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DEVELOPMENT OF COSMIC RAY SIMULATION PROGRAM –

EARTH COSMIC RAY SHOWER (ECRS)

by

Sampath Sanjeewa Hakmana Witharana

Under the direction of Xiaochun He

ABSTRACT

ECRS is a program for the detailed simulation of extensive air shower initiated

by high energy cosmic ray particles. In this dissertation work, a Geant4 based ECRS

simulation was designed and developed to study secondary cosmic ray particle showers in

the full range of Earth’s atmosphere. A proper atmospheric air density and geomagnetic

field are implemented in order to correctly simulate the charged particles interactions in the

Earth’s atmosphere.

The initial simulation was done for the Atlanta (33.460 N , 84.250 W) region. Four

different types of primary proton energies (109, 1010, 1011 and 1012 eV) were considered to

determine the secondary particle distribution at the Earth’s surface. The geomagnetic field

and atmospheric air density have considerable effects on the muon particle distribution at

the Earth’s surface.

The muon charge ratio at the Earth’s surface was studied with ECRS simulation

for two different geomagnetic locations: Atlanta, Georgia, USA and Lynn Lake, Manitoba,

Canada. The simulation results are shown in excellent agreement with the data from NMSU-

WIZARD/CAPRICE and BESS experiments at Lynn Lake. At low momentum, ground



level muon charge ratios show latitude dependent geomagnetic effects for both Atlanta

and Lynn Lake from the simulation. The simulated charge ratio is 1.20 ± 0.05 (without

geomagnetic field), 1.12 ± 0.05 (with geomagnetic field) for Atlanta and 1.22 ± 0.04 (with

geomagnetic field) for Lynn Lake. These types of studies are very important for analyzing

secondary cosmic ray muon flux distribution at the Earth’s surface and can be used to study

the atmospheric neutrino oscillations.

Keywords: Cosmic rays, Monte Carlo simulation, Air shower, Geomagnetic

Field, Geant4
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Chapter 1

Introduction

Since the discovery of cosmic rays early in the twentieth century, many experiments

have been developed to study cosmic ray radiation. A big effort has been made to study

cosmic rays’ propagation, acceleration, and interaction with the electromagnetic radiation

and the interstellar matter. These studies have provided important information about the

interstellar matter and magnetic fields in interstellar matter, remnants of supernova, and

spinning neutron stars, as well as specific information concerning cosmic ray sources. How-

ever, fundamental questions concerning the nature of dark matter, the matter-antimatter

symmetry of the universe, particle origin and acceleration are still not completely under-

stood. From the astrophysics point of view, there are some difficulties in fully understanding

the origin of cosmic rays with energies above 1015 eV. It is unknown, at the present time, the

origin of primary proton energies above about 4×1019 eV, based on GZK 1 cutoff theory.

This theory pointed out that the universe is not transparent to protons with energies above

about 4×1019 eV as they interact with the 2.7K microwave background radiation.
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It is also known that cosmic ray radiation is involved in different scientific applica-

tions including soft fails in electronic logic or memories, 2 muon radiography for detection

of high Z material 3, and monitoring the environmental or biological effects of cosmic ray

particles 4 etc. In order to study these in details, it is necessary to know the atmospheric

cosmic ray flux of high energetic charged particles. Even though many experiments have

been performed in the study of the cosmic ray flux, detailed cosmic ray shower development

is far too complex to be fully described by only experimental data. Therefore it is important

to model by simulation of transport and interaction of each individual cosmic ray shower

particle employing our present knowledge on interactions, decays, and particle transport in

matter.

In this dissertation, details of a new simulation toolkit, so–called ECRS (Earth

Cosmic Ray Shower) for cosmic ray studies, are presented. ECRS is a useful and flexible

tool to study high energy cosmic ray interactions, to support the interpretation of extensive

air shower measurements, and to optimize the design of future cosmic ray experiments. The

dissertation is organized as follows:

A brief introduction to the history of cosmic ray research is provided in chapter

2. Following the introduction, primary and secondary cosmic ray fluxes are presented with

their properties and common detection methods. More details of both indirect and direct

detection techniques, and their limitations are also presented.

The details of Geant4 toolkit are given in Chapter 3. Geant4 plays a major role in

the simulation study, and the ECRS simulation programme is developed based on Geant4.

More specific details of Geant4, including architecture, geometry, physics processes, and
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particle tracking are presented.

The novel features of the ECRS simulation are discussed in Chapter 4. The im-

portant and distinguishing features of ECRS are presented with geomagnetic field imple-

mentation. The geomagnetic field consistency results are also provided.

The analysis of secondary cosmic ray showers for four different primary energies

from the ECRS simulation are described in Chapter 5. Both of the magnetic field and the

density effects are presented. The chapter also contains preliminary results discussed with

the theoretical model.

The details of an extensive cosmic ray air shower study of the muon charge ratio

from the ECRS simulation are presented in chapter 6. The details of regenerated primary

particle energy distribution and simulation procedure are also discussed. The simulated

results are compared with two sets of experimental data.

The conclusion of this dissertation work and the discussion of the future work that

can be carried out from this work are presented in Chapter 7.
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Chapter 2

Cosmic Rays

2.1 History

The study of radioactive materials in the period from 1898 to 1912 was very inter-

esting because this field offered direct insight into the nature of the atom, whose structure

was still unknown. Electrometers were often used to measure the very small flux of par-

ticles coming from radioactive materials. In these detectors, the current leaking between

two electrodes under the voltage called leakage current can be observed without ionization

caused by the passage of charged particles. Victor Hess studied this phenomenon by taking

electrometers onto lakes where there should have been less contamination (no change in

leakage) and into caves (leakage disappeared). Finally, in 1912, Victor Hess and two assis-

tants solved the problem by flying in a balloon to an altitude of about 6 km and discovered

the evidence of a very penetrating radiation coming from outside our atmosphere. Figures

2.1 (a) and (b) 5 show the results of Victor Hess’s study of cosmic ray radiation. This

was the first observation of cosmic rays. In general, cosmic rays are high-energy charged
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particles, mainly protons, originating in outer space, that travel at nearly the speed of

light and strike the Earth from all directions. For this work, Hess was awarded the Nobel

prize in 1936. His work was immediately followed by more detailed studies such as that

of Kolhrster, who showed that the particle flux increases very rapidly with altitude, with

a 10-fold increase at only 10 km. Finally, Pfotzer showed in 1936 that the flux does not

continue to increase, but reaches a peak at about 15 km, after which it diminishes rapidly.

Fig. 2.1 (c) 6 shows the exponential increase in cosmic rays with altitude up to a height of

about 15 km.

Before man-made accelerators reached high energies (GeV), from the period of

the 1930s to 1950s, cosmic rays were used as a main source of particles for high energy

physics investigations. During this period new types of subatomic particles including the

positron and the muon were investigated. Although these applications continue, since the

dawn of the space age, the main focus of cosmic ray research has been directed towards

astrophysical investigations of where cosmic rays originate, how they get accelerated to

such high velocities, what role they play in the dynamics of the Galaxy, and what their

composition tells us about matter from outside the solar system.
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Figure 2.1: (a) and (b) 5 in 1912, Victor Hess used a balloon to take two ionization chambers
up to a height of about 6 km, and showed that the flux of particles increases with altitude.
(c) 6 Pfotzer showed in 1936 that there is an exponential increase in cosmic rays with
altitude up to a height of about 15 km, after which it decreases.
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The origin of high-energy cosmic rays remains an important unsolved problem in

astrophysics. Possible sources are the Sun, other stars, and more exotic objects, such as

supernovae and their remnants, neutron stars and black holes, as well as active galactic

nuclei and radio galaxies. Cosmic rays are mainly categorized into three major groups 7:

• Galactic Cosmic Rays (GCR) – The source of GCR is not known, but they

originate far outside our solar system. GCR are the most typical cosmic rays, and

their flux in the solar system is modulated by solar activity.

• Solar Cosmic Rays (SCR) – SCR energetic particles originate mostly from solar

flares, coronal mass ejections, and shocks in the interplanetary medium. SCR particles

have energies up to several hundred MeV/nucleon. During strong solar flares, the flux

of cosmic rays at the Earth’s orbit can increase by hundred percent over the course

of hours or days.

• Anomalous Cosmic Rays (ACR) – ACR are most likely produced by neutral

atoms in interstellar space. These are ionized by solar UV radiation or charge ex-

change with the solar wind. They are then picked up and convected back to the outer

heliosphere.

The acceleration of these cosmic rays is still partly an open question, especially in

the ultra high energy range. It is currently thought that galactic cosmic rays up to about

1015 eV are accelerated at shocks driven by supernova explosions via the mechanism of

diffusive shock acceleration. In this theory, charged particles are accelerated as they scatter

within the converging plasma flow across the shock8. The close association of energetic
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particles with collisionless shocks observed in interplanetary space, as well as those at the

Earth’s bow shock, provide direct, convincing evidence that astrophysical shocks accelerate

particles to high energies.

Each of the above categorized cosmic rays is divided into two major groups, namely

primary cosmic rays and secondary cosmic rays. Particles which start showers are referred

to as primary cosmic rays. The particles created in the air shower are known as secondary

cosmic rays. Numerous secondary particles are produced when primary cosmic rays interact

with the atmosphere that pass right through everyone’s body every second.

2.2 Primary Cosmic Ray Distribution

Primary cosmic rays are stable charged particles that have been accelerated to

enormous energies by astrophysical sources somewhere in our universe. Particle detectors

in satellites, and a serious of more precise measurements have determined that primary

cosmic ray particles consist of 92% protons and 6% alpha particles, with the remainder

being heavy nuclei. Figure 2.2 9 shows the major components of primary cosmic rays as a

function of energy.
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Figure 2.2: Major components of primary cosmic rays as a function of energy.
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The primary cosmic ray energy spectrum is represented by a power-law function

dN/dE ∝ Eγ in a wide range from about 109 to 1020 eV, where dN/dE is the differential

flux, E is the energy per nucleon, and γ is the differential spectral index of the cosmic

ray flux. Figure 2.3 shows the primary cosmic power-law flux distribution as a function of

energy. The spectra of primary particles have been measured in a variety of ways, including

particle detectors in satellites, balloon–borne detectors, counters that monitor the flux of

neutrons and muons at the Earth’s surface, and at higher energies by wide area arrays of

particle detectors. In the spectrum, the flux decreases, from values of several 1000 (m2

sr s)−1 at GeV energies, to values below 0.01 (km2 sr year)−1, at energies exceeding 1015

eV. The spectrum can be divided into four regions with very distinct behavior. There are

energies below 1 GeV, energies from 1 GeV to a knee around 4×1015eV, a second knee at

about 400×1015 eV, and an ankle above 4×1020eV 10, 11.

The first energy region, with energies below 1 GeV, has a very distinctive character.

Its shape and cut-off is strongly dependent on the phase of the solar cycle, which means

that low-energy, incoming charged particles are modulated by the solar wind. Significant

correlations between solar activity (eleven year cycle) and the intensity of low energy cosmic

rays have been observed in several experiments12. In addition, the lower-energy cosmic rays

are affected by the geomagnetic field, which they must penetrate to reach the top of the

atmosphere. The second energy region, with energies between 1 GeV and the first knee

region, is characterized by differential spectral index γ = 2.7. Current studies suggest that

these cosmic rays are most likely produced in supernova explosions. This is based on their

distinctive chemical composition. The elements carbon, nitrogen, oxygen, and those from
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the iron group, have the same relative abundance in the solar system and in cosmic rays.

For the third energy region, from the second knee to the ankle at 4×1020 eV, the spectral

index γ steepens to 3.2. The origin of the cosmic rays in this region is unclear and is a

subject of much debate. Above the ankle, the spectrum flattens again to spectral index γ

= 2.8, and this is interpreted as a cross–over from the steeper, galactic component, to a

harder, extra–galactic source 13, 14.
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Figure 2.3: The primary energy spectrum of cosmic rays shows changes of power-law at the
knee region. The blue straight line and red curved line represent the theoretical power-law,
and experimental measurement, respectively.
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2.3 Secondary Cosmic Ray Shower

Primary high energy cosmic ray particles, mostly protons, interact with atmo-

spheric matter primarily through the strong interaction and create numerous particles called

secondary cosmic rays. Figure 2.4 shows possible secondary cosmic ray particle components

and branches in the atmosphere. Secondary cosmic ray cascade components can be divided

into three groups: muonic, hadronic, electromagnetic.

When a high energy primary particle impacts atomic nuclei of air atoms in the

upper atmosphere pions and kaons are produced. Mesons are produced in the hadronic decay

and give rise to the muonic component. Mostly, charged pions decay within a relatively

short distance (meters) into muons and neutrinos. Neutral pions decay into two gamma–

rays. A muon interacts very little with matter except through ionization. Because of this,

muons can travel large distances and commonly reach the Earth’s surface. Most muons are

produced at an altitude about 15 km in the atmosphere and lose about 3 GeV to ionization

before reaching the Earth’s surface. Some of these muons decay into an electron or positron,

a neutrino and an antineutrino before reach the Earth’s surface.

The electromagnetic component consists of electrons and positrons initiated by

decay of neutral and charged mesons. Muon decay is the dominant source of low-energy

electrons at sea level. The gamma rays from the neutral pions may create new particles,

electrons and positrons, by the pair-creation process. Electrons and positrons may produce

more gamma rays by bremsstrahlung radiation. Secondary photons then undergo pair pro-

duction or produce Compton electrons. The secondary electrons and positrons can radiate

more photons in a multiplicative process. This multiplication continues until the ioniza-
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Figure 2.4: Schematic representation of several possible secondary particle branches of the
atmospheric cosmic ray cascade.

tion losses start to dominate the radiation losses, dissipating all their energy in excitation

and ionization of atoms. Knock-out electrons also make a small contribution to shower

development at low energy.
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2.4 Cosmic Ray Particle Detection Methods

A number of different detection techniques have been developed for cosmic ray

studies. These detector techniques can be divided into two groups, namely direct experiment

and indirect experiment. While direct experiments are focused on primary particle detection

at high altitude (above 15 km), indirect experiments detect extensive air shower (EAS),

or secondary cosmic rays in ground based observation. Indeed direct measurements are

generally capable of detecting individual primary cosmic ray nuclei, and provide a direct

measurement of their spectra. Ground–based indirect measurements can infer information

about the nature and energy of primary particles only from the EAS originating from their

interaction with air nuclei. Indirect measurements can be subdivided into different detection

techniques such as detection of charge and muon particles in ground–based air shower

experiments, detection of deep underground muons, Cherenkov light detectors, fluorescent

light detectors, and a combination of all of the above techniques. Figure 2.5 shows common

direct and indirect detection methods for cosmic ray shower studies.
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Figure 2.5: Schematic diagram of cosmic ray detection methods for cosmic ray showers.
Balloon and satellite experiments are used to measure the primary cosmic ray components.
Cherenkov, fluorescent, and ground–based air shower array experiments are carried out to
measure the secondary shower components.
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2.4.1 Direct Experimental Methods

The main purpose of this type of experiment is to detect primary cosmic ray

particles and measure their charges, energies, and directions by using balloon or satellite–

based instruments at high altitudes. Some of the experimental measurements, like those of

the GSFC group 15 in balloons and the proton satellite experiment 16, have reached the

second knee and a little beyond, but with limited charge and energy resolution. Calorimetric

experiments include emulsion chamber instruments, such as JACEE 21 and RUNJOB 18,

and have accumulated enough exposure to reach the knee. The ATIC 19 experiment has

shown good charge and energy measurements, but below the knee. Other experiments have

also incorporated transition radiation detectors and gaseous Chereknov counters for energy

measurement, such as the TRACER 20 balloon instrument, which has shown excellent

charge resolution.

2.4.2 Indirect Experimental Methods

Indirect measurements are mainly concerned with energies above the first knee

region, studying the secondary air shower energy, lateral distribution, longitudinal distri-

bution, and propagation time.

In air, particles travel faster than the speed of the light. The result is that they

emit light called Cerenkov radiation. The Cerenkov light is beamed in the forward direction

of the air shower, and can be measured with optical detectors. Another indirect technique,

called fluorescent light detection is used to measure the energy and arrival time of primary

particles. The amount of light collected can then be used to estimate the total amount of



18

energy released from the fluorescent light detectors. The scintillation light is detected using

a lens or a mirror, and imaged onto a camera located at the focal plane. This fluorescence

technique can be made to work on clear moonless nights using very fast camera elements

to record light flashes a few microseconds in duration. Some of the experiments, such as

HiRes 22, DICE 23, BLANCA 24, and CACTI 25, measure the profile of the cascade and

total energy deposition by either Cherenkov radiation or air fluorescence event by event

technique.

The other common indirect detection method is ground based air shower array

technique, which has explored cosmic rays with energies above 100 TeV. This type of ex-

periment consists of many detectors, typically 100 or more, located over hundreds of meters

associated with data acquisition and Global Positioning System (GPS) units. The direction

of the primary cosmic rays can be calculated by measuring the time of arrival of the shower

front at the individual stations. Also, air shower arrays can be used to study the composition

and energy spectra of cosmic rays in the knee region. They measure the lateral distributions

of electrons and muons with scintillation counters, and also sample the hadronic components

of showers. More well known experiments of this kind such as KASKADE 26, TIBET 27,

and Akeno 28 detect the particles in showers at selected observation level, measuring lateral

distribution, energy and time of arrival. Also, AUGUR 83, BLANCA , and HiRes-CASA

measure the longitudinal and lateral profiles in shower event by event measurement.
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Chapter 3

Geant4 – Simulation Toolkit

3.1 Introduction

Geant4 is a result of two independent projects done at CERN, Europe and KEK,

Japan 29 in 1993. Both groups sought to investigate robust computer software framework

for particle detector simulation for high energy particle physics by improving the existing

Geant3 30 program. Later, these two activities merged and a proposal was submitted to

the CERN detector research and development committee to construct a simulation program

based on an object-oriented programming. Initially, more than 100 scientists and engineers

from more than 10 experiments in Europe, Russia, Japan, Canada, and the United Sates

engaged in the collaboration. In December 1998, the first research and development was

completed, and the Geant4 collaboration was established in January 1999 to continue the

development and refinement of the toolkit and to provide maintenance and user support.

Currently, Geant4 has been applied to different research fields such as medicine,

astronomy, space science, and radiation protection. Several studies have reported the vali-
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dation of the physics processes in Geant4 and its applications 31, 32.

3.2 Geant4 Design

Geant4 is a general purpose toolkit, written in an advanced software engineering

technique based on object-oriented methodology and C++ for the simulation of the pas-

sage of particles through matter. It provides a comprehensive set of particles, detector

geometries, materials, tracking management, detector response and visualization, and user

interface. It also provides extensive physics processes such as electromagnetic, hadronic and

optical physics to describe interactions of particles with matter across a wide energy range.

In addition there is a large set of utilities, including a set of random number generators,

physics units and constants, and particle data group compliant particle management.

Users can construct stand-alone applications built upon an object-oriented frame-

work. Its modular architecture enables the user to pick only necessary modular components

according to the specific needs. The common modular and hierarchical structure for the

Geant4 toolkit is shown in Fig. 3.1, where sub categories are linked by a uni–directional

flow of dependencies.
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Figure 3.1: Hierarchical structure of the Geant4 toolkit. The open circles on the joining
lines represent a relationship to the adjoined category.
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Categories at the bottom of the diagram in Fig. 3.1 are used by virtually all higher

categories and provide the foundation of the toolkit. The global category covers the system

units, constants, numerics, and random number handling. The two categories, material

and particles, are used to describe the physical properties of particles and materials for

the simulation of particle–matter interactions. The geometry category provides the ability

to describe a geometrical structure and propagate a particle efficiently through it. The

track category contains classes for tracks and steps, used by the processes category. The

processes category contains implementations of modules of physical interactions: electro-

magnetic interactions of leptons, photons, hadrons, ions, and hadronic. All processes are

invoked by the tracking category, which manages their contributions to the evolution of the

track’s state, and provides information in the sensitive volume for hits and digitization. The

event category manages the events in terms of their tracks and the run category manages

collections of the events that share a common beam and detector implementation.

In general, the key categories of the simulation of the passage of particles through

matter are:

• Geometry and materials

• Particle interaction in matter

• Event and tracking management

• Digitization and hit management

• Visualization and User interface
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3.2.1 Geometry and Materials

Geant4 has the ability to create a geometrical model with a large number of com-

ponents of different shapes and materials, and to define sensitive elements that record

information needed to simulate detector responses.

There are two concepts used in defining the geometry of detector construction:

the outer “world” and the inner “daughter” volumes. The world volume is a reference

volume for the first daughter volume of the detector. The world volume is conceived as the

largest volume that includes all the detector components in three-dimensional space. Each

detector component is defined as a geometrical volume whose center is placed at a point

in the reference frame of another volume. These volumes incorporate materials which are

defined as elements or compounds. Compounds are defined by their atomic composition as

given by their chemical formulae or weight fraction. Their densities at a given temperature

and pressure are also defined. In general, geometry in Geant4 refers to the volumes built

in the simulation with appropriate materials. These geometries can be defined as sensitive

components that record information on particle hits.

3.2.2 Particle Interactions in Matter

Particle interaction in matter is associated with particle types and their energies.

Once primary particles are initiated with appropriate physics processes, they are tracked

through the system until they stop, decay, or are transported beyond the limits of the world

volume. The generation of primary particles can be done using the event generator or the

particle gun class, which can create a beam of particles incorporated with its type, position,
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direction of motion, and kinetic energy.

For propagating particles between two interaction points, their space and time

coordinates, as well as their energy have to be updated. Therefore, it is useful to distinguish

a particular initial and final state for a particle interaction or decay. Interaction or decay

is determined by the cross section of a hadronic reaction, together with the atmospheric

density distribution along the flight path, and the probability. A decay length and an

interaction length are determined independently at random, and the shorter one is taken

as the actual path length. By this procedure it is also decided whether there is a particle

decay or interaction.

Physics Processes

The Geant4 physics process list contains a variety of complementary and alter-

native physics processes covering the physics of photons, electrons, muons, hadrons, and

ions from 250 eV up to several PeV. Geant4 physics processes provide the electromagnetic

interactions of leptons, photons, hadrons, and ions. This class is further sub-divided, as

listed below.

• Standard – handling process common to all charged particles, including electron,

positron, and photon interaction

• Muons – handling muon interactions

• Hadron - handling charged hadron interactions

• Low Energy - alternative models extended down to lower energies
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• X-ray - Specific codes for X-ray physics

• Optical photons - Provides codes for optical photon interactions

Each sub–group is provided with different interaction processes, as shown in Table 3.1. The

interaction includes the processes of ionization, bremsstrahlung, multiple scattering, Comp-

ton and Rayleigh scattering, photoelectric effect, pair conversion, annihilation, synchrotron

and transition radiation, scintillation, refraction, reflection, absorption, and the Cherenkov

effect.
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Table 3.1: Electromagnetic, hadronic, and other major interactions.

Physics Class Interactions
Standard – Multiple Scattering

– Transition Radiation
– Scintillation
– Cerenkov Effect
– Photoabsorption

Muons – Ionization
– Bremsstrahlung
– Muon Photonuclear
– e− - e+ Pair Production

Electrons – Ionization
– Bremsstrahlung
– e− - e+ Annihilation
– e− - e+ Annihilation into µ− - µ+

– e− - e+ Annihilation into Hedrons
– Synchrotron Radiation

Gamma – Photoelectric Effect
– Compton Scattering
– Gamma Conversion into e− - e+

– Gamma Conversion into µ− - µ+

Hadron – Ionization
– Delta-ray Production

Low Energy – Compton Scattering
– Rayleigh Scattering
– Gamma Conversion
– Photoelectric Effect
– Bremsstrahlung

Optical photons – Interactions of optical photons



27

The standard electromagnetic process category provides a variety of implementa-

tions of electron, positron, photon and charged hadron interactions. The photon processes

include Compton scattering, γ–conversion into electron and muon pairs 34, and the pho-

toelectric effect. Electron and positron processes include bremsstrahlung, ionization, δ–ray

production, positron annihilation, and synchrotron radiation. The energy loss process man-

ages the continuous energy loss of particles due to ionization and bremsstrahlung. Multiple

scattering processes are included for all charged particles.

Three processes contribute to the energy loss of muons: bremsstrahlung, ioniza-

tion, and the direct production of electron positron pairs. Each processes also simulates the

corresponding discrete δ–ray production process. Furthermore, Geant4 provides the nuclear

interaction of muons on the production of hadrons 36. This is important for the simulation

of high energy cosmic rays with high energy muons, muon propagation, and muon-induced

hadronic backgrounds at energies above 10 GeV.

The continuous energy loss of charged hadrons is mainly contributed to by ion-

ization, which also stimulates the direct process of δ–ray production. Geant4 includes

photonuclear reactions which convert the energy flow of electrons, positrons, and photons

into the energy flow of mesons, baryons, and nuclear fragments.

A set of physics processes is implemented in Geant4 for low energy electromagnetic

physics of particles, such as electrons, photons, positively and negatively charged hadrons,

and positive ions. The low energy processes include the photoelectric effect, Compton scat-

tering, Rayleigh scattering, bremsstrahlung, and ionization. A photon conversion process

is also implemented, based on experimental data. In addition, fluorescent emission from
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excited atoms is also incorporated. The implementation of electron and gamma processes

is based on data libraries that provide data for the determination of cross–sections.

There are other physics lists such as, Quark Gluon String Punch-Through (QGSP)

for high energy regimes beyond 10 GeV and the Bertini Cascade model (BERT) for hadrons

with energies lower than 10 GeV. The Bertini cascade list is implemented with excitation,

pre–equilibrium state, nuclear explosion, fission, and evaporation. Additional neutron in-

teractions (donated HP list), and gamma and electro–nuclear interactions (donated as GN

list) are also applied.

3.2.3 Event and Tracking Management

The event management is the main unit in simulation. The event management

provides an abstract interface to external physics event generators. The physics event

generator provides the primary particles that define a physics event. This event class avoids

keeping any transient information that is not meaningful after the processing of an event is

complete. It contains primary vertices and primary particles before processing the event.

After processing, it has hits and digitizations generated by the simulation, and optionally,

it can store trajectories of the simulated particles.

In the simulation, each particle is transported step–by–step through the medium.

The G4step class stores changes in the track properties between the start and end points,

including coordinates, volume, energy, and momentum. Another class, called G4Track,

keeps all information on the final status of the particle after the completion of each step.

The tracking scans all physics processes and actions for the given particle, and decides which

one is to be invoked. During the physics process characteristics are represented by following
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three tracking actions:

• At rest - particle decay at rest

• Along step - energy loss or secondary particle productions

• Post step - secondary particle production by a decay or interaction

The main functions of the tracking action are listed below:

• Actions before tracking the particles - clear secondary particles

• Pre–tracking user intervention process

• Construct a trajectory if it is requested

• Inform beginning of tracking to physics process

• Track the particle step-by-step while it is alive

• Post–tracking user intervention process

• Destroy the trajectory if it was created

3.2.4 Digitization and Hit Management

In Geant4, a hit is a snapshot of a physical interaction or an accumulation of

interactions of a track or tracks in a sensitive detector component. On the other hand,

the term “digit” represents a detector output, for example, an ADC or TDC count, or a

trigger signal. A digit is created from one or more hits and/or other digits. Geant4 provides

only the abstract classes for both detector sensitivity and hit or digit. A sensitive detector
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creates hits using the information given in the current step. Hits, which are user-defined

objects derived from class G4VHit, are collected in an event object. At tracking time, when

the step is inside a volume which has a pointer to a sensitive detector, this sensitive detector

is invoked with the current step information. In contrast to a sensitive detector, which is

invoked automatically at tracking time, the digitization module must be invoked by the

users code. Digitization may be done during event processing, at the end of each event, or

even after some number of events have been processed.

3.2.5 Visualization and User Interface

There are three main visualization drivers which have been integrated into Geant4

toolkit, such as OpenGL 37, DAWN 38, and HepRep (High Energy Physics Representable).

OPENGL is a standard specification defining a cross-language cross-platform applications

program interference for a writing application that produces 3D computer graphics. This is

widely used and suited for real–time, fast visualization. DAWN renderers high-quality, pre-

cise output visualization which is well suited to preparing technical high-quality postscript

output for presentation or documentation. HepRep is suited for visualizing 3D representa-

tions of the geometry module and trajectories in the simulation.

Various user interface tools such as Root, Perl, JAVA, etc., can be used to imple-

ment the command or GUI based interface for running the simulation code.

In the next chapter, a specific implementation of ECRS simulation is presented

for studying cosmic ray shower distribution in the atmosphere.
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Chapter 4

ECRS Simulation

Recent studies show that the cosmic ray energy spectrum extends up to ∼ 1020

eV 39, which is several orders of magnitude higher than the highest energy achieved by

man-made accelerators on the Earth. This implies that such energetic particles cannot be

detected directly and it is necessary instead to measure the secondary cosmic ray particles

produced by the primary cosmic ray interactions in the atmosphere.

The interpretation of EAS measurements is performed by comparing experimental

data with model predictions of the shower development in the atmosphere. Cosmic ray

shower development is a complex problem involving many aspects: interactions of high

energy particles, properties of the atmosphere and the geomagnetic field, etc. A Monte

Carlo simulation program is one of the most convenient and effective tools for quantitatively

analyzing the transport and interactions of each individual shower particle employing our

present knowledge on interactions, decays, and particle transport in matter.

Several simulation programs have been developed for studying the secondary cos-
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mic ray showers, such as, MOCCA 53, ARIES 41, and CROSIKA 42, which are well known

simulation programs for cosmic ray studies. However common drawbacks identified with

these codes are lack of well defined geomagnetic field and precise atmospheric models for the

particle interaction. On the other hand, all the above simulations are based on theoretical

physics interaction models (for high energy), which were derived some time ago. Knowl-

edge of high energy interactions is much improved from that of fifteen years ago. The other

common problem is that in some of these simulations it is difficult to understand in detail

which assumptions have been made in the program, specially for the interaction models.

In order to address the common problems of the existing simulation programs,

present knowledge of particle interaction models are incorporated with a geomagnetic field

and realistic air layers. For this purpose a Geant4 43 based simulation program, called

ECRS (Earth Cosmic Ray Simulation) has been developed to study secondary cosmic ray

particle showers in the full range of Earth’s atmosphere. The geometry, magnetic field

implementation, and physics processers are described in the following sections.

4.1 Structure of ECRS

The purpose of ECRS is to model secondary cosmic ray shower particles at a user

defined location in the Earth’s atmosphere. When highly energetic primary cosmic ray

particles interact with air nuclei in the upper atmosphere, they create numerous secondary

particles, each carrying a fraction of the primary energies. Although some of these secondary

particles, mainly muons are high enough in energy to reach the Earth’s surface, some

of other secondaries interact in a similar manner as the primary, generating new sets of
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secondaries. The multiplication of these processes continues until the energies of the newly

created particles are too low for further particle generation. In an air shower simulation,

it is necessary to consider all possible particle interactions and processing to model the

secondaries in the atmosphere. Also, it is very important to study the statistical distribution

of secondary particles from air shower events. To evaluate such processes, ECRS has an

internal monitoring procedure that constantly checks and records a particle’s status such

as position and energy until it reaches the Earth’s surface or another defined area.

Figure 4.1 shows a schematic modular diagram of the ECRS simulation program.

The simulation is done with a collection of interacting module. In general, every module

can be replaced virtually without altering others. Input Divide Language (IDL) is a set of

user defined input parameters which controls ECRS program execution. It mainly includes

primary particle type (mainly proton), energy, launching location, direction, and other

parameters for the visualization.
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Figure 4.1: The main structure of the ECRS program
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According to the instruction of IDL, run action is generating primary particles

event by event. It is controlled the flow of the program and managed the event loops within

a run. All necessary details of secondary particles are recorded in the event and tracking

action processes.

During the tracking and stepping actions, an output data file or visualization

is generated by monitoring the routine and control. This output file contains a list of all

secondary particles in the atmosphere together with their particle types, energies, positions,

and 3-momenta. The ECRS geometry and constrictive methods are discussed in Section

4.2.

4.2 Geometry

In the ECRS program, a real Earth scale (r = 6137 km) has been implemented

with a proper set of atmospheric layers. The density, pressure, and air chemical composition

are parameterized according to the US standard atmospheric model 44, and discussed in

the Section 4.2.2 in detail. The geomagnetic fields are implemented in ECRS in order

to correctly simulate the trajectories of charged particles created from cosmic ray particle

interactions. The geomagnetic field implementations are discussed in section 4.4.

4.2.1 Coordinate System

The ECRS coordinate system is a Cartesian coordinate system with the origin

placed at the center of the Earth. Figure 4.2 shows a schematic representation of the

coordinate system of ECRS. The XY plane is located in the equator plane and the positive
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Z-axis points upwards along the direction of geographic north.

O
′
is a user specified geographical location on the Earth’s surface above which the

initial particle is launched at given altitude. The shower axis of a shower with zenith angle

θ is defined as the straight line that passes through the intersection points of the O
′
and O.

The azimuth angle φ is the angle between the horizontal projection of the shower axis and

the X-axis. The X
′
Y
′
plane is tangent to the Earth’s surface at point O

′
. The Earth radius

re is taken as 6.3712 x 106 m from the Earth’s center.

To optimize the simulation time, all the secondary particle positions are recorded

based on an XYZ coordinate system. However it is important to convert this coordinate

system XYZ to alternative coordinate X
′
Y
′
Z
′

in order to analyze the particle shower dis-

tribution at the Earth’s surface. This can be done by rotating XYZ around the point O
′
as

shown in the appendix.
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Figure 4.2: ECRS coordinate system



38

4.2.2 Atmospheric Model

Earth’s atmosphere is a layer of air gases surrounding the Earth and retained by

the Earth’s gravity. In the air shower simulation, particle propagation strongly depends on

the atmospheric characteristics. There are two main atmospheric characteristics that have

been considered in the ECRS simulation: air density and chemical composition.

The Earth’s atmosphere has been extensively measured and studied during the

last few decades. A variety of models and parameterizations of measured data have been

published. Among them, the so-called US standard atmosphere is a widely used model

based on experimental data. This standard data was used to set up atmospheric layers in

the ECRS simulation.

The atmospheric medium is inhomogeneous and atmospheric air density plotted

as a function of altitude is shown in Fig.4.3. The density of the atmosphere diminishes six

orders of magnitude as the altitude increases from 0 to 100 km, and another additional six

orders of magnitude for the range from 100 to 300 km. The chemical composition of the

atmosphere plotted as a function of altitude is shown in Fig. 4.4. The mean molecular

weight for the chemical composition of air remains constant below 90 km in altitude, and

then diminishes for higher altitudes. This constant value (28.9) is the mean molecular

weight for a mixture of air gases such as Oxygen, Nitrogen, Argon, and trace elements.



39

Figure 4.3: Atmospheric density as a function of altitude.

Figure 4.4: Atmospheric mean molecular weight as a function of altitude.
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There are 37 layers set up following the US standard atmospheric model for the

vertical altitude region from 0 to 100 km. Beyond that altitude, it has a vacuum layer up to

the vertical altitude height at 5000 km, which is set as the boundary of the simulation. Table

4.1 shows the key parameters: air layer boundaries, density with corresponding temperature

used for the simulation. The chemical composition of atmospheric air has been considered

as a mixture of 75.521% N, 23.143% O, 1.288% Ar, 0.048% CO2 and trace elements.
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Table 4.1: Atmospheric air density and temperature model configuration in ECRS

Layer Layer Thickness (km) Density (kg/m3) Temperature (kelvin)
1 0 - 1 1.16 284.9
2 1 - 2 1.05 278.4
3 2 - 3 9.56 x 10−1 271.90
4 3 - 4 8.63 x 10−1 265.40
5 4 - 5 7.77 x 10−1 258.90
6 5 - 6 6.97 x 10−1 252.41
7 6 - 7 6.64 x 10−1 245.92
8 7 - 8 5.57 x 10−1 239.45
9 8 - 9 4.95 x 10−1 232.97
10 9 - 10 4.39 x 10−1 226.94
11 10 - 11 3.88 x 10−1 220.01
12 11 - 12 3.37 x 10−1 216.65
13 12 - 13 2.88 x 10−1 216.65
14 13 - 14 2.46 x 10−1 216.65
15 14 - 15 2.10 x 10−1 216.65
16 15 - 16 1.66 x 10−1 216.65
17 16 - 17 1.42 x 10−1 216.65
18 17 - 18 1.21 x 10−1 216.65
19 18 - 19 1.04 x 10−1 216.65
20 19 - 20 8.89 x 10−2 216.65
21 20 - 21 7.57 x 10−2 217.58
22 21 - 22 6.45 x 10−2 218.57
23 22 - 23 5.50 x 10−2 219.56
24 23 - 24 4.69 x 10−2 220.55
25 24 - 25 4.00 x 10−2 221.55
26 25 - 26 3.42 x 10−2 222.53
27 26 - 27 2.92 x 10−2 223.52
28 27 - 28 2.50 x 10−2 224.51
29 28 - 29 2.14 x 10−2 225.50
30 29 - 30 1.84 x 10−2 226.50
31 30 - 40 8.46 x 10−3 236.51
32 40 - 50 1.71 x 10−3 266.92
33 50 - 60 5.04 x 10−3 258.01
34 60 - 70 1.63 x 10−3 233.29
35 70 - 80 3.99 x 10−3 208.39
36 80 - 90 8.21 x 10−4 188.89
37 90 - 100 1.39 x 10−4 188.42
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4.3 Primary Particle Event Generation

The primary particle event is generated by using an interface of an event generator

or the particle gun class, which creates a beam of particles by defining their type, position,

direction of motion and kinetic energy. The primary event energy and incident direction

are defined as a fixed value or selected at random within a given energy range. The two

different geomagnetic field modes are introduced to enabled and disabled the magnetic field

in order to study the magnetic field effects.

In particularly, the secondary particle energy cut (threshold value) is introduced

for gamma, neutron and electron particles. This is done as to avoid the production of a

large number of low energy secondary particles, which would deteriorate the performance

of the simulation without enhancing the accuracy of the calculations. In the present ECRS

simulation, the production threshold value for gamma, neuron, and electron particles is 250

keV.

All major physics processes, which were described in 3.2.2 are incorporated for

more than 50 elementary particles: γ, e±, µ±, π0, π±, K±, K0, η, the baryons p, n, K∗0,

K∗±, ∆±, ∆0, ∆++, and the corresponding anti–baryons, νe, νµ, and corresponding anti–

neutrinos. Sets of extra hadronic interactions are used for the energies above 1012 eV. These

interactions processes, QGSP, QGSP BERT, LHEP BERT and LHEP GN are predominated

from pp̄ colliders and extrapolated to higher energies.
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4.4 Geomagnetic Field

The origin of the Earth’s magnetic field is not completely understood. However,

it has been modeled with a combination of internal and external magnetic fields. Both the

internal and the external magnetic fields have been implemented in the ECRS simulation.

When simulating the propagation of cosmic rays in the Earth’s magnetosphere, the trans-

formation of the vector position and direction of the particles from one coordinate system

to anther is an important issue. Three additional parameters are used to define particle

position: altitude, longitude, and latitude, which define the geographic coordinate system.

Conversion to this coordinate system is presented in Appendix.

The following sections cover the details of internal and external magnetic field

implementation, along with geomagnetic field validation studies and primary results.

4.4.1 Internal Magnetic Field

The first suggestion that the Earth was like a giant bar magnet was by William

Gilbert (1544 – 1603), physician to Queen Elizabeth I. The Earth’s internal magnetic field

is created by electric currents generated by the rotating iron/nickel core. Its magnetic

moment is 6.4 x 1021Am2. It can be represented to a first approximation by a magnetic

dipole. The actual magnetic field lines are distorted from the symmetrical dipole shape by

the solar wind, which is discussed in Section 4.4.2. The typical magnetic field lines run

parallel to the surface of the Earth at the equator, and normal to the Earth’s surface at the

magnetic poles. The average magnetic field strength is 0.5 gauss, which is several hundred

times weaker than the field around a bar magnet.
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A precise model of the internal geomagnetic field is given by the Internal Geomag-

netic Reference Field (IGRF) 46 model. In this model the geomagnetic field is considered

to be current free outside the Earth. This can be defined by the gradient of the scalar

potential given by,

V (r, θ, φ) =
nmax∑

n=1

(
Re

r

)n+1 n∑

m=0

(gm
n cosmφ + hm

n sinmφ)Pm
n (cos θ) (4.1)

where Re is the Earth radius, r, φ, and θ are the spherical geographic coordinates, Pm
n is

the Schmidt normalized Legendre polynomial of degree n and order m and, gm
n and hm

n

are the Gauss spherical harmonic coefficients. The Gauss coefficients are derived from

magnetic field measurements made by geomagnetic stations, ship–towed magnetometers,

and satellites. The International Association of Geomagnetism and Astronomy (IAGA)

issues a new set of Gauss coefficients defining the new IGRF model for a particular epoch

(usually a 5 year period). When special retrospective studies are completed, the IGRF is

corrected or modified and so-called as a Definitive Geomagnetic Reference Field (DGRF).

Table 4.3 shows an example of the Gauss coefficients, up to the degree 8, computed for the

DGRF of IGRF field model from 1900 to 2000. The last column in the table gives the rate

of annual change (secular variation (sv)) of the coefficients projected from the last five year

model to the year 2005. The listed IGRF values are used to model the internal Earth’s

magnetic field in the ECRS program.

The Earth–centered geomagnetic dipole field is obtained by equation 4.1 to terms

of degree 1 (n =1). It defines the Earth’s centered geomagnetic dipole magnetic dipole field

field that has an axis titled with respect to the Earth’s rotation axis. The moment B0 of
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the geomagnetic field dipole is given by,

B0 =
√

(g0
1)2 + (g1

1)2 + (h1
1)2 (4.2)

The geomagnetic spherical coordinates θdip and φdip of the geomagnetic dipole axis are

defined by

cos θdip =
g0
1

B0
, tanφdip =

h1
1

g1
1

. (4.3)

Figure 4.5 shows the ECRS internal magnetic field lines near the Earth’s surface

before implementation of the external magnetic field. The magnetic field lines are symmetric

around the geomagnetic axis, which is inclined 11.3◦ from the Earth’s axis of rotation. This

angle of inclination was calculated directly from the IGRF/DGRF Gauss coefficients.
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Table 4.2: Definitive and International Geomagnetic Reference Field Values

DGRF DGRF DGRF DGRF DGRF DGRF sv
g/h n m 1900 1920 1940 1960 1980 2000 nT/yr
g 1 0 -31543 -31060 -30654 30421 -299992 -29615 14.6
g 1 1 -2298 -2317 -2292 -2169 -1956 -1728 10.7
h 1 1 5922 5845 5821 5791 5604 5186.1 -21.2
g 2 0 -677 -839 -1106 -1555 -1997 -2267.7 -14.4
g 2 1 2905 2959 2981 3002 3027 3044 -3.7
h 2 1 -1061 -1259 -1614 -1967 -2129 -2481.6 -22.7
g 2 2 924 1407 1566 1590 1663 1670.9 -3.6
h 2 2 1121 823 528 206 -200 -458 -11.1
g 3 0 1022 1111 1240 1302 1281 1339.6 -1.1
g 3 1 -1469 -1600 -1790 -1992 -2180 -2288 -3.5
h 3 1 -330 -445 -499 -414 -336 -227.6 5.6
g 3 2 1256 1205 1232 1289 1251 1252.1 -1.2
h 3 2 3 103 163 224 271 293.4 -4.5
g 3 3 572 839 916 878 833 714.5 -8.5
h 3 3 523 293 43 -130 -252 -491.1 -8
g 4 0 876 889 914 957 938 932.3 -2.7
g 4 1 628 695 762 800 782 786.8 2.2
h 4 1 195 220 169 135 212 272.6 1.7
g 4 2 660 616 550 504 398 250 -8
h 4 2 -69 -134 -252 -276 -269 -231.9 1
g 4 3 -361 -424 -405 -394 -419 -403 4.5
h 4 3 -210 -153 -72 3 53 119.8 5.1
g 4 4 134 199 265 269 199 111.3 -1.9
h 4 4 -75 -57 -141 -255 -297 -303.8 -0.3
g 5 0 -184 -221 -241 -222 -218 -218.8 -1.4
g 5 1 328 326 334 362 357 351.4 0.7
h 5 1 -210 -122 -33 16 46 43.8 -0.3
g 5 2 264 236 208 242 261 222.3 -2.6
h 5 2 53 58 71 125 150 171.9 1.5
g 5 3 5 -23 -33 -26 -74 -130.4 -1.2
h 5 3 -33 -38 -75 -117 -151 -133.1 2
g 5 4 -86 -119 -141 -156 -162 -168.6 0
h 5 4 -124 -125 -113 -114 -78 -39.3 3.8
g 5 5 -16 -62 -76 -63 -48 -12.9 -0.2
h 5 5 3 43 69 81 92 106.3 107 -0.5
g 6 0 63 61 57 46 48 72.3 0.4
g 6 1 61 55 54 58 66 68.2 0.3
h 6 1 -9 0 4 -10 -15 -17.4 -0.7
g 6 2 -11 -10 -7 1 8 74.2 0.7
h 6 2 83 96 105 99 93 63.7 -1.8
g 6 3 -217 -233 -249 -237 -192 -160.9 1.9
h 6 3 2 11 33 60 71 65.1 -0.2
g 6 4 -58 -46 -18 -1 4 -5.9 -1.7



47

Table 4.3: Definitive and International Geomagnetic Reference Field Values cont.

DGRF DGRF DGRF DGRF DGRF DGRF sv
g/h n m 1900 1920 1940 1960 1980 2000 nT/yr
h 6 4 -35 -22 -15 -20 -43 -61.2 -0.4
g 6 5 59 44 18 -2 14 16.9 -0.5
h 6 5 36 18 0 -11 -2 0.7 -0.2
g 6 6 -90 -101 -107 -113 -108 -90.4 0.7
h 6 6 -69 -57 -33 -17 17 43.8 1.5
g 7 0 70 73 74 67 72 79 0.2
g 7 1 -55 -54 -53 -56 -59 -74 -0.1
h 7 1 -45 -49 -52 -55 -82 -64.6 0.7
g 7 2 0 2 4 5 2 0 -0.3
h 7 2 -13 -14 -18 -28 -27 -24.2 0.3
g 7 3 34 29 20 15 21 33.3 1.1
h 7 3 -10 -13 -14 -6 -5 6.2 0.1
g 7 4 -41 -37 -31 -32 -12 9.1 0.7
h 7 4 -1 4 7 7 16 24 0.3
g 7 5 -21 -16 -9 -7 1 4 0.5
h 7 5 28 28 29 23 18 14.8 -0.8
g 7 6 18 19 17 17 11 7.3 -0.3
h 7 6 -12 -16 -20 -18 -23 -25.4 -0.1
g 7 7 6 6 5 8 -2 -1.2 0.5
h 7 7 -22 -22 -19 -17 -10 -5.8 0.2
g 8 0 11 11 11 15 18 24.4 0.1
g 8 1 8 7 7 6 6 6.6 0.2
h 8 1 8 8 8 11 7 11.9 -0.2
g 8 2 -4 -3 -3 -4 0 -9.2 -0.5
h 8 2 -14 -15 -14 -14 -18 -21.5 0.1
g 8 3 -9 -9 -10 -11 -11 -7.9 0.2
h 8 3 7 6 5 7 4 8.5 0.3
g 8 4 1 2 1 2 -7 -16.6 -0.4
h 8 4 -13 -14 -15 -18 -22 -21.5 0.4
g 8 5 2 4 6 10 4 9.1 0.2
h 8 5 5 5 5 4 4 15.5 0.1
g 8 6 -9 -7 -5 -5 3 7 0.5
h 8 6 16 17 19 23 16 8.9 -0.3
g 8 7 5 6 9 10 6 -7.9 -0.7
h 8 7 -5 -5 -4 -10 -16 -14.9 0.4
g 8 8 8 8 7 8 4 -4 0.4
h 8 8 -18 -19 -19 -20 -15 -2.1 0.4



48

Figure 4.5: ECRS internal magnetic field lines around the Earth. This figure shows the
first magnetic field implementation using the dipole approximation. The geomagnetic axis
is inclined 11.3◦ from the Earth’s axis of rotation.
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4.4.2 External Magnetic Field

Beyond about three Earth radii, the Earth’s magnetic field is increasingly affected

by the solar wind interaction with the Earth’s magnetosphere, and in this region is called

external magnetic field. This distortion of the magnetic field is caused by several external

sources in the magnetospheric current systems; the Chapman-Ferraro current on the mag-

netopause, the tail current sheet, and the field aligned Birkeland current systems I and II

47. There are several models that have been developed for the external geomagnetic field

by incorporating with above sources. The Tsyganenko model is one of the most established

models, which has been developing since the mid 1980’s. The latest version of the Tsyga-

nenko2001 48 model is used in the ECRS simulation. The next paragraphs provide a brief

description of the Tsyganenko model.

The Tsyganenko model is a semi-empirical best-fit representation of the magnetic

field, based on a large number of satellite observations such as IMP, HEOS, ISEE, POLAR,

and Geotail. In this model the external magnetic field is influenced by the geomagnetic

field that is considered to be a geomagnetic dipole. The Tsyganenko98 model is dipole

tilt dependent and was primarily developed as a tail current model. It also provides seven

different states of the magnetosphere corresponding to different level of geomagnetic activity

49. However, the Tsyganenko89 model doesn’t provide modeling of the continuous variation

of the structure of the magnetosphere as a function of the Disturbance Storm Time (Dst)

index and of the solar wind parameters. Such modeling is important when considering the

changes in the magnetosphere during a magnetic storm or the change in the composition of

the magnetosphere due to a change in the solar wind parameters.
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The Tsyganenko96 model has explicitly introduced these two absence dependencies

50, 51. In this model the external magnetic field is produced by a Birkeland current system

depending on the dipole tilt angle PS, solar wind dynamic pressure Pdyn, Dst, and the

components of the interplanetary magnetic field (IMF), By and Bz. The solar dynamic

pressure is given by,

Pdyn = nV 2, (4.4)

where n and V represent the solar wind density and velocity, respectively. The contributions

of the ring current and magnetosheet currents are also confined into a specific model of the

magnetopause. The magnetopause is represented by a semi–ellipsoid in the front, continued

in the far tail by a cylindrical surface. The size of the magnetopause decreases, when the

Pdyn index increases. The strength of the ring current is a function of the Dst, with a

correction depending on Pdyn, to take into account the contribution of the magnetopause

current on Dst. The amplitude of the magnetosheet current depends on Pdyn, By, and Bz.

Both the shape of the ring current and of the magnetosheet current depend on the dipole

tilt angle PS.

The Tsyganenko2001 model is not only based on both Tsyganenko89 and Tsy-

ganenko96, but also on two additional parameters: G1 and G2. The G1 parameter was

derived to quantify the energy transfer from the solar wind to the magnetosphere over the

last hour. It is a function of the solar wind velocity V, given in km/s, of the IMF transverse

component B⊥ =
√

B2
y + B2

z , and the IMF clock angle tan (θ) = (By

Bz
),

G1 =
12∑

i=1

Vih(B⊥) sin3 θi

2
(4.5)
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where the different value of i represent 5 min average values that cover the last hour, and

h(B⊥) =
(B⊥/4)2

1 + B⊥/4
(4.6)

The Parameter G2 quantifies the strength of the sunward convection electric field

over the last hour of observation, and controls the tailward shift of the magnetotail current

system. It is defined by the function

G2 = a
12∑

i=1

ViBs, (4.7)

where Bs represents the southward component of IMF in nT, and it is selected as Bs = |Bz|

for Bz < 0 and Bs = 0 for Bz > 0. The constant a = 0.005 was introduced to keep the

parameter G2 within the range 0 ≤ G2 ≤ 10 for commonly observed solar wind parameter

values.

The other advantage of this model is that the Birkeland currents vary in response

to the interplanetary conditions. The magnetopause is specified by an empirical model

with the size varying with the solar wind pressure as in the Tsyganenko96 model. Figure

4.6 shows both internal and external magnetic field lines around the Earth’s surface in the

ECRS. Both IGRF and Tsyganenko2001 models are taken into account in order to correctly

set up the geomagnetic field lines.
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Figure 4.6: Current ECRS magnetic field model incorporating with both internal and exter-
nal magnetic fields. The symmetric internal magnetic field lines of Figure 4.5 are distorted
by the solar wind.
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4.5 Magnetic Field Effects on Charged Particles

4.5.1 Charged Particle Rigidity

The motion of charged particles through a magnetic field is described by the non-

relativistic Lorentz equation of motion

d~p

dt
= q~v × ~B (4.8)

where q, ~p, ~v, and ~B represent the particle momentum, charge, velocity, and the magnetic

field respectively. This equation of motion conserves p, the magnitude of the momentum,

and therefore the energy of the particle. Equation 4.8 can also be written as follows

d~Iv

ds
=

q

p
~Iv × ~B, (4.9)

where ~Iv represents the velocity direction and s is the path length along the particle tra-

jectory.

The charged particle rigidity is defined as pc
q , where c is the speed of light. Equation

4.9 shows that for the same initial position and direction, charged particles with the same

rigidity and charge have identical trajectories. For this reason it is more convenient to

characterize the trajectories of cosmic rays as a function of their rigidity rather than their

energies.

4.5.2 Tracking Charged Particles Through Magnetic Field

ECRS uses numerical methods for computing the trajectory of charged particles

through a magnetic field. For this purpose, the Lorentz equation of motion (Equation 4.8)

is integrated numerically.
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In the Geant4 toolkit, the trajectory of a particle is divided into tracking steps. For

nonlinear motion through a magnetic field, these trajectory steps are divided into smaller

steps (called chords). The equation of motion is integrated over these chords. After the

integration of a chord, the program checks if the particle has crossed a boundary between

two different regions of the geometry. If this is the case, the intersection with a boundary

is determined and the tracking is stopped at this boundary.

For the numerical integration, the chord is divided into small integration steps.

The motion of the particle over a small integration step is done by a G4Stepper object.

Several types of G4Steppers are available corresponding to different integration algorithms.

In ECRS the 4th order Runge Kutta method is used as the integration algorithms. After

each integration step an estimate of accepted relative error ξ is computed. If this error

is higher than the maximum accepted relative error (100 µm), a smaller integration step

is chosen and the integration restarts from the previous step. When the relative error is

significantly smaller than ξ, the step size is increased. This process continues until this

particle reaches to a boundary.

4.6 Visualization

Visualization is one of the important modules in the ECRS simulation. ECRS

visualization is designed to display Earth’s geometry, magnetic field lines, particle trajec-

tories, tracking steps, hits etc. This is critical for code debugging and testing during the

initial simulation setup.

There are three visualization drivers used in ECRS: OpenGL 37, DAWN 38, and
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HepRep.

Figure. 4.7 shows a snap shot of ECRS run time visualization of a cosmic ray

shower near the Earth’s surface from a 100 GeV primary proton particle launched toward

the Earth’s surface. The blue and red color trajectories represent positive and negative

particles respectively. All neutral and gamma particle trajectories are not shown in the

figure in order to view a clear trajectories of the charge particle. The curved trajectories

are due to the magnetic field effect.
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Figure 4.7: Enlarged visualization of the secondary charged particle shower near the Earth’s
surface from a 100 GeV primary proton event (Scale 1:1800). The red and blue trajectories
represent negative and positive particles, respectively. All neutral and gamma particles
are not shown in the figure in order to give a clear view of secondary charged particle
trajectories. The blue area at the bottom is the surface of the Earth.
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4.7 Magnetic Field Consistency Test

A reliable interpretation of ECRS results requires a full knowledge of the geomag-

netic field effects implemented in the ECRS simulation. In order to validate the geomagnetic

field effects, two tests were performed with the ECRS. In each case, the ECRS simulation

result is compared with existing theoretical model calculation.

The first consistency test is check a set of proton particle trajectories with initial

energy of 36.44 GeV, initiated in the geomagnetic equatorial plane with different impact

parameters. For this analysis, particle decay and interaction channels are turned off in order

to follow the full length of the proton trajectories without creating the secondaries. The

ECRS result clearly shows the magnetic field effects near the Earth’s surface as shown in

Fig.4.8 which is very consistent with the Haillas 53 theoretical model calculation.
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Figure 4.8: Trajectories of 36.44 GeV protons injected in the geomagnetic equatorial plane,
with different impact parameters. The Earth is represented by the black sphere. The solid
lines represent proton trajectories at different impact parameters.
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The second test is to compute the vertical cutoff rigidities of the primary protons

at selected locations on the surface of the Earth. The geomagnetic cutoff rigidity is defined

as the lowest energy of a particle that can reach the surface of the Earth in vertical direction.

The backward trajectory method is used to compute the cutoff rigidity. In this

method, proton particles with different energies are launched on the Earth’s surface in

upward direction into the air. The magnetic cutoff rigidity is determined from a given proton

energy below which the protons will be trapped inside the magnetic field and returned back

to the surface of the Earth. In other words, a charged particle with magnetic cutoff rigidity

below this value will not reach to this particular location on the Earth from air.

Figures 4.9 and 4.10 show the trajectories of protons with different rigidities for

two different locations. In Fig.4.9, the black, blue, red, and green lines represent proton

trajectories with rigidities of 20.00, 15.00, 9.95, and 9.90 GV, respectively. Particles at high

rigidity, which are the black and blue lines, have small trajectories bending and travel away

from the Earth’s surface. The particle with 9.90 GV (red line) has significant bending and

return back to another point on the Earth’s surface. The particle with the lowest energy that

can escape the Earth’s surface is 9.95 GV, which is represented by the green trajectory. This

particle trajectory has several complex loops before escaping the Earth’s surface indicating

that below this specific rigidity, cosmic ray particles can’t reach the selected position from

the vertical direction. This value, 9.95 GV is the computed cutoff rigidity for the location

at longitude 300 and latitude 300.

A similar analysis is shown in Fig. 4.10 for a location at longitude 300 and latitude

550 where the computed cutoff rigidity is determined to be 1.55 GV. Table 4.4 shows the



60

ECRS results compared with analytical calculations done by Shea and Smart 54. The values

computed in the ECRS and the analytical cutoff rigidities are within ± 0.06 GV of each

other. These two consistency studies show that the geomagnetic field implementation is

properly done in ECRS.

The extensive air shower simulation results from the ECRS simulation are pre-

sented in next two chapters.
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Figure 4.9: Computed trajectories from ECRS with a given geomagnetic latitude of 300 and
longitude 300. The Earth is represented by the blue sphere and the black, blue, red, and
green lines represent, computed backward trajectories of protons with rigidities of 20.00,
15.00, 9.95, and 9.90 GV respectively.
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Figure 4.10: Computed trajectories from ECRS with a given geomagnetic latitude of 550

and longitude 300. The Earth is represented by the blue sphere and the black, blue, red, and
green lines represent, computed backward trajectories of protons with rigidities of 20.00,
10.00, 1.55, and 1.45 GV respectively.
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Table 4.4: ECRS computed cutoff rigidity results compared with Shea and Smart’s analyt-
ical calculations for selected locations.

Latitude(N) Longitude(E) ECRS Analytical Location
Computed (GV) (GV)

55 30 2.35 2.30 Europe
50 15 3.56 3.52 Europe
40 15 7.25 7.22 Europe
45 285 1.49 1.45 North America
40 255 2.57 2.55 North America
20 300 10.09 10.01 North America
50 105 4.31 4.25 Asia
40 120 9.30 9.25 Asia
-25 150 8.59 8.56 Australia
-35 15 4.45 4.40 South Africa



64

Chapter 5

ECRS Air Shower Development

The Earth’s climate mainly depends on how radiation from outer space is absorbed

and redistributed by the atmosphere. Any variation in the energy received at the Earth’s

surface will, therefore, have an immediate effect on Earth’s climate. Cosmic rays are one

of the main radiation sources that may influence Earth’s climate, and the energy balance

of the Earth 55. Therefore, it is important to study the variation of cosmic rays in order

understand the Earth’s climate changes.

Recent studies concluded that cloud cover and cosmic ray flux are correlated 56, 57,

and suggest that solar variability may be linked to climate changes through the solar wind

and clouds. The solar wind is a continuous flow of energetic charged particles which are

correlated with geomagnetic field. The cloud formation models depend on the Earth’s

atmospheric properties such as density and air composition. Monitoring clouds with high

accuracy is a difficult task and can only be done by satellite. Simulations have an important

role in studying the correlation between the cosmic ray flux and the Earth’s climate.
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This chapter presents a comparative analysis of the geomagnetic field and at-

mospheric density variation effects for cosmic ray air shower development. Section of 5.1

describes the ECRS simulation configuration and section 5.3 describes the simulation re-

sults obtained for both magnetic field and air density variations using longitudinal and

lateral shower development. The different shower components analysis such as secondary

muon and gamma particles distribution are also included with their lateral and longitudinal

distributions.

5.1 ECRS Simulation Configuration

The ECRS simulation has been developed to study cosmic ray shower development

with and without a geomagnetic field at a given location on the Earth’s surface. The atmo-

spheric air density factor is introduced to change the atmospheric density in the air. The

default value of atmospheric density factor is one, which is represents normal atmospheric

density. In the first analysis, the main objective is to study the effect of magnetic field as

well as air density on extensive air shower development using the ECRS simulation.

The simulation of an extensive air shower was performed for Atlanta, Georgia

(33.460 N, 84.250 W) at four primary proton energies: 109, 1010, 1011, and 1012 eV. The

primary particles at each energy were started at 200 km above the Earth’s surface as shown

in Fig. 5.1 (a). The incoming primary particle direction was pointed towards Atlanta. All

necessary electromagnetic and hadronic physics processes were included. The Simulation

output is a list of all secondary particles coordinates, particle type, 3-momenta, and energies.

The simulated output data were input to a data filtering program, which is written in C++
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based on ROOT 58. The filtering program was used to reconstruct the row data for studying

longitudinal and lateral distribution of the particle shower as shown in Fig.5.1 (b).

Longitudinal distribution is defined as secondary cosmic ray particle development

along the shower axis. It also allows to determine height of shower maximum (Xmax)

which is important for estimating primary particle interactions with air molecules. The

shower axis is the initial direction of the primary particle and is shown in Figure 5.1 (b).

Lateral distribution is defined as secondary cosmic ray particle distribution from the selected

position on the Earth’s surface. This parameter is very important for understanding shower

particle spread at a given location on the Earth surface. For study of the magnetic field

and density effects the following cases are simulated with ECRS.

• With geomagnetic field

• Without magnetic field

• Realistic air density

• Half air density (density factor is 0.5)

• Double air density (density factor is 2)

In each case, 10,000 events were simulated for 109, and 1010 eV primary energies and 1200

events for 1011, and 1012 eV primary energies. In total, more than 100,000 events were

simulated for these five cases with four sets of primary energies.
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5.2 Computation Resources

In order to obtained full knowledge about secondary particle distributions from

cosmic ray showers a minimum number of events have to be simulated with ECRS. This

requires extensive computing resources to complete these simulations. For a example, a

1012 eV primary proton event requires more than seven hours to complete on 2 GHz CPU,

1GB memory node.

For this set of simulations, all simulation tasks were performed at RHIC Computing

Facility at Brookhaven National Laboratory. There are more than 1000 powerful computer

nodes (2 GHz cpu with 1 GB memory) shared by multiple users. ECRS air shower simulation

occupied on average 40-60 nodes at a time and running continuously for five months. The

simulation output was transferred to GSU for final data analysis.
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Figure 5.1: (a) Schematic diagram of the ECRS primary particle simulation. Primary
protons with different energies are launched 200 km above Atlanta towards the Earth’s
center. The axis between the initial primary particle position and Atlanta is defined as the
shower axis. The blue sphere represents the Earth. (b) Schematic diagram of longitudinal
and lateral particle distribution at Atlanta after necessary axis rotation. The Z direction
points upwards along the shower axis direction, and X,Y plane is on the Earth’s surface.
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5.3 Results and Discussion

5.3.1 Shower Features

Some of the main features of a shower cascade can be modeled within a simple Toy

model of particle cascade 61. This model assumes that a primary particle with energy E0,

splits energy equally into two particles after traveling a path length λ, and this process is

repeated by the secondaries. Then, the number of particles n and energy E in a cascade at a

longitudinal height X (measured from initial primary particle towards the Earth’s surface)

evaluated as,

n(X) = 2
X
λ (5.1)

E(X) =
E0

N(X)
(5.2)

Further assume that particle multiplication stops when a certain energy limit E = Ef is

reached. Then the maximum number of particles nmax is reached at this point Xmax, and

it is given by,

nmax = n(Xmax) =
E0

Ef
(5.3)

The position of Xmax follows as,

Xmax =
λ

ln2
× ln

(
E0

Ef

)
(5.4)

In the Toy model, consider the more general case of an initial set (A0, E0
A0

) of A0 particles,

each with energy E0
A0

. Where the initial particle set A0, (E0
A0

) as primary nucleus of mass

number A0. The maximum number of particles and the position of the shower maximum

from the initial particle is then given by,

Nmax

(
A0,

E0

A0

)
= Nmax(E0) ∝ E0, (5.5)
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Xmax

(
A0,

E0

A0

)
ln

E0

A0Ef
≤ Xmax(E0) (5.6)

If we identify the initial particle as primary nucleus of A0, the toy model predictions can

be summarized from Equation 5.5 and 5.6 as,

• nmax increases in proportional to the primary energy

• Xmax increases as the logarithm of the primary energy (Here Xmax is measured from

the primary particle initial position)

• Xmax is the same for same E0
A0

but different for different E0’s

Figure 5.2 shows the maximum number of particles (n) as a function of primary

proton energy. All secondary particles are taken into account during the cascade develop-

ment in the ECRS simulation. Triangles, stars, and solid dots show the total number of all

secondary, gamma, and muon particle (nmax) variation with primary energies, respectively.

This figure clearly illustrates how nmax increases with primary particle energies for any sec-

ondary particles as stated in the Toy’s model. On the other hand, it can be concluded that

nmax increases in proportional to the primary energy. This ECRS result is consistent with

theoretical predictions. Other basic theoretical predictions with ECRS results are discussed

in section 5.3.2.
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Figure 5.2: ECRS simulated secondary particle variation with primary particle’s energies.
Triangles, stars, and solid dots shows total, gamma, and muon maximum number of sec-
ondary particles respectively.
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5.3.2 Magnetic Field Effect

The main objective of this section is to discuss the magnetic field effect on sec-

ondary cosmic ray air showers.

Energy Distribution

Figure 5.3 shows energy deposits in terms of particle numbers for total secondary

particles (n) created during the cascade development. The dashed line shows the total

particle energy distribution when the magnetic field is enabled, and the solid line shows the

distribution when the magnetic field is disabled. Four different primary particle energies

(109, 1010,1011, and 1012 eV) were used to produce all possible secondary cascades, and

it can be understood that there is no significant effect on the total secondary particle

energy distribution with magnetic or without field. In general, the secondary particle energy

distribution does not show any magnetic field dependency for different primary particle

energies.
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Figure 5.3: All secondary particles variation, when magnetic field is enabled (dashed line)
and magnetic field is disabled (solid line) with the secondary particle energies for 109, 1010,
1011, and 1012 eV primary particles.
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Longitudinal Distribution

In large scale cosmic ray shower observations, the longitudinal and lateral distri-

bution provides information about primary particle direction and shower axis position, as

well as size of the shower. Thus, the shower maximum (Xmax) provides information about

secondary particle distribution in the atmosphere and indicates about where these primary

interactions happen. Xmax is measured from the Earth’s surface in the upward direction.

Figure 5.4 shows the total secondary particles distribution as function of altitude;

the so–called longitudinal particle distribution for four different energy distributions. Each

primary energy was simulated with (enabled) and without (disabled) geomagnetic field,

represented by dashed, and solid lines respectively. Even though two different Xmax were

observed for 109 eV primary particle distribution with enabled and disabled magnetic field,

there is no significant difference in either the shower maximum (Xmax) or the number of

particles (nmax) for primary energies above 1010 eV. This is because the 109 eV primary

shower creates comparatively low energy secondary particles in the shower cascade. Due to

the vertical geomagnetic cutoff rigidity (for Atlanta, it is 3.6 GV), most of these secondary

particles do not have enough energy to reach the Earth surface; they are trapped in the

geomagnetic field. When magnetic field is disabled, the 109 eV primary shower creates less

number of secondary particles near the Earth’s surface compared to the disabled magnetic

field. On the other hand, it is clear that high energy primary particles (1010 eV or above)

are not depending much on the cutoff rigidity, since most secondaries are higher energy

than the cutoff value. Therefore, the magnetic field effects on longitudinal distribution and

number of secondary particles are strongly effected for the low energy primary particles but
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not for the high energies. The other important characteristic is relationship between Xmax

and primary particle energies. It can be seen that Xmax decreases as the primary energy

increases.
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Figure 5.4: Secondary particles longitudinal development with enable and disable magnetic
field. Dash and solid curve represent enable and disable magnetic field respectively for 109,
1010, 1011, and 1012 primary particles.
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Figure 5.5 shows Xmax variation as a function of primary energies for both enabled

and disabled geomagnetic field. According to the Toy model Xmax increases with the

logarithm of the primary energies; Xmax was measured from initial primary particle position

towards the Earth. In the ECRS simulation, Xmax is defined in the opposite direction

(from Earth’s surface to upward direction), and therefore, Xmax should decreases with the

logarithm of the primary energy. Figure 5.5 clearly shows that Xmax decreases with the

logarithm of primary energies as predicted by theory.

Similar behavior can be observed for other secondary particles as well. Among the

other secondary particles, muon and gamma particles lateral distribution were also analyzed.

As visible from the longitudinal distribution in Figure 5.6 (Right), the muon particle Xmax

increases as primary energy increases for 1010, 1011, and 1012 eV primary particles. 109

eV primary particles were not included due to the very small number of secondary muon

particles created. Moreover, Figure 5.7 (Right) shows similar gamma distributions for the

different primary energies. These two types of secondary particles lateral distribution are

also not dependent on geomagnetic field expect energies below 1010 eV. This analysis is

summarized below.

• ECRS secondary particles shows good agreement with theoretical predictions.

• Secondary particle longitudinal distribution does not depend on the geomagnetic field

except for energies below 1010 eV.

• Longitudinal distribution strongly depends on the primary particle’s energy, and de-

creases as primary particle energy increases.
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Figure 5.5: Compilation of Xmax variation for four different primary energies. Solid dots,
and solid squares show enabled, and disabled magnetic fields respectively.
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Figure 5.6: (Left) Muon particle’s lateral distribution for three different primary energy
variations with geomagnetic field. (Right) Muon particles’ longitudinal distribution for the
three different primary energies. Dashed and solid lines represent enabled and disabled
magnetic fields respectively.
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Figure 5.7: (Left) Gamma particles’ lateral distribution for four different primary energy
variations with geomagnetic field. (Right) Gamma particles’ longitudinal distribution for
the four different primary energies. Dashed and solid lines represent enabled and disabled
magnetic fields respectively.
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Lateral Distribution

Air showers have a lateral distribution that differs for the different shower compo-

nents as well as for the various primary energies. Figure 5.8 (left) shows the total particle

lateral distribution with an enabled and disabled magnetic field for three different selected

primary energies, namely 109, 1010, and 1011 eV . Figure 5.8 (right) shows the same distri-

bution, but with a different scale including the primary energy 1012 eV. An arrival shower

axis is represented by the peak position of lateral distribution. Almost all of secondary

cosmic ray particles are distributed around the shower axis. It is clear that the shower axis

is strongly dependent on the geomagnetic field. When the magnetic field is disabled, the

shower axis is always on the y-axis for all primary energies. This is because the incoming

primary particle’s direction does not change all the way down to the Earth’s surface, and all

the particle interactions happen exactly above Atlanta. It is obvious that without the mag-

netic field, incoming energetic charged particles are not deflected except for slight changes

due to particle collisions in the atmosphere. When the geomagnetic field is enabled, there is

huge deflection in the shower axis for low energy particles, but comparatively less deflection

of high energy particles. It is clear that low energy charged particles are highly dependent

on the magnetic field, and this effect is less effect for high energy primary particles. Similar

behavior can also be observed for secondary particles such as muons, and gammas. Fig-

ure 5.6 (Right) and 5.7 (Right) show similar lateral distributions with magnetic field for

different primary energies.
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Figure 5.8: (Left) Total secondary particles’ lateral development variation with enabled
and disabled magnetic field for 109, 1010, and 1011 eV primary particles on the same scale.
(Right) Similar variations with different scales for 1010, 1011, and 1012 eV. Dashed and solid
lines represent enabled and disabled magnetic fields respectively.



83

The other important characteristic is the lateral distribution as a function of pri-

mary particle energy. The lateral distribution of high energy particles creates large numbers

of secondaries which are distributed over a large area compared to the lower energy primary

particles. Also, the size of lateral distribution is an important parameter for the design of

detector arrays to study the specified high energy primary charge particle energies and ar-

rival direction. Figure 5.9 shows center of shower axis (peak position of lateral distribution)

variation with primary particle energies. A 109 eV primary particle shower axis is approxi-

mately away 70 km from the initial shower direction, while a 1012 eV primary particle axis

is 1.2 km from the original direction. To summarize:

• Secondary particle lateral distribution strongly depends on geomagnetic field.

• It also depends on the primary particle energy; lateral distribution decreases as pri-

mary particle energy increases.

Tables 5.1, 5.2, and 5.3 summarize secondary total, muon, and gamma particle

lateral and longitudinal distribution for four different energies with enabled and disabled

geomagnetic field.
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Figure 5.9: (Left) Total secondary particles lateral development variation with enabled
and disabled magnetic fields for 109, 1010, and 1011 eV primary particles in a same scale.
(Right) Similar variation in different scales for 1010, 1011, and 1012 eV. Dashed and solid
curve represent enabled and disabled magnetic fields respectively.



85

Table 5.1: All particle lateral and longitudinal shower maxima for different primary particle
energies with magnetic and without magnetic field at Atlanta.

Primary Lateral Distribution (m) Longitudinal Distribution (m)
Energy(eV)

Magnetic Field Magnetic Field Magnetic Field Magnetic Field
Enabled Disabled Enabled Disabled

109 72.03 0.0 16.07 14.93
1010 11.42 0.0 11.15 11.15
1011 5.75 0.0 8.45 8.48
1012 1.29 0.0 7.47 7.48

Table 5.2: Muon particle lateral and longitudinal shower maxima for different primary
particle energies with magnetic and without magnetic field at Atlanta.

Primary Lateral Distribution (m) Longitudinal Distribution (m)
Energy(eV)

Magnetic Field Magnetic Field Magnetic Field Magnetic Field
Enabled Disabled Enabled Disabled

109 68.32 0.0 20.02 19.70
1010 10.24 0.0 14.99 15.02
1011 5.52 0.0 12.25 12.20
1012 1.21 0.0 11.04 11.00

Table 5.3: Gamma particle lateral and longitudinal shower maxima for different primary
particle energies with magnetic and without magnetic field at Atlanta.

Primary Lateral Distribution (m) Longitudinal Distribution (m)
Energy(eV)

Magnetic Field Magnetic Field Magnetic Field Magnetic Field
Enabled Disabled Enabled Disabled

109 71.75 0.0 16.87 15.58
1010 11.17 0.0 11.67 11.61
1011 5.67 0.0 8.77 8.81
1012 1.27 0.0 7.72 7.72
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5.3.3 Air Density Effect

The main objective of this section is to discuss the effect of air density on secondary

cosmic ray particles. Three different air densities are considered as normal, half (0.5×air

density) and double (2×air density) with four different primary energies, 109,1010, 1011,

and 1012 eV.

Longitudinal Distribution

Figure 5.10 shows secondary particle (n) as a function of longitudinal distribution

for three different air densities. Each different density profile was simulated with four

different primary energies as mentioned above. The air density variation shows a significant

effect on longitudinal shower distribution. The Xmax (shower-max) is correlated with air

density variation. It is clearly seen that Xmax increases as density increases for four different

energies. Also, Xmax decreases as energy increases for the three different densities.
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Figure 5.10: Total secondary particle longitudinal distribution (shower maximum) as a
function for three air densities. Black (solid), red (short dashed), and blue (long dashed)
lines represent half, normal, and double air densities respectively for 109, 1010, 1011, and
1012 eV primary proton energies.
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The air density effects on Xmax distribution are consist with mean free path of a

particle in a given medium. The formula for calculating the magnitude of mean free path

depends on the characteristics of the medium the particle is interacting with, and it is given

by,

l =
1

nσ
(5.7)

where l is the mean free path, n is the number of particles per unit volume, and σ is the

effective cross–section of collision. The density of the medium is correlated to σ. If, on the

other hand, σ increases as air density increases, the mean free path decreases. Therefore,

in a high density medium one can expect more interactions far above the Earth’s surface

compared to a low density medium.

Figure 5.12 (right), and Figure 5.13 (right) show the similar longitudinal distribu-

tion for secondary muons, and gammas respectively.

Lateral Distribution

Figure 5.11 shows analysis of lateral distribution of secondary particle for different

air densities and primary energies. Considerable shower axis deflections are shown for the

109 eV and 1010 eV primary particles with three different air densities, but for higher

energies the deflection is insignificant. It is clear that only low energy particles’ lateral

distributions strongly depend on air density while high energy particles’ lateral distribution

remain the same. Lateral distribution of secondary muons and gammas are shown in Fig.

5.12 and 5.13. Tables 5.4, 5.5, and 5.6 summarize secondary total, muon and gamma particle

lateral and longitudinal variations due to air density changes.

In summary, ECRS simulation provides an important tool for EAS data recon-
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structions. On the other hand, cosmic ray flux is directly related to air density variations.

Air density can vary due to the weather condition and climate the changes are possible area

of future studies.
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Figure 5.11: Total secondary particle lateral distribution with density variation. Black
(solid), red (short dashed), and blue (long dashed) lines represent half, normal, and double
air densities respectively for 109,1010, 1011, and 1012 eV primary proton energies.
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Figure 5.12: (left) Secondary muon particle lateral distribution, and (right) longitudinal
distribution with density variation. Black (solid), red (short dashed), and blue (long dashed)
lines represent half, normal, and double air densities respectively for 1010, 1011, and 1012

eV primary proton energies.
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Figure 5.13: (left) Secondary gamma particle lateral distribution, and (right) longitudinal
distribution with density variation. Black (solid), red (short dashed), and blue (long dashed)
lines represent half, normal, and double air densities respectively for 109, 1010, 1011, and
1012 eV primary proton energies.
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Table 5.4: Total particle lateral and longitudinal shower maxima for different primary
particle energies. The three different air density variations are given for Atlanta.

Primary Lateral Distribution (m) Longitudinal Distribution (m)
Energy(eV)

0.5 X 1 X 2 X 0.5 X 1 X 2 X
Density Density Density Density Density Density

109 75.90 72.03 68.56 12.7 16.07 20.31
1010 12.14 11.42 10.85 7.56 11.15 15.20
1011 5.86 5.75 5.68 5.31 8.45 12.28
1012 1.29 1.29 1.29 4.31 7.47 11.55

Table 5.5: Muon lateral and longitudinal shower maxima for different primary particle
energies. The three different air density variations are given for Atlanta.

Primary Lateral Distribution (m) Longitudinal Distribution (m)
Energy(eV)

0.5 X 1 X 2 X 0.5 X 1 X 2 X
Density Density Density Density Density Density

109 72.12 68.32 64.67 16.75 20.02 22.96
1010 11.00 10.24 9.65 11.33 14.99 18.61
1011 5.60 5.52 5.45 9.02 12.25 16.14
1012 1.21 1.21 1.20 7.95 11.04 15.29

Table 5.6: Gamma particle lateral and longitudinal shower maxima for different primary
particle energies. The three different air density variations are given for Atlanta.

Primary Lateral Distribution (m) Longitudinal Distribution (m)
Energy(eV)

0.5 X 1 X 2 X 0.5 X 1 X 2 X
Density Density Density Density Density Density

109 75.78 71.75 68.46 13.36 16.87 20.02
1010 11.90 11.17 10.60 7.75 11.67 15.72
1011 5.77 5.70 5.60 5.35 8.77 12.83
1012 1.26 1.27 1.25 4.38 7.72 12.04
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Chapter 6

Atmospheric Muons and Charge

Ratio

The precise measurement of the muon charge ratio at the Earths surface not only

provides information on the propagation of cosmic rays in the atmosphere, but also allows

to study the effect of the Earth magnetic field at different geomagnetic locations. Since

muons and muon neutrinos are always produced in pairs, the measurement of muons is

important for studying neutrino flux in Earth-bound neutrino experiments 63, 64, 65, 66.

In evaluating the flux of muon neutrinos, a dominant systematic error arises be-

cause of the uncertainty in the flux of primary cosmic rays and the production cross section

of secondary mesons 67. The measurement of atmospheric muons is crucial estimating

neutrino flux. Atmospheric muons are produced by pions decay or hadronic decays. How-

ever, π → µ decay is a dominant decay process for atmospheric muon production and this

contribution is about 90% below 10 GeV/c, and about 80% at 100 GeV/c for the vertical
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direction. For the neutrinos, π → µ decay is a major decay process below 30 GeV/c for

the vertical direction 68. Therefore the precise calculation of the atmospheric muon flux is

important to minimize the systematic errors in the study of neutrino oscillations.

The calculation of atmospheric muon charge ratio at the Earth’s surface in Atlanta,

USA (33.400 N, 84.200 W), and Lynn Lake, Manitoba, Canada (56.500 N, 101.000 W) are

presented in this chapter.

6.1 Experimental Measurement of the Charge Ratio

The muon spectrum and charge ratio at the Earth’s atmosphere has been measured

by different experiments such as NMSU-WIZARD/CAPRICE magnetic spectrometer 69,

BESS 70, BARS spectrometer 71, and OKAYAMA cosmic ray telescope 72. Experimentally,

the µ+/µ− charge ratio at the Earth’s surface is known to be approximately 1.2 – 1.3 from

energies of a few GeV up to 1 TeV, as shown in Figure 6.1. In the ECRS simulation, the

muon charge ratios for selected locations were calculated and are compared with existing

CAPRICE and BESS experimental data.
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Figure 6.1: Compilation of recent muon charge ratio results at the Earth’s surface as a
function of muon momentum.
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6.1.1 CAPRICE Experiment

The NMSU-WIZARD/CAPRICE magnetic spectrometer measured ground level

muon flux and charge ratio at Lynn Lake, Manitoba, Canada (CAPRICE 94 data set)

and at Fort Summer, New Mexico, USA (CAPRICE97 data set). This spectrometer was

designed as a balloon-borne apparatus 74 and included a ring imaging Cherenkov detector,

a time-of-flight system, a superconducting magnetic spectrometer for particle tracking, and

a silicon-tungsten imaging calorimeter. It was sensitive to the muon momentum range from

200 MeV/c to 120 GeV/c.

6.1.2 BESS Experiment

The BESS detector 75 was designed as a high resolution spectrometer with a

large acceptance to precise measurements of primary and secondary cosmic rays as well

as exotic particles. BESS spectrometer measured ground level muon flux and charge ratio

at Tsukuba, Japan (BESS95 data set) and Lynn Lake, Manitoba, Canada (BESS97-99

data set). All the detector components of the BESS spectrometer are grouped in a simple

cylindrical package. In the central region, a uniform magnetic field (1 Tesla) was produced

by a thin superconducting solenoidal coil. The outer part is made up of time of flight

scintillator hodoscopes. The energy loss information in the scintillation counters was used

to identify the single charged particles.
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6.2 Primary Spectrum

In order to calculate muon flux and µ+/µ− charge ratio at the Earth’s surface,

the primary cosmic ray proton particle energy spectrum is required as input of the ECRS

simulation. Measurement of the primary spectrum 76 indicates that about 90% of the flux is

protons. The number of primary protons with energies above 1013 eV is very low compared

to the lower energies. Therefore the first assumption is that most of the muon particles are

produced by primary protons with energies from 109 eV to 1013 eV.

In the ECRS simulation incoming primary proton particles’ energies was selected

randomly ranging from 109 eV to 1013 eV and launched towards the Earth’s center. In

general, the muon flux and charge ratio accuracy can be improved by introducing the

properly defined primary cosmic ray particle energy spectrum. It is the purpose of this

section to discuss the model employed for the primary proton spectrum for the ECRS

simulation.

A semiempirical model for the integral primary cosmic ray spectrum has been

proposed by Nikolsky, Stamenov, and Ushev(NSU) 77. In the NSU method, the primary

particle flux is given by,

F = F0E
−γ
0

∑

A

BA

(
1 + δA

E0

A

)−α

(6.1)

Here E0 is the energy per particle in GeV, F0 = 1.16 cm−2s−1sr−1, γ = 1.62 ± 0.03, and

α = 0.4. δA specifies the region of the knee in the primary spectrum where δA = 6 ×

10−7 for a proton and δA = 10−5 for A ≥ 4. The numerical value A indicates the average

atomic weight and B is the chemical composition. For the proton, B1 = 0.40 ± 0.03. The
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corresponding differential equation is given by,

dF

dE0
= γF0E

(γ+1)
∑

A

(
1 + δA

E0

A

)−α

×
(

1 +
αδAE0/A

γ(1 + δAE0/A)

)
(6.2)

The nuclear component of the primary spectrum is replaced with a superposition

of free nucleons. Equation 6.2, transforming to the equivalent nucleon spectrum, yields the

following differential energy spectra of protons,

dFp

dEN
= D1(EN ) +

1
2

∑

A≥4

DA(EN ) (6.3)

Here EN is the nucleon energy in GeV and

DA(EN ) =
CAD0E

−(γ+1)
N

(1 + δAEN )α

(
1 +

αδAEN

γ(1 + δAEN )

)
(6.4)

D0 = γB1F0 = 0.75 cm−2s−1sr−1 (GeV/nucleon)−1, and CA =A1−γBA/B1. Equation 6.3

is the best approximation for the primary proton flux distribution. Numerical iteration

is used to generate the primary proton flux distribution based on the above theoretical

approximation. In this numerical iteration, the proton distribution was calculated for two

different energy regions as shown in Fig. 6.2. The combined results were used to generate

the primary proton flux energy distribution from 108 to 1013 eV as shown in Fig. 6.3.

This distribution is integrated over the selected energy intervals to calculate the number of

proton particles required as an input for the ECRS simulation. The results and discussion

of muon charge ratio at selected locations are described in the next section.
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Figure 6.2: Generated primary proton flux distribution (a) for the energy from 108 to 1011

eV and (b) for the energy from 1011 to 1013 eV.
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Figure 6.3: Generated primary proton distribution for energy from energy from 108 to 1013

eV by combining the results shown in Fig. 6.2.
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6.3 ECRS Simulation Results: µ+/µ− Charge Ratio

Figure 6.4 (a) shows the moun charge ratio as a function of muon momentum

obtained from the ECRS simulation with and without geomagnetic field for the Atlanta

region. Figure 6.4 (b) shows the similar charge ratio from ECRS for two different geomag-

netic locations, Atlanta and Lynn Lake with magnetic field. The vertical cutoff rigidity in

Atlanta and Lynn Lake are 3.9 GV and 0.5 GV respectively. In each case, the effect on

µ+ is comparatively stronger than on µ− which is clearly seen in the muon charge ratio in

Fig. 6.4 (a) and (b). In the ECRS simulation, the muon charge ratios with and without

geomagnetic field in Atlanta region show clear divergence below 1 GeV/c. Also, the muon

charge ratio without magnetic field remains fairly constant except for the higher momen-

tum. In addition, Fig. 6.4 (b) shows similar deviation below 1 GeV/c for the two different

geomagnetic locations. According to these two simulation analyzes, low cutoff rigidity lo-

cations show higher charge ratio than the high cutoff rigidity locations for low momentum

regions. Therefore it can be concluded that the divergence below 1 GeV/c comes from the

effect of geomagnetic cutoff rigidity.
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Figure 6.4: (a) The muon charge ratio at the Earth’s surface as a function of muon mo-
mentum from ECRS simulation with and without geomagnetic field in the Atlanta region.
(b) A comparison of the muon charge ratio at the Earth’s surface as a function of muon
momentum from ECRS between Atlanta and Lynn Lake.
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Similar behaviors have been measured by both the NMSU-WIZARD/CAPRICE

and BESS experiments. Figure 6.5 (a) shows the results measured by the CAPRICE spec-

trometer (J. Kremer et al., 1999) in Lynn Lake (CAPRIC97) compared with ECRS simu-

lation for the same location in the muon momentum range from 0.2 to 100 GeV/c. Figure

6.5 (b) shows the muon charge ratio measured by the BARS spectrometer (M. Motoki et

al., 2001), NMSU-WIZARD/CAPRICE and ECRS simulation in Lynn Lake for momentum

range from 0.2 to 12.5 GeV/c. The mean values of the charge ratio between 0.1 and 12.5

GeV/c for the two geomagnetic locations are given in Table 6.1 for both experiments and

ECRS simulation. The ECRS simulation results show good agreement in muon charge ratio

with two sets experimental measurements at Lynn Lake.



105

1 10 100
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

 

 

 

 

Momentum (GeV/c)

 CAPRICE94 at Lynn Lake
 ECRS at Lynn Lake

1 10
0.6

0.8

1.0

1.2

1.4

1.6
 

  

Momentum (GeV/c)

BERS at Lynn Lake
CAPRICE97 at Lynn Lake
ECRS at Lynn Lake

Figure 6.5: (a) The muon charge ratio as a function of muon momentum measured
by NMSU-WIZARD/CAPRICE magnetic spectrometer (CAPRIC97) and calculated by
ECRS simulation at Lynne Lake for momentum range from 0.2 GeV/c to 100 GeV/c.
(b) The muon charge ratio as a function of muon momentum measured by NMSU-
WIZARD/CAPRICE magnet spectrometer (open circle), NMSU-BARS spectrometer (filled
triangle) for momentum range from 0.2 GeV/c to 12.5 GeV/c. The filled circle is from ECRS
which shows a very good agreement with the experimental data.
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Table 6.1: Experimental and simulation results of mean muon charge ratio between 0.1 and
12.5 GeV/c for two different geomagnetic locations.

Location Cutoff Rigidity (GV) µ+/µ−

ECRS Lynn Lake 0.5 1.22 ± 0.04
CAPRICE Lynn Lake 0.5 1.23 ± 0.04
BESS Lynn Lake 0.5 1.26 ± 0.02
ECRS Atlanta 0 1.20 ± 0.04
ECRS Atlanta 3.9 1.12 ± 0.04
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To understand the muon charge ratio, a general theory of the mechanism for the

production of hadrons, pionization and fragmentation are discussed below.

Pionization refers to the extensive production of secondary particles at low energy

in the center of mass system. In this model assume that the primary particle spectrum

consists of protons which interact once with the atmospheric nuclei, producing pions which

all decay into muons. The single particle distribution for pions produced in a proton–proton

collision 78,

f±pπ(Eπ, Ep) =
Eπ

σinel
pp

dσ±p→π

dEπ
(6.5)

where Ep and Eπ are the energies of the primary proton and secondary pion, respectively,

σinel
pp is the total inelastic proton-proton cross section, and ± refers to the charge of the

observed pion.

From the equation 6.5, assume a primary proton spectrum given by,

dN

dE
= N0E

−(1+γ) (6.6)

where N0 is a constant, and γ ≈ 1.7. Then the pion spectrum in this model is given by,

π±(Eπ) =
dn±π (Eπ)

dEπ
=

(const)
Eπ

∫ ∞

Eπ

dEE−(1+γ)f±pπ(Eπ, E) (6.7)

Applying the hypothesis of limiting fragmentation,

limE→∞f̃±pπ(x) (6.8)

where

x =
√

2
PπL

[MN (E + MN )]1/2
(6.9)

is the usual Feynman scaled variable, Pc.m
πL is the pion longitudinal momentum in the center-

of-mass frame, and MN is the nucleon mass. For E, Eπ → ∞, x ≈ Eπ/E. Equation 6.7 to
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the form,

π±(Eπ) = (const)E−(1+γ)
π Z±pπ (6.10)

where

Z±pπ =
∫ 1

0
f̃±pπ(x)xγ−1dx (6.11)

Consequently, in this simple model, we can derived,

µ+(Eµ)
µ−(Eµ)

=
π+(Eπ)
π−(Eπ)

=
Z+

pπ

Z−pπ
(6.12)

From this simple model, one can extract following features for muon charge ratio

at the Earth’s surface.

• From equation 6.10 – 6.12, the µ+

µ− ratio is explicitly independent of the muon energy.

• Due to the π+ > π− in the primary proton fragments, µ+

µ− > 1.

• The ratio µ+

µ− depends on the power γ of the primary spectrum, and thus may have an

implicit energy dependance through various in the power law of the primary spectrum.

• Pionization products have very little effects on µ+

µ− ratio. The power law behavior of

the primary spectrum, appearing as the weighting factor xγ−1 in the integrand Z±pπ,

suppresses contributions from x ≈ 0, the pionization region. For x > 0 , it is expected

that f̃+
pπ > f̃−pπ. Since the integrand in Z±pπ never becomes negative, it follows that

Z+
pπ > Z−pπ, and that µ+

µ− > 1.

According to the theoretical explanation, the simulated µ+

µ− is agreed with theo-

retical predictions .
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Chapter 7

Conclusion and Future Studies

7.1 Conclusion

The precise knowledge of the flux of atmospheric particles induced by galactic and

solar cosmic rays is important for number of applications. A detailed theoretical model of

the shower development is required to analyze experimental data on extensive air shower

or to plan future experiments. This can only be achieved by simulations, which take into

account all knowledge of high energy hadronic and electromagnetic interactions. ECRS is

a useful and flexible tool that can be used to study high energy cosmic ray interactions and

support the interpretation of secondary cosmic ray shower measurements.

The ECRS simulation was successfully developed to study secondary cosmic ray

showers in the Earth’s atmosphere. Table 7.1 summarizes the main characteristics of the

ECRS. It employs a number of theoretical models of high energy hadronic interactions

as well as experimental data modules. Both internal and external magnetic fields were

implemented.
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Also, two different methods were used to verify the geomagnetic field as well as

cutoff rigidity on the Earth’s surface. In this thesis, the analysis of the data from the

ECRS simulation was presented with air density effects and magnetic field effects for both

lateral and longitudinal distribution. Simulated flux was shown good agreement with Toy’s

theoretical model.

The CAPRICE and BESS muon data was compared with results from the ECRS

simulation that simulated extensive air shower for two different geomantic locations. The

results were shown to have good agreement between the measured charged ratio and the

ECRS simulated charged ratio, giving geomagnetic cutoff rigidity dependence for low energy

muon particles.

7.2 Future Studies

In addition to the above simulation studies, simulated data was collected to study

the atmospheric neutrinos. Detailed analysis of neutrinos will be one area of future studies

based on the ECRS simulation.

The primary particle fluxes were simulated with different air densities that show an

effect on lateral distribution at the Earth’s surface. Cloud formation and air composition

changes are directly linked with air density changes. Layers of cloud with appropriate

composition can be employed in the ECRS to study the correlation between secondary flux

and weather. Extensive analysis will be needed with a broad range of primary particle

energies to achieve such a kind of experiment. ECRS simulated secondary flux could also

be used to study the radiation effect on biological cells, and verify the detector data. The
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ECRS simulation can be used to model cosmic ray flux variation due to the solar activity

changes in a given period of time. More importantly, this simulation is an extremely useful

toolkit for optimizing the design of detectors for cosmic ray studies.
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Table 7.1: Main characteristics of the ECRS simulation program.

Main Characteristics of ECRS

Main Energy deposited in the atmosphere, at different observing level.
observable Particle lateral and longitudinal distribution.

Number and energy of secondary particles, at different observing level.
Detailed list of particles reaching ground, and/or crossing
predetermined observing level.

Geometry Real size of Earth with realistic atmospheric layers.
Both internal and external magnetic field.

Primary Mainly proton but any particle can be injected as a primary.
particle Multiple particles can be also injected.
Propagated γ, e±, µ±, π0, π±, K±, K0, η, the baryons p, n, K∗0, K∗±, ∆±,
particle. ∆0, ∆++ the corresponding anti–baryons, and νe, νµ

Propagation Multiple Scattering.
General Scattering all charged particle.

Ionization.
Transition Radiation.
Scintillation.
Cerenkov Effect.

Propagation Bremsstrahlung.
Muons Decay and emission of knock–on electron.

e− - e+ Pair Production.
Propagation Hadronic cross sections are evaluated from fits to
Hadrons and experimental data.
nuclei Emission of knok–on electron.

Decay of unsatiable hadron.
QGSP, QGSP BERT, LHEP BERT and LHEP GN
models for high energy.

Propagation Bremsstrahlung.
Elections and Decay and emission of knock–on electron.
gammas e− - e+ Annihilation.

Photoelectric and Photonuclear effect.
Compton Scattering.
Gamma Conversion into e− - e+.
Emission of knok–on electrons.
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Appendix A

Programs Used for ECRS

The following ECRS programs are written in C++. The ECRS program is a

collection of classes that includes following classes.

• BEquation

• BIntegrator

• ECRSAtmosphereSD

• ECRSEventAction

• ECRSStackingMessenger

• ECRSVisManager

• ECRSDataArray

• ECRSEventActionMessenger

• ECRSPrimaryGeneratorAction
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• ECRSSteppingAction

• ECRSDetectorConstruction

• ECRSFieldMessenger

• ECRSPrimaryGeneratorMessenger

• ECRSSteppingMessenger

• DateAndTime

• ECRSDetectorMessenger

• ECRSMagneticField

• ECRSRunAction

• ECRSTrackingAction

• SpaceCoordinateConvertor

• ECRSAtmoHit

• ECRSEquationOfMotion

• ECRSPhysicsList

• ECRSStackingAction

• ECRSTrackingMessenger

ECRS main program and construction codes are given below. Some main ECRS

analysis codes are also included.
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//ECRS main program 
 
#include "G4UImanager.hh" 
#include "G4UIterminal.hh" 
#include "G4UIGAG.hh" 
#include "G4UItcsh.hh" 
#include "G4UIXm.hh" 
#include "G4UIXaw.hh" 
#include "G4RunManager.hh" 
#include "Randomize.hh" 
#include <time.h>  
#include "ECRSMagneticField.hh" 
#include "ECRSDetectorConstruction.hh" 
#include "ECRSPhysicsList.hh" 
#include "ECRSPrimaryGeneratorAction.hh" 
#include "ECRSVisManager.hh" 
#include "ECRSRunAction.hh" 
#include "ECRSEventAction.hh" 
#include "ECRSStackingAction.hh" 
#include "ECRSTrackingAction.hh" 
#include "ECRSSteppingAction.hh" 
#include "ECRSSingleton.hh" 
 
#ifdef G4VIS_USE 
#include "ECRSVisManager.hh" 
#include "G4OpenGLImmediateX.hh" 
#include "G4OpenGLStoredX.hh" 
#include "G4OpenGLImmediateXm.hh" 
#include "G4OpenGLStoredXm.hh" 
#include "G4DAWNFILE.hh" 
#endif 
 
#include "G4ios.hh" 
#include "ECRSUnits.hh" 
#include "G4UnitsTable.hh" 
#include "SpaceCoordinateConvertor.hh" 
#include "G4ProcessTable.hh" 
#include <iostream> 
#include <stdlib.h> 
 
int main(int argc,char** argv) { 
// Definition of new units in the unit table should be defined  at 
the beginning    //before the instantiation of the runManager and 
should be followed by  

  // G4UnitDefinition::BuildUnitsTable()   
   
  new G4UnitDefinition("earth radii","re","Length",re); 
  new G4UnitDefinition("earth radii 1","Re","Length",re); 
  new G4UnitDefinition("earth radii 2","RE","Length",re); 
  new G4UnitDefinition("hour","hour","Time",3600.*s); 
  new G4UnitDefinition("minute","minute","Time",60.*s); 
  new G4UnitDefinition("day","day","Time",24.*3600.*s); 
  new G4UnitDefinition("nanotesla","nT","Magnetic flux density",nT); 
  new G4UnitDefinition("gigavolt","GV","Electric 
potential",1000.*megavolt); 
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  G4UnitDefinition::BuildUnitsTable(); 
   
  srand(time(NULL)); 
  ECRSSingleton* myOut = ECRSSingleton::instance(); 
  G4int seed_index; 
  seed_index = (int)rand();   
  myOut->Fopen("Cosmic_Output.dat"); 
   
 // Select the RanecuEngine random number generator with           
//seeds defined above 
  HepRandom::setTheEngine(new RanecuEngine); 
  G4long Myseeds[2]; 
  Myseeds[0] = (int)rand(); 
  Myseeds[1] = (int)rand();  
  HepRandom::setTheSeeds(Myseeds,seed_index); 
     
  // Run manager 
  G4RunManager * runManager = new G4RunManager; 
   
  // Mandatory initialization classes 
  ECRSDetectorConstruction* detector = new ECRSDetectorConstruction; 
  runManager->SetUserInitialization(detector); 
  runManager->SetUserInitialization(new ECRSPhysicsList); 
   
#ifdef G4VIS_USE 
  // Visualization, if you choose to have it! 
  G4VisManager* visManager = new ECRSVisManager; 
  visManager->Initialize(); 
#endif 
   
  // set mandatory user action class 
  runManager->SetUserAction(new 
ECRSPrimaryGeneratorAction(detector)); 
  runManager->SetUserAction(new ECRSRunAction); 
  runManager->SetUserAction(new ECRSEventAction); 
   
  // set optional user action classes 
  runManager->SetUserAction(new ECRSStackingAction); 
  runManager->SetUserAction(new ECRSSteppingAction(detector)); 
  runManager->SetUserAction(new ECRSTrackingAction); 
   
  G4UIsession* session=0; 
  if (argc==1) session = new G4UIterminal; 
  //Initialize G4 kernel 
  runManager->Initialize();  
   
  G4ProcessTable::GetProcessTable()-
>SetProcessActivation("MYTransportation",false); 
  G4ProcessTable::GetProcessTable()-
>SetProcessActivation("Transportation",true); 
   
  // User interactions 
     
  G4UImanager* UI = G4UImanager::GetUIpointer(); 
  UI->ApplyCommand("/tracking/verbose 0"); 
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  if (session) 
    { 
      session->SessionStart(); 
      delete session; 
      G4cout << G4endl << "Interactive session ended." << G4endl; 
    } 
  else 
    { 
      G4String command = "/control/execute "; 
      G4String fileName = argv[1]; 
      UI->ApplyCommand(command+fileName); 
    } 
   
#ifdef G4VIS_USE 
  delete visManager; 
#endif 
  delete runManager; 
  G4cout << "RunManager deleted." << G4endl; 
  myOut->Fclose(); 
  return 0; 
} 
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// ECRS Earth Construction Class 
 
#include "ECRSDetectorConstruction.hh" 
#include "ECRSDetectorMessenger.hh" 
#include "ECRSAtmosphereSD.hh" 
#include "ECRSMagneticField.hh" 
#include "G4Box.hh" 
#include "G4Sphere.hh" 
#include "G4PVPlacement.hh" 
#include "G4VisAttributes.hh" 
#include "G4UnitsTable.hh" 
#include "G4ThreeVector.hh" 
#include "G4LogicalVolume.hh" 
#include "G4RunManager.hh" 
#include "G4ios.hh" 
#include "G4SDManager.hh" 
#include "G4MaterialTable.hh" 
 
ECRSDetectorConstruction::ECRSDetectorConstruction() 
  :air1(NULL),air2(NULL),air3(NULL),air4(NULL),air5(NULL), 
   air6(NULL),air7(NULL),air8(NULL),air9(NULL),air10(NULL), 
  air11(NULL),air12(NULL),air13(NULL),air14(NULL),air15(NULL), 
  air16(NULL),air17(NULL),air18(NULL),air19(NULL),air20(NULL), 
  air21(NULL),air22(NULL),air23(NULL),air24(NULL),air25(NULL), 
  air26(NULL),air27(NULL),air28(NULL),air29(NULL),air30(NULL), 
  air31(NULL),air32(NULL),air33(NULL),air34(NULL),air35(NULL), 
  air36(NULL),air37(NULL),air38(NULL), 
    
Si(NULL),space(NULL),elN(NULL),elO(NULL),elAr(NULL),earth(NULL), 
elC(NULL),N2(NULL),O2(NULL),Ar(NULL),CO2(NULL),universe(NULL), 
universe_log(NULL),universe_phys(NULL),ECRS_sphere(NULL), 
ECRS_log(NULL),ECRS_phys(NULL), 
    
atmo1(NULL),atmo2(NULL),atmo3(NULL),atmo4(NULL),atmo5(NULL), 
atmo6(NULL),atmo7(NULL),atmo8(NULL),atmo9(NULL),atmo10(NULL), 
atmo11(NULL),atmo12(NULL),atmo13(NULL),atmo14(NULL),atmo15(NULL), 
atmo16(NULL),atmo17(NULL),atmo18(NULL),atmo19(NULL),atmo20(NULL), 
atmo21(NULL),atmo22(NULL),atmo23(NULL),atmo24(NULL),atmo25(NULL), 
atmo26(NULL),atmo27(NULL),atmo28(NULL),atmo29(NULL),atmo30(NULL), 
atmo31(NULL),atmo32(NULL),atmo33(NULL),atmo34(NULL),atmo35(NULL), 
atmo36(NULL),atmo37(NULL),atmo38(NULL), 
    
atm1_log(NULL),atm2_log(NULL),atm3_log(NULL),atm4_log(NULL), 
atm5_log(NULL),atm6_log(NULL),atm7_log(NULL),atm8_log(NULL), 
atm9_log(NULL),atm10_log(NULL),atm11_log(NULL),atm12_log(NULL), 
atm13_log(NULL),atm14_log(NULL),atm15_log(NULL),atm16_log(NULL), 
atm17_log(NULL),atm18_log(NULL),atm19_log(NULL),atm20_log(NULL), 
atm21_log(NULL),atm22_log(NULL),atm23_log(NULL),atm24_log(NULL), 
atm25_log(NULL),atm26_log(NULL),atm27_log(NULL),atm28_log(NULL), 
atm29_log(NULL),atm30_log(NULL),atm31_log(NULL),atm32_log(NULL), 
atm33_log(NULL),atm34_log(NULL),atm35_log(NULL),atm36_log(NULL), 
atm37_log(NULL),atm38_log(NULL), 
    
atm1_phys(NULL),atm2_phys(NULL),atm3_phys(NULL),atm4_phys(NULL), 
atm5_phys(NULL),atm6_phys(NULL),atm7_phys(NULL),atm8_phys(NULL), 
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atm9_phys(NULL),atm10_phys(NULL),atm11_phys(NULL),atm12_phys(NULL), 
atm13_phys(NULL),atm14_phys(NULL),atm15_phys(NULL),atm16_phys(NULL), 
atm17_phys(NULL),atm18_phys(NULL),atm19_phys(NULL),atm20_phys(NULL), 
atm21_phys(NULL),atm22_phys(NULL),atm23_phys(NULL),atm24_phys(NULL), 
atm25_phys(NULL),atm26_phys(NULL),atm27_phys(NULL),atm28_phys(NULL), 
atm29_phys(NULL),atm30_phys(NULL),atm31_phys(NULL),atm32_phys(NULL), 
atm33_phys(NULL),atm34_phys(NULL),atm35_phys(NULL),atm36_phys(NULL), 
atm37_phys(NULL),atm38_phys(NULL), 
       
Atm1Att(NULL),Atm2Att(NULL),Atm3Att(NULL),Atm4Att(NULL),Atm5Att(NULL)
, 
Atm6Att(NULL),Atm7Att(NULL),Atm8Att(NULL),Atm9Att(NULL),Atm10Att(NULL
), 
Atm11Att(NULL),Atm12Att(NULL),Atm13Att(NULL),Atm14Att(NULL),Atm15Att(
NULL), 
Atm16Att(NULL),Atm17Att(NULL),Atm18Att(NULL),Atm19Att(NULL),Atm20Att(
NULL), 
Atm21Att(NULL),Atm22Att(NULL),Atm23Att(NULL),Atm24Att(NULL),Atm25Att(
NULL), 
Atm26Att(NULL),Atm27Att(NULL),Atm28Att(NULL),Atm29Att(NULL),Atm30Att(
NULL), 
Atm31Att(NULL),Atm32Att(NULL),Atm33Att(NULL),Atm34Att(NULL),Atm35Att(
NULL), 
Atm36Att(NULL),Atm37Att(NULL),Atm38Att(NULL),    
 
   atmosphereSD(0)  
{ 
  mult = 1.0; 
  multDensity = 1.0; 
  visibility = false; 
  externalMag = true; 
   
  // Set detector sizes 
  universeSize = 19.1136e6*m;  
  universe_x = universeSize; 
  universe_y = universeSize; 
  universe_z = universeSize; 
   
  // set the radius of the Earth 
  earthRadius = 6.3712e6*m;   
   
  // set atmospheric layers height - Modified Sanjeewa sep/05 
  G4double Height = 0.0000e3*m; 
   
  // set 30 layers each 1 km interval from 0 - 30 km 
  for (G4int i = 0 ; i < 31; i++) 
    {  
      atmHeight[i] = Height; 
      Height  = Height + 1.0000e3*m; 
    }  
   
  // Set 7 layers each 10 km interval from 40 - 100 km 
  for (G4int i = 31; i < 38; i++) 
    { 
      atmHeight[i] = atmHeight[i-1] + 10.000e3*m; 



 

 

120

    } 
   
  ECRSDetector = new ECRSDetectorMessenger(this);    
  if (  externalMag = false ) 
    { 
      G4cout << "External Magnetic Firld off " <<  externalMag << 
G4endl; 
    } 
   
  if ( externalMag = true){ 
    theMagneticField=new ECRSMagneticField(); 
    G4cout << "External Magnetic Firld on " <<  externalMag << 
G4endl; 
  } 
} 
 
///////////////////////////////////////////////////////////////// 
 
ECRSDetectorConstruction::~ECRSDetectorConstruction() 
{ 
  delete ECRSDetector; 
  delete theMagneticField; 
} 
 
///////////////////////////////////////////////////////////////// 
 
G4VPhysicalVolume* ECRSDetectorConstruction::Construct() 
{ 
  DefineMaterials(); 
  return ConstructWorld(); 
} 
 
///////////////////////////////////////////////////////////////// 
 
void ECRSDetectorConstruction::DefineMaterials() 
{ 
  G4double a;  // atomic mass 
  G4double z;  // atomic number 
   
  //Define the ECRS to be made of solid silicone 
  a = 28.086*g/mole; 
  density = 2.4*g/cm3; 
  //  density *= multDensity; 
  Si = new G4Material(name="Silicone",z=14., a, density); 
   
   //Define elements and gasses to compose atmosphere 
  a = 14.007*g/mole; 
  elN = new G4Element(name="Nitrogen",symbol="N",z=7.,a); 
   
  a = 15.999*g/mole; 
  elO = new G4Element(name="Oxygen",symbol="O",z=8.,a); 
   
  a = 39.948*g/mole; 
  elAr = new G4Element(name="Argon",symbol="Ar",z=18.,a); 
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  a = 12.011*g/mole; 
  elC = new G4Element(name="Carbon",symbol="C",z=6.,a); 
   
  density = 0.001251*g/cm3; 
   N2 = new G4Material(name="n_gas",density,ncomponents=1); 
  N2->AddElement(elN,natoms=2); 
   
  density = 0.001429*g/cm3; 
  O2 = new G4Material(name="o_gas",density,ncomponents=1); 
  O2->AddElement(elO,natoms=2); 
   
  density = 0.001784*g/cm3; 
  Ar = new G4Material(name="Ar_gas",density,ncomponents=1); 
  Ar->AddElement(elAr,natoms=1); 
   
  density = 0.001965*g/cm3; 
  CO2 = new G4Material(name="carbon_dioxide",density,ncomponents=2); 
  CO2->AddElement(elC,natoms=1); 
  CO2->AddElement(elO,natoms=2); 
 
  //Make the air layer Density, Temperatur, and pressure array 
  G4double DensityPro[38] = {0.000*g/cm3,  
                             1.1673e-3*g/cm3, 1.0582e-3*g/cm3, 
9.5695e-4*g/cm3, 8.6340e-4*g/cm3, 7.7704e-4*g/cm3, 6.9747e-4*g/cm3, 
6.6431e-4*g/cm3, 5.5719e-4*g/cm3, 4.9576e-4*g/cm3, 4.3966e-4*g/cm3, 
3.8857e-4*g/cm3, 3.3743e-4*g/cm3, 2.8838e-4*g/cm3, 2.4646e-4*g/cm3, 
2.1066e-4*g/cm3, 1.6647e-4*g/cm3, 1.4230e-4*g/cm3, 1.2165e-4*g/cm3, 
1.0400e-4*g/cm3, 8.8910e-5*g/cm3, 7.5715e-5*g/cm3, 6.4510e-5*g/cm3, 
5.5006e-5*g/cm3, 4.6938e-5*g/cm3, 4.0084e-5*g/cm3, 3.4257e-5*g/cm3, 
2.9298e-5*g/cm3, 2.5076e-5*g/cm3, 2.1478e-5*g/cm3, 1.8410e-5*g/cm3, 
8.4634e-6*g/cm3 ,1.7142e-6*g/cm3, 5.0445e-7*g/cm3, 1.6321e-7*g/cm3, 
3.9921e-8*g/cm3, 8.2196e-9*g/cm3, 1.3930e-9*g/cm3 }; 
   
  G4double TempPro[38] =    {0.000*kelvin, 284.900*kelvin, 
278.402*kelvin, 271.906*kelvin, 265.413*kelvin, 258.921*kelvin, 
252.432*kelvin, 245.943*kelvin, 239.457*kelvin, 232.974*kelvin, 
226.942*kelvin, 220.013*kelvin, 216.650*kelvin, 216.650*kelvin, 
216.650*kelvin, 216.650*kelvin, 216.650*kelvin, 216.650*kelvin, 
216.650*kelvin, 216.650*kelvin, 216.650*kelvin, 217.581*kelvin, 
218.574*kelvin, 219.567*kelvin, 220.560*kelvin, 221.552*kelvin, 
222.554*kelvin, 223.536*kelvin, 224.527*kelvin, 225.518*kelvin, 
226.509*kelvin, 236.513*kelvin, 266.925*kelvin, 258.019*kelvin, 
233.292*kelvin, 208.399*kelvin, 188.893*kelvin, 188.420*kelvin }; 
   
  G4double PressurePro[38] ={0.000*pascal, 9.5461e+4*pascal, 
8.9876e+4*pascal, 7.4691e+4*pascal, 6.5780e+4*pascal, 
5.7752e+4*pascal, 5.0593e+4*pascal, 4.4075e+4*pascal, 
3.8299e+4*pascal, 3.3154e+4*pascal, 2.8584e+4*pascal, 
2.4540e+4*pascal, 2.0984e+4*pascal, 1.7934e+4*pascal, 
1.5327e+4*pascal, 1.3100e+4*pascal, 1.0352e+4*pascal, 
8.8497e+3*pascal, 7.5652e+3*pascal, 6.4674e+3*pascal, 
5.5293e+3*pascal, 4.7289e+3*pascal, 4.0475e+3*pascal, 
3.4668e+3*pascal, 2.9717e+3*pascal, 2.5492e+3*pascal, 
2.1883e+3*pascal, 1.8799e+3*pascal, 1.6161e+3*pascal, 
1.3904e+3*pascal, 1.1970e+3*pascal, 5.5749e+2*pascal, 
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1.3134e+2*pascal, 3.7362e+1*pascal,n1.0929e+1*pascal, 2.3881*pascal, 
4.4568e-1*pascal, 7.5966e-2*pascal}; 
 
  //Make the air of the atmosphere 
  density = DensityPro[1];    // 500m in CRC 
  density *= multDensity; 
  temperature = TempPro[1]; 
  pressure = PressurePro[1]; 
  air1 = new G4Material(name="air-1",density,ncomponents=4, 
   kStateGas,temperature); 
  air1->AddMaterial(N2,fractionmass=75.521*perCent); 
  air1->AddMaterial(O2,fractionmass=23.143*perCent); 
  air1->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air1->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density =  DensityPro[2];     // 1500m in CRC 
  density *= multDensity; 
  pressure = TempPro[2]; 
  temperature = PressurePro[2]; 
  air2 = new G4Material(name="air-2",density,ncomponents=4, 
   kStateGas,temperature,pressure); 
  air2->AddMaterial(N2,fractionmass=75.521*perCent); 
  air2->AddMaterial(O2,fractionmass=23.143*perCent); 
  air2->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air2->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density =  DensityPro[3];      // 2500m in CRC 
  density *= multDensity; 
  temperature = TempPro[3]; 
  pressure = PressurePro[3]; 
  air3 = new G4Material(name="air-3",density,ncomponents=4, 
   kStateGas,temperature,pressure); 
  air3->AddMaterial(N2,fractionmass=75.521*perCent); 
  air3->AddMaterial(O2,fractionmass=23.143*perCent); 
  air3->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air3->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[4];      // 3500m in CRC 
  density *= multDensity; 
  temperature = TempPro[4]; 
  pressure = PressurePro[4]; 
  air4 = new G4Material(name="air-4",density,ncomponents=4, 
   kStateGas,temperature,pressure); 
  air4->AddMaterial(N2,fractionmass=75.521*perCent); 
  air4->AddMaterial(O2,fractionmass=23.143*perCent); 
  air4->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air4->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[5];      // 4500m in CRC 
  density *= multDensity; 
  temperature = TempPro[5]; 
  pressure = PressurePro[5]; 
  air5 = new G4Material(name="air-5",density,ncomponents=4, 
   kStateGas,temperature,pressure); 
  air5->AddMaterial(N2,fractionmass=75.521*perCent); 
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  air5->AddMaterial(O2,fractionmass=23.143*perCent); 
  air5->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air5->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[6];      // 5500m in CRC 
  density *= multDensity; 
  temperature = TempPro[6]; 
  pressure = PressurePro[6]; 
  air6 = new G4Material(name="air-6",density,ncomponents=4, 
   kStateGas,temperature,pressure); 
  air6->AddMaterial(N2,fractionmass=75.521*perCent); 
  air6->AddMaterial(O2,fractionmass=23.143*perCent); 
  air6->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air6->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[7];      // 6500m in CRC 
  density *= multDensity; 
  temperature = TempPro[7]; 
  pressure = PressurePro[7]; 
  air7 = new G4Material(name="air-7",density,ncomponents=4, 
   kStateGas,temperature,pressure); 
  air7->AddMaterial(N2,fractionmass=75.521*perCent); 
  air7->AddMaterial(O2,fractionmass=23.143*perCent); 
  air7->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air7->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[8];      // 7500m in CRC 
  density *= multDensity; 
  temperature = TempPro[8]; 
  pressure = PressurePro[8]; 
  air8 = new G4Material(name="air-8",density,ncomponents=4, 
   kStateGas,temperature,pressure); 
  air8->AddMaterial(N2,fractionmass=75.521*perCent); 
  air8->AddMaterial(O2,fractionmass=23.143*perCent); 
  air8->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air8->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density =  DensityPro[9];      // 8500m in CRC 
  density *= multDensity; 
  temperature = TempPro[9]; 
  pressure = PressurePro[9]; 
  air9 = new G4Material(name="air-9",density,ncomponents=4, 
   kStateGas,temperature,pressure); 
  air9->AddMaterial(N2,fractionmass=75.521*perCent); 
  air9->AddMaterial(O2,fractionmass=23.143*perCent); 
  air9->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air9->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[10];      // 9500m in CRC 
  density *= multDensity; 
  temperature = TempPro[10]; 
  pressure = PressurePro[10]; 
  air10 = new G4Material(name="air-10",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air10->AddMaterial(N2,fractionmass=75.521*perCent); 
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  air10->AddMaterial(O2,fractionmass=23.143*perCent); 
  air10->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air10->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[11];      // 10500m in CRC 
  density *= multDensity; 
  temperature = TempPro[11]; 
  pressure = PressurePro[11]; 
  air11 = new G4Material(name="air-11",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air11->AddMaterial(N2,fractionmass=75.521*perCent); 
  air11->AddMaterial(O2,fractionmass=23.143*perCent); 
  air11->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air11->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[12];      // 11500m in CRC 
  density *= multDensity; 
  temperature = TempPro[12]; 
  pressure = PressurePro[12]; 
  air12 = new G4Material(name="air-12",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air12->AddMaterial(N2,fractionmass=75.521*perCent); 
  air12->AddMaterial(O2,fractionmass=23.143*perCent); 
  air12->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air12->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[13];      // 12500m in CRC 
  density *= multDensity; 
  temperature = TempPro[13]; 
  pressure = PressurePro[13]; 
  air13 = new G4Material(name="air-13",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air13->AddMaterial(N2,fractionmass=75.521*perCent); 
  air13->AddMaterial(O2,fractionmass=23.143*perCent); 
  air13->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air13->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[14];      // 13500m in CRC 
  density *= multDensity; 
  temperature = TempPro[14]; 
  pressure = PressurePro[14]; 
  air14 = new G4Material(name="air-14",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air14->AddMaterial(N2,fractionmass=75.521*perCent); 
  air14->AddMaterial(O2,fractionmass=23.143*perCent); 
  air14->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air14->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[15];      // 14500m in CRC 
  density *= multDensity; 
  temperature = TempPro[15]; 
  pressure = PressurePro[15]; 
  air15 = new G4Material(name="air-15",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air15->AddMaterial(N2,fractionmass=75.521*perCent); 



 

 

125

  air15->AddMaterial(O2,fractionmass=23.143*perCent); 
  air15->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air15->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density =  DensityPro[16];      // 16000m in CRC 
  density *= multDensity; 
  temperature = TempPro[16]; 
  pressure = PressurePro[16]; 
  air16 = new G4Material(name="air-16",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air16->AddMaterial(N2,fractionmass=75.521*perCent); 
  air16->AddMaterial(O2,fractionmass=23.143*perCent); 
  air16->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air16->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[17];      // 17000m in CRC 
  density *= multDensity; 
  temperature = TempPro[17]; 
  pressure = PressurePro[17]; 
  air17 = new G4Material(name="air-17",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air17->AddMaterial(N2,fractionmass=75.521*perCent); 
  air17->AddMaterial(O2,fractionmass=23.143*perCent); 
  air17->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air17->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[18];      // 18000m in CRC 
  density *= multDensity; 
  temperature = TempPro[18]; 
  pressure = PressurePro[18]; 
  air18 = new G4Material(name="air-18",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air18->AddMaterial(N2,fractionmass=75.521*perCent); 
  air18->AddMaterial(O2,fractionmass=23.143*perCent); 
  air18->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air18->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[19];      // 19000m in CRC 
  density *= multDensity; 
  temperature = TempPro[19]; 
  pressure = PressurePro[19]; 
  air19 = new G4Material(name="air-19",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air19->AddMaterial(N2,fractionmass=75.521*perCent); 
  air19->AddMaterial(O2,fractionmass=23.143*perCent); 
  air19->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air19->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[20];      // 20000m in CRC 
  density *= multDensity; 
  temperature = TempPro[20]; 
  pressure = PressurePro[20]; 
  air20 = new G4Material(name="air-20",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air20->AddMaterial(N2,fractionmass=75.521*perCent); 
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  air20->AddMaterial(O2,fractionmass=23.143*perCent); 
  air20->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air20->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[21];      // 21000m in CRC 
  density *= multDensity; 
  temperature = TempPro[21]; 
  pressure = PressurePro[21]; 
  air21 = new G4Material(name="air-21",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air21->AddMaterial(N2,fractionmass=75.521*perCent); 
  air21->AddMaterial(O2,fractionmass=23.143*perCent); 
  air21->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air21->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[22];      // 22000m in CRC 
  density *= multDensity; 
  temperature = TempPro[22]; 
  pressure = PressurePro[22]; 
  air22 = new G4Material(name="air-22",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air22->AddMaterial(N2,fractionmass=75.521*perCent); 
  air22->AddMaterial(O2,fractionmass=23.143*perCent); 
  air22->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air22->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[23];      // 23000m in CRC 
  density *= multDensity; 
  temperature = TempPro[23]; 
  pressure = PressurePro[23]; 
  air23 = new G4Material(name="air-23",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air23->AddMaterial(N2,fractionmass=75.521*perCent); 
  air23->AddMaterial(O2,fractionmass=23.143*perCent); 
  air23->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air23->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[24];      // 24000m in CRC 
  density *= multDensity; 
  temperature = TempPro[24]; 
  pressure = PressurePro[24]; 
  air24 = new G4Material(name="air-24",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air24->AddMaterial(N2,fractionmass=75.521*perCent); 
  air24->AddMaterial(O2,fractionmass=23.143*perCent); 
  air24->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air24->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[25];      // 25000m in CRC 
  density *= multDensity; 
  temperature = TempPro[25]; 
  pressure = PressurePro[25]; 
  air25 = new G4Material(name="air-25",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air25->AddMaterial(N2,fractionmass=75.521*perCent); 
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  air25->AddMaterial(O2,fractionmass=23.143*perCent); 
  air25->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air25->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[26];      // 26000m in CRC 
  density *= multDensity; 
  temperature = TempPro[26]; 
  pressure = PressurePro[26]; 
  air26 = new G4Material(name="air-26",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air26->AddMaterial(N2,fractionmass=75.521*perCent); 
  air26->AddMaterial(O2,fractionmass=23.143*perCent); 
  air26->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air26->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[27];      // 27000m in CRC 
  density *= multDensity; 
  temperature = TempPro[27]; 
  pressure = PressurePro[27]; 
  air27 = new G4Material(name="air-27",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air27->AddMaterial(N2,fractionmass=75.521*perCent); 
  air27->AddMaterial(O2,fractionmass=23.143*perCent); 
  air27->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air27->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[28];      // 28000m in CRC 
  density *= multDensity; 
  temperature = TempPro[28]; 
  pressure = PressurePro[28]; 
  air28 = new G4Material(name="air-28",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air28->AddMaterial(N2,fractionmass=75.521*perCent); 
  air28->AddMaterial(O2,fractionmass=23.143*perCent); 
  air28->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air28->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[29];      // 29000m in CRC 
  density *= multDensity; 
  temperature = TempPro[29]; 
  pressure = PressurePro[29]; 
  air29 = new G4Material(name="air-29",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air29->AddMaterial(N2,fractionmass=75.521*perCent); 
  air29->AddMaterial(O2,fractionmass=23.143*perCent); 
  air29->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air29->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[30];      // 30000m in CRC 
  density *= multDensity; 
  temperature = TempPro[30]; 
  pressure = PressurePro[30]; 
  air30 = new G4Material(name="air-30",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air30->AddMaterial(N2,fractionmass=75.521*perCent); 
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  air30->AddMaterial(O2,fractionmass=23.143*perCent); 
  air30->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air30->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[31];      // 36000m in CRC 
  density *= multDensity; 
  temperature = TempPro[31]; 
  pressure = PressurePro[31]; 
  air31 = new G4Material(name="air-31",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air31->AddMaterial(N2,fractionmass=75.521*perCent); 
  air31->AddMaterial(O2,fractionmass=23.143*perCent); 
  air31->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air31->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[32];      // 46000m in CRC 
  density *= multDensity; 
  temperature = TempPro[32]; 
  pressure = PressurePro[32]; 
  air32 = new G4Material(name="air-32",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air32->AddMaterial(N2,fractionmass=75.521*perCent); 
  air32->AddMaterial(O2,fractionmass=23.143*perCent); 
  air32->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air32->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[33];      // 56000m in CRC 
  density *= multDensity; 
  temperature = TempPro[33]; 
  pressure = PressurePro[33]; 
  air33 = new G4Material(name="air-33",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air33->AddMaterial(N2,fractionmass=75.521*perCent); 
  air33->AddMaterial(O2,fractionmass=23.143*perCent); 
  air33->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air33->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[34];      // 65000m in CRC 
  density *= multDensity; 
  temperature = TempPro[34]; 
  pressure = PressurePro[34]; 
  air34 = new G4Material(name="air-34",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air34->AddMaterial(N2,fractionmass=75.521*perCent); 
  air34->AddMaterial(O2,fractionmass=23.143*perCent); 
  air34->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air34->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[35];      // 75000m in CRC 
  density *= multDensity; 
  temperature = TempPro[35]; 
  pressure = PressurePro[35]; 
  air35 = new G4Material(name="air-35",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air35->AddMaterial(N2,fractionmass=75.521*perCent); 
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  air35->AddMaterial(O2,fractionmass=23.143*perCent); 
  air35->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air35->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[36];      // 85000m in CRC 
  density *= multDensity; 
  temperature = TempPro[36]; 
  pressure = PressurePro[36]; 
  air36 = new G4Material(name="air-36",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air36->AddMaterial(N2,fractionmass=75.521*perCent); 
  air36->AddMaterial(O2,fractionmass=23.143*perCent); 
  air36->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air36->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  density = DensityPro[37];      // 95000m in CRC 
  density *= multDensity; 
  temperature = TempPro[37]; 
  pressure = PressurePro[37]; 
  air37 = new G4Material(name="air-37",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  air37->AddMaterial(N2,fractionmass=75.521*perCent); 
  air37->AddMaterial(O2,fractionmass=23.143*perCent); 
  air37->AddMaterial(Ar,fractionmass=1.288*perCent); 
  air37->AddMaterial(CO2,fractionmass=0.048*perCent); 
   
  //Make the vacuum of space 
  density = universe_mean_density;  //included from 
PhysicalConstants.h 
  pressure = 1.0E-19*pascal; 
  temperature = 2.74*kelvin; 
  space = new G4Material(name="space",z=1.,a=1.01*g/mole, 
    density,kStateGas,temperature,pressure); 
   
  //Make the Univers 
  density = .0012250*g/cm3;  //included from PhysicalConstants.h 
  pressure = 1.01325E5*pascal; 
  temperature = 288.150*kelvin; 
  earth = new G4Material(name="earth",density,ncomponents=4, 
    kStateGas,temperature,pressure); 
  earth->AddMaterial(N2,fractionmass=75.521*perCent); 
  earth->AddMaterial(O2,fractionmass=23.143*perCent); 
  earth->AddMaterial(Ar,fractionmass=1.288*perCent); 
  earth->AddMaterial(CO2,fractionmass=0.048*perCent); 
} 
 
///////////////////////////////////////////////////////////////// 
 
G4VPhysicalVolume* ECRSDetectorConstruction::ConstructWorld() 
{ 
  // THE UNIVERSE 
   
  universe_x = mult*universeSize; 
  universe_y = mult*universeSize; 
  universe_z = mult*universeSize; 
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  universe = new G4Box("universe",universe_x,universe_y,universe_z); 
  universe_log = new 
G4LogicalVolume(universe,space,"universe_log",0,0,0); 
  universe_phys 
    = new 
G4PVPlacement(0,G4ThreeVector(),"universe",universe_log,0,false,0); 
  G4VisAttributes* UniverseAtt = new G4VisAttributes(); 
  UniverseAtt->SetVisibility(true); 
  universe_log->SetVisAttributes(UniverseAtt); 
   
  // Define the angles for spheres of atmosphere and ECRS 
  G4double startAnglePhi = 0.0*deg; 
  G4double spanningAnglePhi = 360.0*deg; 
  G4double startAngleTheta = 0.0*deg; 
  G4double spanningAngleTheta = 180.0*deg; //90 
   
  G4int layers = 37; 
  G4int n = layers; 
  G4double max = 0.75; 
  G4double color = 0; 
   
  // THE ATMOSPHERE - LAYER 37 
  G4double innerRadiusAtm37 = mult*0.0*m; 
  G4double outerRadiusAtm37 = mult*(earthRadius + atmHeight[37]); 
  atmo37 = new G4Sphere("atm37",innerRadiusAtm37,outerRadiusAtm37, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
  atm37_log = new G4LogicalVolume(atmo37,air37,"atm37_log"); 
  atm37_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm37_log,"Atm37",universe_log,false,0); 
  Atm37Att = new G4VisAttributes(); 
  color = max/layers*n; 
  n--; 
  Atm37Att->SetColour(G4Colour(color,color,color)); 
  Atm37Att->SetForceWireframe(true); 
  Atm37Att->SetVisibility(visibility); 
  atm37_log->SetVisAttributes(Atm37Att); 
   
  // THE ATMOSPHERE - LAYER 36 
  G4double innerRadiusAtm36 = mult*0.0*m; 
  G4double outerRadiusAtm36 = mult*(earthRadius + atmHeight[36]); 
  atmo36 = new G4Sphere("atm36",innerRadiusAtm36,outerRadiusAtm36, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
  atm36_log = new G4LogicalVolume(atmo36,air36,"atm36_log"); 
  atm36_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm36_log,"Atm36",atm37_log,false,0); 
  Atm36Att = new G4VisAttributes(); 
  color = max/layers*n; 
  n--; 
  Atm36Att->SetColour(G4Colour(color,color,color)); 
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  Atm36Att->SetForceWireframe(true); 
  Atm36Att->SetVisibility(visibility); 
  atm36_log->SetVisAttributes(Atm36Att);  
   
  // THE ATMOSPHERE - LAYER 35 
  G4double innerRadiusAtm35 = mult*0.0*m; 
  G4double outerRadiusAtm35 = mult*(earthRadius + atmHeight[35]); 
  atmo35 = new G4Sphere("atm35",innerRadiusAtm35,outerRadiusAtm35, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
  atm35_log = new G4LogicalVolume(atmo35,air35,"atm35_log"); 
  atm35_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm35_log,"Atm35",atm36_log,false,0); 
  Atm35Att = new G4VisAttributes(); 
  color = max/layers*n; 
  n--; 
  Atm35Att->SetColour(G4Colour(color,color,color)); 
  Atm35Att->SetForceWireframe(true); 
  Atm35Att->SetVisibility(visibility); 
  atm35_log->SetVisAttributes(Atm35Att);  
   
  // THE ATMOSPHERE - LAYER 34 
  G4double innerRadiusAtm34 = mult*0.0*m; 
  G4double outerRadiusAtm34 = mult*(earthRadius + atmHeight[34]); 
  atmo34 = new G4Sphere("atm34",innerRadiusAtm34,outerRadiusAtm34, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
  atm34_log = new G4LogicalVolume(atmo34,air34,"atm34_log"); 
  atm34_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm34_log,"Atm34",atm35_log,false,0); 
  Atm34Att = new G4VisAttributes(); 
  color = max/layers*n; 
  n--; 
  Atm34Att->SetColour(G4Colour(color,color,color)); 
  Atm34Att->SetForceWireframe(true); 
  Atm34Att->SetVisibility(visibility); 
  atm34_log->SetVisAttributes(Atm34Att);  
   
  // THE ATMOSPHERE - LAYER 33 
   
  G4double innerRadiusAtm33 = mult*0.0*m; 
  G4double outerRadiusAtm33 = mult*(earthRadius + atmHeight[33]); 
  atmo33 = new G4Sphere("atm33",innerRadiusAtm33,outerRadiusAtm33, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
  atm33_log = new G4LogicalVolume(atmo33,air33,"atm33_log"); 
  atm33_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm33_log,"Atm33",atm34_log,false,0); 
  Atm33Att = new G4VisAttributes(); 
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  color = max/layers*n; 
  n--; 
  Atm33Att->SetColour(G4Colour(color,color,color)); 
  Atm33Att->SetForceWireframe(true); 
  Atm33Att->SetVisibility(visibility); 
  atm33_log->SetVisAttributes(Atm33Att);  
   
  // THE ATMOSPHERE - LAYER 32 
   G4double innerRadiusAtm32 = mult*0.0*m; 
   G4double outerRadiusAtm32 = mult*(earthRadius + atmHeight[32]); 
   atmo32 = new G4Sphere("atm32",innerRadiusAtm32,outerRadiusAtm32, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm32_log = new G4LogicalVolume(atmo32,air32,"atm32_log"); 
   atm32_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm32_log,"Atm32",atm33_log,false,0); 
   Atm32Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm32Att->SetColour(G4Colour(color,color,color)); 
   Atm32Att->SetForceWireframe(true); 
   Atm32Att->SetVisibility(visibility); 
   atm32_log->SetVisAttributes(Atm32Att);  
    
   // THE ATMOSPHERE - LAYER 31 
   G4double innerRadiusAtm31 = mult*0.0*m; 
   G4double outerRadiusAtm31 = mult*(earthRadius + atmHeight[31]); 
   atmo31 = new G4Sphere("atm31",innerRadiusAtm31,outerRadiusAtm31, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm31_log = new G4LogicalVolume(atmo31,air31,"atm31_log"); 
   atm31_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm31_log,"Atm31",atm32_log,false,0); 
   Atm31Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm31Att->SetColour(G4Colour(color,color,color)); 
   Atm31Att->SetForceWireframe(true); 
   Atm31Att->SetVisibility(visibility); 
   atm31_log->SetVisAttributes(Atm31Att);  
    
   // THE ATMOSPHERE - LAYER 30 
   G4double innerRadiusAtm30 = mult*0.0*m; 
   G4double outerRadiusAtm30 = mult*(earthRadius + atmHeight[30]); 
   atmo30 = new G4Sphere("atm30",innerRadiusAtm30,outerRadiusAtm30, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm30_log = new G4LogicalVolume(atmo30,air30,"atm30_log"); 
   atm30_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm30_log,"Atm30",atm31_log,false,0); 
   Atm30Att = new G4VisAttributes(); 
   color = max/layers*n; 
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   n--; 
   Atm30Att->SetColour(G4Colour(color,color,color)); 
   Atm30Att->SetForceWireframe(true); 
   Atm30Att->SetVisibility(visibility); 
   atm30_log->SetVisAttributes(Atm30Att);  
    
   // THE ATMOSPHERE - LAYER 29 
   G4double innerRadiusAtm29 = mult*0.0*m; 
   G4double outerRadiusAtm29 = mult*(earthRadius + atmHeight[29]); 
   atmo29 = new G4Sphere("atm29",innerRadiusAtm29,outerRadiusAtm29, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm29_log = new G4LogicalVolume(atmo29,air29,"atm29_log"); 
   atm29_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm29_log,"Atm29",atm30_log,false,0); 
   Atm29Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm29Att->SetColour(G4Colour(color,color,color)); 
   Atm29Att->SetForceWireframe(true); 
   Atm29Att->SetVisibility(visibility); 
   atm29_log->SetVisAttributes(Atm29Att); 
    
   // THE ATMOSPHERE - LAYER 28 
   G4double innerRadiusAtm28 = mult*0.0*m; 
   G4double outerRadiusAtm28 = mult*(earthRadius + atmHeight[28]); 
   atmo28 = new G4Sphere("atm28",innerRadiusAtm28,outerRadiusAtm28, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm28_log = new G4LogicalVolume(atmo28,air28,"atm28_log"); 
   atm28_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm28_log,"Atm28",atm29_log,false,0); 
   Atm28Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm28Att->SetColour(G4Colour(color,color,color)); 
   Atm28Att->SetForceWireframe(true); 
   Atm28Att->SetVisibility(visibility); 
   atm28_log->SetVisAttributes(Atm28Att); 
    
   // THE ATMOSPHERE - LAYER 27 
   G4double innerRadiusAtm27 = mult*0.0*m; 
   G4double outerRadiusAtm27 = mult*(earthRadius + atmHeight[27]); 
   atmo27 = new G4Sphere("atm27",innerRadiusAtm27,outerRadiusAtm27, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm27_log = new G4LogicalVolume(atmo27,air27,"atm27_log"); 
   atm27_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm27_log,"Atm27",atm28_log,false,0); 
   Atm27Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
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   Atm27Att->SetColour(G4Colour(color,color,color)); 
   Atm27Att->SetForceWireframe(true); 
   Atm27Att->SetVisibility(visibility); 
   atm27_log->SetVisAttributes(Atm27Att); 
    
   // THE ATMOSPHERE - LAYER 26 
   G4double innerRadiusAtm26 = mult*0.0*m; 
   G4double outerRadiusAtm26 = mult*(earthRadius + atmHeight[26]); 
   atmo26 = new G4Sphere("atm26",innerRadiusAtm26,outerRadiusAtm26, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm26_log = new G4LogicalVolume(atmo26,air26,"atm26_log"); 
   atm26_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0),  
      atm26_log,"Atm26",atm27_log,false,0); 
   Atm26Att = new G4VisAttributes(); 
   color = max/layers*n;  
   n--;  
   Atm26Att->SetColour(G4Colour(color,color,color)); 
   Atm26Att->SetForceWireframe(true); 
   Atm26Att->SetVisibility(visibility); 
   atm26_log->SetVisAttributes(Atm26Att); 
    
   // THE ATMOSPHERE - LAYER 25 
   G4double innerRadiusAtm25 = mult*0.0*m; 
   G4double outerRadiusAtm25 = mult*(earthRadius + atmHeight[25]); 
   atmo25 = new G4Sphere("atm25",innerRadiusAtm25,outerRadiusAtm25, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm25_log = new G4LogicalVolume(atmo25,air25,"atm25_log"); 
   atm25_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0),   
      atm25_log,"Atm25",atm26_log,false,0); 
   Atm25Att = new G4VisAttributes(); 
   color = max/layers*n;   
   n--;   
   Atm25Att->SetColour(G4Colour(color,color,color)); 
   Atm25Att->SetForceWireframe(true); 
   Atm25Att->SetVisibility(visibility); 
   atm25_log->SetVisAttributes(Atm25Att); 
    
   // THE ATMOSPHERE - LAYER 24 
   G4double innerRadiusAtm24 = mult*0.0*m;  
   G4double outerRadiusAtm24 = mult*(earthRadius + atmHeight[24]); 
   atmo24 = new G4Sphere("atm24",innerRadiusAtm24,outerRadiusAtm24, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm24_log = new G4LogicalVolume(atmo24,air24,"atm24_log"); 
   atm24_phys = new G4PVPlacement(0,  
      G4ThreeVector(0,0,0),  
      atm24_log,"Atm24",atm25_log,false,0);  
   Atm24Att = new G4VisAttributes();  
   color = max/layers*n;  
   n--;  
   Atm24Att->SetColour(G4Colour(color,color,color)); 
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   Atm24Att->SetForceWireframe(true);  
   Atm24Att->SetVisibility(visibility);  
   atm24_log->SetVisAttributes(Atm24Att);  
    
   // THE ATMOSPHERE - LAYER 23 
   G4double innerRadiusAtm23 = mult*0.0*m;  
   G4double outerRadiusAtm23 = mult*(earthRadius + atmHeight[23]); 
   atmo23 = new G4Sphere("atm23",innerRadiusAtm23,outerRadiusAtm23, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm23_log = new G4LogicalVolume(atmo23,air23,"atm23_log"); 
   atm23_phys = new G4PVPlacement(0,  
      G4ThreeVector(0,0,0),  
      atm23_log,"Atm23",atm24_log,false,0);  
   Atm23Att = new G4VisAttributes();  
   color = max/layers*n;  
   n--;  
   Atm23Att->SetColour(G4Colour(color,color,color)); 
   Atm23Att->SetForceWireframe(true);  
   Atm23Att->SetVisibility(visibility);  
   atm23_log->SetVisAttributes(Atm23Att);  
    
   // THE ATMOSPHERE - LAYER 22 
   G4double innerRadiusAtm22 = mult*0.0*m;  
   G4double outerRadiusAtm22 = mult*(earthRadius + atmHeight[22]); 
   atmo22 = new G4Sphere("atm22",innerRadiusAtm22,outerRadiusAtm22, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm22_log = new G4LogicalVolume(atmo22,air22,"atm22_log"); 
   atm22_phys = new G4PVPlacement(0,  
      G4ThreeVector(0,0,0),  
      atm22_log,"Atm22",atm23_log,false,0);  
   Atm22Att = new G4VisAttributes();  
   color = max/layers*n;  
   n--;  
   Atm22Att->SetColour(G4Colour(color,color,color)); 
   Atm22Att->SetForceWireframe(true);  
   Atm22Att->SetVisibility(visibility);  
   atm22_log->SetVisAttributes(Atm22Att);  
    
   // THE ATMOSPHERE - LAYER 21 
   G4double innerRadiusAtm21 = mult*0.0*m;  
   G4double outerRadiusAtm21 = mult*(earthRadius + atmHeight[21]); 
   atmo21 = new G4Sphere("atm21",innerRadiusAtm21,outerRadiusAtm21, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm21_log = new G4LogicalVolume(atmo21,air21,"atm21_log"); 
   atm21_phys = new G4PVPlacement(0,  
      G4ThreeVector(0,0,0),  
      atm21_log,"Atm21",atm22_log,false,0);  
   Atm21Att = new G4VisAttributes();  
   color = max/layers*n;  
   n--;  
   Atm21Att->SetColour(G4Colour(color,color,color)); 
   Atm21Att->SetForceWireframe(true);  
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   Atm21Att->SetVisibility(visibility);  
   atm21_log->SetVisAttributes(Atm21Att);  
    
   // THE ATMOSPHERE - LAYER 20 
   G4double innerRadiusAtm20 = mult*0.0*m;  
   G4double outerRadiusAtm20 = mult*(earthRadius + atmHeight[20]); 
   atmo20 = new G4Sphere("atm20",innerRadiusAtm20,outerRadiusAtm20, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm20_log = new G4LogicalVolume(atmo20,air20,"atm20_log"); 
   atm20_phys = new G4PVPlacement(0,  
      G4ThreeVector(0,0,0),  
      atm20_log,"Atm20",atm21_log,false,0);  
   Atm20Att = new G4VisAttributes();  
   color = max/layers*n;  
   n--;  
   Atm20Att->SetColour(G4Colour(color,color,color)); 
   Atm20Att->SetForceWireframe(true);  
   Atm20Att->SetVisibility(visibility);  
   atm20_log->SetVisAttributes(Atm20Att);  
    
   // THE ATMOSPHERE - LAYER 19 
   G4double innerRadiusAtm19 = mult*0.0*m; 
   G4double outerRadiusAtm19 = mult*(earthRadius + atmHeight[19]); 
   atmo19 = new G4Sphere("atm19",innerRadiusAtm19,outerRadiusAtm19, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm19_log = new G4LogicalVolume(atmo19,air19,"atm19_log"); 
   atm19_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm19_log,"Atm19",atm20_log,false,0); 
   Atm19Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm19Att->SetColour(G4Colour(color,color,color)); 
   Atm19Att->SetForceWireframe(true); 
   Atm19Att->SetVisibility(visibility); 
   atm19_log->SetVisAttributes(Atm19Att); 
    
   // THE ATMOSPHERE - LAYER 18 
   G4double innerRadiusAtm18 = mult*0.0*m; 
   G4double outerRadiusAtm18 = mult*(earthRadius + atmHeight[18]); 
   atmo18 = new G4Sphere("atm18",innerRadiusAtm18,outerRadiusAtm18, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm18_log = new G4LogicalVolume(atmo18,air18,"atm18_log"); 
   atm18_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm18_log,"Atm18",atm19_log,false,0); 
   Atm18Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm18Att->SetColour(G4Colour(color,color,color)); 
   Atm18Att->SetForceWireframe(true); 
   Atm18Att->SetVisibility(visibility); 
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   atm18_log->SetVisAttributes(Atm18Att); 
    
   // THE ATMOSPHERE - LAYER 17 
   G4double innerRadiusAtm17 = mult*0.0*m; 
   G4double outerRadiusAtm17 = mult*(earthRadius + atmHeight[17]); 
   atmo17 = new G4Sphere("atm17",innerRadiusAtm17,outerRadiusAtm17, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm17_log = new G4LogicalVolume(atmo17,air17,"atm17_log"); 
   atm17_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm17_log,"Atm17",atm18_log,false,0); 
   Atm17Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm17Att->SetColour(G4Colour(color,color,color)); 
   Atm17Att->SetForceWireframe(true); 
   Atm17Att->SetVisibility(visibility); 
   atm17_log->SetVisAttributes(Atm17Att); 
    
   // THE ATMOSPHERE - LAYER 16 
   G4double innerRadiusAtm16 = mult*0.0*m; 
   G4double outerRadiusAtm16 = mult*(earthRadius + atmHeight[16]); 
   atmo16 = new G4Sphere("atm16",innerRadiusAtm16,outerRadiusAtm16, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm16_log = new G4LogicalVolume(atmo16,air16,"atm16_log"); 
   atm16_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm16_log,"Atm16",atm17_log,false,0); 
   Atm16Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm16Att->SetColour(G4Colour(color,color,color)); 
   Atm16Att->SetForceWireframe(true); 
   Atm16Att->SetVisibility(visibility); 
   atm16_log->SetVisAttributes(Atm16Att); 
    
   // THE ATMOSPHERE - LAYER 15 
   G4double innerRadiusAtm15 = mult*0.0*m; 
   G4double outerRadiusAtm15 = mult*(earthRadius + atmHeight[15]); 
   atmo15 = new G4Sphere("atm15",innerRadiusAtm15,outerRadiusAtm15, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm15_log = new G4LogicalVolume(atmo15,air15,"atm15_log"); 
   atm15_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm15_log,"Atm15",atm16_log,false,0); 
   Atm15Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm15Att->SetColour(G4Colour(color,color,color)); 
   Atm15Att->SetForceWireframe(true); 
   Atm15Att->SetVisibility(visibility); 
   atm15_log->SetVisAttributes(Atm15Att); 
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   // THE ATMOSPHERE - LAYER 14 
   G4double innerRadiusAtm14 = mult*0.0*m; 
   G4double outerRadiusAtm14 = mult*(earthRadius + atmHeight[14]); 
   atmo14 = new G4Sphere("atm14",innerRadiusAtm14,outerRadiusAtm14, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm14_log = new G4LogicalVolume(atmo14,air14,"atm14_log"); 
   atm14_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm14_log,"Atm14",atm15_log,false,0); 
   Atm14Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm14Att->SetColour(G4Colour(color,color,color)); 
   Atm14Att->SetForceWireframe(true); 
   Atm14Att->SetVisibility(visibility); 
   atm14_log->SetVisAttributes(Atm14Att); 
    
   // THE ATMOSPHERE - LAYER 13 
   G4double innerRadiusAtm13 = mult*0.0*m; 
   G4double outerRadiusAtm13 = mult*(earthRadius + atmHeight[13]); 
   atmo13 = new G4Sphere("atm13",innerRadiusAtm13,outerRadiusAtm13, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm13_log = new G4LogicalVolume(atmo13,air13,"atm13_log"); 
   atm13_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm13_log,"Atm13",atm14_log,false,0); 
   Atm13Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm13Att->SetColour(G4Colour(color,color,color)); 
   Atm13Att->SetForceWireframe(true); 
   Atm13Att->SetVisibility(visibility); 
   atm13_log->SetVisAttributes(Atm13Att); 
    
   // THE ATMOSPHERE - LAYER 12 
   G4double innerRadiusAtm12 = mult*0.0*m; 
   G4double outerRadiusAtm12 = mult*(earthRadius + atmHeight[12]); 
   atmo12 = new G4Sphere("atm12",innerRadiusAtm12,outerRadiusAtm12, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm12_log = new G4LogicalVolume(atmo12,air12,"atm12_log"); 
   atm12_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm12_log,"Atm12",atm13_log,false,0); 
   Atm12Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm12Att->SetColour(G4Colour(color,color,color)); 
   Atm12Att->SetForceWireframe(true); 
   Atm12Att->SetVisibility(visibility); 
   atm12_log->SetVisAttributes(Atm12Att); 
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   // THE ATMOSPHERE - LAYER 11 
   G4double innerRadiusAtm11 = mult*0.0*m; 
   G4double outerRadiusAtm11 = mult*(earthRadius + atmHeight[11]); 
   atmo11 = new G4Sphere("atm11",innerRadiusAtm11,outerRadiusAtm11, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm11_log = new G4LogicalVolume(atmo11,air11,"atm11_log"); 
   atm11_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm11_log,"Atm11",atm12_log,false,0); 
   Atm11Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm11Att->SetColour(G4Colour(color,color,color)); 
   Atm11Att->SetForceWireframe(true); 
   Atm11Att->SetVisibility(visibility); 
   atm11_log->SetVisAttributes(Atm11Att); 
    
   // THE ATMOSPHERE - LAYER 10 
   G4double innerRadiusAtm10 = mult*0.0*m; 
   G4double outerRadiusAtm10 = mult*(earthRadius + atmHeight[10]); 
   atmo10 = new G4Sphere("atm10",innerRadiusAtm10,outerRadiusAtm10, 
    
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   atm10_log = new G4LogicalVolume(atmo10,air10,"atm10_log"); 
   atm10_phys = new G4PVPlacement(0, 
      G4ThreeVector(0,0,0), 
      atm10_log,"Atm10",atm11_log,false,0); 
   Atm10Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm10Att->SetColour(G4Colour(color,color,color)); 
   Atm10Att->SetForceWireframe(true); 
   Atm10Att->SetVisibility(visibility); 
   atm10_log->SetVisAttributes(Atm10Att); 
    
   // THE ATMOSPHERE - LAYER 9 
    
   G4double innerRadiusAtm9 = mult*0.0*m; 
   G4double outerRadiusAtm9 = mult*(earthRadius + atmHeight[9]); 
   atmo9 = new G4Sphere("atm9",innerRadiusAtm9,outerRadiusAtm9, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
   atm9_log = new G4LogicalVolume(atmo9,air9,"atm9_log"); 
   atm9_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm9_log,"Atm9",atm10_log,false,0); 
   Atm9Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm9Att->SetColour(G4Colour(color,color,color)); 
   Atm9Att->SetForceWireframe(true); 
   Atm9Att->SetVisibility(visibility); 
   atm9_log->SetVisAttributes(Atm9Att); 
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   // THE ATMOSPHERE - LAYER 8 
   G4double innerRadiusAtm8 = mult*0.0*m; 
   G4double outerRadiusAtm8 = mult*(earthRadius + atmHeight[8]); 
   atmo8 = new G4Sphere("atm8",innerRadiusAtm8,outerRadiusAtm8, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
   atm8_log = new G4LogicalVolume(atmo8,air8,"atm8_log"); 
   atm8_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm8_log,"Atm8",atm9_log,false,0); 
   Atm8Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm8Att->SetColour(G4Colour(color,color,color)); 
   Atm8Att->SetForceWireframe(true); 
   Atm8Att->SetVisibility(visibility); 
   atm8_log->SetVisAttributes(Atm8Att); 
    
   // THE ATMOSPHERE - LAYER 7 
   G4double innerRadiusAtm7 = mult*0.0*m; 
   G4double outerRadiusAtm7 = mult*(earthRadius + atmHeight[7]); 
   atmo7 = new G4Sphere("atm7",innerRadiusAtm7,outerRadiusAtm7, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
   atm7_log = new G4LogicalVolume(atmo7,air7,"atm7_log"); 
   atm7_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm7_log,"Atm7",atm8_log,false,0); 
   Atm7Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm7Att->SetColour(G4Colour(color,color,color)); 
   Atm7Att->SetForceWireframe(true); 
   Atm7Att->SetVisibility(visibility); 
   atm7_log->SetVisAttributes(Atm7Att); 
    
   // THE ATMOSPHERE - LAYER 6 
   G4double innerRadiusAtm6 = mult*0.0*m; 
   G4double outerRadiusAtm6 = mult*(earthRadius + atmHeight[6]); 
   atmo6 = new G4Sphere("atm6",innerRadiusAtm6,outerRadiusAtm6, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
   atm6_log = new G4LogicalVolume(atmo6,air6,"atm6_log"); 
   atm6_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm6_log,"Atm6",atm7_log,false,0); 
   Atm6Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm6Att->SetColour(G4Colour(color,color,color)); 
   Atm6Att->SetForceWireframe(true); 
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   Atm6Att->SetVisibility(visibility); 
   atm6_log->SetVisAttributes(Atm6Att); 
    
   // THE ATMOSPHERE - LAYER 5 
   G4double innerRadiusAtm5 = mult*0.0*m; 
   G4double outerRadiusAtm5 = mult*(earthRadius + atmHeight[5]); 
   atmo5 = new G4Sphere("atm5",innerRadiusAtm5,outerRadiusAtm5, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
   atm5_log = new G4LogicalVolume(atmo5,air5,"atm5_log"); 
   atm5_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm5_log,"Atm5",atm6_log,false,0); 
   Atm5Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm5Att->SetColour(G4Colour(color,color,color)); 
   Atm5Att->SetForceWireframe(true); 
   Atm5Att->SetVisibility(visibility); 
   atm5_log->SetVisAttributes(Atm5Att); 
    
   // THE ATMOSPHERE - LAYER 4 
   G4double innerRadiusAtm4 = mult*0.0*m; 
   G4double outerRadiusAtm4 = mult*(earthRadius + atmHeight[4]); 
   atmo4 = new G4Sphere("atm4",innerRadiusAtm4,outerRadiusAtm4, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
   atm4_log = new G4LogicalVolume(atmo4,air4,"atm4_log"); 
   atm4_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm4_log,"Atm4",atm5_log,false,0); 
   Atm4Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm4Att->SetColour(G4Colour(color,color,color)); 
   Atm4Att->SetForceWireframe(true); 
   Atm4Att->SetVisibility(visibility); 
   atm4_log->SetVisAttributes(Atm4Att); 
    
   // THE ATMOSPHERE - LAYER 3 
   G4double innerRadiusAtm3 = mult*0.0*m; 
   G4double outerRadiusAtm3 = mult*(earthRadius + atmHeight[3]); 
   atmo3 = new G4Sphere("atm3",innerRadiusAtm3,outerRadiusAtm3, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
   atm3_log = new G4LogicalVolume(atmo3,air3,"atm3_log"); 
   atm3_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm3_log,"Atm3",atm4_log,false,0); 
   Atm3Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
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   Atm3Att->SetColour(G4Colour(color,color,color)); 
   Atm3Att->SetForceWireframe(true); 
   Atm3Att->SetVisibility(visibility); 
   atm3_log->SetVisAttributes(Atm3Att); 
    
   // THE ATMOSPHERE - LAYER 2 
    
   G4double innerRadiusAtm2 = mult*0.0*m; 
   G4double outerRadiusAtm2 = mult*(earthRadius + atmHeight[2]); 
   atmo2 = new G4Sphere("atm2",innerRadiusAtm2,outerRadiusAtm2, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
   atm2_log = new G4LogicalVolume(atmo2,air2,"atm2_log"); 
   atm2_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm2_log,"Atm2",atm3_log,false,0); 
   Atm2Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm2Att->SetColour(G4Colour(color,color,color)); 
   Atm2Att->SetForceWireframe(true); 
   Atm2Att->SetVisibility(visibility); 
   atm2_log->SetVisAttributes(Atm2Att); 
    
   // THE ATMOSPHERE - LAYER 1 
   G4double innerRadiusAtm1 = mult*0.0*m; 
   G4double outerRadiusAtm1 = mult*(earthRadius + atmHeight[1]); 
   atmo1 = new G4Sphere("atm1",innerRadiusAtm1,outerRadiusAtm1, 
  
 startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleThe
ta); 
   atm1_log = new G4LogicalVolume(atmo1,air1,"atm1_log"); 
   atm1_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     atm1_log,"Atm1",atm2_log,false,0); 
   Atm1Att = new G4VisAttributes(); 
   color = max/layers*n; 
   n--; 
   Atm1Att->SetColour(G4Colour(color,color,color)); 
   Atm1Att->SetForceWireframe(true); 
   Atm1Att->SetVisibility(visibility); 
   atm1_log->SetVisAttributes(Atm1Att); 
    
   // THE EARTH 
   G4double innerRadiusECRS = mult*0.0*m; 
   G4double outerRadiusECRS = mult*earthRadius; 
   ECRS_sphere = new G4Sphere("ECRS_sphere", 
         innerRadiusECRS,outerRadiusECRS, 
         
startAnglePhi,spanningAnglePhi,startAngleTheta,spanningAngleTheta); 
   ECRS_log = new G4LogicalVolume(ECRS_sphere,earth,"ECRS_log"); 
   ECRS_phys = new G4PVPlacement(0, 
     G4ThreeVector(0,0,0), 
     ECRS_log,"ECRS",atm1_log,false,0); 
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   G4VisAttributes* ECRSAtt = new G4VisAttributes(G4Colour(0,0,1)); 
   ECRSAtt->SetForceSolid(true); 
   ECRS_log->SetVisAttributes(ECRSAtt); 
    
   // Set the atmosphere as the Sensitive Detector 
    
   G4SDManager* SDman = G4SDManager::GetSDMpointer(); 
    
   if (!atmosphereSD) 
     { 
       atmosphereSD = new ECRSAtmosphereSD("AtmoSD",this); 
       SDman->AddNewDetector(atmosphereSD); 
     } 
    
   if (atm1_log) atm1_log->SetSensitiveDetector(atmosphereSD); 
   if (atm5_log) atm5_log->SetSensitiveDetector(atmosphereSD); 
   if (atm10_log) atm10_log->SetSensitiveDetector(atmosphereSD); 
   if (atm15_log) atm15_log->SetSensitiveDetector(atmosphereSD); 
    
   PrintUniverseParameters(); 
   G4cout << *(G4Material::GetMaterialTable()) << G4endl; 
    
   return universe_phys; 
} 
 
////////////////////////////////////////////////////////////// 
 
void ECRSDetectorConstruction::PrintUniverseParameters() 
{ 
  G4cout << G4endl; 
  G4cout << "Universe XY half dimensions: "; 
  G4cout << G4BestUnit(universe_x,"Length") << G4endl; 
  G4cout << "Universe Z half dimension: "; 
  G4cout << G4BestUnit(universe_z,"Length") << G4endl; 
  G4cout << "ECRS Radius: "; 
  G4cout << G4BestUnit(mult*earthRadius,"Length") << G4endl; 
} 
 
////////////////////////////////////////////////////////////// 
 
void ECRSDetectorConstruction::SetMultiplier(G4double newValue) 
{ 
  mult = newValue; 
  G4cout << "You must use the command: /geometry/update before 
beamOn"; 
  G4cout << G4endl; 
} 
 
////////////////////////////////////////////////////////////// 
 
void ECRSDetectorConstruction::SetDensityMult(G4double newValue) 
{ 
  multDensity = newValue; 
  G4cout << "You must use the command: /geometry/update before 
beamOn"; 
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  G4cout << G4endl; 
} 
 
////////////////////////////////////////////////////////////// 
 
void ECRSDetectorConstruction::SetVisFlag(G4bool newValue) 
{ 
  Atm1Att->SetVisibility(newValue); 
  atm1_log->SetVisAttributes(Atm1Att); 
   
  Atm2Att->SetVisibility(newValue); 
  atm2_log->SetVisAttributes(Atm2Att); 
   
  Atm3Att->SetVisibility(newValue); 
  atm3_log->SetVisAttributes(Atm3Att); 
   
  Atm4Att->SetVisibility(newValue); 
  atm4_log->SetVisAttributes(Atm4Att); 
   
  Atm5Att->SetVisibility(newValue); 
  atm5_log->SetVisAttributes(Atm5Att); 
   
  Atm6Att->SetVisibility(newValue); 
  atm6_log->SetVisAttributes(Atm6Att); 
   
  Atm7Att->SetVisibility(newValue); 
  atm7_log->SetVisAttributes(Atm7Att); 
   
  Atm8Att->SetVisibility(newValue); 
  atm8_log->SetVisAttributes(Atm8Att); 
   
  Atm9Att->SetVisibility(newValue); 
  atm9_log->SetVisAttributes(Atm9Att); 
   
  Atm10Att->SetVisibility(newValue); 
  atm10_log->SetVisAttributes(Atm10Att); 
   
  Atm11Att->SetVisibility(newValue); 
  atm11_log->SetVisAttributes(Atm11Att); 
   
  Atm12Att->SetVisibility(newValue); 
  atm12_log->SetVisAttributes(Atm1Att); 
   
  Atm13Att->SetVisibility(newValue); 
  atm13_log->SetVisAttributes(Atm2Att); 
   
  Atm14Att->SetVisibility(newValue); 
  atm14_log->SetVisAttributes(Atm3Att); 
   
  Atm15Att->SetVisibility(newValue); 
  atm15_log->SetVisAttributes(Atm4Att); 
   
  Atm16Att->SetVisibility(newValue); 
  atm16_log->SetVisAttributes(Atm5Att); 
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  Atm17Att->SetVisibility(newValue); 
  atm17_log->SetVisAttributes(Atm6Att); 
   
  Atm18Att->SetVisibility(newValue); 
  atm18_log->SetVisAttributes(Atm7Att); 
   
  Atm19Att->SetVisibility(newValue); 
  atm19_log->SetVisAttributes(Atm8Att); 
   
  Atm20Att->SetVisibility(newValue); 
  atm20_log->SetVisAttributes(Atm9Att); 
   
  Atm21Att->SetVisibility(newValue); 
  atm21_log->SetVisAttributes(Atm10Att); 
   
  Atm22Att->SetVisibility(newValue); 
  atm22_log->SetVisAttributes(Atm11Att); 
   
  Atm23Att->SetVisibility(newValue); 
  atm23_log->SetVisAttributes(Atm1Att); 
   
  Atm24Att->SetVisibility(newValue); 
  atm24_log->SetVisAttributes(Atm2Att); 
   
  Atm25Att->SetVisibility(newValue); 
  atm25_log->SetVisAttributes(Atm3Att); 
   
  Atm26Att->SetVisibility(newValue); 
  atm26_log->SetVisAttributes(Atm4Att); 
   
  Atm27Att->SetVisibility(newValue); 
  atm27_log->SetVisAttributes(Atm5Att); 
   
  Atm28Att->SetVisibility(newValue); 
  atm28_log->SetVisAttributes(Atm6Att); 
   
  Atm29Att->SetVisibility(newValue); 
  atm29_log->SetVisAttributes(Atm7Att); 
   
  Atm30Att->SetVisibility(newValue); 
  atm30_log->SetVisAttributes(Atm8Att); 
   
  Atm31Att->SetVisibility(newValue); 
  atm31_log->SetVisAttributes(Atm9Att); 
   
  Atm32Att->SetVisibility(newValue); 
  atm32_log->SetVisAttributes(Atm10Att); 
   
  Atm33Att->SetVisibility(newValue); 
  atm33_log->SetVisAttributes(Atm11Att); 
   
  Atm34Att->SetVisibility(newValue); 
  atm34_log->SetVisAttributes(Atm8Att); 
   
  Atm35Att->SetVisibility(newValue); 
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  atm35_log->SetVisAttributes(Atm9Att); 
   
  Atm36Att->SetVisibility(newValue); 
  atm36_log->SetVisAttributes(Atm10Att); 
   
  Atm37Att->SetVisibility(newValue); 
  atm37_log->SetVisAttributes(Atm11Att); 
   
  G4cout << "You may have to use: /vis/viewer/refresh to see changes" 
  << " in visualization."; 
  G4cout << G4endl; 
} 
 
///////////////////////////////////////////////////////////////// 
 
void ECRSDetectorConstruction::UpdateGeometry() 
{ 
  G4RunManager::GetRunManager()->DefineWorldVolume(ConstructWorld()); 
} 
 
///////////////////////////////////////////////////////////////// 
 
void ECRSDetectorConstruction::UpdateMaterials() 
{ 
  DefineMaterials(); 
  G4RunManager::GetRunManager()->DefineWorldVolume(ConstructWorld()); 
} 
 
//////////////////////////////////////////////////////////////// 
 
void ECRSDetectorConstruction::PrintAllParameters() 
{ 
  PrintUniverseParameters(); 
  G4cout << G4endl; 
  G4cout << "Atmospheric Layer:\tHeight Above Surface:\tHeight From 
Center:\n"; 
  G4cout << "Atm1\t\t\t" << G4BestUnit(mult*atmHeight[1],"Length") << 
"\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[1]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm2\t\t\t" << G4BestUnit(mult*atmHeight[2],"Length") << 
"\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[2]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm3\t\t\t" << G4BestUnit(mult*atmHeight[3],"Length") << 
"\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[3]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm4\t\t\t" << G4BestUnit(mult*atmHeight[4],"Length") << 
"\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[4]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm5\t\t\t" << G4BestUnit(mult*atmHeight[5],"Length") << 
"\t\t\t"; 



 

 

147

  G4cout << G4BestUnit(mult*(atmHeight[5]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm6\t\t\t" << G4BestUnit(mult*atmHeight[6],"Length") << 
"\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[6]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm7\t\t\t" << G4BestUnit(mult*atmHeight[7],"Length") << 
"\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[7]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm8\t\t\t" << G4BestUnit(mult*atmHeight[8],"Length") << 
"\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[8]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm9\t\t\t" << G4BestUnit(mult*atmHeight[9],"Length") << 
"\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[9]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm10\t\t\t" << G4BestUnit(mult*atmHeight[10],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[10]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm11\t\t\t" << G4BestUnit(mult*atmHeight[11],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[11]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm12\t\t\t" << G4BestUnit(mult*atmHeight[12],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[12]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm13\t\t\t" << G4BestUnit(mult*atmHeight[13],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[13]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm14\t\t\t" << G4BestUnit(mult*atmHeight[14],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[14]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm15\t\t\t" << G4BestUnit(mult*atmHeight[15],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[15]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm16\t\t\t" << G4BestUnit(mult*atmHeight[16],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[16]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm17\t\t\t" << G4BestUnit(mult*atmHeight[17],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[17]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm18\t\t\t" << G4BestUnit(mult*atmHeight[18],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[18]+earthRadius),"Length") << 
G4endl; 



 

 

148

  G4cout << "Atm19\t\t\t" << G4BestUnit(mult*atmHeight[19],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[19]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm20\t\t\t" << G4BestUnit(mult*atmHeight[20],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[20]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm21\t\t\t" << G4BestUnit(mult*atmHeight[21],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[21]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm22\t\t\t" << G4BestUnit(mult*atmHeight[22],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[22]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm23\t\t\t" << G4BestUnit(mult*atmHeight[23],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[23]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm24\t\t\t" << G4BestUnit(mult*atmHeight[24],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[24]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm25\t\t\t" << G4BestUnit(mult*atmHeight[25],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[25]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm26\t\t\t" << G4BestUnit(mult*atmHeight[26],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[26]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm27\t\t\t" << G4BestUnit(mult*atmHeight[27],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[27]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm28\t\t\t" << G4BestUnit(mult*atmHeight[28],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[28]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm29\t\t\t" << G4BestUnit(mult*atmHeight[29],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[29]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm30\t\t\t" << G4BestUnit(mult*atmHeight[30],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[30]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm31\t\t\t" << G4BestUnit(mult*atmHeight[31],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[31]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm32\t\t\t" << G4BestUnit(mult*atmHeight[32],"Length") 
<< "\t\t\t"; 
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  G4cout << G4BestUnit(mult*(atmHeight[32]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm33\t\t\t" << G4BestUnit(mult*atmHeight[33],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[33]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm34\t\t\t" << G4BestUnit(mult*atmHeight[34],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[34]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm35\t\t\t" << G4BestUnit(mult*atmHeight[35],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[35]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm36\t\t\t" << G4BestUnit(mult*atmHeight[36],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[36]+earthRadius),"Length") << 
G4endl; 
  G4cout << "Atm37\t\t\t" << G4BestUnit(mult*atmHeight[37],"Length") 
<< "\t\t\t"; 
  G4cout << G4BestUnit(mult*(atmHeight[37]+earthRadius),"Length") << 
G4endl; 
} 
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