p
5
3d 

1
F)4s  

2
F o

2/7  at 47.910 eV [figure 4.8(a)] (26.3 

meV width).  The fine structure splitting between the 
2
D e

2/3  and 
2
D e

2/5  states of Ti 
+3

 ions, 

which is calculated to be E = 0.060 eV (experimental value is 0.047 eV [19,89]), is 

mirrored in the various resonance energy differences: 
2
D e

2/3  → 3p
5
(3d

2
 

3
F) 

2
F o

2/5  at 

43.544 eV in figure 4.7(a) and 
2
D e

2/5  → 3p
5
(3d

2
 
3
F) 

2
F o

2/5  at 43.488 eV in figure 4.8(b), 

2
D e

2/3   (3p
5
3d 

3
P)4s  

2
P o

2/3  at 44.688 eV in figure 4.7(b) and 
2
D e

2/5   (3p
5
3d 

3
P)4s  

2
P o

2/3  at 44.628  eV in figure 4.8(c) and 
2
D e

2/3   3p
5
(3d

2
 
3
P) 

2
P o

2/3  at 47.676 eV in figure 

4.7(b) and 
2
D e

2/5   3p
5
(3d

2
 
3
P) 

2
P o

2/3  at 47.616 eV in figure 4.8(c). 

The experimental Ti
+3

 ion beam [19] consists of two components: 45.0 % 
2
D e

2/3  

and 55.0 % 
2
D e

2/5 , and these fractions are used to obtain the theoretical total 

photoionization cross section for Ti
+3

 for a meaningful comparison with experiment [19]. 
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Figure 4.8: Calculated Breit-Pauli photoionization cross sections of the ground 

2
D e

2/5 state of Ti
+3

 showing, (a) the partial cross section to the j=7/2 final state, (b) the 

partial cross section to the j=5/2 final state, (c) the partial cross section to the j=3/2 final 

state, and (d) the total 
2
D e

2/5 cross section, dominated by the 3p
5
(3d

2
 
3
F) 

2
F

o

2/7  resonance 

at 43.71 eV.  For simplicity 3p
5
 is omitted from each of the resonance designations. 
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The comparison between theoretical and experimental data is shown in figure 4.9.  The 

experimental photon energy range is from the 3d ionization threshold to 49.5 eV; this 

means the experiment [19] only involves the region of giant resonances.  Those 

resonances, originating from 3p  3d and 3p  4s excitations, have been largely 

investigated theoretically and experimentally [19,90-95].  In figure 4.9, it is seen that the 

main feature of both theoretical and experimental cross section is the strongest and 

broadest resonance at the threshold, and attributed to the giant dipole transition 
2
D

e
  

3p
5
(3d

2
 
3
F) 

2
F

o
.  Despite the fact that this resonance is truncated (some of it is below the 

ionization threshold), it is still stronger than what was observed in excited (metastable) 

Ca
+ 

[19,93] and ground state of Sc
+2

 [19,93].  The width of this resonance is 1.5 eV 

experimentally [19,93] (1.3 eV in the present work), while for the metastable state of Ca
+ 

and the ground state of Sc
2+

, corresponding widths are 0.324 eV and 0.847 eV 

respectively [19,93].  The loss of strength in this resonance in Ti
3+

, due to truncation at 

the threshold, was estimated by Ryabtsev et al [19,92] to be about 40 %.   

 Comparing our theoretical results and experimental data, shown in figure 4.9, 

good agreement between them is seen.  For example, the calculation for the large 

resonance at threshold exhibits a maximum of 74.04 Mb at 43.62 eV [figure 4.9(a)] while 

from experiment ([figure 4.9(b)], [19]), the maximum is 68.86 Mb at 43.70 eV, quite 

good agreement indeed; well within the experimental uncertainty of 15 %.  Another 

illustration of the good agreement between theory (this work) and experiment [19] are the 

two narrower resonance structures that are superimposed on the giant resonance located 

theoretically at 44.45 and 44.62 eV [figure 4.9(a)], while the experiment [21] places them 

at 44.42 and 44.61 eV respectively [figure 4.9(b)]. 
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Figure 4.9: Ti
3+

 photoionization cross sections from 43.30 to 49.50 eV for a weighted 

average of 
2
D

e

2/3  and 
2
D

e

2/5  initial states; (a) theoretical calculations showing Nikolic et 

al [94] results (blue short dots) and results from this work (black solid line), (b) 

experiment [19] showing measured cross section data (green short dots) with error bars 

(low energy region) and the result of a resonance fit comprising eleven individual 

resonances (solid line), and (c) comparison of oscillator strength sums between this work 

(solid line) and experiment (red dotted line).  Note the cut off, at the threshold, of the 

giant 3p
5
(3d

2
 
3
F) 

2
F

o
 dipole resonance in figures (a) and (b).    
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 Despite this good agreement in the low energy region between the present work 

and experiment [19] (figure 4.9), very small differences between theory [figure 4.9(a)] 

and experiment [figure 4.9(b)] are seen in the 47.50 to 47 eV photon energy region, in 

terms of resonance positions, where the largest deviation observed is 0.16 eV only.  

Another less important difference between theory (this work) and experimental data [19] 

shown in figure 4.9(b) is the fact that cross section measurements were not performed in 

the energy ranges 45.1685- 47.4667 eV, 47.7484- 47.9757 eV and 48.1085- 48.9978 eV.  

This explains why, in the photon energy region from 45.6 to 46.1 eV, the two small 

resonance features seen at 45.68 and 46.03 eV (with respective widths 3.8 and 3.4 meV) 

in figure 4.9(a) were not part of experimental [19] results [figure 4.9(b)].  However, the 

experiment of Ryabtsev et al [92] showed similar resonance features with almost the 

same widths (4.3 and 3.7 meV), but there are deviations in the resonance positions (see 

table 4.8 below) compared to our results.  

  As what was done in the Sc
+2

 photoionization cross section case in the 

subsection 3.2.2, we can apply the Thomas-Reiche-Kuhn sum rule [75-78] to the Ti
+3

 

photoionization case; Note it is also an excellent approximation for subshell 

photoionization [103].  Since the photoionization cross section is simply a multiplicative 

constant times the (differential) oscillator strength [39], the total oscillator strength 

represented by the photoionization cross section can be easily calculated.  In the present 

case, it is expected that the cross section should include almost all of the strength from 

the 3p
6
 subshell owing to the giant 3p → 3d resonances which all occur in the continuum; 

for the outer shell electron, on the other hand, most of the oscillator strength will likely 

occur in the discrete, i.e., photoexcitation rather than photoionization.  Performing 
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oscillator strength calculations on Ti
3+

 within the experiment [19] photon energy range 

(from threshold to 49.5 eV), we find 2.810 out of possible 6 (number of 3p electrons); the 

measured oscillator strength is 2.631, in quite good agreement with theory.  The 

theoretical and experimental results respectively represent about 47.0 % and 44.0 % of 

the total 3p oscillator strength even though the photon energy range is from threshold to 

49.5 eV (6.2 eV wide); through those considerations, we confirm the important 

contribution of those giant dipole resonances to the sum of oscillator strengths in the 

photoionization of Ti
3+

.   

 Continuing our discussion about photoionization of Ti
+3

 ions, in figure 4.9(c) we can see 

the progression of theoretical (the present work) in solid line and experimental [19] sums 

of oscillator strength (dotted line) as function of photon energy.  Figure 4.9(c) reveals that 

theoretical results (the present work) and experimental data [19], for the photoionization 

cross sections of Ti
+3

, agree very well until photon energy 47.40 eV where theoretical 

photoionization cross section results start getting higher that the experimental data.  

[47.4-47.8 eV] is the region where the transition 
2
D

e
 → 

2
D

o
 occurs, and resonances, 

generated through this transition and with its different channels, are very narrow, but very 

high in magnitude (over 1000.0 Mb).    

A summary of positions, widths and identifications of the major resonances 

obtained in the relativistic Breit-Pauli calculation is given in table 4.8, along with a 

comparison with available experimental data [19,92].  In general the agreement is quite 

good, especially for resonances in the lower energy region (below 45.50 eV) as regards 

both position and width.  Note that some of the resonances listed in table 4.8 can be 

reached by more than one initial state in the experimental mixture.  They are listed more  
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Table 4. 8: Theoretical (relativistic Breit-Pauli) and experimental [21,22] resonance energies Eres 

(eV), widths (meV) and the corresponding transitions.   

 

 

This Calculation                         Transitions                         Experiments  

 Eres 

 

 
 

 
 

    Eres [22] 

 

      [22] 

 
Eres [21]    

 

43.54 1280 
2
D e

2/3   3p
5
(3d

2
 
3
F) 

2
F o

2/5  43.67 930.9 43.46 

43.71 1300 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/7  43.67 930.9                

43.48 1280 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/5     

44.45 44.4 
2
D e

2/3   (3p
5
3d 

3
P)4s  

2
P o

2/1  44.46 39.7 44.42                    

44.62 40.4 
2
D e

2/5    (3p
5
3d 

3
P)4s  

2
P o

2/3  44.65 52.1 44.61 

44.68 40.4 
2
D e

2/3   (3p
5
3d 

3
P)4s  

2
P o

2/3     

45.68 3.8 
2
D e

2/5   (3p
5
3d 

3
F)4s  

2
F o

2/7  46.04 4.3                    

45.97 3.4 
2
D e

2/5   (3p
5
3d 

3
F)4s  

2
F o

2/5  46.33 4.7                    

46.03 3.4 
2
D e

2/3   (3p
5
3d 

3
F)4s  

2
F o

2/5  46.38 4.7                   

47.46 1.4 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
D o

2/5  47.77  47.62    

47.52 1.4 
2
D e

2/3   3p
5
(3d

2
 
3
F) 

2
D o

2/5  47.81  47.67 

47.68 6.1 
2
D e

2/3   3p
5
(3d

2
 
3
P) 

2
P o

2/1  47.58 16.1 47.54 

47.61 4.3 
2
D e

2/5   3p
5
(3d

2
 
3
P) 

2
P o

2/3  47.66 23.6 47.51 

47.66 4.3 
2
D e

2/3   3p
5
(3d

2
 
3
P) 

2
P o

2/3  47.71 9.9 47.56 

47.91 26.3 
2
D e

2/5   (3p
5
3d 

1
F)4s  

2
F o

2/7  48.37 28.5    

47.91 23.7 
2
D e

2/5   (3p
5
3d 

1
F)4s  

2
F o

2/5  48.32 18.6  

48.57 15.2 
2
S e

2/1   3p
5
(4s

2
 
1
S) 

2
P o

2/3  48.64 24.8  

48.73 26.9 
2
S e

2/1   3p
5
(4s

2
 
1
S) 

2
P o

2/1  48.69 24.8  

49.04 192.7 
2
S e

2/1   (3p
5
3d  

1
P)4s  

2
P o

2/3     

49.12 175.2 
2
S e

2/1   (3p
5
3d  

1
P)4s  

2
P o

2/1     
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than once for purposes of comparison with the experimental results.  They are 

listed at different photon energy simply because each of the initial states has a different 

ionization energy so that different photon energies are required from each of these initial 

states to excite a particular resonance, i.e., the difference in the resonance energies for a 

given resonance state in the table is just the difference in the binding energies of the 

initial states of the transitions.       

Additional results to complete the Ti
+3

 resonance analysis are the list of line 

strengths and oscillator strengths for five of the major resonances chosen from table 4.8, 

and this is shown in table 4.9.  As expected and can be seen in table 4.9, transitions with 

j = 1 (
2
D e

2/3   3p
5
(3d

2
 
3
F) 

2
F o

2/5 , 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/7  and 
2
S e

2/1   (3p
5
3d  

1
P)4s  

2
P o

2/3  ) have stronger line strength and oscillator strength than transitions with j = 0 

(
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/5  and  
2
S e

2/1   (3p
5
3d  

1
P)4s  

2
P o

2/1 ). 

 

Table 4.9: Ti IV (Ti
+3

) line strength (S) and oscillator strength (f) for five of the major 

resonances.  

 

 

 Transitions  j   S (a.u.)       f    

2
D e

2/3   3p
5
(3d

2
 
3
F) 

2
F o

2/5  1 5.206 0.926 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/7  1 7.728 1.035 

2
S e

2/1   (3p
5
3d 

1
P) 4s 

2
P o

2/3  1 4.885 1.468 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/5  0 0.270 0.048 
2
S e

2/1   (3p
5
3d 

1
P) 4s 

2
P o

2/1  0 1.166 0.702 
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4.2.2. Photoionization of V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

 Ions 

4.2.2.1. Photoionization of V
+4

 from Threshold to 116.0 eV 

Stating with V
+4

, and continuing with other ions in the K-like transition metal ions 

series studied here (Cr
+5

, Mn
+6

 and Fe
+7

), the Super-Coster-Kronig decay channel, that 

produces those giant (3p  3d) dipole resonances is closed because the 3p  3d 

excitation energy is below the ionization threshold; therefore resonance structures 

observed in the photoionization cross section spectra of those ions are much narrower 

than what we have seen in Sc
+2

 and Ti
+3

 (see above sections).   

In figure 4.10, we present the asymmetry parameter and photoionization cross 

section calculation results for the ground 2
D

e
 initial state of V

+4.  The asymmetry parameter 

 dependence on energy is shown in figure 4.10(a); this is a non-relativistic operations 

(LS coupling), therefore photoionization of the 
2
D

e
 initial state involves 2 transitions (d 

 p and d  f) leading to final states[( 2 63 3s p  
1
S

e
) p 

2
P

o
] and [( 2 63 3s p  

1
S

e
) f 

2
F

o
]; 

since we have at least two channels (for the final state),  is energy dependent [figure 

4.10(a)].  Figure 4.10(b) photoionization cross section results for the ground 2
D

e
 state 

leaving the residual (target) V
+5

 ion in the ground state 
2 63 3s p  

1
S

o
.  We can see in figure 

4.10(b) that the cross section is dominated by series of Rydberg resonances associated 

with the 3p electron excitation to higher principal quantum number, with respect to the 

Sc
+2

 and Ti
+3

 cases; they can be described as [(3p
5
nd

 
) 3d 

2
P

o
, 

2
F

o
] and [(3p

5
n’s

 
) 3d 

2
P

o
, 

2
F

o
] (with n  4 and n‟  5).  Those series eventually decay to continua [

2 63 3s p  
1
S

e
 ( f, 

p)], which also originate from direct photoionization of the ground [Ne]3s
2
3p

6
3d 

2
D

e
 

state of V
+4

.  We must note that those sequences of Rydberg resonances start converging 

at photon energy 103.78 eV  (103.43 eV from experiment [89] to excited target V
+5

state 
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2 53 3 3s p d  
3
P

o
, and the upper limit of both series is the excited target V

+5
 (3p

5
3d 

1
P

o
) state 

at photon energy 120.94 eV (120.44 eV from experiment [89]). 

 

 

 

Figure 4.10: Non-relativistic calculations for V
+4 showing (a) initial 

2
D

e
 ground state 

asymmetry parameter  energy dependence for d  p and d  f transitions, and 

(b) the main line cross sections for photoionization of V
+4

 
2
D

e
 initial state leaving the 

residual (target) V
+5

 ion in the ground state 
2 63 3s p  

1
S

o
. 
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For relativistic photoionization cross section calculations, there are two initials 

states: the ground state 
2
D e

2/3  and the first excited state 
2
D e

2/5 .  The Breit-Pauli results for 

the photoionization of the ground 
2
D e

2/3  state of V
+4

 are presented in figure 4.11.  From 

the 
2
D e

2/3  ground state, transitions to final states with j =5/2, 3/2 and 1/2 are allowed, and 

these cross sections are shown in figures 4.11(a), 4.11(b) and 4.11(c) respectively.  In 

figure 4.12 we present the calculated Breit-Pauli results for photoionization cross section 

of excited 
2
D e

2/5  state.  The partial cross section results for j = 7/2, 5/2 and 3/2 final states 

are shown in figures 4.12(a), 4.12(b) and 4.12(c) respectively.  Figure 4.13 shows non-

relativistic and relativistic results for V
+4

 photoionization calculations; in figure 4.13(a) 

non-relativistic cross sections for the V+4
 

2
D

e are presented, and as in the case of Sc
+2

 or 

Ti
+3

, discussed above, figures 4.13(a) and 4.10(b) exactly look the same up to photon 

energy 103.01 eV because photoionization of V
+4

 leaving the target ion V
+5

 in the ground 

state 
2 63 3s p  

1
S

e
 is the only open channel until this energy level is reached.  Figure 

4.13(b) is about the total cross sections from the ground 
2
D e

2/3  state, and figure 4.13(c) 

shows the total cross sections from the excited 
2
D e

2/5  state of V+4.  For both 
2
D e

2/3  and 

2
D e

2/5  states of V+4 cross section shown in figures 4.13(b) and 4.13(c), the series of 

Rydberg resonances associated with the 3p electron photoexcitation are [(3p
5
nd

 
) 3d 

2
P

o
, 

2
D

o 
, 

2
F

o
] and [(3p

5
n’s

 
) 3d 

2
P

o
, 

2
D

o 
, 

2
F

o
] (with n  4 and n‟  5); note the difference 

between figures 4.13(b) and 4.13(c) on the one hand, and figures 4.13(a) on the other 

hand, is due to transition 
2
D

e 
 
2
D

o
 which is forbidden in the non-relativistic approach 

until photon energy 103.78 eV (103.43 eV in the experiment []89]).  The fact that the 
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difference is noticeable demonstrates the importance of relativistic interactions even at 

this (relatively) low Z. 

 

  

Figure 4.11: Calculated Breit-Pauli photoionization cross sections for the ground 

2
D

e

2/3 state of V
+4

 showing, (a) the partial cross section to the j=5/2 final state, (b) the 

partial cross section to the j=3/2 final state, (c) the partial cross section to the j=1/2 final 

state. 
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Figure 4.12: Calculated Breit-Pauli photoionization cross sections for the excited 
2
D e

2/5  

state of V
+4

 showing, (a) the partial cross section to the j=7/2 final state, (b) the partial 

cross section to the j=5/2 final state and (c) the partial cross section to the j=3/2 final 

state. 
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Figure 4.13: Calculated V
+4

 photoionization cross sections showing (a) non-relativistic 

(LS-coupling) cross sections from the initial ground state 
2
D

e
, (b) the total for the ground 

2
D e

2/3  state, and (c) the total for the excited 
2
D e

2/5  state.  
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4.2.2.2. Photoionization of Cr
+5

 from Threshold to 145.0 eV 

  In figure 4.14, we present the asymmetry parameter and photoionization 

cross section calculation results for the ground 2
D

e
 initial state of Cr

+5.  The 

asymmetry parameter  dependence on energy is shown in figure 4.14(a); this is a 

non-relativistic operations (LS coupling), therefore photoionization of the 
2
D

e
 

initial state involves 2 transitions (d  p and d  f) leading to final states 

[( 2 63 3s p  
1
S

e
) p 

2
P

o
] and [( 2 63 3s p  

1
S

e
) f 

2
F

o
]; since we have at least two 

channels (for the final state),  is energy dependent [figure 4.14(a)].  Figure 

4.14(b) shows photoionization cross section results for the ground 2
D

e
 state leaving 

the residual (target) Cr
+6

 ion in the ground state 2 63 3s p  
1
S

o
.  We can see in figure 

4.14(b) that the cross section is dominated by series of Rydberg resonances 

associated with the 3p electron excitation to higher principal quantum number, 

with respect to the Sc
+2

 and Ti
+3

 cases; they can be described as [(3p
5
nd

 
) 3d 

2
P

o
, 

2
F

o
] and [(3p

5
n’s

 
) 3d 

2
P

o
, 

2
F

o
] (with n  4 and n‟  5).  Those series eventually 

decay to continua [
2 63 3s p  

1
S

e
 ( f, p)], which also originate from direct 

photoionization of the ground [Ne]3s
2
3p

6
3d 

2
D

e
 state of Cr

+5
.  We must note that 

those sequences of Rydberg resonances start converging at photon energy 133.54 

eV  (133.46 eV from experiment [89] to excited target Cr
+6

state 
2 53 3 3s p d  

3
P

o
, 

and the upper limit of both series is the excited target Cr
+6

 (3p
5
3d 

1
P

o
) state at 

photon energy 152.39 eV (151.67 eV from experiment [89]). 
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Figure 4.14: Non-relativistic calculations for Cr
+5 showing (a) initial 

2
D

e
 ground state 

asymmetry parameter  energy dependence for d  p and d  f transitions, and 

(b) the main line cross sections for photoionization of Cr
+5

 
2
D

e
 initial state leaving the 

residual (target) Cr
+6

 ion in the ground state 
2 63 3s p  

1
S

o
. 

  

For Cr
+5

 relativistic photoionization cross section calculations, we have two 

initials states: the ground 
2
D e

2/3  state and the first excited 
2
D e

2/5  state.  The Breit-Pauli 

results for the photoionization of the ground 
2
D e

2/3  state of Cr
+5

 are presented in figure 

4.15.  From the 
2
D e

2/3  ground state, transitions to final states with j =5/2, 3/2 and 1/2 are 
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allowed, and these cross sections are shown in figures 4.15(a), 4.15(b) and 4.15(c) 

respectively.  In figure 4.16 we present the calculated Breit-Pauli results for 

photoionization cross section of excited 
2
D e

2/5  state.  The partial cross section results for j 

= 7/2, 5/2 and 3/2 final states are shown in figures 4.16(a), 4.16(b) and 4.16(c) 

respectively.  Figure 4.17 shows non-relativistic and relativistic results for Cr
+5

 

photoionization calculations; in figure 4.17(a) cross sections for the Cr
+5

 
2
D

e are 

presented, and as in the case of Sc
+2

 or Ti
+3

, discussed above, figures 4.17(a) and 4.14(b) 

exactly look the same up to photon energy 133.54 eV because photoionization of Cr
+5

 

leaving the target ion Cr
+6

 in the ground state 2 63 3s p  
1
S

e
 is the only open channel until 

this energy level is reached.  Figure 4.17(b) is about the total cross sections from the 

ground 
2
D e

2/3  state, and figure 4.17(c) shows the total cross sections from the excited 

2
D e

2/5  state of Cr
+5

.  For both 
2
D e

2/3  and 
2
D e

2/5  states of Cr+5 cross section shown in 

figures 4.17(b) and 4.17(c), the series of Rydberg resonances associated with the 3p 

electron photoexcitation are [(3p
5
nd

 
) 3d 

2
P

o
, 

2
D

o 
, 

2
F

o
] and [(3p

5
n’s

 
) 3d 

2
P

o
, 

2
D

o 
, 

2
F

o
] 

(with n  4 and n‟  5); note the difference between figures 4.17(b) and 4.17(c) on the 

one hand, and figures 4.17(a) on the other, is due to transition 
2
D

e 
 

2
D

o
 which is 

forbidden in the non-relativistic approach until photon energy 133.54 eV (133.47 eV in 

the experiment []89]).  The fact that the difference is noticeable demonstrates the 

importance of relativistic interactions even at this (relatively) low Z. 
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Figure 4.15: Calculated Breit-Pauli photoionization cross sections for the ground 

2
D

e

2/3 state of Cr
+5

 showing, (a) the partial cross section to the j=5/2 final state, (b) the 

partial cross section to the j=3/2 final state, (c) the partial cross section to the j=1/2 final 

state. 
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Figure 4.16: Calculated Breit-Pauli photoionization cross sections for the excited 
2
D e

2/5  

state of Cr
+5

 showing, (a) the partial cross section to the j=7/2 final state, (b) the partial 

cross section to the j=5/2 final state and (c) the partial cross section to the j=3/2 final 

state. 
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Figure 4.17: Calculated Cr
+5

 photoionization cross sections showing (a) non-relativistic 

(LS-coupling) cross sections from the initial ground state 
2
D

e
, (b) the total for the ground 

2
D e

2/3  state, and (c) the total for the excited 
2
D e

2/5  state.  
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4.2.2.3. Photoionization of Mn
+6

 from Threshold to 170.0 eV 

  In figure 4.18, we present the asymmetry parameter and photoionization 

cross section calculation results for the ground 2
D

e
 initial state of Mn

+6.  The 

asymmetry parameter  dependence on energy is shown in figure 4.18(a); this is a 

non-relativistic operations (LS coupling), therefore photoionization of the 
2
D

e
 

initial state involves 2 transitions (d  p and d  f) leading to final states 

[( 2 63 3s p  
1
S

e
) p 

2
P

o
] and [( 2 63 3s p  

1
S

e
) f 

2
F

o
]; since we have at least two 

channels (for the final state),  is energy dependent [figure 4.18(a)].  Figure 

4.18(b) shows photoionization cross section results on the ground 2
D

e
 state leaving 

the residual (target) Mn
+7

 ion in the ground state 2 63 3s p  
1
S

o
.  We can see in 

figure 4.18(b) that the cross section is dominated by series of Rydberg resonances 

associated with the 3p electron excitation to higher principal quantum number, 

with respect to the Sc
+2

 and Ti
+3

 cases; they can be described as [(3p
5
nd

 
) 3d 

2
P

o
, 

2
F

o
] and [(3p

5
n’s

 
) 3d 

2
P

o
, 

2
F

o
] (with n  4 and n‟  5).  Those series eventually 

decay to continua [
2 63 3s p  

1
S

e
 ( f, p)], which also originate from direct 

photoionization of the ground [Ne]3s
2
3p

6
3d 

2
D

e
 state of Mn

+6
.  We must note that 

those sequences of Rydberg resonances start converging at photon energy 166.00 

eV  (165.68 eV from experiment [89] to excited target Mn
+7

state 
2 53 3 3s p d  

3
P

o
, 

and the upper limit of both series is the excited target Mn
+7

 (3p
5
3d 

1
P

o
) state at 

photon energy 186.87 eV (185.94 eV from experiment [89]). 
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Figure 4.18: Non-relativistic calculations for Mn
+6 showing (a) initial 

2
D

e
 ground state 

asymmetry parameter  energy dependence for d  p and d  f transitions, and 

(b) the main line cross sections for photoionization of Mn
+6

 
2
D

e
 initial state leaving the 

residual (target) Mn
+7

 ion in the ground state 
2 63 3s p  

1
S

o
. 

  

For Mn
+6

 relativistic photoionization cross section calculations, we have two 

initials states: the ground 
2
D e

2/3  state and the first excited 
2
D e

2/5  state.  The Breit-Pauli 

results for the photoionization of the ground 
2
D e

2/3  state of Mn
+6

 are presented in figure 

4.19.  From the 
2
D e

2/3  ground state, transitions to final states with j =5/2, 3/2 and 1/2 are 
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allowed, and these cross sections are shown in figures 4.19(a), 4.19(b) and 4.19(c) 

respectively.  In figure 4.20 we present the calculated Breit-Pauli results for 

photoionization cross section of excited 
2
D e

2/5  state.  The partial cross section results for j 

= 7/2, 5/2 and 3/2 final states are shown in figures 4.20(a), 4.20(b) and 4.20(c) 

respectively.  Figure 4.21 shows non-relativistic and relativistic results for Mn
+6

 

photoionization calculations; in figure 4.21(a) cross sections for the Mn
+6

 
2
D

e are 

presented, and as in the case of Sc
+2

 or Ti
+3

, discussed above, figures 4.21(a) and 4.18(b) 

exactly look the same up to photon energy 166.0 eV because photoionization of Mn
+6

 

leaving the target ion Mn
+7

 in the ground state 2 63 3s p  
1
S

e
 is the only open channel until 

this energy level is reached.  Figure 4.21(b) is about the total cross sections from the 

ground 
2
D e

2/3  state, and figure 4.21(c) shows the total cross sections from the excited 

2
D e

2/5  state of Mn
+6

.  For both 
2
D e

2/3  and 
2
D e

2/5  states of Mn+6 cross section shown in 

figures 4.21(b) and 4.21(c), the series of Rydberg resonances associated with the 3p 

electron photoexcitation are [(3p
5
nd

 
) 3d 

2
P

o
, 

2
D

o 
, 

2
F

o
] and [(3p

5
n’s

 
) 3d 

2
P

o
, 

2
D

o 
, 

2
F

o
] 

(with n  4 and n‟  5); note the difference between figures 4.21(b) and 4.21(c) on the 

one hand, and figures 4.21(a) on the other, is due to transition 
2
D

e 
 

2
D

o
 which is 

forbidden in the non-relativistic approach until photon energy 166.00 eV (165.68 eV in 

the experiment []89]).  The fact that the difference is noticeable demonstrates the 

importance of relativistic interactions even at this (relatively) low Z. 
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Figure 4.19: Calculated Breit-Pauli photoionization cross sections for the ground 

2
D

e

2/3 state of Mn
+6

 showing, (a) the partial cross section to the j=5/2 final state, (b) the 

partial cross section to the j=3/2 final state, (c) the partial cross section to the j=1/2 final 

state. 
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Figure 4.20: Calculated Breit-Pauli photoionization cross sections for the excited 
2
D e

2/5  

state of Mn
+6

 showing, (a) the partial cross section to the j=7/2 final state, (b) the partial 

cross section to the j=5/2 final state and (c) the partial cross section to the j=3/2 final 

state. 
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Figure 4.21: Calculated Mn
+6

 photoionization cross sections showing (a) non-relativistic 

(LS-coupling) cross sections from the initial ground state 
2
D

e
, (b) the total for the ground 

2
D e

2/3  state, and (c) the total for the excited 
2
D e

2/5  state.  
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4.2.2.4. Photoionization of Fe
+7

 from Threshold to 203.0 eV 

In figure 4.22, we present the asymmetry parameter and photoionization cross 

section calculation results on the ground 2
D

e
 initial state of Fe

+7.  The asymmetry parameter 

 dependence on energy is shown in figure 4.22(a); this is a non-relativistic operations 

(LS coupling), therefore photoionization of the 
2
D

e
 initial state involves 2 transitions (d 

 p and d  f) leading to final states [( 2 63 3s p  
1
S

e
) p 

2
P

o
] and [( 2 63 3s p  

1
S

e
) f 

2
F

o
]; 

since we have at least two channels (for the final state),  is energy dependent [figure 

4.22(a)].  Figure 4.22(b) shows photoionization cross section results on the ground 2
D

e
 

state leaving the residual (target) Fe
+8

 ion in the ground state 
2 63 3s p  

1
S

o
.  We can see in 

figure 4.22(b) that the cross section is dominated by series of Rydberg resonances 

associated with the 3p electron excitation to higher principal quantum number, with 

respect to the Sc
+2

 and Ti
+3

 cases; they can be described as [(3p
5
nd

 
) 3d 

2
P

o
, 

2
F

o
] and 

[(3p
5
n’s

 
) 3d 

2
P

o
, 

2
F

o
] (with n  4 and n‟  5).  Those series eventually decay to continua 

[
2 63 3s p  

1
S

e
 ( f, p)], which also originate from direct photoionization of the ground 

[Ne]3s
2
3p

6
3d 

2
D

e
 state of Fe

+7
.  We must note that those sequences of Rydberg 

resonances start converging at photon energy 202.19 eV  (202.21 eV from experiment 

[89] to excited target Fe
+8

state 2 53 3 3s p d  
3
P

o
, and the upper limit of both series is the 

excited target Fe
+8

 (3p
5
3d 

1
P

o
) state at photon energy 224.39 eV (223.39 eV from 

experiment [89]). 
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Figure 4.22: Non-relativistic calculations for Fe
+7 showing (a) initial 

2
D

e
 ground state 

asymmetry parameter  energy dependence for d  p and d  f transitions, and 

(b) the main line cross sections for photoionization of Fe
+7

 
2
D

e
 initial state leaving the 

residual (target) Fe
+8

 ion in the ground state 
2 63 3s p  

1
S

o
. 

  

For Fe
+7

 relativistic photoionization cross section calculations, we have two 

initials states: the ground 
2
D e

2/3  state and the first excited 
2
D e

2/5  state.  The Breit-Pauli 

results for the photoionization of the ground 
2
D e

2/3  state of Fe
+7

 are presented in figure 

4.23.  From the 
2
D e

2/3  ground state, transitions to final states with j =5/2, 3/2 and 1/2 are 
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allowed, and these cross sections are shown in figures 4.23(a), 4.23(b) and 4.23(c) 

respectively.  In figure 4.24 we present the calculated Breit-Pauli results for 

photoionization cross section of excited 
2
D e

2/5  state.  The partial cross section results for j 

= 7/2, 5/2 and 3/2 final states are shown in figures 4.24(a), 4.24(b) and 4.24(c) 

respectively.  Figure 4.25 shows non-relativistic and relativistic results for Fe
+7

 

photoionization calculations; in figure 4.25(a) cross sections for the Fe
+7

 
2
D

e are 

presented, and as in the case of Sc
+2

 or Ti
+3

, discussed above, figures 4.25(a) and 4.22(b) 

exactly look the same up to photon energy 202.2 eV because photoionization of Fe
+7

 

leaving the target ion Fe
+8

 in the ground state 2 63 3s p  
1
S

e
 is the only open channel until 

this energy level is reached.  Figure 4.25(b) is about the total cross sections from the 

ground 
2
D e

2/3  state, and figure 4.25(c) shows the total cross sections from the excited 

2
D e

2/5  state of Fe
+7

.  For both 
2
D e

2/3  and 
2
D e

2/5  states of Fe
+7

 cross section shown in 

figures 4.25 (b) and 4.25(c), the series of Rydberg resonances associated with the 3p 

electron photoexcitation are [(3p
5
nd

 
) 3d 

2
P

o
, 

2
D

o 
, 

2
F

o
] and [(3p

5
n’s

 
) 3d 

2
P

o
, 

2
D

o 
, 

2
F

o
] 

(with n  4 and n‟  5); note the difference between figures 4.21(b) and 4.21(c) on the 

one hand and figures 4.21(a) on the other, is due to transition 
2
D

e 
 

2
D

o
 which is 

forbidden in the non-relativistic approach until photon energy 202.19 eV (202.20 eV in 

the experiment []89]).  The fact that the difference is noticeable demonstrates the 

importance of relativistic interactions even at this (relatively) low Z. 
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Figure 4.23: Calculated Breit-Pauli photoionization cross sections for the ground 

2
D

e

2/3 state of Fe
+7

 showing, (a) the partial cross section to the j=5/2 final state, (b) the 

partial cross section to the j=3/2 final state, (c) the partial cross section to the j=1/2 final 

state. 
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Figure 4.24: Calculated Breit-Pauli photoionization cross sections for the excited 
2
D e

2/5  

state of Fe
+7

 showing, (a) the partial cross section to the j=7/2 final state, (b) the partial 

cross section to the j=5/2 final state and (c) the partial cross section to the j=3/2 final 

state. 
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Figure 4.25: Calculated Fe
+7

 photoionization cross sections showing (a) non-relativistic 

(LS-coupling) cross sections from the initial ground state 
2
D

e
, (b) the total for the ground 

2
D e

2/3  state, and (c) the total for the excited 
2
D e

2/5  state.  

 

4.2.3. Sum of oscillator strengths comparison for K-like ions 

 To compare the various K-like transition metal ions, Sc
+2

, Ti
+3

, V
+4

, Cr
+5

, Mn
+6

 

and Fe
+7

, the oscillator strength ( f) sum [78,103] is investigated, in each case, in each of 

three different states (
2
D

e
, 

2
D e

2/3 , 
2
D e

2/5 ) for photon energies between the lowest 

ionization threshold and the first 3p threshold.  The results of our calculations are shown 

in table 4.10.  
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Table 4.10: K-like transition metal ions (Sc
+2

, Ti
+3

, V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

) sum of 

oscillator strengths f for 2
D

e
, 

2
D

e

2/3 , 
2
D

e

2/5  states for photon energy between 3d and 

first 3p electron ionization threshold..  

 

 

  K-like Ions 

 

Sc
+2

 

 

Ti
+3

 

 

V
+4

 

 

Cr
+5

 

 

Mn
+6

 

 

Fe
+7

 

 

  f
 
(
2
D

e
) 

 

3.99 

 

3.19 

 

1.08 

 

1.00 

 

0.99 

 

0.79 

  f( 
2
D e

2/3 ) 5.13 3.75 1.10 1.08 1.01 0.95    

  f
 
(
2
D e

2/5 ) 5.44 4.26 1.12 1.09 1.03 0.94 

  f( 
2
D e

2/3 ) - f
 
(
2
D

e
) 1.14 0.56 0.02 0.08 0.02 0.16 

  f
 
(
2
D e

2/5 ) - f
 
(
2
D

e
) 1.45 1.07 0.04 0.09 0.04 0.15 

 

Looking at results in table 4.10, it is evident that the oscillator strength sum in the 

continuum decreases with increasing Z from Z = 21 to Z = 26; this occurs because, with 

increasing Z, more and more of the oscillator strength of the 3p  3d transitions move 

into the discrete, i.e., this strength goes into bound-bound transition, not photoionization.  

This movement into the discrete was clearly in evidence for Ti
+3

, discussed above, where 

a 3p  3d resonance straddled the threshold with about 40% of it in the discrete region.  

For the next ion, V
4+

 (Z=23) all of these resonant states that produce those giant (3p  

3d excitation) resonances become bound states and the oscillator strength in the 

continuum is seen to drop off sharply as compared to Sc
+2

 (section 3) and Ti
+3

 

photoionization where almost all of the strength from the 3p
6
 subshell is owing to the 

giant 3p → 3d resonances and lies in the continuum.  For V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

 

photoionization, although the giant 3p → 3d resonances occur in the discrete (below 

threshold), for the outer shell electron most of the oscillator strength remains 
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predominantly in the continuum.  This is evident from table 4.10 where the oscillator 

strength sum for the four ions (V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

) is close to 1 in each case.  Note 

that the photoionization cross sections for V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

 are dominated by 

series of Rydberg resonances associated with 3p transitions to states with n > 3); since n 

 0 for these transitions, the overlap (and dipole matrix element) between 3p orbital and 

nd orbital (n > 3) is small compared to the n = 0 case, so that these higher resonances 

are much weaker and narrower.  Differences between Sc
+2

 and Ti
+3

 cases, one hand, and 

V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

 on the other, in terms of continuum oscillator strength sum 

(table 4.10) further confirms the importance of the contribution of these giant (3p  3d 

excitation) resonances to the cross section of each of the K-like ions where they lie above 

the ionization threshold. 

Furthermore, from table 4.10, the two last lines [ f( 
2
D e

2/3 ) - f
 
(
2
D

e
) and f

 
(
2
D e

2/5 ) 

- f
 
(
2
D

e
)] show large differences between relativistic and non-relativistic calculations for 

each of the K-like ions considered here; in each case, the relativistic oscillator strengths 

for Sc
+2

 and Ti
+3

 are quite large, of order unity, while for V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

 the 

differences are quite small.  The large differences are due to the contributions of the 3p 

→ 3d dipole transition in the 
2
D

e
  

2
D

o
 channel which is forbidden in non-relativistic 

(LS coupling) theory below the first 3p ionization.  This difference in continuum 

oscillator becomes far less important for the higher ions where all of the giant dipole 

oscillator strength is in the discrete.  All of these observations are summarized in figure 

4.26 which illustrates the evolution of the continuum oscillator strength sum with Z. 
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Figure 4.26: Plot of the sum of oscillator strengths f as function of nuclear charge Z for 

2
D

e
 (LS-coupling), 

2
D

e

2/3  and 
2
D

e

2/5  states.  Notice the weakness of f for Z  23 

compared to f for Z =21 or 22. This is due to the important contribution to f from the 

giant (3p  3d excitation) dipole transition.   

 

4.3. Conclusion 

 In this section, photoionization cross section calculation results for K-like 

transition metal ions (Ti
+3

, V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

) have been presented.  For each of 

those ions, we have performed both non-relativistic (LS-coupling) and relativistic (Breit-

Pauli) calculations.  While the photoionization cross section spectra of Ti
+3

, as for Sc
+2

, 
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are dominated by the giant (3p  3d excitation) resonances, those of higher Z (Z  23) 

ions (V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

) are dominated by Rydberg series of resonances.  This 

observation can be generalized, and extended to the last four members of the potassium 

isoelectronic sequence of the iron group (Co
+8

, Ni
+9

, Cu
+10

 and Zn
+11

); those four ions 

photoionization cross section spectra also are dominated by Rydberg series of resonance.  

Our theoretical results on Ti
+3

 showed good quantitative and qualitative agreement with 

available experimental data, and highlight the necessity to include core excitations (3p 

excitation, in this case) in the description of transition processes in open d-subshell atoms 

or ions.  For Ti
+3

 the photoionization cross section results on the excited [Ne]3s
2
3p

6
4s 

2
S e

2/1  state are presented, but there is no previous work to compare with; it would be more 

interesting to have results from other sources (experimental or theoretical) to confirm our 

theoretical results.  Also, for the other four ions (V
+4

, Cr
+5

, Mn
+6

 and Fe
+7

), studied in this 

work, the same need for experimental data exists.  

We have extensively talked about presence of the giant (3p  3d excitation) 

resonances in the photoionization cross section spectra of potassium-like transition metal 

ions such as Sc
+2 

and Ti
+3

, but it also occurs in photoionization process in potassium-like 

alkali earth metal ion (Ca
+
); to this effect, the next section is about the study of the 

photoionization of ground and excited state of Ca
+
 ions. 
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CHAPTER 5. 

 

PHOTOIONIZATION OF GROUND AND EXCITED STATES OF Ca
+
 IONS AND 

COMPARISON ALONG THE ISOELECTRONIC SEQUENCE 

5.1. Description of the Calculations 

For the calculations on Ca
+
, we follow the same procedures as what was done in 

the calculations on Sc
+2

 (subsection 3.1.), consequently we only report on relevant 

differences for Ca
+
 calculations.  The configuration-interaction (CI) expansion of the Ca 

III configuration functions included four spectroscopic configurations, 2 63 3s p , 

2 53 3 3s p d , 2 53 3 4s p s  and 2 53 3 4s p p , and 26 correlation configurations.  Specifically, 

the correlation configurations included are 2 53 3 4s p d , 2 53 3 4s p f , 2 53 3 5s p s , 

2 53 3 5s p p , 2 53 3 5s p d , 63 3 3s p d , 2 4 23 3 3s p d , 2 43 3 3 4s p d p , 2 43 3 4 4s p s p , 

2 43 3 3 5s p d p , 2 43 3 4 5s p s p , 2 43 3 4 5s p p p , 2 43 3 4 4s p p d , 2 43 3 3 4s p d f , 2 43 3 4 4s p s f , 

2 43 3 4 4s p p f , 2 3 33 3 3s p d , 2 3 23 3 3 4s p d s , 2 3 23 3 4 4s p s p , 2 3 33 3 4s p p , 5 23 3 3s p d , 

53 3 3 4s p d s , 53 3 3 4s p d p , 4 33 3 3s p d , 63 3 4s p p , 63 3 5s p d .  Thus, a total of 30 

configurations corresponding to 682 LS terms were included in the nonrelativistic 

calculation; for the relativistic (BP) calculation, the relativistic spin-orbit, Darwin and 

mass correction terms were added to the Hamiltonian and the resulting CI yielded LSJ 

terms constructed from the LS terms.  

 To get some idea of the accuracy of the N-electron target state energies, the 

calculated and experimental (NIST) [89] energy levels relative to the ground state of Ca
+2

 

states are shown in table 5.1, and reasonable agreement with experiment is seen. 
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Table 5.1: Calculated and experimental (NIST) [89] energy levels in  

Rydbergs f6r states of Ca III (Ca+2
) relative to the ground state. 

 

Ca III state 

 

J 

 

 This work 

 

      Exp. [89] 

 
2 63 3s p  

1
S

e
 0 0.00000 0.00000     

2 53 3 3s p d  
3
P

o 

 

 

0 

1 

2 

1.84255 

1.84753 

1.85761 

1.85327 

1.85763 

1.86666 
2 53 3 3s p d  

3
F

o 

 

 

4 

3 

2 

1.94253 

1.95236 

1.96139 

1.93471 

1.94445 

1.95315  
2 53 3 3s p d  

1
D

o

 2 2.07332 2.05788 
2 53 3 3s p d  

3
D

o 

 

 

3 

1 

2 

2.07132 

2.08113 

2.08283 

2.06250 

2.07251 

2.07211      
2 53 3 3s p d  

1
F

o

 3 2.09192 2.08146 
2 53 3 4s p s  

3
P

o 

 

 

2 

1 

0 

2.19562 

2.21093 

2.22496 

2.21025 

2.22285 

2.23818 
2 53 3 4s p s  

1
P

o

 1 2.25923 2.25717 
2 53 3 3s p d  

1
P

o

 1 2.56320 2.54565 
  

Two separate photoionization cross section calculations were performed.  In the 

first, relativistic effects were neglected, and the calculation was carried out with the LS-

coupling non-relativistic R-matrix codes [14,15].    In the first sum in equation (13), only 

the terms arising from the spectroscopic configurations are included which abnegates the 

possibility of pseudo-resonances.  In the (purely discrete) second sum, however, all of the 

terms from the 30 N-electron configurations, coupled to all of the single-particle orbitals, 

both spectroscopic and correlation, are included in the set of iχ .   
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 The initial state wave function, for the Ca
+
 ions case, was constructed from 

adding a single electron to the N-electron target states to include the main configuration, 

3s
2
3p

6
3d or 3s

2
3p

6
4s, along with all single electron promotions out the 3s, 3p and the 

outer shell (3d or 4s), along with all double promotions of the type 3s
2
3p

5
nln‟l‟, and the 

important double promotions of the 3s
2
3p

4
3d

2
nl variety.  Other possible two-electron 

promotions were omitted to insure that the ground state was not overcorrelated as 

compared to the target states, i.e., to balance the calculation.  The terms arising from 

these states formed the basis of a large CI calculation to obtain the initial state wave 

function.  In table 5.2 are presented the threshold energies of the two nonrelativistic states 

of Ca
+
, the ground [Ne]3s

2
3p

6
4s 

2
S

e
 state and the excited [Ne]3s

2
3p

6
3d 

2
D

e
 metastable 

state, along with the corresponding three relativistic initial states, the ground state 

[Ne]3s
2
3p

6
4s 

2
S e

2/1  plus the first two (metastable) excited states [Ne]3s
2
3p

6
3d 

2
D e

2/3  and 

[Ne]3s
2
3p

6
3d 

2
D e

2/5 .  Comparing our theoretical ionization potentials with experimental 

data [89], also shown in the table, it is evident that agreement between theory and 

experiment is rather good. 

In both LS and BP calculations, the R-matrix box radius was 30.0 au, and 34 basis 

orbitals were used to represent the continuum for each value of the angular momentum.   

The QB method [16-18] is adopted in this work to determine the resonance energies and 

widths.  The QB method works in the R-matrix environment (see subsection 2.6 above). 
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Table 5.2: Ca II (Ca
+
) states threshold energy in eV compared to experiment [89].  

 

State 

 

Calculation 

 

Experiment 

 

 Error (%) 

 
2
S

e
 11.9868 11.8717 0.96 

2
D

e
 10.1653 10.1755 0.10 

2
S e

2/1  11.9853 11.8717 0.95 
2
D e

2/3  10.1664 10.1793 0.12 
2
D e

2/5  10.1499 10.1718 0.21 

 

5.2. Results and Discussion 

5.2.1. Non-relativistic (LS coupling) Calculations 

In the non-relativistic calculations for Ca
+
 ions, the initial states of this ion are the 

ground [Ne]3s
2
3p

6
4s 

2
S

e
 and the excited (metastable) [Ne]3s

2
3p

6
3d 

2
D

e
 states.  In figure 

5.1, we present results of the non-relativistic calculations for photon energy from 23.0 to 

46.0 eV.  Figures 5.1(a) and 5.1(b) respectively illustrate the individual photoionization 

cross sections from ground 
2
S

e
 and excited 

2
D

e
 states of Ca

+
; since, in both cases, the 

photoionization cross sections obtained using length and velocity forms agree very well, 

only one form (length) is displayed here and in all subsequent figures.   

In the case of the Ca
+
 ground 

2
S

e
 state, the 4s electron threshold (11.98 eV from 

this work and 11.87 eV from experiment [89]) cross section (not seen in figure 5.1(a)) 

magnitude is 0.1 Mb.  For photon energy below 27.0 eV [figure 5.1(a)], there are no 

resonances in the ground 
2
S

e
 state photoionization cross section; only the direct 

photoionization process is possible here, and leads to [(
2 63 3s p  

1
S

e
) p] 

2
P

o
.  Starting at 
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27.0 eV, we enter the 3p electron excitation region characterized by the presence of series 

of Rydberg resonances associated with 3p electron photoexcitation [figures 5.1(a)] such 

as [(3p
5
nd) 4s 

2
P

o
] and [(3p

5
n’s) 4s 

2
P

o
].  These two sequences of Rydberg resonances 

contain the most important features of the Ca
+
 ground 

2
S

e
 state photoionization cross 

section spectrum [figure 5.1(a)]; among them, we can point out the resonance located at 

28.31 eV (2.1 meV width), and attributed to the transition 
2
S

e
  3p

5
(4s

2
 
1
S) 

2
P

o
 and the 

largest and broadest resonance feature in figure 5.1(a) at 33.18 eV (68.8 meV width); this 

peak reaches 2200 Mb, and is attributed to the transition 
2
S

e
  (3p

5
3d 

1
P)4s 

2
P

o
 that is 

followed by autoionization (decay) to the ground 
2 63 3s p  

1
S

e
 state of Ca

+2
.  Figure 5.1(a) 

also displays higher order members of those Rydberg series of resonances originated 

from 3p electron photoexcitation to higher principal quantum number [(3p
5
nd) 4s 

2
P

o
] 

and [(3p
5
n’s) 4s 

2
P

o
] with n  4 and n’  5, and they are mixed, and interfering with the 

[(
2 63 3s p  

1
S

e
) p 

2
P

o
] continuum.  The limit of those two sequences is the excited target 

Ca
+2

 (3p
5
4s 

1
P

o
) state at energy 42.58 eV (42.47 eV from experiment [89]).  Due to 

dipole transition selection rules, only the transition 
2
S

e
  

2
P

o
 is allowed; this confers to 

the outer 4s electron, in this photoionization of Ca
+
 ground 

2
S

e
 state case, a role of 

“spectator” since it only contributes to angular momentum coupling with its spin.  The 

very limited number of resonances observed in this case is illustrative of this fact.    

For the excited (metastable) 
2
D

e
 state of Ca

+
, the photoionization cross section, 

shown in figure 5.1(b), exhibits far more complex structure than the ground 
2
S

e
 state of 

Ca
+
.  At threshold (10.16 eV in this work and 10.17 eV from experiment [89]), the cross 

section magnitude is 5.0 Mb (not shown in figure 5.1(b)); from threshold to 23.0 eV there 

are no resonances in the excited (metastable) 
2
D

e
 state photoionization cross section.  
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Only the direct photoionization process is possible here, and leads to [ 2 63 3s p  
1
S

e
 ( f, p) 

2
P

o
, 

2
F

o
].  For photon energy from 23.0 to 33.0 eV, we have a mixture of direct non-

resonant and indirect resonance processes, and it is evident that the resonance excitations 

are dominant in this region where the cross section can reach hundreds of Mb.  Previous 

experiments and theoretical studies [97,98,109] of Ca
+ 

photoionization have shown that 

all resonant states that can contribute with significant oscillator strength, in this region, 

have energies above 23.0 eV; this observation qualitatively and quantitatively agrees with 

our results in this work.  In this photon energy region [figure 5.1(b)], we observe giant, 

3p → 3d excitation, resonances; these 3p → 3d resonances are so strong because they 

represent Δn=0 transitions, and, since the spatial extent of a wave function is determined 

largely by the principal quantum number, n, the 3p and 3d wave functions occupy 

substantially the same region of space, resulting in significant overlap and a rather large 

dipole matrix element.  The photoionization cross section in this region is dominated by 

resonances which decay via autoionizing processes leading to the ground 
2 63 3s p  

1
S

e
 

state of Ca
+2

.  In this region, the direct photoionization contribution to the cross section 

can almost be neglected in terms of cross section magnitude even if by interfering with 

the resonant channel, the line shape of those giant resonances becomes more asymmetric 

depending on the relative matrix elements of the two pathways (direct and indirect 

processes).   

The most prominent resonances in this region of figure 5.1(b) include two types 

of resonance corresponding to the two allowed transitions in the case of excited 

(metastable) 
2
D

e
 state of Ca

+
: 

2
D

e
  

2
F

o
 and 

2
D

e
  

2
P

o
 with l = +1 and l = -1 

respectively.  For the transition 
2
D

e
  

2
P

o
, we observe, in figure 5.1(b), the resonance 
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located at 23.41 eV (41.4 meV width) that is attributed to transition 
2
D

e
  (3p

5
3d 

3
P)4s  

2
P

o
 and the resonance located at 30.21 eV (11.4 meV width), and is attributed to 

transition 
2
D

e
  3p

5
(3d

2
 
3
P) 

2
P

o
.  For the transition 

2
D

e
  

2
F

o
, the following resonances 

are the most important: the 
2
D

e
  3p

5
(3d

2
 
1
G) 

2
F

o
 resonance located at 24.46 eV (16.6 

meV width), the 
2
D

e
  3p

5
(3d

2
 

1
D) 

2
F

o
 resonance located at 24.89 eV (119.6 meV 

width), the  
2
D

e
  (3p

5
3d 

3
F)4s 

2
F

o
 resonance located at 25.72 eV (22.5 meV width), the 

2
D

e
  (3p

5
3d 

1
F)4s 

2
F

o
 resonance located at 26.21 eV (75.5 meV width), the 

2
D

e
  

(3p
5
3d 

3
P)4d 

2
F

o
 resonance located at 30.96 eV (103.6 meV width), the 

2
D

e
  (3p

5
3d 

3
D)4d 

2
F

o
 resonance located at 31.32 eV (2.0 meV width), the 

2
D

e
  (3p

5
3d 

3
F)4d 

2
F

o
 

resonance located at 32.02 eV (46.3 meV width) and the 
2
D

e
  (3p

5
3d 

1
D)4d 

2
F

o
 

resonance located at 32.63 eV (38.5 meV width).  The largest and the strongest 
2
D

e
  

2
F

o
 resonance is the 

2
D

e
  3p

5
(3d

2
 
3
F) 

2
F

o
 resonance located [figure 5.1(b)] at 29.29 eV 

(257.7 meV width).  In fact all those giant resonances listed above and seen in figure 

5.1(b) are the lowest and strongest members of the Rydberg series associated with the 3p 

photoexcitation, that start from photon energy 23.0 eV, and continue to the higher energy 

region [figure 5.1(b)] with higher principal quantum number.  As examples of those 

series of Rydberg resonance, we have [(3p
5
nd

 
) 3d 

2
P

o
, 

2
F

o
] and [(3p

5
n’s

 3
P

o
) 3d 

2
P

o
, 

2
F

o
] 

with n  3 and n‟  4 in figure 5.1(b). 
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Figure 5.1: Calculated non-relativistic photoionization cross sections of Ca
+ from 23.0 

to 41.0 eV: (a) initial 
2
S

e
 ground state showing the strongest resonance 

2
S

e
   (3p

5
3d 

1
P)4s 

2
P

o
 at energy 33.18 eV and (b) initial 

2
D

e
 excited (metastable) state showing the 

strongest resonance 
2
D

e
  3p

5
(3d

2
 
3
F) 

2
F

o
 at energy 29.20 eV.  Note the complexity of 

2
D

e
 excited state resonance structure compared to 

2
S

e
 ground state photoionization cross 

sections spectrum. 

 

Those series of Rydberg resonances interfere with direct photoionization continua 

2 63 3s p  
1
S

e
 ( f, p), and converge to photon energy 35.37eV to excited Ca

+2 
state 

2 53 3 3s p d  
3
P

o
 for ground state photoionization, and the upper limit of both series is the 
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excited target Ca
+2

 (3p
5
3d 

1
P

o
) state at energy 44.97 eV (44.71 from experiment [89]).  

For excited state photoionization, in the region above 35.18 eV [figure 5.1(b)], the photon 

energy is high enough to produce, through resonance excitation followed by 

autoionization, both ground and excited states of Ca
+2

 including 2 63 3s p  
1
S

e
, 2 53 3 3s p d  

3
P

o
, 2 53 3 3s p d  

3
F

o
, etc., i.e., ionization plus excitation; the continuum cross sections 

(direct process) comprise 2 63 3s p  
1
S

e
 ( f, p), 2 53 3 3s p d  

3
P

o
 ( d, s), 2 53 3 3s p d  

3
F

o
 ( d, 

s), and so forth.  

In figure 5.2 we present cross sections from the excited (metastable) 
2
D

e
 state of 

Ca
+
 corresponding to all three allowed symmetries in the nonrelativistic regime: 

2
D

e
  

2
F

o
, 

2
D

e
  

2
D

o
 and 

2
D

e
  

2
P

o
 [figures 5.2(a), 5.2(b) and 5.2(c) respectively] for photon 

energy from 23.0 to 46 eV.  It is noteworthy that up to photon energy 35.37 eV, the Ca
+
 

photoionization cross section is only composed of the ejection of the 3d electron, leading 

to the ground state of the target Ca
+2 2 63 3s p  

1
S

e
; consequently only two of those three 

symmetries (
2
D

e
  

2
F

o 
and 

2
D

e
  

2
P

o
) are possible in this range of energy.  However 

for photon energy above 35.37 eV, all those three possibilities (
2
D

e
  

2
F

o
, 

2
D

e
  

2
D

o
 

and 
2
D

e
  

2
P

o
) are allowed, as seen in figure 5.2.  

The photoelectron angular distributions asymmetry parameter beta ( ) 

dependence on energy is presented in figure 5.3 for both the excited [Ne]3s
2
3p

6
3d 

2
D

e
 

and the ground [Ne]3s
2
3p

6
4s 

2
S

e
 states of Ca

+
 ions.  Figure 5.3(a) shows the asymmetry 

parameter  for the ground [Ne]3s
2
3p

6
4s 

2
S

e
 state, and as we see there is no energy-

dependence here since  = 2 .  This can be understood by the fact, in non-relativistic 

calculations (LS coupling approach),  = 2 for s  p transition; the variation of  with 



141 

 

energy requires at least two outgoing channels with differing energy dependences to 

interfere with one another [85], and the photoionization of [Ne]3s
2
3p

6
4s 

2
S

e
 state leads to   

   

 

Figure 5.2: Calculated non-relativistic photoionization cross section for the Ca
+
 excited 

(metastable) [Ne]3s
2
3p

6
3d 

2
D

e
 initial state for photon energy from 23.0 to 46.0 eV 

showing individual cross sections corresponding to all three allow transitions from the 

2
D

e
 initial state: (a) 

2
D

e
  

2
F

o
, (b) 

2
D

e
  

2
D

o
 and (c) 

2
D

e
  

2
P

o
.  Note the transition 

2
D

e
  

2
D

o
 only occurs at photon energy above 35.37 eV, where the photon energy is 

high enough to produce both ground and excited states of Ca
+2

 including 
2 63 3s p  

1
S

e
, 

2 53 3 3s p d  
3
P

o
, 

2 53 3 3s p d  
3
F

o
, etc.   
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Figure 5.3: Calculated Ca
+ asymmetry parameter beta (p) curves for photon energy from 

15.0 to 45.0 eV: (a) initial 
2
S

e
 ground state showing  = 2 for s  p transition and (b) 

initial 
2
D

e
 excited state showing  energy dependence for d  p and d  f 

transitions. 

one final state only, [(
2 63 3s p  

1
S

e
) p 

2
P

o
].  The asymmetry parameter  dependence on 

energy can be clearly seen in figure 5.3(b) for the photoionization of the excited 

(metastable) [Ne]3s
2
3p

6
3d 

2
D

e
 of Ca

+
.  In this non-relativistic calculations the 

Photoionization of the 
2
D

e
 state involves two transitions (d  p and d  f) leading to 

final states [(
2 63 3s p  

1
S

e
) p 

2
P

o
] and [(

2 63 3s p  
1
S

e
) f 

2
F

o
]; since we have at least two 
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channels,  is energy-dependent [figure 5.3(b)].  Note that if the matrix element for the d 

 p transition vanishes, we would have a constant  = 0.8.  This is quite close to the 

background value of  seen in figure 5.3(b), indication that the matrix element for the 3d 

 f transition is much larger than 3d p.  

5.2.2. Relativistic (Breit-Pauli) Calculations 

 With the introduction of the spin-orbit interaction in our calculations through the 

use of the Breit-Pauli R-matrix method along with other relativistic effects, the initial 

states of the Ca
+
 ion are characterized as the ground [Ne]3s

2
3p

6
4s 

2
S e

2/1  state, the first 

excited [Ne]3s
2
3p

6
3d 

2
D e

2/3  state and the second excited [Ne]3s
2
3p

6
3d 

2
D e

2/5  state.  The 

calculated relativistic (Breit-Pauli) cross section for the photoionization of the Ca
+
 
2
S e

2/1  

initial state is shown in figure 5.4.  The individual 
2
S e

2/1  → 
2
P o

2/3 and 
2
S e

2/1  → 
2
P o

2/1  cross 

sections are presented in figures 5.4(a) and 5.4(b) respectively, while the total is given in 

figure 5.4(c).  As in the non-relativistic case, the photoionization spectrum is dominated 

by autoionizing resonances, but now we distinguish two channels in the ground Ca
+
 
2
S e

2/1  

initial state cross section: 
2
S e

2/1  → 
2
P o

2/3 and 
2
S e

2/1  → 
2
P o

2/1 .  Among the most important 

resonances in figure 5.4(a), which correspond to transition 
2
S e

2/1  → 
2
P o

2/3 , we note four 

narrow and one large and strong resonances: the 
2
S e

2/1  → 3p
5
(3d

2
 
1
D) 

2
P o

2/3  resonance 

located at 27.000 eV (1.7 meV width), the 
2
S e

2/1  → 3p
5
(4s

2
 
1
S) 

2
P o

2/3  resonance located at 

28.198 eV (2.3 meV width), the 
2
S e

2/1  → 3p
5
(3d

2
 
1
S) 

2
P o

2/3  resonance located at 30.169 

eV (5.6 meV width), the 
2
S e

2/1  → 3p
5
(3d

2
 
3
P) 

2
P o

2/3  resonance located at 32.062 eV (10.9 
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meV width) and the 
2
S e

2/1  → (3p
5
3d 

1
P)4s 

2
P o

2/3  resonance located at 33.226 eV (72.2 

meV width).   

 

 

Figure 5.4: Calculated Breit-Pauli photoionization cross sections of the ground 
2
S

e

2/1 state 

of Ca
+
 from 23.0 to 35.0 eV showing, (a) the partial cross section to the j=3/2 final state, 

(b) the partial cross section to the j=1/2 final state, and (c) the total 
2
S

e

2/1 cross section, all 

dominated by the  
2
S

e
  (3p

5
3d 

1
P)4s 

2
P

o
  resonance at 33.22 eV.  For simplicity 3p

5
 is 

omitted from each of the resonance designations. 
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Similarly from figure 5.4(b) for the
2
S e

2/1  → 
2
P o

2/1  channel, we find the analogous: 

the 
2
S e

2/1  → 3p
5
(3d

2
 
1
D) 

2
P o

2/1  resonance located at 26.947 eV (2.1 meV width), the 
2
S e

2/1  

→ 3p
5
(4s

2
 

1
S) 

2
P o

2/1  resonance located at 28.569 eV (1.8 meV width), the 
2
S e

2/1  → 

3p
5
(3d

2
 
1
S) 

2
P o

2/1  resonance located at 30.447 eV (5.3 meV width), the 
2
S e

2/1  → 3p
5
(3d

2
 

3
P) 

2
P o

2/1  resonance located at 32.022 eV (12.3 meV width) and the 
2
S e

2/1  → (3p
5
3d 

1
P)4s 

2
P o

2/1  resonance located at 33.210 eV (69.7 meV width).   

Dominating the 
2
S e

2/1  cross section, however, are clearly the giant 3p 3d 

resonances (see above) identified as 
2
S e

2/1  → (3p
5
3d 

1
P)4s 

2
P o

2/3  in figure 5.4(a) and 
2
S e

2/1  

→ (3p
5
3d 

1
P)4s 

2
P o

2/1  in figure 5.4(b); their positions and widths are 33.22 eV and 72.2 

meV,  and 33.20 eV and 69.7 meV, respectively.  Although the relativistic interactions 

cause a splitting of these two resonances, the splitting is so much smaller than the widths 

that it is unobservable; thus they are equivalent to the single non-relativistic resonance, 

2
S

e
  (3p

5
3d 

1
P)4s 

2
P

o
, and was observed in the photoionization of excited [Ne]3s

2
3p

6
4s 

2
S e

2/1  in Sc
+2

 [9-11,93] and excited [Ne]3s
2
3p

6
4s 

2
S e

2/1  of Ti
+3

 (see subsection 4.2.1. 

above).  From our calculations (the present work), this giant resonance is located at 33.30 

eV [figure 5.4(c)], and the experimental results [93,98] show it at 33.19 eV; i.e. , an 

excellent agreement between theory and experiment.  We also note excellent agreement 

in the magnitude of this resonance which is about 2200 Mb both from experimental data 

[93,98] and theoretical calculations (this work).  From Ca
+
 to Ti

+3
, this resonance 

position, compared to the 4s electron threshold (11.98 eV in Ca
+
, 21.86 eV in Sc

+2
 and 

33.35 eV in Ti
+3

), has changed, and decreased from 21.22 eV to 20.18 eV and 15.74 eV 

(this work) respectively.  This tendency in the resonance position to get closer and closer 
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to the 4s electron threshold, as the nuclear charge Z increases, was observed in 

experiments [93,98] for Ca
+
 and Sc

+2
, and should continue with higher Z potassium-like 

ions.  The width of this resonance, on the contrary, increases from Ca
+
 to Sc

+2
 (92.0 and 

147 meV) [93,98]; our calculated widths (this work) are 72.2 meV for Ca
+
, 144 meV for 

Sc
+2

 and 193.0 meV for Ti
+3

.  This is in agreement with the trend in resonance width to 

augment as the nuclear charge Z of those ions increases.  In addition, this strong spectral 

line, transition 
2
S

e
  (3p

5
3d 

1
P)4s 

2
P

o
, has an oscillator strength [103] calculated (this 

work) to be 1.87 out of a total of 6 (3p photoexcitation); this is about 31.16 % of the total 

oscillator strength, an important contribution.  

The Breit-Pauli results for the photoionization of the excited (metastable) 
2
D e

2/3  

state of Ca
+
 are presented in figure 5.5 for photon energy from 23.0 to 33.0 eV.  From the 

2
D e

2/3  ground state, transitions to final states with j =5/2, 3/2 and 1/2 are allowed, and 

these cross sections are shown in figures 5.5(a), 5.5(b) and 5.5(c) respectively; the total 

2
D e

2/3  photoionization cross section is shown in figure 5.5(d).  For this entire photon 

energy range, resonances are seen to dominate the cross section, although the direct 

nonresonant photoionization channel is strong enough for interference to occur and 

produce the asymmetric line shapes, Fano profiles, observed in the cross sections [figures 

5.5(a) and 5.5(d)].  The most prominent resonance is located at 29.254 eV with 251.6 

meV width, and it is identified as 
2
D e

2/3  → 3p
5
(3d

2
 

3
F) 

2
F o

2/5 , a j = 1 transition.  This 

resonance decays via a super-Coster-Kronig [105,106] transition (
5 2 63 3 3p d p e ) 

that is also observed in the photoionization cross sections of the ground [Ne]3s
2
3p

6
3d 

2
D

e
 

state of Sc
+2 

[9-11,19,93,107,108] and the ground [Ne]3s
2
3p

6
3d 

2
D

e
 state of Ti

+3 
[19,90-
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95]; as long as the excitation energy is above the 3d ionization threshold, this channel is 

open and results in this broad giant resonance.   

 

Figure 5.5: Calculated Breit-Pauli photoionization cross sections of the ground 
2
D

e

2/3 state 

of Ca
+
 showing, (a) the partial cross section to the j=5/2 final state, (b) the partial cross 

section to the j=3/2 final state, (c) the partial cross section to the j=1/2 final state, and (d) 

the total 
2
D

e

2/3 cross section, dominated by the 3p
5
(3d

2
 
3
F) 

2
F o

2/5  resonance at 29.25 eV.  

For simplicity 3p
5
 is omitted from each of the resonance designations. 

 

 

When the excitation energy is below the 3d ionization threshold, this decay channel is 

closed, and this is the case for K-like higher Z ions starting with V
4+

 (see section 4).  Our 
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theoretical results show good agreement with experimental data [93,98] that place this 

resonance at 29.330 eV (with 320.0 meV width).  We note here that, compared to the 3d 

ionization threshold, positions of this resonance were [19,93] 19.16 eV in metastable Ca
+
, 

12.38 eV in ground states Sc
2+

 and 0.22 eV in Ti
3+

; our calculations (this work) show it at 

positions 19.17, 12.44 and 0.31 eV respectively.  This result shows that we have reached 

good qualitative and quantitative agreement with experimental data [19,93] in 

reproducing this particularly strong and broad resonance feature, where position along the 

sequence get closer to the 3d ionization threshold as the nuclear charge Z increases.   

 Besides this large resonance feature described above, many other important 

resonance structures exist in the case of excited (metastable) 
2
D e

2/3  state of Ca
+
 starting 

with transitions corresponding to j = +1 observed in figure 5.5(a): the 
2
D e

2/3   3p
5
(3d

2
 

1
G) 

2
F o

2/5  resonance located at 24.545 eV (14.2 meV width), the 
2
D e

2/3   3p
5
(3d

2
 

1
D) 

2
D o

2/5  resonance located at 24.773 eV (17.3 meV width), the 
2
D e

2/3   3p
5
(3d

2
 
1
D) 

2
F o

2/5  

resonance located at 24.854 eV (119.6 meV width), the 
2
D e

2/3   (3p
5
3d 

3
F)4s 

2
F o

2/5  

resonance located at 25.737 eV (22.5 meV width), the 
2
D e

2/3   (3p
5
3d 

3
D)4s 

2
D o

2/5  

resonance located at 25.780 eV (6.1 meV width), the 
2
D e

2/3   (3p
5
3d 

1
F)4s 

2
F o

2/5  

resonance located at 26.389 eV (75.3 meV width), the 
2
D e

2/3   3p
5
(3d

2
 

3
F) 

2
D o

2/5  

resonance located at 30.089 eV (0.5 meV width), the 
2
D e

2/3   (3p
5
3d 

3
P)4d 

2
F o

2/5  

resonance located at 30.930 eV (63.2 meV width), the 
2
D e

2/3   (3p
5
3d 

3
P)4d 

2
D o

2/5  

resonance located at 30.985 eV (27.8 meV width), the 
2
D e

2/3   (3p
5
3d 

3
D)4d 

2
F o

2/5  

resonance located at 31.432 eV (2.7 meV width), the 
2
D e

2/3   (3p
5
3d 

3
F)4d 

2
F o

2/5  
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resonance located at 32.071 eV (38.9 meV width), the 
2
D e

2/3   (3p
5
3d 

1
P)4d 

2
D o

2/5  

resonance located at 32.383 eV (0.6 meV width), the 
2
D e

2/3   (3p
5
3d 

1
D)4d 

2
D o

2/5  

resonance located at 32.553 eV (3.7 meV width) and the 
2
D e

2/3   (3p
5
3d 

1
D)4d 

2
F o

2/5  

resonance located at 32.631 eV (42.8 meV width).   

Other important resonances in the photoionization of Ca
+ 2

D e

2/3  are those shown 

in figures 5.5(b) and 5.5(c) corresponding to j = 0 and j = -1 respectively.  Among 

them are the 
2
D e

2/3   (3p
5
3d 

3
P)4s 

2
P o

2/1  resonance at 23.326 eV (42.8 meV width) in 

figure 5.5(c) (a j = -1 transition) and the 
2
D e

2/3   (3p
5
3d 

3
P)4s  

2
P o

2/3  resonance seen at 

23.457 eV (40.9 meV width) in figure 5.5(b).  In this last case ( j = 0) note the weakness 

of this resonance in terms of strength and width compared to the previous resonance, it is 

j = -1 counterpart.  Completing the list of resonance features in figure 5.5(b) we have 

the 
2
D e

2/3   3p
5
(3d

2
 

1
D) 

2
P o

2/3  resonance at 25.202 eV (1.7 meV width), the 
2
D e

2/3   

3p
5
(3d

2
 

1
S) 

2
P o

2/3  resonance at 28.388 eV (5.6 meV width), the 
2
D e

2/3   3p
5
(3d

2
 

3
F) 

2
D o

2/3  resonance at 30.081 eV ( 4.2 meV width), the 
2
D e

2/3   3p
5
(3d

2
 
3
P) 

2
P o

2/3  resonance 

at 30.243 eV (10.9 meV width), the 
2
D e

2/3   (3p
5
3d 

3
P)4d 

2
P o

2/3  resonance at 30.968 eV 

(0.2 meV width), the 
2
D e

2/3   (3p
5
3d 

1
P)4d 

2
P o

2/3  resonance at 32.439 eV (3.4 meV 

width) and the 
2
D e

2/3   (3p
5
3d 

1
D)4d 

2
D o

2/3  resonance at 32.748 eV (3.5 meV width).  

For figure 5.5(c), following resonances features are shown: the 
2
D e

2/3   3p
5
(3d

2
 

1
D) 

2
P o

2/1  resonance at 25.141 eV (2.1 meV width), the 
2
D e

2/3   3p
5
(3d

2
 
1
S) 

2
P o

2/1  resonance 

at 28.666 eV (5.3 meV width), the 
2
D e

2/3   3p
5
(3d

2
 

3
P) 

2
P o

2/1  resonance at 30.201 eV 
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(12.3 meV width), the 
2
D e

2/3   (3p
5
3d 

3
P)4d 

2
P o

2/1  resonance at 30.776 eV (0.2 meV 

width), the 
2
D e

2/3   (3p
5
3d 

3
F)4d 

2
P o

2/1  resonance at 32.261 eV (3.2 meV width), the 

2
D e

2/3   (3p
5
3d 

1
P)4d 

2
P o

2/1  resonance at 32.522 eV (2.3 meV width) and the 
2
D e

2/3   

(3p
5
3d 

1
D)4d 

2
P o

2/1  resonance 32.862 eV (3.9 meV width). 

In figure 5.6, we present the calculated Breit-Pauli results for the corresponding 

photoionization cross section for the excited 
2
D e

2/5  state of Ca
+
 for photon energy from 

23.0 to 33.0 eV, and the partial cross sections for j = 7/2, 5/2 and 3/2 final states are 

shown in figures 5.6(a), 5,6(b) and 5.6(c) respectively.  The total photoionization cross 

section for the 
2
D e

2/5  initial state is shown in figure 5.6(d).  The strongest resonance, 

located at 29.328 eV in figures 5.6(a) and 5.6(d), and due to transition 
2
D e

2/5  → 3p
5
(3d

2
 

3
F) 

2
F o

2/7 , has a width of 263.5 meV (320.0 meV experimentally [93,98]); it is of 

substantially the same width as the corresponding 
2
D e

2/3 resonance (with 251.6 meV 

width) at 29.254 eV [figures 5.5(a) and 5.5(d)].  Most resonances seen in figure 5.6 for 

the Ca 
+
 
2
D e

2/5  cross sections have their equivalent already listed in the case of Ca 
+
 
2
D e

2/3  

(see above); among are transition 
2
D e

2/5  → 3p
5
(3d

2
 

3
F) 

2
F o

2/5  seen at 29.238 eV (251.6 

meV width) in figure 5.6(b) with j = 0 and l = +1, 
2
D e

2/5   (3p
5
3d 

3
P)4s 

2
P o

2/3  ( j = -1 

and l = -1) located at 23.441  eV (40.9 meV width) in figure 5.6(c) and 
2
D e

2/5   

3p
5
(3d

2
 
3
P) 

2
P o

2/3  seen at 30.226 eV (10.9 meV width) in figure 5.6(c).  Another example 

of j = 0 but with l = 0 can be seen in figure 5.6(b) at 30.073 eV (0.5 meV width), 

identified as 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
D o

2/5 .  In addition there are also the 
2
D e

2/5   (3p
5
3d 
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1
F)4s  

2
F o

2/5 , resonance at 26.372 eV (75.3 meV width) in figure 5.6(b) and 
2
D e

2/5   

(3p
5
3d 

1
F)4s  

2
F o

2/7  at 26.127 eV (57.7 meV width), in figure 5.6(a).   

 

Figure 5.6: Calculated Breit-Pauli photoionization cross sections of the excited 

(metastable) 
2
D e

2/5 state of Ca
+
 showing, (a) the partial cross section to the j=7/2 final 

state, (b) the partial cross section to the j=5/2 final state, (c) the partial cross section to the 

j=3/2 final state, and (d) the total 
2
D e

2/5 cross section, dominated by the 3p
5
(3d

2
 
3
F) 

2
F

o

2/7  

resonance at 29.328 eV.  For simplicity 3p
5
 is omitted from each of the resonance 

designations. 
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The fine structure splitting, between 
2
D e

2/3  and 
2
D e

2/5  energy levels of Ca 
+
 ions, 

which is E = 0.016 eV (experimental value is 0.008 eV [89]), is also mirrored between 

following resonance energies: 
2
D e

2/3  → 3p
5
(3d

2
 
3
F) 

2
F o

2/5  at 29.254 eV in figure 5.5(a) and 

2
D e

2/5  → 3p
5
(3d

2
 
3
F) 

2
F o

2/5  at 29.238 eV in figure 5.6(b), 
2
D e

2/3   (3p
5
3d 

3
P)4s  

2
P o

2/3  at 

23.457 eV in figure 5.5(b) and 
2
D e

2/5   (3p
5
3d 

3
P)4s  

2
P o

2/3  at 25.441  eV in figure 5.6(c) 

and 
2
D e

2/3   3p
5
(3d

2
 

3
P) 

2
P o

2/3  at 30.243 eV in figure 5.5(b) and 
2
D e

2/5   3p
5
(3d

2
 

3
P) 

2
P o

2/3  at 30.226 eV in figure 5.6(c). 

A summary of positions, widths and identifications of the major resonances 

obtained in the relativistic Breit-Pauli calculation is given in table 5.3, along with a 

comparison with available experimental data [93,98].  In general the agreement is quite 

good, especially for the position of 3p
5
3d

2
 resonances, but our calculated widths are, in 

general, smaller than those from experimental data [93,98].  Note that some of the 

resonances listed in table 5.3 can be reached by more than one initial state in the 

experimental mixture, and three of them,[3p
5
(3d

2
 
3
P) 

2
P o

2/3 , 3p
5
(3d

2
 
1
S) 

2
P o

2/3  and 3p
5
(3d

2
 

1
D) 

2
P o

2/3 ], can be excited from all three initial states; using the example of 3p
5
(3d

2
 

3
P) 

2
P o

2/3 , we clearly can illustrate the previous observation by the following three transitions: 

2
D e

2/5   3p
5
(3d

2
 

3
P) 

2
P o

2/3  at 30.226 eV in figure 5.6(c), 
2
D e

2/3   3p
5
(3d

2
 

3
P) 

2
P o

2/3  at 

30.243 eV in figure 5.5(b) and 
2
S e

2/1  → 3p
5
(3d

2
 

3
P) 

2
P o

2/3  at 32.062 eV in figure 5.4(a).  

They are listed more than once for purposes of comparison with the experimental results, 

and they are listed at different photon arises simply because each of the three initial states 

has a different ionization energy so that differing photon energies are required from each 
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of these initial states to excite a particular resonance, i.e., the difference in the resonance 

energies for a given resonance state in the table is just the difference in the binding 

energies of the initial states of the transitions.      

Table 5.3: Theoretical (relativistic Breit-Pauli) resonance energies Eres (eV), widths 

(meV), experimental [93,100] resonance energies Eres (eV) and the corresponding 

transitions.   

 

       This Calculation 

 

Transitions 

 

Experiment 

 

Eres   Eres              

26.947 2.1 
2
S

e

2/1   3p
5
(3d

2
 
1
D) 

2
P

o

2/1   

27.000 1.7 
2
S

e

2/1   3p
5
(3d

2
 
1
D) 

2
P

o

2/3   

28.569 1.8 
2
S

e

2/1   3p
5
(4s

2
 
1
S) 

2
P

o

2/1  28.55  

28.198 2.3 
2
S

e

2/1   3p
5
(4s

2
 
1
S) 

2
P

o

2/3  28.19  

30.447 5.3 
2
S

e

2/1   3p
5
(3d

2
 
1
S) 

2
P

o

2/1  30.25 

30.169 5.6 
2
S

e

2/1   3p
5
(3d

2
 
1
S) 

2
P

o

2/3  29.98 

32.022 12.3 
2
S

e

2/1   3p
5
(3d

2
 
3
P) 

2
P

o

2/1   

32.069 10.9 
2
S

e

2/1   3p
5
(3d

2
 
3
P) 

2
P

o

2/3   

33.210 69.7 
2
S

e

2/1   (3p
5
3d  

1
P)4s  

2
P

o

2/1  33.20       

33.226 72.6 
2
S

e

2/1   (3p
5
3d  

1
P)4s  

2
P

o

2/3  33.20 

23.326 42.3 
2
D

e

2/3   (3p
5
3d 

3
P)4s  

2
P

o

2/1   

23.441 40.9 
2
D

e

2/5   (3p
5
3d 

3
P)4s  

2
P

o

2/3   

23.457 40.9 
2
D

e

2/3   (3p
5
3d 

3
P)4s  

2
P

o

2/3   

25.141 2.1 
2
D

e

2/3   3p
5
(3d

2
 
1
D) 

2
P

o

2/1   

25.186 1.7 
2
D

e

2/5   3p
5
(3d

2
 
1
D) 

2
P

o

2/3   

25.202 1.7 
2
D

e

2/3   3p
5
(3d

2
 
1
D) 

2
P

o

2/3   

28.666 5.3 
2
D

e

2/3   3p
5
(3d

2
 
1
S) 

2
P

o

2/1   

28.371 5.6 
2
D

e

2/5   3p
5
(3d

2
 
1
S) 

2
P

o

2/3   

28.388 5.6 
2
D

e

2/3   3p
5
(3d

2
 
1
S) 

2
P

o

2/3   

30.201 
12.3 

2
D

e

2/3   3p
5
(3d

2
 
3
P) 

2
P

o

2/1  30.20 

30.226 10.9 
2
D

e

2/5   3p
5
(3d

2
 
3
P) 

2
P

o

2/3  30.20 
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Table 5.3: (continued) 

 

Eres  Transitions Eres 

30.968 0.2 
2
D

e

2/3   (3p
5
3d 

3
P)4d  

2
P

o

2/3   

32.261 3.2 
2
D

e

2/3   (3p
5
3d 

3
F)4d  

2
P

o

2/1   

32.522 2.3 
2
D

e

2/3    (3p
5
3d 

1
P)4d  

2
P

o

2/1   

32.422 3.4 
2
D

e

2/5    (3p
5
3d 

1
P)4d  

2
P

o

2/3   

32.439 3.4 
2
D

e

2/3    (3p
5
3d 

1
P)4d  

2
P

o

2/3   

32.862 3.9 
2
D

e

2/3   (3p
5
3d 

1
D)4d  

2
P

o

2/1   

24.545 14.2 
2
D

e

2/3   3p
5
(3d

2
 
1
G) 

2
F

o

2/5   

24.528 14.2 
2
D

e

2/5   3p
5
(3d

2
 
1
G) 

2
F

o

2/5   

24.374 15.4 
2
D

e

2/5   3p
5
(3d

2
 
1
G) 

2
F

o

2/7   

24.773 17.7 
2
D

e

2/3   3p
5
(3d

2
 
1
D) 

2
D

o

2/5   

24.756 17.7 
2
D

e

2/5   3p
5
(3d

2
 
1
D) 

2
D

o

2/5   

24.854 119.6 
2
D

e

2/3   3p
5
(3d

2
 
1
D) 

2
F

o

2/5   

24.837 119.6 
2
D

e

2/5   3p
5
(3d

2
 
1
D) 

2
F

o

2/5   

24.941 125.1 
2
D

e

2/5   3p
5
(3d

2
 
1
D) 

2
F

o

2/7   

25.737 22.5 
2
D

e

2/3   (3p
5
3d 

3
F)4s  

2
F

o

2/5   

25.721 22.5 
2
D

e

2/5   (3p
5
3d 

3
F)4s  

2
F

o

2/5   

25.703 30.7 
2
D

e

2/5   (3p
5
3d 

3
F)4s  

2
F

o

2/7   

25.780 6.1 
2
D

e

2/3   (3p
5
3d 

3
D)4s  

2
F

o

2/5   

25.763 6.1 
2
D

e

2/5   (3p
5
3d 

3
D)4s  

2
F

o

2/5   

26.389 75.3 
2
D

e

2/3   (3p
5
3d 

1
F)4s  

2
F

o

2/5   

26.021 57.8 
2
D

e

2/5   (3p
5
3d 

1
F)4s  

2
F

o

2/7   

26.372 75.3 
2
D

e

2/5   (3p
5
3d 

1
F)4s  

2
F

o

2/5   

26.174 17.6 
2
D

e

2/5   (3p
5
3d 

3
D)4s 

2
D

o

2/5   

29.254 251.6 
2
D

e

2/3   3p
5
(3d

2
 
3
F) 

2
F

o

2/5  29.30 
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Table 5.3: (continued) 

 

Eres 

     
 

 

Transitions 

 

Eres  

 

29.328 263.5 
2
D

e

2/5   3p
5
(3d

2
 
3
F) 

2
F

o

2/7  29.30 

29.238 251.6 
2
D

e

2/5   3p
5
(3d

2
 
3
F) 

2
F

o

2/5  29.30 

30.089 0.5 
2
D

e

2/3   3p
5
(3d

2
 
3
F) 

2
D

o

2/5  30.08 

30.081 4.2 
2
D

e

2/3   3p
5
(3d

2
 
3
F) 

2
D

o

2/3  30.08 

30.073 0.5 
2
D

e

2/5   3p
5
(3d

2
 
3
F) 

2
D

o

2/5  30.07      

30.064 4.2 
2
D

e

2/5   3p
5
(3d

2
 
3
F) 

2
D

o

2/3  30.07       

30.930 63.2 
2
D

e

2/3   (3p
5
3d 

3
P)4d  

2
F

o

2/5   

30.913 63.2 
2
D

e

2/5   (3p
5
3d 

3
P)4d  

2
F

o

2/5   

31.041 96.8 
2
D

e

2/5   (3p
5
3d 

3
P)4d  

2
F

o

2/7   

30.985 27.8 
2
D

e

2/3   (3p
5
3d 

3
P)4d  

2
D

o

2/5   

31.432 2.7 
2
D

e

2/3   (3p
5
3d 

3
D)4d  

2
F

o

2/5   

31.415 2.7 
2
D

e

2/5   (3p
5
3d 

3
D)4d  

2
F

o

2/5   

31.249 0.7 
2
D

e

2/5   (3p
5
3d 

3
D)4d  

2
F

o

2/7   

32.071 38.9 
2
D

e

2/3   (3p
5
3d 

3
F)4d  

2
F

o

2/5   

31.995 51.0 
2
D

e

2/5   (3p
5
3d 

3
F)4d  

2
F

o

2/7   

32.385 0.7 
2
D

e

2/3   (3p
5
3d 

1
P)4d  

2
D

o

2/5   

32.414 1.2 
2
D

e

2/3   (3p
5
3d 

1
P)4d  

2
D

o

2/3   

32.368 0.7 
2
D

e

2/5   (3p
5
3d 

1
P)4d  

2
D

o

2/5   

30.397 1.2 
2
D

e

2/5   (3p
5
3d 

1
P)4d  

2
D

o

2/3   

32.631 42.8 
2
D

e

2/3   (3p
5
3d 

1
D)4d  

2
F

o

2/5   

32.641 40.5 
2
D

e

2/5   (3p
5
3d 

1
D)4d  

2
F

o

2/7   

32.748 3.5 
2
D

e

2/3   (3p
5
3d 

1
D)4d  

2
D

o

2/3   

32.539 3.7 
2
D

e

2/5   (3p
5
3d 

1
D)4d  

2
D

o

2/5   
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Additional results to complete the Ca
+
 resonance analysis are the list of line 

strengths and oscillator strengths for five of the major resonances from table 5.3, and this 

is shown in table 5.4.  As expected and can be seen in table 5.4, transitions with j = 1 

(
2
D e

2/3   3p
5
(3d

2
 
3
F) 

2
F o

2/5 , 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/7  and 
2
S e

2/1   (3p
5
3d  

1
P)4s  

2
P o

2/3  

) have far stronger line strength and oscillator strength than transitions with j = 0 (
2
D e

2/5  

 3p
5
(3d

2
 
3
F) 

2
F o

2/5  and  
2
S e

2/1   (3p
5
3d  

1
P)4s  

2
P o

2/1 ). 

Table 5.4: Ca II (Ca
+
) line strength (S) and oscillator strength (f) for five of the major 

resonances.  

  

 

Transitions 

 

j  

 

S (a.u.) 

 

f    
2
D e

2/3   3p
5
(3d

2
 
3
F) 

2
F o

2/5  1 3.096 0.369 
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/7  1 4.151 0.373 
2
S e

2/1   (3p
5
3d 

1
P)4s 

2
P o

2/3  1 6.095 1.241  
2
D e

2/5   3p
5
(3d

2
 
3
F) 

2
F o

2/5  0 0.218 0.026 
2
S e

2/1   (3p
5
3d 

1
P)4s 

2
P o

2/1  0 1.533 0.624   

 

To compare our theoretical calculation results to experimental data, we use results 

for photoionization of Ca
+
 ions reported by Schippers et al [98] and Kjeldsen et al 

[93,100], and unlike what we were able to do in previously studied cases (see above) 

such as Sc
+2

 and Ti
+3

 ions, where we have obtained numerical experimental data from 

Schippers et al [9,10,19], and plotted them in one graph for comparison with our 

theoretical results, this was not available for Ca
+
.  Thus, theoretical and experimental 

results are shown in different figures (5.7 and 5.8).  In the experiment from Kjeldsen et al 

[93,100], results were recorded (figure 5.8) with different fractions of the metastable Ca
+
 

ions (1.0  %, 26.0 %, 100.0 % and 0.0 %), and the photon energy range is from 28.0 to 
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30.5 eV.  We used those different fractions of the metastable Ca
+
 ions in the experimental 

mixture, to obtain Ca
+
 total photoionization cross sections that are shown in figure 5.7; it 

is clear that, comparing figures 5.7 and 5.8, relatively good agreement is reached with 

experimental results [93,100].  However, in figures (5.7 and 5.8), we observe differences 

in some of the resonance cross section magnitudes; as an illustration of this, the 

resonance structure due to transition 
2
D

e
  3p

5
(3d

2
 
3
P) 

2
P

o
, located at 30.2 eV [figures 

5.7(d) and 5.8(d)], is calculated (this work) to maximize at 550 Mb [figure 5.7(d)] while 

the experimental magnitude [93,100] is 275 Mb [figure 5.8(d)].  We  note that despite the 

narrow photon energy range (2.5 eV wide), the agreement between our calculated 

resonance positions (figure 5.7) and the experimental positions [93,100] (figure 5.8) is 

excellent, and most of our cross section magnitudes seen in figure 5.7 match their 

experimental counterparts observed in figure 5.8, or are within the margin of error which 

is 15 % for the experiments considered here [93,100].      
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Figure 5.7: Calculated Breit-Pauli photoionization cross sections of Ca
+
 ions showing, (a) 

1 % of excited (metastable) 
2
D

e
 and 99 % of ground 

2
S

e
 states, (b) 26 % of excited 

(metastable) 
2
D

e
 and 74 % of ground 

2
S

e
 states, (c) 0 % of excited (metastable) 

2
D

e
 and 

100 % of ground 
2
S

e
 states and (d) 100 % of excited (metastable) 

2
D

e
 and 0 % of ground 

2
S

e
 states.  
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Figure 5.8: Experimental state-selective measurements of absolute photoionization cross 

sections for Ca
+
 3d and 4s ions by Kjeldsen et al [93,100].  The data correspond to 

fractions of metastable ions of  x = 1 % (a), x = 26 % (b), x = 0 % only ground state ions 

(c) and x = 100 % (only metastable ions) (d), respectiviely.  The upper spectra (a) and (b) 

are recorded directly, wheareas (c) and (d) are derived from these.  The structures marked 

by asterisks in (d) are experimental artifacts.  

5.2.3. Comparison along the Isoelectronic Sequence 

 It was noted in previous and current chapters that, for some members of the 

potassium isoelectronic sequence such as Ca
+
, Sc

+2
 and Ti

+3
, the photoionization cross 

section exhibited very strong resonance structures due to giant 3p 3d dipole transitions 

followed by autoionization to continuum states (super-Coster-Kronig processes).  
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Considering three K-like ions (Ca
+
, Sc

+2
 and Ti

+3)
, we distinguish two types of sequences: 

the 4s sequence and the 3d sequence.  The 4s sequence is described as K-like ions which 

initial state has the electronic configuration [Ne]3s
2
3p

6
4s 

2
S e

2/1 ; this includes the ground 

state of Ca
+
 and the second excited state (third excited state relativistic ally) of  Sc

+2
 and 

Ti
+3

.  The 3d sequence, meanwhile, is described with each of the two initial states 

[Ne]3s
2
3p

6
3d 

2
D e

2/3  and [Ne]3s
2
3p

6
3d 

2
D e

2/5 ; it includes the ground and first excited 

states of Sc
+2

 and Ti
+3

 and the first two excited states of Ca
+
.   

 The 4s sequence comparison is shown in figure 5.9, and we focus particularly on 

the strongest resonance feature in those cross sections, the resonance identified as 
2
S

e
  

(3p
5
3d 

1
P)4s 

2
P

o
.  Figure 5.9(a) depicts Ca

+
 photoionization, figure 5.9(b), Sc

+2
 and figure 

5.9(c) Ti
+3

 ions, all in the 
2
S e

2/1  initial state, and those photoionization cross sections are 

expressed as functions of photoelectron energies for sensible comparison.  As we see, in 

figure 5.9, the magnitude of this resonance decreases from Ca
+
 [figure 5.9(a)] to Sc

+2
 

[figure 5.9(b)] and Ti
+3

 [figure 5.9(c)] while the width increases at the same time from 

Ca
+
 to Ti

+3
.   

The 3d sequence comparison is shown in figures 5.10 and 5.11, and we again 

focus particularly on the strongest resonance feature in those cross sections, the 
2
D e

2/3   

3p
5
(3d

2
 

3
F) 

2
F o

2/5  (figure 5.10) and 
2
D e

2/5   3p
5
(3d

2
 

3
F) 

2
F o

2/7  (figure 5.11).  Figure 

5.10(a) concerns Ca
+
 , figure 5.10(b) Sc

+2
 and figure 5.10(c) Ti

+3
, all in the 2

D
e

2/3  initial 

state, and similarly for figure 5.11, but for the 2
D

e

2/5  initial state.  In both figures 5.10 and 

5.11 we observe the same tendency in the evolution of magnitude and width Ca
+
 to Ti

+3
; 

as the nuclear charge Z increases from Ca
+
 to Ti

+3
 (Z = 20 to Z = 22), the positions of 
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each of the resonance associated with transitions 
2
S

e
   (3p

5
3d 

1
P)4s 

2
P

o
 (figure 5.9), 

2
D

e

2/3   3p
5
(3d

2
 

3
F) 

2
F

o

2/5  (figure 5.10) and 
2
D

e

2/5   3p
5
(3d

2
 

3
F) 

2
F

o

2/7  (figure 5.11) move 

closer to the ionization threshold, the 4s ionization threshold for the 4s sequence and the 

3d ionization threshold for the 3d sequence. 

     

 

Figure 5.9: Photoionization cross sections of potassium-like ions in the 
2
S

e

2/1  state 

showing, (a) ground state Ca
+
, (b) excited state Sc

+2
 and (c) excited state Ti

+3
.  Note, as 

we go from Ca
+
 to Ti

+3
, the strongest and largest resonance feature, due to transition 

2
S

e
 

 (3p
5
3d 

1
P)4s 

2
P

o, the width increases, the magnitude decreases, and the position 

moves closer to 4s electron ionization threshold.   
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Figure 5.10: Photoionization cross sections of potassium-like ions in the 
2
D

e

2/3  state 

showing, (a) excited state Ca
+
, (b) ground state Sc

+2
 and (c) ground state Ti

+3
.  Note, as 

we go from Ca
+
 to Ti

+3
, the strongest and largest resonance feature due to 

2
D

e

2/3   

3p
5
(3d

2
 

3
F) 

2
F

o

2/5 , the width increases, the magnitude decreases, and the position moves 

closer to 3d ionization threshold.   
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Figure 5.11: As figure 5.10 but for the  
2
D

e

2/5  intitial state.   

     

5.3. Conclusion 

 We have performed non-relativistic (LS-coupling) and relativistic (Breit-Pauli) 

photoionization cross section calculation for ground and excited states of Ca
+
 ions.  Our 

theoretical results have achieved good agreement with experimental data [93,98,100], 

especially in terms of positions of major resonances.  The Ca
+
 photoionization cross 

section spectra reveal the presence of giant 3p 3d resonances, and the same strong 

resonance structures were observed in K-like transition metals ions studied above such as 

Sc
+2

 (chapter 3) and Ti
+3

 (chapter 4), which indicated the desirability of a study of those 

strong resonance features along the isoelectronic sequence with two types of 
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comparisons, the 4s sequence and the 3d sequence.  From this comparison, it was 

observed that the strongest and broadest resonance feature of each of those two sequences 

evolved the same way as in experiment [9,10,19,93,98,100]; as the nuclear charge Z 

increases from Ca
+
 to Ti

+3
, the width increases, the magnitude decreases, and the position 

is closer to the ionization threshold (4s or 3d).  

 For the photoionization cross section calculations for Ca
+
, we must point out that 

our calculated widths for resonances due to transitions 
2
S

e
  (3p

5
3d 

1
P)4s 

2
P

o
, 2

D
e

2/3   

3p
5
(3d

2
 

3
F) 

2
F

o

2/5  and 
2
D

e

2/5   3p
5
(3d

2
 

3
F) 

2
F

o

2/7  are all smaller than their experimental 

counterparts [93,93,100], but this difference in width values represents the only discrepancies 

between the present theory and experiment [93,98,100].   
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CHAPTER 6. 

CONCLUDING REMARKS 

 In this work we have performed photoionization cross section calculations for 

potassium-like ions including transition metal ions (Sc
+2

, Ti
+3

, V
+4

, Cr
+5

, Mn
6+

 and Fe
7+

) 

and Ca
+
 ions using both non-relativistic (LS-coupling) and relativistic (Breit-Pauli) R-

matrix methods.  Our theoretical results show good agreement with available 

experimental data; this is the case of Ca
+
, Sc

+2
 and Ti

+3
.  For the four other potassium-

like ions (V
+4

, Cr
+5

, Mn
6+

 and Fe
7+

), we were unable to confirm our theoretical results 

because up to date, there are no available experiment data in those cases.  We also 

included in this work the first photoionization cross section calculation results on the 

excited state of Ti
+3

 ([Ne]3s
2
3p

6
4s 

2
S e

2/1 ).  It is found that in the case of lower Z (22  Z  

20) ions (Ca
+
, Sc

+2
 and Ti

+3
), the photoionization cross section spectra are dominated by 

the giant (3p  3d excitation) resonances, while those of higher Z (30  Z  23) ions 

(V
+4

, Cr
+5

, Mn
+6

, Fe
+7

, Co
+8

, Ni
+9

, Cu
+10

 and Zn
+11

) are dominated by the higher members 

of the Rydberg series.  The giant (3p  3d excitation) resonances have moved below the 

ionization threshold in this case.  

 Aside from the specifics of the particular ions studied herein, the results 

can be broadly generalized to other systems as well.  It is evident that, in general, along 

any isoelectronic sequence, more and more of the oscillator strength will move into the 

discrete region, with increasing Z.  Since more of the oscillator strength is in the discrete 

excitation region, with increasing Z, there are fewer photoelectrons produced; this is 

important in the modeling of astrophysical and laboratory plasmas.   In addition, it is also 

clear that the strength and width of resonances arising from n = 0 transitions are far 
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larger than the resonances which arise from transitions between states of different 

principal quantum number.  This will be true for atoms and ions throughout the periodic 

table.   

Another broad generalization can be made regarding the role of relativistic 

interactions at relatively low Z.  These interactions were seen to cause splittings and 

shifts of thresholds and resonance positions, and these are not limited to the particular 

ions studied herein.  In addition, it was found that, in certain cases, the breakdown of LS 

coupling engendered by relativistic interactions opened photoionization channels that 

were absolutely forbidden within the context of LS coupling, and the cross sections of 

these LS-forbidden channels were not small.  Clearly these phenomena too are quite 

general and not limited to the ions studied.   Thus, for quantitative accuracy (and, in some 

situations, even qualitative accuracy) relativistic effects must be included in 

photoionization calculations of all atoms and ions with Z ≥ 20 or so. 

Finally, the experience of the present calculations has taught us that the 

representation of the wave function for the 3d electron is of crucial importance for these 

open 3d-subshell ions, owing to the fact that the effective d-wave potential has a double 

well [110]; this means that, depending upon the specific LSJ state, the 3d can be bound in 

the inner well, in the outer well, or balanced between them.  Only for high enough Z that 

the 3d subshell is closed (or nearly closed) is the 3d bound in the inner well in all states 

and relatively insensitive the specific LSJ state.  This will be the case for all open-shell 

3d atoms and ions, and for the 4d and 5d transition metals as well, and great care must be 

taken to expand these orbitals using a large enough basis set to be able to represent them 
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accurately for all of the relevant LSJ states.  And, the same will be true for open f-

subshell atoms and ions the f-wave potential is also double-welled.    

The fact that we were able to reproduce existing experimental photoionizaiton 

cross section results in cases of potassium-like ions such as Ca
+
, Sc

+2
 and Ti

+3
 with rather 

good agreement (without any shift in energy positions) using the R-matrix computer 

package, is clear evidence that the R-matrix method includes all of the important physical 

effects relevant to the photoionization process, i.e., R-matrix is one of the best tools 

available to study dynamical processes involving complex atomic and ionic systems.  

However, far for being an end, this study is just the beginning stage of a larger effort to 

investigate the photoionization of complex atomic and ionic systems in general and 

transition metals in particular; our investigation will be extended to neutral atoms such as 

atomic scandium, and continue with other transition metals with higher Z and then on to 

other open d- and open f-subshell atoms and ions.  The interest of studying the atomic 

scandium is explained by the fact that it is the simplest 3d electron atom (one single d 

electron in the outer shell), but until now there is no theoretical photoionization study to 

reproduce, in an accurate way, experimental results.   

 Despite the strength and robustness (state of the art) of the classical (Belfast) R-

matrix computer package (codes), we note that the use of this package to deal with 

complex atomic and ionic system comes with some problems.  For Z > 30, the relativistic 

(Breit-Pauli) method is no longer a valid approximation; this means we need to consider 

the fully relativistic R-matrix package (DARC), but DARC applications have been rare, 

and mostly limited to highly ionized systems, and even in this case it is employed for 

scattering and rarely for photoionization.  Another weakness of the classical R-matrix is 
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the control of the Hamiltonian matrix size in treating complex systems; dealing with 

complex atoms and ions requires the use of large numbers of orbitals and pseudo-orbitals 

that increase the size of the Hamiltonian matrix to the point that it exceeds what can be 

treated with existing computational technology.  It is hoped that the announced advent of 

the fully relativistic B-Splines R-matrix package will bring much needed improvement, 

and allow us to accurately study dynamical processes involving complex atoms and ions 

such as those open d- and open f-subshell atoms and ions.             
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APPENDIX A: STRUCTURE OF THE R-MATRIX PACKAGE 

A.1. Inner region codes 

A.1.1. Non-relativistic (LS-coupling) operations 

A.1.1.1. STG1 

This reads the bound orbitals generated from packages such as CIV3 or 

AUTOSTRUCTURE, and contained in file “radial”.  It generates continuum basis 

orbitals, and evaluates all possible bound-bound, bound-continuum and continuum-

continuum integrals that could be required at the next stage of execution. 

A.1.1.2. STG2 

STG2 performs the N- and (N+1)-electron angular algebra, and creates the N- and 

(N+1)-electron Hamiltonians.  It diagonalizes the N-electron Hamiltonian to regenerate 

the target eigen-energies (and eigen-vectors) that can be compared to those obtained 

during bound orbitals generation with CIV3 or AUTOSTUCTURE. 

A.1.1.3. STG3 

STG3 is also known as STGH, and it performs the diagonalization of (N+1)-

electron Hamiltonian.  It generates files H.DAT and D0X (with X varying from 0 to n) 

A.1.2. Relativistic (Breit-Pauli) operations 

The relativistic (Breit-Pauli) operations are switched on in phase 1 and phase 2 

(STG1 and STG2).  Unlike the non-relativistic operations, the STG2 doesn‟t perform the 

diagonalization of the N-electron Hamiltonian, and the CC (close coupling) expansion is 

forced (expanded) to be the same (in size) as the CI (configuration interaction) expansion.  

Between STG2 (phase 2) and STG3 (phase 3), we have to run the recoupling code 

(STGJK or RECUPD); this allows the use of the total angular momentum J.  STGJK 
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recouples the N- and (N+1)-electron Hamiltonians, and diagonalizes the N-electron 

Hamiltonian to regenerate the target eigen-energies (and eigen-vectors). 

 A.2. Outer region codes 

A.2.1 STGB (BOUND) 

STGB reads the file H.DAT file generated by STG3, and calculates bound-state 

eigen-energies and eigen-vectors for the (N+1)-electron system.  It generates file B0X 

(with X varying from 0 to n). 

A.2.2. STGF (FREE) 

STGF reads the file H.DAT file generated by STG3, calculates collision strengths 

at a user supplied set of energies, and writes them to files F0X (with X varying from 0 to 

n).  All input energies are z**2 scaled in the residual charge, if z > 0. 

A.2.3. STGBF (BOUND-FREE) 

STGBF reads files D0X generated by STG3, B0X by STGB and F0X by STGF, 

and then calculates photoionization cross sections for transitions from a bound-state to a 

free-state. 

A.2.4. Radiative damping (STGBF0DAMP) 

This is a radiation+Auger damped photoionization code, and initial states must be 

fully contained in the R-matrix box.  STGBF0DAMP reads files H.DAT and D0X 

generated by STG3 and B0X by STGB, and calculates photoionization cross sections. 
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APPENDIX B: Sc
+2

 PHOTOIONIZATION CROSS SECTION CALCULATIONS 

INPUT DATA 

This appendix shows sample input data for Sc
+2

 photoionization cross section 

calculations, details of those calculations are given in section 3.1. 

B.1. DSTG1 

S.S.   ScIV target 

 &STG1A ISMITN=1 RAD='YES' RELOP='YES' &END 

 &STG1B MAXLA=4 MAXLT=5 MAXC=34 MAXE=6 ISMIT(1)=42 

 ISMIT(2)=43 ISMIT(3)=50 ISMIT(4)=51 ISMIT(5)=52  &END 

 

B.2. DSTG2 

S.S.  ScIV target 

 &STG2A RAD='YES' RELOP='YES'  &END 

 &STG2B MAXORB=13 NELC=18 NAST=16 INAST=5 IKEY=1  &END 

 1 0 2 0 2 1 3 0 3 1 3 2 4 0 4 1 4 2 4 3 5 0 5 1 5 2 

 24 

 2 2 6 1 3 0 0 0 0 0 0 0 0 

 2 2 6 2 6 3 1 1 1 1 1 1 1 

 2 2 6 2 6 0 0 0 0 0 0 0 0    0 

 2 2 6 1 6 1 0 0 0 0 0 0 0    0 

 2 2 6 2 5 1 0 0 0 0 0 0 0    0 

 2 2 6 2 5 0 1 0 0 0 0 0 0    0 

 2 2 6 2 5 0 0 1 0 0 0 0 0    0 

 ……………………………  

 …………………………… 

 2 2 6 1 5 2 0 0 0 0 0 0 0    0 

 2 2 6 1 5 1 1 0 0 0 0 0 0    0 

 1 0 0 

 3 1 1 

 3 3 1 

 1 2 1 

 3 2 1 

 1 3 1 

 3 1 1 

 1 1 1 

 1 1 1 

 3 0 0 

 3 2 0 

 1 2 0 
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 1 1 0 

 3 1 0 

 3 2 0 

 1 2 0 

 62 

 2 2 6 1 3 0 0 0 0 0 0 0 0 

 2 2 6 2 6 4 2 2 2 2 2 2 2 

  2  2  6  2  6  1  0  0  0  0  0  0  0 -1  1 

  2  2  6  2  6  0  1  0  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  1  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  1  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  1  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  0  1  0  0  0  1 

  2  2  6  2  6  0  0  0  0  0  0  1  0  0  1 

  2  2  6  2  6  0  0  0  0  0  0  0  1  0  1 

  …………………………………….  

  ……………………………………. 

  2  2  6  2  4  3  0  0  0  0  0  0  0  0 11 

  2  2  6  2  4  2  1  0  0  0  0  0  0  0 11 

 2 0 0 

 47 

 2 2 6 1 3 0 0 0 0 0 0 0 0 

 2 2 6 2 6 4 2 2 2 2 2 2 2 

  2  2  6  2  6  1  0  0  0  0  0  0  0 -1  1 

  2  2  6  2  6  0  1  0  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  1  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  1  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  1  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  0  1  0  0  0  1 

  2  2  6  2  6  0  0  0  0  0  0  1  0  0  1 

  2  2  6  2  6  0  0  0  0  0  0  0  1  0  1 

  …………………………………….  

  ……………………………………. 

  2  2  6  2  5  2  0  0  0  0  0  0  0  0 11 

  2  2  6  2  4  3  0  0  0  0  0  0  0  0 11 

  2  2  6  2  4  2  1  0  0  0  0  0  0  0 11 

 2 2 0 

 218 

 2 2 6 1 3 0 0 0 0 0 0 0 0 

 2 2 6 2 6 4 2 2 2 2 2 2 2 

  2  2  6  2  6  1  0  0  0  0  0  0  0  0  1 

  2  2  6  2  6  0  1  0  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  1  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  1  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  1  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  0  1  0  0  0  1 
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  2  2  6  2  6  0  0  0  0  0  0  1  0  0  1 

  2  2  6  2  6  0  0  0  0  0  0  0  1  0  1 

  …………………………………….  

  ……………………………………. 

  2  2  6  2  5  0  0  1  1  0  0  0  0  0 24 

  2  2  6  2  4  0  0  2  1  0  0  0  0  0 24 

  2  2  6  2  4  0  0  1  2  0  0  0  0  0 24 

  2  2  6  2  4  1  0  1  1  0  0  0  0  0 24 

  2  2  6  2  4  0  1  1  1  0  0  0  0  0 24 

  2  2  6  2  4  0  0  1  1  1  0  0  0  0 24 

  2  2  6  2  4  0  0  1  1  0  1  0  0  0 24 

  2  2  6  2  4  0  0  1  1  0  0  1  0  0 24 

  2  2  6  2  4  0  0  1  1  0  0  0  1  0 24 

 2 1 1 

 218 

 2 2 6 1 3 0 0 0 0 0 0 0 0 

 2 2 6 2 6 4 2 2 2 2 2 2 2 

  2  2  6  2  6  1  0  0  0  0  0  0  0  0  1 

  2  2  6  2  6  0  1  0  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  1  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  1  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  1  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  0  1  0  0  0  1 

  2  2  6  2  6  0  0  0  0  0  0  1  0  0  1 

  2  2  6  2  6  0  0  0  0  0  0  0  1  0  1 

  …………………………………….  

  ……………………………………. 

  2  2  6  2  5  0  0  1  1  0  0  0  0  0 24 

  2  2  6  2  4  0  0  2  1  0  0  0  0  0 24 

  2  2  6  2  4  0  0  1  2  0  0  0  0  0 24 

  2  2  6  2  4  1  0  1  1  0  0  0  0  0 24 

  2  2  6  2  4  0  1  1  1  0  0  0  0  0 24 

  2  2  6  2  4  0  0  1  1  1  0  0  0  0 24 

  2  2  6  2  4  0  0  1  1  0  1  0  0  0 24 

  2  2  6  2  4  0  0  1  1  0  0  1  0  0 24 

  2  2  6  2  4  0  0  1  1  0  0  0  1  0 24 

 2 2 1 

 218 

 2 2 6 1 3 0 0 0 0 0 0 0 0 

 2 2 6 2 6 4 2 2 2 2 2 2 2 

  2  2  6  2  6  1  0  0  0  0  0  0  0  0  1 

  2  2  6  2  6  0  1  0  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  1  0  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  1  0  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  1  0  0  0  0  1 

  2  2  6  2  6  0  0  0  0  0  1  0  0  0  1 
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  2  2  6  2  6  0  0  0  0  0  0  1  0  0  1 

  2  2  6  2  6  0  0  0  0  0  0  0  1  0  1 

  …………………………………….  

  ……………………………………. 

  2  2  6  2  5  0  0  1  1  0  0  0  0  0 24 

  2  2  6  2  4  0  0  2  1  0  0  0  0  0 24 

  2  2  6  2  4  0  0  1  2  0  0  0  0  0 24 

  2  2  6  2  4  1  0  1  1  0  0  0  0  0 24 

  2  2  6  2  4  0  1  1  1  0  0  0  0  0 24 

  2  2  6  2  4  0  0  1  1  1  0  0  0  0 24 

  2  2  6  2  4  0  0  1  1  0  1  0  0  0 24 

  2  2  6  2  4  0  0  1  1  0  0  1  0  0 24 

  2  2  6  2  4  0  0  1  1  0  0  0  1  0 24 

 2 3 1 

 

B.3. DSTGJK 

S.S. Sc IV TARGET, STGJK 

 &STGJA  RAD ='YES'  &END 

 &STGJB JNAST=30 IJNAST=7  &END 

 0  0      1S 

 0  1      3P 

 2  1      3P 

 4  1      3P 

 0  1      3P 

 2  1      3P 

 4  1      3P 

 4  1      3F 

 6  1      3F 

 8  1      3F 

 4  1      1D 

 2  1      3D 

 4  1      3D 

 6  1      3D 

 6  1      1F 

 2  1      1P 

 2  1      1P 

 2  0      3S 

 2  0      3D 

 4  0      3D 

 6  0      3D 

 2  0      3D 

 4  0      3D 

 6  0      3D 

 4  0      1D 
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 4  0      1D 

 0  0      3P 

 2  0      3P 

 4  0      3P 

 2  0      1P 

1  0 

 3  0 

 5  0 

 1  1 

 3  1 

 5  1 

 7  1 

 

B.4. DSTG3 

S.S.  ScIV target 

 &STG3A RAD='YES'  &END 

 &STG3B INAST=0 NAST=0  &END 

 

B.5. DSTGB 

&STGB IPRINT=2 IPERT=0 IOPT2=1 IRAD=1  &END 

 0 1 0 

0.5 5.5 0.025 

 0 3 0 

0.5 5.5 0.025 

 0 5 0 

0.5 5.5 0.025 

 -1 -1 –1 

 

B.6. DSTGF 

&STGF IQDT=0 IMODE=0 IMESH=1 PERT='NO' LRGLAM=7 IBIGE=0 

 IPRINT=3 IRAD=1 IOPT1=1 IRDEC=1 IBETA=1  &END 

 &MESH1 MXE=10000 E0=0.0000 EINCR=0.00004  &END 

 

B.7. DPREBF 

&PREBF IPRINT=1 IBUT=1  &END 

B.8. DSTGBF 

&STGBF IPRINT=3 IBUT=1  &END 
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B.9. DSTGBF0DAMP 

&STGF IQDT=0 IMODE=0 IMESH=1 PERT='NO' LRGLAM=5 IBIGE=0 

 IPRINT=3 IOPT1=1 NTYP1=1 NTYP2I=1 NTYP2OR=1 NTYP2OF=1 

 NMIN=6 IPHOTO=30 NPISYM=3 NPIEB=1   &END 

 &MESH1  MXE=10000 E0=0.0000 EINCR=0.00004  &END 
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