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A MULTI-WAVELENGTH INVESTIGATION OF SEYFERT 1.8

AND 1.9 GALAXIES

by

MARGARET L. TRIPPE

Under the Direction of D. Michael Crenshaw

ABSTRACT

We focus on determining the underlying physical cause of a Seyfert galaxy’s appearance as

type a 1.8 or 1.9. Are these “intermediate” Seyfert types typical Seyfert 1 nuclei reddened

by central dusty tori or by nuclear dust lanes/spirals in the narrow-line region? Or, are they

similar to NGC 2992, objects that have intrinsically weak continua and weak broad emission

lines? Our study compares measurements of the reddenings of the narrow and broad-line

regions with each other and with the X-ray column derived from XMM Newton 0.5−10 keV

spectra to determine the presence and location of dust in the line of sight for a sample of 35

Seyfert 1.8s and 1.9s. From this, we find that Seyfert 1.9s are an almost equal mix of low-flux

objects with unreddened broad line regions, and objects with broad line regions reddened

by an internal dust source, either the torus or dust structures on the same size scale as the

narrow line region. The 1.9s that recieved this designation due to a low continuum flux state

showed variable type classifications. All three of the Seyfert 1.8s in our study are probably



in low continuum states. Many objects have been misclassified as Seyfert 1.8/1.9s in the

past, probably due to improper [N II]/Hα deconvolution leading to a false detection of weak

broad Hα.

INDEX WORDS: Active galaxies, Seyfert galaxies, Optical spectroscopy, X-ray spec-
troscopy, Astronomical dust
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Introduction to AGN

1.1 The Discovery of AGN

An active galactic nucleus, or AGN, is a bright point source in the center of an otherwise

normal galaxy (see Fig. 1.1). In fact, many AGN have luminosities that rival or exceed those

of all the hundreds of billions of stars in the host galaxies in which they reside. The light

from these bright galactic centers cannot be attributed to stars; unlike stars, which emit

most of their light at optical or near-optical wavelengths, AGN emit powerfully across a

much larger swath of the electromagnetic spectrum, from high energy X-rays to low-energy

radio waves. As a consequence of this broad-spectrum emission, AGN were discovered and

classified separately at different wavelengths as technological advances in the observation of

each part of the spectrum were made.

AGN were first discovered in optical light. Edward Fath, in his dissertation work on

“spiral nebulae”, was the first to describe the optical spectrum of an AGN: a normal galaxy

spectrum with absorption features from stars, that also showed six strong emission lines,

identifiable with the lines observed in gaseous nebulae (Fath 1909). Edwin Hubble noted

two more galaxies with similar emission lines in his famous study of “extragalactic nebulae”

in 1926, but it was not until almost two decades later that the first systematic study of these

objects was done by Carl Seyfert, who obtained spectra of a sample of galaxies with high

central surface brightnesses (Seyfert 1943). He found that the spectra of several of these

galaxies were dominated by high-excitation, broad (relative to stellar absorption lines) nu-

clear emission lines, similar to those seen by Fath and Hubble (Peterson 1997). Many more
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Figure 1.1 Images of the active galaxy NGC 5548 (left panel) and the quiescent galaxy NGC
3277 (right panel), from http://www.astr.ua.edu.

Seyfert galaxies, as we call objects with similar properties today, were discovered in a similar

way as larger systematic spectroscopic searches were made of high central surface brightness

galaxies. Schmidt camera objective prism surveys, most notably by Benik Markarian in the

1960s, identified galaxies with a strong UV excess (Markarian 1967, 1969a,b) and led to the

spectroscopic identification of even more Seyferts. Seyfert galaxies are still being discovered

today, as large surveys such as the Sloan Digital Sky Survey (SDSS) obtain spectra of large

swaths of the sky.

AGN were re-discovered in the radio as the result of the radio surveys that began

in the 1950s. The positions of some of these radio sources were found to be coincident

with objects that appeared to be stars on normal photographs (for example, see Baade &

Minkowski 1954). However, the spectra of these sources were puzzling. While unambigu-
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ously non-stellar, they showed strong broad emission lines that could not be matched with

the emission lines known to come from gaseous nebulae. Maarten Schmidt solved the riddle

of these so-called quasi-stellar radio sources (or quasars) in 1963, realizing that the emission

lines seen in the spectrum of the radio source 3C 273 were actually the hydrogen Balmer

series at the (then) extravagant redshift of z = 0.158 (Schmidt 1963). It was eventually real-

ized that these quasars are high-luminosity analogs of the nearby Seyfert galaxies, observed

from a such a great distance that the host galaxy cannot be detected. It was not long until

many radio-quiet objects with similar properties were found when searches for quasars using

optical selection techniques were begun.

The classes we use today to describe AGN with similar characteristics are relics of their

separate discovery and study in the optical and radio regimes. For instance, AGN are some-

times classified based on the appearance of their optical spectra, sometimes by their optical

luminosity, and sometimes by their radio luminosity/morphology. It is therefore common for

an AGN to have more than one classification, and this classification may differ depending

upon the method of its detection. The main classes of AGN generally recognized today

are quasars (high luminosity radio loud AGN), quasi-stellar objects or QSOs (high luminos-

ity radio quiet AGN), blazars (highly variable radio loud AGN), radio galaxies (radio loud

AGN), Seyferts (low luminosity radio quiet AGN), and Low Ionization Nuclear Emission-line

Regions or LINERS (very low luminosity AGN). My dissertation work focuses on Seyferts.
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1.2 Optical Classification of Seyferts

Seyfert galaxies are relatively nearby, low-luminosity AGN; MB > −21.5 is the standard

criterion used to distinguish them from quasars (Schmidt & Green 1983). Their appar-

ent closeness is a selection effect due to their low luminosity, and although most “classic”

Seyferts have z ≤ 0.1, many are known to exist at larger redshifts from recent surveys

such as SDSS. While Seyferts were originally found as galaxies with high surface bright-

ness nuclei that emit strong line emission, the meaning of this label has evolved to imply

the presence of high-ionization emission lines in their optical spectra, a characteristic which

distinguishes them from non-AGN galaxies with nuclear star forming regions. These AGN

tend to be found in gas-rich early Hubble type (Sa, SBa, SBb) disk galaxies (Heckman

1978). It has been suggested (Simkin et al. 1980) that structures induced by mergers or

other gravitational interactions with nearby galaxies feed the nuclear activity from gas in

the disk. About 1% of all spiral galaxies host Seyfert nuclei (Osterbrock & Ferland 2006),

thus making them the second most common type of AGN in the local universe after LIN-

ERs.

Astronomers seem unable to resist separating the objects they find into two basic types

(e.g., supernovae, stellar populations), and Seyferts too are customarily divided into two

types, following the scheme of Khachikian & Weedman (1971), based on their emission-line

spectra. All Seyferts have optical spectra that show narrow permitted and forbidden emis-

sion lines. Those Seyferts whose spectra show additional broad permitted emission lines

are classified as type 1. Those whose spectra manifest only the narrow emission lines are

classified as type 2. Furthermore, the spectra of type 2 contrast sharply with type 1 in that
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they exhibit only weak, mostly stellar continua, while the spectra of type 1 Seyferts are

characterized by strong non-stellar continua. Figure 1.2 shows examples of the spectra of

each.



6

Figure 1.2 Sample spectrum of a type 1 Seyfert, Mrk 1018 (top panel), and of a type 2 Seyfert, NGC 4388 (bottom panel).
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Figure 1.3 Sample spectrum of type 1.8 Seyfert, Mrk 1126 (top panel), and of a type 1.9 Seyfert, NGC 3786 (bottom panel).
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Some Seyferts, however, have characteristics that fall in between these two types. Os-

terbrock (1977) added several intermediate types to our classification system to describe

these galaxies with composite spectral features: Seyfert 1.2, 1.5, 1.8, and 1.9. The larger

the numerical value of the class, the weaker the featureless continuum and broad compo-

nents of the permitted lines. Maiolino & Rieke (1995) set quantitative bounds on the classes

proposed by Osterbrock, and these are used to define each class throughout the rest of

this dissertation (note that [O III] refers to the [O III] λ5007 emission line in these defini-

tions):

• Seyfert 1: Objects showing a broad Hβ emission line with [O III]/Hβ < 0.3

• Seyfert 1.2: Objects showing a broad Hβ with 0.3 < [O III]/Hβ < 1

• Seyfert 1.5: Objects showing a broad Hβ with 1 < [O III]/Hβ < 4

• Seyfert 1.8: Objects showing a broad Hβ with 4 < [O III]/Hβ (see Fig. 1.3)

• Seyfert 1.9: Objects not showing broad Hβ, but having broad Hα (see Fig. 1.3)

Line ratios are also used as criteria to distinguish Seyferts from other objects with sim-

ilar spectra, such as LINERs and starburst (H II) galaxies (Baldwin et al. 1981; Kewley

et al. 2006). Figure 1.4 shows a diagram of diagnostic line ratios from Veilleux & Osterbrock

(1987) used to separate these classes. The abscissa on this diagram is the ratio of the flux of

the [O I] λ6300 line to the flux of narrow Hα, a measure of the extent of the “partially-ionized

zone” created by high-energy photons. The ordinate is the ratio of the flux of the [O III]

λ5007 line to the flux of narrow Hβ, a proxy for the level of ionization. Seyfert galaxies fall

into the upper-right side of this diagram, indicating they have high levels of ionization and

large partially-ionized zones. LINERs, with their weaker continua and thus lower ionizations,

fall below the Seyferts on the right. Starburst galaxies fall to the left of both of these classes;
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Figure 1.4 An example of an emission line ratio diagnostic diagram used to help classify
galaxies, from Ho et al. (1997a).

the thermal continua of even the hottest stars contain very few high-energy photons relative

to the continua of AGN. The objects whose [O I]/Hα ratios fall between the LINER and

starburst regions, and whose [O III]/Hβ ratios fall below the Seyfert region, are classified as

“transition objects”; these are objects whose spectra are apparently a combination of LINER

and starburst.

1.3 General Structure of an AGN

The different types of AGN are all believed to be powered by the gravitational energy re-

leased as material in an accretion disk of hot gas spirals into the supermassive black hole

(SMBH), usually between 106 - 109 MJ, at the center of the host galaxy. As the gas spirals
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inward, it is heated to high temperatures by friction and dissipative forces within the disk

and emits large amounts of radiation. The structure of an accretion disk depends upon

many parameters: magnetic field strength, accretion rate, and the presence/absence of a

disk corona or jets (Peterson 1997), but in general they are thought to be thermal structures

emitting radiation that peaks in intensity in the UV, but also includes X-ray and optical

wavelengths. Hovering around the disk, a hot coronal gas is expected to be present, and it

is the up-scattering of the UV photons from the disk by these hot coronal electrons that is

expected to produce the hard X-rays observed in radio quiet AGN (e.g., Wang & Netzer

2003).

The accretion disk-black hole system is surrounded by a number of dense (nH = 108−1011

cm−3) clouds of gas within a few light-days to a few light-weeks, inferred from the optical

spectra of Seyfert 1 galaxies and quasars. These clouds are photoionized by the continuum

produced by the accretion disk, and emit line radiation by the recombination of electrons

with ions, as well as the collisional excitation of bound electrons, and the electrons’ subse-

quent downward energy-level transitions. No forbidden emission is produced by these clouds;

their high densities lead to collisional de-excitation of the energy levels in ions which give

rise to such emission. The emission lines of these clouds are Doppler-broadened by their

movement in the gravitational field of the black hole to have full widths at half-maxima

(FWHM) in the range of ∼ 800 − 8, 000 km s−1, and thus these clouds are said to exist in

the “broad-line region” (BLR).

Beyond the BLR, the AGN photoionizes the surrounding low-density (nH = 103 − 106

cm−3) clouds of gas within several hundreds of parsecs, a large enough spatial scale for these

clouds/knots to be resolved in HST optical images. These ionized regions are usually seen
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to take the shape of a bicone with its apex centered on the central engine (Tadhunter &

Tsvetanov 1989; Das et al. 2005). The emission lines from this region are not broadened by

the influence of the central supermassive black hole. They have FWHM of only ∼ 200− 500

km s−1, and thus this area is termed the “narrow-line region” (NLR). Both permitted and

forbidden line emission is produced by the rarefied gas in the NLR. While much of the line

emission is similar to that observed in other types of photoionized nebulae, such as planetary

nebulae or H II regions, the range in ionization species in the NLR of Seyferts is greater than

in these other sources, due to the relative hardness of the ionizing continuum. For example,

although [O II], [O III], [N II] and [Ne III] are observed, [O I], [N I], [Ne V], [Fe VII], and

[Fe X] are also consistently present (Osterbrock & Ferland 2006).

1.4 Unified Models of Seyfert Galaxies

An orientation-dependent scheme to explain the differences in the properties of type 1 and

type 2 AGN was first hinted at by Rowan-Robinson (1977), who suggested Seyfert 1 and

Seyfert 2 galaxies to be intrinsically similar objects, but Seyfert 2s suffer from greater extinc-

tion than Seyfert 1s. Later X-ray studies, such as Lawrence & Elvis (1982), supported this

idea by revealing the central X-ray sources in Seyfert 2s are attenuated by significantly larger

gas column densities than Seyfert 1s. The first indication of the geometry of the obscuring

regions was discovered by Antonucci (1984) using optical spectropolarimetric observations of

radio galaxies. They found the polarization of ~E in narrow-line radio galaxies to be aligned

approximately perpendicular to their radio jets, while in broad-line radio galaxies the polar-

ization tended to be closer to parallel to the radio jets (Tadhunter 2008). They realized that
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these properties could be explained in terms of scattered AGN light, with parallel alignments

due to equatorial scattering by a disk viewed obliquely and perpendicular alignments due to

polar scattering by material in the opening of an optically thick torus-like structure (Tad-

hunter 2008). The paper presenting these results (Antonucci 1984) contains the first sketch

of the central obscuring torus which is now the centerpiece of unified schemes. Antonucci &

Miller (1985) later used spectropolarimetric observations to show broad permitted line com-

ponents in the polarized spectrum of the nearby bright Seyfert 2 galaxy NGC 1068, thought

to be due to the scattering of the nuclear light into our line of sight by dust or electrons,

confirming the idea that it is a Seyfert 1 nucleus hidden behind optically thick material.

The sketch of Urry & Padovani (1995) shown in Fig. 1.5 summarizes the main ideas

of the orientation-dependent unified model. The toroidal obscuration in this picture is now

thought to be a parsec-scale (Nenkova et al. 2008) configuration of individual optically-thick

clouds (Krolik & Begelman 1988; Nenkova et al. 2002), as opposed to the smooth distribu-

tion portrayed in Fig. 1.5. However, the dust and gas properties of this material are not yet

well known.

1.5 Enter Seyfert 1.8s and 1.9s

Seyfert 1.8s and 1.9s were originally discovered and labeled by Donald Osterbrock. Work-

ing on a spectral survey of Seyferts at Lick Observatory, he noted five AGN with spec-

tra that fell in between type 1 and type 2 in appearance: Mrk 423, Mrk 516, Mrk 609,

Mrk 1018, and V Zw 317 (Osterbrock 1981). Those with weak broad Hα and Hβ lines

he called type 1.8, and those with only weak broad Hα he called type 1.9. He noted
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Figure 1.5 A highly schematic but fairly complete picture of the unified model of AGN.
According to this model, type 1 AGN are seen along a line of sight that allows a clear view
of the central region of the AGN, while in type 2’s our view of this central region is blocked
by the “obscuring torus” (credit: Urry & Padovani 1995).

that these AGN appeared to have large broad Balmer decrements, i.e., that the ratios

of the broad Hα/Hβ emission lines were greater than observed in Seyfert 1 galaxies, and

suggested this to be due to the extinction of the BLR by dust. In terms of the unified

model, this would indicate a line of sight that grazes the outer edge of the obscuring dusty

torus.

However, Rudy & Willner (1983) later questioned this explanation for the appearance

of 1.8/1.9s, when they produced theoretical models showing that large Balmer decrements

could alternatively be produced if the broad-line clouds themselves have fairly low optical

depths and ionization parameters, negating the need for dusty material external to the broad-
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line clouds (Rudy & Willner 1983). This became known as the “(τ , U)” theory (Goodrich

1995), and was supported by observations of broad Lyα lines in a couple of 1.9s (Rudy et al.

1988).

Since these initial studies, there have been several attempts to verify which of these

theories is predominantly true. R. Goodrich obtained spectropolarimetric observations of

NGC 2622, NGC 7603, and Mrk 1018. He found “the changes in flux of the broad lines

and the continuum near H-alpha and H-beta are consistent with changes in the extinc-

tion in all cases” (Goodrich 1989), indicating that the appearance of these objects was

probably dependent on dust in the torus. Goodrich continued his investigation by mea-

suring the Paα flux of a sample of 1.8/1.9s; this study showed some 1.8/1.9s have Paα

fluxes consistent with dust reddening, but others are consistent with the (τ , U) theory

(Goodrich 1990). Another study (Goodrich 1995) of variability of the broad-line compo-

nents of Seyfert 1.8/1.9s again gave mixed results. NGC 7603, Mrk 993, and Mrk 1018

all seemed to show variability in their Hα lines consistent with the same change in red-

dening of their Hβ lines, and thus their spectral variability was attributed to the motions

of clouds of dust (presumably in the torus) in front of the nucleus. On the other hand,

NGC 2622, Mrk 883 and UGC 7064 underwent changes inconsistent with a simple change

in reddening. Further support for the reddening of the BLR by dust came from the X-

ray regime, with Risaliti et al. (1999) finding that the gas columns in Seyfert 1.8 and

1.9 galaxies are significantly lower than in Seyfert 2s, though still larger than in Seyfert

1s.

Thus, the issue of whether Seyfert 1.8s and 1.9s have high broad Balmer decrements due

to extinction by dust has remained unresolved. Seyfert 1.8 and 1.9 galaxies are nearby and
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relatively bright. If they are indeed being affected by a modest, and therefore measurable,

amount of extinction by the torus, they would provide excellent testbeds to study the dust

properties of the torus, which are crucial to understanding the true spectral energy distri-

butions of AGN and environments in the immediate vicinity of SMBHs.

Our study to resolve this issue began with NGC 2992.
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Extreme Long-term Optical Variability in NGC 2992

2.1 Introduction to NGC 2992

NGC 2992 is a nearby galaxy with redshift z = 0.00771 (Keel 1996) that has been well

studied in all wavelength regimes. Optical spectra of the nucleus show it to be a Seyfert

galaxy, but its type classification has been observed to vary conspicuously in the past, lead-

ing to classifications ranging from Seyfert 1 to Seyfert 2. Early spectra published by Shuder

(1980), Veron et al. (1980), and Ward et al. (1980) all show the presence of a weak broad

Hα component but no detectable corresponding broad Hβ component, leading to its original

classification as a Seyfert 1.9. When it was observed in 1994 by Allen et al. (1999), however,

it had apparently lost its broad Hα component and was classified as a Seyfert 2. A 1999

spectrum taken by Gilli et al. at the ESO NTT showed it to have regained its broad Hα

emission (Gilli et al. 2000). Gilli et al. also correlated the presence of broad Hα with the

galaxy’s X-ray flux; they found NGC 2992 to have been in a high X-ray state when it was

initially observed in the late 1970s and early 1980s, but that the X-ray flux had been slowly

decreasing over time and was at a minimum when Allen et al. observed its optical spectrum

in 1994. At the time of Gilli et al.’s observation of broad Hα in 1999, they used BeppoSAX

data to show that NGC 2992 had returned again to its previous active X-ray state, and

postulated these variations were due to different phases of rebuilding of the central accretion

disk. The interesting history of variation of this object, as well as its intermediate type

classification, induced us to choose it as the subject of an optical monitoring campaign.
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2.2 Observations of NGC 2992 and Data Reduction

We monitored NGC 2992 for about a year and a half, from 2006 January to 2007 June,

using the R-C spectrograph on the Cerro Tololo Inter-American Observatory (CTIO) 1.5-

m telescope in Chile. We obtained observations on a monthly basis, except for the period

when the galaxy was too close to the Sun to be observed. Spectra were observed using two

different settings: one with a grating with a resolution of 4.3 Å (giving a dispersion of ∼1.47

Å /pixel) to take blue spectra from approximately 3660 − 5440 Å to include Hβ, and the

other with a resolution of 3.1 Å (∼1.10 Å /pixel dispersion) and a Schott GG 495 filter to

take red spectra from approximately 5650−6970 Å to include the Hα line. We used a slit at

a 90◦ P.A. centered on the galaxy’s nucleus to obtain accurate absolute fluxes on photometric

nights. The majority of the spectra were taken using a 2′′ slit width, but observations were

also taken on nights when other slit widths were in use. Table 2.1 chronicles the dates and

settings of our observations. To eliminate cosmic ray hits, we took three exposures each

time the galaxy was observed. The stars LTT 4364 and Feige 110 were also observed with

these settings for the purpose of flux calibration. The spectra were then reduced and flux

calibrated using standard IRAF reduction packages for long-slit spectroscopy. Since the

spectra were seen to have remained essentially constant with time, we averaged them to

obtain a higher S/N ratio in our final resulting spectrum. As shown in Fig. 2.1, the final

spectrum looks like that of a Seyfert 2, in that only narrow emission lines are present and it

exhibits strong stellar absorption features.

In order to assess the impact of using slits of different sizes, we compared the integrated

fluxes of the [S II] λ6716 and λ6731 lines in a spectrum taken with the 2′′ slit width with the
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Table 2.1. Log of Observations

Date Wavelength Coverage Exposure Time Slit Width
(U.T.) (Å) (s) (arcsec)

2006 Jan. 9 3660-5440 1,200 2.0
2006 Jan. 11 5650-6970 900 2.0
2006 Feb. 2 5650-6970 900 1.5
2006 Feb. 3 3660-5440 1,200 2.0
2006 Mar. 9 5650-6970 900 3.3
2006 Mar. 10 3660-5440 1,200 3.3
2006 Apr. 6 3660-5440 1,200 2.0
2006 May 8 3660-5440 1,200 1.5
2006 May 9 5650-6970 900 4.0
2006 Jun. 4 5650-6970 900 4.0
2006 Jun. 7 3660-5440 1,200 2.0
2006 Nov. 29 3660-5440 1,200 2.0
2006 Dec. 17 5650-6970 900 2.0
2006 Dec. 18 3660-5440 1,200 2.0
2007 Jan. 16 5650-6970 900 2.0
2007 Jan. 17 3660-5440 1,200 2.0
2007 Feb. 9 5650-6970 900 4.0
2007 Feb. 8 3660-5440 1,200 4.0
2007 Apr. 3 5650-6970 900 2.0
2007 Mar. 30 3660-5440 1,200 2.0
2007 Jun. 21 3660-5440 1,200 4.0
2007 Jun. 26 5650-6970 900 2.0

integrated fluxes of the lines in a spectrum taken with the 4′′ slit width. We found there to

be only about a 20% difference between the two. The final spectrum we present is an average

of all 10 observations, only 4 of which were made with slits larger than 2′′. We therefore

estimate the fluxes of these narrow lines to be increased by only (4/10) × 22% ≈ 9% over

what they would be if a 2′′ slit width had been used exclusively throughout the observations.

To obtain a spectrum suitable for measurement of nuclear emission lines, the light from

the nucleus must be isolated from that of the host galaxy. We removed the host galaxy

spectrum from the CTIO data by subtracting off a normal galaxy spectrum (from Kinney

et al. 1996) scaled to give the optimum fit to the observed average spectrum’s continuum



19

Figure 2.1 The average observed spectrum of NGC 2992.

and absorption line features. The remaining continuum was fit by a power-law (Fν ∝ να)

with α = −1.83 and subtracted off, but with little effect, as this component was very weak,

consistent with the rest of the evidence that NGC 2992 was a Type 2 Seyfert at the time of

the CTIO observations. Figure 2.2 shows the resulting spectrum after these subtractions.

2.3 Data Analysis

We determined the reddening of the narrow-line region from the narrow components of Hα

and Hβ, assuming their intrinsic ratio to be equal to the Case B recombination value of

Hα/Hβ = 2.9 (Osterbrock & Ferland 2006), and further assuming the standard Galactic
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Figure 2.2 The top panel shows the average observed spectrum of NGC 2992 with overplot
of host galaxy fit (dashed line); the bottom panel displays the observed spectrum after
subtraction of the host galaxy fit.
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Table 2.2. Narrow-line ratios for NGC 2992

Line Observed Ratios to Hβ Dereddened Ratiosa

[O II] 3727 3.86±0.48 7.09±0.17
[Ne III] 3869 0.93±0.13 1.58±0.80
Hγ 4340 0.85±0.17 1.16±0.17
[O III] 4363 0.67±0.19 0.89±0.20
Hβ 4861b 1.00±0.17 1.00±0.17
[O III] 4959 3.68±0.54 3.51±0.54
[O III] 5007 10.27±1.27 9.53±1.30
[O I] 6300 0.77±0.17 0.39±0.15
[O I] 6374 0.18±0.04 0.09±0.03
[N II] 6548 2.21±0.29 1.03±0.28
Hα 6563 6.28±0.79 2.90±0.78
[N II] 6583 5.24±0.65 2.40±0.64
[S II] 6716 2.44±0.30 1.07±0.29
[S II] 6731 1.93±0.24 0.84±0.23

aFor E(B − V ) = 0.71± 0.11 mag

bThe integrated absolute flux of the Hβ line in this spectrum
is 33.7±4.2 ×10−15 ergs cm−2 s−1

reddening curve of Savage & Mathis (1979) to be applicable. By this method we found

E(B−V ) = 0.71± 0.11 mag, and de-reddened the spectrum accordingly. We give measured

values of NGC 2992’s observed and de-reddened line ratios relative to Hβ in Table 2.2.

To study the Hα profile, we deblended the narrow [N II] λλ6548, 6583 Å lines flanking

each side of Hα by using the distinctly narrow component of the Hα line as a template for

each of the doublet lines in an iterative process. The template was moved to the position

of each [N II] line, scaled in width and height to match it, and subtracted off. The height

of the line at 6583 Å was set to three times that of the line at 6548 Å based on the ratio

of their transition probabilities (Osterbrock & Ferland 2006). The profile before and after
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Figure 2.3 NGC 2992’s Hα profile before (dotted line) and after (solid line) subtraction of
the [N II] doublet.

subtraction of the [N II] lines is shown in Fig. 2.3. If there is a broad component, it is

certainly very faint, no more than 30% of the flux of the narrow component.

2.4 Results from NGC 2992

Given its history of extreme variability, NGC 2992 has remained at a remarkably constant

low state over the year and a half of our observations. As can be seen from Fig. 2.4 where

three representative spectra (from the beginning, middle and end of the campaign) are plot-

ted, NGC 2992 showed no evidence for variation over the observation period. The Hα profile

showed no sign of change in any broad component. Furthermore, the continuum did not

change over this time period, in line with our conclusion that it was dominated by stellar
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light.

The observations, when compared with the historical spectra mentioned in the intro-

duction, do at least prove that this Seyfert has undergone yet another dramatic change, from

the high flux state it was in when last observed by Gilli et al. in 1999, back to the low state

observed by Allen et al. in 1994. Figure 2.5 plots the data from Fig. 8 in Gilli et al. (2000),

three spectra all observed with 2′′ slit widths taken over the course of 31 years, along with

our new average spectrum around Hα. It can be seen that NGC 2992 lost its broad Hα in

1994, recouped it again by 1999 (as noted by Gilli et al. 2000), but has now lost it again in

our spectra.

By using the observed reddening of the narrow-line region, E(B − V ) = 0.71 mag, and

the relation NH = 5.2 × 1021E(B − V ) cm−2 derived by Shull & van Steenberg (1985)

for the local ISM, we estimate the column density absorbing the narrow-line region to

be NH = 3.7 ± 0.6 × 1021 cm−2. This is equivalent, within the error estimates, to the

value derived by Gilli et al. from the ratio of narrow Paβ/Hα of E(B − V ) of 0.65±0.19

mag (NH = 3.4 ± 1.0 × 1021 cm−2). Gilli et al. also found E(B − V ) = 0.71±0.19 mag

(NH = 3.7 ± 1.0 × 1021 cm−2) for the BLR in 1999, using a near IR spectrum exhibiting

broad Brγ and Paβ lines. The nearly identical reddenings of the BLR and NLR indicate a

dust screen external to the NLR, as suggested by Gilli et al. (2000).

X-ray observations have found absorption values similar to those observed in the op-

tical. Yaqoob et al. (2007) found NH to be 7.99 ± 0.60 × 1021 cm−2 from Suzaku obser-

vations in November and December of 2005, only a month before we began our optical

monitoring at CTIO. This value is similar to Gilli et al.’s measurement with BeppoSAX

of NH = 9.0 ± 0.3 × 1021 cm−2, from when the galaxy was in a high X-ray and optical
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Figure 2.4 Three representative blue and red spectra from the beginning, middle, and end
of our monitoring campaign of NGC 2992. The slight differences in absolute flux are likely
due to seeing and/or non-photometric conditions, as noted in the text.
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Figure 2.5 The variation of NGC 2992’s broad Hα with time. For comparison purposes, we
have subtracted the continuum and scaled the spectra in such a way that the narrow [S II]
lines, which are expected to remain constant, match. NGC 2992 has dropped back into a low
optical flux state, similar to that observed by Allen et al. in 1994, since it was last observed
by Gilli et al. in 1999. Many thanks to Roberto Maiolino for providing the optical spectra
previous to 2006. (see Gilli et al. 2000).

state. Throughout the history of NGC 2992’s observations, the X-ray flux has been seen to

vary dramatically, from f2−10keV = 0.63× 10−11 ergs cm−2 s−1 observed by Gilli et al. with

BeppoSAX in 1997 (Gilli et al. 2000) to f2−10keV = 8.88× 10−11 ergs cm−2 s−1 observed by

Murphy et al. with RXTE in 2005 (Murphy et al. 2007), but the X-ray column has remained

virtually constant at ∼ 1022 cm−2 (Gilli et al. 2000; Colbert et al. 2005; Yaqoob et al. 2007).

The observed X-ray columns are two to three times higher than those estimated by the red-
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dening values. This may be due to a lower dust-to-gas ratio than that of our Galaxy, or to

a separate dust-free X-ray absorber close to the nucleus.

To investigate the mid-IR properties of NGC 2992, we retrieved and processed its low-

resolution Spitzer IRS spectrum from the Spitzer archives (see Deo et al. 2007 for details).

As shown in Fig. 2.6, the spectrum exhibits PAH emission features typical of a strong star-

burst contribution as well as highly ionized narrow lines, such as [O IV] λ25.89 µm and [Ne

V] λ14.31 µm, attributable to the hard ionizing continuum of the central AGN. The spec-

trum also exhibits a strong silicate 9.7 µm absorption feature, which is typically found in

Seyfert galaxies with highly inclined (b/a < 0.5) host galaxy disks (Deo et al. 2007). Indeed,

the galactic disk of NGC 2992 is highly inclined, with b/a = 0.31, according to NED (the

NASA/IPAC Extragalactic Database, http://nedwww.ipac.caltech.edu). From the Spitzer

spectrum, the trough of the silicate 9.7 µm feature is at an optical depth of τ = 0.35, which

corresponds to a reddening of E(B − V ) = 2.1 based on the relationship for diffuse ISM

clouds (AV = 18.5τ9.7µm) given by Roche & Aitken (1984). There are a couple of explana-

tions for this reddening being a factor of ∼ 3 higher than the direct values from the BLR

and NLR. One possibility is a strong contaminating contribution to the silicate feature from

a starburst heavily enshrouded in dust. Another possibility is that the dust may be richer in

silicates than Galactic dust, as suggested for the damped Lyα absorber toward AO 0235+164

(Kulkarni et al. 2007).
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Figure 2.6 Spitzer IRS spectrum of NGC 2992.

2.5 Discussion and Conclusions

In Table 2.3, we give a summary of determinations of reddening and/or hydrogen column

densities in the line of sight to different components of the AGN. It is important to keep in

mind that the uncertainties quoted in Table 2.3 reflect only measurement errors; systematic

uncertainties such as different measurement techniques and instruments are not included.

The fact that these column densities derived from different regions all fall within about a

factor of three of each other suggests that they are all being reddened by the same source,

likely a large-scale dust lane in the host galaxy. An optical Hubble WFPC2 image of the

nucleus of NGC 2992 obtained with the F606W filter substantiates this explanation, as it
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Table 2.3. Summary of Absorption Determinations

Region E(B − V ) NH (1021cm−2) Date of Obs. Reference

X-ray emission region – 7.99±0.6 2005 Yaqoob et al. (2007)
X-ray emission region – 9.0±0.3 1998 Gilli et al. (2000)
X-ray emission region – 14.0±5.0 1997 Gilli et al. (2000)
BLR 0.71±0.19 3.7±0.99 1999 Gilli et al. (2000)
NLR 0.71±0.11 3.7±0.57 2006-2007 This work.
NLR 0.65±0.19 3.4±0.99 1999 Gilli et al. (2000)
External galaxy 2.1±0.20 11.0±1.0 2005 This work.

clearly shows a pronounced hundred-pc scale lane of dust passing across the point-source

nucleus (see Fig. 2.7).

Variable reddening due to dust in this lane is unlikely to be the cause of NGC 2992’s

history of broad-line variation. A simple calculation of the timescale of variation due to dust

in the host galaxy moving at 300 km s−1 across a BLR 10 light-days in size gives a timescale

τ ≈ 30 years, much too long to be the cause of variations observed to occur in only a few

years. The strong correlation between the flux of the broad component of Hα and the 2−10

keV X-ray flux shown by Gilli et al. (2000), as well as the fact that the line of sight column

density has remained virtually constant despite these variations, are further indications of

an intrinsic origin of NGC 2992’s variability.

We conclude that NGC 2992 was identified as a Seyfert 1.9 based on its discovery in

a low continuum state. It is clear that it is not a case of an oblique line of sight through

the atmosphere of a dusty torus; the observed reddening is explained by an external dust lane.
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Figure 2.7 Hubble WFPC2 image of NGC 2992 taken with the F606W filter, showing a large
lane of dust crossing directly over the nucleus, inverted so emission is dark and absorption
is light. This image is from the Space Telescope Science Institute’s Multimission Archive
(MAST).

2.6 Motivation

These findings from NGC 2992 brought our attention to the fact that extinction typically

attributed to the torus may in some cases be due to the host galaxy, and calls into question

the nature of Seyfert 1.8/1.9 galaxies. Are most Seyfert 1.8/1.9s AGN with reddened BLRs?

Or are they instead similar to NGC 2992, with intrinsically weak continua?

This work is an attempt to answer these questions by combining new optical spectra with

archival data from other wavelength regimes to understand the physical reason behind the

1.8/1.9 designation of a sample of Seyferts. In doing so, we want to isolate those Seyferts

whose broad lines are likely reddened by the torus, which are suitable for use in a study of
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the dust and gas in the torus, from those 1.8/1.9s in which the optical extinction, if present,

is unrelated to the torus.

We postulate two main physical situations could cause an AGN’s appearance as a 1.8/1.9.

In one case, which we refer to as the “internally reddened” case throughout the remainder of

this thesis, a type 1 Seyfert appears to be a 1.8/1.9 because we are observing it along a line

of sight that passes through a dusty absorber which obscures most of the BLR flux in the

optical except the strongest line, Hα, and perhaps the next strongest, Hβ. In the other case,

the continuum source has at least temporarily diminished, leaving only weak broad lines.

These weak components may be further diminished or totally extinguished by extinction

from dust in the host galaxy, or they may be indiscernible in optical spectra due to noise

and contamination by the underlying stellar absorption spectrum of the host galaxy. We

refer to this as the “low-flux” case. Though there is not a single definitive method to discern

between these possibilities, there are several observational clues that can help determine

which cause is the most likely.

The internal reddening case is indicated by observational signs of a large reddening source

between the BLR and NLR (i.e. E(B − V )BLR > E(B − V )NLR). In general, this could

be due to either 1) dust between the BLR and NLR, such as the torus, or 2) dust on the

same scale as the NLR, such as the nuclear dust spirals found by Pogge & Martini (2002).

For Seyfert 1.8s, whose spectra contain both broad Hα and Hβ, this is easily checked by

a comparison of the BLR and NLR Balmer decrements; a heavily reddened BLR and less

reddened NLR is convincing evidence for internal reddening. For 1.9s, only a lower limit

to the reddening of the BLR can be found from an optical spectrum, from an upper limit

to the Hβ flux. However, X-ray spectra give information about the total line-of-sight gas
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column (NH) to the very center of AGN, and can therefore be useful to determine the lo-

cation of a reddening source in 1.9s. For example, if the reddening of the NLR corresponds

to a column density similar to the column derived from the the X-ray spectrum (assuming

a Galactic dust/gas ratio), then it is unlikely that the central source is being reddened by

a torus. Furthermore, for either type 1.8 or 1.9 a study of optical spectral variability can

provide useful information; if variations of the continuum shape or the strengths of broad

Hα and Hβ are consistent with the same change in reddening, and occur more quickly than

would be expected from dust moving in the external galaxy, we can again infer the presence

of a source of internal reddening (see Goodrich 1995).

On the other hand, observed broad-line variations inconsistent with variable reddening

indicate an intrinsically variable ionizing continuum, and could mean that the 1.8/1.9 is a

low-flux state of an object that would normally appear as a Seyfert 1. Such an object could

have a completely unreddened BLR. Or, if E(B − V )BLR ≈ E(B − V )NLR, the reddening of

the BLR is most likely due to dust in the host galaxy, and not the torus. We refer to this

as “external reddening”. Other clues that the BLR may be heavily reddened by the dust

in the host galaxy are a strong silicate 9.7 µm absorption feature in the mid-IR (Deo et al.

2007), or a high inclination of the host galaxy itself, indicated by a small ratio of minor axis

length to major axis length (b/a).

2.6.1 Sample

In this study, we consider a sample of 35 Seyferts classified as 1.8 or 1.9 by at least one

of several sources: Sandage & Tammann (1987), Osterbrock (1989), Osterbrock & Martel
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(1993), Goodrich (1995), Maiolino & Rieke (1995), Ho et al. (1995), Risaliti et al. (1999), or

Quillen et al. (2001). The Seyferts in these publications are bright and relatively well-known,

allowing us to establish the classification history of each based on previously published spec-

tra in the literature.

Chapter 3 gives the details of our optical observations and data reduction processes, and

describes our type classification requirements and method for measuring E(B − V )NLR and

E(B−V )BLR. Chapter 4 describes our X-ray data and spectral analysis. Chapter 5 outlines

data from other resources we found helpful: optical WFPC2 images of the nuclei, and mid-IR

Spitzer IRS spectra. Chapter 6 gives brief notes on the spectra of the Seyferts in our sample,

and our classification of each object into one of the above categories (low flux or internally

reddened), based on the evidence from our own data and from previously published sources.

Chapter 7 is a discussion of the findings and summary of the results.
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– 3 –

Optical Spectroscopy

3.1 Introduction to Optical Spectroscopy of Seyferts

The optical emission-line spectrum of a Seyfert galaxy is produced by gas photoionized by

the central continuum source over a large range of distances. The line intensities, widths,

and shapes are thus powerful tools for learning about the physical conditions in the different

regions of the AGN.

3.1.1 NLR Lines

The most prominent optical emission lines from the NLR are the so-called “forbidden” lines,

due to collisional excitation by thermal electrons of the low-lying energy levels of heavy ele-

ments, and subsequent downward radiative transitions. The most dominant lines are usually

the green [O III] λλ4959, 5007 lines. [O II] λ3727 and lines from [Ne III] are often prominent

in the blue part of the spectrum, and in the red there are [N II] λλ6548, 6583 and [S II]

λλ6716, 6731. The range in ionization species in the NLR of Seyferts is very great, with

ionization potentials ranging from 0 eV (e.g., neutral elements such as [O I]) up to 361 eV

(e.g., [Fe X IV]). Permitted lines are also present, from the re-capture of thermal electrons

to excited levels, and ensuing radiative transitions to lower levels. In addition to permitted

lines from the H I Balmer series (Hα at 6563 Å, Hβ at 4861 Å, and Hγ at 4340 Å), there

are lines from He I and He II as well.

The profiles of these lines often have Gaussian cores, but their bases often show extended
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asymmetric wings (Whittle 1985a,b). Most often, the blue wing shows relatively more flux,

an effect thought to be due to an outflowing component to the emission coming from the

near (and most often less obscured) side of the AGN (Osterbrock & Ferland 2006). Mea-

surement of the narrow line widths in a single object shows that the widths correlate with

both ionization potential and critical density (De Robertis & Osterbrock 1984; Moore et al.

1996; Erkens et al. 1997), implying that the NLR has a radially stratified density structure

(Kraemer et al. 2000; Kraemer & Crenshaw 2000).

It is important to note that variability of the narrow lines is not expected. The NLR

extends to distances up to a kiloparsec, and therefore the light-travel time across the NLR

means only long-term continuum changes will be visible in the narrow lines. Additionally,

the time it takes to absorb the incident photons and reprocess them into emission lines (the

hydrogen recombination timescale τrec, approximately 150 years for nH = 103 cm−3) will

further damp out line variability (Peterson 1997).

3.1.2 BLR Lines

Seyfert 1, 1.2, and 1.5 galaxies are characterized by their broad permitted H I emission, but

lines due to He I (λ5876), He II (λ4686), and Fe II (λλ4570, 5250) are also present. In

fact, all of the broad lines in the optical are permitted recombination lines; no forbidden

lines show profiles characteristic of the BLR. This indicates that the BLR is a relatively

high density region, in which the levels of abundant ions which might otherwise give rise to

forbidden emission are collisionally de-excited.

Broad lines have widths that vary greatly from object to object, as well as diverse profile
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shapes. The widths range from ∼500 to 10,000 km s−1, and in many cases this leads to

blending between line profiles. The profiles are often described as logarithmic (Capriotti

et al. 1980, 1981), at least in the wings, but in many cases they are irregularly shaped, and

both blueward and redward asymmetries are observed in the broad lines of different objects.

To further complicate matters, the line structure often differs from line to line in the same

spectrum.

The fluxes of the broad lines vary strongly in response to changes in continuum flux.

Extensive monitoring campaigns have been carried out to measure the time lag between

continuum variation and the response of the broad lines (see, e.g., Peterson et al. 2004).

The interpretation of the findings of these campaigns depends on the assumed geometry, but

they do give an indication of the light travel time between the central object and the BLR

clouds, which for Seyfert galaxies is usually ∼ 2− 20 days (Peterson & Wandel 1999). This

technique also shows that BLR radius is correlated with the luminosity of the AGN (Kaspi

et al. 2005). The observed range of lags shows that the BLR is also highly stratified; higher

ionization species have shorter lags, and therefore are thought to reside closer to the central

source than lower ionization species (Peterson 1993).

3.1.3 Continuum

The continua of type 2 Seyferts are mostly due to starlight from the host galaxy; the con-

tinuum emitted by the central engine is weak and difficult to discern in these types. In type

1s the stellar continuum is present, but diluted by the strong “featureless” blue continuum

thought to arise from the accretion disk, often modeled by a power-law in the optical regime.
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Furthermore, there is often a sharp rise to short optical wavelengths visible in the continua

of type 1s, termed the “small blue bump”, a combination of blended iron emission lines and

Balmer continuum emission.

3.1.4 Effects of Dust

Optical spectroscopy gives important information about the amount of dust along the line

of sight to the line-emitting regions in AGN. Dust grains are effective absorbers of light with

wavelengths similar to, or smaller than, the diameter of the grains, which span a wide range

in size but include many of ∼1000 Å in diameter. Because of this, a beam of light passing

through a region of interstellar dust is reddened; the UV and blue optical wavelengths are

preferentially absorbed/scattered by the grains, while the red light that passes through is less

affected. Observationalists commonly use a quantity called the “color excess”, or “redden-

ing”, denoted by E(B − V ), to measure the severity of this effect on an observed spectrum.

E(B − V ) is the difference between the number of magnitudes of extinction in Johnson B

filter (centered at 4400 Å) and the number of magnitudes of extinction in the Johnson V

filter (centered at 5500 Å). The greater the amount of dust in the line of sight, the greater

the value of E(B − V ). The relative extinction R in a certain waveband λ is defined to be

the ratio of the number of magnitudes of extinction (Aλ = −2.5log(fλ,observed/fλ,intrinsic)) in

that band to the reddening, i.e. Rλ = Aλ/E(B − V ). As the ratio of two quantities that

scale with the amount of dust, Rλ is not a measure of the amount of dust, but rather of the

dust properties, such as grain composition, size, and shape. For the local Galactic ISM, Rλ

has been empirically determined to high accuracy by measuring the fluxes of reddened and
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Figure 3.1 The standard Galactic relative extinction curve of Savage & Mathis (1979). The
bump at 2200 Å is thought to be due to carbonate grains.

unreddened stars of the same spectral type (see Fig. 3.1).

In this study, we assume the dust in our Seyferts has the same properties as Galactic

dust (i.e., that the reddening curve of Fig. 3.1 is valid), simply because we do not have data

to determine Rλ by any other method. However, on the basis that extragalactic reddening

curves determined by other methods are very similar to the Galactic curve longwards of

4000 Å (Crenshaw et al. 2001), this assumption should not detract from the quality of our

results.

By assuming the standard Galactic reddening curve, one need only measure the inte-

grated fluxes of two lines with a known intrinsic intensity ratio to determine the amount of
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dust in the line of sight to the line-emitting region using the equation

E(B − V ) =
2.5

Rλ1 −Rλ2

log

(
fλ1

fλ2

)
intrinsic(

fλ1

fλ2

)
observed

(3.1)

.

Recombination lines are well-suited for use as reddening indicators; their intrinsic ratios

are approximately constant over a wide range in temperatures (Osterbrock & Ferland 2006).

Naturally, the best lines are the strongest, and we therefore use Hα and Hβ. In this way,

measurement of the Balmer decrement measures the amount of dust in the line of sight.

The intrinsic value of the Balmer decrement of the narrow lines is well-determined; a

value of (fHα/fHβ)intrinsic, NLR = 2.9, is often used, based on radiative transfer calculations

assuming Case B recombination conditions (optically thick to Lyman photons, a good as-

sumption for the tenuous NLR gas). For the BLR, the situation becomes more complicated,

as collisional excitation begins to affect the line ratios in this high-density region, and there

has been debate about the accuracy of presuming a single number for the BLR Balmer decre-

ment in different objects. Photoionization models predict the ratio to vary widely depending

upon the conditions of the BLR (Netzer 1975; Kwan & Krolik 1981; Korista & Goad 2004),

and Rudy et al. (1988) showed that the steep Balmer decrement of Mrk 609 (at least during

its “high” optical state observed in 1984) is not due to reddening, based upon the strength

of the broad Lyα line in a simultaneous IUE spectrum. However, a recent study by Dong

et al. (2008) finds the broad Balmer decrements of a large homogeneous sample of blue (i.e.

unreddened) Seyfert 1s/QSOs from SDSS to have a log-Gaussian distribution that peaks

at 3.06, with a standard deviation of only 0.03 dex. Additionally, they find no correlation

between Balmer decrement and luminosity, accretion rate, or continuum slope. We therefore
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assume the standard value of (fHα/fHβ)intrinsic, BLR = 3.1.

A key assumption of this method is that the extinction arises from a uniform foreground

screen of dust. For the BLR, only a few light-days across and well inside the dust sublimation

radius, this is quite realistic. For the NLR, where dust lanes/spirals in the host galaxy may

cause some regions to be more heavily reddened than others, and which may itself contain

dust, using just one number to characterize the reddening is obviously an oversimplification.

However, this method remains the only practical solution for finding at least an estimate of

the amount of dust obscuring the NLR.

3.2 Observations and Data Reduction

The first step of our study was to obtain new optical spectra of each of the 1.8/1.9s in our

sample to check their classification, analyze their Balmer line ratios, and look for variability

in their broad lines. Several of the AGN in our sample were observed by the Sloan Digital

Sky Survey (SDSS); we retrieved these spectra and included them in our study. Most of the

other galaxies were observed between 2007 June and 2009 January at the R-C spectrograph

on the Cerro Tololo Inter-American Observatory (CTIO) 1.5-m telescope in Chile, or at the

DeVeny spectrograph on the 72′′ Perkins telescope at Lowell Observatory in Arizona. Ta-

ble 3.1 gives the observing log of these optical observations.

Spectra from CTIO were observed using two different settings. The first used a grating

with a resolution of 4.3 Å (giving a dispersion of ∼1.47 Å/pixel) to take blue spectra from

approximately 3660 − 5440 Å to include the Hβ line. The second used a grating with a

resolution of 3.1 Å (∼1.10 Å/pixel dispersion) and a Schott GG 495 filter to take red spectra
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from approximately 5650 − 6970 Å, to include the Hα line. We used a slit at a 90◦ P.A.

centered on the galaxy’s nucleus to minimize the effects of differential atmospheric refraction

and obtain accurate fluxes on photometric nights. The majority of the spectra were taken

using a 2′′ slit width, but observations were also taken on nights when other slit widths were

in use, as noted in Table 3.1. To eliminate cosmic ray hits, we took three exposures each

time each AGN was observed. The stars LTT 4364 and Feige 110 were also observed with

these settings for the purpose of flux calibration. The spectra were then reduced and flux

calibrated using standard IRAF reduction packages for long-slit spectroscopy.

The same observing procedure was used during the observing runs at Lowell. There,

most of the objects were observed with a grating with a resolution of 4.5 Å (∼2.18 Å/pixel

dispersion) and a 2′′ slit aperture each night. A slight modification to the grating tilt was

made after the first night of the observing run, and therefore several of the spectra have a

wavelength range of 3185−6715 Å, while the others range from 3255−6785 Å. Mrk 1320 was

additionally observed with a red setup, as its relatively high redshift meant Hα was shifted

off the spectrum taken with the first setup. The red setup used to observe Mrk 1320 used

a grating with a resolution of 3.4 Å (∼1.67 Å/pixel dispersion), and a Schott OG 570 filter

to take a spectrum from 6300− 9000 Å. The standard stars EG 247 and Feige 34 were used

for flux calibration of the objects observed at Lowell.

We also include a spectrum of NGC 5273 taken using the GoldCam spectrograph on

the 2.1-m telescope at Kitt Peak National Observatory (KPNO). The blue part of the spec-

trum, from approximately 3300− 6000 Å, was observed with a grating with a resolution of

3.1 Å (∼1.25 Å/pixel dispersion), and the red part of the spectrum, from approximately

5500 − 7000 Å, was observed with a grating with a resolution of 3.1 Å (∼1.26 Å/pixel dis-
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persion) and a Schott GG 495 filter. The spectrum was flux calibrated using observations of

the standard stars BD 28+4211 (blue) and Feige 98 (red).

To correct the AGN emission-line fluxes for contamination by stellar absorption lines in

the host galaxy, we removed the host galaxy spectrum from the data by subtracting off a

normal galaxy spectrum (from Kinney et al. 1996), scaled to give the optimum fit to the

observed object’s absorption line features. Although most of our sample reside in spiral

galaxies, the galaxies’ nuclear spectra are dominated by the bulge, and therefore an ellipti-

cal galaxy spectrum with an old stellar population provided a good fit to the continuum of

many of the objects. The remaining continuum was fit by a power-law and subtracted off,

though this component was usually rather weak. Table 3.2 gives the Hubble type of the host

galaxy template spectrum used for each object, and the fraction of the continuum at 5100 Å

attributable to the host. The continuum-subtracted spectra are displayed in Appendix A.

Table 3.1: Log of Optical Observations

Date Wavelength Coverage Slit Widtha

Object Observatory (U.T.) (Å) (arcsec)

IRAS 18325-5926 CTIO 2007 Sep. 3 3658-5416 2.0

IRAS 18325-5926 CTIO 2007 Sep. 10 5630-6943 4.0

Mrk 334 Lowell 2009 Jan. 31 3255-6785 2.0

Mrk 423 Lowell 2009 Jan. 28 3185-6715 2.0

Mrk 471 SDSS 2005 Apr. 12 3800-9200 3.0

Mrk 516 CTIO 2008 May 10 3658-5416 2.0

Mrk 516 CTIO 2008 May 11 5534-6844 2.0

Mrk 609 CTIO 2007 Oct. 8 3658-5416 2.0

Mrk 609 CTIO 2007 Nov. 10 5630-6943 2.0

Mrk 622 SDSS 2001 Dec. 11 3800-9200 3.0

Mrk 728 SDSS 2004 Apr. 24 3800-9200 3.0

Continued on Next Page. . .
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Table 3.1 – Continued

Date Wavelength Coverage Slit Widtha

Object Observatory (U.T.) (Å) (arcsec)

Mrk 883 SDSS 2004 Aug. 9 3800-9200 3.0

Mrk 915 CTIO 2008 Jun. 27 3658-5416 4.0

Mrk 915 CTIO 2008 Jun. 29 5630-6943 4.0

Mrk 993 Lowell 2009 Jan. 31 3255-6785 2.0

Mrk 1018 CTIO 2007 Oct. 5 3658-5416 2.0

Mrk 1018 CTIO 2007 Oct. 7 5630-6943 2.0

Mrk 1126 CTIO 2007 Oct. 5 3658-5416 2.0

Mrk 1126 CTIO 2007 Oct. 7 5630-6943 2.0

Mrk 1179 Lowell 2009 Jan. 28 3185-6715 2.0

Mrk 1320 Lowell 2009 Jan. 31 3255-6785 2.0

Mrk 1320 Lowell 2009 Feb. 2 6295-9000 2.0

NGC 1365 CTIO 2009 Jan. 8 3658-5416 4.0

NGC 1365 CTIO 2009 Jan. 9 5630-6943 2.0

NGC 1808 CTIO 2008 Sep. 5 5630-6943 4.0

NGC 1808 CTIO 2008 Sep. 13 3658-5416 2.0

NGC 2622 SDSS 2004 Dec. 8 3800-9200 3.0

NGC 2622 SDSS 2004 Dec. 8 3800-9200 3.0

NGC 2639 Lowell 2009 Jan. 31 3255-6785 2.0

NGC 2992 CTIO average spectrumb – –

NGC 3786 Lowell 2009 Jan. 28 3185-6715 2.0

NGC 3982 SDSS 2003 Jan. 31 3800-9200 3.0

NGC 4388 SDSS 2004 Jun. 10 3800-9200 3.0

NGC 4639 Lowell 2009 Jan. 28 3185-6715 2.0

NGC 5033 Lowell 2009 Feb. 1 3845-7375 2.0

NGC 5252 SDSS 2002 Apr. 10 3800-9200 3.0

NGC 5273 KPNO 2008 Jul. 2 3300-6000 2.0

NGC 5273 KPNO 2008 Jul. 3 5500-7000 2.0

NGC 5506 SDSS 2002 Apr. 14 3800-9200 3.0

NGC 5674 Lowell 2009 Jan. 31 3255-6785 2.0

NGC 7314 CTIO 2007 Sep. 8 3658-5416 2.0

NGC 7314 CTIO 2008 May 9 5534-6844 2.0

NGC 7479 CTIO 2008 Aug. 5 3658-5416 2.0

NGC 7479 CTIO 2008 Aug. 8 5630-6943 2.0

NGC 7603 CTIO 2007 Oct. 5 3658-5416 2.0

NGC 7603 CTIO 2007 Oct. 7 5630-6943 2.0

UGC 7064 Lowell 2009 Jan. 28 3185-6715 2.0

Continued on Next Page. . .
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Table 3.1 – Continued

Date Wavelength Coverage Slit Widtha

Object Observatory (U.T.) (Å) (arcsec)

UGC 12138 CTIO 2008 Aug. 5 3658-5416 2.0

UGC 12138 CTIO 2008 Aug. 2 5630-6943 2.0

UM 146 CTIO 2007 Oct. 5 3658-5416 2.0

UM 146 CTIO 2007 Oct. 7 5630-6943 2.0

a The SDSS spectra were taken with a 3′′-diameter circular aperture. b The spectrum of NGC
2992 is the average of ten spectra taken from 2006 January to 2007 June (see Chapter 2).

Table 3.2: Continuum Fits

Object Templatea Cont. Fractionb

IRAS 18325-5926 S0 0.72
Mrk 334 E1 0.90
Mrk 423 E2 0.81
Mrk 471 Sa 0.92
Mrk 516 E1 0.72
Mrk 609 E1 0.85
Mrk 622 E1 0.91
Mrk 728 E1 0.97
Mrk 883 E1 0.95
Mrk 915 E2 0.86
Mrk 993 Sa 0.93
Mrk 1018 S0 0.62
Mrk 1126 Sb 0.78
Mrk 1179 Sa 0.76
Mrk 1320 E2 0.61
NGC 1365 Sb 1.00
NGC 1808 E2 0.92
NGC 2622 Sb 0.82
NGC 2639 E4 0.95
NGC 2992 Sa 0.94
NGC 3786 E2 0.96
NGC 3982 Sb 0.82
NGC 4388 Sb 0.88
NGC 4639 Sa 0.95
NGC 5033 Sa 0.83
NGC 5252 S0 0.93

Continued on Next Page. . .
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Table 3.2 – Continued

Object Templatea Cont. Fractionb

NGC 5273 E2 0.80
NGC 5506 Sb 0.88
NGC 5674 E2 0.95
NGC 7314 E4 1.00
NGC 7479 E3 0.74
NGC 7603 E3 0.27
UGC 7064 E2 0.96
UGC 12138 E2 0.70
UM 146 E2 0.90

a The classification of the inactive galaxy template spectrum used to subtract off the underlying host
galaxy spectrum from the AGN’s spectrum, from Kinney et al. (1996). b The fraction of the observed
continuum at 5,100 Å due to starlight from the host galaxy.

3.3 Analysis of Optical Spectra

3.3.1 Classification of Putative 1.8/1.9s Based on Optical Spectra

The optical spectra were first used to verify the type classification of the objects in our

sample. The conventional definition of Seyfert 1.8 galaxies is that they are Seyferts whose

optical spectra show only weak broad Hα and Hβ components, while Seyfert 1.9 galaxies are

defined by just weak broad Hα. However, this definition is ambiguous about what constitutes

a “broad” component, and has led to confusion about which objects should be designated as

these types. To keep our classifications self-consistent, we decided to employ the following

definition: “broad” emission is line emission that is significantly wider than the [O III] λ5007

line, at least in the wings of the profiles, indicating that the emission is not from the inner

NLR, but is generated in a distinct high-density region where [O III] emission is collisionally

suppressed (i.e., the BLR).

Detecting faint broad lines is a non-trivial process. The first major source of concern is



45

the contamination of the AGN spectrum by starlight. Weak broad emission from the AGN

can be hidden by pressure-broadened stellar absorption lines (e.g., from a population of A

stars) in the host galaxy. Or, the reverse may happen, as the continuum features due to

K and M giants may lead to a false detection of broad Hα (Filippenko & Sargent 1985).

Our subtraction of the host galaxy continuum, described in the last section, is adequate to

remove the worst of these problems.

Secondly, Hα must be very carefully disentangled from the [N II] λλ6548, 6583 lines on

its sides in order to detect a weak broad component. The [N II] lines, along with the other

narrow lines in the spectrum, are not usually simple Gaussians; they are often asymmetric

and frequently have faint extended wings at their bases, and these features must be taken

into account to avoid confusing their emission with that of broad Hα. We used the following

procedure as our best attempt to de-blend the complex, adapted from Crenshaw & Peter-

son (1986). First, we created a template profile from one of the other optical narrow lines,

usually [O III] λ5007 because it is the strongest and cleanest forbidden line in most of our

spectra. In a couple of cases, the [O III] λ5007 line was unsuitable to use as a template,

because the structure of this high ionization line was obviously quite different than the the

lower-ionization [N II] lines. For these objects, the template was constructed instead from

the [S II] λ6716 and λ6731 lines, using the blue half of the λ6716 line and the red half of the

λ6731 line of this usually mildly blended pair, in the manner of Ho et al. (1997b). A copy

of the template line was then centered at the wavelengths of each of the [N II] lines, scaled

in width and height (both lines were assumed to have the same width, and the flux of the

line at 6583 Å was set to 3 times that of the line at 6548 Å in accordance with the ratio of

their transition probabilities (Osterbrock & Ferland 2006)) and subtracted off the spectrum.
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Figure 3.2 A diagnostic diagram in the manner of Veilleux & Osterbrock (1987) of the line
ratios of the objects in our sample. Most of our objects fall into the Seyfert regime of this
diagram, indicating they have high levels of ionization and large partially-ionized zones. Mrk
334, Mrk 516, Mrk 622 and Mrk 883 fall into the transition object/LINER region, indicating
their less powerful continua and lower ionization states, while the positions of NGC 1365
and NGC 1808 indicate their emission includes a strong starburst component.

This process was repeated with different template scale factors until the smoothest broad

profile or continuum was attained. A caveat of this method is that forbidden lines with

different critical densities or ionization potentials may have different profiles (De Robertis

& Osterbrock 1984). However, it was the most practical method we could find, and worked

well overall. The Hα profile of each Seyfert after [N II] subtraction is shown in Appendix

B, with the [O III] λ5007 line scaled to match the peak flux of Hα over-plotted as a dashed

line for comparison of their widths.

From the plots in Appendix B, we find that many of the Seyferts in our sample, at
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least at the time when observed by us, do not fit our criteria for classification as 1.8s/1.9s.

Our new type classifications for our 35 targets are given in Table 3.3. Ten objects lack any

sign of broad Hα, and are thus Seyfert 2s. Seven are type 1.0, 1.2, or 1.5, based upon the

definitions of these subclasses by Maiolino & Rieke (1995), which rely on the strength of

the ratio of broad Hβ to [O III] λ5007 flux (see Appendix B). There are eight 1.9s: Mrk

471, Mrk 915, NGC 2622, NGC 3786, NGC 5252, NGC 7314, UGC 7064, and perhaps NGC

1365, though the broad Hα is very faint in this object. Seyferts 1.8s are much scarcer than

1.9s in our sample; we found only three true Seyfert 1.8s (Mrk 334, Mrk 1126, and UM 146).

The remainder of the objects in our sample are LINERS or starburst galaxies. These

classifications were checked by plotting the position of these objects on a diagnostic diagram

in the manner of Veilleux & Osterbrock (1987), as shown in Fig. 3.2. The abscissa on this

diagram is the ratio of the flux of the [O I] λ6300 line to the flux of narrow Hα, a measure of

the extent of the “partially-ionized zone” created by high-energy photons. The ordinate is

the ratio of the flux of the [O III] λ5007 line to the flux of narrow Hβ, a proxy for the level

of ionization. Most of our objects do indeed fall into the Seyfert region of this diagram, indi-

cating they have the high levels of ionization and large partially-ionized zones characteristic

of Seyfert nuclei. Mrk 334, Mrk 516, Mrk 622, and Mrk 883 fall into the “transition object”

region, indicating their less powerful continua and thus lower ionization states. However,

because the errors in the line ratios are large enough that these objects (with the exception

of Mrk 516) could still be classified as Seyferts, we retain the Seyfert classification for these

objects. Though it is not plotted in Fig. 3.2 because it does not have measurable Hβ, we also

classify NGC 2639 as a LINER on the strength of [O II] λ3727 relative to [O III] λ4959 and

λ5007. NGC 1365 has a very strong starburst component, yet shows strong X-ray emission
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and evidence for weak broad Hα emission, and we therefore classify it as a Seyfert 1.9. NGC

1808 appears to be an H II (starburst) galaxy in this diagram.

Interestingly, the plots in Appendix B show several objects for which the core of the nar-

row Hα line is narrower than the [O III] λ5007 line core: Mrk 334, Mrk 516, Mrk 609, Mrk

622, NGC 1808, and NGC 7479. This may be due to the addition of a starburst component

to the Hα profile, as evidenced by the position of most of these objects below the “Seyfert

region” in Fig. 3.2. In this case, a larger fraction of the Hα emission is coming from the

lower ionization gas compared to the [O III] emission, resulting in a narrower Hα profile.

3.3.2 Reddening of the NLR and BLR

In order to measure the broad and narrow Balmer decrements, the narrow emission lines

must be separated from the broad lines. We used the same template profile created to

subtract the [N II] lines, scaled in width and height by trial and error until its subtraction

from the total blend left a smooth broad-line profile, to remove the narrow Balmer emission.

Unfortunately, in objects with strong and irregularly-shaped broad Hα (mostly Seyfert 1-

1.5s), it is particularly difficult to discern which scale factors give the best fit, and the flux of

the template line used to fit the narrow component could be scaled by up to ±40% and still

give a reasonable-looking broad profile. While this led to some error in the measurement of

the fluxes of the broad components, it led to a much larger percentage uncertainty in the

fluxes of the narrow components of these objects. However, this method worked much better

in the 1.8/1.9s where the broad lines are reduced in strength, making the broad and narrow

components easier to separate.
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We determined the reddening of the NLR and the BLR (when possible) using the method

described in Section 3.1.4, i.e.,

E(B − V ) =
2.5

RHα −RHβ

log

(
fHα
fHβ

)
intrinsic(

fHα
fHβ

)
observed

(3.2)

with RHα, RHβ from the Galactic reddening curve, and assuming (fHα/fHβ)intrinsic = 2.9

for the NLR and (fHα/fHβ)intrinsic = 3.1 for the BLR.

For the 1.9s, which show only weak broad Hα, only a lower limit to the reddening of the

BLR can be derived. To determine if Hβ should be visible based on the strength of Hα if

the BLR is unreddened, we performed the following simple test. The broad component of

the Hα line was cut from the spectrum, scaled in width to keep the profile width constant

in velocity space, and its flux divided by 3.1, to make a template representing the intrinsic

Hβ emission line. This template was then added to the spectrum at the position of Hβ. In

Mrk 915, NGC 3786, and NGC 7314, this made a visible Hβ line, and the template was

then multiplied by progressively smaller scale factors until the line became indistinguishable

from the surrounding continuum. This scale factor times the intrinsic expected Hβ flux was

then taken as an upper limit to the amount of Hβ present in these galaxies, and used to find

a lower limit to the broad Balmer decrement and E(B − V )BLR. However, this procedure

revealed that for most of the 1.9s broad Hβ would not be visible even if the BLR were totally

unreddened; the expected intrinsic Hβ is indiscernible against the noise and the residuals

of the host galaxy subtraction in Mrk 471, NGC 1365, NGC 2622, NGC 5252, and UGC

7064. Thus, for the majority of 1.9s we could not determine if the BLR is reddened based on

an optical spectrum alone. We give the NLR and BLR reddening values in Table 3.3. The
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negative reddening values in this table are consistent with zero within their errors.

Table 3.3: Measured E(B − V ) Values

Our
Object Type E(B − V )aNLR E(B − V )bBLR

IRAS 18325-5926 2 1.63±0.07 –

Mrk 334 1.8 0.20±0.06 -0.13±0.19

Mrk 423 1.5 -0.13±0.17 0.36±0.22

Mrk 471 1.9 0.89±0.23 –

Mrk 516 LINER 2+HII 0.48±0.08 –

Mrk 609 2 0.98±0.11 –

Mrk 622 2 1.03±0.05 –

Mrk 728 1.2 0.03±0.12 0.45±0.14

Mrk 883 2 0.40±0.07 –

Mrk 915 1.9 0.27±0.06 >0.33

Mrk 993 1.5 0.47±0.36 -0.27±0.38

Mrk 1018 1 0 0.25±0.08

Mrk 1126 1.8 0.51±0.23 0.38±0.20

Mrk 1179 1 -0.06±0.26 0.24±0.12

Mrk 1320 1.5 0.38±0.32 -0.07±0.22

NGC 1365 1.9 1.30±0.04 –

NGC 1808 HII – –

NGC 2622 1.9 0.36±0.09 –

NGC 2639 2?c – –

NGC 2992 2 0.71±0.11 –

NGC 3786 1.9 0.45±0.09 >0.16

NGC 3982 2 0.68±0.11 –

NGC 4388 2 0.67±0.09 –

NGC 4639 1d – –

NGC 5033 1.2 -0.04±0.43 0.19±0.05

NGC 5252 1.9 0.71±0.09 –

NGC 5273 1.5 -0.07±0.27 -0.10±0.17

NGC 5506 2 0.78±0.06 –

NGC 5674 2 0.14±0.08 –

NGC 7314 1.9 0.52±0.02 >0.02

NGC 7479 2?c – –

NGC 7603 1 -0.03±0.23 0.19±0.36

Continued on Next Page. . .
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Table 3.3 – Continued

Our
Object Type E(B − V )aNLR E(B − V )bBLR

UGC 7064 1.9 0.23±0.13 –

UGC 12138 1.5 0.33±0.25 -0.13±0.08

UM 146 1.8 0.42±0.24 0.03±0.19

a derived from the ratio of the integrated flux of the narrow component of Hα to integrated flux of the
narrow component of Hβ, assuming the intrinsic value of this ratio to be 2.90, and using the reddening curve
of Savage & Mathis (1979). b derived from the ratio of the integrated flux of the broad component of
Hα to the integrated flux of the broad component of Hβ, assuming the intrinsic value of this ratio to be 3.10,
and using the reddening curve of Savage & Mathis (1979). c Uncertain classification because no Hβ is
present in the spectrum, but the spectrum is otherwise characteristic of a type 2 AGN. d low-luminosity
Seyfert 1 (Ho et al. 1999).

For the objects that show broad Hβ and Hα, Fig. 3.3 shows the reddening of the NLR

plotted against the reddening of the BLR. The Seyferts with types <1.8 have points with

very large error bars, mostly due to the difficulty of separating out the narrow components

from the strong broad emission in these objects. It is interesting to note that none of the

three Seyfert 1.8s shows evidence for BLR reddening above that of the NLR. Also rather

surprisingly, there is not much correlation between the values in Fig. 3.3. About half of the

objects are seen to have larger NLR reddening than BLR reddening. We suggest that this

is due to the structure of the dust lanes/spirals in the vicinity of the NLR. The values of

reddening being plotted are averages over the entire emitting regions, and if one of these

dusty structures does not happen to pass in front of the BLR, the NLR can have a larger

average reddening than the BLR. Further, the fact that the points are distributed equally

above and below the dashed line representing E(B− V )BLR = E(B− V )NLR argues against

the reddening of the BLR in these objects being in general due to a central dusty torus, but

suggests instead that their reddening is due to the chance obscuration by a dust lane in the

NLR which crosses the nucleus.
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Figure 3.3 The reddening of the BLR vs. the reddening of the NLR for the objects in our
sample with both broad Hα and Hβ, derived assuming an intrinsic flux ratio of Hα to Hβ of
2.9 in the NLR and 3.1 in the BLR, and the standard Galactic reddening curve of Savage &
Mathis (1979). For the 1.9s, the BLR reddening plotted is the lower limit estimated by the
method described in Section 3.3.2. Points: Seyfert 1.8/1.9s represented by crosses, Seyfert
1.0/1.2/1.5s represented by open circles. Dashed line: E(B − V )BLR = E(B − V )NLR.
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– 4 –

X-ray Spectroscopy

4.1 Introduction to X-ray Spectroscopy of Seyferts

4.1.1 The Origin of the X-rays

X-ray emission is a common feature of Seyferts (Mushotzky et al. 1993). For this study,

X-ray spectra are useful to determine the total amount of material in the line of sight all

the way to the accretion disk at the center of the AGN. Comparing this with the amount

of obscuration derived from E(B − V )NLR and E(B − V )BLR gives information about the

location of the absorbing gas.

The X-ray continuum in Seyferts is thought to come from the inverse Compton scatter-

ing of UV seed photons emitted by the accretion disk by a population of hot or relativistic

electrons hovering above and below the disk in a coronal region (Wang & Netzer 2003).

This process predicts the Γ ≈ 2 powerlaw X-ray continuum often observed in unobscured

AGN. The corona is thought to exist on size scales less than a few tens of gravitational radii

from the black hole, and thus the X-ray continuum can experience reprocessing and pick up

signatures of the material from very close to the black hole and outwards.

The energy at which the AGN’s X-ray continuum is directly observable is a function of

the ionization state and amount of intervening material between the observer and the source.

In neutral (“cold”) matter, the main source of opacity in the 0.5− 10 keV range is the pho-

toelectric absorption of X-rays by hydrogen, although there is also absorption by heavier

elements. Because the hydrogen absorption cross section decreases with photon energy as

(hν)−3, the lowest energy “soft” X-rays have a much higher probability of being absorbed
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Figure 4.1 The X-ray spectrum of an AGN obscured by NH = 1022, 1023, 4 × 1024, and
NH > 1025 cm−2, assuming a Γ = 2 powerlaw input spectrum. In the Compton-thick
cases (NH > 1.5 × 1024 cm−2), the spectrum below 10 keV is dominated by the reflection
component. The narrow line at 6.4 keV is Fe Kα. Figure from Fabian et al. (2004).

than the higher energy “hard” X-rays, and as the amount of intervening material increases,

fewer and fewer soft X-rays are able to penetrate. A frequently used measure of the amount

of line of sight material is the equivalent column density of neutral hydrogen atoms, NH ,

in hydrogen atoms cm−2, with solar abundances of the other elements assumed. The X-ray

spectrum of an obscured AGN is shown for different column densities of neutral gas with

solar abundances in Fig. 4.1.

As the ionization state of the absorbing gas increases and the number of neutral hydro-

gen atoms becomes fewer, the opacity due to hydrogen absorption decreases. Fig. 4.2 shows

the transmitted spectrum through a cloud with NH = 5× 1023 cm−2. In high-ionization gas,

the opacity is dominated by photoelectric absorption by heavier ions, and the bound-free
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Figure 4.2 The X-ray spectrum of an AGN obscured by NH = 5× 1023 cm−2, with log(ξ) =
2 (bottom), 3 (middle), and 4(top), where ξ is the ionization parameter ξ (= L/nr2 where
L is the ionizing luminosity, n is the proton density, and r is the distance from the source)in
units of ergs s−1. Figure from Turner & Miller (2009).

absorption edges of these ions are apparent in the spectrum.

Absorbing gas is also expected to produce line emission. In particular, Kα lines may

be emitted by fluorescence (relaxation after a K-shell photoionization), with a high fraction

of photoionizations ultimately producing a Kα photon (Osterbrock & Ferland 2006). For

ionized material, the binding edges of the inner shells generally increase with ionization and

so the energies of the K edges and emission and absorption lines generally increase with

the ionization state. In neutral material the Fe Kα fluorescence line comprises a doublet at

energies 6.404 and 6.391 keV, these being indistinguishable by current X-ray spectrometers.

The Fe Kβ line at 7.06 keV is expected at about 13.5% of the flux of Kα. In ionized gas,

the lines become a complex of permitted, intercombination and forbidden transitions, that
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cannot be resolved with current instruments (Turner & Miller 2009).

Below ∼ 2 keV, the spectra of X-ray absorbed Seyferts also commonly show excess emis-

sion above the extrapolation of the absorbed nuclear emission in the hard X-rays. This “soft

excess” is thought to be unresolved emission lines from an extended region of photoionized

circumnuclear gas within the NLR; high resolution spectra from Chandra have shown the

signatures of photoionized gas, and there is an overall coincidence between the soft X-ray

emitting regions and the [O III] emitting regions on HST maps, on scales as large as a few

hundred parsecs (Bianchi et al. 2006).

4.1.2 Models of X-ray Spectra

The detection of X-rays by CCDs is slightly different than the detection of optical light. In

the optical, an incident photon liberates a single photoelectron within the semiconductor

lattice, which moves from the valence to the conduction band and is then held there by

a potential. Many optical photons must be collected to produce a measurable signal (i.e.,

the signal is integrated over a certain exposure time). An X-ray photon, on the other hand,

ejects a photoelectron with energy equal to that of the energy of the incident X-ray minus the

binding energy of the electron. This free electron therefore has sufficient energy to produce

a trail of secondary ionizations as it moves through the semiconductor lattice, each requiring

an average of 3.65 eV to be produced in silicon (Howell 2000). By counting the number

of ADUs produced within the CCD pixels, one can determine the energy of each incident

photon; thus, X-ray imaging by a CCD provides not only an image but the ability to produce

a spectrum from the image.
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An X-ray imaging spectrometer measures the number of photon counts within individual

instrument channels. The actual spectrum f(E) of the source is related to the observed

spectrum C(I) by the relation

C(I) =

∫ ∞

0

f(E)R(I, E) dE (4.1)

where R(I, E) is the instrumental response function, the probability that an incoming pho-

ton with energy E will be detected in channel I. Unfortunately, inverting this equation

to find f(E) is problematic; such inversions tend to be non-unique and unstable to small

changes in C(I) (Arnaud 1996).

The usual solution to this problem is to work backwards. One tries create a model spec-

trum f(E), based upon a few parameters that describe the physical conditions of the source,

such that the count spectrum of the model determined by the known instrumental response

matches the observed data. A fit statistic, such as χ2 is computed from the comparison, and

used to judge how well the model spectrum fits the data. The model parameters are then

varied to find the combination of parameter values that provides the best fit (usually, the

lowest χ2).

4.2 X-ray Data and Analysis

The XMM-Newton spacecraft (hereafter referred to as just XMM) has three X-ray telescopes

on board. There is a detector at the focus of each, and these three X-ray imaging spectrom-

eters comprise the European Photon Imaging Camera (EPIC). Two of the cameras are MOS

(metal oxide semiconductor) detectors; the third uses a pn CCD. The pn camera is the most
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sensitive, and can detect photons with high efficiency up to 15 keV (the MOS detectors are

limited by their low quantum efficiency in this regime).

To investigate the X-ray properties and determine the total obscuring columns of the

nuclei in our sample, we retrieved the available archived EPIC pn observations of the objects

previously observed by XMM. Observations were available for 23 of our 35 objects. Two of

these, Mrk 883 and NGC 2622 were observed by us through the XMM Guest Observer pro-

gram (P.I.: Crenshaw). If the object was observed multiple times, we retrieved the spectra

taken closest in time to our optical observations, but none of the observations were simulta-

neous. The observation date and ID number of each spectrum used is given in Table 4.1.

The XMM data were reduced using the standard EPCHAIN processing script included

in version 7.1.0 of the XMM-SAS (Science Analysis System) software. The data were filtered

to exclude times of high background, and the source spectra were then extracted from cir-

cles 32′′ in radius. Background spectra were extracted from an area free of any background

sources on the same chip as the source, also from 32′′-circles. Response matrices and ancil-

lary response matrices were generated using the XMM-SAS tasks rmfgen and arfgen.

To determine the absorbing hydrogen columns of the objects in our sample (NH), the

X-ray spectra of the source minus the background in the 0.5 to 10 keV range were fit using

XSPEC version 12.3.1. Three models were initially fit to each data set and then compared

to determine the best fit. The first was a simple powerlaw modified by Galactic absorption

only (wabs*powerlaw in XSPEC, with wabs set to the Galactic column), the second a pow-

erlaw absorbed by a variable cold column (wabs*powerlaw, with wabs free), and the third a

partial covering model (wabs*pcfabs*powerlaw, with wabs again set to the Galactic column

density). By utilizing the wabs and pcfabs model components, the absorber was assumed to
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Table 4.1. Log of XMM Observations

Object Obs. Date Obs. ID#

IRAS 18325-5926 5 Mar. 2001 0022940101
Mrk 609 13 Aug. 2002 0103861001
Mrk 609 27 Jan. 2007 0402110201
Mrk 622 2 Apr. 2003 0138951401
Mrk 728 23 May 2002 0103861801
Mrk 883 13 Aug. 2006 0302260101
Mrk 883 15 Aug. 2006 0302260701
Mrk 883 21 Aug. 2006 0302261001
Mrk 993 23 Jan. 2004 0201090401
Mrk 1018 15 Jan. 2005 0201090201
NGC 1365 17 Jan. 2004 0205590301
NGC 1365 24 Jul. 2004 0205590401
NGC 1808 6 Apr. 2002 0110980801
NGC 2622 9 Apr. 2005 0302260201
NGC 2992 19 May 2003 0147920301
NGC 3786 24 May 2004 0204650301
NGC 3982 15 Jun. 2004 0204651201
NGC 4388 12 Dec. 2002 0110930701
NGC 4639 16 Dec. 2001 0112551001
NGC 5033 18 Dec. 2002 0094360501
NGC 5252 18 Jul. 2003 0152940101
NGC 5273 14 Jun. 2002 0112551701
NGC 5506 2 Feb. 2001 0013140101
NGC 5506 9 Jan. 2002 0013140201
NGC 5506 7 Aug. 2004 0201830501
NGC 7314 2 May 2001 0111790101
NGC 7479 19 Jun. 2001 0025541001
NGC 7603 14 Jun. 2006 0305600601
UGC 12138 3 Jun. 2001 0103860301

be cold. We initially attempted to fit the spectra with ionized absorbers, but found that the

data quality was not high enough to be able to distinguish the spectral signatures of ionized

absorption.

Though one of these simple models usually provided a good fit to the data above 2 keV,

many objects show an upturn in emission below ∼2 keV not taken into account by these

preliminary models. As mentioned in the last section, this “soft excess” is a commonly ob-
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served feature in the spectra of X-ray obscured AGN and is thought to be due to unresolved

emission lines from an extended region of photoionized gas (Guainazzi & Bianchi 2007). We

did not attempt detailed models of the soft excess; our main goal was to determine the

column density to the central source, and without more information about its source it is

impossible to create a physically meaningful model anyway. We therefore modeled the soft

excess with an additional powerlaw component of the same spectral index as fit the hard

X-rays (to represent reflection/partial covering of the source), and included Gaussian com-

ponents to provide a reasonable fit to the data in this range. We do not attach any physical

significance to these Gaussian;, they were merely included to ensure that the trough of the

absorption was well-fit. We also fit Fe Kα with a Gaussian profile whenever it was apparent

in the spectrum. The final model was selected as the model with the lowest reduced χ2, and

its components and the total column density are presented in Table 4.2. Plots of this final

model, the unfolded spectrum, and the individual components are presented in Appendix C.

Overall, the columns range from values of a a few times 1020 cm−2, attributable to ma-

terial in our Galaxy, to NH ≈ 1024 cm−2. The implications of the columns in individual

objects are discussed later, in the notes presented in Chapter 6.

Figure 4.3 presents a comparison of the X-ray column densities with the NLR column

densities. The NLR column densities were estimated from the reddening of the NLR, assum-

ing the relation NH = 5.2 × 1021E(B − V ) cm−2 derived by Shull & van Steenberg (1985)

for the local interstellar medium. As one would expect based on the simplest form of the

unified model, most of the objects have greater X-ray columns than NLR columns.

However, two Seyfert 2s in Fig. 4.3 are surprisingly placed: Mrk 609 and Mrk 883 have

NLR columns significantly larger than their X-ray columns suggest (see Fig. C.2, C.3, C.6,
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C.7, and C.8 in Appendix C for their XMM spectra). Both these objects are Seyfert 2s

(although we note that they both have a starburst component), and for them to have bright,

apparently unabsorbed X-ray spectra without strong narrow Fe Kα indicating reflection

is completely contradictory to the expectations of the simplest form of the unified model.

These appear to be “true” Seyfert 2s, which lack discernible broad lines but have strong,

unabsorbed X-ray spectra like Seyfert 1s. These objects are discussed more in Section 6.4.

Figure 4.4 shows the X-ray column vs. the BLR column of those objects with broad Hβ,

with the BLR columns again estimated by assuming the galactic gas/dust ratio of Shull &

van Steenberg (1985). In three of the Seyfert 1s (Mrk 728, Mrk 1018, and NGC 5033) the

BLR-obscuring columns are larger than the X-ray columns. This may indicate that their

intrinsic Balmer decrements are greater than the assumed value of 3.1, causing their derived

BLR reddenings to be too high, or it may indicate that for some reason the broad lines are

more absorbed than the continuum, perhaps by self-absorption. In the rest of the objects,

the X-ray columns are consistent with or greater than the BLR columns, in accordance with

the expectation there may be a component of X-ray absorbing material inside or originating

from within the dust sublimation radius, which does not add to the extinction in the optical

(see Weingartner & Murray 2002).

In general, the plots of Fig. 4.3, 4.4, and 3.3 show that there is not much correlation

between the X-ray, BLR, and NLR columns. This could be due a number of different fac-

tors: non-Galactic dust/gas ratios, dust-free absorbers, and complicated absorbing structures

could all be playing a role.

Finally, we compare the log of the observed [O III] luminosity in each object with log

of its observed 2 − 10 keV luminosity in Fig. 4.5. The overplotted solid line is the lin-
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ear regression fit to the data points (slope=0.67, intercept=12.2). The fit and correlation

(Spearman correlation coefficient=0.76) agree fairly well with earlier results from Meléndez

et al. (2008) for a sample of 40 nearby X-ray selected Seyferts (slope=0.83, intercept=5.6,

Spearman coefficient=0.79). Meléndez et al. (2008) point out that the good correlation be-

tween observed [O III] luminosity and observed 2-10 keV luminosity could be due in large

part to the fact that these are both absorbed quantities, especially in Seyfert 2s. To test

this idea, Fig. 4.6 again plots [O III] luminosity vs. 2 − 10 keV luminosity, but with the

data corrected for absorption; the [O III] fluxes were de-reddened by the reddening of the

NLR, and the unabsorbed X-ray fluxes were calculated from the model fits with the hydro-

gen column densities set to zero (see Table 4.3 for these values). The liner regression fit is

slightly flattened (slope=0.73, intercept=10.5), but the correlation is significantly reduced

(Spearman correlation coefficient=0.56) in Fig. 4.6, supporting the idea of Meléndez et al.

(2008).
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Table 1: X-ray Model Parameters

Soft 1st Soft 2nd Soft Fe Kα Hard Hard
wabs Pwrlaw Gaussian Gaussian pcfabs Line Pwrlaw Pwrlaw Reduced

Object XSPEC Model Components (NH)a Norm Energy/σb Energy/σc (CF)d Energye Norm Γf (NH)g χ2(dof)

IRAS 18325-5926wabs*pcfabs*powerlaw 3.38 – – – – – 6.3e-4 2.17 2.87+0.12
−0.11 1.31(284)

Mrk 609 (1) wabs*po 2.91 – – – – – 3.0e-4 1.77 0.0291h 0.91(162)
Mrk 609 (2) wabs*po 2.91 – – – – – 2.6e-4 1.60 0.0291h 0.98(291)
Mrk 622 po+(wabs*po)+gauss 2.65 2.0e-5 – – – 6.4 9.8e-4 2.0 112.6+37.0

−20.8 2.58(10)

Mrk 728 wabs*po 1.04 – – – – – 9.5e-4 1.71 0.0104h 0.99(347)
Mrk 883 (1) wabs*po 2.39 – – – – – 3.5e-4 1.65 0.080+0.009

−0.009 1.21(188)

Mrk 883 (2) wabs*po 2.39 – – – – – 3.5e-4 1.68 0.079+0.008
−0.007 1.18(231)

Mrk 883 (3) wabs*po 2.39 – – – – – 5.0e-4 1.74 0.107+0.008
−0.007 0.80(262)

Mrk 993 wabs*po 3.12 – – – – – 2.6e-4 1.62 0.093+0.008
−0.008 1.13(225)

Mrk 1018 wabs*po 1.46 – – – – – 2.9e-3 1.98 0.0146h 1.15(100)
NGC 1365 (1) wabs*(po+wabs*po+gauss+gauss) 1.04 2.3e-4 0.84/0.13 – – 6.35 6.2e-3 1.8 9.77+0.10

−0.10 1.97(1547)

NGC 1365 (2) wabs*(po+wabs*po+gauss+gauss+gauss) 1.04 1.8e-4 0.83/0.13 1.83/0.02 – 6.32 6.2e-3 1.95 24.07+0.33
−0.32 1.44(1068)

NGC 1808 wabs*(po+wabs*vmekal)i 1.56 – – – – – 5.9e-5 0.79 0.20+0.01
−0.01 1.13(384)

NGC 2622 wabs*pcfabs*po 2.18 – – – 0.88 – 4.5e-4 2.0 0.70+0.08
−0.07 0.93(166)

NGC 2992 wabs*pcfabs*po 3.12 – – – 0.95 6.4 1.6e-2 1.5 0.49+0.003
−0.003 1.17(1795)

NGC 3786 wabs*pcfabs*po 1.24 – – – 0.985 – 2.4e-3 1.8 3.25+0.13
−0.12 1.03(266)

NGC 3982 wabs*(gauss+gauss+po+wabs*po+gauss) 0.73 1.6e-5 0.53/0.03 0.70/0.20 – 6.4 1.2e-4 2.0 20.22+11.8
−6.4 0.84(33)

NGC 4388 wabs*(po+wabs*po+gauss+gauss) 1.71 7.0e-5 0.70/0.25 – – 6.4 1.7e-2 1.8 31.84+0.55
−0.53 1.18(444)

NGC 4639 wabs*po 1.35 – – – – – 1.3e-4 1.8 0.014h 0.97(91)
NGC 5033 wabs*(po+gauss) 0.57 – – – – 6.43 1.1e-3 1.8 0.036h 0.99(469)
NGC 5252 wabs*(po+wabs*po+gauss) 1.77 6.0e-5 – – – – 3.4e-3 1.8 4.03+0.05

−0.04 1.48(1438)

NGC 5273 wabs*(gauss+po+wabs*po+gauss) 0.52 3.1e-4 0.58/0.07 – – 6.45 1.5e-3 1.8 1.51+0.06
−0.06 1.23(457)

NGC 5506 (1) wabs*(po+wabs*po+gauss) 3.12 4.8e-4 – – – 6.4 2.0e-2 1.8 2.96+0.02
−0.02 1.04(1576)

NGC 5506 (2) wabs*(po+wabs*po+gauss) 3.12 5.4e-4 – – – 6.4 3.45e-2 1.8 3.04+0.02
−0.02 1.06(1615)

NGC 5506 (3) wabs*(po+wabs*po+gauss) 3.12 5.6e-4 – – – 6.38 3.34e-2 1.8 2.89+0.02
−0.02 1.03(1703)

NGC 7314 wabs*(pcfabs*po+gauss) 1.09 – – – 0.99 6.39 1.2e-2 1.8 0.621+0.003
−0.003 1.39(1639)

NGC 7479 wabs*(gauss+po+wabs*po +gauss) 5.82 1.5e-5 0.76/0.10 – 1.0 6.4 2.8e-4 1.8 62.81+29.3
−14.9 0.75(16)

NGC 7603 wabs*po+po 2.39 3.4e-3 – – – – 4.3e-3 1.8 0.024h 1.07(1012)
UGC 12138 wabs*po 4.42 – – – – – 2.3e-3 1.82 0.042h 1.21(439)

a Galactic column estimated from the Galactic reddening values of Schlegel et al. (1988) using the standard Galactic dust/gas ratio of Shull &
van Steenberg (1985), in units 1020 cm−2. These values were used in the first wabs model component. b,c The centroid and σ values of Gaussian
components used to fit the soft excess, in keV. d Covering fraction of partial-covering absorber. e Energy (keV) centroid of Gaussian used
to represent Fe Kα. f If both soft and hard powerlaw components were used, the same photon index Γ was taken for both. g Total column
to central source from the model, in units 1022 cm−2. h Column frozen to Galactic value in model. i This model is from Jiménez-Bailón et
al. (2005). The vmekal (Mewe-Kaastra-Liedahl model of thermal emission) component has a temperature kT=0.580 keV.
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Table 4.3. Observed and Absorption Corrected [O III] and X-Ray Luminosities

Observed Observed Corrected Corrected
Name log(L[O III]) log(L2−10keV ) log(L[O III]) log(L2−10keV )

IRAS 18325-5926 41.35 42.96 43.68 43.07
Mrk 609 41.46 42.55 42.86 42.54
Mrk 622 40.51 41.44 41.98 42.50
Mrk 728 40.94 42.99 40.98 42.99
Mrk 883 41.22 42.71 41.79 42.71
Mrk 993 40.19 41.82 40.86 41.82
Mrk 1018 41.02 43.50 41.02 43.50
NGC 1365 40.27 41.81 42.13 42.12
NGC 1808 39.22 40.42 40.26 40.43
NGC 2622 41.24 42.65 41.76 42.67
NGC 2992 40.65 43.05 41.67 43.06
NGC 3786 40.24 42.06 40.89 42.18
NGC 3982 39.48 39.70 40.44 40.01
NGC 4388 40.80 42.49 41.76 43.00
NGC 5033 38.70 40.89 38.70 40.89
NGC 5252 40.91 43.03 41.92 43.16
NGC 5273 39.04 41.22 39.04 41.26
NGC 5506 40.38 42.85 41.50 42.94
NGC 7314 39.79 42.31 40.53 42.34
NGC 7603 41.27 43.58 41.27 43.58
UGC 12138 41.68 43.01 42.15 43.01

∗log of luminosities in ergs s−1, calculated from the fluxes using H0 = 71 km s−1,
ΩM = 0.3, and ΩΛ = 0.7, and the redshifts from NED given in Table 6.1.
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Figure 4.3 The X-ray column versus the column to the NLR, estimated from the reddening as-
suming the standard Galactic dust/gas ratio. The objects with measured NLR reddenings < 0 are
plotted as having an upper NLR column of 1×1021 cm−2, based upon the typical measurement error
in E(B − V ) of ±0.2. Points: Seyfert 2s represented by filled circles, Seyfert 1.8/1.9s represented
by crosses, Seyfert 1.0/1.2/1.5s represented by open circles. Dashed line: NH,NLR = NH,X−ray.

Figure 4.4 The X-ray column versus the column to the BLR, estimated from the reddening as-
suming the standard Galactic dust/gas ratio. The objects with measured BLR reddenings < 0 are
plotted as having an upper NLR column of 1 × 1021 cm−2, based upon the typical measurement
error in E(B − V ) of ±0.2. Points: Seyfert 1.8/1.9s represented by crosses, Seyfert 1.0/1.2/1.5s
represented by open circles. Dashed line: NH,BLR = NH,X−ray.
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Figure 4.5 X-ray luminosity versus [O III] luminosity. Points: Seyfert 2s represented by filled
circles, Seyfert 1.8/1.9s represented by crosses, Seyfert 1.0/1.2/1.5s represented by open circles.
Solid line: least-squares linear regression line (slope=0.67, intercept=12.2, Spearman correlation
coefficient=0.76).

Figure 4.6 Absorption-corrected X-ray luminosity versus dereddened [O III] luminosity. Points:
Seyfert 2s represented by filled circles, Seyfert 1.8/1.9s represented by crosses, Seyfert 1.0/1.2/1.5s
represented by open circles. Solid line: least-squares linear regression line (slope=0.73, inter-
cept=10.5, Spearman correlation coefficient=0.56).
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Other Data

5.1 Optical HST Structure Maps

Dust lanes and spirals may play an important role in the reddening of the BLR in interme-

diate types. In their HST broadband WFPC2 imaging survey of nearby Seyferts, Malkan

et al. (1998) show that Seyfert 2 nuclei in their sample are more frequently blocked by

lanes/patches of host galaxy dust than Seyfert 1 nuclei, and propose these galactic dust

structures on scales of hundreds of parsecs could be a viable alternative to the classical

parsec-scale torus model. Pogge & Martini (2002), using the technique of “structure map-

ping” to enhance image contrast and draw out fine dust structures in the circumnuclear

environment, show that essentially all of the Seyferts in the CfA Redshift Survey Sample

have circumnuclear dust structures on scales of 100−1000 pc scales (i.e. the scale size of the

NLR). However, they find very few Seyfert 2 nuclei obscured by large-scale (> 1 kpc) dust

structures, and do not see any significant differences in the circumnuclear dust morpholo-

gies of Seyfert 1s and 2s. In any case, both these studies highlight the prevalence of dust

structures on the size scale of the NLR, and emphasize that they are important sources of

reddening to consider.

To identify hundred-parsec scale or larger sources of obscuration and determine their

effect on a Seyfert’s 1.8/1.9 status, we downloaded any available WFPC2 broadband images

of the galaxies in our sample. Twenty-nine galaxies in our sample had images taken with

the F606W filter available, many of these observed for the snapshot survey of Malkan et al.

(1998). The F606W filter is wide enough to cover several bright emission lines from high
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surface brightness regions, and provide sufficient depth to reveal structure at subarcsecond

resolution. For NGC 4639, no F606W data was available, so we downloaded and include

an image taken with the F547M filter instead. Only five objects had no WFPC2 images

available: Mrk 728, Mrk 883, Mrk 1018, Mrk 1179, and Mrk 1320. Those objects that were

observed were taken using the PC1 camera (0.′′046 resolution), with the exception of UGC

7064, whose nucleus slid off onto the WF 4 chip (0.′′1 resolution).

The downloaded images were already reduced by the standard STScI processing pipeline.

The only further processing necessary was the removal of cosmic ray hits, which we performed

using the IDL procedure IMGCLEAN to flag pixels with values 6 σ above the sky value, and

replace them with the average value of the surrounding 10 pixels.

To increase the contrast of these images and draw out dusty structures in the nucleus,

we employed the “structure mapping” method of Pogge & Martini (2002). This method,

based upon the Richardson-Lucy image restoration, removes most of the large-scale, smooth

background light to bring out marginally resolved structures (i.e., structures on the same

scale as the PSF). A copy of the original image is convolved with a model of the PSF, and the

original image is then divided by this PSF-smoothed image. This ratio is then further con-

volved with the transpose of the model PSF. Mathematically, the structure map is produced

by the procedure

Structure Map =
Image

Image⊗ PSF
⊗ PSFt (5.1)

where ⊗ is the convolution operator and PSFt indicates the transpose of the PSF.

We used IMEXAMINE routine in IRAF to fit 2-D Gaussians the point sources at the

centers of the galaxies, to determine the location of the central source on the detector, and
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then generated the PSF at each of these locations using the TinyTim software. These PSFs

were then used in the above convolutions to generate the final structure map.

The final processed structure maps are shown in Appendix D. The dark regions show the

location of dust obscuration, while the bright regions show areas of concentrated stellar light

or emission line regions of the AGN.

The 1.8 galaxies Mrk 334 and UM 146 both show an unobscured central nucleus, but

have surrounding dark dust spirals on the same scale as the NLR, in agreement with the

higher NLR reddening compared to BLR reddening in these objects. Such sources of dust

are also apparent in all the other objects in which the reddening of the NLR is greater than

that of the BLR (Mrk 993, NGC 7314, UGC 12138, and UM 146).

For the cases where the reddening of the BLR is greater than the reddening of the NLR,

we checked the images for sources of reddening in the NLR. In Mrk 423 (type 1.5), although

lanes of dust can be traced into the central 500 pc, there is no obvious dust structure crossing

the nucleus. In Mrk 915 (type 1.9), there is a dark lane/bar that runs across the nucleus,

and could be the source of the higher reddening of the BLR. NGC 5033 (type 1.2) is in a

highly inclined host, and the dust near the central point source may partially cover it.

NGC 3786 and have NGC 7314 (both 1.9s) have NLR/BLR reddening estimates consis-

tent to within their (large) errors. In NGC 7314, the reddening of the BLR must be due, at

least in part, to the dark lane that crosses over the nucleus seen in Fig. D.24. There is no

obvious dust structure crossing the nucleus of NGC 3786.

To summarize, none of the 1.8s have dark lanes crossing their nuclei, although they all

show signs of circumnuclear dust. Of the 1.9s, Mrk 915 and NGC 7314 have dark lanes that

cross their nuclei, but in Mrk 471, NGC 1365, NGC 2622, NGC 3786, NGC 5252, and UGC
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7064 there is no obvious dust structure crossing the nucleus. NGC 2622, NGC 5252 and

UGC 7064 are classified as “internally reddened”, (see Chapter 6); if they are are internally

reddened, it must be on a smaller size scale than the 100− 1000 pc structures seen in these

images (possibly the torus).

5.2 Spitzer IRS Spectra

Observations in the mid-IR give further insight into the dust properties of these galaxies,

and to this end we retrieved and processed the available low-resolution Spitzer IRS spectra

from the Spitzer archives (see Deo et al. 2007 for details) for these objects. These spectra are

presented in Appendix E. Seyferts optically classified as type 1 typically show much stronger

mid-IR continua in the 5-8 µm region than those classified as type 2. These two continuum

shapes are modified by two processes: silicate dust emission or absorption and PAH emission

from star forming regions. Thus, mid-IR spectra give information on the temperature of the

dust from the shape of the continuum and the amount of extinction due to cold dust in the

host galaxy from the depth of the silicate 9.7 µm feature (Deo et al. 2007). In our current

study, in which we wish to pin down the location of the dust responsible for the reddening

in Seyfert 1.8/1.9s, we wanted to compare the reddening from host galaxy from the mid-IR

with the E(B−V ) values of the NLR and BLR. To this end, we measured the optical depth

at the center of the absorption line(τ9.7µm), and used this to estimate the intrinsic dust ex-

tinction of the host galaxy via the relationship for diffuse ISM clouds derived by Roche &

Aitken (1984), AV = 18.5τ9.7µm. The column densities corresponding to the reddening values

determined in this way are listed in Table 6.1.
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Unfortunately, the 9.7 µm line may be surrounded by strong PAH emission lines, which

can make placement of the local continuum uncertain and affect line measurement, and we

found these measures to be too unreliable to be helpful to our study. The spectra were still

useful, however, in determining which Seyferts contain a strong starburst component, as

noted in the information on individual objects in the next chapter. It was also interesting to

note the apparent mismatch in optical and IR types for NGC 2639 and NGC 7314 (a LINER

2 and a 1.9, respectively) that show the strong rise to short wavelengths most typical of type

1 objects.
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Data Summaries of Individual Objects

In this chapter, we give our type classification of the galaxies in our sample, discuss their

observation histories, and give our interpretation of the 1.8/1.9s as low-flux or internally

reddened objects, or note if the evidence is inconclusive. Table 6.1 at the end of the chapter

is a summary of the data collected for each object.

1. IRAS 18325-5926–Type 2, internal reddening

Our optical spectra from CTIO show Hα to have about the same width as [O III] λ5007

(FWHM≈850 km s−1), and thus we classify IRAS 18325-5926 as a Seyfert 2. It has a heav-

ily reddened NLR, but its XMM spectrum shows it to have a total hydrogen column of

NH ≈ 2.9 × 1022 cm−2, several times larger than the equivalent gas column to the NLR,

consistent with a Seyfert 2 classification.

There is no real evidence for variability in this object. Although Iwasawa et al. (1995)

classified it as a 1.9, their use of Gaussians to fit the [N II] lines on the side of Hα does not

seem to be justified based on the structure of the other forbidden lines in the spectrum, and

probably led to a false detection of a broad Hα component.

2. Mrk 334–Type 1.8, low flux

The spectrum of Mrk 334 taken at Lowell Observatory in January 2009 shows weak

broad Hα and very weak broad Hβ after subtraction of the host galaxy spectrum, and thus

we classify it as a type 1.8. The weakness of the broad components makes the broad Balmer
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decrement difficult to measure, but it seems that the BLR is essentially unreddened. The

Spitzer IRS spectrum of Mrk 334 shows strong PAH emission features due to the star-forming

ring in its central kiloparsec (Deo 2007).

Mrk 334 was originally classified as a 1.8 by Dahari & De Robertis (1988), and does not

seem to have undergone any type variability since. It was again classified as a 1.8 by Oster-

brock & Martel (1993) from a spectrum taken in September 1991, and appears no different

in Gallego et al. (1996).

Because the BLR appears to be essentially unreddened and because its position in Fig. 3.2

is slightly below the Seyfert regime, indicating a history of low ionizing flux, we classify Mrk

334 as a low-flux AGN.

3. Mrk 423–Type 1.5, internally reddened

Mrk 423’s optical spectrum from Lowell Observatory in January 2009 shows that the

AGN’s emission spectrum is heavily contaminated by the underlying stellar absorption spec-

trum of the host galaxy. Although broad Hα is clearly visible, a telluric absorption line

cuts into its red side and makes measuring this component more uncertain. The unusual

continuum shape was difficult to fit, and the spectrum is choppy and noisy even after the

subtraction of a host galaxy template, making Mrk 423 difficult to classify. Though we for-

mally classify Mrk 423 as a 1.5, based on the definition of this class by Maiolino & Rieke

(1995), it is close in appearance to a 1.8, and its BLR seems to be affected by slight internal

reddening. The NLR is essentially unreddened, and the broad Hα component is fairly strong,

yet broad Hβ is weak and no broad Lyα is seen in its HST GHRS (Goddard High Resolution

Spectrograph) spectrum, taken in May 1996.
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This galaxy was originally classified as a 1.8 by Osterbrock (1981), but using slightly dif-

ferent classification criteria than ours, so there is no reason to suspect Mrk 423 of variability.

The spectrum presented by Rafanelli et al. (1993) looks similar to ours, as does that of Rudy

et al. (1985). Rudy et al. (1985) also present a UV spectrum by IUE, which shows the Lyα

line to be of unresolved width.

4. Mrk 471–Type 1.9, inconclusive cause

This object’s SDSS spectrum from 2005 shows it to be a Seyfert 1.9. From this spectrum,

we find the NLR to be highly reddened by E(B − V )NLR = 0.89. The Spitzer spectrum of

Mrk 471 is heavily contaminated by PAH emission features, making measurement of the 9.7

µm absorption trough uncertain, but it seems to indicate a reddening of E(B−V )NLR ≈ 0.88,

very similar to that of the NLR.

There is no evidence for variable broad components in Mrk 471.

5. Mrk 516–Transition Object (LINER 2+starburst), low flux

The CTIO spectrum of Mrk 516 shows it is a “transition object”; the ratio of [O III]/Hβ

is only about 1.2 (see Fig. 3.2). No broad components are visible. Both the [O III] lines and

[N II] lines have wide, asymmetric profiles. This structure is due to the double nucleus found

by Gorjian (1995) in HST images; one is thought to be the AGN and the other is thought

to be either the nucleus of another galaxy in the final stages of merging with Mrk 516, or an

H II region triggered by such a merger.

There is some evidence that this object has shown weak broad-line variability. Osterbrock

(1981) classified it as a 1.8 based on a spectrum from 1978 which shows a weak broad Hβ
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component. Goodrich (1990) noted that in his August 1986 spectra Mrk 516 had no broad

Hβ component and that broad Hα also seemed weaker than that reported by Osterbrock.

We therefore conclude that this object is probably in a low-flux state: in its normal low

state it appears as a LINER 2, but during a continuum flare-up the slight broad components

observed by Osterbrock appeared, and it appeared as a LINER 1.

6. Mrk 609–Type 2, low flux

The CTIO spectrum of Mrk 609 shows it to be a Seyfert 2. It also shows wide [O III]

λλ4959, 5007 lines relative to the other forbidden lines in the spectrum. Although we classify

it as a Seyfert 2, data from other wavebands supports the idea that Mrk 609 is a low-flux

object. Its Spitzer IRS spectrum shows strong PAH emission features, but little if any 9.7

µm absorption. More unusually, its XMM-Newton 0.5− 10 keV spectrum taken in January

2007 shows a powerlaw absorbed by only a very small column, consistent with Galactic

absorption. This makes Mrk 609 what is known as “true” Seyfert 2 candidate, because it

appears that we have a clear view to its nucleus, but there is no sign of the broad-line region

in the optical, in apparent contradiction of the orientation-dependent unified model. See

Section 7.1.3 for a further discussion of these objects.

Previously published data on Mrk 609 also points to it being a low-flux object at the time

of our observations. Mrk 609 was originally classified as a 1.8 by Osterbrock (1981) from

spectra taken in 1975 and 1976, but he later revised the type to be a 1.5 with better spectra.

Goodrich observed it again in November 1986 and also classified it as a 1.5, but noted that it

had a large Balmer decrement. Rudy et al. (1988) present a groundbased optical spectrum

made simultaneously with an IUE observation. Broad Balmer components are visible in the



76

optical spectrum, and the IUE spectrum also shows broad Lyα. Interestingly, they found

that the ratio Lyα/Hβ/Hα = 16/1.0/5.0 and infer that the BLR is basically unreddened.

7. Mrk 622–Type 2

The SDSS spectrum of Mrk 622 shows its [O III] lines are stumpy with a double peaked

structure, much wider than Hβ or [N II]. By our criteria, this is a Seyfert 2 galaxy. In line

with this optical classification, the Spitzer IRS spectrum shows it to have a typical Seyfert 2

mid-IR spectrum, with the continuum weakening in the 5-15 micron range (Deo et al. 2007)

and strong PAH emission features. Furthermore, its XMM X-ray spectrum is also heavily

absorbed, by a column of 112.6×1022 cm−2.

Goodrich (1995) includes Mrk 622 in his list of Seyfert 1.8/1.9s, but we have no confir-

matory evidence of this classification, and so do not expect that its type has varied since it

was first observed.

8. Mrk 728–Type 1.2, formerly a 1.9, due to low flux

The SDSS spectrum from 2004 of Mrk 728 shows it to be a type 1 Seyfert, or, based

on the flux ratio requirements of [O III]λ5007/Hβ of Maiolino & Rieke (1995), a type 1.2.

The strong broad Lyα line in its GHRS spectrum is consistent with this classification. In-

terestingly, its estimated BLR-obscuring column (0.23×1022 cm−2) is greater than the X-ray

column from XMM (0.01×1022 cm−2), and its NLR-obscuring column (0.02×1022 cm−2).

Mrk 728 was originally discovered as a Seyfert 1.9, but underwent a change in type. Os-

terbrock & Dahari (1983) first classified it as a Seyfert 1.9, and it was also classified as a 1.9

when observed by Goodrich in 1986 (Goodrich 1989). When it was observed by Goodrich
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again in March 1993 its Balmer lines were much stronger(Goodrich 1995), and the spectrum

looks much as it does in our SDSS spectrum. Goodrich found the changes in Hα and Hβ to

be consistent with the same change in reddening, but because Hβ is quite weak to nonexis-

tent in the earlier spectrum (it was classed as a 1.9), this measurement is quite uncertain.

Furthermore, Goodrich saw no change in the continuum flux or shape, and therefore states

that “if the lines brightened due to a dust cloud moving out of our line of sight, then the

cloud must still cover the continuum source”, which seems unlikely. In short, somewhere

between 1986 and 1993 Mrk 728 changed type from a 1.9 to a 1.2 and has been the same

ever since, and this is probably due to the fact that it was in a low flux state when it was

initially identified as a 1.9 and is now back up.

9. Mrk 883–Type 2, formerly Type 1.9 due to low flux

The optical spectrum of Mrk 883 from SDSS show it to be a Seyfert 2. However, its NLR

is only reddened by E(B−V ) = 0.4±0.1, and its XMM spectrum shows only a small amount

of absorption by a column only slightly in excess of Galactic and possibly attributable to Mrk

883’s host galaxy. This makes Mrk 883 another “pure” Seyfert 2 candidate, an object that

does not show broad lines although it appears that we have a clear view to the nucleus (see

Section 7.1.3 for a discussion of these objects). Its Spitzer spectrum is typical of a Seyfert 2

with a significant starburst component.

There are a few small pieces of evidence that Mrk 883 has undergone broad-line variation.

Shuder & Osterbrock (1981) claimed to see a broad component of Hα in early spectra taken

between 1975 and 1980. Osterbrock and Dahari later dubbed it a “marginal 1.9”, due to the

weakness of the broad component of Hα seen after the subtraction of narrow Hα and [N II]
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(Osterbrock & Dahari 1983). Goodrich (1995) saw weak variations in its broad components

between 1978 and 1993, inconsistent with a simple change in reddening, although the con-

tinuum did not appear to have changed.

This object appears to be another case like NGC 2992 (Trippe et al. 2008), where it is

currently in a low flux state. This is deduced from the evidence for weak intrinsic continuum

variations, as well as the its low X-ray column and matching low NLR reddening. As in

the case of NGC 2992, it appears that Mrk 883 is currently in a low state, with no broad

components visible.

10. Mrk 915– Type 1.9, internally reddened

Our CTIO spectra from June 2008 show this to be a Seyfert 1.9 galaxy. It is possible

that Hβ shows an extremely weak broad component, at the limit of detectability, but not

significant enough to classify this as a 1.8. The lower limit of the reddening of the BLR

(E(B − V )BLR ≥ 0.84± 0.51), derived from the strength of Hα, is still larger than the red-

dening of the NLR (E(B − V )NLR = 0.27). The source of the higher BLR reddening could

be the large-scale dust lane that runs directly across the nucleus, seen in its WFPC2 image.

Goodrich reports variability between 1984 and 1993, when it appeared to go from a 1.5

to a 1.9, with evidence that this change was due to a change in reddening ∆E(B−V ) = 0.38

(Goodrich 1995), from an estimation of the continuum change between observations. How-

ever, due to the uncertainties in flux calibration, the measurements that lead to this claim

are highly uncertain.
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11. Mrk 993–Type 1.5, low flux

The optical spectrum of Mrk 993 from Lowell Observatory in January 2009 shows it

to be a type 1.5 Seyfert. From the measured Balmer decrements of this spectrum, the

BLR appears to be largely unreddened, while the reddening of the NLR is slightly higher

(E(B − V ) = 0.47), although we note that both these measurements have large errors due

to heavy contamination by the underlying host galaxy spectrum. Mrk 993’s XMM-Newton

spectrum shows absorption by only a small column, NH = 9.3 ± 2.020 cm−2, attributable

to Galactic absorption and likely absorption by its inclined host galaxy (b/a=0.32). The

WFPC2 structure map presented in Pogge & Martini (2002) allows us to visualize these

findings. The image shows an unobscured central nucleus and dust spirals on the scale of the

NLR, particularly just to the east of the nucleus, in agreement with the higher NLR column

compared with the BLR and X-rays.

Mrk 993 appears to currently be a low-flux object. It has a history of variability, and

its transition from its original classification as a 1.9 to a 1.5 has been attributed to variable

reddening (Tran et al. 1992), but it does not appear to be internally reddened in its current

state as a 1.5. Its BLR is essentially unreddened in our spectrum, and this lack of reddening

confirmed by its low X-ray column. A paper by Corral et al. (2005) presents an optical

spectrum taken simultaneously with the XMM observation, and this spectrum confirms that

it was in the same optical state as in our Lowell observation. However, Corral et al. (2005)

conclude that it has a BLR Balmer decrement of ∼9 (i.e. reddened), while we found it to

be 2.3 (i.e. unreddened). The difference in these measurements is probably due to the low

signal-to-noise of the spectrum used by Corral et al.

Although the BLR of Mrk 993 isn’t reddened in its current state, it is difficult to say if it
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was reddened as a 1.9. It is possible that the broad line changes seen by Tran et al. (1992)

are due to both changes in the intrinsic continuum flux and changes in extinction. However,

because Tran et al. (1992) report a reddening of E(B − V )BLR > 0.76, it is possible that it

was internally reddened when it appeared as a 1.9.

12. Mrk 1018–Type 1, formerly 1.9, low flux

The SDSS spectrum of Mrk 1018 shows it to have been a Seyfert 1 in September 2000.

A clear rise in the blue end of the SDSS spectrum not seen in the previous optical spectra

from the 1980’s indicates that the continuum has gained in apparent brightness since then.

This object was a 1.9 when observed by Osterbrock (1981). However, it transitioned to a

type 1 between this observation and its observation by Cohen et al. in January 1984 (Cohen

et al. 1986), and has apparently remained as a type 1 since. Cohen et al. (1986) attribute

the observed change in type to an increase in the brightness of the non-stellar continuum,

but note that the increase in flux of broad Hα and in broad Hβ are consistent with the

same change in reddening, ∆EB−V ≈ 0.55. Comparing our spectrum with their “high-state”

spectrum from yields ∆E(B−V )Hα = 0.12 and ∆E(B−V )Hβ = 0.04, and provides further

minor evidence that this object is probably undergoing changes in its intrinsic continuum

flux.

13. Mrk 1126–Type 1.8, low flux, external reddening

In our spectrum from CTIO in October 2007, both weak broad Hα and very weak broad

Hβ are apparent after subtraction of the host galaxy spectrum. From measurements of these

broad components, we find the reddening of the BLR and the reddening of the NLR to be
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consistent within their errors, indicating the low-flux scenario for this object. The WFPC2

image of Mrk 1126 shows it to reside in an almost circular face-on spiral galaxy.

Our literature search did not provide any evidence for variability; past authors consis-

tently classify it as a 1.8 (Botte et al. 2004; Schachter et al. 1990), with the exception of

Osterbrock & Pogge (1985) who classified it as a narrow-line Seyfert 1 (NLS1) on the ba-

sis that high-ionization iron lines such as [Fe VII] and [Fe X] are present in its spectrum.

However, because its Balmer lines are clearly a composite of broad and narrow components,

and there there is no measurable [Fe II] emission, we believe that it was wrongly classified

at that time, and that 1.8 would have been a better designation.

14. Mrk 1179–Type 1, formerly type 1.9

Our spectrum of Mrk 1179 from Lowell Observatory in January 2009 shows this to be

a type 1 Seyfert galaxy; very strong broad components with FHWM ≈ 6,000 km s−1 are

visible in all of the Balmer lines. Although deconvolution of the components is uncertain

due to the overwhelming strength of the broad lines, both the BLR and NLR appear to be

essentially unreddened.

Interestingly, this object has changed type quite dramatically since it was previously ob-

served, providing our only new case of type variability. It was classified in the 1980s as a

type 1.9 (see Osterbrock & Dahari 1983; Rudy & Rodriguez-Espinosa 1985; Goodrich 1989).

Unfortunately, these authors give only the classification without any further information

about the spectrum, and so the cause of the change, possibly either variable flux or variable

reddening, cannot be determined.
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15. Mrk 1320–Type 1.5, low flux

Our Lowell spectrum of Mrk 1320 from January 2009 shows this to be a Seyfert 1.5 object,

according to the definition by Maiolino & Rieke (1995), although it is close in appearance

to a Seyfert 1.8.

Mrk 1320 was classified by Osterbrock & Dahari (1983) as a Seyfert 1.5. He notes that

the broad components of the Balmer lines are slightly weaker than other 1.5s, but still easily

visible. A blue spectrum displayed in Marziani et al. (2003) shows it to have what seems

to be a larger broad Hβ line than that visible in either our spectrum or that described by

Osterbrock.

Because the reddening of the BLR appears to be zero, we classify this as a low-flux object.

16. NGC 1365–marginal Type 1.9, unknown cause

We classify NGC 1365 as a 1.9, though we note that the broad component of Hα is

extremely faint in our 2009 January spectrum of this object. Hβ appears to be enhanced rel-

ative to [O III], as reflected by its unusual position on the BPT diagram (Fig. 3.2), indicating

a very strong starburst component. Its Spitzer spectrum is also indicative of a very strong

starburst component, displaying strong PAH emission features. Its XMM spectra indicate

its nucleus is being absorbed by a column in excess of that in the NLR, but because it is not

known how much of this material contains dust, we do not know if this absorber contributes

to the optical extinction of the BLR.

There is some evidence of optical type variability in this object. Schulz et al. (1994)

comment on the “conspicuous” broad component of Hα observed in October 1988, and in

Schulz et al. (1999) the authors show a figure of the Hβ profile which appears to have a quite
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substantial broad component. Regardless, there is not enough information to establish the

cause of this possible variation over time. It seems feasible that, as suggested by Edmunds

& Pagel (1982), most of the BLR absorption occurs in the dust lane which just barely covers

the nucleus (NGC 1365 looks like a 1.8 in their spectrum from 1979).

There is extensive X-ray data on NGC 1365. Risaliti et al. (2000) reports that the X-ray

spectrum is composed of both directly observed and reflected components. It is highly vari-

able in the X-ray; several Compton-thick to Compton-thin transitions have been observed

(Risaliti et al. 2005, 2007). Furthermore, Risaliti et al. (2009) observed a change in X-ray

flux, which they attribute to an occultation event during a 5-days continuous monitoring

campaign with XMM, and they infer that the X-ray absorption and reflection originates in

the BLR clouds. If so, these clouds are well within the dust sublimation radius and the

changes are therefore probably not related to any changes seen in the optical spectrum.

17. NGC 1808–HII (starburst)

Our spectrum of NGC 1808 from CTIO in October 2007 shows no broad components

and only very weak [O III] lines. We classify it as a starburst galaxy based on the measured

line ratios from this optical spectrum (see Fig. 3.2).

NGC 1808’s status as an AGN has been the subject of debate for many years (Jiménez-

Bailón et al. 2005). It does not, however, seem that it has ever been a Seyfert 1.8/1.9.

18. NGC 2622–Type 1.9, internally reddened

This object is classified as a Type 1.9 based on its SDSS spectrum from 2004. Its XMM

spectrum is well fit by powerlaw with Γ = 2 attenuated by a column density of 1.3 × 1022
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cm−2. The available HST GHRS spectrum shows narrow, but no broad Lyα. Conversely,

this object’s Spitzer IRS spectrum looks like that of a type 1 AGN, with a continuum rise

to lower wavelengths, indicating emission from a hot component.

This object has undergone classification changes in the past. Osterbrock & Dahari (1983)

classed it as a 1.8, but Goodrich (1989) observed it to be a Seyfert 1, and that the changes

in flux of the broad lines and the continuum near Hα and Hβ were consistent with changes

in reddening in all cases. He also later noted that Paβ measurements of this object are also

consistent with reddening theory (Goodrich 1990). However, when NGC 2622 was later seen

to have faded again in 1993 (Goodrich 1995) it did so in a manner inconsistent with a change

in reddening.

This object is most likely being affected by internal reddening, as evidenced from the

lack of broad Lα in the GHRS spectrum. Further, the dust column to the NLR from the

reddening E(B − V ) = 0.36 is NH = 1.87 × 1021 cm−2, while the X-ray column is greater

by a factor of ∼7. While this does not prove the BLR to be obscured by dust in the torus,

because the column could be from a dust-free absorber, it does give evidence that there is

a component of absorption in the inner nucleus. NGC 2622 may be a case of a reddened

object that also has an intrinsically variable continuum, as evidenced by the observations of

Goodrich (1995) and the mismatch between its optical and IR spectra.

19. NGC 2639–LINER

NGC 2639’s nuclear spectrum from Lowell Observatory in January 2009 is heavily diluted

by the underlying host galaxy spectrum; it does not show any Hβ emission, broad or narrow,

and [O III] λ5007 is barely visible even in the host-galaxy subtracted spectrum. Because
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there is no Hβ, we resort to an alternate system for classification than that of Maiolino &

Rieke (1995) used for the other objects in this study, which relies on the ratio of [O III] to

Hβ. We classify it as a LINER based instead upon the criteria of Heckman (1980) ([O II]

3727 ≥ [O III] 5007 and [O I] 6300 ≥ (1/3) [O III] 5007). De-blending the [N II] lines on

the sides of Hα proved difficult, due to NGC 2639’s irregular forbidden-line profiles. The

template that best matched the observed [N II] profiles was a template constructed from the

blended [S II] lines: the blue side of the [S II] λ6716 line and the red side of the λ6731 line.

While this template fit most of the [N II] profile exactly, the outermost part of the red wing

of the λ6583 line still showed excess flux over the template, leading to the spike of leftover

emission seen in the [N II]-subtracted spectrum of Appendix B. In spite of this imperfection,

it still seems apparent that there is not a broad Hα component. The Spitzer IRS spectrum

of NGC 2639 shows strong PAH emission features, 9.7 µm absorption, and a strong rise in

the continuum towards short wavelengths. NGC 2639 was observed by XMM in April 2005,

but due to a very high background level during the observation, the data is poor quality and

we did not attempt to model it.

Several authors in the past have claimed there to be a broad component to Hα, leading

to its initial classification as a type 1.9 (see Keel 1983; Huchra et al. 1982). However, noting

(as do Ho et al. 1997b) the extended wings of the [N II] lines are mostly responsible for the

seeming appearance of a broad component to Hα, we suspect that past decomposition of

this blend assuming Gaussian line profiles seriously overestimated the flux of this component.

20. NGC 2992–Type 2, low flux/externally reddened

We have observed NGC 2992 many times over the past few years, and because the spec-
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tra do not show any evidence for variability, the spectrum presented in Appendix A is the

average of these spectra. NGC 2992’s XMM spectrum shows absorption by a column density

of ≈ 0.49 × 1022 cm−2. Its Spitzer spectrum shows strong PAH emission features, and 9.7

µm absorption corresponding to a reddening of E(B − V ) ≈ 2.1.

As mentioned in the introduction, NGC 2992 has a history of variability, both in the

optical and X-ray regimes (see Chapter 2 for details). Because the changes in its optical

classification seem to be correlated with its X-ray brightness, but with the column density

remaining constant, it seems that this object was classified as a 1.9 because it was in a

low continuum state. Because the NLR and BLR have similar reddening, the high Balmer

decrement observed at the time it appeared as a 1.9 was most likely due to dust in the plane

of the host galaxy.

21. NGC 3786–Type 1.9

We classify NGC 3786 as a Seyfert 1.9 in our Lowell spectrum of this object from January

2009. It is possible that a very faint component to Hβ is also present, but it is at the limit

of detectability, even after the spectrum correction for the host galaxy contamination. We

were not able to tell whether the BLR is more reddened than the NLR; the large uncertainty

in the lower limit of reddening of the BLR, E(B − V )BLR ≥ 0.63 ± 0.47, puts it within

the range derived for the reddening to the NLR (E(B − V )NLR = 0.45 ± 0.09). Its Spitzer

IRS spectrum displays the strong PAH emission features indicative of a large starburst, and

9.7 µm absorption corresponding to a reddening of E(B-V)=1.74±0.22. NGC 3786’s XMM

X-ray spectrum is well-fit by a partial covering model, with a covering factor of 0.985 and

NH=3.3± 0.1× 1022 cm−2.
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It is difficult to tell if the broad lines have undergone any variation over time. Past spec-

tra of NGC 3786 certainly look very similar to our own (see Huchra et al. 1982; Goodrich

& Osterbrock 1983), with any differences attributable to observing conditions. Goodrich &

Osterbrock (1983) classify it as a Seyfert 1.8, and measure the broad Balmer decrement to

be ∼8.4. Komossa & Fink (1997) point out that this amount of reddening corresponds to

a column of 5.5×1021 cm−2 to the BLR, which closely matches the column they derived by

fitting a warm absorber model to its X-ray spectrum from ROSAT. The XMM spectrum

from 2004 is not high enough quality to provide information about the ionization state of

the absorber to test this claim.

22. NGC 3982–Type 2

The SDSS spectrum of this object shows no trace of broad Hα, showing that this object

was a Seyfert 2 when observed in January 2003. In line with this classification, its XMM-

Newton spectrum is heavily attenuated by a column of NH ≈ 20.2 × 1022 cm−2, and its

Spitzer spectrum is also typical of a Seyfert 2.

There is no convincing evidence that this object has ever changed type from past classifi-

cations in the literature. Although we included it in our study because Quillen et al. (2001)

give its classification as 1.9/2, it has apparently always been a Seyfert 2.

23. NGC 4388–Type 2

The SDSS spectrum of NGC 4388 shows no trace of broad Hα, and thus we classify it as

a Seyfert 2. Its XMM spectrum shows absorption by a column of 31.8 ± 0.6 × 1022 cm−2,

also typical of a Seyfert 2, and an excess of soft emission in the 0.5-2 keV range.
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There is no evidence from the literature for variability from a previous 1.8/1.9 state.

Again, this object was included in our study because of its classification in Quillen et al.

(2001) as a type 1.9/2, but appears to have really always been a Seyfert 2.

24. NGC 4639–low-luminosity Seyfert 1

Our optical spectrum on NGC 4639 from Lowell Observatory in January 2009 shows that

the host galaxy dominates the spectrum. It shows what looks like a broad Hα line, but it is

impossible to deblend the [N II] because there are no other forbidden lines in the spectrum

to use for comparison. Its XMM spectrum is faint, but appears unabsorbed. Both the XMM

spectrum and the optical spectrum are consistent with its classification by Ho et al. (1999)

as a low-luminosity Seyfert 1.

Ho et al. (1995) display a spectrum in which broad Hα looks much more clear than in our

data. Though Ho et al. (1999) suggest that the BLR is significantly reddened, and estimate

the reddening of the BLR using the ratio of Hγ/Hβ to be ∼0.4, this measurement is very

uncertain due to the faintness of these lines.

25. NGC 5033–Seyfert 1.2, low flux

The optical spectrum from Lowell Observatory in January 2009 shows NGC 5033 to

have the spectrum of a Seyfert 1.2 (according to the definition of this class by Maiolino &

Rieke (1995)), heavily contaminated by underlying stellar absorption spectrum from the host

galaxy. The Hβ line is apparent only after the subtraction of a host-galaxy template. The

BLR seems to be only slightly reddened with E(B − V )BLR = 0.19 ± 0.05, while the NLR

seems to be totally unreddened, E(B−V )NLR = −0.04±0.43. NGC 5033’s XMM spectrum
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is well-fit with an unabsorbed powerlaw, and a narrow Fe Kα line is also present, indicating

a reflected component to the spectrum.

Broad Hα was noted in early spectra of NGC 5033 (see Shuder 1980; Stauffer 1982; Fil-

ippenko & Sargent 1985), and Filippenko & Sargent (1985) note that this broad component

of Hα seems to be variable from their observations in July 1982 and February 1984. Dahari

& De Robertis (1988) classify it as a 1.9, as do Osterbrock & Martel (1993). Koratkar et al.

(1995) note the presence of both broad Hα and broad Hβ in their spectrum of NGC 5033

from January 1993. We note, however, that many of these seeming differences in classifica-

tion are probably due to the difficulty in picking the Hβ line out from the contamination

by the host galaxy, and that in spite of the weak variations in the broad Hα noted by Ho

et al. (1995), it has probably not undergone changes large enough for it to change its type

classification. Because this is known to be a low-luminosity Seyfert, heavily contaminated by

the host galaxy, with an unabsorbed X-ray spectrum, it is most likely a low-broad-line-flux

object, not an internally reddened object.

26. NGC 5252–Type 1.9, reddened

The SDSS spectrum from April 2002 shows the spectrum of a Seyfert 1.9 object. Based

on the weakness of Hα, Hβ is below the level of detectability in our spectrum, even if the

BLR is completely unreddened. Its XMM spectrum shows absorption by a column density

≈ 4×1022 cm−2, about 10 times that as the column to the NLR indicated from the reddening

E(B − V )NLR ≈ 0.71.

There is no evidence for variability in NGC 5252’s past observations. However, it is

known from polarization studies (Young et al. 1996) that this object has a hidden BLR, and
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we therefore classify it as a reddened object.

27. NGC 5273–Type 1.5, low flux

Our spectrum from KPNO in June 2008 is rather noisy due to poor seeing conditions, but

both broad Hα and Hβ are apparent after subtraction of the host galaxy. Neither the NLR

or BLR appears to be significantly reddened in this face-on (b/a=0.89) galaxy. However, its

X-ray spectrum does show absorption by a large column, NH=1.50×1022 cm−2, which may

indicate the absorption occurs in a dust-free warm absorber, and that the column density

may in fact be even higher than this value, derived assuming cold absorption.

Previous classifications of NGC 5273 are consistent with our current classification (Ho

et al. 1995; Dahari & De Robertis 1988), except Osterbrock & Martel (1993), who classify

it as a 1.9. We suspect that the subtraction of the host galaxy spectrum may be the cause

of this difference, and hence there is no reason to suspect this object of strong variability.

28. NGC 5506–Type 2

From the optical SDSS spectrum of NGC 5506 taken April 2002, we classify this as a

Seyfert 2. Nagar et al. (2002) have a near-IR spectrum with permitted lines from the BLR

with FWHM < 2,000 km/s, and therefore claim it to be an “optically obscured” NLS1. Some

part of the reddening of the nucleus must be due to the dust in a lane that crosses over the

nucleus, seen in its WFPC2 image.

29. NGC 5674–Type 2

NGC 5674 is a Seyfert 2 in our January 2009 spectrum from Lowell.
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There is no evidence for variability in NGC 5674; it appears it has always been a Seyfert

2. It was first identified as a Seyfert galaxy by Huchra et al. (1982), who labeled it a type 2.

A hard X-ray spectrum from Ginga was found to have a column density of 7.0×1022 cm−2 by

Smith & Done (1996), consistent with its type 2 classification. Osterbrock & Martel (1993)

list it as a type 1.9, but this was based upon only one unpublished spectrum and is therefore

not substantial evidence for broad-line change.

30. NGC 7314–Type 1.9, internally reddened

Our CTIO spectra show broad Hα but no Hβ. We note that though Hα is wider than

[O III] λ5007 (and thus “broad” by our definition), it is still relatively narrow, with a FWHM

of only ≈1600 km s−1, similar to NLS1s. Our XMM spectrum shows it to have a column of

0.62×1022 cm−2. Interestingly, its Spitzer IRS spectrum (Deo 2007) looks like a Seyfert 1.

NGC 7314 is shown to have a hidden BLR by Lumsden et al. (2004). And, based on the

rapid variability in its X-ray spectrum, Dewangan & Griffiths (2005) classify it as another

“obscured NLS1”. From this evidence, we expect that NGC 7314 is another case of an in-

ternally reddened Seyfert.

31. NGC 7479–Type 2

NGC 7479’s spectrum from CTIO in August 2008 is dominated by the starlight of the host

galaxy. [O III] λλ4959, 5007 lines are weak, and only Hβ absorption is seen. Only narrow Hα

is present. The narrow lines show an unusual triple-peaked structure. Its XMM spectrum

supports a type 2 classification, displaying a heavily absorbed powerlaw of NH=56.6×1022

cm−2.



92

Our literature search did not find any evidence for variability of NGC 7479. It has had

different classifications by different authors, but this is due to the differences in the criteria

for each type by these different authors. For example, it was classified as a LINER by Ho

et al. (1993) because [O II] 3727 ≥ [O III] 5007 and [O I] 6300 ≥ (1/3) [O III] 5007, but as

a Seyfert 2 by Maiolino & Rieke (1995) because of their definition ([O III] ≥ 3Hβ). It was

classified as a 1.9/2 by Quillen et al. (2001), and as a 1.9 by Ho et al. (1997b) who mention

that it might have an extremely faint broad component to Hα, but they also note that the

complex velocity structure of the narrow lines could have played a role in an inaccurate

subtraction of the [N II].

32. NGC 7603–Seyfert 1

Our spectrum of NGC 7603 shows a type 1 spectrum with strong broad components. Its

XMM spectrum is faint, but doesn’t appear absorbed. Its Spitzer spectrum is also consistent

with classification of type 1, showing a strong rise towards shorter wavelengths typical of

that class.

NGC 7603 appeared as a 1.9 in the past, but changed to a type 1. A paper by Tohline

& Osterbrock (1976) documents dramatic spectral variability of NGC 7603, where it went

from possessing very strong broad lines in November 1974, the broad lines reduced to al-

most nothing by November 1975, and then regained in brightness a bit by February 1976.

Other campaigns that studied its variability are Goodrich (1989), Rosenblatt et al. (1994),

and Kollatschny et al. (2000). There are no firm conclusions drawn about the cause of the

variability, but it seems to be undergoing intrinsic changes in its continuum strength (Kol-
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latschny et al. 2000).

33. UGC 7064–Type 1.9, reddened

There is a very faint broad Hα component in our optical spectrum of UGC 7064 from

Lowell, and no broad Hβ, and thus we classify it as a type 1.9. The reddening of the NLR

was found to be E(B− V ) = 0.23 from this spectrum. It’s GHRS spectrum shows only nar-

row Lyα. Its Spitzer IRS spectrum shows a rise in its continuum towards short wavelengths,

typical of type 1 AGN.

There does not seem to be any evidence for variability in the observed history of UGC

7064. Osterbrock & Shaw (1988) and Goodrich (1989) classify it as a 1.9, and a blue spec-

trum from Salzer et al. (1995) shows Hβ that looks the same as in our spectrum. Goodrich

(1995) claims there to have been small variations in broad Hα, and that the Hα line weak-

ened in 1993 compared with its previous observations, and that the change did not seem to

be consistent with a change in reddening change. However, because a broad Hα component

was seen in spectropolarimetric observations of UGC 7064 (Smith et al. 2004), we classify it

as a reddened object.

34. UGC 12138–Type 1.5

Our spectra from CTIO in August 2008 indicate it to be a Seyfert 1.5. Its BLR is es-

sentially unreddened, but its NLR is reddened by E(B − V ) = 0.33± 0.25, apparently due

to the dust spirals in the NLR seen in the the WFPC2 structure map of Pogge & Martini

(2002). In agreement with its optical appearance as a 1.5, UGC 12138 has an unabsorbed

power-law XMM spectrum.
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Previous spectra of UGC 12138 are scarce, but spectra published by de Grijp et al. (1992)

and Cruz-Gonzalez et al. (1994) look very similar to ours. UGC 12138 was also classed as a

type 1 in Huchra et al. (1982), but they do not show the spectrum.

35. UM 146–Type 1.8, low flux

Our blue CTIO spectrum of this object shows a very weak broad component to Hβ after

the subtraction of the host galaxy spectrum, and thus we classify UM 146 as a type 1.8. The

weakness of these components makes measuring the BLR Balmer decrement somewhat un-

certain, but it seems that the BLR is not significantly reddened (E(B−V )BLR = 0.03±0.19),

while the NLR is reddened by E(B − V )NLR = 0.42 ± 0.24, with the higher reddening of

the NLR possibly due to dust spirals/lanes within the NLR. Its Spitzer IRS spectrum shows

clear silicate absorption, indicating that dust in the host galaxy could be playing a role in

the reddening of the NLR.

Osterbrock & Dahari (1983) classed UM 146 as a 1.5, as do Dahari & De Robertis (1988).

However, neither publication shows the actual spectrum that lead to this classification, and

thus we are unable to confirm if the broad components weakened enough for it to have

changed type. Because of the low reddening of the BLR, we classify UM 146 as a low-flux

object.
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Table 6.1. Summary of Basic Data

Our Spitzer NLR BLR X-ray
Object za Type b/ab NH

c NH
d NH

e NH
f

IRAS 18325-5926 0.020231 2 – – 0.85±0.04 – 2.87+0.12
−0.11

Mrk 334 0.021945 1.8 0.70 0.57±0.16 0.10±0.03 -0.07±0.10 –
Mrk 423 0.032268 1.5 0.56 – -0.07±0.09 0.19±0.11 –
Mrk 471 0.0340 1.9 0.67 0.46±0.09 0.46±0.12 – –
Mrk 516 0.028416 LINER 2+HII 0.83 – 0.25±0.04 – –
Mrk 609 0.034488 2 0.90 0.33±0.05 0.51±0.06 – 0.0291

Mrk 622 0.0230 2 0.95 0.44±0.07 0.54±0.03 – 112.6+37.0
−20.8

Mrk 728 0.0350 1.2 0.65 – 0.02±0.06 0.23±0.07 0.0104

Mrk 883 0.0370 2 0.61 0.66±0.11 0.21±0.04 – 0.09+0.008
−0.008

g

Mrk 915 0.024109 1.9 0.30 – 0.14±0.03 ≥0.44±0.27 –

Mrk 993 0.015537 1.5 0.32 – 0.24±0.19 -0.14±0.20 0.0931+0.008
−0.008

Mrk 1018 0.042436 1 0.52 – -0.06±0.31 0.13±0.04 0.0146
Mrk 1126 0.010624 1.8 1.0 – 0.27±0.12 0.20±0.10 –
Mrk 1179 0.03760 1 1.0 – -0.03±0.14 0.13±0.06 –
Mrk 1320 0.1030 1.2 0.88 – 0.20±0.17 -0.04±0.11 –

NGC 1365 0.005457 1.9 0.55 1.21±0.15 0.68±0.02 – 9.77+0.10
−0.10/24.07+0.33

−0.32

NGC 1808 0.003319 HII 0.60 – – – 0.20+0.01
−0.01

NGC 2622 0.0280 1.9 0.68 0.58±0.08 0.19±0.05 – 0.70+0.08
−0.07

NGC 2639 0.011128 LINER 0.61 1.09±0.34 – – –

NGC 2992 0.007710 2 0.31 1.09±0.31 0.37±0.06 – 0.49+0.003
−0.003

NGC 3786 0.008933 1.9 0.59 0.91±0.11 0.23±0.05 ≥0.33±0.24 3.25+0.13
−0.12

NGC 3982 0.003699 2 0.88 0.42±0.15 0.35±0.06 – 20.22+11.8
−6.4

NGC 4388 0.008419 2 0.19 – 0.35±0.05 – 31.84+0.55
−0.53

NGC 4639 0.003395 1 0.68 – – – 0.014
NGC 5033 0.002919 1.2 0.47 – -0.02±0.24 0.10±0.03 0.036

NGC 5252 0.022975 1.9 0.56 – 0.37±0.05 – 4.03+0.05
−0.04

NGC 5273 0.003549 1.5 0.89 – -0.04±0.14 -0.05±0.09 1.51+0.06
−0.06

NGC 5506 0.006181 2 0.23 – 0.41±0.03 – 2.960.02
0.02

g

NGC 5674 0.024931 2 0.91 – 0.07±0.04 – –

NGC 7314 0.004763 1.9 0.46 ≈0 0.27±0.01 ≥0.17±0.16 0.621+0.003
−0.003

NGC 7479 0.007942 2? 0.76 – – – 62.81+29.3
−14.9

NGC 7603 0.029524 1 0.67 ≈0 -0.016±0.12 0.10±0.19 0.024
UGC 7064 0.024997 1.9 1.0 0.84±0.28 0.12±0.07 – –
UGC 12138 0.024974 1.5 0.88 0.63±0.10 0.17±0.13 -0.07±0.04 0.042
UM 146 0.017405 1.8 0.77 0.74±0.18 0.22±0.13 0.02±0.10 –

aRedshift, from the NASA Extragalactic Database (NED).

bRatio of host galaxy’s major axis length to minor axis length, from NED.

cColumn density estimated from depth of the silicate 9.7 µm absorption feature in Spitzer IRS spectra, in units of 1022

cm−2.

dColumn density estimated using the reddening of the NLR, assuming the local ISM dust/gas ratio of Shull & van Steenberg
(1985), in units of 1022 cm−2.

eColumn density estimated using the reddening of the BLR, assuming the local ISM dust/gas ratio of Shull & van Steenberg
(1985), in units of 1022 cm−2.

fHydrogen column density measured from XMM spectra, in units of 1022 cm−2.

gAverage column of multiple XMM spectra.
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Results and Conclusions

7.1 Results

7.1.1 Many “1.8/1.9s” are not 1.8/1.9s

The first important consideration brought to light during this study is that many Seyferts

alleged to be intermediate types are misclassified (16 of our sample of 35), and that anyone

hoping to study the properties of intermediate type galaxies should be aware that optical

classifications as such are frequently unreliable. For instance, in the study of Risaliti et al.

(1999), they show the distribution of the column densities of 11 “1.8/1.9s” to be significantly

lower than that of Seyfert 2s. However, their sample was actually comprised of two Seyfert

2s, four 1.8/1.9s, and five type 1 objects. With 5 of the 11 objects type 1 AGN, it is no

wonder the column densities were low! Based on our literature search of the classification

history of each object, the most common reason for previous misclassification seems to be

large overestimation of the flux of broad Hα, due to inaccurate or no [N II] subtraction.

Spectral variability may account for a couple of the type discrepancies, but again, based on

our literature search of previously published spectra, this seems unlikely in most cases.

The classification of 1.8 in particular seems to be often misused. Our sample was origi-

nally thought to contain nine 1.8s, but only one of these objects actually turned out to fit our

criteria of a 1.8. These misidentifications probably result from the fact that a weak broad

component to Hβ is very difficult to discern due to contamination by the spectrum of the

host galaxy; in the three 1.8s we found in our study, the weak broad Hβ was apparent only

after the subtraction of the underlying host galaxy spectrum. It is important to note that
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classification as a 1.8 depends on spectra S/N and the amount of galaxy contamination. In

the case of infinite signal to noise and perfect starlight subtraction, all 1.9s would be classified

as 1.8s, as broad Hβ must be present in any object that shows broad Hα. We further empha-

size that because true Seyfert 1.8s seem to be something of a rarity, the 1.8 classification of

many objects should be treated warily by those who wish to study intermediate-type AGN.

Moreover, because they are so few, it is impossible to make generalizations about them as a

class, and previous studies that make such claims (e.g., that 1.8s have unusually large broad

Balmer decrements) may be unreliable.

7.1.2 Inventory of 1.8/1.9s

Are Seyfert 1.8/1.9s objects with reddened BLRs, or are they objects temporarily in a low-

flux state with weakened broad-line components? From the evidence presented in Chapter

6, we conclude that, of the 19 objects that currently or formerly appeared as a 1.8/1.9,

eight received this designation because they were at least temporarily in low flux states, and

seven because of internal reddening. Four do not have evidence that favors one scenario over

the other. Sixteen of the 35 were other objects misclassified as 1.8/1.9s. Table 7.1 gives a

summary of our conclusions about the most probable cause of classification for each 1.8/1.9.

A can be seen from Table 7.1, a total of eight objects appeared as 1.9s in our spectra.

Of these, five have evidence for internal BLR reddening, and three are inconclusive. Of

those that previously appeared as 1.9s, but changed type such that they were not 1.9s when

observed by us (Mrk 609, Mrk 728, Mrk 883, Mrk 993, Mrk 1018 Mrk 1179 NGC 2992),

there is evidence that the changes in most of these objects were due to an intrinsic change
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Table 7.1. Seyfert Galaxies Currently or Previously Appearing as Type 1.8 or 1.9

Our Past Optical Reason for
Object Type Variation Classification

Mrk 334 1.8 no low flux
Mrk 423 1.5a no internally reddened
Mrk 471 1.9 no inconclusive
Mrk 609 2 yes (1.5-1.9) low flux
Mrk 728 1.2 yes (1.9-1.2) formerly 1.9, low flux
Mrk 883 2 yes (1.9-2) formerly 1.9, low flux
Mrk 915 1.9 yes (1.5-1.9) internally reddened
Mrk 993 1.5 yes (1.9-1.5) formerly 1.9, internally reddened
Mrk 1018 1 yes (1.9-1) formerly 1.9, low flux
Mrk 1126 1.8 no low flux
Mrk 1179 1 yes (1.9-1) inconclusive
NGC 1365 1.9 ? inconclusive
NGC 2622 1.9 yes (1-1.9) internally reddened
NGC 2992 2 yes (1-2) formerly 1.9, low flux
NGC 3786 1.9 ? inconclusive
NGC 5252 1.9 no reddened
NGC 7314 1.9 no internally reddened
UGC 7064 1.9 no reddened
UM 146 1.8 ? low flux

aAlthough Mrk 423 is a type 1.5 based upon the definition of this class
by Maiolino & Rieke (1995), it is on the borderline of the classification
requirements. Because it is close in appearance to a 1.8 and there is
evidence that its BLR is reddened, we include it in this table with the
rest of the 1.8/1.9s.

in the amount of ionizing continuum as opposed to variable reddening (Mrk 993 is the only

exception). In other words, those objects that were observed to be 1.9s because they were

in low flux states have more variable continua, as expected, while those observed to be 1.9s

because of BLR reddening did not vary.

All of the 1.8s in our sample seem to be due to low flux states. Our three 1.8s, Mrk 334,

Mrk 1126, and UM 146, have broad Balmer decrements of 2.7, 4.7, and 3.2 respectively; in

Mrk 334 and UM 146, the reddening of the NLR is actually higher than the reddening of
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the BLR, while in Mrk 1126 the BLR and NLR reddenings are consistent with each other

within their error bars.

If, as our results seem to suggest, most 1.8s and at least half 1.9s have unreddened BLRs,

how did these objects gain their reputation for large broad Balmer decrements? The original

study by Osterbrock contained only five objects, three 1.9s, Mrk 423, Mrk 1018, and V Zw

317, and two 1.8s, Mrk 516 and Mrk 609. Our study shows Mrk 609 has an unreddened

BLR (see Chapter 6). Though we have no way of measuring the BLR reddening in Mrk 516,

which appears as a LINER 2 in our spectra, the classification of LINER in itself implies a

history of low ionizing flux. This study also seemed to show high Balmer decrements in the

1.9s; Osterbrock presents broad Balmer decrements of 9.9, 8.9, and 15 for Mrk 423, Mrk

1018, and V Zw 317, respectively. However, these measurements are certain to have large

errors (after all, the definition of 1.9 is that it has no broad Hβ). Furthermore, Mrk 423’s

spectrum is heavily contaminated by the spectrum of the underlying host galaxy, and was

one of the most difficult continua in our sample to fit with a template host galaxy. The

choice and scaling of the template spectrum can lead to large differences in the observed line

ratios, and an inaccurate fit may have played a role in their measurement of Mrk 423’s steep

broad Balmer decrement (we measured (fHα/fHβ)broad ∼4.6).

The results presented by Goodrich (1995), in which he shows changes in the broad-line

fluxes of Hα and Hβ to be consistent with the same change in reddening in three 1.8/1.9s,

may also have been misleading. A change in line ratios inconsistent with reddening essentially

proves, for lack of a viable alternative, that intrinsic continuum fluctuations are responsible.

However, changes in line ratios consistent with reddening changes do not prove that variable

reddening is at work; it has been shown that the the Balmer decrement may steepen as
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luminosity decreases, in a manner that can mimic an increase in reddening (Korista & Goad

2004).

Only two of the nine objects that varied in type in Table 7.1 have undergone changes

possibly due to variable reddening: Mrk 915 and Mrk 993. Mrk 915 is labeled as “inter-

nally reddened” because of the seemingly higher reddening of the BLR than the NLR of

this object. The higher reddening of the BLR in this object can, however, be attributed to

the dust lane that passes through its nucleus, seen in its WFPC2 image (Fig. D.8). Dust

in this lane is not likely to cause the variations seen over the 9 year period between the

observations presented in Goodrich (1995). Furthermore, Goodrich doesn’t use line ratio

changes to show that this one’s variations could be due to reddening (his second spectrum

of Mrk 915 doesn’t cover Hβ); the claim that its variations were consistent with reddening

was based on an estimation of the continuum change, which, given the uncertainties in flux

calibration, is questionable. Hence, although it is internally reddened, its variability most

likely due to intrinsic continuum changes. Furthermore, though Tran et al. (1992) suggest

Mrk 993’s variability is likely due to variable line of sight extinction, they do not rule out

continuum variability as a possibility.

7.1.3 Pure Seyfert 2s

Over the past few years, interest has increased in objects now called “pure” or “true” Seyfert

2s, AGN in which it it appears we have a clear view to their nuclei from their unabsorbed

X-ray spectra, but there is no sign of the broad-line region in the optical, in apparent contra-

diction of the orientation-dependent unified model. Our study has found two such objects,
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Mrk 609 and Mrk 883. Both are optically classified as Seyfert 2s, yet both have X-ray spectra

that are almost completely unabsorbed. Several suggestions have been proffered to explain

these objects in the context of the unified model, but none seems to explain our data for

Mrk 609 or Mrk 883.

First, it has been theorized that the objects which appear as pure Seyfert 2s are Compton-

thick objects, such that the powerlaw turnover due to absorption occurs beyond 10 keV, and

thus out of the energy range observed by most X-ray missions. However, this idea has been

ruled out for many true Seyfert 2 candidates on the basis that their spectra do not show

Fe Kα lines with high equivalent widths, indicating that their continua are not reflection-

dominated, and also because their X-ray to [O III] luminosity ratios are similar to Seyfert

1s, indicating that they are unabsorbed (Panessa & Bassani 2002). This is also the case

for Mrk 609 and Mrk 883; neither shows strong Fe Kα in their XMM spectra, and their X-

ray luminosities do not seem to be under-luminous compared with their [O III] luminosities

(both are plotted in the upper left part of Fig. 4.6).

Secondly, it has been proposed that the absorption exists, but has been filled in by soft

emission from other sources in the area surrounding the AGN (Ghosh et al. 2007). At least

for Mrk 609 or Mrk 883, this explanation also doesn’t seem to work as it is unlikely that such

soft emission would exactly fill in the lost absorption such that one still observes a smooth

power-law in the high-quality XMM spectra (Γ = 1.6 for Mrk 609 and Γ = 1.7 for Mrk 883).

Finally, it has been suggested that the (for the most part) non-simultaneous X-ray and

optical observations can catch a variable AGN in two different states. Again, this explanation

seems unlikely for Mrk 609 and Mrk 883. Although we do not have simultaneous observa-

tions, we have multiple optical observations of Mrk 609 and Mrk 883 that bracket the X-ray
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observations, none of which show evidence for variability. For instance, Mrk 609 consistently

optically appears as a type 2 in 2001 January (spectrum from SDSS), 2007 November (spec-

trum from CTIO), and January 2009 (spectrum from Lowell), yet it was observed to be

unobscured by XMM in August 2002 and January 2007. Variations such that it was always

caught in an obscured state when observed in the optical but in an unobscured in the X-ray

are certainly unlikely. The same is true for Mrk 883. We have optical observations of Mrk

883 as a type 2 from August 2004 (spectrum from SDSS) and January 2009 (spectrum from

Lowell), and it was observed by XMM between these observations, in August 2006.

However, because both objects were observed to have broad Balmer lines at some point

in the past (Mrk 609 was observed to have broad lines by Rudy et al. (1988) in 1984, and

Mrk 883 was observed to have broad lines by Goodrich (1995) in 1993), variability may still

provide the answer to this apparent paradox. Further investigation with simultaneous X-ray

and optical data is needed to develop a satisfactory explanation for these intriguing objects.

7.2 Conclusions

7.2.1 Summary

We have collected evidence from different wavebands to determine the presence and location

of dust in a sample of 35 Seyfert 1.8/1.9s. We used optical spectra to determine the redden-

ing of the NLR and BLR, X-ray data from XMM to determine the total hydrogen column to

the source, and we determined variability from a literature search. From this, we determined

that Seyfert 1.8/1.9s are an almost equal mix of low-flux objects with unreddened BLRs, and

objects with BLRs reddened by an internal dust source, either the torus or dust structures
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in the vicinity of the NLR. Seyfert 1.8s are fewer than their reported numbers, due to the

difficulty in detecting a weak broad component of the Hβ line. Because they are so few,

generalizations are problematic, but all of our three 1.8s seem be low-flux objects that do

not suffer additional reddening of their BLRs. For Seyfert 1.9s, one often cannot tell if they

are reddened or not, due to the weakness of their broad components. Because the reddenings

of the BLRs of these objects are not consistently higher than the reddenings of their NLRs,

our study does not provide evidence that these objects are being viewed along a line of sight

that grazes the atmosphere of a central dusty torus. Dust spirals on the same size scale

as the NLR may instead be responsible for the BLR reddening, as these features appear to

randomly cut across the NLR, sometimes blocking the central AGN, and sometimes not.

NGC 2622, NGC 5252 and UGC 7064 are internally reddened 1.9s that do not show obvious

dust structure crossing their nuclei in their HST WFPC2 images. These objects may be

cases where the BLR is reddened by torus dust; additional study is needed to test this.

7.2.2 Future Directions

Many of the ambiguities that plagued our current work could be solved with HST STIS

observations of 1.8/1.9s. In our groundbased spectra, analysis of the nuclear continuum is

out of the question; less than 20% of the observed continuum is attributable to the AGN

in most of our spectra. HST’s high resolution allows nuclear spectra to be taken without

the contamination from the host galaxy. The continuum shape would instantly reveal the

reddening of the continuum, and this would be of particular use in determining if reddening

affects the BLRs of 1.9s. Furthermore, by comparing the observed continuum with that of an
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unreddened Seyfert (i.e., a Seyfert 1), the reddening curve of the dust effecting the extinction

could be determined (see Crenshaw et al. 2001), giving information about the composition

and size distribution of the grains. In those objects found to be internally reddened that

do not show nuclear dust lanes/spirals on the scale of the NLR that could account for the

BLR/continuum reddening, this could lead to the first observational hints of the dust prop-

erties of the torus.

Another very interesting project will be to find an explanation for the apparent lack of

broad lines in our two “pure” Seyfert 2 candidates. Simultaneous X-ray and optical data

will provide the key evidence for understanding these interesting objects.
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– A –

Continuum-Subtracted Optical Spectra

This Appendix presents the continuum-subtracted optical spectra used to measure the red-

denings in Table 3.3.
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Figure A.1 Continuum-subtracted optical spectra: IRAS 18325-5926, Mrk 334, and Mrk 423
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Figure A.2 Continuum-subtracted optical spectra: Mrk 471, Mrk 516, and Mrk 609
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Figure A.3 Continuum-subtracted optical spectra: Mrk 622, Mrk 728, and Mrk 883
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Figure A.4 Continuum-subtracted optical spectra: Mrk 915, Mrk 993, and Mrk 1018
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Figure A.5 Continuum-subtracted optical spectra: Mrk 1126, Mrk 1179, and Mrk 1320
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Figure A.6 Continuum-subtracted optical spectra: NGC 1365, NGC 1808, and NGC 2622
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Figure A.7 Continuum-subtracted optical spectra: NGC 2639, NGC 2992, and NGC 3786
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Figure A.8 Continuum-subtracted optical spectra: NGC 3982, NGC 4388, and NGC 4639
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Figure A.9 Continuum-subtracted optical spectra: NGC 5033, NGC 5252, and NGC 5273
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Figure A.10 Continuum-subtracted optical spectra: NGC 5506, NGC 5674, and NGC 7314
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Figure A.11 Continuum-subtracted optical spectra: NGC 7479, UGC 12138, and UGC 7064
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Figure A.12 Continuum-subtracted optical spectra: UM 146
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– B –

Hα Profiles

This Appendix presents plots of the Hα profile after [N II] subtraction. The [O III] λ5007

profile, scaled to match the peak of Hα in flux, is overplotted with a dashed line at the

centroid of Hα for a comparison of their widths. The Hβ line can be see at the far left end

of the plots.

The definitions of the different types are from Maiolino & Rieke (1995) ([O III] refers to

the [O III] λ5007 emission line in these definitions):

• Seyfert 1: Objects showing broad Hβ emission line with [O III]/Hβ < 0.3

• Seyfert 1.2: Objects showing broad Hβ with 0.3 < [O III]/Hβ < 1

• Seyfert 1.5: Objects showing broad Hβ with 1 < [O III]/Hβ < 4

• Seyfert 1.8: Objects showing broad Hβ with 4 < [O III]/Hβ

• Seyfert 1.9: Objects not showing broad Hβ, but having broad Hα
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Figure B.1 Hα profiles for IRAS 18325-5926, Mrk 334, and Mrk 423
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Figure B.2 Hα profiles for Mrk 471, Mrk 516, and Mrk 609
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Figure B.3 Hα profiles for Mrk 622, Mrk 728, and Mrk 883
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Figure B.4 Hα profiles for Mrk 915, Mrk 993, and Mrk 1018
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Figure B.5 Hα profiles for Mrk 1126, Mrk 1179, and Mrk 1320
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Figure B.6 Hα profiles for NGC 1365, NGC 1808, and NGC 2622
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Figure B.7 Hα profiles for NGC 2639, NGC 2992, and NGC 3786
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Figure B.8 Hα profiles for NGC 3982, NGC 4388, and NGC 4639
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Figure B.9 Hα profiles for NGC 5033, NGC 5252, and NGC 5273
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Figure B.10 Hα profiles for NGC 5506, NGC 5674, and NGC 7314
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Figure B.11 Hα profiles for NGC 7479, NGC 7603, and UGC 7064
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Figure B.12 Hα profiles for UGC 12138 and UM 146
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– C –

X-ray Spectra
This Appendix presents the XMM EPIC pn 0.5-10 keV spectra discussed in Chapter 4. The
total model (solid line) is the sum of its additive components (dotted lines).
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Figure C.1 IRAS 18325-5926, observed 5 March 2001
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Figure C.2 Mrk 609, observed 13 August 2002
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Figure C.3 Mrk 609, observed 27 January 2007
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Figure C.4 Mrk 622, observed 2 April 2003
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Figure C.5 Mrk 728, observed 23 May 2002
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Figure C.6 Mrk 883, observed 13 August 2006
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Figure C.7 Mrk 883, observed 15 August 2006
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Figure C.8 Mrk 883, observed 21 August 2006
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Figure C.9 Mrk 993, observed 23 January 2004
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Figure C.10 Mrk 1018, observed 15 January 2005
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Figure C.11 NGC 1365, observed 17 January 2004
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Figure C.12 NGC 1365, observed 24 July 2004
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Figure C.13 NGC 1808, observed 6 April 2002
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Figure C.14 NGC 2622, observed 9 April 2005
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Figure C.15 NGC 2992, observed 19 May 2003
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Figure C.16 NGC 3786, observed 24 May 2004
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Figure C.17 NGC 3982, observed 15 June 2004
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Figure C.18 NGC 4388, observed 12 December 2002
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Figure C.19 NGC 4639, observed 16 December 2001
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Figure C.20 NGC 5033, observed 18 December 2002
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Figure C.21 NGC 5252, observed 18 July 2003
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Figure C.22 NGC 5273, observed 14 June 2002
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Figure C.23 NGC 5506, observed 2 February 2001
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Figure C.24 NGC 5506, observed 9 January 2002
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Figure C.25 NGC 5506, observed 7 August 2004
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Figure C.26 NGC 7314, observed 2 May 2001
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Figure C.27 NGC 7479, observed 19 June 2001
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Figure C.28 NGC 7603, observed 14 June 2006
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Figure C.29 UGC 12138, observed 3 June 2001
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– D –

WFPC2 Structure Maps

This section presents the WFPC2 structure maps discussed in Chapter 5.

Figure D.1 Structure Map of IRAS 18325-5926
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Figure D.2 Structure Map of Mrk 334

Figure D.3 Structure Map of Mrk 423
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Figure D.4 Structure Map of Mrk 471

Figure D.5 Structure Map of Mrk 516
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Figure D.6 Structure Map of Mrk 609

Figure D.7 Structure Map of Mrk 622
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Figure D.8 Structure Map of Mrk 915

Figure D.9 Structure Map of Mrk 993
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Figure D.10 Structure Map of Mrk 1126

Figure D.11 Structure Map of NGC 1365
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Figure D.12 Structure Map of NGC 2622

Figure D.13 Structure Map of NGC 2639
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Figure D.14 Structure Map of NGC 2992

Figure D.15 Structure Map of NGC 3786
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Figure D.16 Structure Map of NGC 3982

Figure D.17 Structure Map of NGC 4388
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Figure D.18 Structure Map of NGC 4639

Figure D.19 Structure Map of NGC 5033
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Figure D.20 Structure Map of NGC 5252

Figure D.21 Structure Map of NGC 5273
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Figure D.22 Structure Map of NGC 5506

Figure D.23 Structure Map of NGC 5674
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Figure D.24 Structure Map of NGC 7314

Figure D.25 Structure Map of NGC 7479
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Figure D.26 Structure Map of NGC 7603

Figure D.27 Structure Map of UGC 12138
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Figure D.28 Structure Map of UGC 7064

Figure D.29 Structure Map of UM 146
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– E –

Spitzer IRS Spectra

This Appendix presents the Spitzer IRS spectra discussed in Chapter 5.
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Spitzer IRS spectra of Seyferts: Mrk 334, Mrk 471, Mrk 609, and Mrk 622
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Spitzer IRS spectra of Seyferts: Mrk 883, NGC 1365, NGC 2622, and NGC 2639
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Spitzer IRS spectra of Seyferts: NGC 2992, NGC 3786, NGC 3982, and NGC 7314
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Spitzer IRS spectra of Seyferts: NGC 7603, UGC 12138, UGC 7064, and UM 146
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