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ABSTRACT 

 

This dissertation presents a study of the molecular mechanism underlying the highly 

efficient solar energy conversion processes that occur in the Photosystem I (PS I) reaction centers 

in plants and bacteria. The primary electron donor P700 is at the heart of solar energy conversion 

process in PS I and the aim is to obtain a better understanding of the electronic and structural 

organization of P700 in the ground and excited states. Static Fourier Transform Infra-Red (FTIR) 

difference spectroscopy (DS) in combination with site directed mutagenesis and Density 

Functional Theory (DFT) based vibrational frequency simulations were used to investigate how 

protein interactions such as histidine ligation and hydrogen bonding modulate this organization. 

 



 

 

 

(P700
+-P700) FTIR DS at 77K were obtained from a series of mutants from the 

cyanobacterium Synechocystis sp. 6803 (S. 6803) where the amino acid residues near the C=O 

groups of the two chlorophylls of P700 where specifically changed. (P700
+-P700) FTIR DS was also 

obtained for a set of mutants from C. reinhardtii where the axial ligand to A0, the primary electron 

acceptor in PS I was modified. The FTIR DS obtained from these mutants provides information on 

the axial ligands, the hydrogen bonding status as well as the polarity of the environment of 

specific functional groups that are part of the chlorophyll molecules that constitute P700. 

Assignment of the FTIR bands to vibrational modes in specific types of environment is very 

difficult. In order to assist the assignment of the difference bands in experimental spectra DFT 

based vibrational mode frequency calculations were undertaken for Chl-a and Chl-a+ model 

molecular systems under different set of conditions; in the gas phase, in solvents using the 

Polarizable Continuum Model (PCM), in the presence of explicit solvent molecules using 

QM/MM methods, and in the presence of axial ligands and hydrogen bonds. DFT methods were 

also used to calculate the charge, spin and redox properties of Chl-a/Chl-a’ dimer models that are 

representative of P700, the primary electron donor in PS I.  
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CHAPTER 1 

INTRODUCTION 

Photosynthesis is the process of conversion of solar energy to chemical energy [1]. 

Photosynthetic process can be classified into two, oxygenic and anoxygenic photosynthesis. 

Oxygenic photosynthesis takes place in plants, algae and cyanobacteria where water and 

atmospheric CO2 is used to synthesis carbohydrates in the presence of sunlight while releasing 

oxygen [2-4]. Anoxygenic photosynthetic organisms, for example, purple bacteria, green sulfur 

bacteria and heliobacteria, uses solar energy to create organic compounds but do not produce 

oxygen. Oxygenic photosynthesis is carried out in two separate sets of reactions, the light 

reactions and the dark reactions. The light reactions take place in two protein complexes called 

Photosystem I (PS I) and Photosystem II (PS II). These protein complexes are bound to the 

thylakoid membrane in oxygen evolving photosynthetic organisms. Figure 1.1 shows the 

schematic representation of the protein complexes that engage in photosynthesis situated within 

the thylakoid membrane. 

 

Figure 1.1: Schematic representation of the four protein complexes within the thylakoid membrane. 
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Solar photons are captured by chlorophyll antenna pigments bound to the periphery of PS 

II and PS I. The captured energy is rapidly transferred to a special pigment (or group of 

pigments) in the reaction center (RC) called the primary electron donor. The primary electron 

donor in PS I/PS II is called P700/P680 (Figure 1.1), respectively. Upon excitation of the primary 

electron donor an electron is transferred via a series of acceptors across the membrane to a 

terminal acceptor species that is either an iron-sulfur cluster (FA/FB in Figure 1.1) or a quinone 

(QB in Figure 1.1). The sequential vectorial electron transfer leads to electrical potential 

difference across the thylakoid membrane. The energy in the gradient is captured or harnessed by 

the ATPsynthase and used to generate ATP. The dark reaction uses these molecules to reduce 

CO2 to carbohydrates. 

1.1 Photosystem I 

PS I is a protein pigment complex which catalyses the light induced transfer of electrons 

across the thylakoid membrane from plastocyanin to ferredoxin. PS I (Figure 1.2), consists of 12 

protein subunits 96 chlorophyll a (Chl-a) molecules, 22 beta-carotenes, two phylloquinones, 

three Fe4S4 clusters (Fx, FA and FB), four lipids and a Ca2+ ion [5-7]. Subunits PsaA and PsaB 

enclose the electron transfer (ET) chain comprising of six chlorophyll molecules, the 

phylloquinone pair and the three Fe4S4 clusters. The rest of the 90 chlorophylls along with 22 

carotenoids comprise the antenna system where the light capturing takes place. 

The energy collected by the antenna is transferred to the center of the PS I complex 

where the electron transport chain is located. Charge separation begins by the excitation of P700, a 

special pair of chlorophyll molecules [8-12]. P700
*, the excited state of the primary electron 

donor, transfers the electron to A0 which is a chlorophyll molecule and eventually to the 
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phylloquinone. The electron passes through the three Fe4S4 clusters and is finally used for the 

reduction of ferredoxin, the final electron acceptor of PS I. 

 

Figure 1.2: Schematic depicting the architecture of the PS I core complex, embedded in the thylakoid membrane. The 
possible routes for electron transfer are shown with arrows. 

The electron transport chain located at the center of the PS I complex is the most 

important part of system. The structural organization of the ET cofactors and the electron 

transfer rates (in cyanobacteria) [5] are shown in Figure 1.3. 

 

Figure 1.3: (a) Electron transfer chain in PS I [5] (b) RT electron transfer  rates in cyanobacterial PS I [13]. 
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The electron transfer pathway consists of P700, a dimer of a chlorophyll a (Chl-a) and a 

chlorophyll a’ (Chl-a’) molecule, which is the primary electron donor; two bridging chlorophyll 

a molecules ; the primary electron acceptor, two chlorophyll a molecules called A0, all arranged 

in a pseudo-C2 symmetry. Two phylloquinone molecules, named as A1, function as the 

secondary electron acceptors. Fx, a 4Fe-4S cluster accepts the electron from one or both of the 

phylloquinones and transfer it to the terminal acceptors, FA and FB, where both these acceptors 

are 4Fe-4S clusters[5]. The cofactors of electron transfer chain form two branches; the cofactors 

of the A-branch are coordinated by PsaA protein, whereas the cofactors of the B-branch are 

coordinated mainly by PsaB protein of PS I and it is unclear if electron transfer occurs down one 

or both of these symmetrical branches [13-20]. 

A wide range of techniques has been used to study ET in PS I, including time resolved 

optical and EPR spectroscopy, in combination with site-directed mutagenesis (SDM). These 

studies provide evidence for two kinetic phases of ET in PS I from cyanobacteria [21-23]. The 

fast phase observed with a lifetime of ~10-20 ns has been attributed to ET along the B branch 

while the slow phase with lifetime of ~200-300 ns was attributed to ET along the A branch. 

Site-specific mutations of amino acids close to the A1 and A0 pigments has been 

constructed , (in green algae, C. reinhardtii as well as in cyanobacterium, Synechocystis sp. PCC 

6803) to alter the environment of these ET cofactors on the A and B branches separately [24]. 

Studies of these various mutants provide evidence for both branches being active, but to different 

extent in different species. Site-directed mutations in C. reinhardtii provide evidence for forward 

ET being more or less equal along both branches [24-26]. In cyanobacteria, however, forward 

ET seems to be predominantly along the A branch, and is associated with the slow phase of ET 

[13, 20, 22, 23, 27]. 
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Figure 1.3(b) shows an outline of the overall light induced energetics of ET in PS I. The 

left side axis gives the redox potential for each radical pair [11]. P700 has some very unique redox 

properties. The lowest excited singlet state of P700 (P700*) has a negative redox potential of ~-

1300 mV. This is unprecedented for any molecular species in nature.  In addition, the redox 

potential for P700 is about +400 mV which is surprisingly low given that isolated Chl-a molecules 

have redox potentials near 800 mV. One of the goals of this dissertational research is to help 

establish what factors determine the unique redox properties of P700. 

Following light excitation of P700 an electron is transferred to A0 in ~1-3 ps followed by 

the transfer of electron from A0‾ to A1 in about 30ps [10, 11]. The energy transfer processes that 

lead to the excitation of P700 also occur in about 30 ps. This makes direct observation of A0‾ 

formation/decay, and A1
- formation, very difficult [28]. 

Forward ET from A1‾ to FX is the first reaction that can be observed spectroscopically 

without complications associated with antenna energy transfer processes. Forward ET from A1‾ 

to FX is characterized by two time constants of 20 ns (fast) and 200ns (slow) [21]. It has been 

shown in cyanobacteria that the fast phase is temperature independent, while the slow phase 

slows even more as the temperature is decreased [29-31]. 

If the forward electron transfer from A0‾ to A1 is blocked, by removal or pre-reduction of 

A1, P700
+A0‾ decays by charge recombination with a half-life of ~30ns to form the triplet state, 

3P700 [10]. The triplet state then decays to the ground state on the micro to millisecond timescale 

[10]. Similarly, charge recombination of the secondary radical pair state, P700
+A1‾, occurs when 

FX, FA and FB are either removed or pre-reduced [10]. Finally, if none of the acceptors are 

modified, the recombination lifetime of the terminal radical pair state, P700
+/FA/B‾, is about 80 ms 
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[10]. With such a long lifetime it is straightforward to photo-accumulate a substantial population 

of the P700
+FA/B‾ state and makes the generation of (P700

+-P700) FTIR difference spectra feasible. 

1.2 P700, The Primary Electron Donor in PS I 

In 1971, Norris and co-workers noticed that the line width of the P700
+ EPR spectrum is 

narrower than that of Chl-a monomers and is consistent with an unpaired spin delocalization 

over an entity containing two chlorophyll molecules. This led to the conclusion that P700 is a Chl-

a dimer [38]. This proposal was also supported by optical spectroscopy studies. P700 absorbs at 

700 nm which is 30 nm further to the red than that of Chl-a in solution and such a shift suggests 

a multimeric nature to P700. Also, the light-minus-dark difference circular dichroism (CD) 

spectrum of PS I particles shows two approximately equal bands at 696.5(+) and 688(-) nm [33, 

39] which was again an indication of a dimeric structure. FTIR difference spectra obtained from 

PS I particles show a broad positive difference band centered near 3200 cm-1, which is 

characteristic of the electronic transition of a dimeric species. Also two difference bands are 

1.2.1 A Brief Historical Review 

The primary electron donor in PS I was named P700 by Kok, B. in 1956 (P for ‘pigment’ 

and ‘700’ because he observed a light induced absorption change in spinach chloroplast around 

700 nm) [32]. 

Early research on the structure and properties of the primary electron donor were mainly 

based on optical and EPR studies in comparison with Chl-a [33]. The first EPR signal from the 

P700
+ was obtained by Commoner in 1956 [34]. Later EPR signals associated with P700

+ and their 

kinetics, as well as the kinetics of optical signals were also obtained and correlated quantitatively 

[33, 35-37]. These early studies established P700 as one or more Chl-a molecule(s). 
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observed for P700 FTIR DS in the region of the ester absorption for Chl-a in solution, which also 

indicate that two different pigments contribute to the spectra. 

1.2.2 X-Ray Crystallography of P700 

The first X-ray crystal structural model of PS I at 6Å resolution was isolated from 

Synechococcus sp. (now named Thermo-synechococcus elongatus) in 1987 [40]. Detailed 

structure at 4Å followed soon and a dimeric nature for P700 was proposed based on these X-ray 

crystallographic studies. A more complete structure of PS I at 2.5Å came out in 2001 [6, 7, 41-

45], in which the two chlorophylls of P700 were clearly resolved and it became evident that P700 

was a hetrodimer of a Chl-a and Chl-a’ molecule (which is an epimer at the C13 position of the 

chlorin ring system), located on PsaB (PB) and PsaA (PA) respectively. The resolution of the 

crystal structure was also sufficient to analyze the protein-cofactor interactions and shows that 

P700 is an asymmetric dimer with the two chlorophyll molecules having different extent of 

interactions with the protein environment. 

 

1.2.3 Structure of Chlorophyll-a 

Figure 1.4: Molecular structure and IUPAC numbering scheme for chlorophyll-a. 
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The molecular structure and IUPAC numbering scheme for Chl-a is shown in Figure 1.4. 

Chl-a consists of a penta-pyrrolic porphyrin body with a long phytyl tail attached at the 17 

position. Chl-a is a magnesium containing porphyrin, with the magnesium coordinated by four 

nitrogen atoms and characteristically contains a vinyl group at position 3. The four pyrrol rings 

are joined by methelene bridges and the system of double bonds forms a closed, conjugated 

macrocyclic loop [46, 47]. 

 

1.2.4 The Structure of P700 

Figure 1.5: (a) Structure of P700 showing the Mg-Mg distance (b) The angle between the lines formed by the Mg-N4 bonds 
on either pigment is 56.9º. 
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The primary electron donor P700, is a heterodimer consisting of a Chl-a (PB) and a Chl-

a’(PA) molecule. Chl-a’ is an epimer of Chl-a at the C13 position of the chlorin ring system 

(Figure 1.4). The macrocycles of two chlorophylls of P700 are parallel and is separated by 3.6 Å. 

Pyrole rings I and II of PA and PB overlap, and the Mg2+ ions are separated by 6.3 Å and the N4A-

MgA-MgB-N4B dihedral angle is ~57° (Figure 1.5). 

 

1.2.5 The Protein Environment of P700 

Figure 1.6: Structure of P700 obtained from the X-ray crystallographic structure analysis at 2.5Å resolutions. 

The Chl-a and Chl-a’ molecules of P700 are bound to PsaA and PsaB and the amino acid 

environment around these molecules is decidedly asymmetric (Figure 1.6). Both the chlorophylls 

of P700 are axially ligated to histidine residues symmetrically (HisA680 and HisB660 in Thermo-

synechococcus elongatus sequence numbering scheme) but their hydrogen bonding interaction 

with the protein back bone is asymmetric. 
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Figure 1.7: (a) View of ring V of PA showing possible H-bond interactions to the 131 keto and 133 ester C=O groups. (b) 
View of ring V of PB showing the nearby amino acids. These residues does not provide any H-bond to PB. 

Figure 1.7(a) shows that the hydroxyl oxygen of ThrA743 (The amino acid numbering is 

according to the sequence of the cyanobacterium Thermo-synechococcus elongates, for 

Synechocystis sp. PCC 6803, and C. reinhardtii sequence numbering see Table 1.1) is 2.98 Å 

from the 131 keto carbonyl (C=O) oxygen of PA and is suitably positioned to form a hydrogen 

bond. In addition, the ThrA743 hydroxyl oxygen is 2.7 Å from the oxygen atom of a water 

molecule (H2O-19). The oxygen atom of H2O-19 water molecule is 3.28 Å away from the 

methoxy oxygen of the 133 ester C=O of PA, and is also within hydrogen bonding distance to 

TyrA603 and SerA607.The C=O groups of PB on the other hand is free of any hydrogen bonding 

interactions (Figure 1.7(b)). 

Table 1.1: Sequence numbering of some PsaA and PsaB aminoacids in close proximity of P700 in Thermo-synechococcus 
elongates, Synechocystis sp. PCC 6803, and Chlamydomonas reinhardtii. 

 S. elongatus Synechocystis C. reinhardtii 
Axial ligands to P700 HisA680 

HisB660 
HisA676 
HisB651 

HisA676 
HisB656 

Vicinity of 131 keto 
C=O of P700 

ThrA743 
TyrB727 

ThrA739 
TyrB718 

ThrA739 
TyrB722 

Vicinity of 133 ester 
C=O of P700 

SerA607, TyrA603 
GlyB594, LeuB590 

SerA603, TyrA599 
GlyB585,LeuB581 

SerA604,TyrA600 
GlyB589,LeuB585 

Vicinity of 173 ester 
C=O of P700 

TyrA735 
PheB710 

TyrA729 
PheB710 

TyrA731 
PheB714 
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1.3 Structure of the Bridging or Accessory Chlorophylls 

  

Figure 1.8: The bridging accessory chlorophylls in PS I showing their axial ligands and the asparagine residue that provides 
hydrogen bond to the water molecule that provides the axial ligand (a) AA, the chlorophyll pigment in the A-
branch and (b) AB, the chlorophyll pigment in the B-branch. 

The second pair of the chlorophylls in the electron transfer pathway in PS I, termed AA 

and AB (Figure 1.3), are in close proximity (8-12 Å) to the P700 chlorophylls and the A0 

chlorophylls. Unlike the asymmetry noted above for the chlorophylls of P700, there are no 

significant differences in the environments of AA and AB. Axial ligands to AA/AB are provided 

by water molecules that are hydrogen bonded to AsnB591/AsnA604, respectively (Figure 1.8) 

(Thermo-synechococcus elongatus sequence numbering scheme). Interestingly, the PsaB subunit 

provides the axial ligand to the bridging chlorophyll in the A-branch of electron transfer while 

PsaA provides a ligand to chlorophyll on the B-branch. There are no hydrogen bonds to 

substituent groups of AA/AB. 

1.4 A0, The Primary Electron Acceptor in PS I 

The Chl-a molecules designated A0A and A0B in Figure 1.3 are thought to be the primary 

electron accepting pigments from the excited state of P700. Axial ligands to A0A/A0B are provided 

by the sulfur atom of MetA688/MetB668, respectively (Thermo-synechococcus elongatus 

sequence numbering scheme). The 131 keto carbonyl oxygen of ring V of A0A/A0B are hydrogen 

bonded to the hydroxyl group of TyrA696/TyrB676, respectively (see Figure 1.9). 
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Figure 1.9: The primary electron acceptor in PS I. (a) A0A pigment along with the MetA688 residue that provides the axial 
ligand and TyrA696 residue that provides hydrogen bond to the 131 keto C=O group. (b) A0B pigment along 
with the MetB668 residue that provides the axial ligand and TyrB676 residue that provides hydrogen bond to 
the 131 keto C=O group. 

The primary charge separation in PS I leads to the reduction of the primary electron 

acceptor, A0A, A0B, or both, creating the radical pair P700
+A0

- in ~ 1-3 ps. The unpaired electron is 

transferred to the phylloquinone secondary acceptor A1 then to the iron sulfur clusters, FX, FA 

and FB. 

A0 is the first spectroscopically resolved electron acceptor in PS I and numerous studies 

have been performed using PS I particles from cyanobacteria as well as algae and the electron 

transfer capabilities of the two possible pathways, the A and B-branches, is still under debate. 

Site-directed mutations of the Met residue that serves as the axial ligand to each A0 has been 

made in Synechocystis and C. reinhardtii in order to probe the direction of electron transfer in 

these species [13, 20, 24, 26, 27, 48-50]. Ultrafast pump probe measurements [24, 26] and EPR 

measurements [49, 51] from the C. reinhardtii mutants indicate a slowing of electron transfer 

from the affected A0 chlorophylls in the mutants of both MetA688 and MetB668, implying that 

both branches of electron transfer are active. In contrast, studies on Synechocystis mutants shows 

that electron transfer is strongly biased toward the A-branch. Mutaion of the axial ligand to A0 
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on the A-branch altered the spin polarization patters of the P700
-A1

- and P700
+Fx

- radical pairs 

observed in transient EPR measurements indicating an increase in the lifetime of the P700
+A0

- 

radical pair and a significant population of the 3P700 formed by radical pair recombination. 

Mutation of MetB668 on the other hand had no discernable effect on the transient EPR signals 

[13, 27]. Ultrafast pump probe measurements also showed that the forward electron transfer from 

A0 was slowed when Met688 was altered, but not when MetB668 was altered [20]. 

Mutations have also been made for the tyrosine residues, TyrA696 and TyrB676, that 

donate a hydrogen bond to the 131 keto oxygen of the A0 chlorophylls. Transient optical 

absorption spectroscopy performed in vivo and transient EPR measurements from thylakoid 

membranes in these mutants showed that the mutations affect the relative amplitudes, but not the 

lifetimes, of the ~20 ns and 200 ns components, which have been proposed to represent the 

forward electron transfer from A1B and A1A, respectively. The mutation of TyrA696 increases the 

fraction of the faster component at the expense of the slower component, with the opposite effect 

seen in the TyrB676 mutant. This result was interpreted as a decrease in the relative use of the 

targeted branch thus supporting the bi-directional electron transfer mechanism in C. reinhardtii. 

The effect of the mutation of the axial ligand of A0 on the (P700
+-P700) FTIR difference 

spectra has been investigated in detail and the results are presented in Chapter 4 of this 

dissertation. 

1.5 Fourier Transform Infra-Red (FTIR) Difference Spectroscopy (DS) 

Infrared (IR) spectroscopy is used to probe/monitor vibrations in molecules exploiting the 

fact that molecules have specific frequencies at which they rotate or vibrate corresponding to 

discrete energy levels (vibrational modes). An IR spectrum is a plot of the incident IR radiation 

1.5.1 Infrared Absorbance Spectra 
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passing through a sample versus wavenumber (or wavelength). Thus specific absorption bands in 

an IR spectrum relate to specific vibrational modes of specific molecular bonds. 

The set of vibrational modes in a molecular sample is completely dependent on the 

molecular bonding geometry of the sample. This geometry is different for different samples. 

Therefore, IR spectroscopy is a tool that can be used to establish a unique fingerprint or signature 

for a given molecular sample. 

E hν=

1.5.2 Normal Modes 

A normal mode of a molecule is defined as a vibration during which all of the atoms in 

the molecule move with the same frequency and phase. The frequency of this periodic motion is 

known as vibration frequency. A molecular vibration is excited when the molecule absorbs a 

quantum of energy, E, corresponding to the vibration's frequency, ν (in wavenumber), according 

to the relation  

                                                               (1.1) 

where h is Planck's constant. The set of normal modes of a pure chemical compound in a given 

environment is unique. For this reason the IR spectrum, which is representative of the normal 

mode structure of a molecule, is a unique identifier of a specific molecule in a specific 

environment and provides a “fingerprint” of the molecule(s). 

To a first approximation, the motion in a normal vibration can be described as a kind of 

simple harmonic motion and the frequency of the vibration can be calculated using the equation 

1
2

k
c

ν
π µ

=                                                                  (1.2) 

where, k is the force constant (spring constant) and µ is the reduced mass. The reduced mass is 

given by 
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1 2

1 2

m m
m m

µ =
+

                                                            (1.3) 

where 1m  and 2m  are the component masses of the two atoms forming the chemical bond. 

Equation 1.2 gives the simple link relating the frequency of light that a molecule will 

absorb to the reduced mass of the interacting atoms and the strength of the covalent bond 

between the two atoms. 

1.5.3 Mass and Electronic Effects 

Equation 1.2 indicates that when the force constant (k) increases, vibrational mode 

frequency increases or up-shift, and vice versa. The force constant is related to the distribution of 

electron density within the chemical bond between the atoms. Hence the vibrational frequency of 

a functional group also depends on the electronic structure of a molecule. The higher the electron 

density in a bond the shorter the bond length, which in turn increases the force constant so that 

the vibrational frequency increases. Anion and cation formation of a molecule will cause changes 

in molecular electronic structure. Such frequency shifts are easily observed in IR spectra. 

Frequency shifts caused by changes in electronic structure of molecules (changes in force 

constant) is called an electronic effect. 

The frequency of the vibrational mode also depends on the reduced mass of the vibrating 

pair of atoms (equation 1.2). Increasing the reduced mass (using isotope labeled atoms) will 

cause the vibrational frequency to decrease or down-shift, and vice versa. This type of isotope 

induced frequency alteration is called a mass effect. 

Functional groups are specific groups of atoms within molecules that absorb infrared 

radiation in the same frequency range regardless of the size of the molecule it is a part of. Group 

frequency is defined as a diagnostic infrared band position for a particular chemical functional 

1.5.4 Group Frequencies 
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group. For example, C-H stretching vibrations occur in the 2800-3000 cm-1 range no matter what 

type of molecule the functional group is part off. In the IR absorption spectrum of a molecular 

sample, strong bands in the 2800-3000 cm-1 range indicate that the molecule under study 

contains C-H groups. 

With a knowledge of group frequencies associated with a variety of functional groups, IR 

band positions (frequencies) can indicate if a specific functional group is present or absent in a 

sample. This correlation between group frequencies and molecular structure is one of the reasons 

that infrared spectroscopy is such a useful tool. 

 

1.5.5 Peak Intensities and Peak Width 

Figure 1.10: Information available in an IR absorption band. 

An infrared absorption band is characterized by its peak frequency, its intensity and its 

width, as shown in the Figure 1.10. Band intensity is often measured simply as the maximum 

peak height and often allows one to distinguish which bands are due to which functional groups. 

An absorption band can be described quantitatively by the Beer-Lambert law: 

0log( )IA cl
I

ε= =                                              (1.4) 
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where A is absorbance; I0 is the intensity of incident radiation; I is the intensity after passing 

through the sample; ε  is the molar extinction coefficient or absorptivity; c is the concentration; 

and l is the path length. 

The molar extinction coefficient ε  depends on the square of the change in dipole 

moment, of the chemical bond and also on the wavelength. For a given concentration and path 

length, the absolute intensity of the absorption is determined by the change in dipole moment. In 

other words, vibrations from different chemical functional groups in the molecule give rise to 

infrared bands of different intensities due to difference in the change in dipole moment upon 

light excitation or absorptivityε . 

Carbonyl C=O groups have a large dipole moment; the change in dipole moment is also 

large during vibration. Therefore, C=O groups give intense IR bands, and is quite easy to 

identify. Chl-a molecule contains three C=O groups (Figure 1.4). P700 consists of two Chl-a 

molecules, and therefore contains six C=O groups. These C=O groups of P700 give rise to intense 

bands in IR spectra, that can be used to probe the molecular electronic structure of P700. 

The width of an infrared band mainly depends on the chemical environment of the 

vibrating molecule. When the density of a sample is high, such as samples in the liquid and solid 

phase, neighboring molecules will interact electrostatically (with each other and the solvent 

molecules) causing changes in the electronic organization of individual molecules. Thus, 

individual molecules will vibrate at slightly different frequencies. This leads to band broadening 

for the sample as a whole, as each individual molecule can be in a range of slightly different 

environments. The width of a band therefore provides information about the strength and nature 

of molecular interaction. Hydrogen bonding causes considerable band broadening [52]. For the 

same reason polar molecules generally exhibit broader infrared bands than non-polar molecules. 
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1.5.6 Difference Spectra 

Figure 1.11 shows an infrared absorption spectrum for a suspension of PS I particles from 

cyanobacterium S.6803. The prominent bands of the spectrum can be identified based on the idea 

of functional group frequencies. The intensity of an absorption band depends on the 

concentration of the absorbing chromophore and the path length of the sample. In the PS I 

protein sample there are many thousands of functional groups contributing to each bands in the 

absorption spectrum. Given the very complex nature of the sample, the bands in the spectrum are 

very broad and specific molecular bond information cannot be extracted from this absorption 

spectrum. To obtain specific molecular level information from such a complicated sample 

difference techniques must be used. 

Figure 1.11: Infrared absorption spectrum of PS I particles from cyanobacterium S. 6803. 

A difference spectrum is constructed by subtracting one absorbance spectrum from 

another that has been changed slightly due to some perturbation. Figure 1.12 shows a 

hypothetical absorption band of a molecular group. If the molecule is perturbed, for example, by 

the absorption of a visible photon (leading to the formation of a cation radical) there will be a 
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change in electron density of the molecule. This will modify the molecular bonds in the 

molecule, leading to frequency shifts of the molecular bonds (see section 1.5.3 for details). 

Figure 1.12 shows an absorption band that up-shift upon excited state formation. The absorption 

spectrum of excited state minus ground state gives the difference spectrum also shown in Figure 

1.12. In the difference spectrum the negative band is due to a molecular mode with the absorbing 

pigment in the ground state, while the positive band is due to the same molecular mode of the 

pigment in the excited state. Only the vibrational modes that change in intensity or frequency 

between the two different states show up in the difference spectrum, all unchanged molecular 

modes are subtracted out. 

 

Figure 1.12: Schematic showing the construction of an IR difference band. The absorption spectrum of excited state minus 
ground state gives the difference spectrum shown on the right. 

In a large pigment protein complex such as PS I, light excitation causes the formation of 

a Chl-a cation radical. Only molecular modes in the vicinity of this radical will be perturbed and 

show up in a difference spectrum. All modes associated with the protein, the solvent and other 

pigments will cancel out and the bands associated with single molecular bonds in PS I can be 

resolved using difference techniques. 

The intensity of a difference band depends on the shift induced upon excited state 

formation, the smaller the shift, the lower the intensity of the difference band. The magnitude of 
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a difference band shift gives a measure of the change in electron density distributed in the 

molecular bond. The intensity of a difference band therefore gives a crude measure of how 

electron density within a bond is modified by the perturbation. 

By subtracting one difference spectrum from another a double difference spectrum 

(DDS) can be generated, and provides information on how complete difference bands change 

upon isotope labeling or site directed mutagenesis of PS I particles. Figures 1.13 and 1.14 shows 

simulated double difference spectrum generated from two shifted difference bands. 

     

Figure 1.13: Double difference band formation. A complete difference band is down shifted 4cm-1. For production of the 
difference spectrum of wild type (WT), a vibrational mode giving rise to a Gaussian band at 1699 cm-1, with a 
width of 8 cm-1 and intensity 1.0, was assumed to up-shift to 1721 cm-1 upon cation formation. 

    

Figure 1.14: Double difference band formation. A complete difference band is down shifted 60cm-1. For production of the 
difference spectrum of wild type (WT), a vibrational mode giving rise to a Gaussian band at 1699 cm-1, with a 
width of 8 cm-1 and intensity 1.0, was assumed to up-shift to 1721 cm-1 upon cation formation. 

In Figure 1.13 difference band 1721(+)/1699(-) cm-1 in the WT sample was assumed to 

down-shift due to mutation or isotope labeling. Such a down-shifting difference band gives a -

/+/- feature in the DDS. On the other hand an up-shifting difference band would give a +/-/+ 
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feature in a DDS. The widths and intensities of the band in the DDS spectrum are sensitive to the 

band shift of a complete difference band. The larger the difference band shifts the higher the 

intensity of the features in the DDS. If the difference band shift is large enough, four features are 

expected in the DDS, as shown in Figure 1.14. If there is no change for a given difference band 

the DDS will be featureless. Thus, DDS simplify the analysis of changes in (P700
+-P700) FTIR DS 

that arise due to mutation or isotope labeling. 

1.6 FTIR Spectroscopy of P700 

P700 is at the heart of the photochemistry in PS I and has been the subject of sustained 

interest over the last two decades. Despite this, its molecular composition, its electronic structure 

in the ground (P700 neutral), cationic (P700
+) and triplet (3P700) state are still poorly understood. 

Given the importance of P700, and the many unresolved questions surrounding its electronic and 

structural organization, FTIR difference spectroscopy in combination with quantum chemical 

computational methodologies were used to study the molecular details of both P700 and P700
+. 

(P700
+-P700) FTIR DS have been collected under many sets of conditions: from PS I particles 

from different strains, to particles with site directed mutations near the P700 and A0 Chl’s, to 

specifically isotope labeled PS I particles. Unambiguous assignment of the bands in these (P700
+-

P700) FTIR DS is difficult but critical, and it is to this task that virtually most of this dissertation 

is devoted. 

Figure 1.15 shows a light-induced (P700
+-P700) FTIR DS obtained at 77K using PS I 

particles from S.6803, in the 5000-1200 cm-1 spectral region. The FTIR DS shows a broad, 

positive difference band centered at ~3300 cm-1 which has roughly twice the intensity of the 

positive band at 1754 cm-1. This band is also observed in the FTIR DS obtained using many 

1.6.1 Light-Induced (P700
+-P700) FTIR Difference Spectra 
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other types of photosystems from many species, such as PS I from S.7002 (unpublished data), PS 

I from Acaryochloris marina [53, 54], PS I from C. reinhardtii [54], PS I from green sulfur 

bacteria [55, 56], PS I from purple bacteria, [55, 57, 58] and PS I from heliobacteria [58, 59]. 

This broad positive band is generally considered as being due to a low frequency 

electronic transition that is associated with the dimeric nature of the primary electron donor [57, 

60]. The band therefore gives indication that the species under study consists of at least two 

chlorophyll molecules. 

 

Figure 1.15: FTIR difference spectrum in the 5000-1200 cm-1 spectral region, obtained following light excitation of PS I 
particles from S.6803 at 77K. 

Figure 1.16 shows a highly resolved light induced (P700
+-P700) FTIR DS in the frequency 

region 1800-1200 cm-1 obtained from PS I particles of S. 6803 at 77K. The frequency of each 

band provides information on the functional group that could cause it. Negative bands are due to 

the ground state (P700) while positive bands are due to the excited state (P700
+). Since different 

bands of P700 provide information on the electronic structure of a particular molecular group, if 

many difference bands associated with several vibrational groups of the Chls of P700 can be 
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identified then the electronic structure at several position of the Chl macrocycle can be 

estimated. In this way the structural and electronic organization of P700 and P700
+ can be 

elucidated. 

 

Figure 1.16: FTIR difference spectra obtained following light excitation of PS I particles from S. 6803 at 77K, in the 1800-
1500 cm-1 region. The dotted line shows the dark minus dark difference spectra, which actually give an estimate 
of the noise level in the experiment. 

Tavitian et al. obtained the first room temperature light-induced FTIR difference spectra 

of P700 photooxidation from PS I particles isolated from pea in 1986 [61]. From these 

measurements the largest negative band at ~1700 cm-1 in the FTIR DS (Figure 1.14) was 

proposed to be due to the 131 keto C=O group of Chl-a molecule(s) that constitute P700. This 

band was supposed to up-shift to 1718 cm-1 upon cation formation. The difference bands at 

1755(+)/1749(-) and 1741(+)/1734(-) were proposed to be due to the 173 and 133 ester C=O 

groups, respectively, that up-shifts upon cation formation. These band assignments were very 

1.6.2 Identification of the Carbonyl Modes of P700 
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tentative and based on the band frequencies and comparison to neutral Chl-a IR absorption 

spectra. 

 Cation minus neutral FTIR difference spectra of Chl-a and pyroChl-a (Chl-a lacking the 

133 ester C=O group) in tetrahydrofuran (THF) were generated by Mäntele et al. in 1988 [62] to 

assist the assignment of the IR difference bands in the (P700
+-P700) spectra. In (Chl-a+-Chl-a) 

FTIR DS two clear difference bands are observed at 1751(+)/1738(-) and 1718(+)/1693(-) cm-1. 

The 1751(+)/1738(-) cm-1 band is absent in (pyroChl-a+-pyroChl-a) FTIR DS. The 

disappearance of this band in the pyroChl-a spectrum lead to the assignment of the band to the 

133 ester C=O group. Notably, the 173 ester band did not contribute to the (Chl-a+-Chl-a) and 

(pyroChl-a+-pyroChl-a) FTIR DS. The 1718(+)/1693(-) cm-1 band [1712(+)/1686(-) cm-1 in 

(pyroChl-a+-pyroChl-a) FTIR DS] observed in both (Chl-a+-Chl-a) and (pyroChl-a+-pyroChl-a) 

FTIR DS was assigned to the 131 keto C=O group of Chl-a. Based on these observations, the 

difference band at 1718(+)/1697(-) cm-1 in the light-induced (P700
+-P700) FTIR DS (Figure 1.16) 

was assigned to the 131 keto C=O group of Chl-a. The two difference bands observed at 

1755(+)/1749(-) and 1741(+)/1734(-) cm-1 in the (P700
+-P700) FTIR DS were assigned to two 133 

ester C=O groups of the Chl-a molecules of P700. These assignments implied a dimeric structure 

for P700. It was thought that the 131 keto C=O groups of both Chl-a molecules of P700 absorb at 

1697 cm-1. Alternatively, it was proposed that the difference band at 1656(+)/1637(-) cm-1 

(Figure 1.16) could be due to the 131 keto C=O groups of one of the Chl-a molecules of P700. 

However, the origin of such a large down-shift (~60 cm-1) could not be explained. 

In 1999, the (3P700-P700) FTIR DS at 90 K was generated for the first time by Breton et al. 

using PS I particles from S. 6803 that had the terminal iron sulfur clusters FA and FB removed. 

The direct comparison of the (3P700-P700) to the (P700
+-P700)FTIR DS provides a means to identify 
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the C=O vibrations of the chlorophylls of P700 in the neutral state [63]. In the (3P700-P700) FTIR 

DS a negative band at 1637cm-1 was observed to down-shift to 1594 cm-1 but no band was 

observed at 1699 cm-1. These results led to the assignment of the difference band at 

1656(+)/1637(-) cm-1 (Figure 1.16) to the 131 keto C=O mode of one of the chlorophylls of P700. 

The low frequency absorption of this C=O mode was explained by the hypothesis that one of the 

chlorophyll molecules of P700 is strongly hydrogen bonded [63]. The second chlorophyll 

molecule of P700 was assumed free of hydrogen bonding interaction with the protein. The (3P700-

P700) spectra shows a negative band at 1733 cm-1 around the same frequency of 1741(+)/1734(-) 

cm-1 in the (P700
+-P700) FTIR DS, which was assigned to the 133 ester C=O of one of the 

chlorophylls of P700 which could be hydrogen bonded to the protein environment [64]. 

The observation that the (3P700-P700) FTIR DS shows the spectral signature of a single 

Chl-a led to the conclusion that the 3P700 state is localized on a single Chl-a of P700, PA, that is 

involved in a hydrogen bonding interaction. From the (P700
+-P700) FTIR DS it was also shown 

that the positive charge on P700
+ is shared among PA and PB. The peak-to-peak amplitude of the 

differential signals 1718(+)/1697(-) cm-1 and 1656(+)/1637(-) cm-1 were used to estimate the 

charge distribution on the 131 keto C=O group of the chlorophyll molecules, while the 

1755(+)/1749(-) and 1741(+)/1734(-) cm-1 bands were used to estimate the charge distribution on 

the 133 ester C=O group [63, 65]. It was concluded from the (P700
+-P700) FTIR DS that there is 

strong delocalization of the positive charge over the two chlorophyll molecules of P700 at the 

excited state with a charge distribution ranging from 1:1 to 2:1 in favor of PB [63, 65]. However, 

this conclusion was in complete disagreement with the ENDOR spectroscopic data that was 

available at that time, where the charge/spin distribution over the chlorophyll of P700
+ was 

proposed to be in the range 1:6 to 1:9 thus suggesting a strong localization of the charge/spin on 
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to single chlorophyll of P700
+. In addition, it was observed that the replacement of HisA676 and 

HisB656, the amino acid residues providing axial ligands to P700, in C. reinhardtii with different 

amino acids through site-directed mutagenesis resulted in altered spectroscopic properties of P700 

[66]. The effects of these mutations were pronounced when HisB656 was replaced compared to 

HisA676. Furthermore, the electron spin density distribution of P700
+, obtained from ENDOR 

spectroscopic data showed significant changes only when there was a mutation for HisB656, 

which led to the conclusion that the 3P700 state resides on PB, the same chlorophyll that carries 

most of the electron density of P700
+ [66]. However, these conclusions were at odd with those 

proposed by Breton et al. [63], where the 3P700 state was proposed to be concentrated on PA, 

while the charge in P700+ was shared between PA and PB. These discrepancy between the 

interpretations of the spectroscopic results led Hastings et al. [54] to re-evaluate the (P700
+-P700) 

FTIR DS of C reinhardtii and to propose a different set of assignments for the 131 keto C=O 

groups of P700, which was considerably different from the earlier assignments proposed by 

Breton et al [63, 65]. 

A site-directed mutant from C. reinhardtii where the axial histidine ligand, HisA676, 

changed to serine was investigated by Hastings et al., and it was observed that the ~1700 cm-1 

negative band was split into two components upon mutation [54]. This observation led to the 

conclusion that the negative band around 1700 cm-1 in the (P700
+-P700) FTIR DS is due to 131 

keto C=O modes of both chlorophylls of P700. It was also proposed that upon cation formation 

one of the C=O mode frequency up-shift to 1718 cm-1 while the other down-shifts to 1687 cm-1 

thus being able to explain the presence of the big positive band around 1687 cm-1 [54] (Figure 

1.16). The differential band at 1656(+)/1637(-) cm-1 in the assignment proposed by Hastings et 
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al. was assigned to one or both of the histidine residues that provide the axial ligands to PA and 

PB. 

(P700
+-P700) FTIR DS from PS I particles with site specific isotope labeling, where the 

chlorophyll molecules comprising P700 were labeled in situ using 13C, 18O [69] and 2H [70, 71] 

has also been obtained. Kim et. al. studied PS I particles in which the 134 methyl hydrogen atoms 

1.6.3 Isotope Labeling Studies of P700 

Isotope labeling is a method in which specific atoms in a molecule under consideration 

are replaced with a stable isotope. 15N, 13C, 18O and 2H are stable isotopes of 14N, 12C, 16O and 

1H, respectively. Replacing atoms with their stable isotope results in a change in the reduced 

mass of the functional group including the atom, and causes a change in the vibrational 

frequency of the group (see Section 1.5.3). Isotope labeling, global and site specific, is a widely 

used strategy to distinguish the pigment vibrational modes from the protein backbone [29, 63, 

67-69]. 

Wang et. al. obtained light induced (P700
+-P700) FTIR DS from PS I particles of S. 6803 

that are uniformly 2H , 13C and 15N labeled [68]. Upon uniform 2H labeling of PS I, it was shown 

that all difference bands associated with ester/keto carbonyl modes of the chlorophylls of P700 

and P700
+ down-shift 4-5/1-3 cm-1, respectively. Also, the observed 15N and 2H induced band 

shifts in the spectral region ~1700 cm-1 strongly support the idea that the 131 keto carbonyl 

modes of both chlorophylls of P700contribute to this band [68]. It was also shown that the 

negative difference band at approximately 1637 cm-1 is somewhat modified in intensity, but 

unaltered in frequency, upon 2H labeling. This observation is in line with the band assignments 

proposed by Hastings et. al. [54] and indicates that 1637 cm-1 band is not associated with a 

strongly hydrogen bonded keto carbonyl mode of one of the chlorophylls of P700. 
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of the Chl’s of P700 have been deuterated (2H labeled). Based on the observation that several 

derivative features spans the 1775-1675 cm-1 region in the (1H-2H) isotope edited (P700
+-P700) 

FTIR double difference spectra (DDS) from these particles, it was suggested that at least four 

distinct 133 ester C=O vibrations contribute to the spectra in this region[70]. 

(P700
+-P700) FTIR DS has been collected from PS I particles were specific carbons (C2, 

C3
1, C7, C8

1, C12, C13
1, C17

1 and C18, see Figure 1.4) of the P700 chlorophylls were 13C labeled 

[69]. Also, (P700
+-P700) FTIR DS for PS I particles were the oxygen atom of the 131 keto C=O 

group has been changed to 18O has also been obtained [69]. Based on these studies it was 

proposed that PA
+ give rise to two chlorophyll keto vibrational bands, with frequencies at 1656 

and 1689 cm-1. In contrast, it was proposed that PA gives rise to one chlorophyll keto band at 

1637 cm-1. The assignment of two positive bands to PA
+ keto frequencies was based on the 

assumption that the protein relaxation induces a distribution of hydrogen bond in the PS I 

particles upon cation formation. 

Particularly, in C. reinhardtii, the histidine residues HisA676, HisB656 (C. reinhardtii 

sequence numbering, for S. 6803 numbering see Table 1.1) which provides axial ligand to the 

chlorophyll molecules of P700 has been modified to, Glutamine (Gln), Serine (Ser), Cysteine 

(Cys), Glycine (Gly), and Asparagine (Asp). Only the substitutions with Ser, Gln and Asp 

1.6.4 Site-Directed Mutations Near P700 

Site-Directed Mutagenesis (SDM) is a method in which one or more amino acid residues 

at a specific location in a protein are exchanged by a different residue. Site-directed mutagenesis 

has been used to modify the amino acids that are in the vicinity of P700. The assumption is that 

any change in the pigment-protein interaction will alter the spectroscopic properties of P700 in the 

ground and cation state and can be used to identify specific pigment-protein interactions. 
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residues led to a significant accumulation of PSI in the thylakoid membranes. The ENDOR 

spectroscopy of these mutants showed that the electron spin density distribution of P700
+ was 

changed only upon mutation of HisB656 residue. These observed changes in the spectroscopic 

properties upon mutation led to the conclusion that the triplet state of P700 is mainly localized on 

PB [66, 72]. Also, significant perturbation was observed for the bands associated with 131 keto 

C=O of P700 in the (P700
+-P700) FTIR DS of HisA676 mutant. This led Hastings et al. [54] to 

propose an assignment of bands for the 131 keto C=O groups of PA that differs considerably from 

the previous assignments by Breton et al [63, 65]. 

The (P700
+-P700) FTIR DS of the mutants of S. 6803, where HisB651 (S. 6803 sequence 

numbering), which provide the axial ligand to PB, replaced by (Cysteine) Cys, (Glycine) Gly or 

(Leucine) Leu was obtained by Breton et al. in an attempt to investigate the extent of 

delocalization of the positive charge in the oxidized dimer of chlorophyll constituting P700 [73]. 

The conclusion that the charge of P700
+ is delocalized was supported by the new investigation, 

while the variations in the frequency and intensity of the C=O vibrational bands of the 

chlorophylls of P700 observed in the (P700
+-P700) FTIR DS of the histidine axial ligand mutants 

were attributed to the repositioning of the P700 dimer in the protein cavity [73]. 

The availability of the high resolution crystal structure of cyanobacterial PS I at 2.5Å 

resolutions made it possible to clearly identify the amino acid residues that might have an effect 

on the C=O mode vibrations of P700. Following the high resolution structure, many studies have 

been performed with site-directed mutations for few selective PsaA and PsaB amino acids in 

close proximity of P700. One of the first studies by FTIR difference spectroscopy of mutation 

induced effect to the C=O modes of PA was with ThrA739 in C. reinhardtii replaced by Tyrosine 

(Tyr), Histidine (His) or Valine (Val) residues [74]. The (P700
+-P700) FTIR DS for the mutants 
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T(A739)V, T(A739)H, and T(A739)Y lacked the negative band at 1634 cm-1, which was earlier 

assigned to the ground state absorption of PA by Breton et al. [63, 65], and instead had new 

negative bands at 1672, 1669 and 1657 cm-1, respectively. The band at 1634 cm-1 was hence 

assigned to the 131 keto C=O group of PA, the up-shift of this band in mutants were attributed to 

the removal of the hydrogen bonding interaction to PA upon mutation [74]. 

In an investigation following this, the residue ThrA739 was replaced by (Alanine) Ala in 

C. reinhardtii. The mutation of Thr residue to Ala considerably altered the (P700
+-P700) FTIR DS. 

The modification upon mutation of the (P700
+-P700) FTIR DS was explained using the band 

assignments proposed by Hastings et al. [54]. On comparison of the (P700
+-P700) FTIR difference 

spectra of the mutant to the wild type, Hastings et al. concluded that the hydrogen bond to the 

131 keto C=O of PA is still present in the T(A739)A mutant, and also proposed that this could be 

mediated through an introduced water molecule [75]. 

A series of mutations of the amino acid residues in the proximity of the C=O groups of 

PA and PB in S. 6803 has been reported recently [76, 77]. On the PsaA protein a single mutation 

of ThrA739 to Phenylalanine (Phe) as well as a set of three mutations were ThrA739 changed to 

Tyrosine (Tyr), SerA603 to Glycine (Gly), and TyrA599 to Leucine (Leu) were performed. The 

aim of these mutations were to modify the hydrogen bonding interactions to the C=O groups of 

PA by making the environment similar to the C=O groups of PB, which exhibits no hydrogen 

bonding interaction with the protein backbone. A similar study where the amino acid residues in 

the vicinity of PB were modified, in an attempt to introduce hydrogen bonding interaction to the 

C=O groups of PB has also been reported [76]. On the PsaB protein, a single mutation of 

TyrB718 to Threonine (Thr), a double mutant were GlyB585 was changed to Serine (ser) and 

LeuB581 was changed to Tyrosine (Tyr) as well as a set of three mutations were TyrB718 
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changed to Threonine (Thr), GlyB585 to Serine (Ser), and LeuB581 to Tyrosine (Tyr) were 

performed. 

(P700
+-P700) FTIR DS has been obtained from these different PsaA and PsaB mutants at 

278K (5˚C). It was shown that when the residue ThrA739, which donates a hydrogen bond to the 

131 keto C=O group of PA, was changed to Phe, a differential signal at 1653(+)/1638(-) cm-1 in 

the (P700
+-P700) FTIR DS up-shifts by ~30-40 cm-1. The same up-shift was also observed in the 

FTIR spectrum of a triple mutant in which the residues involved in the hydrogen bonding 

network to the 131 keto and bridging oxygen of the 133 ester C=O group of PA have been 

changed to the amino acid side residues present around PB. The down-shift of the difference band 

attributed to the 131 keto group of PA upon mutation was taken as an indication of the rupture of 

the hydrogen bond or, at least, a strong decrease of its strength in the mutant(s). All of these 

observations were thought to support the assignment scheme proposed previously for the 

carbonyls of P700 and P700
+ [63]. But no explanation was provided why the band up-shifts only 

~30-40 cm-1, while the H-bond to the 131 keto C=O group of PA is thought to be responsible for 

the ~60 cm-1 down-shift of the band compared to the 131 keto vibrational mode of PB. 

The FTIR study of the Y(B718)T mutant and the Y(B718)T/G(B585)S/L(B581)Y triple 

mutant where all the three amino acids near 131 keto and 133 ester C=O groups of PB were 

replaced with the analogous residues on the PA side shows significant modification for the 

1718(+)/1698(-) cm-1 band attributed to the 131 keto group of PB. A significant decrease in 

intensity of this band was observed in the mutants followed by the appearance of a new negative 

band at 1668(-) cm-1. These observations were considered as an evidence that the 131 keto C=O 

group of PB/PB
+ engages in a relatively strong hydrogen bonding interaction with the introduced 

amino acid residues in a significant fraction of the reaction centers. The crystal structure 
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provides no evidence for the possibility of a direct hydrogen bonding interaction between the 131 

keto C=O group of PB and the introduced amino acid residues in any of the mutants, and the 

assumption is that water molecule(s) introduced upon mutation could possibly mediate such an 

interaction. 

Since the FTIR spectroscopy study of the different PsaA and PsaB protein left many 

questions unanswered regarding the protein-pigment interactions of P700 as well as the 

assignment of the difference bands in the (P700
+-P700) FTIR DS, these mutants were investigated 

using low temperature FTIR DS. A detailed discussion of the work is presented in Chapters 2 

and 3. 

1.7 The Directionality of Electron Transport in PS I 

The electron transfer (ET) cofactors in PS I are arranged along two virtually identical 

branches extending across the thylakoid membrane from the primary electron donor, P700 (Figure 

1.3). This highly symmetric arrangement of cofactors raises the question whether both branches 

of cofactors are equally active in PS I. 

Pigments on the two branches are spectroscopically indistinguishable; hence the focus 

has been on creating site-directed mutants where point mutations are made for specific amino 

acids along the PsaA or PsaB branch. The ET directionality issue has been addressed using 

spectroscopic techniques like EPR, ENDOR and optical spectroscopy in these site-directed 

mutants [13, 20, 24, 26, 49, 78]. Most of the evidence for the directionality of ET has come from 

studies involving specific mutations around the phylloquinone secondary electron acceptor, A1 

[14, 17, 18, 23, 25]. 

Recently site-directed mutants where the methionine axial ligands to the A0 primary 

electron acceptor, MetA684 and MetB664 in C. reinhardtii (MetA688 and MetB668 in S. 6803) 
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were changed have been constructed. For S. 6803, the methionine was changed to leucine or 

asparagine [13, 20] while for C. reinhardtii, the methionine was changed to histidine, leucine or 

serine [24, 26, 49]. The central magnesium atoms of each of the primary electron acceptor 

chlorophylls, A0, are coordinated by sulfur atom of methionine (PsaA684 and PsaB664 for C. 

reinhardtii). This provides a weak ligand and the premise of the mutations of methionine at the 

binding site to histidine in C. reinhardtii (and asparagine in S. 6803) is that these polar amino 

acid groups have the potential to provide a stronger fifth ligand to the magnesium atom of the 

chlorophyll acceptor on the respective branches and thus alter the redox properties of A0, which 

could result in different spectroscopic properties. These mutants have been studied by EPR and 

ultrafast optical spectroscopy. The optical and EPR studies on C. reinhardtii supported the 

hypothesis that both branches of ET are equally active while the analogous studies on S. 6803 

shows evidence for a uni-directional electron transfer. 

The effect of the mutation of the axial ligands of A0, on the (P700
+-P700) FTIR DS has been 

investigated in detail using C. reinhardtii PS I particles. The (P700
+-P700) FTIR DS obtained from 

these mutants clearly support the hypothesis that both branches of electron transfer are equally 

active. A detailed discussion of this study is presented in Chapter 4. 

1.8 Vibrational Frequency Calculations of Chlorophyll-a 

(P700
+-P700) FTIR DS has been obtained from PS I particles under many set of conditions: 

from PS I particles from different species, to particles with site-directed mutations near P700 and 

A0, to globally and site specifically isotope labeled PS I particles [54, 71, 76, 77]. The frequency 

and intensity information available in these difference spectra provide a wealth of information on 

the axial ligands, hydrogen bonding status as well as the polarity of the environment of specific 

functional groups that are part of the chlorophyll molecules constituting P700. However, given the 
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complexity of in vivo pigment-protein interactions, assignment of the FTIR bands to vibrational 

modes in specific types of environment is very difficult. There is a demonstrated need for a 

quantitative understanding of how vibrational mode frequencies and intensities change upon 

radical formation, and upon changes in environment introduced through site directed mutations. 

Up until recently, quantum chemical computational methods have played only a minor 

role in FTIR spectral band interpretation and assignment, especially as it applies to large 

molecular systems like Chl-a. However, computational capabilities are increasing, and recently 

density functional theory (DFT) based vibrational mode frequency calculations for several Chl-a 

and Chl-a+ model molecular systems has been undertaken [79, 80]. The calculated (Chl-a+-Chl-

a) IR DS in solvents shows remarkable similarity to the experimental (Chl-a+-Chl-a) FTIR DS in 

THF. However, the compositions of the calculated vibrational modes are very different from that 

suggested from experiment. Based on the calculations new suggestions were proposed for the 

origin of the bands in experimental (Chl-a+-Chl-a) FTIR DS. A detailed discussion of the 

calculation of the vibrational frequencies of Chl-a in solvents is presented in Chapter 5. 

The effect of solvation on the calculated IR spectra of Chl-a has been mostly studied 

using the Polarizable Continuum Model (PCM) where the solvent is modeled as a dielectric 

continuum [79, 80]. But PCM method has limitations as they do not model possible axial ligands 

or hydrogen bonds to Chl-a molecule. Hence in order to include the effect of these possible 

interactions, on the vibrational modes of Chl-a, vibrational frequency calculations were 

performed in the presence of real solvent molecules using the QM/MM method. A detailed 

discussion of this study is presented Chapter 6. 

The role and relevance of axial ligation to Chl’s has been studied computationally before 

[81-83], and how axial ligation impacts the geometry, bond dissociation energies, reduction 
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potentials and visible absorption spectra has been studied [82-85]. Also, hydrogen bonding is the 

most significant non bonding interaction to Chl pigments in a protein environment, and the effect 

of peripheral hydrogen bonding on electron affinity and spin density of Chl has been 

investigated. It was shown that the spin density of Chl-a+ could be regulated by peripheral H-

bonding [84]. However, no investigation of how axial ligation and peripheral H-bonding impact 

the vibrational properties of Chl-a/Chl-a’ have been undertaken. This is in spite of the fact that 

experimental FTIR DS is available for P700 with site specific mutations were the axial ligand [54] 

and the peripheral amino acid residues are modified [76, 77]. Hence, using DFT calculations, a 

detailed investigation of how axial ligation and H-bonding modify the vibrational properties of 

Chl-a was undertaken. A detailed description of this work is presented in Chapter 7. 

The oxidation potential (Eox) of P700 plays a significant role in determining the electron 

transfer kinetics in PS I. Eox of P700 is ~440 mV [10], significantly lower than that of monomeric 

Chl-a ( ~800 mV) or P680 (~1200 mV), the homodimeric Chl-a species that functions as primary 

electron donor in PS II. One of the goals of computational research on photosynthetic reaction 

centers is to model these extreme redox properties of the dimeric donor cofactors. A detailed 

study of the calculated chemical properties of P700 using DFT methods is presented in Chapter 8. 
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CHAPTER 2 

HYDROGEN BONDING TO CARBONYL GROUPS OF PSAA CHLOROPHYLL OF P700 

INVESTIGATED USING FTIR DIFFERENCE SPECTROSCOPY AND SITE-DIRECTED 

MUTAGENESIS 

2.1 Introduction 

Photosystem I (PS I) is a pigment protein complex present in the thylakoid membrane of 

plants and bacteria that catalyses the light-induced transfer of electrons from plastocyanin across 

the membrane to ferredoxin. In PS I the electron transfer process is initiated by light induced 

oxidation of a hetero-dimeric chlorophyll-a / chlorophyll-a’ (Chl-a/Chl-a’) species called P700. 

The electron from the light excited P700 is transferred across the membrane via a sequential series 

of electron transfer cofactors, A0 (Chl-a), A1 (phylloquinone), and FX (an iron sulfur complex). 

In PS I, there are two symmetrical sets of electron transfer cofactors, bound to two membrane 

spanning proteins called PsaA and PsaB, and it is uncertain if electron transfer occurs down one 

or both of these symmetrical branches. Although the organization of the electron transfer 

cofactors along the two branches is symmetrical, the protein interaction to the primary electron 

donor P700 is highly asymmetric. This asymmetric interaction could determine the electronic and 

structural organization of P700, which could likely influence the direction of electron transfer. 

Renewed interest in the electronic and physical organization of P700 stemmed from the possible 

role of P700 in modulating the directionality of electron transfer in PS I. 

The two pigments of P700 bound by PsaA and PsaB proteins are called PA (Chl-a’) and PB 

(Chl-a) respectively. These chlorophylls are asymmetrically bound, with PA being involved in a 

hydrogen bond (H-bond) network with several surrounding amino acid residues and a water 

molecule (Figure 2.1). PB is not involved in H bonding. Figure 2.1(a) shows the amino acids 
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residues that are in the vicinity of P700. Figure 2.1(b) shows that the hydroxyl oxygen of ThrA739 

(The amino acid numbering is according to the sequence of the cyanobacterium Synechocystis 

sp. PCC 6803) is 2.98 Å from the 131 keto carbonyl (C=O) oxygen of PA and is suitably 

positioned to form a hydrogen bond. In addition, the ThrA739 hydroxyl oxygen is 2.7 Å from the 

oxygen atom of a water molecule (H2O-19). The oxygen atom of H2O-19 water molecule is 3.28 

Å away from the methoxy oxygen of the 133 ester C=O of PA, and is also within hydrogen 

bonding distance to TyrA599 and SerA603.The C=O groups of PB on the other hand is free of 

any hydrogen bonding interactions. 

 

Figure 2.1: (a) Structure of P700 in wild type Synechocystis sp. PCC 6803 (b) Possible hydrogen bond interactions to the 
C=O group of PA. 

Removal of ThrA739, and the possible H-bond to the 131 keto C=O of PA, could disrupt 

the H-bond network, which could alter the properties of P700. To investigate these altered 

properties, a site-directed mutant from Synechocystis sp. 6803 (S. 6803) in which ThrA739 has 

been replaced by a non-polar amino acid, phenylalanine was studied. This mutant is termed the 

T(A739)F mutant. The modeled orientation of substituted phenylalanine using the crystal 

structure of PS I at 2.5 Å resolutions [6] is shown in Figure 2.2. The possible orientation/position 

of the introduced amino acids in the mutant was modeled using Swiss-Pdb viewer software. The 

structural model shown in Figure 2.2 shows the best rotomer of the mutated amino acid.  The 
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best rotomer model is where the introduced amino acids has minimum clash with the backbone 

and side chain atoms of surrounding protein while having maximum possibility of forming H-

bonds and S-S bonds. 

 

Figure 2.2: Modeled orientation of the substituted phenylalanine in T(A739)F mutant of S. 6803 using crystal structure of 
PS I at 2.5 Å resolutions. 

                                                 

Figure 2.3: Modeled orientation of the substituted tyrosine, glycine and leucine in the PsaA triple mutant of S. 6803 using 
crystal structure of PS I at 2.5 Å resolutions. 
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A triple mutant where ThrA739 is replaced by tyrosine, SerA603 is replaced by glycine 

and TyrA599 is replaced by leucine was also studied. This set of mutations were devised to alter 

the H-bonding pattern around the 131 keto C=O and 133 carbomethoxy groups of PA by making 

the protein environment similar to PB. PB exhibits no H-bonding interaction with the protein. 

This triple mutant is termed the T(A739)Y/S(A603)G/Y(A599)L mutant and the modeled 

orientation of the substituted amino acids is shown in Figure 2.3. 

Low temperature (P700
+-P700) FTIR difference spectroscopy (DS) was used to analyze 

mutation induced alterations in the molecular and electronic structure of P700 and P700
+ in these 

mutant species. FTIR spectroscopy is a sensitive molecular specific probe, and the (P700
+-P700) 

FTIR difference spectra provide specific structural information concerning P700, the primary 

electron donor. In addition, these spectra will reflect the mutation induced changes in H-bond 

strengths and/or structural alterations of P700. Room temperature (P700
+-P700) FTIR DS from these 

mutant species has been obtained before [77], but the study left many questions unanswered 

regarding the protein-pigment interactions of P700 as well as the assignment of the difference 

bands in the (P700
+-P700) FTIR DS. One of the problems in the RT studies is that multiple 

overlapping bands limits the interpretability of the spectra. The intention behind the low 

temperature measurements is to alter the difference bands so that underlying component bands 

and band-shifts can be detected. 

To help interpret the FTIR DS associated with the mutants density functional theory 

(DFT) based methods were used to simulate the vibrational properties of Chl-a model systems, 

in the absence and presence of a H-bond to the 131 keto C=O group, to gain a more detailed 

understanding of not only how frequencies may shift upon removal of H bonding, but also how 



 

 

40 

 

band intensities are altered. Such information is vital for an understanding of mutation induced 

modifications in (P700
+-P700) FTIR DS. 

2.2 Materials and Methods 

2.2.1 Instrumentation 

FTIR difference spectra were recorded using a Bruker IFS/66 FTIR spectrometer. 

Instrumental operation and spectral analysis were performed using the software package OPUS 

4.0 supplied by Bruker Optics. 

The experimental layout of equipment for steady state FTIR DS measurements at 77K is 

shown in Figure 2.4. The globar (silicon carbide) IR source is cooled by circulating water. The 

interferometer is equipped with a KBr beam-splitter which is transparent in 40,000-400 cm-1 

region. KBr is hygroscopic and to prevent “fogging” of the beam splitter the entire FTIR 

spectrometer is continuously purged with dry air [86]. 

The FTIR spectrometer contains a helium neon (He-Ne) laser (not shown) which is 

collinear to the IR beam and tracks the position of the moving mirror. Interference fringes of the 

He-Ne laser beam are used to measure the optical path difference of the interferometer mirrors 

and the wavelength of 632.8 nm is used as an internal wavenumber standard in the spectrometer 

[86]. 

For all measurements described in this dissertation, a photoconductive mercury cadmium 

telluride (MCT) IR detector was used (Graseby D313). This detector has a 0.2-1 MHz 

bandwidth. The detector is sensitive in the 7000-600 cm-1 region and is liquid nitrogen cooled. 

The detector has a surface area of 1 mm2, and is connected to a 200 kHz preamplifier with both 

AC and DC coupled outputs. For all rapid-scan steady state FTIR experiments, the preamplifier 

AC coupled output was used. 
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Figure 2.4: Schematic showing the layout of equipment for steady state (or static) photo-accumulation FTIR DS 
measurements at 77K. 

A 17 mW He-Ne laser with output at 632.8 nm is used to photo-excite the samples. The 

laser beam is expanded to a diameter of ~10 mm at the sample to reduce any heating effects. 

A single beam spectrum of the sample is collected prior to light excitation (dark scan) 

and is used as the background spectrum for obtaining the absorption spectrum. Single beam 

spectrum collected in the presence of the light (light scan) is ratioed against the background 

spectrum to obtain the absorption spectrum of the excited sample. Repetitive dark scan 

measurements and/or 10-20 minutes of wait time is added in order to make sure the sample has 

2.2.2 Steady State or Static FTIR Difference Spectroscopic Measurements 

In FTIR DS measurements, a static or steady state population of P700
+Fx

- is generated by 

shining light on the PS I samples. The data was collected in the 7000-100 cm-1 region, at 4 or 2 

cm-1 resolution. Sixty four interferrograms are collected and averaged before, during and after 

light excitation of PS I samples. These averaged interferrograms are fourier transformed and 

stored as single beam spectra. 
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relaxed to the ground state before the next excitation. The difference between two such dark 

scans (dark minus dark spectrum) gives an overall measure of the noise level in the 

measurements. The whole procedure of repeating the dark-light-dark-dark …. scan cycle several 

hundred times is computer controlled using home-written macros within the environment of 

Opus 4.0 software from Bruker Optics. 

2.2.3 Sample Preparation 

For all FTIR experiments PS I particles were pelleted and placed between a pair of CaF2 

windows. The thickness of the sample was adjusted to give an absorption of about 0.8-1.0 OD 

unit at the maximum around 1656 cm-1. No mediators were added in any of the measurements. 

The assignment of calculated vibrational frequencies to molecular groups is based upon 

visual identification, using software that animates the vibration (GaussView 4.0). The 

calculations produce normal mode vibrational frequency and intensity information. From this 

data infrared (IR) “stick” spectra can be constructed. By convolving these stick spectra with a 

2.2.4 Computational Modeling of H-bonding Interaction to Chl-a 

All geometry optimizations and harmonic normal mode vibrational frequency 

calculations were performed using density functional theory (DFT) as implemented in Gaussian 

03 software, revision D.01 [87]. Unless stated, the B3LYP functional was used in combination 

with the 6-31G(d) basis set. At this level of theory, computed harmonic vibrational mode 

frequencies overestimate experimental anharmonic frequencies by approximately 5% [80, 88]. 

Radical induced frequency shifts are accurately calculated, however [80, 89]. No negative 

frequencies were calculated for any of the model molecular structures discussed here. To model 

solvent effects the integral equation formalism (IEF) of the polarizable continuum model (PCM) 

was used [90-95], as it is implemented in Gaussian 03, revision D.01. 
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Gaussian function of 4 cm-1 half-width, more realistic looking spectra can be constructed. As 

previously described [89], these convolved stick spectra are referred to as absorption spectra. 

2.3 Results 

 

2.3.1 PsaA-T739F Mutant 

Figure 2.5: Light-induced (P700
+-P700) FTIR difference spectrum of T(A739)F mutant (red) PS I particles from S. 6803 in 

the 1780-1580 cm-1 region at 77K at 4cm-1 resolution. The (P700
+-P700) FTIR DS of the WT species (black) at 

77K is also shown for comparison. The double difference spectrum, wild type minus mutant, containing the 
changes induced by the mutation is also shown. An averaged dark minus dark noise spectrum (dotted line) is 
also shown. 

Figure 2.5 shows a comparison of the light induced (P700
+-P700) FTIR DS obtained using 

wild type (WT) (black) and T(A739)F single mutant ( red ) PS I particles from S. 6803 in the 

1780-1580 cm-1 region at 77K. The two spectra were normalized by minimizing the residuals 

over the spectral range 1800-1200cm-1. The WT-T(A739)F double difference spectrum (DDS) is 

also shown. An averaged dark-dark difference spectrum that is representative of the noise (dotted 

line) is also shown in Figure 2.5. 
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The most significant impact of the mutation on the (P700
+-P700) FTIR DS is that the 

1656(+)/1637(-) cm-1 difference band in the WT spectrum is replaced by a difference band of 

significantly reduced amplitude and at 1651(+)/1639(-) cm-1 in the spectrum of the T(A739)F 

mutant (Figure 2.5). In addition a large negative band appears at 1672 cm-1 and a positive band at 

1687 cm-1 that overlaps with the 1668(-) cm-1 and 1689(+) cm-1 band in the WT spectrum. These 

changes in the T(A739)F mutant spectrum relative to the WT give rise to the 1685(-)/ 

1672(+)/1656(+)/1637(-) cm-1 quadruple feature in the WT minus T(A739)F mutant DDS. The 

differential signal at 1656(+)/1637(-) cm-1 in the WT FTIR DS is attributed to the 131 keto C=O 

group of PA
+/PA [65], and it is anticipated that this band should up-shift upon mutation. The 

significant decrease in intensity of the 1656(+)/1637(-) cm-1 along with the increase in intensity 

of the 1687(+)/1672(-) DS band in the T(A739)F mutant is consistent with the idea that the 

mutation leads to the removal/weakening of the H-bond interaction to the 131 keto C=O group of 

PA. 

The differential signal at 1718(+)/1697(-) cm-1 in the WT FTIR DS is attributed to the 131 

keto C=O group of PB
+/PB [54, 65], the amplitude of the difference band is reduced by ~30% in 

the mutant. 

Above the spectral region of 1720 cm-1 the impact of the mutation is mostly limited to the 

region assigned to absorption of the 133 ester C=O group of PA
+/PA. The differential signal at 

1755(+)/1749(-) cm-1 previously assigned to the 133 ester C=O of PB
+/PB [54, 65] is not affected 

by the mutation while the 1741(+)/1734(-) cm-1 difference band assigned to the 133 ester C=O of 

PA
+/PA is impacted by the mutation. The 1734(-) cm-1 band up shifts ~ 2cm-1 in T(A739)F 

mutant. 
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The experimentally observed spectral changes for the difference bands previously 

assigned to the 131 keto and 133 ester C=O groups of PA might be expected as the proposed 

structure in Figure 2.2 suggest significant modification in the H-bonding interaction to these 

groups upon mutation of ThrA739 to Tyr. Also the observed spectral changes in the FTIR DS at 

77K is keeping with the room temperature (RT) data previously available [77]. 

 

2.3.2 PsaA-T739Y/S603G/Y599L Triple Mutant 

Figure 2.6: Light-induced (P700
+-P700) FTIR difference spectrum of T(A739)Y/S(A603)G/Y(A599)L mutant (red) PS I 

particles from S. 6803 in the 1780-1580 cm-1 region at 77K at 4 cm-1 resolution. The (P700
+-P700) FTIR DS of 

the WT species (black) at 77K is also shown for comparison. The double difference spectrum, wild type minus 
mutant, containing the changes induced by the mutation is also shown. An averaged dark minus dark noise 
spectrum (dotted line) is also shown. 

Figure 2.6 shows (P700
+-P700) FTIR DS for the T(A739)Y/S(A603)G/Y(A599)L triple 

mutant (red) and WT (black) PS I particles together with the corresponding double difference 

spectrum (DDS) and the noise level spectrum (dotted line) in the 1780-1580 cm-1 region at 77K. 
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The WT and the mutant spectra have been normalized by minimizing the residuals over the 

spectral range 1800-1200cm-1. 

The overall profile of the (P700
+-P700) FTIR DS of the T(A739)Y/S(A603)G/Y(A599)L 

triple mutant is quite different from that of T(A739)F single mutant. One significant change from 

the T(A739)F single mutant is that the 1656(+)/1637(-) cm-1 difference band in the WT is 

replaced by a difference band of almost similar intensity at 1651(+)/1641(-) cm-1 in the 

T(A739)Y/S(A603)G/Y(A599)L triple mutant. This difference band gives rise to the 1651(-

)/1643(+) cm-1 feature observed in the DDS. These results are very different from corresponding 

FTIR DDS at room temperature, where the 1656(+)/1637(-) cm-1 difference band significantly 

decreased in intensity in the mutant spectra [77]. 

In the spectral region above 1720 cm-1, characteristic of the ester C=O groups of 

chlorophylls, the triple mutation introduces a new positive band at 1764 cm-1 in the (P700
+-P700) 

FTIR DS. The differential signals at 1755(+)/1749(-) and 1741(+)/1734(-) cm-1 previously 

assigned to the 133 ester C=O of PB
+/PB and PA

+/PA respectively [54, 65], are not significantly 

impacted by the triple mutation. 

(P700
+-P700) FTIR DS of the T(A739)F mutant and the triple mutant have been obtained 

before at or near room temperature (RT) [77]. These experimental spectra were interpreted based 

on the assignment scheme developed on the basis of the comparison of electrochemically 

generated (Chl-a+-Chl-a), (pyroChl-a+- pyroChl-a) FTIR DS in solution with the (P700
+-P700) 

spectra [64]. Vibrational frequency calculations of Chl-a model molecules in solution using DFT 

methods have shown that it is incorrect to consider the 131 keto and 133 ester (and in some cases 

the 173 ester) C=O modes as isolated groups [79]. These 131 keto and 133 ester C=O groups 
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couple, and it is best to consider anti-symmetric and symmetric coupled vibrations of both 

groups. 

 

2.3.3 Calculated Vibrational Frequencies of Chl-a 

Figure 2.7: Geometry optimized molecular structures of (a) Chl-a and (b) Chl-a+ in the presence of a threonine residue that 
provides an H-bond to the 131 keto C=O group. The distance between the H atom of Thr and 133 ester oxygen is 
3.1/3.2Å for Chl-a/Chl-a+, respectively. The distance between the H atom of Thr and the 133 ester carbonyl 
oxygen atom is 3.4/3.5 Å while the distance between the H atom of Thr and the 131 keto carbonyl oxygen atom 
is 1.95/2.03 Å for Chl-a/Chl-a+, respectively. 

To investigate the changes in vibrational features that may occur on the removal of a H-

bond to the 131 keto C=O group of Chl-a we have used DFT to calculate the vibrational 

properties of H-bonded and isolated Chl-a molecules. The X-ray crystallographic coordinates of 

PA chlorophyll of P700 along with the ThrA739 amino acid residue was used as the starting 

geometry for the calculations. The phytyl chain of the Chl molecule and the backbone of the Thr 

amino acid residue were truncated using methyl groups. 

Figure 2.7 shows the geometry optimized model of Chl-a and Chl-a+ in the presence of 

the ThrA739 residue. After geometry optimization the H atom of the hydroxyl group of Thr 

residue is at a distance of ~1.95Å and 2.03 Å from the 131 keto C=O oxygen for Chl-a in the 

neutral and cation state, respectively (Figure 2.7). Also the angle between the 131 keto C=O 
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oxygen and the hydroxyl group (Ochl-Hthr-Othr angle) is ~168°/160°, for Chl-a/Chl-a+, 

respectively. In these calculations, we have used the integral equation formalism of the 

polarizable continuum method (PCM) to simulate the dielectric environment. The dielectric 

constants near the pigments of P700 lies in the 2-7 range [96, 97], hence we have used CCl4 and 

THF to simulate a dielectric constant of 2.228 and 7.58. 

 

Figure 2.8: Calculated IR Spectra for (a) Thr+Chl-a/Chl-a and (b) Thr+Chl-a+/Chl-a+
 in THF. The “cation minus neutral” 

IR DS are also shown (c). (d) H-bonded minus non H-bonded Chl-a DDS. The DDS clarifies the spectral 
changes that occur upon removal of the H-bond to the 131 keto C=O group. 

Figures 2.8(a)/2.8(b) shows calculated IR spectra for Chl-a/Chl-a+ in the presence (dotted 

line) and absence (solid line) of a Thr residue that is H-bonded to the 131 keto C=O group, in the 

presence of THF (dielectric constant of 7.58) simulated using the PCM, respectively. Figure 

2.8(c) shows corresponding cation minus neutral IR DS. Similar spectra were calculated for Chl-

a in CCl4 (not shown). The harmonic vibrational mode frequencies and intensities associated 

with the C=O modes of Thr+Chl-a, Thr+Chl-a+, Chl-a and Chl-a+ in CCl4 and THF are listed in 

Table 2.1. 
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Table 2.1: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of Thr+Chl-a, 
Chl-a, Thr+Chl-a+

 
and Chl-a+

 in CCl4 and THF. 

The frequency shift induced by including the Thr H-bond to Chl-a for each calculation is shown along with the mode intensity 
change [in parenthesis (in%)]. 
 

The vibrational frequency calculations for Chl-a in the presence and absence of Thr H-

bond to 131 keto C=O group of Chl-a shows that the 131 keto and 133 ester C=O vibrational 

modes show symmetric and anti-symmetric coupled vibrations in the neutral and cation states 

and unique vibrations of neither groups does not exists. 

For neutral Chl-a in THF, the anti-symmetrically coupled 131 keto and 133 ester C=O 

vibration up-shifts 25 cm-1, from 1735 to 1760 cm-1 and decreases in intensity by 21 % (Figure 

2.8 and Table 2.1) upon removal of the H-bond interaction to the 131 keto C=O group. For 

neutral Chl-a in CCl4, similar observations are made, where the anti-symmetrically coupled 131 

keto and 133 ester C=O vibration up-shifts 34 cm-1 and decreases in intensity by 32 % upon 

removal of the H-bond interaction to the 131 keto C=O group. 

For Chl-a+ in CCl4/THF, the frequency of the anti-symmetrically coupled mode increases 

by 13/15 cm-1 while the intensity decreases by 58/46 %, respectively (Table 2.1) upon removal 

of the H-bonding Thr amino acid. 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
Chl-a in CCl4 
Thr+Chl-a in CCl4 
Chl-a in THF 
Thr+Chl-a in THF 

 
1813(254) 
1813(268) 
1801(320) 
1801(398) 

 
0(-5%) 

 
0(-20%) 

 
1813(311) 
1818(275) 
1801(414) 
1803(368) 

 
-5(13%) 

 
-2(13%) 

ν (131 and 133 C=O) s 
Chl-a in CCl4 
Thr+Chl-a in CCl4 
Chl-a in THF  
Thr+Chl-a in THF 

 
1806(216) 
1806(183) 
1795(287) 
1794(203) 

 
0(18%) 

 
1(41%) 

 
1817(324) 
1807(132) 
1804(377) 
1796(169) 

 
10(145%) 

 
8(123%) 

ν (131 and 133 C=O) as 
Chl-a in CCl4 
Thr+Chl-a in CCl4 
Chl-a in THF  
Thr+Chl-a in THF 

 
1776(1047) 
1742(1532) 
1760(1551) 
1735(1959) 

 
34(-32%) 

 
25(-21%) 

 
1795(451) 
1782(1061) 
1782(802) 
1767(1496) 

 
13(-58%) 

 
15(-46%) 
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For Chl-a that is H-bonded (in THF) the anti-symmetrically coupled 131 keto and 133 

ester C=O vibration up-shifts 32 cm-1 upon cation formation and decreases in intensity by 24 %. 

In contrast for Chl-a that is not H-bonded (in THF) the up-shift is 22 cm-1, and has a higher 

cation induced intensity decrease (48 %) (Table 2.1). 

The intensity of the symmetrically coupled 131 keto and 133 ester C=O mode of Chl-a 

and Chl-a+ is about an order of magnitude lower than that of the anti-symmetrically coupled 

mode. The effects of the removal of the H-bond to the 131 keto C=O group on the frequency of 

the symmetrically coupled mode of Chl-a and Chl-a+ are also less pronounced than for the anti-

symmetrically coupled mode. The intensity of the symmetrically coupled 131 keto and 133 ester 

C=O vibration of Chl-a increases by 18/41% in CCl4/THF, respectively upon removal H-bond to 

the 131 keto C=O group. For Chl-a+, the frequency of the symmetrically coupled mode of Chl-a+ 

increases by 10/8 cm-1 while the intensity increases by 145/123 % in CCl4/THF, respectively 

upon removal of the H-bond to the 131 keto C=O group. 

The frequency of the 173 ester C=O group of Chl-a is independent of the presence/ 

absence of the H-bond to the 131 keto C=O group in both the solvents under consideration. The 

intensity of the 173 ester C=O group of Chl-a decreases by 5%/20% in CCl4/THF, respectively 

upon removal of the H-bond to the 131 keto C=O group. For Chl-a+ the frequency decreases by 

5/2 cm-1 CCl4/THF respectively followed by 13% increase in intensity in both solvents, upon 

removal of the H-bond to the 131 keto C=O group. 

Figure 2.8(d) shows a double difference spectrum (DDS) obtained by subtracting the non 

H-bonded Chl-a DS from the H-bonded Chl-a DS and help visualize the calculated spectral 

perturbations that occur upon removal of the H-bond to the 131 keto C=O group. The calculated 

DDS in CCl4 is similar. The DDS in Figure 2.8(d) displays several spectral features that span a 
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~70 cm-1 region. The FTIR DDS shown in Figure 2.8(d) could be representative of the WT 

minus mutant FTIR DDS shown in Figure 2.5. This is because the removal of the H-bonding 

ThrA739 amino acid should only affect the vibrational frequency modes of PA. It should be 

pointed out that the calculated DDS in Figure 2.8(d) takes no account of mutation induced 

protein backbone alterations while such alterations are clearly present in the FTIR DDS in Figure 

2.5. 

2.4 Discussion 

The present (P700
+-P700) FTIR spectroscopy investigation is the first report of the effect of 

mutation at the ThrA739 site and ThrA739/SerA603/TyrA599 sites in cynobacterium S. 6803 at 

low temperature (77K). One previous study has reported FTIR DS of the mutants at 278 K [77]. 

Also, FTIR spectra from green algae C.reinhardtii with mutation at ThrA739 site, where the 

threonine residue has been replaced with tyrosine, histidine, valine (at 275K) [74] and Alanine 

(at RT) [75] has been reported. In all these (P700
+-P700) FTIR DS reported for ThrA739 site single 

mutation, a strong reduction of the intensity of the 1656(+)/1637(-) cm-1 differential signal in the 

wild type together with the appearance of a new differential signal centered at a higher frequency 

was observed. In the study of C.reinhardtii where ThrA739 residue was replaced by tyrosine, 

histidine and valine it was further observed that the frequency of the new differential signal 

appearing in the spectra of the mutants was dependent on the nature of the residue introduced at 

the mutated site [74]. 

The 131 keto and 133 ester C=O modes of the two chlorophylls of P700 has been assigned 

upon comparison of (P700
+-P700) and (3P700-P700) FTIR DS combined with isotope labeled studies 

[63]. The availability of PS I crystal structure at 2.5Å resolutions [6] further helped confirming 

the assignment of the difference bands of (P700
+-P700) FTIR DS to the 131 keto and 133 ester C=O 
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modes of PA, PA
+, PB and PB

+. Still controversy persists on these assignments based on 

investigations of PS I particles with site-directed mutations, notably over the assignment of the 

1656(+)/1637(-) cm-1 difference band, in the WT S. 6803 PS I particles at 90K, to the up-shift 

upon photo oxidation of the 131 keto C=O of PA which is involved in a H-bonding network with 

PsaA protein [54]. 

The motivation behind the modification of the T(A739) residue in the single mutant as 

well as the modification of three significant amino acid residues in the vicinity of PA in the triple 

mutant is to modifying the H-bonding interactions to the C=O groups of PA and thereby to be 

able to distinguish the mutation induced modification of the coupled vibrational modes of the 

C=O groups of PA. 

The nearly complete disappearance of the 1656(+)/1637(-) cm-1 difference band in the 

WT spectra upon mutation of ThrA739 to Phe fits the assignment of this difference band in WT 

to the 131 keto C=O group of PA. The appearance of a new negative band at 1672(-) and the 

significant increase in intensity of the positive band at 1687(+) suggests that the functional group 

that absorbs at 1656(+)/1637(-) cm-1 in the WT is now absorbing at a higher energy. This ~30 cm-

1 up-shift of the 1656(+)/1637(-) cm-1 differential signal suggests a perturbation of the H-bonding 

interaction to the 131 keto C=O group of PA in the T(A739)F mutant. Also, the 25-30 cm-1 down-

shift in frequency for the 131 keto C=O vibrational modes of PA
+/PA in the mutant compared to 

the PB
+/PB modes suggests that the protein environment of this functional group is still different 

in PA compared to PB. 

The overall profile of the (P700
+-P700) FTIR difference spectra of the T(A739)Y/ 

S(A603)G/Y(A599)L triple mutant is quite different from the T(A739)F single mutant (Figure 

2.6). Significant changes are observed in the region assigned to the 131 keto C=O vibrational 
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mode absorption of the PA
+/PA compared to the single mutant, where most of the intensity of the 

1656(+)/1637(-) cm-1 difference band in the WT is still present in the triple mutant though 

observed at 1651(+)/1641(-) cm-1. A new negative band is observed at 1676(-) cm-1 along with a 

sharp increase in intensity for the 1689(+) cm-1 band upon triple mutation. The appearance of this 

difference band at a higher frequency, which is also present in the T(A739)F single mutant, 

around ~1672 cm-1, can be considered as an indication of the modification of the H-bonding 

interactions to 131 keto C=O group of PA, which could lead to a higher energy absorption of 

these modes. Given this is the case, it is hard to explain the presence of an intense difference 

signal at 1651(+)/1641(-) cm-1 in the triple mutant which is absent in the single mutant. One 

explanation for this could be that the introduced tyrosine at the ThrA739 site along with the 

additional mutations at SerA603 and TyrA599 sites is able to introduce H-bonding interactions 

to the 131 keto C=O group of PA in majority of the reaction centers in the triple mutant. Figure 

2.3 shows the modeled orientation of the introduced amino acids in the triple mutant obtained 

from the crystal structure of PS I. It is clearly evident from Figure 2.3, that upon mutation the 

hydrogen bonding network in the vicinity of the 131keto and 133 ester C=O groups could be 

significantly modified. Given the likely orientation of the amino acid residues it is hard to 

imagine the possibility of a hydrogen bonding interaction to the 131 keto C=O group in the 

mutant. Hence the difference band at 1651(+)/1641(-) cm-1 could be due to a protein amide I 

mode rather than a 131 keto C=O mode. Also, it has been shown from RT FTIR measurements 

that upon 15N labeling a difference band at 1651(+)/1642(-) cm-1 in the triple mutant downshifts 

1-2 cm-1 [77] which is characteristic of a protein mode. 
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Figure 2.9: Light-induced (P700
+-P700) FTIR difference spectrum of T(A739)Y/S(A603)G/Y(A599)L triple mutant (red) and 

T(A739)F single mutant (black) PS I particles from S. 6803 in the 1780-1580 cm-1 region at 77K at 4 cm-1 
resolution. The double difference spectrum obtained by subtracting the single mutant spectrum from the triple 
mutant spectrum is also shown. 

Figure 2.9 shows a comparison of the FTIR DS of T(A739)Y/S(A603)G/Y(A599)L triple 

mutant (red) and T(A739)F single mutant (black) PS I particles from S. 6803 in the 1780-1580 

cm-1 region. The double difference spectrum obtained by subtracting the single mutant spectrum 

from the triple mutant spectrum is also shown. Figure 2.9 help to clarify absorption changes 

associated with the protein modes as well as how the introduced amino acid side chains modify 

the spectra of the pigments. The triple mutant minus single mutant FTIR DDS is dominated by 

features at 1699(-)/1691(+)/1683(-) and 1664(-)/1656(+)/1641(-) cm-1. Similar features (inverted) 

are found in the WT minus single and triple mutant FTIR DS in Figures 2.5 and 2.6. Since the 

second derivative features are present in both single and triple mutants it can be assumed that the 

features observed in the 1700-1635 cm-1 region have contributions from the protein amide 

modes. 
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The 1755(+)/1749(-) cm-1 difference band in the (P700
+-P700) FTIR difference spectrum of 

the WT is assigned to the up-shift of the 133 ester C=O mode of PB upon cation formation [54, 

63]. The observation that this difference band is intact, upon mutation of ThrA739 in the single 

mutant as well as upon the ThrA739/SerA603/TyrA599 mutation in the triple mutant is clearly in 

agreement with previous assignments. 

The 1741(+)/1734(-) cm-1 difference band in the WT spectra is assigned to the light 

induced changes of 133 ester C=O modes of PA [54, 63] and it is surprising that the T(A739)F 

single mutation and the T(A739)Y/S(A603)G/Y(A599) triple mutation has no significant 

implications on this difference band. 

The (P700
+-P700) FTIR difference spectra of the T(A739)Y/S(A603)G/Y(A599)L triple 

mutant shows a new difference feature located at 1764(+)/1761(-) cm-1. This band is clearly 

absent in the WT and T(A739)F mutant. 

We have used DFT methods to calculate the vibrational frequencies of Chl-a model 

molecules under different set of condition, in solvent, in the presence H-bond interaction to the 

131 and 133 ester C=O groups. These calculation show that it is incorrect to consider the 131 keto 

and 133 ester (and in some cases 173 ester) C=O modes as isolated groups. The 131 keto and 133 

ester group vibrations are coupled and it is best to consider anti-symmetric and symmetric 

coupled vibrations of both groups. (P700
+-P700) FTIR DS obtained from the single and triple PsaA 

mutants show absorbance changes over a wide spectral region and hence support the proposed 

assignment of the difference band in the 1770-1630 cm-1 region to the coupled 

(symmetrically/anti-symmetrically) vibrations of the 131 and 133 ester C=O groups of PA/PB. 

Also, based on these assignments we were able to explain the mutation induced changes in the 
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(P700
+-P700) FTIR DS obtained from different site-directed mutants of PsaB protein (See chapter 

3 for details). 

2.5 Conclusions 

The (P700
+-P700) FTIR DS obtained from the T(A739)F single mutant and 

T(A739)Y/S(A603)G/Y(A599)L triple mutant are consistent with the assignment of the 

1656(+)/1637(-) difference band in the wild type to vibrational modes associated with the PA 

chlorophyll of P700 as this difference band is significantly modified in both mutants. DFT based 

vibrational frequency calculations show that it is problematic to assign the difference band 

observed in the (P700
+-P700) FTIR DS to isolated keto and ester modes of the two chlorophylls of 

P700. These calculations show that the 131 keto and 133 ester (and in some cases the 173 ester) 

C=O modes of chlorophyll molecules are coupled , and this coupling can explain the absorbance 

changes observed over a wide spectral range in the (P700
+-P700) FTIR DS of the different site-

directed mutants of PsaA protein. 
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CHAPTER 3 

INTRODUCING HYDROGEN BONDS TO THE B-SIDE CHLOROPHYLL OF P700 

3.1 Introduction 

Photosystem I (PSI) is a large, multi-subunit, pigment-protein complex that uses light to 

catalyze the transfer of electrons from plastocyanin to ferredoxin, across the thylakoid membrane 

[33, 98]. In PSI the electron transfer (ET) process is initiated by light induced oxidation of a 

Chlorophyll-a/Chlorophyll-a’(Chl-a/Chl-a’) heterodimeric species called P700. From P700, an 

electron is transferred across the membrane via a sequential series of electron transfer (ET) 

cofactors called A0 (chlorophyl-a), A1 (phylloquinone), FX, FA and FB (iron sulfur clusters) [10]. 

In PS I, there are two pseudo-symmetrical sets of ET cofactors, bound to two interlinked 

membrane spanning proteins called PsaA and PsaB, and it is uncertain if ET occurs down one or 

both of these symmetrical branches [99]. Although the organization of the ET cofactors along the 

two branches is quite symmetrical, pigment-protein interactions associated with the two P700 

pigments are highly asymmetric. The two pigments of P700 are bound to the PsaA and PsaB 

membrane-spanning proteins, and are called PA and PB, respectively. The two chlorophyll (Chl) 

molecules are asymmetrically bound, with PA being involved in a hydrogen bond (H-bond) 

network with three surrounding amino acid residues and a water molecule (Figure 3.1). PB is not 

involved in H bonding [6, 100]. 

Figure 3.1 shows an image depicting the structure of the P700 Chl’s and several of the 

surrounding amino acids, derived from the high resolution crystal structure of PSI at 2.5 Å 

resolutions (PDB file 1JB0) [6]. Figure 3.1 shows that the hydroxyl oxygen of ThrA739 is 2.98 

Å from the 131 keto carbonyl (C=O) oxygen of PA and is suitably positioned/oriented to form an 

H-bond. For PB the amino acid that corresponds to ThrA739 is TyrB718. The crystal structure 
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(Figure 3.1) indicates that the hydroxyl group of TyrB718 is not oriented in a manner that is 

appropriate for H bonding to the 131 keto C=O of PB. In attempt to decrease the asymmetry in 

the protein environment between PA and PB one approach is to change TyrB718 to Thr. Figure 

3.2 shows the modeling of such an amino acid into the PSI crystal structure. The mutant in which 

TyrB718 is replaced by Thr is termed the Y(B718)T mutant in this chapter. 

The modeled orientation of ThrB718 in Figure 3.2 indicates that the hydroxyl group of 

Thr should be well positioned and oriented to provide a strong H-bond to the 133 ester C=O of 

PB, and possibly also to the bridging ester oxygen. The hydroxyl oxygen atom of ThrB718 is 

modeled to be 3.89 Å from the 131 keto carbonyl oxygen atom of PB. This would suggest that if 

an H-bond could be formed then it is likely to be quite weak. 

 
Figure 3.1: Structure of P700 in trimeric PSI particles from Thermosynecoccocus (T) elongatus. Possible hydrogen (H) bond 

interactions to the C=O groups of PA are shown as dotted lines. Synechocystis sp. PCC 6803 (S. 6803) amino 
acid numbering is used. The amino acids LeuB581, GlyB585 and TyrB718 near PB correspond to TyrA599, 
SerA603 and ThrA739, respectively. 
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Figure 3.2: Modeled orientation of the substituted Thr in the Y(B718)T single mutant of S. 6803. Other orientations of the 
Thr hydroxyl group that point away from the ester C=O are equally valid. 

 

Figure 3.3: Modeled orientation of the substituted tyrosine and serine in the PsaB double mutant of S. 6803. 
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Figure 3.4: Modeled orientation of the substituted threonine, tyrosine and serine in the PsaB triple mutant of S. 6803. 

A double mutant in which GlyB585 is changed to Ser and LeuB581 is changed to Tyr has 

also been constructed. Figure 3.3 shows the modeling of these two amino acids into the PSI 

crystal structure. The double mutant is termed the G(B585)S/L(B581)Y mutant. The two 

introduced amino acid side chains are far from the 131 keto and 133 ester C=O groups of PB, 

although the hydroxyl oxygen of the introduced Tyr is 2.27 Å from the 173 ester carbonyl 

oxygen. One might expect the two introduced amino acids to have little impact on PB, although 

protein backbone alterations may occur to accommodate the different side chains. 

It could be expected that changing TyrB718 to Thr will have a large impact on the PB 

pigment of P700. It may also be expected that there will be protein backbone alterations 

introduced in the double mutant. In order to investigate if mutation induced effects are 

cumulative or additive a triple mutant in which TyrB718 is changed to Thr, GlyB585 is changed 

to Ser and LeuB581 is changed to Tyr has also been studied. Figure 3.4 shows the modeling of 

these three amino acids into the PSI crystal structure. The triple mutant is termed the 
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Y(B718)T/G(B585)S/L(B581)Y mutant in this chapter. Notice that the introduced Thr at B718 

has a virtually identical modeled orientation in the single and triple mutant. Notice also that the 

introduced Tyr at B585 has a virtually identical modeled orientation in the double and triple 

mutant.  This implies that the introduced serine at B585 in the triple or double mutant makes 

virtually no difference to the orientation of the side chains of the introduced Thr and/or Tyr 

amino acids in the double or triple mutants. 

FTIR difference spectroscopy (DS) has been used to provide detailed structural 

information concerning primary electron donor cofactors [55, 65]. The technique is sensitive to 

small changes in H-bonding and other structural alterations that are below crystallographic 

resolution limits. In addition, FTIR DS can provide structural information on the cation radical 

excited state. Such information is difficult to obtain using X-ray crystallography. FTIR DS has 

been used to study P700, and several groups have published (P700
+-P700) FTIR DS, for PSI 

particles from several species, and PSI mutants in which the environment of P700 has been altered 

[101]. 

Virtually all of the previous studies of P700 mutants were undertaken at or near room 

temperature (RT). Indeed, RT (P700
+-P700) FTIR DS for the three mutant strains investigated here 

have been obtained [76, 77]. However, this latter study left many ambiguities, and unanswered 

questions regarding the pigment-protein interactions of P700 in the mutants. Here FTIR DS at 77 

K was used to analyze mutation induced alterations in the molecular and electronic structure of 

P700 and P700
+ in the above three B-side mutant strains. One of the problems in the RT studies is 

that multiple overlapping bands limited the interpretability of the spectra. The intention behind 

the low temperature measurements is to alter the difference bands so that underlying component 

bands and band-shifts can be detected. 



 

 

62 

 

In previous RT FTIR studies of the B-side single double and triple mutants, a very 

unappealing model was proposed in which the mutants introduced alterations in only a fraction 

of the PSI particles. This was primarily because the nature of the normal modes associated with 

the C=O groups of PA and PB were misunderstood. 

To help interpret the FTIR DS associated with the mutants, density functional theory 

(DFT) based methods were used to simulate the vibrational properties of Chl-a model systems in 

the absence and presence of H-bonding to gain a more detailed understanding of not only how 

frequencies may shift upon H bonding, but also how band intensities are altered. Such 

information is vital for an understanding of mutation induced modifications in (P700
+-P700) FTIR 

DS. 

3.2 Materials and Methods 

3.2.1 Experimental Setup 

FTIR DS were recorded using a Bruker IFS/66 FTIR spectrometer. Instrumental 

operation and spectral analysis were performed using the software package OPUS 4.0 supplied 

by Bruker Optics. The interferometer is equipped with a KBr beam-splitter that is transparent in 

40,000-400 cm-1 region. The entire FTIR spectrometer is continuously purged with dry air. For 

all measurements described here a liquid nitrogen cooled, photoconductive mercury cadmium 

telluride (MCT) IR detector was used (Graseby D313). This detector is sensitive in the 7000-600 

cm-1 region. The detector has a surface area of 1 mm2, and is connected to a 200 kHz 

preamplifier with both AC and DC coupled outputs. For all FTIR experiments, the preamplifier 

AC coupled output was used (See section 2.2.1 for details on instrumentation). 
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A 17 mW helium-neon laser with output at 632.8 nm is used to photo-excite the PS I 

samples. The laser beam is expanded to a diameter of ~10 mm at the sample to reduce/eliminate 

sample heating effects. 

In FTIR DS measurements, a static or steady state population of P700
+FA, B

- is generated 

by shining light on the PS I samples. Data was collected in the 7000-100 cm-1 region, at 4 cm-1 

resolution. Sixty four interferrograms are collected and averaged before, during and after light 

excitation of PS I samples. These averaged interferrograms are fourier transformed and stored as 

single beam spectra. A single beam spectrum of the sample is collected prior to light excitation 

(dark scan) and is used as the background spectrum. A single beam spectrum collected in the 

presence of the light (light scan) is ratioed against the background spectrum to obtain an 

absorption difference spectrum. Repetitive dark scan measurements, and/or 10-20 minutes of 

wait time, is added in order to make sure the sample has relaxed to the ground state before the 

next light excitation. The difference between two such dark scans (dark minus dark spectrum) 

gives an (over) estimate of the noise level in the measurements. The whole procedure of 

repeating the dark-light-dark-dark …. scan cycle several hundred times is computer controlled 

using home-written code operated within Opus 4.0 software. 

For all FTIR experiments PS I particles were pelleted and placed between a pair of CaF2 

windows. The thickness of the sample was adjusted to give an absorption of about 0.8-1.0 OD 

unit at the maximum absorption peak around 1656 cm-1. No mediators were added. A sample 

temperature of 77 K was maintained using a helium gas flow cryostat. 

The possible orientation/position of the introduced amino acids in the three different 

mutants were modeled using Swiss-Pdb viewer software. The structural models shown in Figures 

3.2-3.4 show the best rotomers of the mutated amino acid(s). The best rotomer model is where 
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the introduced amino acids has minimum clash with the backbone and side chain atoms of 

surrounding protein while having maximum possibility of forming H-bonds and S-S bonds. 

3.3 Results 

3.2.2 Computational Modeling of H-bonding Interaction to Chl-a 

All geometry optimizations and harmonic normal mode vibrational frequency 

calculations were performed using density functional theory (DFT) as implemented in Gaussian 

03 software, revision D.01 [87]. Unless stated, the B3LYP functional was used in combination 

with the 6-31G(d) basis set. At this level of theory, computed harmonic vibrational mode 

frequencies overestimate experimental anharmonic frequencies by approximately 5% [80, 88]. 

Radical induced frequency shifts are accurately calculated, however [80, 89]. No negative 

frequencies were calculated for any of the model molecular structures discussed here. To model 

solvent effects the integral equation formalism (IEF) of the polarizable continuum model (PCM) 

was used [90-95], as it is implemented in Gaussian 03, version D.01. 

The assignment of calculated vibrational frequencies to molecular groups is based upon 

visual identification, using software that animates the vibration (Gaussview 4.0). The 

calculations produce normal mode vibrational frequency and intensity information. From this 

data infrared (IR) “stick” spectra can be constructed. By convolving these stick spectra with a 

Gaussian function of 4 cm-1 half-width, more realistic looking spectra can be constructed. As 

previously described [89], these convolved stick spectra are referred to as absorption spectra. 

Figure 3.5 shows the light induced (P700
+-P700) FTIR DS obtained using WT (black) and 

G(B585)S/L(B581)Y mutant (red) PS I particles from S. 6803, in the 1780-1580 cm-1 spectral 

region at 77 K. The two spectra were normalized by minimizing the residuals over the 1800-

3.3.1 The G(B585)S/L(B581)Y Double Mutant 
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1200 cm-1 spectral range. The “WT minus mutant” FTIR double difference spectrum (DDS) is 

also shown along with the dark-dark spectrum that is indicative of the noise level in the 

experiment (dotted line). 

 

Figure 3.5: (P700
+-P700) FTIR DS for WT (black) and G(B585)S/L(B581)Y double mutant (red) PS I particles from S. 6803, 

in the 1780-1580 cm-1 region at 77 K. The “WT minus mutant” FTIR DDS and an averaged dark minus dark 
spectrum (dotted) that is indicative of the noise level in the experiment are also shown. 

The WT and double mutant FTIR DS are quite similar, with no obvious large shift in 

frequency of any of the difference bands. The FTIR DDS in Figure 3.5 makes the detailing of 

small shifts simpler. There are several noteworthy similarities and differences in the FTIR DS in 

Figure 3.5. 

First the 1741(+)/1734(-) cm-1 difference band is basically unaltered. This may be 

expected as this band is thought to be associated with C=O vibrational modes of PA [101]. 

Second, the 1755(+)/1749(-) cm-1 difference band in the WT FTIR DS is modified upon 

mutation, resulting in a derivative feature at 1751(-)/1745(+) cm-1 in the FTIR DDS. The 
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1755(+)/1749(-) cm-1 difference band in the WT FTIR DS is thought to be associated with the 

133 ester C=O of PB [101], but a single derivative feature in the FTIR DDS is difficult to 

rationalize. Such a feature could suggest that the 1755(+)/1749(-) cm-1 bands (for both the 

excited/ground state) increase in intensity upon mutation. In corresponding FTIR DDS at RT, 

such a feature is also observed in the FTIR DDS, albeit with decreased intensity [76]. 

The 1755(+)/1749(-) cm-1 difference band is thought to be associated with the 133 ester 

C=O of PB [101]. The double mutation induced alteration of the 1755(+)/1749(-) cm-1 difference 

band in the WT FTIR DS is surprising, since neither of the mutations are expected to have an 

impact on the 133 ester C=O group of PB (Figure 3.3). The Tyr residue introduced at B581 

position could form an H-bond with the 173 ester C=O group of PB, so one hypothesis is that the 

feature in the FTIR DDS is due to the 173 ester C=O group of PB. However, the 173 ester C=O 

groups of P700 are thought to contribute negligibly to (P700
+-P700) FTIR DS. 

Third, there are several alterations in the 1680-1630 cm-1 region, leading to the triple 

feature at 1668(-)/1656(+)/1637(-) cm-1 in the FTIR DDS. Bands associated with PB are not 

expected in this region, so it is likely that the 1668(-)/1656(+)/1637(-) cm-1 feature in the FTIR 

DDS is associated with mutation induced changes in amide I modes of the protein backbone. In 

support of this we also observe bands in the FTIR DDS in the 1560-1540 cm-1 region (not 

shown), which are likely due to mutation induced alterations in amide II modes of the protein 

backbone. These results are very different from corresponding FTIR DDS at RT, where no clear 

mutation induced alteration of amide I bands were detected in the 1680-1630 cm-1 region [76]. 

Fourth, there are several alterations in the 1725-1685 cm-1 region, leading to a quadruple 

feature at 1720(+)/1705(-)/1691(+)/1683(-) cm-1 in the FTIR DDS. This quadruple feature is 

somewhat similar to that found in corresponding FTIR data at RT. Bands associated with the 131 
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keto C=O group of PB are expected in this spectral region [101]. However, it is not at all obvious 

that this double mutation will have any impact the 131 keto C=O group of PB (Figure 3.3). In 

addition, why only a portion of the band at 1720 cm-1 (or 1687 cm-1) in the WT FTIR DS is 

impacted by the double mutation is difficult to rationalize. 

 

3.3.2 The Y(B718)T Single Mutant 

Figure 3.6 shows (P700
+-P700) FTIR DS of WT (black) and Y(B718)T (red) mutant PS I 

particles from S. 6803. The WT minus mutant FTIR DDS is also shown. The WT and mutant 

spectra were normalized by minimizing the residuals over the 1800-1200 cm-1 spectral range. 

Above ~1680 cm-1 there are several large mutation induced alterations in the FTIR DS. 

Figure 3.6: Light-induced (P700
+-P700) FTIR DS of WT (black) and Y(B718)T mutant (red) PS I particles from S. 6803, in 

the 1780-1580 cm-1 region at 77 K. The WT minus mutant FTIR DDS is also shown (bottom). The averaged 
dark minus dark spectrum (dotted) is also shown. 

First, the 1755(+)/1749(-) cm-1 difference band in the WT FTIR DS is greatly reduced in 

intensity. It is not obvious to where this difference band could shift upon mutation. It seems that 
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the derivative feature just disappears. The 1755(+)/1749(-) cm-1 difference band is thought to be 

due to the 133 ester C=O mode of PB
+/PB [54, 65]. It is not clear whether the mutation induced 

changes in the 1755(+)/1749(-) cm-1 difference band support this idea. 

Second, the 1718(+)/1697(-) cm-1 difference band is heavily impacted by the Y(B718)T 

mutation. The differential signal at 1718(+)/1697(-) cm-1 in the WT FTIR DS is attributed to the 

131 keto C=O group of PB
+/PB [54, 65], and it is anticipated that this band should downshift upon 

mutation. However, a band is still found at 1701/1714 cm-1 in the FTIR DS of the single mutant. 

One interpretation of the FTIR DDS in Figure 3.6 is that most/part of the 1718/1697 cm-1 band 

downshifts 35/33 cm-1 to 1683/1664 cm-1 upon mutation. This interpretation is consistent with 

the idea that the mutation introduces a strong H bond to the 131 keto C=O group of PB in a 

portion of the PSI particles. We note again, however, that the introduction of such a strong H-

bond is not in keeping with our modeling based on the crystal structure (Figure 3.3). 

In addition, part of the 1697 cm-1 band in the WT spectrum downshifts 29 cm-1 to 1668 

cm-1 while nearly all of the positive band at 1718 cm-1 downshifts 35 cm-1 to 1683 cm-1. Such 

3.3.3 The Y718T/G585S/L581Y Triple Mutant 

Figure 3.7 shows the light induced (P700
+-P700) FTIR DS of WT (black) and Y(B718)T/ 

G(B585)S/L(B581)Y (red) mutant PS I particles along with the FTIR DDS. The WT and triple 

mutant spectra were normalized by minimizing the residuals over the spectral range 1800-

1200cm-1. 

The mutation induced changes in the triple mutant are somewhat similar to the changes 

induced by the Y(B718)T single mutation. That is, a large mutation induced decrease in the 

intensity of the 1755(+)/1749(-) cm-1 band with an up-shift of 1-3 cm-1. A similar change was 

observed in RT FTIR DS but no hypothesis for this behavior was presented [76]. 
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shifts are expected for a 131 keto C=O mode of PB that becomes strongly H bonded. However, 

why all of the positive 1718 cm-1 band shifts and only part of the 1697 cm-1 band shifts has not 

been considered or explained. 

 

Figure 3.7: (P700
+-P700) FTIR DS for WT (black) and Y(B718)T/G(B585)S/L(B581)Y triple mutant (red) PS I particles 

from S. 6803 at 77K. The FTIR DDS and the dark minus dark noise spectrum (dotted) are also shown. 

The mutation induced changes at 1656(+) and 1637(-) cm-1 are probably related to 

changes in the protein backbone (amide I modes) caused by steric effects due to the different side 

chains of the three introduced amino acids. 

In an attempt to clarify absorption changes associated with protein modes, or how distant 

amino acid side chains modify the spectra of the pigments, Figure 3.8 compares single and triple 

mutant FTIR DS. The triple mutant minus single mutant FTIR DDS is dominated by features at 

1714(-)/1703(+)/1693(-) and 1666(+)/1655(-)/1637(+) cm-1. Similar features (inverted) are found 

in the WT minus double mutant FTIR DDS in Figure 3.5. This suggests that the single and 

double mutation induced spectral alterations are roughly additive, and therefore independent. 
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Figure 3.8: (P700
+-P700) FTIR DS for single (black) and triple (red) mutant PS I particles from S. 6803 at 77 K. The FTIR 

DDS is also shown. 

In the last several years (P700
+-P700) FTIR DS have been obtained for PS I particles with 

site directed mutations near P700 [73, 76] and for isotope labeled PS I particles with specific 

labeling of the chlorophyll molecules [69, 71]. In all cases the spectra could only be interpreted 

in terms of heterogeneity, where only a fraction of the reaction centers were modified by the 

isotope labeling or mutagenesis procedure. This rationalization arose because only fractions of 

difference bands were affected. Such explanations were different populations of reaction centers 

are invoked are unsatisfying, and recently, DFT methods were used to calculate the vibrational 

properties of Chl-a model molecules in solution, and it has been shown that it is incorrect to 

consider the 131 keto and 133 ester (and in some cases the 173 ester) C=O modes as isolated 

groups. These 131 keto and 133 ester C=O groups couple, and it is best to consider anti-

symmetric and symmetric coupled vibrations of both groups. An important realization was that it 

is very difficult to near impossible to predict a priori how the intensity and frequency of the 
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coupled modes may change upon perturbation, and it is now clear that any interpretation of FTIR 

DS associated with Chl molecules should be undertaken in combination with vibrational mode 

frequency calculations. 

 

3.3.4 Calculated Vibrational Frequencies of Chl-a 

To investigate the types of changes in vibrational features that may occur upon H 

bonding in Chl-a DFT was used to calculate the vibrational properties of isolated and H-bonded 

Chl-a molecules. The X-ray crystallographic coordinates of the PB Chl of P700 was used as the 

starting geometry for the Chl-a model. An H-bond was introduced to the 131 keto C=O group of 

the model Chl-a by introducing a Thr residue at a distance <3Å.The backbone of the Thr residue 

was truncated using methyl groups. 

Figure 3.9: Geometry optimized molecular structures of (a) Chl-a and (b) Chl-a+ in the presence of a Thr residue that 
provides an H-bond to the 131 keto C=O group. The distance between the H atom of Thr and 133ester oxygen is 
2.5Å in both cases. The distance between the H atom of Thr and the 133 ester carbonyl oxygen atom is 4.4-4.5 
Å. The distance between the H atom of Thr and the 131 keto carbonyl oxygen atom is 2.03-2.15 Å. 

Figure 3.9 shows the geometry optimized model of Chl-a and Chl-a+ in the presence of a 

Thr residue where the hydroxyl proton is 2.03 and 2.15 Å from the 131 keto carbonyl oxygen, 

respectively. Also the angle between the 131 keto carbonyl oxygen and the hydroxyl group (OChl-
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HThr-OThr angle) is ~165/169° in the neutral/cation state, respectively. At such a distance and 

orientation a strong H-bond is expected. The models shown in Figure 3.9 contain all of the atoms 

found in Chl-a except the phytyl chain, which is terminated with a methyl group at the 174 

position. To simulate the dielectric environment the integral equation formalism (IEF) of the 

polarizable continuum method (PCM) was used. CCl4 and THF solvents were used to simulate a 

dielectric constant of 2.228 and 7.58. It is thought that the dielectric constant near the pigments 

of P700 lies in the 2-7 range [96, 97]. 

 

Figure 3.10: Calculated IR Spectra for Thr+Chl-a/Chl-a (a) and Thr+Chl-a+/Chl-a+ (b) in THF. The “cation minus neutral” 
IR DS are also shown (c). (d) Non H-bonded minus H-bonded Chl-a DDS. The DDS clarifies the spectral 
changes that occur upon H-bonding to the 131 keto C=O group. 

Figures 3.10a/b shows calculated IR spectra for Chl-a/Chl-a+ in the presence of a Thr 

residue that is H-bonded to the 131 keto C=O group, in the presence of THF (ε=7.58) simulated 

using the PCM, respectively. The “cation minus neutral” IR DS is also shown in Figure 3.10 (c). 

The calculated IR spectra for Chl-a in THF, in the absence of H-bonding, are also shown for 
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comparison (dotted). Similar spectra were calculated for Thr+Chl-a in CCl4 (not shown). The 

harmonic vibrational mode frequencies and intensities associated with the C=O modes of 

Thr+Chl-a, Thr+Chl-a+, Chl-a and Chl-a+ in CCl4 and THF are listed in Table 3.1. The 

calculations overestimate the vibrational frequencies by 4-5%. However, the primary focus of the 

calculations are the cation or mutation induced frequency shifts. These shifts are accurately 

calculated, presumably because the same errors are present in both calculations and disappear 

when the difference is taken. 

Table 3.1: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of Thr+Chl-a, 
Chl-a, Thr+Chl-a+

 
and Chl-a+ model systems in CCl4 and THF. 

 

The frequency shift induced by including the Thr H-bond to Chl-a for each calculation is shown along with the mode intensity 
change [in parenthesis (in %)]. 
 

The vibrational frequency calculations for Chl-a shows that the 131 keto and 133 ester 

C=O modes show symmetric and anti-symmetric coupled vibrations in the neutral and cation 

states. 

For neutral Chl-a in THF, the anti-symmetrically coupled 131 keto and 133 ester C=O 

vibration downshifts 26 cm-1, from 1767 to 1741 cm-1 and increases in intensity by 29 % (Figure 

3.10 and Table 3.1) upon H-bonding to the 131 keto C=O group. For neutral Chl-a in CCl4, 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
Thr+Chl-a in CCl4 
Chl-a in CCl4 
Thr+Chl-a in THF 
Chl-a in THF 

 
1813 (304) 
1813 (287) 
1799 (360) 
1799 (276) 

 
0 (6%) 
 
0 (30%) 

 
1820 (293) 
1819 (217) 
1802 (363) 
1804 (520) 

 
1 (35%) 
 
-2 (-30%) 

ν (131 and 133 C=O) s 
Thr+Chl-a in CCl4 
Chl-a in CCl4 
Thr+Chl-a in THF 
Chl-a in THF 

 
1802 (137) 
1804 (126) 
1796 (177) 
1796 (255) 

 
-2 (9%) 
 
0 (-31%) 
 

 
1803 (74) 
1817 (568) 
1795 (105) 
1806 (336) 

 
-14 (-87%) 
 
-11 (-69%) 

ν (131 and 133 C=O) as 
Thr+Chl-a in CCl4 
Chl-a in CCl4 
Thr+Chl-a in THF 
Chl-a in THF 

 
1757 (1665) 
1785 (1142) 
1741 (2104) 
1767 (1637) 

 
-28 (46%) 
 
-26 (29 %) 

 
1794 (1129) 
1798 (385) 
1779 (1474) 
1790 (771) 

 
-4 (193%) 
 
-11 (91%) 
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similar observations are made, where the anti-symmetrically coupled 131 keto and 133 ester C=O 

vibration downshifts 28 cm-1 and increases in intensity by 46 % upon H bonding to the 131 keto 

C=O group. 

For Chl-a+ in CCl4/THF, the frequency of the anti-symmetrically coupled mode decreases 

by 4/11 cm-1 while the intensity increases by 193/91 %, respectively, (Table 3.1) upon H-

bonding to the 131 keto C=O group. 

For Chl-a in THF the anti-symmetrically coupled 131 keto and 133 ester C=O vibration 

up-shifts 23 cm-1 upon cation formation and decreases in intensity by 53 %. In contrast for Chl-a 

that is H bonded (in THF) the up-shift is 38 cm-1, and the cation induced intensity decrease is 

smaller (30 %) (Table 3.1). 

The intensity of the symmetrically coupled 131 keto and 133 ester C=O mode of Chl-a 

and Chl-a+ is about an order of magnitude lower than that of the anti-symmetrically coupled 

mode. The effects of H-bonding to the 131 keto C=O group on the frequency of the 

symmetrically coupled mode of Chl-a and Chl-a+ are also less pronounced than for the anti-

symmetrically coupled mode. The intensity of the symmetrically coupled 131 keto and 133 ester 

C=O vibration of Chl-a increases by 9% in CCl4, but decreases by 31% in THF upon H-bonding 

to the 131 keto C=O group. For Chl-a+, the frequency of the symmetrically coupled mode of Chl-

a+ decreases by 14/11 cm-1 while the intensity decreases by 87/69 % in CCl4/THF, respectively. 

To more clearly visualize the calculated spectral perturbations that occur upon H-bonding 

to the 131 keto C=O group the calculated DDS obtained for non H-bonded minus H-bonded Chl-

a is shown in Figure 3.10(d). The calculated DDS in CCl4 is similar. The DDS in Figure 3.10(d) 

displays several spectral features that span a ~60 cm-1 region. The FTIR DDS shown in Figure 

3.10(d) could be representative of the WT minus mutant FTIR DDS shown in Figure 3.6. This is 
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because the introduced H-bond should only affect PB. However, the introduced mutations could 

alter the orientation of PB slightly, which in turn could modify the electronic configuration of PA, 

leading to mutation induced modifications of the C=O modes of PA. In addition, the calculated 

DDS in Figure 3.10(d) takes no account of mutation induced protein backbone alterations. Such 

alterations are clearly present in the FTIR DDS in Figures 3.5-3.8. 

3.4 Discussion 

In the last several years (P700
+-P700) FTIR DS have been obtained for PSI particles with 

site directed mutations near P700 [73, 76] and for isotope labeled PS I particles with specific 

labeling of the Chl molecules [69, 71]. In all cases the spectra could only be interpreted in terms 

of heterogeneity, where only a fraction of the reaction centers were modified by the isotope 

labeling or mutagenesis procedure. This rationalization arose because only fractions of the 

difference bands in the spectra were affected. In addition, many of the explanations required the 

presence of water molecules to provide H-bonds to the C=O modes, because the distance 

between the H bonding partners, as visualized in the PSI crystal structure, were too large. 

Such explanations were different populations of reaction centers are invoked, that may or 

may not include the presence of additional water molecules, are suspect. Recently, DFT methods 

were used to calculate the vibrational properties of Chl-a model molecules in solution, and it has 

been shown that it is incorrect to consider the 131 keto and 133 ester (and in some cases the 173 

ester) C=O modes as isolated groups [79]. These 131 keto and 133 ester C=O groups couple, and 

it is best to consider anti-symmetric and symmetric coupled vibrations of both groups. With such 

an interpretation it is possible to explain why absorption changes in (P700
+-P700) FTIR DS are 

observed over a wide spectral region (1740-1670 cm-1) when the methyl hydrogen atoms of only 

the 133 ester group of Chl-a are specifically deuterated [79]. Prior to this interpretation the 
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explanation for these changes was that there were at least four spectrally distinct 133 ester C=O 

vibrations that contributed to the (P700
+-P700) FTIR DS, covering the 1740-1670 cm-1 region [71]. 

Many of the puzzling mutation induced features in the (P700
+-P700) FTIR DS observed 

here can be simply explained when the 131 keto and 133 ester C=O groups are considered as 

coupled modes, and there is no need to consider heterogeneous populations of reaction centers in 

which specific interactions are found in only fractional populations [71, 76]. 

For example, the 1755(+)/1749(-) cm-1 band in the WT FTIR DS up-shifts and decreases 

in intensity in both the single and triple mutant FTIR DS (Figures 3.6 and 3.7). This 

1755(+)/1749(-) cm-1 band was previously thought to be due to the 133 ester C=O mode of PB. If 

an H-bond is introduced to one of the C=O modes of PB then this observation is difficult to 

rationalize. However, Figure 3.10 indicates how such a feature can be explained. In Figure 

3.10(b) the positive band near 1805 cm-1 appears to decrease considerably in intensity and down-

shift in frequency by 2 cm-1. For the calculations in CCl4 a corresponding positive band near 

1818 cm-1 also appears to decrease considerably in intensity and up-shift in frequency (Table 

3.1). The calculated spectra indicate that the shift (whether up or down) is dependent on the 

dielectric constant of the environment, with an up-shift calculated for a low dielectric constant 

environment. Since an up-shift is experimentally observed for the 1755(+) cm-1 band upon 

mutation of TyrB718 to Thr, this could be an indication that the dielectric constant in the vicinity 

of the C=O modes of PB is closer to 2.2 than to 7.58. 

An explanation for the experimental observations is available from the calculated data, 

since the normal mode compositions of all the bands are known (Table 3.1). The 

1817(+)/1806(+) cm-1 band for Chl-a+ in CCl4/THF, respectively, is due to the symmetric 

coupled 131 keto and 133 ester C=O mode (Table 3.1). This mode decreases in intensity by 
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87/69% when the 131 keto C=O group is H-bonded. In addition, the 173 ester C=O mode of Chl-

a+ in CCl4/THF is at 1819/1804 cm-1, and is similar in intensity to the symmetric coupled 131 

keto and 133 ester C=O mode. This 173 ester C=O mode of Chl-a+ can down-shift or up-shift in 

intensity and frequency, depending on the solvent. The net result therefore appears to be due to a 

contribution from two modes, whose intensity and frequency behavior upon H-bonding is far 

from obvious. The calculated spectra provide a satisfying explanation for experimental data that 

is very difficult to explain based on vibrational modes of isolated C=O groups. 

The double and triple mutant FTIR DDS (Figures 3.5 and 3.7) display a second derivative 

feature at 1668(-)/1656(+)/1637(-) cm-1. Such a feature is lacking in the FTIR DDS of the single 

mutant (Figure 3.6). In addition a second derivative feature at 1667(+)/1655(-)/1637(+) cm-1 is 

observed in the triple minus single mutant FTIR DDS (Figure 3.8). All of these indications taken 

together suggest that this triple feature is associated with the G(B585)S and L(B581)Y 

mutations. The most likely conclusion is that the triple feature is due to a modification of the 

protein backbone caused by the introduced Ser and Tyr amino acids. How each amino acid 

individually contributes to backbone alterations was not assessed. 

The double and triple mutant FTIR DDS (Figures 3.5 and 3.7) also display a derivative 

feature at 1691(+)/1683(-) cm-1. The 1683(-) cm-1 feature is more intense in the triple mutant 

FTIR DDS. A negative band is also observed at 1683 cm-1 in the single mutant FTIR DDS 

(Figure 3.6). These observations indicate that the double mutation results in a positive band 

shifting from 1691 cm-1 in the WT spectrum to 1683 cm-1 in the double mutant spectrum. This 

could be due to amide backbone modes or a mutation induced alteration in the coupling of the 

131 keto and 133 ester C=O modes. How the G(B585)S and L(B581)Y mutations could lead to an 

alteration in the coupling of the 131 keto and 133 ester C=O modes can be hypothesized from the 
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structure in Figure 3.4, which suggests that the hydroxyl group of the introduced Tyr residue 

could be H-bonded to the 173 ester C=O group of PB. If all of the C=O modes of PB are coupled 

then a mutation that alters the 173 ester C=O group of PB could conceivably lead to spectral 

changes at 1691(+)-1683(-) cm-1. 

3.5 Conclusions 

The Y(B718)T single mutation and the Y(B718)T/G(B594)S/L(B590)Y triple mutation 

in S. 6803 PS I particles leads to a significant changes in IR spectral regions attributed to both 

the 131 keto and 133 ester C=O modes of PB. It has been shown from DFT based calculations of 

Chl-a model structures in the presence and absence H-bond interactions to the 131 keto C=O 

group, that the changes observed over the wide spectral region of 1740-1670 cm-1 in the 

experimental FTIR DS of the mutants can be explained by considering the 131 keto and 133 ester 

C=O groups as coupled modes. Importantly, there is no need to invoke the existence of 

heterogeneous populations of mutant reaction centers, which has been the dominant hypothesis 

used to explain the complex mutation induced FTIR spectral alterations in the past. 
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CHAPTER 4 

THE MUTATION OF THE METHIONINE AXIAL LIGAND TO PRIMARY ELECTRON 

ACCEPTOR A0 AND ITS EFFECT ON (P700
+-P700) FTIR DIFFERENCE SPECTRA IN C. 

REINHARDTII 

4.1 Introduction 

The electron transfer cofactors in Photosystem I (PS I) protein complexes are arranged 

along two branches with respect to the axis perpendicular to the membrane plane (Figure 4.1). 

Cofactors bound to PsaA/PsaB proteins are designated with a subscript A/B. The highly 

symmetric arrangement of pigments seen in Figure 4.1 raises the question of whether the 

electron transfer (ET) process is bidirectional, with both branches are equally active, or 

unidirectional, where ET occurs along one branch. 

 

Figure 4.1: (a) Electron transfer chain in PS I (b) RT Electron transfer rates in cyanobacterial PS I [27]. 

Bi-directionality of ET has been demonstrated using PS I particles from the green algae, 

Chlamydomonas reinhardtii (C. reinhardtii) [24, 25, 102] while studies of PS I particles from the 
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cyanobacterium, Synechocystis sp. PCC 6803 (S. 6803) [13, 20], indicate unidirectional ET along 

the PsaA branch dominates. These conflicting studies suggest that the directionality of ET is 

species specific. 

Pigments on the two branches are spectroscopically indistinguishable, hence the focus 

has been on creating site-directed mutants where point mutations are made for specific amino 

acids along the PsaA or PsaB branch. The ET directionality issue has been addressed using 

spectroscopic techniques like EPR, ENDOR and optical spectroscopy in these site-directed 

mutants [13, 20, 24, 26, 49, 78]. Most of the evidence for the directionality of ET has come from 

studies involving specific mutations around the phylloquinone secondary electron acceptor called 

A1 [14, 17, 18, 23, 25]. Recently site-directed mutants where the methionine axial ligands to the 

A0 primary electron acceptor, MetA684 and MetB664 in C. reinhardtii (MetA688 and MetB668 

in S. 6803) were changed have been constructed. For S. 6803, the methionine was changed to 

leucine or asparagine [13, 20] while for C. reinhardtii, the methionine was changed to histidine, 

leucine or serine [24, 26, 49]. 

The central magnesium atoms of each of the primary electron acceptor chlorophylls, A0, 

are coordinated by sulfur atom of methionine (PsaA684 and PsaB664 for C. reinhardtii). This 

provides a weak ligand and the premise of the mutations of methionine at the binding site to 

histidine in C. reinhardtii (and asparagine in S. 6803) is that these polar amino acid groups have 

the potential to provide a stronger fifth ligand to the magnesium atom of the chlorophyll acceptor 

on the respective branches and thus alter the redox properties of A0, which could result in 

different spectroscopic properties. 
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4.1.1 Steady State Visible Spectroscopy Studies 

The (P700
+-P700) visible absorbance difference spectra has been obtained for PS I particles 

from WT, M(A688)L, M(A688)N, M(B668)L, and M(B668)N mutants of S. 6803 [20]. The 

major photo bleaching band centered at ~700nm attributed to the bleaching of the P700 absorption 

is intact in the spectra obtained from all the four mutants [20]. This was taken as an indication 

that the changes (mutation) around A0 have little or no effect on the properties of the primary 

electron donor [20]. Similar results are obtained for WT, M(A684)H, and M(B664)H mutant PS 

I particles from C. reinhardtii [50]. 

Significant deviation from the WT spectrum is observed for the narrow absorption band 

centered around ~680 nm in M(A688)L and M(A688)N mutants of S. 6803 , although relatively 

minor changes are observed in corresponding B side mutants [20]. Similar changes were 

observed for the M(A684)H mutant from C. reinhardtii while the corresponding B side mutant 

M(B664)H lacks any modification for the 680 nm band [50]. The ~680 nm band has been 

tentatively assigned to the absorption from a neutral monomeric chlorophyll, that emerges when 

P700 becomes oxidized, and several possible explanations for the modification of this band upon 

mutation have been provided, including a more symmetric distribution of the charge over the two 

chlorophylls in P700
+, a change in electrochromic band shift of chlorophylls near P700, or a change 

in the excitonic coupling between P700 and the neighboring chlorophylls [20]. 

Ramesh et. al. [24, 26] performed RT ultrafast transient absorbance measurements on 

wild type (WT) and M(A684)H, M(A684)L, M(A684)S, M(B664)H, M(B664)L, and M(B664)S 

mutant PS I particles from C. reinhardtii. The (A0
--A0) visible absorbance DS of these mutants 

were obtained as an additional non-decaying component superimposed on the (P700
+-P700) 

4.1.2 Ultrafast Pump Probe Spectroscopy Studies at RT 
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spectrum. From these measurements it was shown that similar amount of A0
- was accumulated in 

all six mutants, although the amplitude of the bleaching signal attributed to A0
- is approximately 

half that from wild type [26]. This was taken as an indication that electron transfer occurs along 

either branch to approximately the same extent. In order to determine whether the ET from A0
- is 

blocked or slowed down in these mutants they also performed transient absorption experiments 

on a longer time scale of 4ns. The data from these measurements showed that the accumulation 

of A0
- is transient and that the ET from A0

- to A1 is considerably slowed from ~20-30 ps in WT 

to 1760±150 ps in M(A684)H, 1780±150 ps in M(B664)H, 1770±150 ps in M(A684)L, 

1700±150 ps in M(B664)L, 1100±150 ps in M(A684)S, and 1150±150 ps in M(B664)S [26]. 

Ultra fast pump probe spectroscopy at 690nm and 390 nm was used to study the 

dynamics of primary charge separation and secondary electron transfer in WT, M(A688)L, 

M(A688)N, M(B668)L, and M(B668)N mutants of S. 6803 [20]. The time-resolved profiles at 

690 nm and 390 nm for  M(B668)L and M(B668)N mutants were almost identical to that of the 

WT S. 6803 samples suggesting the primary charge separation and the rate of secondary electron 

transfer is unaffected by mutations on PsaB branch of the reaction center. On the other hand, the 

time resolved profiles at 690nm and 390 nm for M(A688)L and M(A688)N mutants where 

significantly modified compared to the WT. The electron transfer from A0 to A1 was 

considerably slowed in these mutants, for the M(A688)L mutant the intrinsic time of the electron 

transfer was 100±10 ps while for the M(A688)N mutant the time was 112±10ps which is almost 

an order of magnitude slower than secondary electron transfer in WT. These results were taken 

as an indication that the ET in S. 6803 is asymmetric and occur primary along the PsaA branch 

of cofactors. 
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4.1.3 Transient EPR Spectroscopy Studies at 80K 

Directionality of ET in WT and mutant PS I particles from C. reinhardtii was also studied 

using transient EPR spectroscopy at 80K [50]. 

The idea behind the EPR investigation is, assuming the mutation effectively blocks ET 

along the respective branches the signals measured for the mutants should be indicative of the 

electron transfer capabilities and directionality of electron transfer. Also, if the electron transfer 

is bi-directional then the transient EPR signals (P700
+A1

- radical pair formation) that are measured 

for the M(A684)H and M(B664)H mutants should be identical. But the transient EPR spectra 

collected from the PS I particles of the mutants at 80 K are clearly different (intensity of the 

P700
+A1

- radical pair for the M(A684)H mutant was very small compared to the M(B664)H 

mutant and WT) and hence does not support the bi-directional electron transfer mechanism 

[50].These results are completely in disagreement with the RT ultrafast transient absorbance 

measurements on the same PS I particles which showed that similar amount of A0
- was 

accumulated in all six mutants. It could be argued that the disagreement in these two 

spectroscopic methods point to the possibility that the ET mechanism is different at RT and 

cryogenic temperatures. 

Also it is worth mentioning that the 80K transient EPR data collected from WT, 

M(A684)H and M(B664)H PS I particles from C. reinhardtii is almost identical to the data 

collected for PS I particles from WT, M(A688)N and M(B668)N mutants in S. 6803 [50]. 

The light induced P700
+/P700 visible difference spectra clearly show that both PsaA branch 

and PsaB branch mutation impact the spectra. The assumption is that A0
- also contributes to the 

P700
+/P700 difference spectra in the visible region and hence the changes observed in the mutant 

4.1.4 Rationale for Current FTIR Spectroscopy Studies 
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spectra are due to the mutation induced changes to the position/orientation/redox properties of 

the chlorophyll pigments that constitute A0. If that is the case then the (P700
+-P700) FTIR DS of 

the mutants also should show significant difference from the wild type spectra. By comparing the 

wild type FTIR DS with the PsaA branch and PsaB branch mutants the spectral signatures of the 

A0 chlorophyll may be identified. 

Also, the ultrafast measurements of Ramesh et. al. [26] indicate that the amount of charge 

separation making use of the A-branch or B-branch of electron cofactors is not affected upon 

mutation of the ligand to the A0 chlorophylls on these branches as the same amount of A0
- is 

accumulated in these mutants and supports the bi-directional electron transfer mechanism in C. 

reinhardtii. Transient EPR measurements on the other hand, support asymmetric electron 

transfer mechanism favoring the A-branch of electron transfer cofactors. The observation that the 

mutation on the A-branch nearly eliminates the P700
+A1

- radical pair signal while the identical 

mutation on the B-branch has no effect on the P700
+A1

- signal was the basis of this conclusion. 

The EPR measurements were performed at low temperature and hence these 

measurements are only sensitive to those reaction centers undergoing reversible charge 

separation. The RT ultrafast measurements on the other hand can observe the entire PS I 

population. Hence it is very important to distinguish between the electron transfer mechanisms in 

these two different populations of reaction centers. 

Static FTIR measurements at RT are made by repetitive excitation of the radical species 

(P700
+FA/B

-) that recombine to form the neutral state as soon as the excitation source is turned off. 

RT static FTIR measurements observe the entire PS I population while low temperature 

measurements can observe only the population of reaction centers undergoing reversible charge 

separation. A single flash excitation method (see Materials and Methods for details) was used to 
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measure the (P700
+-P700) FTIR Difference spectra of the irreversibly reduced population. Thus by 

monitoring both reversible and irreversible population of reaction centers, it can be demonstrated 

that the (P700
+-P700) FTIR Difference spectra of these two population are essentially the same. 

4.2 Materials and Methods 

The CC125 strain of C. reinhardtii was the recipient strain for the mutations. The 

M(A684)H and M(B664)H mutants along with their wild type strain were investigated in the 

work presented here. For detailed information on site directed mutagenesis and isolation and 

purification of the PS I complexes from C. reinhardtii see Ramesh et. al. 2004 [24]. 

4.2.1 Static FTIR Difference Spectroscopy 

(P700
+-P700) FTIR DS was obtained for WT PS I particles from C. reinhardtii at 77,100, 

130, 160, 190, 220, 250 and 270K. For M(A684)H and M(B664)H mutant PS I particles, (P700
+-

P700) FTIR DS were obtained at several temperatures between RT and 77K. 

FTIR spectra were recorded using a Bruker IFS/66 FTIR spectrometer (for details on 

instrumentation and measurements see section 2.2.1). PS I samples were concentrated and 

suspended in Tris buffer, pH 8.0 and was placed between a pair of CaF2/BaF2 windows. Spectra 

were collected at 4 or 2 cm-1 resolution. The IR absorbance of the sample in the CaF2/BaF2 

sample holder was 0.8-1.2 at the peak of the amide I absorption band (about 1656 cm-1). Sixty-

four interferrograms were collected before, during, and after light excitation from a helium-neon 

laser. The spectra collected before illumination were ratioed directly against the spectra collected 

during and after illumination. Thus, the absorption spectra collected represent true DS. The DS 

collected after light excitation were subtracted from the DS collected during excitation to cancel 

any residual effects of water vapor. In most cases in a well purged instrument this was not 

strictly necessary. 
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4.2.2 Single Flash Excitation FTIR Difference Spectroscopy 

(P700
+-P700) FTIR DS was collected for WT, M(A684)H, and M(B664)H mutant PS I 

particles of C. reinhardtii using a single flash excitation method (See Figure 4.2 for the 

schematic representation of the experimental procedure). For these measurements the sample 

was cooled to 100K in complete darkness. Sixty-four interferograms were collected before, 

during, and after light excitation from a helium-neon laser. After collecting 10 ‘dark’ spectra the 

sample temperature was raised to 230 K. A wait time of 20 minutes was added to make sure that 

all reaction centers relax back to neutral ground state. The sample was then cooled back to 100 K 

and the measurement repeated. A pair of 2000-1000 cm-1 cut-off filters were used for all 

measurements, one before the sample and one mounted on the detector. 

Figure 4.2: Schematic representation of the Single Flash excitation FTIR experimental setup. 
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4.3 Results and Discussion 

 

4.3.1 Steady State FTIR Difference Spectroscopy Measurements at RT 

Figure 4.3: Light-induced (P700
+-P700) FTIR DS of WT (black), M(A684)H (red) and M(B664)H (blue) mutant PS I 

particles of C. reinhardtii in the frequency region 1780-1580 cm-1 obtained at RT. 

Figure 4.3 shows (P700
+-P700) FTIR DS in the 1780-1580 cm-1 region obtained from PS I 

particles of WT, M(A684)H, and M(B664)H mutants at 4cm-1 resolution collected at RT. The 

(P700
+-P700) FTIR DS is the average of spectra from over 100 Light minus Dark (L-D) cycles. 

Multiple dark spectra are measured after each light excitation to make sure that all reaction 

centers relax back to neutral state before the next light excitation. The multiple difference bands 

present in the (P700
+-P700) FTIR DS in the 1780-1580 cm-1 region have been assigned to the C=O 

groups of the two chlorophyll molecules constituting P700. In particular, the 1715(+)/1698(-) cm-1 

difference band has been assigned to the 131 keto C=O of PB
+/PB and the difference band at 

1652(+)/1635(-) cm-1 has been assigned to the 131 keto C=O group of PA
+/PA [101]. The peak-to 
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peak amplitude of these two difference signals can be used as an estimate of the population of 

the reaction centers in a given measurement. 

The (P700
+-P700) FTIR DS obtained for the A and B side mutants of C. reinhardtii are 

significantly reduced in amplitude compared to the WT PS I particles. The 1715(+)/1698(-) cm-1 

band of M(A684)H mutant is ~40% smaller than the corresponding band in the WT, while in 

M(B664)H mutant the band is ~80% smaller. A straight forward interpretation of this 

observation is that, in the mutants if ET is slowed as shown from ultrafast measurements of 

Ramesh et. al. [26], the recombination and fluorescence competes effectively with the forward 

ET. Hence fewer electrons reach the FA/B, leading to a decrease in the P700
+FA/B

- signal 

amplitude. Figure 4.5 shows a schematic representation of the proposed electron transfer 

mechanism in the M(A684)H and M(B664)H mutants in C.reinhardtii. 

 

Figure 4.4: Light-induced (P700
+-P700) FTIR DS of PS I particles from the WT (black), M(A684)H (red) and M(B664)H 

(blue) mutants in the frequency region 1780-1580 cm-1 obtained at RT. The three spectra are normalized to the 
1715(+)/1698(-) cm-1 band in WT. 
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Figure 4.5: Schematic representation of the proposed electron transfer mechanism in the M(A684)H and M(B664)H 
mutants. 

The (P700
+-P700) FTIR DS of M(A684)H and M(B664)H mutants in Figure 4.3 were 

scaled to the size of wild type spectra to investigate whether there is any shift in frequency of the 

bands in the spectra. The scaled spectra are presented in Figure 4.4. 

It is clearly evident from Figure 4.4 that the difference bands in the 1780-1580 cm-1 

region attributed to the C=O groups of P700 are little impacted by the mutation on the A and B 

branches as all the band in the WT and mutant spectra overlap perfectly. A slight modification is 

observed in the region 1987-1660 cm-1, especially for the B branch mutant. A specific 

assignment for the band in this region is not available as it is thought that protein modes, 

perturbed by the positive charge on P700
+, absorb in this frequency region. The observed changes 

in this frequency region upon mutation of the methionine residue, which acts as the ligand to the 

central Mg2+ of A0, indicate that the mutation has caused changes in orientation and/or chemical 

properties of the protein backbone. The observation that the mutation induced changes are more 
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pronounced in the B branch mutant could be taken as an indication that  positive charge on P700
+ 

is localized to some extend on the PB chlorophyll. Such a proximity to the positive charge on 

P700
+ can explain the observed modification in the B branch mutant. Also, the FTIR difference 

spectroscopy data clearly indicates that protein environment of P700 is intact upon mutation as the 

frequency of the C=O modes are not impacted. 

 

4.3.2 Steady State FTIR Difference Spectroscopy Measurements at 77K 

(P700
+-P700) FTIR DS was also collected at 77K for WT, M(A684)H, and M(B664)H 

mutant PS I particles. At 77K it had been shown, for cyanobacterial PS I particles, that the 

radical pair P700
+Fx

- recombines in only ~20% of the PS I particles (Figure 4.8) [31]. This 

population can be observed using FTIR DS. 

Figure 4.6: Light-induced (P700
+-P700) FTIR DS of PS I particles from the WT (black), M(A684)H (red) and M(B664)H 

(blue) mutants in the frequency region 1780-1580 cm-1 obtained at 77K. 
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Figure 4.7: Light-induced (P700
+-P700) FTIR DS of PS I particles from the WT (black), M(A684)H (red) and M(B664)H 

(blue) mutants in the frequency region 1780-1580 cm-1 obtained at 77K. The three spectra are normalized to the 
1715(+)/1698(-) cm-1 band in WT. 

 

Figure 4.8: Schematic representation of the proposed electron transfer mechanism at low temperature for S. 6803. 
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It is clearly evident from Figure 4.6 that the reaction center population that is active at 

77K is significantly modified upon mutation leading to a less intense (P700
+-P700) FTIR DS from 

these mutants. The 1715(+)/1698(-) cm-1 band of M(A684)H mutant is 60% smaller than the 

corresponding band in the WT, while in M(B664)H mutant the band is 40% smaller. Hence upon 

mutation the amplitude of the (P700
+-P700) FTIR DS is significantly impacted in the RT as well as 

in the 77K measurements. This observation is in line with the suggestion that the mutation, 

irrespective of A branch or B branch, leads to fewer electrons reaching Fx, thus causing a 

decrease in amplitude of the (P700
+-P700) FTIR difference signal. 

 Normalized (P700
+-P700) FTIR DS of the mutants at 77K is presented in Figure 4.7 and it 

can be seen that there is little impact on the frequency of vibration ascribed to the C=O modes of 

P700
+/P700. The only change observed is for the M(B664)H mutant where ~3cm-1 down-shift in 

frequency is observed for a negative band at 1680(-) cm-1 in the WT and M(A684)H mutant. 

Also, a new positive band appears at 1684(+) cm-1 which is absent in WT and M(A684)H 

mutant. A slight modification for this frequency region is also observed in the RT measurements 

of M(B664)H mutant. This cannot be an indication of mutation induced changes of P700, as any 

such change will result in significant modification of the C=O vibrational frequencies and 

amplitudes. The bands in region are thought to be due to protein modes, as significant 

modification in frequency is observed, in the case of cyanobacterial PS I, in this region upon 15N 

labeling. So the only conclusion that can be derived is that the protein is more perturbed by the 

mutation on the B side. 

(P700
+-P700) FTIR DS obtained from the PsaA and PsaB branch mutants at RT and 77K 

indicates that the mutation causes fewer electrons to reach the terminal electron acceptor in PS I. 

The mutation along both branches has similar effect on the (P700
+-P700) FTIR DS, which clearly 
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indicates that both branches of electron transfer are active and support the bi-directionality of 

electron transfer proposed in the case of C. reinhardtii. 

4.3.3 Single Flash Excitation FTIR DS Measurements 

Figure 4.9 shows (P700
+-P700) FTIR DS in the 1800-1100 cm-1 region obtained using wild 

type PS I particles collected at 77, 100, 130, 160, 190, 220, 250, 270, and 298 K. The spectra are 

the average of 306, 420, 530, 350, 290, 204, 260, 239, and 138 L- D measurements, respectively. 

These measurements monitor only the subset of particles in which P700
+ is reversibly re-reduced 

between measurements. The signals at 298 K are ~six times larger than the signals at 77 or 100 

K, notably, the signals at 77K or 100 K are almost a factor of two smaller than the signals at 130 

K. If it is assumed that P700
+ in all PS I particles is re-reduced between measurements at 298 K. 

Then it would appear that that P700
+ is re-reduced in only ~17% of the PS I particles at 77 or 100 

K. In cyanobacterial PS I particles it is known that P700
+ is re-reduced in ~20% of the PS I 

particles (Figure4.8) at 77K [31]. Hence it looks like the reversible population of PS I reaction 

centers is comparable in both species. 

In static EPR spectroscopy of P700
+ it is the PS I particles that have P700

+ irreversibly 

oxidized that are monitored. Figure 4.9 suggests that, in this case ~83% of the PS I particles have 

P700
+ irreversibly oxidized at 77 or 100 K. Therefore, EPR signals will also be most intense at 77 

or 100 K. Since static EPR and FTIR spectroscopy monitor different subpopulations of PS I 

particles, one question of interest then is: are the (P700
+-P700) FTIR DS the same for the reversibly 

and irreversibly reduced components in the different subsets of PS I particles. This is worth 

answering to make sure EPR and FTIR measurements are done on same species. 
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Figure 4.9: Light-induced (P700
+-P700) FTIR DS of wild type PSI particles from C. reinhardtii obtained at 77, 100, 130, 160, 

190, 220, 250, 270 and 298 K. 

One way to address this question is to do single flash excitation FTIR DS experiment, 

where the measurements are made on PS I samples cooled down to 100 K in complete darkness. 

The assumption is that by keeping the sample in complete darkness, all the P700 reaction center 

population will be in the ground state prior to light excitation. When the sample is excited with 

light, presumably all the reaction center population will get excited, hence the (P700
+-P700) DS 

obtained for the first excitation contain the signature from all the P700 population in the sample, 

both reversible and non-reversible. By exciting the sample again, (P700
+-P700) spectra shows only 

the portion of the reaction centers that are reversible, in which P700
+Fx

- recombines, and have 

come back to the ground state by recombination. Subtraction of the spectrum obtained from the 

average of the consecutive flashes (reversible fraction of P700) from the first flash spectrum 

(complete population of P700 in the ground state) provides the information and spectral signatures 

of the portion of the reaction center that is irreversibly reduced. 
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The (P700
+-P700) FTIR DS from the first flash for WT, M(A684)H, and M(B664)H 

mutants are presented in Figure 4.10. It is assumed that the first flash spectrum has contribution 

from all of the P700 reaction centers. The amplitude of the 131 keto C=O group of PB
+/PB in the 

(P700
+-P700) FTIR DS of the mutants are ~60% reduced compared to the corresponding difference 

band in the WT spectrum. This is again an indication that fewer electrons are reaching the 

terminal electron acceptor Fx in these mutants. It is also interesting to note that both mutation has 

similar effect on the amplitude of the (P700
+-P700) FTIR DS, and could be taken as an indication 

that the electron transfer is bi-directional. 

 

Figure 4.10: Light-induced (P700
+-P700) FTIR DS of wild type, M(A684)H and M(B664)H mutant PSI particles from C. 

reinhardtii obtained at 100K using single flash excitation experiment. 
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Figure 4.11: (P700
+-P700) spectra of the PS I population that is irreversible (black color) and the (P700

+-P700) spectra of the PS 
I population that is reversible (red color) in wild type C. reinhardtii species. 

 

Figure 4.12: (P700
+-P700) spectra of the PS I population that is irreversible (black color) and the (P700

+-P700) spectra of the PS 
I population that is reversible (red color) in M(A684)H mutant C. reinhardtii species. 
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Figure 4.13: (P700
+-P700) spectra of the PS I population that is irreversible (black color) and the (P700

+-P700) spectra of the PS 
I population that is reversible (red color) in M(B664)H mutant C. reinhardtii species. 

The (P700
+-P700) FTIR DS of the reversible and irreversibly reduced components of P700 

obtained from wild type, M(A684)H, and M(B664)H mutants are presented in Figures 4.11, 4.12 

and 4.13 respectively. The ratio of the 1715(+)/1698(-) cm-1 band of the irreversibly reduced 

component of P700 to the reversible component from Figures 4.11, 4.12 and 4.13 are ~2/1, 3/1, 

1.2/1 respectively. These results show that mutation of the A0 ligand on the A branch leads to an 

increase in the irreversibly reduced component of P700 while the mutation on the B branch lead to 

a decrease in the irreversibly reduced component. This is a valuable result as the low temperature 

transient EPR and low temperature static FTIR measures the population of reaction centers that 

is reversible. Hence the observation that the mutation of A0 ligand along the two branches 

induces a change in the fraction of the reversible/irreversible population of reaction center is 

extremely important. The fact that the mutation along the A branch causes a significant decrease 

in intensity of the P700
+A1

- radical pair signal in transient EPR measurements for the M(A684)H 
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mutant can now be easily explained as the single flash excitation FTIR measurements upon 

mutation along A branch shows that there is a significant decrease in the reversible component of 

reaction centers. Also, single flash excitation measurements show that mutation along B branch 

lead to a decrease in the irreversibly reduced component which means the fraction of reversible 

component is more and will give intense P700
+A1

- radical pair signal from transient EPR 

measurements. 

4.4 Conclusions 

(P700
+-P700) FTIR DS of PS I particles from WT, M(A684)H, and M(B664)H mutant 

species of C. reinhardtii were collected at RT and 77K/100K under different set of conditions. 

The intensity of the (P700
+-P700) FTIR DS for the PsaA and PsaB branch mutants are significantly 

reduced in comparison with the wild type spectra. The change in intensity of the spectra from the 

mutants was comparable and this indicates that both branches are impacted to a similar extent 

upon mutation. Also no shift in frequency was observed for the C=O modes of P700
+/P700 which 

indicates that the mutation of the histidine ligands of A0 has no effect on the structure/protein 

interactions of the primary electron donor. The transient EPR measurements at low temperature 

are only sensitive to those reaction centers undergoing reversible charge separation while the RT 

ultrafast measurements observe the entire PS I population. Using single flash excitation FTIR DS 

measurements it is possible to observe these two different populations of reaction centers. Single 

flash excitation FTIR DS measurements indicates that mutation of the A0 ligand on the A branch 

leads to an increase in the irreversibly reduced component of P700 while the mutation on the B 

branch lead to a decrease in the irreversibly reduced component. Hence it is clearly evident that 

the conflicting conclusions made from transient EPR and RT ultrafast measurements were due to 

the different populations of reaction centers under observation. Also the FTIR DS results indicate 
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that both branches of electron transfer are active to the same extent at least in the case of C. 

reinhardtii PS I reaction centers. 
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CHAPTER 5 

CALCULATION OF THE VIBRATIONAL PROPERTIES OF CHLOROPHYLL-A IN 

SOLUTION 

5.1 Introduction 

Photosynthesis is the process in which solar energy is captured and converted into 

products essential for the maintenance of life on earth (food, fuel, oxygen) [103]. In 

photosynthetic oxygen evolving organisms the molecular species at the heart of all solar capture 

and conversion processes is Chlorophyll-a (Chl-a), either in monomeric or dimeric forms [33, 

104] Given the importance of Chl-a in oxygenic photosynthesis, one research goal is the 

development of a quantitative understanding of Chl-a, its isomers and multimeric forms, as 

found in photosynthetic protein complexes. Of particular interest is an understanding of how 

various molecular parameters modulate the electronic properties of Chl-a. It is the electronic 

properties of Chl-a, and the resulting thermodynamic properties, that ensures ultra efficient solar 

energy capture and conversion. 

Unfortunately a fully quantum mechanical (QM) calculation of the chemical properties of 

dimeric Chl-a in the gas phase or a protein matrix, are still far off due to limitations in 

computational capabilities. However, it is computationally feasible to calculate (at the QM level) 

properties of isolated Chl-a molecules in both the neutral and radical forms [80]. Such 

calculations are a prerequisite, not only for future calculations on naturally occurring dimeric 

Chl-a systems, but also for the theoretical study of isolated or multimeric Chl molecules that can 

be bound to surfaces to make artificial solar converting constructs. 

The primary electron donor in photosystem I (PS I) is a dimeric Chl-a species called P700. 

(P700
+-P700) FTIR difference spectra (DS) have been obtained [101]. Interpretation of the bands in 
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this spectrum are based upon comparison to corresponding electrochemically generated (Chl-a+-

Chl-a) and (pyroChl-a+-pyroChl-a) FTIR DS [64, 101]. PyroChl-a is similar to Chl-a but lacks a 

133 ester group (Figure 5.1(a) shows the structure and numbering scheme for Chl-a). The 

conclusions drawn from the electrochemistry experiments seemed clear cut, and so they have 

never been tested or questioned in any way. In the last decade, however, (P700
+-P700) FTIR DS 

have been obtained under many sets of conditions: from PS I particles from different strains [54], 

to particles with site directed mutations near the P700 and A0 Chl’s [54, 74, 76], to specifically 

isotope labeled PS I particles [71]. From these studies controversy persists concerning the 

interpretation of bands in (P700
+-P700) FTIR DS. The aim is to show that much of this controversy 

could arise because of incorrect interpretation and assignment of bands in electrochemically 

generated (Chl-a+-Chl-a) FTIR DS. 

The frequency and intensity information available in (P700
+-P700) FTIR DS provides a 

wealth of information on the hydrogen bonding status as well as on the polarity of the 

environment of specific functional groups that are part of P700. However, if the origin of the 

bands in the spectra is misinterpreted, then conclusions derived will be incorrect. Clearly, there is 

a demonstrated need for a precise understanding of vibrational properties of Chl-a and Chl-a+. 

Up until recently, quantum chemical computational methods have played only a minor 

role in FTIR spectral band interpretation and assignment, especially as it applies to large 

molecular systems like Chl-a. However, computational capabilities are increasing, and recently 

density functional theory (DFT) based vibrational mode frequency calculations (at the B3LYP/6-

31G(d) level) for several Chl-a and Chl-a+ model molecular systems have been undertaken [80]. 

It has been shown that using only simple gas-phase calculations the experimental (pyroChl-a+-

pyroChl-a) FTIR DS can be accurately simulated. However, for Chl-a model molecular systems 
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that contain both the 131-keto and 133 ester carbonyl (C=O) groups, there is a strong coupling 

between the two carbonyl modes of the neutral Chl-a [80]. For Chl-a+ it is also found that the 

calculated 131-keto C=O mode frequency is higher than that of the 133 ester carbonyl mode 

(although the two modes are no longer coupled) [80]. These calculated results disagree with 

assignments based on experimental data [64]. Previous normal mode vibrational frequency 

calculations were for a Chl-a model in the gas phase, with no consideration given to solvent 

effects [80]. It is possible that this lack of consideration of solvent effects could be at the heart of 

the above described discrepancies between the calculated and experimental data. Therefore, 

several new sets of calculations on Chl-a in the presence of solvents is presented here, in order to 

investigate if or how solvents impact the C=O mode vibrations. 

In type I photosynthetic reaction centers it has been suggested the primary electron donor 

species is invariably a heterodimeric Chl/Chl’ species [105-107]. Chl-a’ is a 132 epimer of Chl-a. 

In view of this, the vibrational properties of both Chl-a and Chl-a’ model systems were obtained 

in different solvents. 

The calculated (Chl-a+-Chl-a) IR DS, for both Chl-a and Chl-a’ in different solvents, 

bear a remarkable similarity to the corresponding experimental spectra. The mode compositions, 

however, for the bands in the calculated spectra are very different from those assigned 

experimentally. Based on these calculation it was proposed that the bands in the experimental 

spectra may have been miss-assigned and further sets of calculations on isotope labeled Chl-a 

and Chl-a’ was undertaken to further demonstrate the validity of the hypothesis. 

5.2 Materials and Methods 

All geometry optimizations and harmonic normal mode vibrational frequency 

calculations were performed using DFT as implemented in Gaussian 03 software, revision D.01. 
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[87]. Unless stated, the B3LYP functional was used in combination with the 6-31G(d) basis set. 

At this level of theory, computed harmonic vibrational mode frequencies overestimate 

experimental anharmonic frequencies by approximately 5% [80, 88]. Radical induced frequency 

shifts are accurately calculated, however [80, 89]. No negative frequencies were calculated for 

any of the model molecular structures discussed here. To model solvent effects the integral 

equation formalism (IEF) of the polarizable continuum model (PCM) was used [90-95], as it is 

implemented in Gaussian 03, version D.01. 

The assignment of calculated vibrational frequencies to molecular groups is based upon 

visual identification, using software that animates the vibration (Gaussview 4.0). The 

calculations produce normal mode vibrational frequency and intensity information. From this 

data infrared (IR) “stick” spectra can be constructed. By convolving these stick spectra with a 

Gaussian function of 4 cm-1 half-width, more realistic looking spectra can be constructed. As 

previously described [89], these convolved stick spectra is referred to as absorption spectra. 

5.3 Results and Discussion 

 

Figure 5.1: (a) Structure and IUPAC numbering scheme for Chl-a. (b) Chl-a4 and (c) Chl-a5 geometry optimized (energy 
minimized) molecular structural models of Chl-a. 
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Figure 5.1(a) shows the structure and IUPAC numbering scheme for Chl-a. Figure 5.1(b) 

shows the optimized geometry of the most sophisticated Chl-a model that was studied previously 

[80]. This model is called Chl-a4. Chl-a4 is representative of a Chl-a’ species. Chl-a’ is a 132 

epimer of Chl-a. In view of the fact that the primary donor species in many type I reaction 

centers is a Chl/Chl’ dimer [105-107] it is worthwhile calculating the vibrational properties of 

both Chl-a and Chl-a’. Figure 5.1(c) shows the model that is representative of Chl-a. This 

species is referred to as Chl-a5 in this chapter. For Chl-a4/Chl-a5 the 132 hydrogen atom points 

down/up out of/into the plane of the macrocycle while the 133 ester C=O points up/down into the 

plane of the macrocycle, respectively. For Chl-a4 and Chl-a5 the portion of the phytyl chain 

following the 173 ester oxygen is replaced with a methyl group. In addition the molecular groups 

at positions 2, 8, 12 and 18 are replaced with hydrogen atoms. Chl-a4 and Chl-a5 also differ in 

the orientation of the vinyl group at the 3 position. The vinyl group orientation for Chl-a5 is in 

line with that found in for example the cofactor Chl-a molecules in the PS I crystal structure. 

Chl-a4 and Chl-a5 have 64 atoms, and displays 186 normal modes of vibration. Most of 

these modes have very low intensity and are undetectable in calculated IR absorption spectra. 

Such spectra are thus useful for direct consideration of the most intense modes of vibration. 

Figure 5.2 shows calculated IR absorption spectra for Chl-a4, Chl-a4
+, Chl-a5 and Chl-a5

+ in the 

1870-1770 cm-1 region. The calculated (Chl-a4
+-Chl-a4) and (Chl-a5

+-Chl-a5) [cation minus 

neutral] IR DS are also shown. 

The harmonic vibrational mode frequencies and intensities associated with the C=O 

modes of Chl-a4, Chl-a4
+, Chl-a5 and Chl-a5

+ are listed in Table 5.1. The calculations in Figure 

5.2 are for molecules in the gas phase, and vibrational frequencies have not been scaled. As 
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indicated above, frequency scaling is unimportant, since the interest is in frequency differences, 

which are accurately calculated [80]. 

 

Figure 5.2: Calculated IR spectra for Chl-a4/Chl-a5 (top) and Chl-a4
+/Chl-a5

+ (middle) in the gas phase. The “cation minus 
neutral” IR DS are also shown (bottom). The Chl-a4 spectra have been presented previously [80]. 

 

Figure 5.3: Electrochemically generated (Chl-a+-Chl-a) FTIR DS, for Chl-a in THF [Reprinted with permission from 
Biochem. 1990, 29, 3242-3247. Copyright 2000 American Chemical Society]. Proposed band assignments are 
also indicated in the figure. 
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Table 5.1: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of Chl-a4, Chl-
a5, Chl-a4

+and Chl-a5
+. 

The cation induced frequency shift of the modes for each calculation is shown along with the mode intensity change [in 
parenthesis (in%)]. 
1
Antisymmetric vibration of the 17

3 
ester and 13

1 
keto C=O groups. 

2
Symmetric vibration of the 17

3 
ester and 13

1 
keto C=O groups. 

 
For comparison, the electrochemically generated (Chl-a+-Chl-a) FTIR DS for Chl-a in 

tetrahydrofuran (THF) is shown in Figure 5.3. Electrochemically generated (Chl-a+-Chl-a) FTIR 

difference spectra in the 1800-1600 cm-1 region have been obtained only for Chl-a in THF. 

Spectra in other solvents have not been reported, mainly because most other solvents absorb 

infrared radiation strongly in the 1800-1600 cm-1 region. Examination of the calculated and 

experimental difference spectra in Figures 5.2 and 5.3 indicate that the calculated frequencies are 

about 6% higher than the experimental frequencies. The calculated and experimental difference 

spectra also have very different overall spectral profiles. 

In Figure 5.3 the 1693 cm-1 band was assigned to the 131 keto C=O mode of neutral Chl-

a, which up-shifts 27 cm-1 upon cation formation. The 1738 cm-1 band was assigned to the 133 

Mode Chl-a4 
ν(I) 

Chl-a4
+ 

ν(I) 
Shift 
∆ν(∆I) 

Chl-a5 

ν(I) 
Chl-a5

+ 

ν(I) 
Shift 
∆ν(∆I) 

ν(173 C=O) 
Gas phase 
CCl4  
THF  
H2O  

 
1827(211) 
1812(268) 
1799(325) 
1789(371) 

 
1835(230) 
1818(257) 
1803(265) 
1793(224) 

 
8(9%) 
6(-4%) 
4(-20%) 
4(-49%) 

 
1829(233) 
1816(282) 
1800(302) 
1790(310) 

 
1837(498)1 

1820(377) 
1804(471) 
1792(499) 

 
 
4(29%) 
4(44%) 
2(47%) 

ν(131 C=O) Gas phase  1838(337)   1838(123)2  

ν(131 and 133 C=O) s 
Gas phase 
CCl4 
THF 
H2O 

 
1818(347) 
1805(234) 
1794(243) 
1785(286) 

 
 
1823(533) 
1806(693) 
1794(769) 

 
 
18(78%) 
12(96%) 
9(92%) 

 
1817(379) 
1806(253) 
1796(271) 
1788(339) 

 
 
1824(501) 
1809(621) 
1797(480) 

 
 
18(66%) 
13(78%) 
9(34%) 

ν(131 and 133 C=O) as 
Gas phase 
CCl4 
THF 
H2O 

 
1801(556) 
1786(1128) 
1767(1724) 
1753(2118) 

 
 
1797(442) 
1785(861) 
1773(1336) 

 
 
11(-87%) 
18(-67%) 
20(-45%) 

 
1806(496) 
1792(1072) 
1771(1681) 
1756(2136) 

 
 
1798(323) 
1791(686) 
1779(1331) 

 
 
6(-107%) 
20(-84%) 
23(-46%) 

ν(133 C=O) Gas phase  1804(258)   1804(204)  
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ester C=O mode of neutral Chl-a, which up-shifts 12 cm-1 upon cation formation. These 

assignments were based solely on comparison with electrochemically generated cation minus 

neutral FTIR DS for pyroChl-a, which lacks the 133 ester C=O group [64]. In the (pyroChl-a+-

pyroChl-a) FTIR DS only a single negative band is found at 1686 cm-1, that up-shifts to 1712 

cm-1 upon cation formation. The suggestion is that the 1738(-)/1751(+) cm-1 difference band that 

is present in the (Chl-a+-Chl-a) FTIR DS but not in the (pyroChl-a+-pyroChl-a) FTIR DS has to 

be due to the 133 ester C=O group. However, if there is a complicated coupling between the 133 

ester and 131 keto C=O modes then the comparison of spectra for pyroChl-a and Chl-a is not 

meaningful (see below). 

In the calculated spectrum for neutral Chl-a4/Chl-a5 in the gas phase the band at 

1827/1829 cm-1 is due to only the 173 ester C=O group, respectively. This mode up-shifts ~8 cm-

1 upon cation formation and changes little in intensity (Table 5.1). For Chl-a4
+ in the gas phase 

the 173 ester C=O mode is found at 1835 cm-1 while the 131 keto C=O is found at 1838 cm-1. 

Given the proximity of these modes in frequency one could expect them to be somewhat 

coupled. This is in fact what is found for Chl-a5
+, where the symmetric/anti-symmetric coupled 

vibrations of the 131 keto and 173 ester C=O modes are calculated at 1838/1837 cm-1, 

respectively (Table 5.1). 

For neutral Chl-a4 and Chl-a5 in the gas phase the 131 keto and 133 ester C=O groups are 

strongly coupled, and unique vibrations of either of the C=O groups do not exist. The anti-

symmetric vibration of the ester and keto C=O groups is found to occur at a lower frequency 

than the symmetric vibration. For Chl-a4
+ and Chl-a5

+ the 131 keto C=O vibration is separated 

from the 133 ester C=O vibration. However, the 131 keto C=O group vibrates at a higher 

frequency compared to the 133 ester C=O group (Table 5.1). This result is surprising. 
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5.3.1 Calculated Solvent Effects 

The difference spectra in Figures 5.2 and 5.3 have very different profiles. The calculated 

mode compositions are also very different to that suggested from experiment [64]. One 

hypothesis for these discrepancies is that solvent effects were not considered in the calculations. 

Given this the vibrational properties of Chl-a4 and Chl-a5 in CCl4, THF and H2O, were 

calculated using the IEF PCM [90-95], as implemented within Gaussian 03, version D.01. The 

three solvents chosen cover a broad range of dielectric constants. For CCl4, THF and H2O the 

dielectric constants are 2.23, 7.58, and 78.39, respectively. 

In the following only the vibrational modes associated with the C=O groups are 

considered. Table 5.1 lists the frequencies (and intensities) that were calculated for C=O modes 

in the gas phase, and in the three solvents. Table 5.1 indicates that inclusion of a solvent 

generally causes a decrease in frequency of the C=O modes. In this sense the calculations 

including solvent are an improvement over the gas phase calculations. However, inclusion of a 

solvent does not lead to a change in the calculated mode compositions, so that they become 

similar to that suggested from experiment [64] (see below). 

For Chl-a4 in the gas phase the 173 ester C=O mode up-shifts ~8 cm-1 and increases only 

slightly in intensity upon cation formation. The mode is a pure C=O vibration in both the neutral 

and cation states. For Chl-a4 in CCl4 and THF similar results are obtained; however, the mode 

intensity decreases upon cation formation. For Chl-a4 in CCl4 the mode is a pure C=O stretching 

vibration in both the neutral and cation states. In THF and water, however, the 173 and 133 ester 

C=O’s are somewhat asymmetrically coupled, in both the neutral and cation states. In addition 

some mixing with the 131 keto C=O mode is observed. As pointed out above, for Chl-a5
+ in the 

5.3.2 The 173 Ester C=O Mode 
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gas phase the 173 ester and 131 keto C=O modes are similar in frequency, and strongly couple. 

For Chl-a5
+ in CCl4 and THF, however, this coupling decreases, resulting in an almost pure 173 

ester C=O mode (Table 5.1). 

These calculated results are far from intuitive. To visualize these results Figure 5.4 shows 

calculated IR DS for Chl-a4, Chl-a5, Chl-a4
+ and Chl-a5

+ in THF. The calculated (Chl-a4
+-Chl-

a4) and (Chl-a5
+-Chl-a5) IR DS are also shown. Clearly, calculated cation minus neutral IR DS 

for Chl-a in the gas phase or in solvent are very different. However, comparing the calculated 

cation minus neutral IR DS with the electrochemically generated (Chl-a+-Chl-a) FTIR DS it is 

clear there is considerable similarity in the overall shape of the spectra. To highlight this 

5.3.3 The 131 Keto and 133 Ester C=O Modes 

For Chl-a4
+ and Chl-a5

+ in the gas phase the 133 ester and 131 keto C=O modes are quite 

pure, although the keto vibration is at a higher frequency than the ester vibration (Table 5.1). As 

pointed out above, this result is difficult to rationalize [52]. For Chl-a4
+ and Chl-a5

+ in all of the 

solvents, the 133 ester and 131 keto C=O modes are coupled, as they are for neutral Chl-a4 and 

Chl-a5. So, the solvent increases the extent of coupling of the 131 keto and 133 ester C=O groups 

of Chl-a4
+ and Chl-a5

+. 

For Chl-a4 in CCl4/THF/H2O the symmetrically coupled 131 and 133 C=O mode up-shifts 

~18/12/9 cm-1 and increases in intensity by 78/96/92 % upon cation formation, respectively. In 

contrast, in CCl4/THF/H2O the anti-symmetrically coupled 131 and 133 C=O mode up-shifts 

~11/18/20 cm-1 and decreases in intensity by 87/67/45 % upon cation formation, respectively. 

Similar results are obtained for Chl-a5 (Table 5.1). So, for both Chl-a4 and Chl-a5 the anti-

symmetric and symmetric 131 and 133 C=O modes both up-shift upon cation formation, but the 

symmetric/anti-symmetric mode increases/decreases in intensity, respectively. 
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similarity, Figure 5.4 shows the calculated and experimental DS together, where the 

experimental spectrum has been shifted in frequency and scaled so that the bands are similar in 

intensity. 

 

Figure 5.4: Calculated IR DS for Chl-a4, Chl-a4
+, Chl-a5 and Chl-a5

+ in THF. The calculated (Chl-a4
+-Chl-a4) and (Chl-a5

+-
Chl-a5) IR DS are also shown. (Bottom): Experimental (Chl-a+-Chl-a) FTIR DS obtained for Chl-a in THF 
(from Figure 5.3). Spectrum has been scaled and shifted for the sake of comparison. 

Figure 5.4 shows the calculated and experimental spectra for Chl-a in THF. This is 

because THF is the only solvent in which experimental (Chl-a+-Chl-a) FTIR DS have been 

obtained. It is very unlikely that (Chl-a+-Chl-a) FTIR DS for Chl-a in H2O or CCl4 will ever be 

obtained. However, for completeness, the vibrational mode frequencies calculated for Chl-a in 

the three solvents are included in Table 5.1. From Table 5.1 it appears that the polarizable 

continuum method predicts that the vibrational mode frequencies will decrease as the solvent 

dielectric constant increases. 

The calculated IR DS in Figure 5.4 accurately models the overall shape of the (Chl-a+-

Chl-a) electrochemically generated FTIR DS. It has been showed previously that the calculated 
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(pyroChl-a+-pyroChl-a) IR DS is in keeping with experiment [80]. However, the mode 

compositions associated with the bands in the calculated and experimental DS are very different. 

As pointed out above, the complicated mode composition of the C=O bands in the (Chl-a+-Chl-

a) electrochemically generated FTIR DS would not be apparent from a simple comparison with 

the (pyroChl-a+-pyroChl-a) FTIR DS. 

On the basis of the calculations, a new set of assignments for the bands in the 

experimental (Chl-a+-Chl-a) FTIR DS in Figure 5.3 is proposed. 

From Figure 5.4 the suggestion is that the calculated difference band at 1767/1785 or 

1771/1791 cm-1 for Chl-a4 or Chl-a5, respectively, corresponds to the experimental difference 

band at 1693/1718 cm-1. The calculated negative band at 1767 or 1771 cm-1 for Chl-a4 or Chl-a5 

is due to the anti-symmetric vibration of the 131 keto and 133 ester C=O groups. This band up-

shifts 18 or 20 cm-1 and decreases in intensity by 67 or 84 % upon cation formation, respectively. 

Therefore, the 1693 cm-1 band in the experimental spectrum (Figure 5.3)is assigned to the anti-

symmetric vibration of the 131 keto and 133 ester C=O groups, which up-shifts 25 cm-1 upon 

cation formation and decreases considerably in intensity. 

The calculated difference band at 1795/1806 or 1798/1809 cm-1 for Chl-a4 or Chl-a5, 

respectively, corresponds to the experimental difference band at 1738/1751 cm-1 (Figure 5.4). 

For Chl-a4/Chl-a5 the negative band at 1795/1798 cm-1 is due to the symmetrically coupled 

vibration of the 131 keto and 133 ester C=O groups, respectively. This band up-shifts 11/11 cm-1 

upon cation formation. Therefore, the 1738 cm-1 band in the experimental spectrum in Figure 5.3 

is assigned to the symmetric vibration of the 131 keto and 133 ester C=O groups, which up-shifts 

13 cm-1 upon cation formation. The experimental data suggests an intensity decrease but the 

calculations indicate that the symmetrically coupled vibration of the 131 keto and 133 ester C=O 
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groups increases in intensity. The calculated and experimental spectra look similar, however, 

because of overlapping bands associated with the 173 ester C=O modes. 

The overall similarity in spectral profile (distribution of positive and negative bands) 

between the calculated and experimental spectra for Chl-a in solvent could be viewed as 

somewhat fortuitous. It should be pointed out, that the calculated (Chl-a+-Chl-a) FTIR DS in all 

of the solvents look similar (not shown) and do not resemble at all the calculated gas phase (Chl-

a+-Chl-a) FTIR DS. In addition, the calculated difference spectrum for BChl-a in THF and 

methanol using the IEF PCM method also resemble experimental difference spectra (not shown), 

with the calculated gas phase difference spectra again being very different. Difference spectra 

calculated for the triplet state of Chl-a in THF also resemble experimental difference spectra, 

while calculated gas phase spectra do not (not shown). Difference spectra calculated, with 

solvent effects included, clearly lead to a more accurate description or simulation of 

experimental FTIR DS than do calculations that do not include solvent effects. 

Polarizable continuum methods are limited in the sense that they do not model possible 

axial ligands or hydrogen bonds to the Chl-a molecule. The vibrational properties of Chl-a has 

been obtained in explicit solvents, using QM/MM methods (see Chapter 6). These calculations 

show that even for solvents that can form ligands and/or hydrogen bonds to the carbonyl groups, 

the 131 keto and 133 ester carbonyl groups in the neutral and cation states are still coupled. 

Calculations for Chl-a models in which the central magnesium atom is ligated, and/or the 

carbonyl groups are hydrogen bonded, are presented in Chapter 7. 

Now the question to be answered is: Are there any experimental data available that can 

be used to test or validate the proposed assignments? FTIR DS for specifically isotope labeled 

Chl-a samples has never been obtained. However, P700 in photosystem I (PS I) is a dimeric Chl-a 
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species [6], and (P700
+-P700) FTIR DS have been obtained using PS I particles in which only the 

134 methyl hydrogen atoms of Chl-a have been deuterated [71]. Using labeled and unlabeled PS 

I particles, a (1H-2H) isotope edited (P700
+-P700) FTIR double difference spectrum (DDS) was 

constructed. This spectrum showed several derivative features spanning the 1775-1675 cm-1 

region. Later it was suggested that this DDS indicated the presence of at least four distinct 133 

ester C=O vibrations [70]. 

This interpretation is problematic. If P700 is a dimeric Chl-a species then the suggestion is 

that both Chl-a molecules of P700 contribute two 133 ester C=O modes. Apart from the fact that 

ester C=O modes of any molecule are unknown in the ~1680 cm-1 region, the interpretation of at 

least four distinct 133 ester C=O vibrations implies modification of the Chl-a molecules of P700 

by the protein, in about one half of the PS I particles (that is, some level of heterogeneity in the 

P700 binding site is required, for only the ester C=O modes). Given the new interpretation of 

bands in (Chl-a+-Chl-a) FTIR DS, the presence of multiple derivative features in the isotope 

edited FTIR DDS, spanning a broad frequency region, is readily understood. 

To help visualize this (Chl-a+-Chl-a) IR DS for Chl-a4 and Chl-a5 in THF was calculated, 

in which the three 134 methyl hydrogen atoms are either unlabeled or deuterated (Figure 5.5). 

From the unlabeled and deuterated DS (1H-2H) IR DDS was obtained (Figure 5.5). Multiple 

(four) derivative features across a broad spectral region are observed in the calculated (1H-2H) IR 

DDS. These features all show up because the anti-symmetric and symmetric modes are 

differently shifted by deuteration. In addition, the deuteration induced shifts are larger for both 

modes in the cation state compared to the neutral state. The calculated IR DDS is certainly 

reminiscent of the observations made in the (1H-2H) (P700
+-P700) FTIR DDS presented previously 

[71]. Off course P700 is dimeric, so one could expect even more than four derivative features to 
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be observed in the experimental DDS, and this is clearly found to be the case in the previously 

presented isotope edited DDS [71]. Thus the new band assignment hypothesis can also 

reasonably explain some hitherto incomprehensible experimental results. 

 

Figure 5.5: Calculated (Chl-a4
+-Chl-a4) (Top) and (Chl-a5

+-Chl-a5) IR DS (bottom) for unlabeled (1H, dotted) and 
deuterated (2H, solid line) Chl-a in THF. For the 2H labeled molecule it is only the 134 methyl hydrogen atoms 
that have been deuterated. Results obtained by subtracting the unlabeled from the labeled spectrum (referred to 
as a (1H-2H) IR DDS) are also shown. 

All of the experimental data for Chl-a in solvent, for pyroChl-a in solvent, and for (P700
+-

P700) FTIR DS, for P700 with specifically labeled Chl-a, can be explained using the proposed set 

of band assignments. Any other model necessarily has to infer some sort of sample heterogeneity 

to explain all of the data. The fact that the proposed band assignments can explain several 

disparate experimental results is strong support for its validity. The implications of the proposed 

model on the interpretation of “cation minus neutral” FTIR DS obtained for many different types 

of photosynthetic complexes will be investigated in the future. 
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The new assignments presented here have implications beyond the realms of FTIR 

studies of photosynthetic systems. With knowledge that the vibrational frequency calculations on 

Chl-a do in fact correctly describe experimental data, the applicability of these computational 

methods for the evaluation of other chemical properties of Chl-a, such as electron affinities and 

ionization potentials, and hence cofactor redox potentials can be validated. 

5.4 Conclusions 

New assignments for some of the bands in electrochemically generated (Chl-a+-Chl-a) 

FTIR DS has been proposed. A difference band that was previously assigned to a cation induced 

up-shift of a pure 131 keto C=O mode is shown to be due to a mode that is the anti-symmetrically 

coupled vibration of both the 131 and 133 ester C=O modes. This coupled anti-symmetric dual 

C=O vibration still up-shifts upon cation formation, and still decreases in intensity. 

A difference band that was previously assigned to a cation induced up-shift of a pure 133 

ester C=O mode is shown to be due to a mode that is the symmetrically coupled vibration of both 

the 131 and 133 ester C=O modes. This coupled symmetric C=O vibration still up-shifts upon 

cation formation, but actually increases slightly in intensity. 

These new assignments allow a new rationalization of some previously very puzzling 

experimental (P700
+-P700) FTIR DS. 
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CHAPTER 6 

CALCULATION OF THE VIBRATIONAL PROPERTIES OF CHLOROPHYLL-A IN 

SOLUTION: COMPARISON OF POLARIZABLE CONTINUUM METHODS WITH QM/MM 

METHODS USING EXPLICIT SOLVENT MOLECULES.  

6.1 Introduction 

Chlorophylls (Chl) play a vital role in electron transfer process in photosynthesis [33]. In 

photosynthetic reaction centers of plants and bacteria, electron transfer leads to one electron 

oxidation of a special pair of chlorophyll/bacteriochlorophyll pigments (known as the primary 

electron donor). To understand the mechanism of charge separation in these primary donor 

species, spectroscopic techniques such as fourier transform infrared (FTIR) difference 

spectroscopy (DS) has been used [101]. FTIR spectroscopy can be used to probe both neutral and 

radical forms and changes in the frequencies of the vibrational bands upon radical pair formation 

provides valuable information on the electronic state as well as the structure including the 

protein-pigment interactions upon oxidation or reduction (see Chapter 1 for details). The primary 

electron donor in photosystem I (PS I) is a dimeric Chlorophyll-a/Chlorophyll-a’ (Chl-a/Chl-a’) 

species called P700 [6]. (P700
+-P700) FTIR difference spectra (DS) have been obtained under 

various conditions, for PS I particles from different strains, to particles with site directed 

mutations near the P700 and A0 Chl’s, to specifically isotope labeled PS I particles [54, 74, 76] 

(see Chapters 2 ,3and 4). From these studies controversy persists concerning the interpretation of 

bands in (P700
+-P700) FTIR DS. One of the aims of our computational research in photosynthesis 

is to simulate the vibrational properties of P700 in the cation and neutral state in order to assist in 

the assignments of FTIR difference bands observed in experimental spectra. 
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An in depth understanding of the in vitro vibrational properties of Chl-a in both the 

neutral and cation state is the first step in our quest to understand (P700
+-P700) FTIR DS 

quantitatively. 

With this goal in mind density functional theory (DFT) based vibrational mode frequency 

calculations for several Chl-a model structures in the gas phase as well as in different solvents 

were undertaken [79] (See Chapter 5). Solvents were modeled using the Polarizable Continuum 

Model (PCM). In PCM calculations the solvent is modeled as a dielectric continuum. The 

calculated (Chl-a+-Chl-a) IR DS of Chl-a in solvents, obtained using the PCM model, bear 

remarkable similarity to the corresponding experimental spectra [79] (See Chapter 5). The mode 

compositions of the carbonyl groups of Chl-a in the calculated spectra, however, are very 

different from the experimentally assigned mode compositions. Based on these solvent 

calculations new band assignments were proposed for some of the bands in electrochemically 

generated (Chl-a+-Chl-a) FTIR DS [79]. Here our vibrational frequency studies of Chl-a are 

extended to explicitly include solvent molecules using Quantum Mechanical/Molecular 

Mechanics methods (QM/MM) and a comparison of the two solvation models is presented. 

6.2 Materials and Methods 

All vibrational frequency calculations were performed using Gaussian03 software, 

Revision D.01 [87]. The starting coordinates for the chlorophyll structures were obtained from 

the crystal structure of PS I [6]. Specifically, the CL11021 pigment which constitutes one of the 

chlorophylls of the P700 dimer was used. All atoms were included, except the phytyl chain was 

truncated at 174 position with a methyl group. This model contains 82 atoms. The structure 

starting from the crystal structure was fully geometry optimized at B3LYP/6-31G(d) level in the 
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gas phase. The fully geometry optimized gas phase structure was used as the starting geometry 

for QM/MM calculations, including solvents. 

The (Chl-a+-Chl-a) experimental FTIR DS has been obtained in THF [64] and the intent 

is to be able to simulate the spectra using DFT based vibrational frequency calculations. 

the real system contains all the atoms, Chl-a and the solvent molecules in this case, and is 

calculated only at the MM level. The model system contains only the Chl-a pigment that is 

treated at the QM level. To evaluate the ONIOM energy, both QM and MM calculations need to 

be carried out for the Chl-a pigment [116].Thus by treating only the pigment of interest at the 

6.2.1 QM/MM Method 

The QM/MM method models the solvent effect by including the actual solvent molecules 

around the pigment of interest. Here two solvents were considered, with dielectric constants in 

the range of the overall dielectric of the photosynthetic protein complexes, CCl4 (ε =2.228) and 

THF (ε = 7.58). For the QM/MM calculations,70 THF molecules and 96 CCl4 solvent molecules 

were added around the Chl-a molecule, using the solvent cluster utility in the VegaZZ program 

[108]. The model, including the pigment and solvent molecules, was fully geometry optimized 

using a two-level ONIOM (our Own N-layer Integrated molecular Orbital molecular Mechanics) 

method as implemented in Gaussian03 [109-116]. 

The ONIOM method treats the pigment(s) of interest at the quantum mechanical (QM) 

level and includes the influence of the surroundings (e.g. solvent molecules) at the molecular 

mechanical (MM) level and is one of the many QM/MM methods available. In a two layer 

ONIOM calculation, the total energy of the system is obtained from three independent 

calculations: 

𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 (𝑄𝑄𝑂𝑂:𝑂𝑂𝑂𝑂) = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑄𝑄𝑂𝑂 + 𝐸𝐸𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚𝑂𝑂𝑂𝑂 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂𝑂𝑂 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

ℎ𝑖𝑖𝑖𝑖ℎ + 𝐸𝐸𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙  
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QM level the computational expense of the calculation is reduced to a large extent. Because of 

the favorable computational cost of the QM/MM methods they are increasingly used to model 

large molecules in the presence of solvents or proteins [117]. 

The ONIOM scheme can be divided into two groups, mechanical embedding (ME) and 

electrostatic embedding (EE) depending on the treatment of the electrostatic interaction between 

the pigment of interest (QM level) and the solvent molecules (MM level) [118]. The electrostatic 

embedding scheme in ONIOM method was used in the calculations presented here. In this 

method, the partial charges from the MM region (solvent) are included in the QM Hamiltonian. 

Thus a more accurate description of the electrostatic interaction between the layers is obtained 

[117, 119, 120]. 

The Chl-a pigment at the higher level calculation was treated using DFT (B3LYP/6-

31G(d)) while the solvent was treated using AMBER. The AMBER force field parameters for 

the solvents were derived using the Antechamber program [121, 122]. For chlorophyll, the ab 

initio force field developed for chlorophyll cofactors were used [123, 124], which is 

parameterized to reproduce density functional theory vibrational modes. 

6.2.2 Polarizable Continuum Model 

The Polarizable Continuum Model (PCM) is one of the most frequently used methods to 

model the effect of solvent. In this method the solvent is treated as a continuum of dielectric 

constant ε and the pigment of interest is placed in a cavity within the solvent [92]. Here the 

Integral Equation Formalism (IEF) method of the PCM was used [87]. Geometry optimization 

and vibrational frequency calculation of Chl-a were performed in two different solvents of 

dielectric constants 2.228 (CCl4) and 7.58 (THF). The calculated vibrational mode frequencies 

were compared to the corresponding calculations using QM/MM methods. 
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6.3 Results and Discussion 

Figure 6.1(a) shows the structure and IUPAC numbering scheme for Chl-a. Figure 6.1(b) 

shows the geometry optimized structure model for Chl-a used in the calculations. The 

coordinates for the Chl-a molecule was obtained from the crystal structure of PS I [6]. The 

phytyl chain in the model was replaced by a methyl group at the 174 position. Figure 6.2 shows 

the geometry optimized structure of neutral Chl-a using QM/MM methods. 

 

Figure 6.1: (a) Structure and IUPAC numbering scheme for Chl-a. (b) The geometry optimized (gas phase) model 
molecular structure of Chl-a used in this study. The phytyl chain following the 173 ester oxygen was replaced 
with a methyl group in the model. No other atoms were deleted. 

The fully geometry optimized structure of neutral Chl-a using QM/MM methods is 

shown in Figure 6.2. The principle bond distances for Chl-a in the neutral and cation states (in 

parenthesis) obtained after geometry optimization in the gas phase and in different solvents is 

presented in Table 6.1. Small changes in bond length are observed upon geometry optimization 

in the presence of solvents. Also small but significant changes are observed for bonds in the 

cation state compared to the neutral state. Of particular significance is the decrease in the C13
1=O 

bond length upon cation formation in all the calculations. This group is an important marker used 

6.3.1 Geometry Optimization 
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in FTIR difference spectroscopy studies of P700 where the frequency of the intense C=O 

stretching mode has been used to monitor oxidation and reduction of the primary electron donor 

[101]. 

  
Figure 6.2: Geometry optimized structure of Chl-a using the QM/MM method (a) Chl-a in CCl4 and (b) Chl-a in THF. The 

phytyl chain following the 173 ester oxygen was replaced with a methyl group in both models. In a/b 74/96 
CCl4/THF molecules were used. 

Table 6.1: Selected optimized bond lengths (in Å) for Chl-a models in the neutral and cation (in parenthesis) states. 

 Chl-a 
(GasPhase) 

Chl-a in CCl4 
(PCM) 

Chl-a in CCl4 
(QM/MM) 

Chl-a in THF 
(PCM) 

Chl-a in THF 
(QM/MM) 

Mg-N21 2.031 (2.024) 2.035 (2.027) 2.035 (2.025) 2.038 (2.032) 2.029 (2.025) 
Mg-N22 2.073 (2.067) 2.077 (2.072) 2.069 (2.066) 2.082 (2.076) 2.066 (2.067) 
Mg-N23 2.018 (2.013) 2.022 (2.017) 2.015 (2.011) 2.027 (2.022) 2.017 (2.014) 
Mg-N24 2.150 (2.138) 2.154 (2.141) 2.139 (2.129) 2.157 (2.144) 2.143 (2.132) 
C1-C2 1.450 (1.463) 1.452 (1.464) 1.450 (1.462) 1.454 (1.466) 1.450 (1.462) 
C2-C3 1.380 (1.372) 1.380 (1.373) 1.381 (1.373) 1.380 (1.372) 1.382 (1.372) 
C3-C4 1.463 (1.476) 1.464 (1.477) 1.461 (1.476) 1.466 (1.478) 1.460 (1.472) 
C1-N21 1.363 (1.371) 1.362 (1.371) 1.363 (1.371) 1.362 (1.370) 1.363 (1.373) 
N21-C4 1.381 (1.370) 1.381 (1.366) 1.380 (1.369) 1.379 (1.364) 1.382 (1.365) 
C4-C5 1.391 (1.401) 1.392 (1.404) 1.390 (1.401) 1.392 (1.406) 1.389 (1.403) 
C5-C6 1.412 (1.402) 1.414 (1.401) 1.410 (1.401) 1.415 (1.400) 1.412 (1.398) 
C6-N22 1.365 (1.370) 1.364 (1.370) 1.363 (1.368) 1.363 (1.369) 1.365 (1.372) 
N22-C9 1.379 (1.370) 1.379 (1.368) 1.378 (1.370) 1.380 (1.366) 1.380 (1.369) 
C9-C10 1.404 (1.410) 1.404 (1.412) 1.403 (1.410) 1.403 (1.414) 1.403 (1.413) 
C10-C11 1.399 (1.394) 1.401 (1.393) 1.399 (1.394) 1.403 (1.393) 1.399 (1.390) 
C11-N23 1.394 (1.383) 1.394 (1.382) 1.393 (1.382) 1.394 (1.382) 1.397 (1.387) 
N23-C14 1.336 (1.341) 1.335 (1.339) 1.334 (1.339) 1.333 (1.336) 1.336 (1.337) 
C14-C15 1.413 (1.403) 1.415 (1.405) 1.415 (1.402) 1.416 (1.407) 1.413 (1.406) 
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C15-C16 1.381 (1.393) 1.381 (1.392) 1.381 (1.391) 1.381 (1.391) 1.380 (1.384) 
C16-N24 1.377 (1.378) 1.376 (1.377) 1.378 (1.376) 1.376 (1.377) 1.377 (1.383) 
N24-C19 1.358 (1.357) 1.357 (1.354) 1.358 (1.357) 1.355 (1.352) 1.358 (1.349) 
C19-C20 1.390 (1.402) 1.392 (1.405) 1.390 (1.402) 1.394 (1.407) 1.389 (1.407) 
C20-C1 1.410 (1.398) 1.411 (1.397) 1.410 (1.398) 1.411 (1.397) 1.410 (1.391) 
C13

1-O 1.215 (1.208) 1.218 (1.211) 1.214 (1.208) 1.221 (1.213) 1.217 (1.209) 
C13

3-O 1.214 (1.214) 1.215 (1.215) 1.214 (1.214) 1.216 (1.216) 1.215 (1.215) 
C17

3-O 1.212 (1.210) 1.214 (1.213) 1.212 (1.212) 1.217 (1.215) 1.211 (1.213) 
 

Table 6.2: Calculated frequencies and intensities for the different carbonyl modes of Chl-a and Chl-a+ in the gas phase and in 
solvents. 

6.3.2 Calculated Vibrational Frequencies 

The changes in the harmonic frequencies and intensity of all the three C=O groups of 

Chl-a in different solvents are listed in Table 6.2. The Chl-a model used here has 82 atoms and 

displays 240 normal modes of vibration. Most of these modes are very low intensity and are 

undetectable in calculated IR absorption spectra. On the contrary, the C=O groups of Chl-a gives 

intense modes of vibration and can be used to monitor the electronic structure in the neutral and 

cation states. 

The cation induced frequency shift of the modes for each calculation is also shown along with the mode intensity change (in %) 
in parenthesis. 

Mode Chl-a 
ν(I) 

Chl-a+ 
ν(I) 

Shift 
∆ν(∆I) 

ν(173 C=O) 
gas phase 
CCl4(PCM) 
CCl4 (QM/MM) 
THF (PCM) 
THF(QM/MM) 

 
1829(235) 
1813(287) 
1828(170) 
1799(276) 
1836(302) 

 
1836(213) 
1819(217) 
1826(187) 
1804(520) 
1821(219) 

 
7(-10%) 
6(-27%) 
-2(10%) 
5(61%) 

-15(-32%) 
ν(131 and 133 C=O) s 
gas phase 
CCl4(PCM) 
CCl4 (QM/MM) 
THF (PCM) 
THF(QM/MM) 

 
1812(129) 
1804(126) 
1816(160) 
1796(255) 
1815(63) 

 
1830(397) 
1817(568) 
1836(354) 
1806(336) 
1834(485) 

 
18(102%) 
13(127%) 
20(75%) 
10(27%) 

18(154%) 
ν(131 and 133 C=O) as 
gas phase 
CCl4(PCM) 
CCl4 (QM/MM 
THF (PCM) 
THF(QM/MM) 

 
1801(719) 

1785(1142) 
1807(687) 

1767(1637) 
1798(985) 

 
1805(215) 
1798(385) 
1814(205) 
1790(771) 
1796(123) 

 
4(-108%) 
13(-99%) 
7(-108%) 
23(-72%) 
-2(-156%) 



 

 

123 

 

6.3.2.1 Gas Phase Calculations 

Figure 6.3(a) shows calculated IR difference spectrum (cation minus neutral) for Chl-a in 

the gas phase. Figure 6.3(b) shows the electrochemically generated (Chl-a+-Chl-a) FTIR DS for 

Chl-a in tetrahydrofuran (THF) for comparison [64].Electrochemically generated (Chl-a+-Chl-a) 

FTIR DS has been obtained only for Chl-a in THF. FTIR DS for Chl-a in no other solvent has 

been reported, mainly because most other solvents absorb infrared radiation strongly in the 1800-

1600 cm-1 region. 

  
Figure 6.3: (a) Calculated ‘cation minus neutral’ IR DS for Chl-a in the gas phase. (b)Electrochemically generated (Chl-a+-

Chl-a) FTIR DS for Chl-a in THF. 

The calculated Chl-a spectrum in the gas phase has a different overall profile compared 

to the experimental spectrum. Also the mode compositions are different to that suggested from 

the experiment [64]. In Figure 6.3(b), the 1693 cm-1 band was assigned to the 131 keto C=O 

mode of neutral Chl-a, which up-shifts 27 cm-1 upon cation formation. The 1738 cm-1 band was 

assigned to the 133 ester C=O mode of neutral Chl-a, which up-shifts 12 cm-1 upon cation 

formation (See Chapter 5). These assignments were based on comparison with electrochemically 

generated cation minus neutral FTIR DS for Chl-a and pyroChl-a, which lacks the 133 ester C=O 

group [64]. In the (pyroChl-a+-pyroChl-a) FTIR DS only a single negative band is found at 1686 

cm-1, which up-shifts to 1712cm-1 upon cation formation. The suggestion is that the 1738(-
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)/1751(+) cm-1 difference band that is present in the (Chl-a+-Chl-a) FTIR DS but not in the 

(pyroChl-a+-pyroChl-a) FTIR DS has to be due to the 133 ester C=O group. The calculated 

vibrational modes of Chl-a in the gas phase show strong coupling between the 131 keto and 133 

ester C=O groups in both neutral and cation states. Since pyroChl-a lacks the 133ester C=O 

group, if there is a complicated coupling between the 131 and 133 ester C=O groups as suggested 

by the gas phase calculations, the comparison of spectra of pyroChl-a and Chl-a for the 

assignment of the bands in the latter DS spectra is problematic. 

6.3.2.2 Solvent Calculations Using Polarizable Continuum Model 

The calculated IR difference spectra of Chl-a in the gas phase has a very different overall 

profile compared to the experimental (Chl-a+-Chl-a) FTIR DS in THF. Also the observed 

vibrational mode compositions of the difference band are very different from the proposed band 

assignments for the experimental (Chl-a+-Chl-a) FTIR DS. The assumption was that the lack of 

consideration of solvent effects could be the reason for the disagreement between the calculated 

and experimental spectra. Therefore, vibrational frequency calculations for Chl-a model in the 

presence of various solvents, including CCl4, THF and H2O were undertaken using the PCM 

model to further investigate the discrepancies between the calculated and experimental Chl-a IR 

DS [79]. THF is the only solvent in which experimental (Chl-a+-Chl-a) FTIR DS have been 

obtained. However, for completeness, the vibrational frequencies calculated for Chl-a in CCl4 is 

also included in the discussion. The calculated IR DS spectra of Chl-a in the presence of CCl4 

and THF using the PCM model is presented in Figure 6.4. 

Figure 6.4 clearly shows that the calculated cation minus neutral IR DS for Chl-a in the 

solvents is very different from the corresponding IR DS in the gas phase. However, comparing 

the calculated cation minus neutral IR DS in solvents with the electrochemically generated (Chl-
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a+-Chl-a) FTIR DS, it is clear there is considerable similarity in the overall shape of the spectra 

as found previously (see Chapter 5). However, the mode compositions associated with the bands 

in the calculated spectra in solvents are similar to the gas phase calculations, where a strong 

coupling is observed between the 131 keto and 133 ester C=O modes both in the neutral and 

cation states. On the basis of these calculations a new set of assignments for the bands in the 

experimental (Chl-a+-Chl-a) FTIR DS in Figure 6.3(b) was proposed [79]. 

  
Figure 6.4: (a) Calculated ‘cation minus neutral’ IR DS for Chl-a in CCl4 obtained using PCM method. (b). Corresponding 

IR DS for Chl-a in THF. The calculated gas phase IR DS (dotted line) is also shown for comparison. 

Upon comparison of calculated IR DS in Figure 6.4 to the experimental (Chl-a+-Chl-a) 

FTIR DS in Figure 6.3(b), the suggestion is that the calculated difference band at 1798(+)/1785(-

) or 1790(+)/1767(-) cm-1 for Chl-a in CCl4 or THF respectively, corresponds to the experimental 

difference band at 1718(+)/1693(-) cm-1. The calculated negative band at 1785 or 1767 cm-1 is 

due to the anti-symmetrically coupled vibration of the 131 keto and 133ester C=O groups of Chl-

a. This band up-shifts 13 or 23 cm-1 and decreases in intensity by 99 or 72% upon cation 

formation, respectively (see Table 6.2). Therefore the 1693 cm-1 band in the experimental 

spectrum (Figure 6.3(b)) was assigned to the anti-symmetric vibration of the 131 keto and 133 
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ester C=O groups, which up shifts 25 cm-1 upon cation formation and decreases considerably in 

intensity as described previously in Chapter 5. 

The calculated difference band at 1817(+)/1804(-) or 1806(+)/1796(-) cm-1 for Chl-a in 

CCl4 or THF respectively, corresponds to the experimental difference band at 1751(+)/1738(-) 

cm-1 (Figures 6.4 and 6.3(b)). For Chl-a in CCl4/THF the negative band at 1804/1796 cm-1 is due 

to the symmetrically coupled vibration of the 131 keto and 133ester C=O groups of Chl-a , 

respectively. This band up-shifts 13/10 cm-1 upon cation formation (see Table 6.2). Therefore, 

the 1738 cm-1 band in the experimental spectrum in Figure 6.3(b) is assigned to the symmetric 

vibration of the 131 keto and 133 ester C=O groups, which up-shifts 13 cm-1 upon cation 

formation. The calculations indicate that the symmetrically coupled vibration of 131 keto and 133 

ester C=O group increases in intensity by 127%/27% in CCl4/THF respectively. The 

experimental data, on the other hand, suggests a decrease in intensity of the mode upon cation 

formation. The overall profile of the calculated spectra is similar to the experimental spectra 

however, because of the overlapping bands associated with the 173 ester C=O modes. Thus the 

difference spectra calculated with solvent effects included, clearly leads to a more accurate 

simulation of experimental FTIR DS compared to calculations in the gas phase. 

The overall similarity in spectral profile between the calculated and experimental spectra 

for Chl-a in solvent could be viewed as somewhat fortuitous. Also, the use of polarizable 

continuum methods to model the solvent effects has limitations in the sense that they do not 

model possible axial ligands or hydrogen bonds to Chl-a molecule. Hence in order to include the 

effect of these possible interactions, on the vibrational modes of Chl-a, vibrational frequency 

calculations were performed in the presence of real solvent molecules. 
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6.3.2.3 Solvent Calculations Using QM/MM Method 

                             

Figure 6.5: Structure of solvent molecules used in QM/MM method. (a) CCl4 and (b) THF 

Figure 6.2 shows the optimized geometry of the Chl-a molecule in the presence of CCl4 

and THF solvents using QM/MM methods. For the calculation of Chl-a in CCl4, 96 molecules of 

the solvent were introduced around the pigment while for the calculation in THF, 70 molecules 

of the solvent were introduced. Figure 6.5 shows the structure of the solvent molecules, CCl4 and 

THF, used in the calculations. The details of the computational method are presented in section 

6.2.1. 

Figures 6.6 and 6.7 show calculated IR absorption spectra for Chl-a and Chl-a+ in CCl4 

and THF, respectively, obtained using QM/MM methods. The calculated cation minus neutral IR 

DS are also shown in the figures. Also shown in Figures 6.6 and 6.7, are the calculated IR 

absorption spectra of Chl-a and Chl-a+ in the gas phase along with the cation minus neutral IR 

difference spectra (dotted lines). 

The harmonic vibrational mode frequencies and intensities associated with the C=O 

modes of Chl-a and Chl-a+ in CCl4 and THF are listed in Table 6.2. The vibrational frequencies 

have not been scaled as we are interested in only the frequency differences induced by cation 

formation. 
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Figure 6.6: Calculated IR absorption spectra for Chl-a (top) and Chl-a+ (middle) in CCl4 obtained using QM/MM method. 
The cation minus neutral IR DS is also shown (bottom). The gas phase IR absorption spectra for Chl-a and Chl-
a+ along with the DS (dotted line) is also shown for comparison. 

 

Figure 6.7: Calculated IR absorption spectra for Chl-a (top) and Chl-a+ (middle) in THF obtained using QM/MM method. 
The cation minus neutral IR DS is also shown (bottom). The gas phase IR absorption spectra for Chl-a and Chl-
a+ along with the DS (dotted line) is also shown for comparison. 
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6.3.2.4 173 Ester C=O Mode 

          

          

           

Figure 6.8: Atomic displacements of the 173 ester C=O group vibrational modes in the gas phase, CCl4 and THF for the 
neutral and cation states. The length of the arrow is representative of the magnitude of the movement of the 
atom upon vibration. 

For Chl-a in the gas phase the 173 ester C=O mode up-shifts ~7 cm-1 and decreases 

slightly in intensity upon cation formation. This mode is pure C=O vibration in both the neutral 
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and cation states (Figure 6.8). For Chl-a in CCl4/THF in the explicit solvent model, the 

frequency of the mode down-shifts upon cation formation by ~2/15 cm-1, respectively. The 

intensity of the mode slightly increases in CCl4, while it decreases in THF. In CCl4 the 173 ester 

C=O vibration has some mixing with the 131 keto and 133 C=O modes in the cation state. For 

Chl-a in THF the 173 ester C=O mode is coupled to the 131 keto and 133 ester C=O modes both 

in the neutral and cation states (Figure 6.8). 

6.3.2.5 131 Keto and 133 Ester C=O Modes 

For Chl-a in the gas phase, the 131 keto and 133 ester C=O group vibrations are 

symmetrically/anti-symmetrically coupled for both neutral and cation state. In the neutral state 

the symmetrically coupled 131 keto and 133ester C=O mode absorbs at 1812 cm-1. Upon cation 

formation, this mode up-shift ~18 cm-1 and increases in intensity by 102%. In the cation state the 

mode is mostly due to 131 keto C=O group vibration and is slightly coupled to 133 ester C=O 

group (symmetrically) and 173 ester C=O group (anti-symmetrically) vibrations (Figure 6.9). 

For Chl-a in explicit CCl4, in the neutral state, the symmetrically coupled vibration of 131 

keto and 133 ester C=O groups absorb at 1816 cm-1. Upon cation formation the band up-shift by 

~ 20cm-1 and absorbs at 1836 cm-1 .In the cation state this mode is mostly due to the 131 keto 

C=O group vibration and is slightly coupled (symmetrically) with the 133 ester C=O vibration 

(Figure 6.9). The intensity of the band increases by 75% upon cation formation. 

For Chl-a in THF, the 131 keto and 133 vibrations are coupled to the 173 ester C=O group 

vibration both in the neutral and cation states. In the neutral state, the symmetrically coupled 131 

keto and 133 ester vibrational mode absorbs at 1815 cm-1. This vibrational mode is also 

symmetrically coupled to the 173 ester C=O mode (Figure 6.9). 
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Figure 6.9: Atomic displacements of the symmetrically coupled 131 keto and 133 ester C=O group vibrational modes in the 
gas phase, CCl4 and THF for the neutral and cation states. The length of the arrow is representative of the 
magnitude of the movement of the atom upon vibration. 

Upon cation formation, the symmetrically coupled 131 keto and 133ester mode vibration 

up-shift ~18 cm-1 and absorbs at 1834 cm-1. The intensity of the mode increases by 154% upon 

cation formation. In the cation state the vibrational mode is mostly due to 131 keto C=O group 
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and is slightly coupled to 133 ester C=O group (symmetrically) and 173 ester C=O group (anti-

symmetrically) vibration (Figure 6.9). 

For Chl-a in gas phase, in the neutral state, the anti-symmetrically coupled 131 keto and 

133 ester C=O mode vibration absorbs at 1801 cm-1. Upon cation formation this band up-shifts 

~4 cm-1 and absorbs at 1805 cm-1. The intensity of the mode decreases by 108% upon cation 

formation. In the cation state the mode is mostly due to 133 ester C=O group vibration and is 

slightly coupled (symmetrically) to the 131 keto C=O group (Figure 6.10). 

For Chl-a in CCl4, in the neutral state, the anti-symmetrically coupled 131 keto 133 ester 

C=O mode vibration absorbs at 1807 cm-1. Upon cation formation the band up-shifts ~7 cm-1 and 

absorbs at 1814 cm-1. The intensity of the mode decreases by 108% upon cation formation. In the 

cation state the vibrational mode is mostly due to 133 ester C=O group vibration which is slightly 

coupled (anti-symmetrically) to the 131 keto and 173 ester C=O groups (Figure 6.10). 

For Chl-a in THF, in the neutral state, the anti-symmetrically coupled 131 keto and 133 

ester C=O mode absorbs at 1798 cm-1. This mode is also slightly coupled to the 173 ester C=O 

group vibration. Upon cation formation the anti-symmetrically coupled 131 keto and 133 ester 

C=O mode down-shifts ~2cm-1 and absorbs at 1796 cm-1. The intensity of the mode decreases by 

156% upon cation formation. In the cation state the mode is mostly due to the 133 ester C=O 

group vibration and is slightly coupled to the 131 keto C=O group (anti-symmetrically) and 173 

ester C=O group (symmetrically) vibration. 
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Figure 6.10: Atomic displacements of the anti-symmetrically coupled 131 keto and 133 ester C=O group vibrational modes 
in CCl4 and THF for the neutral and cation states. The length of the arrow is representative of the magnitude of 
the movement of the atom upon vibration. 

The down-shift of the anti-symmetrically coupled 131 keto and 133 ester C=O mode upon 

cation formation is a strange phenomenon. Table 6.1 shows that the bond length of the 131 keto 
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C=O group decreases upon cation formation while the 133 ester C=O group bond length is 

unchanged. Bond order increases/decreases with decrease/increase in bond length, making the 

bond stronger/weaker. A stronger bond absorbs at higher energy, which means the band will up-

shift upon cation formation. While on the other hand if a bond becomes weaker upon cation 

formation it down-shifts in frequency. Vibrational frequency calculations of Chl-a in THF using 

PCM model predicts a 23 cm-1up-shift in frequency upon cation formation (Table 6.2), which is 

more in line with the experimentally observed up-shift of ~25 cm-1. 

The vibrational frequency calculations of Chl-a, in the gas phase as well as in solvents, 

shows that the 131 keto and 133 ester C=O group vibrations are coupled and unique vibrations of 

either C=O groups do not exist in the neutral or cation states. Also, for both gas phase and 

QM/MM calculations, upon cation formation, the anti-symmetrically coupled C=O mode is 

dominated by 133 ester C=O vibration (Figure 6.10) while the symmetric C=O mode is 

dominated by the 131 keto C=O vibration (Figure 6.9). These results are quite different from the 

PCM calculations were the 131 keto and 133ester C=O group vibrations are strongly coupled 

both in the neutral and cation state. 

Figure 6.11 shows a comparison of the calculated cation minus neutral IR difference 

spectra of Chl-a obtained using the PCM method and QM/MM method. The calculated IR 

difference spectra of Chl-a in the gas phase (dotted line) is also shown for comparison. It is 

clearly evident from Figure 6.11 that the overall profile of the calculated IR spectra obtained 

using the QM/MM method is very similar to the gas phase spectra. The calculated vibrational 

mode compositions of the C=O groups in the QM/MM model are also very similar to the gas 

phase calculation. The fact that the calculated IR DS of Chl-a in the presence of explicit solvent 

molecules is almost identical to the gas phase calculations question the ability of two-level 
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ONIOM method to incorporate the solvent interactions to the pigment in calculations. Hence, at 

least for vibration frequency calculation purposes, the two-level ONIOM method is not the best 

way to study solvation effects. 

     

Figure 6.11: Comparison of the calculated ‘cation minus neutral’ IR difference spectra of Chl-a obtained using the PCM 
method and QM/MM method (a) CCl4 and (b) THF. The calculated IR difference spectra of Chl-a in the gas 
phase (dotted line) is also shown for comparison. 

The IR difference spectra obtained using the PCM on the other hand is very different 

from the spectra obtained using QM/MM model. Also, comparing the calculated (PCM) cation 

minus neutral IR DS with the electrochemically generated (Chl-a+-Chl-a) FTIR DS in Figure 

6.3(b), it is clear there is considerable similarity in the overall shape of the spectra. 

The effect of the dielectric environment on the Eox of Chl-a was investigated by 

calculating the relative energy of Chl-a in different solvents, in the neutral and cation states, 

6.3.3 Calculated Redox Properties 

The oxidation potential (Eox) of the primary electron donor, P700, in PS I is extremely low 

(~ 440 mV) compared to the Eox values of isolated Chl-a in organic solvents (~740-930 mV) [10, 

125-130]. It is also known that the local dielectric constant in the photosynthetic protein is 

usually in the 2-7 range [96, 97, 131-134]  
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using QM/MM as well as PCM methods. The ionization potential (IP) of Chl-a in each solvent 

(dielectric medium) was estimated as the difference in electronic energy (Eelec) between Chl-a 

and Chl-a+. The oxidation potential was estimated from the IP of Chl-a by the equation, 

EOX = IP − 4.43 

where the factor 4.43eV is an estimate of the potential of the standard hydrogen electrode [135]. 

The calculated electronic energies, IP’s and redox potential values for Chl-a using QM/MM and 

PCM methods are presented in Table 6.3. 

The calculated IP of Chl-a in the gas phase is ~ 6.0 eV. The electronic energies used here 

are obtained from the geometry optimization calculations at the B3LYP/6-31G(d) or B3LYP/6-

31G(d)/AMBER level for Chl-a in PCM model or QM/MM model, respectively. It has been 

shown that the 6-31G(d) basis-set provides smaller Eox values (by ~ 0.28V) [136, 137]. 

Considering this, the calculated IP of ~6.0V is in good agreement with the IP of 6.23V estimated 

for Chl-a in gas phase by Hasegawa et. al. [137]. 

Redox potential calculations of Chl-a in solvent using PCM model shows that the Eox 

value decreases as the dielectric constant of the media increases (Table 6.3). The calculated Eox 

for Chl-a in various solvents using PCM methods [137] and well as the experimental values of 

the oxidation potential of Chl-a measured in various solvents [10, 125-130] support this 

observation. 

The calculated redox potential of Chl-a, using the QM/MM model, in CCl4 is ~1845mV, 

while in THF the corresponding value is ~852mV (Table 6.3). Thus, the calculated Eox of Chl-a 

is higher in CCl4 while it is significantly lower in THF (~50% lower). There is no direct 

explanation for this behavior as it is observed from experiments as well as different 
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computational studies that the redox potential of Chl-a decreases with increase in dielectric 

constant of the medium. 

Table 6.3: Calculated electronic energy of Chl-a and Chl-a+ in various solvents along with the IP’s and Eox values. 

 

The comparison of the calculated IR cation minus neutral DS and the redox properties of 

Chl-a, in different solvents, obtained using the QM/MM model and the PCM model shows that 

the latter method gives results that are closer to experiment. Also, the calculated IR DS using 

PCM model more closely resemble the experimentally observed DS, while the QM/MM 

calculated spectra are similar to the gas phase calculations. 

Vibrational frequency calculations of Chl-a in the gas phase and in solvent using various 

methods shows that unique vibrations of the 131 keto and 133 ester C=O group do not exist in the 

neutral or cation state. The 131 keto and 133 ester C=O group vibrations are symmetrically/anti-

symmetrically coupled and support the new assignments proposed for some of the bands in the 

electrochemically generated (Chl-a+-Chl-a) FTIR DS [79] (see Chapter 5). 

6.4 Conclusions 

The vibrational frequencies of Chl-a were calculated in the gas phase and in solvents 

using the PCM (at B3LYP/6-31G(d) level) as well as QM/MM (at B3LYP/6-31G(d)/AMBER 

level) methods. The calculated cation minus neutral IR difference spectra of Chl-a using PCM 

model clearly resembles the electrochemically generated (Chl-a+-Chl-a) FTIR DS. The 

calculated cation minus neutral IR difference spectra obtained using QM/MM methods, on the 

 Eelec(eV) IP(eV) Eox
cal(V)=IP-4.43 

Chl a Chl a+ 
Gas Phase -59563.26 -59557.28 5.982 1.552 
CCl4(PCM) -59563.61 -59558.26 5.353 0.9228 
CCl4(QM/MM) -59596.52 -59590.24 6.275 1.845 
THF (PCM) -59563.98 -59559.02 4.958 0.5282 
THF(QM/MM) -59558.99 -59553.71 5.282 0.8522 
H2O (PCM) -59564.33 -59559.58 4.754 0.3235 
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other hand, are very similar to the gas phase calculations. Hence, at least for the purpose of 

vibrational frequencies studies, at this level of theory, PCM model is superior to QM/MM 

methods. The comparison of the calculated redox properties of Chl-a using the two models 

shows that the results of the PCM model calculations are closer to the observed (experimental) 

values. 

The calculated vibrational frequency mode compositions for the C=O groups of Chl-a in 

the gas phase as well as the two solvation methods are very different from the experimentally 

assigned mode compositions but support the new band assignments proposed earlier [79] 

(Chapter 5) for some of the bands in electrochemically generated (Chl-a+-Chl-a) Fourier 

Transform IR (FTIR) DS. 
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CHAPTER 7 

HOW AXIAL LIGATION AND HYDROGEN BONDING IMPACT THE CALCULATED 

VIBRATIONAL MODES OF CHLOROPHYLL-A. 

7.1 Introduction 

Photosynthesis is the process in which solar energy is harvested by plants, algae and 

bacteria to produce biomass which is used for food and fuel [103]. Chlorophyll molecules 

dominate photosynthetic energy conversion as these pigments function as the primary electron 

donors and acceptors in the photosynthetic reaction centers. 

The primary reactions of photosynthesis takes place in two pigment-protein complexes, 

called photosystem I and II (PS I and PS II). The primary electron donor in the reaction center of 

PS I is called P700, which is a Chlorophyll-a/Chlorophyll-a’ hetero-dimer (Chl-a/Chl-a’). Chl-a’ 

is a 132 stereoisomer of Chl-a. The electron transfer cofactors in PS I are bound to two 

membrane spanning proteins called PsaA and PsaB. The pigments and the protein subunits 

display a partial or pseudo C2 symmetry. The Chl-a/Chl-a’ pigments of P700 are bound to 

PsaB/PsaA, and are termed PB/PA, respectively. 

The 2.5 Å crystal structure of PS I [6] shows that PA and PB are ligated by histidine 

residues. Also, the 131 keto C=O group and the bridging oxygen atom of the 133 ester C=O 

group of PA are involved in an H-bonding network with several amino acids of PsaA. The PB 

molecule of P700 is free from any such interactions. The axial ligation and peripheral H-bond 

interactions to the two Chl’s of P700 are of importance as they play a role in establishing the 

unique redox properties of P700. 

FTIR difference spectroscopy is a sensitive, molecular specific probe and (P700
+-P700) 

FTIR DS have been obtained under many sets of conditions. Unfortunately, these difference 
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spectra are poorly understood [79].The goal is to develop methods to gain a more quantitative 

understanding of these difference spectra. From this, a quantitative understanding of how 

specific molecular parameters impact the chemical properties of P700 can be obtained. 

Calculation of the vibrational properties of dimeric Chl species at a reasonable quantum 

mechanical level is still computationally prohibitive. This is not the case for single Chl-a 

molecules, however, and density functional theory (DFT) based vibrational mode frequency 

calculations for several Chl-a/Chl-a’ model structures in the gas phase as well as in different 

solvents have been undertaken [79, 80]. The calculated (Chl-a+-Chl-a) FTIR Difference Spectra 

(DS) in solvents for both Chl-a and Chl-a’ bear a remarkable similarity to the corresponding 

experimental spectra [79]. The mode compositions of the carbonyl groups of the Chl’s that give 

rise to the bands in the calculated spectra, however, are very different from that assigned 

experimentally [79]. Based on the calculations for Chl-a, Chl-a+, Chl-a’ and Chl-a’+ in various 

solvents, new assignments for the bands in experimental (Chl-a+-Chl-a) FTIR DS were proposed 

[79] (See Chapter 5 for details). 

A comprehensive understanding of the vibrational properties of the C=O modes of Chl-a 

and Chl-a’ in solvent has been gained. The goal is to extend these studies to Chl-a and Chl-a’ in 

a protein environment. 

Here the vibrational frequency studies on Chl-a/Chl-a’ models has been extended to 

include the effect of axial ligation and H-bond interactions to the Chl-a/Chl-a’ pigments. In 

addition to this it is well known that the overall dielectric constant of the environment for 

pigments in photosynthetic proteins is usually in the 2-7 range [96, 97, 131-134]. For this reason 

the vibrational properties of axially ligated and H-bonded Chl-a/Chl-a’ models were studied, in 

solvents with dielectric constant between 2.2-7.5. 
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The role and relevance of axial ligation to chlorophylls has been studied computationally 

before [81-83], and how axial ligation impacts the geometry, bond dissociation energies, 

reduction potentials and visible absorption spectra has been studied [82-85]. H-bonding is the 

most significant non bonding interaction to chlorophyll pigments in a protein environment, and 

the effect of peripheral H-bonding on electron affinity and spin density of Chl has been 

investigated. It was shown that the spin density of Chl-a+ could be regulated by peripheral H-

bonding [84]. However, no investigation of how axial ligation and peripheral H-bonding impact 

the vibrational properties of Chl-a/Chl-a’ have been undertaken. This is in spite of the fact that 

experimental FTIR DS is available for P700 with site specific mutations were the axial ligand [54] 

and the peripheral amino acid residues are modified [76, 77]. 

One aim of this study is to investigate how axial ligation and H-bonding modify the 

vibrational properties of Chl a/Chl-a’. Therefore, the vibrational mode frequencies of Chl-a/Chl-

a’ with a methyl imidazole ligand, to stimulate the histidine ligand to P700 chlorophylls in PS I, 

was calculated. The starting coordinates for these models were obtained from the PS I crystal 

structure. For Chl-a/Chl-a’ the PB/PA [CL11021/CL11011] coordinates along with their ligating 

histidine’s, HisB660/HisA680 (amino acid numbering for Thermo-synechococcus elongatus) 

were used [6]. The histidine group was modified to methyl imidazole and the phytyl chain of the 

chlorophyll molecule was replaced with a methyl group at 174 position in these models (Figure 

7.1). 

Also, it is evident from the PS I crystal structure that the 131 keto C=O group of PA (Chl-

a’) is involved in a H-bond with ThrA743 residue (See Chapter 2). This H-bonding interaction is 

modeled by considering Chl-a’ directly H-bonded to a Thr residue. In PS I the 131 keto C=O of 

PB appears to be free of H-bond interactions. The corresponding residue to ThrA743 on PsaB is 
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TyrB727. To simulate the effect of H bonding interactions to PB, the Tyr residue was changed to 

a Thr residue and the vibrational mode frequencies and intensities for this Chl-a model was 

calculated. It should be pointed out that this mutation has been made experimentally and studied 

using FTIR DS [76] (See Chapter 3 for details). The effect of H-bonding to the 131 keto C=O 

group of the Chl-a and Chl-a’ was further investigated by modeling the pigments with a H2O 

molecule in the vicinity of 131 keto C=O group. Finally the effect of axial ligation and H-

bonding is investigated by modeling Chl-a/Chl-a’ in the presence of both axial ligand and H-

bond interactions. 

7.2 Materials and Methods 

All geometry optimizations and harmonic normal mode vibrational frequency 

calculations were performed using DFT as implemented in Gaussian 03 software, revision D.01. 

[87]. Unless stated, the B3LYP functional was used in combination with the 6-31G(d) basis set. 

This has been shown to be the minimum level of theory that is required for the calculation. It has 

been shown that the radical induced frequency shifts are accurately calculated at this level of 

theory [80, 89]. To model solvent effects, the integral equation formalism (IEF) of the 

polarizable continuum model (PCM) [93] was used, as it is implemented in Gaussian 03. 

7.3 Results 

Figure 7.1(a) shows the structure and IUPAC numbering scheme of Chl-a. Figures 7.1(b) 

and (c) shows the geometry optimized structural models that were used to represent Chl-a and 

Chl-a’. Chl-a’ is a 132 stereoisomer of Chl-a. The starting coordinates for the two Chl’s of P700 

were obtained from the crystal structure of PS I [6]. In the structural models the phytyl chain is 

replaced with a methyl group at the 174 position. Both Chl-a and Chl-a’ models have 82 atoms. 

Previously, Chl-a and Chl-a’ models in which the molecular groups at positions 2, 8, 12 and 18 
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were replaced with hydrogen have been studied [79]. This model structure was called Chl-a5. 

Chl-a5 has 64 atoms and will be referred to here as Chl-a64/Chl-a’64. 

 

Figure 7.1: (a) Structure and IUPAC numbering scheme for Chl-a. (b) Chl-a and (c) Chl-a’ geometry optimized (energy 
minimized) model molecular structures used here. The model structures are identical to Chl-a/a’, except that the 
phytyl chain following the 173 ester oxygen is replaced with a methyl group. 

 

7.3.1 Effects the Peripheral Methyl Groups Have on the Vibrational Properties of Chl-a/a’ 

Figure 7.2: Calculated IR spectra for Chl-a/Chl-a64 (top) and Chl-a+/Chl-a+
64 (middle) in the gas phase. The cation minus 

neutral IR DS are also shown (bottom). 
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Calculated gas phase IR absorption spectra for Chl-a/Chl-a’ are shown in Figures 7.2/7.3, 

respectively. Spectra for the neutral and cation state, along with the “cation minus neutral” 

difference spectra (DS) are shown. Also shown for comparison (dotted) are the corresponding 

gas phase spectra for Chl-a64/Chl-a’64. 

 

Figure 7.3: Calculated IR spectra for Chl-a’/Chl-a’64(top) and Chl-a’+/Chl-a’+
64 (middle) in the gas phase. The cation minus 

neutral IR DS are also shown (bottom). 

Figure 7.4(a) shows a comparison of the calculated DS of Chl-a and Chl-a’. Figure 7.4(b) 

shows the electrochemically generated (Chl-a+-Chl-a) FTIR DS in THF. The harmonic, 

vibrational mode frequencies and intensities associated with the C=O modes of Chl-a/Chl-a’, 

Chl-a+/Chl-a’+, Chl-a64/Chl-a’64 and Chl-a+
64/Chl-a’+

64 are listed in Table 7.1. 

Figure 7.2/7.3 and the data from Table 7.1 shows that for both Chl-a and Chl-a’ the 

inclusion of methyl groups at position 2, 8, 12 and 18 causes a 1-7 cm-1 change in frequency of 

the C=O modes along with significant change in intensities. In addition, the overall shape of the 
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calculated cation minus neutral IR DS for Chl-a/Chl-a’ is very different from that of Chl-a64/Chl-

a’64 spectra. 

Table 7.1: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of Chl-a/a’, Chl-
a64/a’64, Chl-a+/a’+

 
and Chl-a+

64/a’+
64. 

The frequency shift induced by including the methyl groups of Chl-a/Chl-a’ for each calculation is shown along with the mode 
intensity change [in parenthesis (in%)]. 
 

  

Figure 7.4: (a) Comparison of calculated IR DS of Chl-a and Chl-a’ in the gas phase (b) Experimental (Chl-a+-Chl-a) FTIR 
DS in THF[64]. 

Previously it has been shown that it is more appropriate to consider the 131 keto and 133 

ester C=O modes as a coupled pair, that display symmetric and anti-symmetric vibrations [79] 

(Chapter 5). Figure 7.2/7.3 and Table 7.1 indicate that, for the neutral state of Chl-a/ Chl-a’, the 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 

ν (173 C=O) 
Chl-a 
Chl-a64 
Chl-a’ 
Chl-a’64 

 
1829 (235) 
1830 (233) 
1828 (194) 
1829 (191) 

 
1(1%) 

 
-1(2%) 

 

 
1836 (213) 
1838 (123) 
1826 (226) 
1826 (204) 

 
-2(73%) 

 
0(11%) 

 
ν (131 and 133 C=O) s  
Chl-a 
Chl-a64 
Chl-a’ 
Chl-a’64 

 
1812 (129) 
1817 (379) 
1817 (186) 
1820 (299) 

 
-5(-66%) 

 
-3(-38%) 

 

 
1830 (397) 
1837 (498) 
1831 (250) 
1837 (305) 

 
-7(-20%) 

 
-6(-18%) 

ν (131 and 133 C=O) as 
Chl-a 
Chl-a64 
Chl-a’ 
Chl-a’64 

 
1801 (719) 
1806 (496) 
1794 (652) 
1800 (566) 

 
-5(45%) 

 
-6(15%) 

 
1805 (215) 
1804 (204) 
1807 (267) 
1809 (227) 

 
1(5%) 

 
-2(18%) 
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inclusion of methyl groups increases the intensity of the anti-symmetrically coupled mode by 

45% /15%, while decreasing its frequency by 5/6 cm-1. The frequency of the anti-symmetrically 

coupled mode of Chl-a+ or Chl-a’+ are not significantly affected by inclusion of the methyl 

groups. The intensity of the anti-symmetrically coupled mode of both Chl-a+ and Chl-a’+ 

increases by 5% and 18%, respectively, upon including the methyl groups (Table 7.1). 

Different results are calculated for the symmetrically coupled 131 keto and 133 ester C=O 

mode. For the neutral state of Chl-a/ Chl-a’, inclusion of methyl groups decreases the intensity 

of the symmetrically coupled mode by 66%/38%, along with a 3-5 cm-1 decrease in frequency. 

The inclusion of methyl groups also alter the intensity and frequency of the symmetrically 

coupled mode of Chl-a+/ Chl-a’+, where the frequency and intensity decreases by 7/6 cm-1 and 

20%/18% respectively (Table 7.1). 

The inclusion of methyl groups does not affect the intensity and frequency of the 

vibrational modes of the 173 ester C=O group of Chl-a and Chl-a’. For Chl-a+ the intensity of 

mode increases 73% while the frequency of the mode decreases by 2 cm-1. For Chl-a’+ the 

intensity of mode increases 11% while the frequency of the mode remains unchanged (Table 

7.1). 

It has been pointed out previously that the calculated cation minus neutral IR DS for Chl-

a64/ Chl-a’64 displays no resemblance to electrochemically generated (Chl-a+-Chl-a) FTIR DS 

[64]. However, the calculated cation minus neutral IR DS for Chl-a/Chl-a’ does appear more 

similar in shape to electrochemically generated (Chl-a+-Chl-a) FTIR DS (Figure 7.4) [64]. This 

is in spite of the fact that the calculated spectra in Figure 7.4(a) are in the gas phase. The mode 

compositions associated with the bands in the calculated Chl-a/Chl-a’ IR spectra are in 

agreement with the  previous work, however [79]. The spectra in Figure 7.4(a) and 7.4(b) 
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indicate that, at least for simulation of FTIR DS, it is necessary to include the substituent methyl 

groups in the model Chl’s. Similarly Heimdal et. al., demonstrated that the inclusion of the 

peripheral groups in Chl models leads to a simulated visible absorption spectra that more closely 

matches experimental spectra [83]. In most previous computational studies of the properties of 

Chl-a the methyl groups are ignored, especially in studies aimed at modeling the magnetic 

spectroscopic properties of Chl-a. 

 

7.3.2 Effect of Fifth Ligand on Vibrational Modes of Chl-a/Chl-a’ 

Figure 7.5: Geometry optimized molecular structures of Chl-a and Chl-a+ in the presence of methyl imidazole that provides 
an axial ligand (a) neutral and (b) cation states. 

            

Figure 7.6: Geometry optimized molecular structures of Chl-a’ and Chl-a’+ in the presence of methyl imidazole that 
provides an axial ligand (a) neutral and (b) cation states. 
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Normal mode vibrational frequencies and intensities were calculated for Chl-a/Chl-a’ in 

the presence of methyl imidazole that provides a ligand to the central magnesium atom of the 

chlorophyll. Again, the starting geometries for the Chl-a/Chl-a’ plus imidazole [termed 

ligand+Chl-a/ligand+Chl-a’] were obtained from the PS I crystal structure using PA and 

HisA680 or PB and HisB660 [6]. The histidine residue from the crystal structure was modified to 

a methyl imidazole. The geometry optimized structures of Chl-a/Chl-a’ including the ligating 

imidazole, in the neutral and cation states, are shown in Figures 7.5 and 7.6. After optimization, 

the ligating imidazole nitrogen is ~2.20 and 2.17 Å from the central magnesium atom of Chl-

a/Chl-a’ in the neutral and cation states, respectively. This ligand bond length is in agreement 

with bond lengths reported in literature [83]. In the crystal structure of PS I the ligand bond 

length is ~2.26 Å for PA and ~2.36 Å for PB. 

The orientation of the imidazole ring with respect to the chlorin plane is significantly 

different in the geometry optimized structure of Chl-a compared to the starting geometry from 

the crystal structure. In the geometry optimized structure the imidazole ring is rotated ~ 45 

degrees (Figure 7.5), while the orientation of the imidazole ring in Chl-a’ structure remains 

virtually the same as the crystal structure (Figure 7.6). The fact that geometry optimization of the 

structure of Chl-a with the imidazole ligand leads to a ligand orientation different from the 

crystal structure is an interesting observation that may indicate the steric hindrance on the 

imidazole (histidine) ligating PB in PS I is significant in holding the pigment in place. 

The calculated IR spectra for the cation and neutral states of the models in Figures 7.5 

and 7.6, along with the corresponding cation minus neutral IR DS, are shown in Figures 7.7 and 

7.8. The solid lines in Figure 7.7/7.8 show the calculated spectra in the presence of the imidazole 

ligand. The calculated IR spectra for Chl-a/Chl-a’ are also shown (dotted) for comparison. 
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Figure 7.7: Calculated IR spectra for ligand+Chl-a/Chl-a (top) and ligand+Chl-a+/Chl-a+ (middle). The “cation minus 
neutral” IR DS are also shown (bottom).  

 

Figure 7.8: Calculated IR spectra for ligand+Chl-a’/Chl-a’ (top) and ligand+Chl-a’+/Chl-a’+ (middle). The “cation minus 
neutral” IR DS are also shown (bottom). 
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The harmonic vibrational mode frequencies and intensities associated with the C=O 

modes of ligand+Chl-a/ligand+Chl-a’, ligand+Chl-a+/ligand+Chl-a’+, Chl-a/a’ and Chl-a+/Chl-

a’+ are listed in Table 7.2. 

Figure 7.7 and Table 7.2 indicate that, for the neutral state of Chl-a, the ligand decreases 

the intensity and frequency of the anti-symmetrically coupled 131 keto and 133 ester C=O mode 

by 32% and 19 cm-1 respectively. For neutral Chl-a’ the results are quite different (Figure 7.8). 

The inclusion of the ligand causes a small increase in intensity (8%) of the anti-symmetrically 

coupled mode, and a 6 cm-1 decrease in frequency. For the cation state, Chl-a+
, the ligand 

increases the intensity of the anti-symmetrically coupled mode by 35%, while the frequency 

decreases by 21 cm-1. In the case of Chl-a’+, the differences induced by the inclusion of the 

ligand are much less pronounced, where the frequency decreases by 1 cm-1 and the intensity 

increases 21% (Table 7.2). 

Table 7.2: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of ligand+Chl-
a/a’, Chl-a/a’, ligand+Chl-a+/a’+and Chl-a+/a’+. 

The frequency shift induced by including the ligand of Chl-a/Chl-a’ for each calculation is shown along with the mode intensity 
change [in parenthesis (in%)]. 
 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
ligand+Chl-a 
Chl-a 
ligand+Chl-a’ 
Chl-a’ 

 
1828(245) 
1829(235) 
1828(201) 
1828(194) 

 
-1(4%) 

 
0(4%) 

 
1836(230) 
1836(213) 
1828(62) 

1826(226) 

 
0(8%) 

 
2(-73%) 

ν (131 and 133 C=O) s 
ligand+Chl-a 
Chl-a 
ligand+Chl-a’ 
Chl-a’ 

 
1800(480) 
1812(129) 
1817(167) 
1817(186) 

 
-12(272%) 

 
0(-10%) 

 

 
1825(424) 
1830(397) 
1827(379) 
1831(250) 

 
-5(7%) 

 
-4(52%) 

ν (131 and 133 C=O) as 
ligand+Chl-a 
Chl-a 
ligand+Chl-a’ 
Chl-a’ 

 
1782(486) 
1801(719) 
1788(706) 
1794(652) 

 
-19(-32%) 

 
-6(8%) 

 
1784(291) 
1805(215) 
1806(324) 
1807(267) 

 
-21(35%) 

 
-1(21%) 
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The frequency of the symmetrically coupled 131 keto and 133 ester C=O mode of Chl-a 

decreases by 12 cm-1 while the intensity of the mode increases by 272% in the presence of the 

ligand. In the case of Chl-a+ the frequency of the symmetrically coupled C=O mode decreases by 

5 cm-1, while the intensity of the mode increases by 7%. For Chl-a’ the symmetrically coupled 

C=O mode frequency is unaffected in the presence of the ligand while the intensity decreases by 

10%. In the cation state, Chl-a’+, the frequency of the couple mode decreases by 4 cm-1 while the 

intensity of the mode increases by 52% (Table 7.2). 

The 173 ester C=O mode vibration of Chl-a and Chl-a’ is not significantly affected by the 

presence of the ligand. The frequency of the 173 ester C=O mode is essentially unaffected for 

Chl-a’ while decreases by 1cm-1 for Chl-a. The intensity of the mode in both cases increases by 

4%. For Chl-a+ the frequency of the 173 ester C=O mode is unchanged and the intensity increase 

by 8% while for Chl-a’+
 the ligand causes a slight increase in frequency (2 cm-1) while the 

intensity is significantly reduced (73%) (Table 7.2). This significant reduction in intensity of the 

173 ester C=O mode of Chl-a’+ is due to the coupling between the 133 ester, 131 keto and 173 

ester C=O modes upon cation formation. 

The gas phase calculations of Chl-a/Chl-a’ in the presence of the axial ligand to the 

central Mg atom shows that the 131 keto and 133 ester C=O modes show symmetric and anti-

symmetric coupled vibrations. The 173 ester group vibration of Chl-a is not coupled to the 131 

keto and 133 ester C=O group vibrations in the neutral or cation state. For Chl-a’ the 173 ester 

group vibration is independent of the 131 keto and 133 ester C=O group vibrations in the neutral 

state but is strongly coupled in the cation state. Also the calculations show that effect of the axial 

ligand on the frequency and intensity of the symmetrically and anti-symmetrically coupled 131 

keto and 133 ester C=O group vibrations and the 173 ester group vibration is subtle. 
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The calculated IR spectra in the presence of ligand shows that the frequency of the anti-

symmetrically coupled 131 keto and 133 ester C=O vibration of Chl-a decrease by 10 cm-1 in 

CCl4 and 6 cm-1 in THF while the intensity increases by 1% and 7%, respectively. The frequency 

of the anti-symmetrically coupled C=O vibrations of Chl-a’ decreases by 5 cm-1 in CCl4 and 

9cm-1 in THF while the intensity increases by 7% in both cases. For Chl-a+ in CCl4 the anti-

symmetrically coupled C=O vibrations decreases in frequency by 13 cm-1 while the intensity of 

the vibration increase by 9%. For Chl-a+ in THF the anti-symmetrically coupled C=O vibrations 

7.3.3 Effect of Fifth Ligand and Dielectric Media on the Vibrational Modes of Chl-a/Chl-a’ 

The overall dielectric constant of the environment for pigments in photosynthetic proteins 

is usually in the 2-7 range [96, 97, 131-134]. For this reason the vibrational properties of axially 

ligated Chl-a/Chl-a’ models were also studied in solvents with dielectric constants of 2.228 

(CCl4) and 7.58 (THF). The Chl-a/Chl-a’ models were fully geometry optimized in the dielectric 

media, and after optimization, the ligating imidazole nitrogen is ~2.19 Å from the central 

magnesium atom in the neutral state in CCl4 and THF. For the cation state the corresponding 

distance is ~2.16 Å in both CCl4 and THF. 

The calculated IR spectra for the cation and neutral states for Chl-a/Chl-a’, along with 

the corresponding cation minus neutral IR DS in CCl4 and THF, are shown in Figures 7.9/7.10 

and 7.11/7.12, respectively. The solid lines in Figures 7.9/7.10 and 7.11/7.12 show the calculated 

spectra of ligand+Chl-a/ligand+Chl-a’ in CCl4 and THF, respectively. The calculated IR spectra 

for Chl-a/Chl-a’ in CCl4 and THF are also shown (dotted) for comparison. The harmonic 

vibrational mode frequencies and intensities associated with the C=O modes of ligand+Chl-

a/ligand+Chl-a’, ligand+Chl-a+/ligand+Chl-a’+, in the dielectric media are listed in Tables 7.3 

and 7.4. 
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decreases in frequency by 8 cm-1 while the intensity of the vibration slightly decreases. For Chl-

a’+ the anti-symmetrically coupled C=O vibrations decreases in frequency by 2 cm-1 in CCl4 and 

by 4 cm-1 in THF while the intensity of the vibration increase by 26% and 12%, respectively 

(Tables 7.3 and 7.4). 

Table 7.3: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of ligand+Chl-
a/a’, Chl-a/a’, ligand+Chl-a+/a’+and Chl-a+/a’+

 in CCl4. 

The frequency shift induced by including the ligand of Chl-a/Chl-a’ for each calculation is shown along with the mode intensity 
change [in parenthesis (in%)]. 
 
Table 7.4: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of ligand+Chl-

a/a’, Chl-a/a’, ligand+Chl-a+/a’+
 
and Chl-a+/a’+

 in THF. 

The frequency shift induced by including the ligand of Chl-a/Chl-a’ for each calculation is shown along with the mode intensity 
change [in parenthesis (in%)]. 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
ligand+Chl-a in CCl4 
Chl-a in CCl4 
ligand+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1814(300) 
1813(287) 
1814(260) 
1813(254) 

 
1(5%) 

 
1(2%) 

 
1819(268) 
1819(217) 
1815(134) 
1813(311) 

 
0(24%) 

 
2(-60%) 

ν (131 and 133 C=O) s 
ligand+Chl-a in CCl4 
Chl-a in CCl4 
ligand+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1791(249) 
1804(126) 
1806(211) 
1806(216) 

 
-13(98%) 

 
0(-2%) 

 
1813(600) 
1817(568) 
1814(422) 
1817(324) 

 
-4(6%) 

 
-3(30%) 

ν (131 and 133 C=O) as 
ligand+Chl-a in CCl4 
Chl-a in CCl4 
ligand+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1775(1148) 
1785(1142) 
1771(1116) 
1776(1047) 

 
-10(1%) 

 
-5(7%) 

 

 
1785(421) 
1798(385) 
1793(569) 
1795(451) 

 
-13(9%) 

 
-2(26%) 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
ligand+Chl-a in THF 
Chl-a in THF 
ligand+Chl-a’ in THF 
Chl-a’ in THF 

 
1800(355) 
1799(276) 
1799(334) 
1801(320) 

 
1(29%) 

 
-2(4%) 

 
1803(216) 
1804(520) 
1802(281) 
1801(414) 

 
-1(-58%) 

 
1(-32%) 

ν (131 and 133 C=O) s 
ligand+Chl-a in THF 
Chl-a in THF 
ligand+Chl-a’ in THF 
Chl-a’ in THF 

 
1788(193) 
1796(255) 
1794(276) 
1795(287) 

 
-8(-24%) 

 
-1(-4%) 

 
1801(779) 
1806(336) 
1800(463) 
1804(377) 

 
-5(132%) 

 
-4(23%) 

ν (131 and 133 C=O) as 
ligand+Chl-a in THF 
Chl-a82 in THF 
ligand+Chl-a’ in THF 
Chl-a’ in THF 

 
1761(1755) 
1767(1637) 
1751(1663) 
1760(1551) 

 
-6(7%) 

 
-9(7%) 

 
1782(764) 
1790(771) 
1778(899) 
1782(802) 

 
-8(-1%) 

 
-4(12%) 
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Figure 7.9: Calculated IR spectra for ligand+Chl-a/Chl-a (top) and ligand+Chl-a+/Chl-a+ (middle) in CCl4. The “cation 
minus neutral” IR DS are also shown (bottom). 

 

Figure 7.10: Calculated IR spectra for ligand+Chl-a’/Chl-a’ (top) and ligand+Chl-a’+/Chl-a’+ (middle) in CCl4. The “cation 
minus neutral” IR DS are also shown (bottom). 
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Figure 7.11: Calculated IR spectra for ligand+Chl-a/Chl-a (top) and ligand+Chl-a+/Chl-a+ (middle) in THF. The “cation 
minus neutral” IR DS are also shown (bottom). 

 

Figure 7.12: Calculated IR spectra for ligand+Chl-a’/Chl-a’ (top) and ligand+Chl-a’+/Chl-a’+ (middle) in THF. The “cation 
minus neutral” IR DS are also shown (bottom). 
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The frequency of the symmetrically coupled 131 keto and 133 ester C=O vibrational mode 

of Chl-a decreases by 13 cm-1 and 8 cm-1 respectively in CCl4 and THF, while the intensity 

increases by 98% in CCl4 and decreases by 24% in THF. For Chl-a+, the frequency the 

symmetrically coupled 131 keto and 133 ester C=O vibrational mode decreases by 4/5 cm-1 in 

CCl4/THF. The intensity of the mode increases 132% in THF while in CCl4 only a slight increase 

is observed. The significant increase in intensity for the symmetrically coupled 131 keto and 133 

ester C=O vibrational mode of Chl-a+ in THF can be attributed to strong coupling to the 173 ester 

C=O mode upon cation formation. For Chl-a’, inclusion of the ligand has no significant effect on 

the frequency or intensity of the symmetrically coupled 131 keto and 133 ester C=O vibrational 

mode. For Chl-a’+, the effect of the ligand is similar in both solvents were the frequency down-

shift 3-4 cm-1 while the intensity increase by 23-30% (Tables 7.3 and 7.4). 

The frequency of the 173 ester C=O mode is mostly unaffected by the ligand while a 

slight increase in intensity is observed for Chl-a/Chl-a’ in both solvents. The most significant 

change is observed for Chl-a in THF where the intensity of the mode increases by 29%. In the 

cation state of Chl-a+/Chl-a’+, again the effect of the ligand on the frequency of the 173 ester 

C=O group is negligible, though significant changes in intensity is observed. For Chl-a+
, the 

intensity increase by 24 % in CCl4 while decreases by 58% in THF. In the case of Chl-a’+ the 

intensity decreases by 60% in CCl4 and by 32% in THF (Tables 7.3 and 7.4). 

The calculations of Chl-a/Chl-a’ in solvents in the presence of the axial ligand to the 

central Mg atom shows that the 131 keto and 133 ester C=O modes show symmetric and anti-

symmetric coupled vibrations. The 173 ester group vibration of Chl-a/ Chl-a’ is not coupled to 

the 131 keto and 133 ester C=O group vibrations in the neutral state in both CCl4 and THF. In the 

cation state the 173 ester, 131 keto and 133 ester C=O groups show strong coupling for Chl-a/Chl-
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a’ in both solvents. Also the calculations in solvents show that effect of the axial ligand on the 

frequency and intensity of the symmetrically and anti-symmetrically coupled 131 keto and 133 

ester C=O group vibrations and the 173 ester group vibration is small as in the case of gas phase 

calculations. 

7.3.4 Calculated Redox Potential of ligand+Chl-a/Chl-a’ 

The ionization potential (IP) of Chl-a/Chl-a’ was calculated as described by Hasegawa et. 

al. [137] (See section 6.3.3 for details). As expected, the calculated total energy and the IP’s for 

Chl-a  and Chl-a’ are essentially the same. 

The calculated redox potential of Chl-a/Chl-a’ is significantly affected in the presence of 

ligand leading to ~ 380-400 mV decrease in the gas phase (Tables 7.14 and 7.15). The calculated 

redox potential of Chl-a/Chl-a’ is 636/621 (in CCl4) and 345/333 mV (in THF), respectively. 

The calculated redox potential of Chl-a is significantly lower than the experimental observed 

value of 800mV[138]. This decrease in redox potential can be attributed to the strong axial 

ligand. A suggestion could be that the unpaired electron of the histidine ligand stabilizes the 

charge on Chl-a+/Chl-a’+ thereby lowering the redox potential. The effect of the ligands on the 

redox potential of chlorophylls and bacteriochlorophylls has been extensively investigated by 

Heimdal et al.[83] and it was shown that the axial ligands decrease the redox potential. The 

calculated redox potential values for Chl-a are in agreement with the results of Heimdal et al. 

To investigate the effect of H-bonding interactions to the 131 keto C=O group of Chl-

a/a’, the vibrational mode frequencies and intensities were calculated in the presence of a 

threonine residue where the hydroxyl proton is < 3Å from the 131 keto C=O oxygen of Chl-

a/Chl-a’. The PS I crystal structure at 2.5Å resolutions [6] reveals that the 131 keto C=O group 

7.3.5 Effect of Thr H-bond Interactions on Vibrational Modes of Chl-a/Chl-a’ 
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of PA (Chl-a’) is involved in H-bonding with ThrA743. This H-bonding interaction is modeled 

by considering Chl-a’ directly H-bonded to ThrA743 residue, as in the X-ray crystal structure 

geometry (Figure 7.14) [6]. To simulate the effect of H bonding interactions to PB (Chl-a), the 

Tyr727 residue was changed to a Thr residue and the vibrational mode frequencies and 

intensities for the Chl-a model system was calculated (Figure 7.13). It is worth mentioning that 

this mutation has been implemented in cyanobacterial PS I particles from Synechocystis sp. PCC 

6803 and the experimental (P700
+-P700) FTIR DS is available for this mutants (See Chapter 3 for 

details). 

 

Figure 7.13: Geometry optimized molecular structures of Chl-a and Chl-a+ in the presence of a threonine residue that 
provides H-bond to the 131 keto C=O group (a) neutral and (b) cation states. 

Figures 7.13 and 7.14 show the geometry optimized structures of Thr+Chl-a/Thr+Chl-a’. 

The carboxyl and amino end of the Thr residue was truncated using a methyl group. After 

geometry optimization the H atom of the hydroxyl group of Thr residue is at a distance of 

~2.03Å and 2.15 Å from the 131 keto C=O oxygen for Chl-a in the neutral and cation state, 

respectively (Figure 7.13). For Chl-a’ the corresponding distances are 1.95Å and 2.03Å for the 

neutral and cation states, respectively (Figure 7.14). Also the angle between the 131 keto C=O 

oxygen and the hydroxyl group (Ochl-Hthr-Othr angle) is ~ 165/168° for Chl-a/Chl-a’ in the 
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neutral state, respectively. In the cation state the corresponding angles for Chl-a+/Chl-a’+ are 

~169/160°, respectively. 

 

Figure 7.14: Geometry optimized molecular structures of Chl-a’ and Chl-a’+ in the presence of a threonine residue that 
provides H-bond to the 131 keto C=O group (a) neutral and (b) cation states. 

The calculated IR spectra for the cation and neutral states of the models in Figures 7.13 

and 7.14, along with the corresponding cation minus neutral IR DS are shown in Figure 

7.15/7.16. The solid lines in Figure 7.15/7.16 show the calculated spectra in the presence of the 

H-bond provided by the threonine residue. The calculated IR spectra for Chl-a/a’ model without 

the H-bond (dotted line) are also shown for comparison. 

The harmonic vibrational mode frequencies and intensities associated with the C=O 

modes of Thr+Chl-a/Thr+Chl-a’, Thr+Chl-a+/Thr+Chl-a’+, Chl-a/a’ and Chl-a/a’+ are listed in 

Table 7.5. 
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Figure 7.15: Calculated IR spectra for Thr+Chl-a/Chl-a (top) and Thr+Chl-a+/Chl-a+ (middle) in the gas phase. The “cation 
minus neutral” IR DS are also shown (bottom). 

 

Figure 7.16: Calculated IR spectra for Thr+Chl-a’/Chl-a’ (top) and Thr+Chl-a’+/Chl-a’+ (middle) in the gas phase. The 
“cation minus neutral” IR DS are also shown (bottom). 
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Table 7.5: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of of Thr+Chl-
a/Thr+Chl-a’, Chl-a/a’, Thr+Chl-a+/Thr+Chl-a’+and Chl-a+/a’+. 

The frequency shift induced by including the Thr H-bond to Chl-a/Chl-a’ for each calculation is shown along with the mode 
intensity change [in parenthesis (in%)]. 
 

The calculated IR spectra in the presence of Thr H-bond shows that the frequency of the 

anti-symmetrically coupled 131 keto and 133 ester C=O vibration of Chl-a/Chl-a’ decrease by 

34/38 cm-1 while the intensity increases by 77%/72%. For Chl-a+ the frequency of the anti-

symmetrically coupled C=O vibrations is unaffected while the intensity increases by 286%. For 

Chl-a’+ on the other hand the frequency of the anti-symmetrically coupled C=O group decreases 

by 13 cm-1 while the intensity of the vibration increase by 107% (Table 7.5). 

The effect of the Thr H-bond on the symmetrically coupled 131 keto and 133 ester C=O 

vibration of Chl-a/Chl-a’ is moderate compared to the effect on asymmetrically coupled modes. 

The frequency of Chl-a/Chl-a’ decreases by 1/4 cm-1 in the presence of the Thr H-bond while the 

intensity decreases by 4%/14%. For the cation state of Chl-a+/Chl-a’+ the frequency decreases by 

22/11 cm-1 while the intensity decreases by 83%/8%. The decrease in intensity of the 

symmetrically coupled 131 keto and 133 ester C=O vibrational modes is opposite to what is 

observed for the anti-symmetrically coupled modes where the intensities increased significantly 

in the presence of the Thr H-bond (Table 7.5). 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
Thr+Chl-a 
Chl-a 
Thr+Chl-a’ 
Chl-a’ 

 
1829(242) 
1829(235) 
1826(180) 
1828(194) 

 
0(3%) 

 
-2(-7%) 

 
1836(230) 
1836(213) 
1824(151) 
1826(226) 

 
0(8%) 

 
-2(33%) 

ν (131 and 133 C=O) s 
Thr+Chl-a 
Chl-a 
Thr+Chl-a’ 
Chl-a’ 

 
1811(124) 
1812(129) 
1813(160) 
1817(186) 

 
-1(-4%) 

 
-4(-14%) 

 
1808(67) 

1830(397) 
1820(229) 
1831(250) 

 
-22(-83%) 

 
-11(-8%) 

ν (131 and 133 C=O) as 
Thr+Chl-a 
Chl-a 
Thr+Chl-a’ 
Chl-a’ 

 
1767(1272) 
1801(719) 

1756(1119) 
1794(652) 

 
-34(77%) 

 
-38(72%) 

 
1805(829) 
1805(215) 
1794(554) 
1807(267) 

 
0(286%) 

 
-13(107%) 
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The frequency and intensity of the 173 ester C=O group is mostly unaffected by the H-

bond interaction to the 13 1 keto C=O group of Chl-a/Chl-a’ an exception being the Chl-a’+ state 

where the intensity of the vibration increases by 33% compared to the model where the Thr H-

bond is absent (Table 7.5). 

The gas phase calculations of Chl-a/Chl-a’ in the presence of Thr directly H-bonded to 

131 keto C=O group shows that the 131 keto and 133 ester C=O modes still show symmetric and 

anti-symmetric coupled vibrations. The 173 ester group vibration of Chl-a/Chl-a’ is not coupled 

to the 131 keto and 133 ester C=O group vibrations in the neutral or cation state. The calculations 

show that the H-bond to 131 keto C=O group of Chl-a/Chl-a’ cause the frequency of 

symmetrically and anti-symmetrically coupled 131 keto and 133 ester C=O modes to down-shift. 

Also, the effect on the symmetrically coupled mode is smaller compared to the effect on the anti-

symmetrically coupled mode. 

7.3.6 Effect of Thr H-bond and Dielectric Media on Vibrational Modes of Chl-a/Chl-a’ 

The vibrational frequencies of Chl-a/Chl-a’ in the presence of Thr H-bond was also 

calculated in CCl4 and THF to simulate the dielectric properties of PS I protein. The calculated 

IR spectra for the cation and neutral states of Chl-a/Chl-a’ in CCl4 and THF along with the 

corresponding cation minus neutral IR DS are shown in Figures 7.17/7.18 and 7.19/7.20, 

respectively. The solid lines in Figures 7.17/7.18 and 7.19/7.20 show the calculated spectra in the 

presence of the H-bond provided by the threonine residue in CCl4 and THF. The calculated IR 

spectra for Chl-a/a’ in solvents in the absence of the Thr H-bond (dotted line) are also shown for 

comparison. The harmonic vibrational mode frequencies and intensities associated with the C=O 

modes of Thr+Chl-a/Thr+Chl-a’82, Thr+Chl-a+/Thr+Chl-a’+, Chl-a/a’ and Chl-a+/a’+ in CCl4 

and THF are listed in Tables 7.6 and 7.7. 
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Table 7.6: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of Thr+Chl-a/a’, 
Chl-a/a’, Thr+Chl-a+/a’+

 
and Chl-a+/a’+

 in CCl4. 

The frequency shift induced by including the Thr H-bond to Chl-a/Chl-a’ for each calculation is shown along with the mode 
intensity change [in parenthesis (in%)]. 
 

 

Figure 7.17: Calculated IR Spectra for Thr+Chl-a/Chl-a (top) and Thr+Chl-a+/Chl-a+
 (middle) in CCl4. The “cation minus 

neutral” IR DS are also shown (bottom). 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
Thr+Chl-a in CCl4 
Chl-a in CCl4 
Thr+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1813(304) 
1813(287) 
1813(268) 
1813(254) 

 
0(6%) 

 
0(6%) 

 
1820(293) 
1819(217) 
1818(275) 
1813(311) 

 
1(35%) 

 
5(-12%) 

ν (131 and 133 C=O) s 
Thr+Chl-a in CCl4 
Chl-a in CCl4 
Thr+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1802(137) 
1804(126) 
1806(183) 
1806(216) 

 
-2(9%) 

 
0(-15%) 

 
1803(74) 

1817(568) 
1807(132) 
1817(324) 

 
-14(-87%) 

 
-10(-59%) 

ν (131 and 133 C=O) as 
Thr+Chl-a in CCl4 
Chl-a in CCl4 
Thr+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1757(1665) 
1785(1142) 
1742(1532) 
1776(1047) 

 
-28(46%) 

 
-34(46%) 

 

 
1794(1129) 
1798(385) 
1782(1061) 
1795(451) 

 
-4(193%) 

 
-13(135%) 
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Figure 7.18: Calculated IR Spectra for Thr+Chl-a’/Chl-a’ (top) and Thr+Chl-a’+/Chl-a’+
 (middle) in CCl4. The “cation 

minus neutral” IR DS are also shown (bottom). 

 

Figure 7.19: Calculated IR Spectra for Thr+Chl-a/Chl-a (top) and Thr+Chl-a+/Chl-a+
 (middle) in THF. The “cation minus 

neutral” IR DS are also shown (bottom). 
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Figure 7.20: Calculated IR Spectra for Thr+Chl-a’/Chl-a’ (top) and Thr+Chl-a’+/Chl-a’+
 (middle) in THF. The “cation 

minus neutral” IR DS are also shown (bottom).  

Table 7.7: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of Thr+Chl-a/a’, 
Chl-a/a’, Thr+Chl-a+/a’+

 
and Chl-a+/a’+

 in THF. 

The frequency shift induced by including the Thr H-bond to Chl-a/Chl-a’ for each calculation is shown along with the mode 
intensity change [in parenthesis (in%)]. 
 

The calculated IR spectra of Chl-a/Chl-a’ in solvents in the presence of Thr H-bond 

shows that the frequency and intensity of the anti-symmetrically coupled 131 keto and 133 ester 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
Thr+Chl-a in THF 
Chl-a in THF 
Thr+Chl-a’ in THF 
Chl-a’ in THF 

 
1799(360) 
1799(276) 
1801(398) 
1801(320) 

 
0(30%) 

 
0(24%) 

 
1802(363) 
1804(520) 
1803(368) 
1801(414) 

 
-2(-30%) 

 
2(-11%) 

ν (131 and 133 C=O) s 
Thr+Chl-a in THF 
Chl-a in THF 
Thr+Chl-a’ in THF 
Chl-a’ in THF 

 
1796(177) 
1796(255) 
1794(203) 
1795(287) 

 
0(-31%) 

 
-1(-29%) 

 
1795(105) 
1806(336) 
1796(169) 
1804(377) 

 
-11(-69%) 

 
-8(-55%) 

ν (131 and 133 C=O) as 
Thr+Chl-a in THF 
Chl-a in THF 
Thr+Chl-a’ in THF 
Chl-a’ in THF 

 
1741(2104) 
1767(1637) 
1735(1959) 
1760(1551) 

 
-26(29%) 

 
-25(26%) 

 
1779(1474) 
1790(771) 
1767(1496) 
1782(802) 

 
-11(91%) 

 
-15(87%) 
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C=O vibration is significantly impacted by the H-bond interaction. The frequency of the anti-

symmetrically coupled mode decreases by 28/34 cm-1 for Chl-a/Chl-a’ in CCl4 while in THF the 

corresponding decrease in frequency is 26/25 cm-1. The intensity of the anti-symmetrically 

coupled 131 keto and 133 ester C=O vibration increases on the other hand, by 46% for both Chl-a 

and Chl-a’ in CCl4, while in THF the corresponding increase is 29% for Chl-a and 26 % for Chl-

a’ (Tables 7.6 and 7.7). For cation states of Chl-a/Chl-a’ in solvents the effect of H-bond 

interaction to Thr is similar to the neutral state where the frequency of the vibrations decreases 

while the intensity increases. The frequency of the anti-symmetrically coupled mode decreases 

by 4/13 cm-1 for Chl-a+/Chl-a’+ in CCl4 while the intensity increases by 193%/135%. The 

frequency of the anti-symmetrically coupled modes of Chl-a+/Chl-a’+ decreases by 11/15 cm-1 in 

THF along with an increase in intensity of 91%/87% (Tables 7.6 and 7.7). 

The effect of H-bonding interaction on the frequency of the symmetrically coupled 131 

keto and 133 ester C=O groups of Chl-a/Chl-a’ is subtle compared to the effect on the anti-

symmetrically coupled modes. Also, unlike the anti-symmetrically coupled modes the frequency 

and intensity of the symmetrically coupled mode decreases upon the introduction of H-bond to 

the 131 keto C=O group. The intensity of the symmetrically coupled 131 keto and 133 ester C=O 

vibration of Chl-a increases by 9% in the presence of the H-bond, while for Chl-a’, the intensity 

of the mode decreases by 15% in CCl4. In THF, Chl-a and Chl-a’ experience a decrease in 

intensity by 31% and 29%, respectively. In the cation state, the frequency of the symmetrically 

coupled modes of Chl-a+/Chl-a’+ decreases by 14/10 cm-1 while the intensity decreases by 

87%/59% in CCl4. In THF the corresponding decrease in frequency and intensity are 11/8 cm-1 

and 69%/55% respectively (Tables 7.6 and 7.7). 
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The frequency of the 173 ester C=O group in CCl4 and THF is mostly unaffected by the 

H-bond introduced to 131 keto C=O group of Chl-a/Chl-a’ while the intensity of the vibrational 

mode is slightly affected. The intensity of the 173 ester C=O group vibration increases by 6% for 

both Chl-a and Chl-a’ in CCl4 while the corresponding increase in THF is 30% and 24% 

respectively. For the cation state of Chl-a+, the intensity increases by 35% while for Chl-a’+ the 

intensity decreases by 12% in CCl4. In THF the intensity of 173 ester C=O group of Chl-a+
 /Chl-

a’+
 decreases by 30%/11% (Tables 7.6 and 7.7). 

The vibrational frequency calculations of Chl-a/Chl-a’ in solvents in the presence of Thr 

directly H-bonded to 131 keto C=O group shows that the 131 keto and 133 ester C=O modes still 

show symmetric and anti-symmetric coupled vibrations. The 173 ester group vibration of Chl-

a/Chl-a’ is not coupled to the 131 keto and 133 ester C=O group vibrations in the neutral or 

cation state. The calculations show that the H-bond to 131 keto C=O group of Chl-a/Chl-a’ cause 

the frequency of symmetrically and anti-symmetrically coupled 131 keto and 133 ester C=O 

modes to down-shift. The effect of H-bond to the 131 keto C=O group on the symmetrically 

coupled mode is smaller compared to the effect on the anti-symmetrically coupled mode. 

7.3.7 Calculated Redox Potential of Chl-a/Chl-a’ in the Presence of Thr H-bond 

The ionization potential (IP) of Chl-a/Chl-a’ in the presence of Thr H-bond was 

calculated as discussed before. The calculated total energy and the IP’s for Chl-a and Chl-a’ are 

given in Tables 7.14 and 7.15. 

The calculated redox potential of Chl-a/Chl-a’ in the presence of Thr H-bond in the gas 

phase as well as solvents shows that the redox potential is essentially independent of the H-bond 

interaction to the 131 keto group. This was further investigated by modeling the H-bond 

interaction to 131 keto group using a H2O molecule (see section 7.3.10). 
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7.3.8 Effect of H2O H-bond Interactions on Vibrational Modes of Chl-a/Chl-a’ 

The effect of H–bonding to the 131 keto C=O group of the Chl-a/a’ was further 

investigated by modeling the pigments with a H2O molecule H-bonded directly to the 131 keto 

C=O group (Figures 7.21 and 7.22). Figures 7.21 and 7.22 show the geometry optimized 

structures of H2O+Chl-a/H2O+Chl-a’. The nearest hydrogen atom of water molecule for the 

geometry optimized structure is at a distance of ~1.90/1.91Å from the oxygen atom of 131 keto 

C=O group of Chl-a/Chl-a’in the neutral state (Figures 7.21 and 7.22). For the cation state the 

corresponding distance is 1.96/1.97Å (Figures 7.21 and 7.22). 

Figure 7.21: Geometry Optimized molecular structures of Chl-a and Chl-a+ in the presence of a water molecule that 
provides H-bond to the 131 keto C=O group (a) neutral and (b) cation states. 

The calculated IR spectra for the cation and neutral states of the models in Figures 7.21 

and 7.22, along with the corresponding cation minus neutral IR DS are shown in Figure 

7.23/7.24. The solid lines in Figure 7.23/7.24 show the calculated spectra in the presence of H2O 

molecule H-bonded to the 131 keto C=O of Chl-a/Chl-a’. The calculated IR spectra for Chl-

a/Chl-a’ model without the H-bond (dotted line) are also shown for comparison. The harmonic 
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vibrational mode frequencies and intensities associated with the C=O modes of H2O+Chl-

a/H2O+Chl-a’, H2O+Chl-a+/H2O+Chl-a’+, Chl-a/a’ and Chl-a+/a’+ are listed in Table 7.8. 

 

Figure 7.22: Geometry optimized molecular structures of Chl-a’ and Chl-a’+ in the presence of a water molecule that 
provides H-bond to the 131 keto C=O group (a) neutral and (b) cation states. 

 

Figure 7.23: Calculated IR Spectra for H2O+Chl-a/Chl-a (top) and H2O+Chl-a+/Chl-a+
 (middle) in the gas phase. The 

“cation minus neutral” IR DS are also shown (bottom). 
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Figure 7.24: Calculated IR Spectra for H2O+Chl-a’/Chl-a’ (top) and H2O+Chl-a’+/Chl-a’+
 (middle) in the gas phase. The 

“cation minus neutral” IR DS are also shown (bottom). 

Table 7.8: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of H2O+Chl-
a/H2O+Chl-a’, Chl-a/a’, H2O+Chl-a+/H2O+Chl-a’+

 
and Chl-a+/a’+. 

The frequency shift induced by including the H2O H-bond to Chl-a/Chl-a’ for each calculation is shown along with the mode 
intensity change [in parenthesis (in%)]. 
 

The calculated IR spectra in the presence of H2O H-bond shows that the frequency of the 

anti-symmetrically coupled 131 keto and 133 ester C=O vibration of Chl-a/Chl-a’ in the neutral 

Mode Neutral Shift 
∆ν(∆I) 

Cation Shift ∆ν(∆I) 

ν (173 C=O) 
H2O +Chl-a 
Chl-a 
H2O+Chl-a’ 
Chl-a’ 

 
1829(236) 
1829(235) 
1829(194) 
1828(194) 

 
0(0.4%) 

 
1(0%) 

 
1836(223) 
1836(213) 
1827(167) 
1826(226) 

 
0(5%) 

 
1(-26%) 

 
ν (131 and 133 C=O) s 
H2O +Chl-a 
Chl-a 
H2O+Chl-a’ 
Chl-a’ 

 
1813(99) 

1812(129) 
1815(114) 
1817(186) 

 
1(-23%) 

 
-2(-39%) 

 
1809(56) 

1830(397) 
1819(153) 
1831(250) 

 
-21(-86%) 

 
-12(-39%) 

 
ν (131 and 133 C=O) as 
H2O +Chl-a 
Chl-a 
H2O+Chl-a’ 
Chl-a’ 

 
1772(919) 
1801(719) 
1767(786) 
1794(652) 

 
-29(28%) 

 
-27(21%) 

 
1805(683) 
1805(215) 
1799(601) 
1807(267) 

 
0(218%) 

 
-8(125%) 
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state is significantly impacted by the presence of the H2O molecule, while the intensities are less 

impacted. In the cation state the effect is vice versa, where the frequency of vibration is not much 

affected but the intensities of the vibration is significantly impacted. 

The anti-symmetrically coupled 131 keto and 133 ester C=O vibration of Chl-a/Chl-a’ in 

the neutral state decreases by 29/37 cm-1 while the intensity increases by 28%/21%. In the cation 

state the frequency of the modes are not affected by the H-bond while the intensities increases by 

218%/125% respectively for Chl-a+/Chl-a’+ (Table 7.7). 

The neutral state frequency of the symmetrically coupled 131 keto 133 ester C=O mode of 

Chl-a/Chl-a’ is not significantly impacted by the H-bond interaction to H2O, while in the cation 

state the frequency decreases by 21/12 cm-1. The intensity of the symmetrically coupled 131 keto 

133 ester C=O mode vibration of Chl-a/Chl-a’ decreases in the neutral and cation state upon 

introduction of H-bond by 23%/39% and 86%/39%, respectively (Table 7.7). 

The frequency and intensity of vibration of the 173 ester C=O group of Chl-a/Chl-a’ is 

mostly unaffected by the introduction of the H-bond to H2O. The only exception being Chl-a’+, 

for which the intensity of vibration of the 173 ester C=O group decreases by 26% in the presence 

of H2O H-bond (Table 7.7). 

The gas phase vibrational frequency calculations of Chl-a/Chl-a’ in the presence of a 

water molecule directly H-bonded to 131 keto C=O group shows that the 131 keto and 133 ester 

C=O modes still show symmetric and anti-symmetric coupled vibrations. The 173 ester group 

vibration of Chl-a/Chl-a’ is not coupled to the 131 keto and 133 ester C=O group vibrations in the 

neutral or cation state. The frequency down-shift of symmetrically and anti-symmetrically 

coupled 131 keto and 133 ester C=O modes induced by the water molecule H-bonded to 131 keto 

C=O group of Chl-a/Chl-a’ is similar to the down-shift caused by the H-bond by Thr residue. 
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7.3.9 Effect of H2O H-bond and Dielectric Media on the Vibrational Modes of Chl-a/Chl-a’ 

The vibrational frequencies of Chl-a/Chl-a’ in the presence of H2O H-bond was also 

calculated in CCl4 and THF to simulate the dielectric properties of PS I protein. The nearest 

hydrogen atom of water molecule for the geometry optimized structure is at a distance of ~1.90Å 

(CCl4) and ~1.89 Å (THF) from the oxygen atom of 131 keto C=O group of both Chl-a and Chl-

a’ in the neutral state. For the cation state this distance is ~1.95 Å (CCl4) and ~1.93Å (THF) for 

both Chl-a+ and Chl-a’+. 

The calculated IR spectra for the cation and neutral states of Chl-a/Chl-a’ in CCl4 and 

THF along with the corresponding cation minus neutral IR DS are shown in Figures 7.25/7.26 

and 7.27/7.28, respectively. The solid lines in Figures 7.25/7.26 and 7.27/7.28 show the 

calculated spectra in the presence of the H-bond provided by the water molecule in CCl4 and 

THF. The calculated IR spectra for Chl-a/a’ in solvents in the absence of the H2O H-bond 

(dotted line) are also shown for comparison. 

The harmonic vibrational mode frequencies and intensities associated with the C=O 

modes of H2O+Chl-a/H2O+a’, H2O+Chl-a+/H2O+Chl-a’+, Chl-a/a’ and Chl-a+/a’+ in CCl4 and 

THF are listed in Tables 7.9 and 7.10. 

 



 

 

173 

 

 

Figure 7.25: Calculated IR Spectra for H2O+Chl-a/Chl-a (top) and H2O+Chl-a+/Chl-a+
 (middle) in CCl4. The “cation minus 

neutral” IR DS are also shown (bottom). 

 

Figure 7.26: Calculated IR Spectra for H2O+Chl-a’/Chl-a’ (top) and H2O+Chl-a’+/Chl-a’+
 (middle) in CCl4. The “cation 

minus neutral” IR DS are also shown (bottom). 
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Figure 7.27: Calculated IR Spectra for H2O+Chl-a/Chl-a (top) and H2O+Chl-a+/Chl-a+
 (middle) in THF. The “cation minus 

neutral” IR DS are also shown (bottom). 

 

Figure 7.28: Calculated IR Spectra for H2O+Chl-a’/Chl-a’ (top) and H2O+Chl-a’+/Chl-a’+
 (middle) in THF. The “cation 

minus neutral” IR DS are also shown (bottom). 
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Table 7.9: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of H2O+Chl-
a/a’, Chl-a/a’, H2O +Chl-a+/a’+

 
and Chl-a+/a’+

 in CCl4. 

The frequency shift induced by including the H2O H-bond to Chl-a/Chl-a’ for each calculation is shown along with the mode 
intensity change [in parenthesis (in%)]. 
 

Table 7.10: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of H2O+Chl-
a/a’, Chl-a/a’, H2O+Chl-a+/a’+ and Chl-a+/a’+

 in THF. 

The frequency shift induced by including the H2O H-bond to Chl-a/Chl-a’ for each calculation is shown along with the mode 
intensity change [in parenthesis (in%)]. 
 

The calculated IR spectra of Chl-a/Chl-a’ in solvents in the presence of H2O H-bond 

shows that the frequency of the anti-symmetrically coupled mode decreases by 30/25 cm-1 for 

Chl-a/Chl-a’ in CCl4 while in THF the corresponding decrease in frequency is 31/28 cm-1. The 

intensity of the anti-symmetrically coupled 131 keto and 133 ester C=O vibration increases on the 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
H2O+Chl-a in CCl4 
Chl-a in CCl4 
H2O+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1814(290) 
1813(287) 
1815(253) 
1813(254) 

 
1(1%) 

 
2(-0.4%) 

 
1820(284) 
1819(217) 
1814(216) 
1813(311) 

 
1(31%) 

 
1(-31%) 

 
ν (131 and 133 C=O) s 
H2O+Chl-a in CCl4 
Chl-a in CCl4 
H2O+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1806(125) 
1804(126) 
1806(150) 
1806(216) 

 
2(-1%) 

 
0(-31%) 

 
1805(81) 

1817(568) 
1809(190) 
1817(324) 

 
-12(-86%) 

 
-8(-41%) 

ν (131 and 133 C=O) as 
H2O+Chl-a in CCl4 
Chl-a in CCl4 
H2O+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1755(1341) 
1785(1142) 
1751(1118) 
1776(1047) 

 
-30(17%) 

 
-25(7%) 

 

 
1792(993) 
1798(385) 
1785(911) 
1795(451) 

 
-6(158%) 

 
-10(102%) 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
H2O+Chl-a in THF 
Chl-a in THF 
H2O+Chl-a’ in THF 
Chl-a’ in THF 

 
1802(116) 
1799(276) 
1803(334) 
1801(320) 

 
3(-58%) 

 
2(4%) 

 
1804(342) 
1804(520) 
1800(252) 
1801(414) 

 
0(-34%) 

 
-1(-39%) 

ν (131 and 133 C=O) s 
H2O+Chl-a in THF 
Chl-a in THF 
H2O+Chl-a’ in THF 
Chl-a’ in THF 

 
1799(425) 
1796(255) 
1795(220) 
1795(287) 

 
3(67%) 

 
0(-23%) 

 
1800(155) 
1806(336) 
1798(304) 
1804(377) 

 
-6(-54%) 

 
-6(-19%) 

ν (131 and 133 C=O) as 
H2O+Chl-a in THF 
Chl-a in THF 
H2O+Chl-a’ in THF 
Chl-a’ in THF 

 
1736(1836) 
1767(1637) 
1732(1702) 
1760(1551) 

 
-31(12%) 

 
-28(10%) 

 
1773(1400) 
1790(771) 

1767(1290) 
1782(802) 

 
-17(82%) 

 
-15(61%) 



 

 

176 

 

other hand by 17%/7% for Chl-a/Chl-a’ in CCl4, while in THF the corresponding increase is 

12%/10%. For cation states of Chl-a/Chl-a’ in solvents the effect of H-bond interaction to H2O is 

similar to the neutral state where the frequency of the vibrations decreases while the intensity 

increases. The frequency of the anti-symmetrically coupled mode decreases by 6/10 cm-1 for 

Chl-a+/Chl-a’+ in CCl4 while the intensity increases by 158%/102%. In THF, the frequency of 

the anti-symmetrically coupled modes of Chl-a+/Chl-a’+ decreases by 17/15 cm-1 while the 

intensity increases by 82%/61% upon introduction of the H2O H-bond (Tables 7.9 and 7.10). 

The effect of H-bonding interaction to the 131 keto C=O group on the frequency 

symmetrically coupled 131 keto and 133 ester C=O groups of Chl-a/Chl-a’ is not significant, 

unlike in the case of the anti-symmetrically coupled modes. The effect of H2O H-bond on 

intensities of the vibrational modes on the other hand is significant, and leads to an increase in 

intensity of the symmetrically coupled 131 keto and 133 ester C=O group vibrations of Chl-

a/Chl-a’. The frequency of the symmetrically coupled mode decreases by 2-3cm-1 for Chl-a 

while the frequency of Chl-a’ is unaffected in CCl4 and THF. The intensity of the symmetrically 

coupled 131 keto and 133 ester C=O vibration of Chl-a/Chl-a’ decreases by 1/31% in CCl4. In 

THF the corresponding decrease in intensity is 67%/23%. In the cation state, the frequency of the 

symmetrically coupled modes of Chl-a+/Chl-a’+ decreases by 12/8 cm-1 while the intensity 

decreases by 86%/41% in CCl4. In THF the corresponding decrease in frequency and intensity 

are 6/6cm-1 and 54%/19% respectively (Tables 7.9 and 7.10). 

The frequency of the 173 ester C=O group in CCl4 and THF is mostly unaffected by the 

H-bond introduced to 131 keto C=O group of Chl-a/Chl-a’. The intensity of the 173 ester C=O 

group vibration of Chl-a/ Chl-a’ is unaffected in CCl4 while in THF the intensity of Chl-a 

decreases by 58% and the intensity of Chl-a’ increases by 4%. For the cation state of Chl-a+, the 
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intensity increases by 31% while for Chl-a’+ the intensity decreases by 31% in CCl4. In THF the 

intensity of 173 ester C=O group of Chl-a+/ Chl-a’+ decrease by 34%/39% (Tables 7.9 and 7.10). 

The vibrational frequency calculations of Chl-a/Chl-a’ in solvents in the presence of a 

water molecule directly H-bonded to 131 keto C=O group shows that the 131 keto and 133 ester 

C=O modes still show symmetric and anti-symmetric coupled vibrations. The 173 ester group 

vibration of Chl-a/Chl-a’ in CCl4 is not coupled to the 131 keto and 133 ester C=O group 

vibrations in the neutral or cation state. But for the vibrational frequency calculated in THF , 

especially for the cation states, strong coupling was observed between the 173 ester, 131 keto and 

133 ester C=O group vibrations. Also the frequency of both symmetrically and anti-

symmetrically coupled C=O group vibrations down-shifted in the presence of the H-bond. The 

frequency down-shift of symmetrically and anti-symmetrically coupled 131 keto and 133 ester 

C=O modes induced by the water molecule H-bonded to 131 keto C=O group of Chl-a/Chl-a’ is 

similar to the down-shift caused by the H-bond by Thr residue. 

 

 

7.3.10 Calculated Redox Potential of Chl-a/Chl-a’ in the Presence of H2O H-bond 

The ionization potential (IP) of Chl-a/Chl-a’ in the presence of H2O H-bond was 

calculated as discussed before. The calculated total energy and the IP’s for Chl-a and Chl-a’ are 

given in Tables 7.14 and 7.15. 

The calculated redox potential for Chl-a/Chl-a’ with H2O or Thr H-bond are almost 

identical to the calculated value for Chl-a/Chl-a’ in the absence of any H-bond interaction. These 

results indicate that the H-bonding interaction has little effect in determining the redox potential 

of chlorophyll pigments. 
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The calculated IR spectra for the cation and neutral states of the models in Figures 7.29 

and 7.30, along with the corresponding cation minus neutral IR DS are shown in Figures 

7.3.11 Effect of Axial Ligand and H-bond Interactions on the Vibrational Modes of Chl-a/a’ 

The effect of axial ligation and H-bond interactions on the vibrational modes of Chl-a/a’ 

was further investigated by including the axial ligating histidine residue to the central Mg atom 

and the hydrogen bonding threonine residue to the 131 keto C=O group in the model. The 

starting geometry for His+Thr+Chl-a’ were directly obtained from the X-ray crystal structure of 

PSI [6] by including the axial ligating residue HisA680 and the ThrA743 residue which provides 

H-bonding interactions to PA(Chl-a’). His+Thr+Chl-a initial geometry was obtained by including 

His B660 residue that provides axial ligand to PB (Chl-a) and by changing TyrB727, which is the 

homologues residue on PsaB protein, to Thr. The histidine residue in both cases was truncated to 

methyimidazole while the carboxyl and amino end of the threonine residue was truncated using a 

methyl group. Also the phytyl chain of Chl-a/Chl-a’is replaced with a methyl group at the 174 

position. 

Figures 7.29 and 7.30 show the geometry optimized structures of His+Thr+Chl-

a/His+Thr+Chl-a’ in the neutral and cation states. After geometry optimization the hydroxyl 

group of the Thr residue is at a distance of 1.94Å from the 131 keto C=O oxygen of both 

His+Thr+Chl-a/His+Thr+Chl-a’ in the neutral state. For the cation state the corresponding 

distance is 2.03/2.02 Å for His+Thr+Chl-a+/His+Thr+Chl-a’+. Also the angle between the 131 

keto C=O oxygen and the hydroxyl group (Ochl-Hthr-Othr angle) is ~166/170° for His+Thr+Chl-

a/His+Thr+Chl-a’ in the neutral state. In the cation state the corresponding angles are ~160/163°, 

respectively. After optimization the ligating imidazole nitrogen is ~2.2 Å from the central 

magnesium atom in the neutral and cation states. 
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7.31/7.32 respectively. The solid lines in Figures 7.31/7.32 show the calculated spectra in the 

presence of the ligand and H-bond. The calculated IR spectra for Chl-a/a’ model without the 

ligand and H-bond (dotted line) are also shown for comparison. The harmonic vibrational mode 

frequencies and intensities associated with the C=O modes of His+Thr+Chl-a/His+Thr+Chl-a’, 

His+Thr+Chl-a+/His+Thr+Chl-a’+, Chl-a/a’ and Chl-a+/a’+ are listed in Table 7.11. 

  

Figure 7.29: Geometry Optimized (energy minimized) molecular structural models of Chl-a and Chl-a+ in the presence of a 
histidine residue that provides an axial ligand and a threonine residue that provides H-bond to 131 keto C=O 
group (a) neutral and (b) cation states. 

 

Figure 7.30: Geometry Optimized (energy minimized) molecular structural models of Chl-a’ and Chl-a’+ in the presence of 
a histidine residue that provides an axial ligand and a threonine residue that provides H-bond to 131 keto C=O 
group (a) neutral and (b) cation states. 
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Table 7.11: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of 
His+Thr+Chl-a/His+Thr+Chl-a’, Chl-a/a’, His+Thr+Chl-a+/His+Thr+Chl-a’+and Chl-a+/a’+. 

The frequency shift induced by including the ligand and Thr H-bond to Chl-a/Chl-a’ for each calculation is shown along with the 
mode intensity change [in parenthesis (in%)]. 
 

 

Figure 7.31: Calculated IR Spectra for His+Thr+Chl-a/Chl-a (top) and His+Thr+Chl-a+/Chl-a+
 (middle) in the gas phase. 

The “cation minus neutral” IR DS are also shown (bottom). 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
His+Thr+Chl-a 
Chl-a 
His+Thr+Chl-a’ 
Chl-a’ 

 
1828(251) 
1829(235) 
1827(203) 
1828(194) 

 
-1(7%) 

 
-1(5%) 

 
1836(241) 
1836(213) 
1826(156) 
1826(226) 

 
0(13%) 

 
0(-31%) 

 
ν (131 and 133 C=O) s 
His+Thr+Chl-a 
Chl-a 
His+Thr+Chl-a’ 
Chl-a’82 

 
1792(131) 
1812(129) 
1814(165) 
1817(186) 

 
-20(2%) 

 
-3(-11%) 

 
1797(278) 
1830(397) 
1818(213) 
1831(250) 

 
-33(-30%) 

 
-13(-15%) 

ν (131 and 133 C=O) as 
His+Thr+Chl-a 
Chl-a 
His+Thr+Chl-a’ 
Chl-a’ 

 
1748(1368) 
1801(719) 
1748(1200) 
1794(652) 

 
-53(90%) 

 
-46(84%) 

 
1785(709) 
1805(215) 
1787(621) 
1807(267) 

 
-20(230%) 

 
-20(133%) 
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Figure 7.32: Calculated IR Spectra for His+Thr+Chl-a’/Chl-a’ (top) and His+Thr+Chl-a’+/Chl-a’+
 (middle) in the gas 

phase. The “cation minus neutral” IR DS are also shown (bottom). 

The calculated IR spectra in the presence of ligand and H-bond shows that the frequency 

of the anti-symmetrically coupled 131 keto and 133 ester C=O vibration of Chl-a/Chl-a’ in the 

neutral and cation state is significantly impacted. The frequency of the anti-symmetrically 

coupled 131 keto and 133 ester C=O vibration of Chl-a/Chl-a’ decrease by 53/46cm-1 while the 

intensity increases by 90%/84% in the neutral state. In the cation state the frequency decreases 

by 20 cm-1 for both Chl-a+ and Chl-a’+ while in the intensity increases by 230%/133% 

respectively (Table 7.11). 

The frequency and intensity of the symmetrically coupled 131 keto 133 ester C=O mode 

of Chl-a/Chl-a’ is not significantly impacted by the presence of the ligand or H-bond. The 

frequency of the symmetrically coupled 131 keto 133 ester C=O mode vibration of Chl-a/Chl-a’ 

decrease by 20/3cm-1 while the intensity increases/decreases by 2%/11% in the neutral state. In 

the cation state the frequency decreases by 33/13 cm-1 for Chl-a+/Chl-a’+ while in the intensity 

decreases by 30%/15% respectively (Table 7.11). 
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The frequency of the 173 ester C=O group is unaffected by the presence of the ligand and 

H-bond while the intensities slightly increases, an exception being the Chl-a’+ state where the 

intensity of the vibration decreases by 31% compared to the model where the ligand and H-bond 

are absent (Figure 7.11). 

The vibrational frequency calculations of Chl-a/Chl-a’ in the presence of axial ligand and 

H-bond shows that the 131 keto and 133 ester C=O modes still show symmetric and anti-

symmetric coupled vibrations. The 173 ester group vibration of Chl-a/Chl-a’ is not coupled to the 

131 keto and 133 ester C=O group vibrations in the neutral or cation state. Axial ligand and H-

bond causes the frequency of both symmetrically and anti-symmetrically coupled C=O group 

vibrations down-shift significantly. Again the downshift in frequency observed for the anti-

symmetrically couple mode is significantly higher compared downshift observed for the 

symmetrically coupled vibration of the 131 keto and 133 ester C=O group. 

The vibrational frequencies of Chl-a/Chl-a’ in the presence of ligand and H-bond was 

also calculated in CCl4 and THF to simulate the dielectric properties of PS I protein. After 

geometry optimization the hydroxyl group of the Thr residue is at a distance of 1.92/1.91Å from 

the 131 keto C=O oxygen of Chl-a’ in CCl4/THF in the neutral state. In the cation state the 

corresponding distance is 1.99/1.96Å, respectively. For Chl-a in CCl4/THF the corresponding 

distances are 1.92/1.93Å in the neutral state and 2.01/1.99Å in the cation state. The angle 

between the 131 keto C=O oxygen and the hydroxyl group (Ochl-Hthr-Othr angle) is ~167˚ in both 

CCl4 and THF for Chl-a in the neutral state, while for Chl-a’ the corresponding angle is 

~170˚/171˚ in CCl4 /THF. In the cation state the angle between the 131 keto C=O oxygen and the 

7.3.12 Effect of Axial Ligand, H-bond and Dielectric Media on Vibrational Modes of Chl-a/Chl-

a’ 
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hydroxyl group is ~163˚/168˚ for Chl-a and ~167˚/171˚ for Chl-a’. After optimization the 

ligating imidazole nitrogen is ~2.2 Å from the central magnesium atom in the neutral and cation 

states in both solvents. 

The calculated IR spectra for the cation and neutral states of the models in CCl4 and THF, 

along with the corresponding cation minus neutral IR DS are shown in Figures 7.33/7.34 and 

7.35/7.36, respectively. The solid lines in Figures 7.33/7.34 and 7.35/7.36 show the calculated 

spectra in the presence of the ligand and H-bond. The calculated IR spectra for Chl-a/a’ model 

without the ligand and H-bond (dotted line) are also shown for comparison. The harmonic 

vibrational mode frequencies and intensities associated with the C=O modes of His+Thr+Chl-

a/His+Thr+Chl-a’, His+Thr+Chl-a+/His+Thr+Chl-a’+, Chl-a/a’ and Chl-a+/a’+ are listed in 

Tables 7.12 and 7.13. 

 

Figure 7.33: Calculated IR Spectra for His+Thr+Chl-a/Chl-a (top) and His+Thr+Chl-a+/Chl-a+
 (middle) in CCl4. The 

“cation minus neutral” IR DS are also shown (bottom). 
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Figure 7.34: Calculated IR Spectra for His+Thr+Chl-a’/Chl-a’ (top) and His+Thr+Chl-a’+/Chl-a’+
 (middle) in CCl4. The 

“cation minus neutral” IR DS are also shown (bottom). 

 

Figure 7.35: Calculated IR Spectra for His+Thr+Chl-a/Chl-a (top) and His+Thr+Chl-a+/Chl-a+
 (middle) in THF. The 

“cation minus neutral” IR DS are also shown (bottom). 
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Figure 7.36: Calculated IR Spectra for His+Thr+Chl-a’/Chl-a’ (top) and His+Thr+Chl-a’+/Chl-a’+
 (middle) in THF. The 

“cation minus neutral” IR DS are also shown (bottom). 

The calculated IR spectra in solvents in the presence of ligand and H-bond shows that the 

frequency and intensity of the anti-symmetrically coupled 131 keto and 133 ester C=O vibration 

of Chl-a/Chl-a’ is significantly impacted in both neutral and cation state. The frequency of the 

anti-symmetrically coupled 131 keto and 133 ester C=O vibration of Chl-a/Chl-a’ decrease by 

47/42cm-1 while the intensity increases by 52%/54% in CCl4 in the neutral state. In THF, the 

frequency of the anti-symmetrically coupled 131 keto and 133 ester C=O vibration of Chl-a/Chl-

a’ decrease by 42/38cm-1 while the intensity increases by 34%/32% in the neutral state. In the 

cation state the frequency decreases by 22 cm-1 for both Chl-a+ and Chl-a’+ while the intensity 

increases by 202% and 117% respectively in CCl4. In THF, for the cation state the frequency of 

the anti-symmetrically coupled 131 keto and 133 ester C=O vibration of Chl-a/Chl-a’ decrease by 

27/23cm-1 while the intensity increases by 106%/71% (Tables 7.12 and 7.13). 
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Table 7.12: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of 
His+Thr+Chl-a/His+Thr+Chl-a’, Chl-a/a’, His+Thr+Chl-a+/His+Thr+Chl-a’+ and Chl-a+/a’+

 in CCl4. 

The frequency shift induced by including the ligand and Thr H-bond to Chl-a/Chl-a’ for each calculation is shown along with the 
mode intensity change [in parenthesis (in%)]. 
 

The frequency and intensity of the symmetrically coupled 131 keto 133 ester C=O mode 

of Chl-a/Chl-a’ in solvents is not significantly impacted by the presence of the ligand or H-bond. 

In CCl4, the frequency of the symmetrically coupled 131 keto 133 ester C=O mode vibration of 

Chl-a/ Chl-a+ decrease by 13/24cm-1 while the intensity increases/decreases by 27%/71%. In 

THF, the frequency of the symmetrically coupled 131 keto 133 ester C=O mode vibration of Chl-

a/ Chl-a+ decrease by 6/14cm-1 while the intensity decreases by 17%/45%. For Chl-a’, in CCl4, 

the frequency of symmetrically coupled 131 keto 133 ester C=O mode is unaffected while the 

intensity decreases by 14%. For Chl-a’+, in CCl4, the frequency of the symmetrically coupled 

mode decreases by 6 cm-1 accompanied by a decrease in intensity of 31%.  In THF, the 

frequency of the symmetrically coupled 131 keto 133 ester C=O mode vibration of Chl-a’/ Chl-

a’+ increases/decrease by 3/2cm-1 while the intensity decreases by 21%/24% (Tables 7.12 and 

7.13). 

The frequency of the 173 ester C=O group in solvents is unaffected by the presence of the 

ligand and H-bond while the intensities are modified. In CCl4 and THF the intensity of the 173 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
His+Thr+Chl-a in CCl4 
Chl-a in CCl4 
His+Thr+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1813(307) 
1813(287) 
1813(304) 
1813(254) 

 
0(7%) 

 
0(20%) 

 
1818(303) 
1819(217) 
1817(263) 
1813(311) 

 
-1(40%) 

 
4(-15%) 

ν (131 and 133 C=O) s 
His+Thr+Chl-a in CCl4 
Chl-a in CCl4 
His+Thr+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1791(160) 
1804(126) 
1806(186) 
1806(216) 

 
-13(27%) 

 
0(-14%) 

 
1793(166) 
1817(568) 
1811(222) 
1817(324) 

 
-24(-71%) 

 
-6(-31%) 

ν (131 and 133 C=O) as 
His+Thr+Chl-a in CCl4 
Chl-a in CCl4 
His+Thr+Chl-a’ in CCl4 
Chl-a’ in CCl4 

 
1738(1733) 
1785(1142) 
1734(1615) 
1776(1047) 

 
-47(52%) 

 
-42(54%) 

 
1776(1163) 
1798(385) 
1773(980) 
1795(451) 

 
-22(202%) 

 
-22(117%) 
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ester C=O group of Chl-a/ Chl-a’ increases by 7%/20% and 30%/29% respectively. In the cation 

state, in CCl4 the intensity of Chl-a+ increases by 40% while the intensity of Chl-a’+ decreases by 

15%. In THF, the intensity of 173 ester C=O group mode of Chl-a+/ Chl-a+’ decreases by 

31%/5% (Tables 7.12 and 7.13). 

Table 7.13: Calculated frequencies and intensities (in parenthesis [in km/mole]) for the different carbonyl modes of 
His+Thr+Chl-a/His+Thr+Chl-a’, Chl-a/a’, His+Thr+Chl-a+/His+Thr+Chl-a’+

 
and Chl-a+/a’+

 in THF. 

The frequency shift induced by including the ligand and Thr H-bond to Chl-a/Chl-a’ for each calculation is shown along with the 
mode intensity change [in parenthesis (in%)]. 
 

The vibrational frequency calculations of Chl-a/Chl-a’ in solvents in the presence of axial 

ligand and H-bond shows that the 131 keto and 133 ester C=O modes show symmetric and anti-

symmetric coupled vibrations. The 173 ester group vibration of Chl-a/Chl-a’ is not coupled to the 

131 keto and 133 ester C=O group vibrations in the neutral or cation state. Axial ligand and H-

bond causes the frequency of both symmetrically and anti-symmetrically coupled C=O group 

vibrations down-shift significantly. 

7.4 Discussion 

FTIR spectroscopy is a sensitive molecular specific probe and is extensively used to 

study the electronic and structural properties of P700, the primary electron donor in PS I. (P700
+-

7.4.1 Effect of Ligand and H-bond on the Vibrational Properties of Chl-a/Chl-a’ 

Mode Neutral Shift ∆ν(∆I) Cation Shift ∆ν(∆I) 
ν (173 C=O) 
His+Thr+Chl-a in THF 
Chl-a in THF 
His+Thr+Chl-a’ in THF 
Chl-a’ in THF 

 
1797(359) 
1799(276) 
1799(414) 
1801(320) 

 
-2(30%) 

 
-2(29%) 

 
1802(360) 
1804(520) 
1803(392) 
1801(414) 

 
-2(-31%) 

 
2(-5%) 

ν (131 and 133 C=O) s 
His+Thr+Chl-a in THF 
Chl-a82 in THF 
His+Thr+Chl-a’ in THF 
Chl-a’ in THF 

 
1790(212) 
1796(255) 
1798(227) 
1795(287) 

 
-6(-17%) 

 
3(-21%) 

 
1792(184) 
1806(336) 
1802(286) 
1804(377) 

 
-14(-45%) 

 
-2(-24%) 

ν (131 and 133 C=O) as 
His+Thr+Chl-a in THF 
Chl-a in THF 
His+Thr+Chl-a’ in THF 
Chl-a’ in THF 

 
1725(2189) 
1767(1637) 
1722(2046) 
1760(1551) 

 
-42(34%) 

 
-38(32%) 

 
1763(1589) 
1790(771) 

1759(1370) 
1782(802) 

 
-27(106%) 

 
-23(71%) 



 

 

188 

 

P700) FTIR DS have been obtained under many sets of conditions: from PS I particles from 

different strains, to particles with site directed mutations near the P700 and A0 Chl’s (See 

Chapters 2, 3 and 4), to specifically isotope labeled PS I particles. The C=O groups of the 

chlorophylls of P700 gives intense bands in the IR region and controversy persists concerning the 

assignment of these bands in (P700
+-P700) FTIR DS [79].The bands in the (P700

+-P700) FTIR DS 

are assigned by comparing with electrochemically generated (Chl-a+-Chl-a) and (pyroChl-a+-

pyroChl-a) FTIR DS (PyroChl-a is similar to Chl-a but lacks a 133 ester group). Hence obtaining 

a precise understanding of vibrational properties of Chl-a and Chl-a+ is the first step in 

understanding the (P700
+-P700) FTIR DS. Density functional theory based vibrational frequency 

calculations of several Chl-a/Chl-a’ model structures in gas phase and solvents have been 

successfully undertaken before [79, 80] (See Chapter 5). The calculated (Chl-a+-Chl-a) IR DS in 

solvents bear a remarkable similarity to the electrochemically generated (Chl-a+-Chl-a) 

experimental spectra [79] (Chapter 5).Here the vibrational properties of the chlorophyll 

components of P700 were calculated in the presence of the amino acid residues that provide 

central ligand to the Mg2+ and H-bond to the C=O groups. The dielectric effect of the protein 

environment was simulated in these calculations using Polarizable Continuum Model. Thus the 

effect these peripheral groups have on the vibrational properties of Chl-a and Chl-a’ have been 

identified. 

The Chl-a/Chl-a’ structural models including the peripheral amino acid residues were 

fully geometry optimized before calculating the vibrational frequencies. The starting chlorophyll 

geometries for the calculation were obtained from the crystal structure of P700 along with the 

histidine residue that provides the central ligand. To simulate the effect of H-bond to Chl-a’ the 

ThrA743 residue that provides H-bonding network to PA chlorophyll of P700 was included in the 
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structural model. As the 131 keto C=O group of PB chlorophyll of P700 is free from any such 

interactions, the effect of H-bond on Chl-a was investigated by changing the TyrB718 residue to 

a threonine residue. The energy minimized structures are not significantly different from the 

crystal structure an exception being the Chl-a model with the ligand. The orientation of the 

imidazole ring relative to the chlorin plane is notably different in the geometry optimized 

structure, as the ring is rotated ~45̊  compared to the cryst al structure. This significant change in 

geometry upon energy minimization indicates that the steric hindrance on the histidine is 

important in holding the ligand in place in the protein. 

The vibrational frequency of Chl-a/Chl-a’ was calculated in the presence of histidine 

ligand to the central magnesium in the gas phase as well as in solvents with dielectric constants 

2.228(CCl4) and 7.58 (THF). The calculated frequencies were compared to the model without the 

fifth ligand to the Mg. The calculated results, in gas phase and solvents, shows that the central 

Mg ligand has little effect on the vibrational frequency modes of the C=O groups of chlorophyll. 

The effect of the Mg ligand on the vibration frequency modes of Chl-a/Chl-a’ was further 

investigated by adding a water molecule as ligand (data not shown). The calculated DS of Chl-

a/Chl-a’ in the presence of water ligand was almost identical to the calculated DS in the presence 

of the imidazole ligand which confirm the conclusion that the effect of the ligand on the 

vibrational frequencies of chlorophyll molecules is none or insignificant. 

H-bonding introduced to the 131 keto C=O groups of Chl-a/Chl-a’ causes significant 

down-shift in frequency of vibration of the C=O group. Previously it has been shown that the131 

keto and 133 ester C=O groups of Chl-a/Chl-a’ are coupled pairs that display symmetric and 

anti-symmetric vibrations. H-bonding interaction to 131 keto C=O group causes these 

symmetrically and anti-symmetrically coupled modes to down-shift. The presence of a threonine 
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reside in the vicinity of 131 keto C=O group leads to a down-shift of ~25-34 cm-1for the anti-

symmetrically coupled 131 keto and 133 ester C=O mode of Chl-a/Chl-a’ in the neutral state 

while in the cation state the effect of H-bonding seems to be weakened, causing a down-shift of 

~4-15 cm-1. The calculated vibrational frequencies in the presence of a water molecule H-bonded 

to the 131 keto C=O group of Chl-a/Chl-a’ illustrate a ~25-31 cm-1 down-shift of the anti-

symmetrically coupled 131 keto and 133 ester C=O mode in the neutral state and a ~6-17 cm-1 

down-shift in the cation state. For the symmetrically coupled 131 keto and 133 ester C=O mode, 

the frequency down-shift introduced by the H-bond are negligible. The calculations indicate that 

the effect of H-bond introduced by threonine residue and the water molecule are very similar. 

Vibrational frequency was also calculated for Chl-a/Chl-a’ models by including both 

ligating histidine reside and the threonine residue H-bonded to the 131 keto C=O group in the gas 

phase and in solvents. The presence of histidine ligand and threonine residue in the vicinity of 

131 keto C=O group leads to a down-shift of ~38-53cm-1 for the anti-symmetrically coupled 131 

keto and 133 ester C=O mode of Chl-a/Chl-a’ in the neutral state while in the cation state the 

down-shift is ~20-27 cm-1. For the symmetrically coupled 131 keto and 133 ester C=O mode, the 

frequency down-shift introduced by the H-bond in the presence of the histidine ligand is 

negligible. 

The calculated vibrational frequency down-shifts caused by introducing a H-bond to the 

131 keto C=O group of Chl-a/Chl-a’ are slightly lower than the experimentally observed shifts in 

(P700
+-P700) FTIR DS of PS I protein complex where a down-shift of ~60 cm-1 is predicted for the 

131 C=O group of PA which is involved in a H-bonding network involving ThrA743 residue. 

This is clearly an indication that the unusually low vibrational absorption of the 131 C=O group 

of PA mode cannot be explained using the effect of H-bonding interaction introduced by the 
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ThrA743 residue only. Additional calculations involving all the amino acid residues in the 

vicinity of 131 keto C=O group of PA might be helpful in further investigating this matter. 

The calculated Eox values for Chl-a/Chl-a’ models in the presence of the ligand is ~380-

400mV lower compared to the models without the ligand. Table 7.14 shows that the calculated 

Eox values for Chl-a/Chl-a’ in the presence of ligand are 1168/1161mV (gas phase), 636/621mV 

(CCl4) and 345/333mV (THF). The calculated values in solvents are significantly lower than the 

experimentally observed value for Chl-a. This decrease in redox potential can be attributed to the 

strong axial ligand to the Mg provided by the polar histidine aminoacid group. A suggestion 

could be that the unpaired electron of the histidine ligand stabilizes the charge on Chl-a+/a’+ 

thereby lowering the redox potential. The effect of the ligands on the redox potential of 

chlorophylls and bacteriochlorophylls has been extensively investigated by Heimdal et 

7.4.2 Effect of Ligand and H-bond on the Redox Potential of Chl-a/Chl-a’ 

The Ionization Potential (IP) for Chl-a/Chl-a’ models were calculated from the difference 

in the electronic energy between the neutral and cation states as described by Hasegawa et. al. 

[137].The redox potential (Eox) can be calculated from the IP by subtracting the absolute 

potential of Standard Hydrogen Electrode (SHE) which has been estimated to be 4.43 eV [137]. 

The calculated total energies, ionization potential and oxidation energies for Chl-a/Chl-a’ models 

are listed in Tables 7.14 and 7.15. 

The calculated redox potential values for Chl-a and Chl-a’ are almost identical for all the 

models considered here including the calculations in solvents. This is expected as Chl-a’ is a 

structural isomer of Chl-a, and the only difference in the structure being the orientation of the 

132 group. 
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al.[83]and it was shown that the axial ligands decrease the redox potential. The calculated redox 

potential values for Chl-a are in agreement with the results of Heimdal et al. 

For the best of our knowledge this is the first study where the effect of H-bond on the 

redox potential has been investigated. The calculated Eox values for Chl-a/Chl-a’ models in the 

presence of the H-bond to the 131 keto C=O group shows that the redox potential is essentially 

independent of the nature of interactions to the C=O groups of the chlorophyll molecule. This is 

a very valid result as it was though that the H-bonding to the PA chlorophyll was a factor in 

determining the redox potential of P700. 
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Table 7.14: Calculated total energies, ionization potential and oxidation energies for Chl-a 

 

 

 

 

 Eelec(Hartrees) Eelec(eV) 
IP(eV) Eox

cal(V)=IP-4.43 
Chl a Chl a+ Chl a Chl a+ 

Chl-a -2188.908 -2188.689 -59563.26 -59557.28 5.982 1.552 

Ligand + Chl-a -2454.480 -2454.274 -66789.84 -66784.24 5.598 1.168 

Thr + Chl-a -2383.277 -2383.053 -64852.29 -64846.21 6.079 1.649 

His+ Thr + Chl-a -2648.849 -2648.640 -72078.89 -72073.20 5.695 1.265 

H2O + Chl-a -2265.332 -2265.111 -61642.85 -61636.83 6.026 1.596 

Chl-a in CCl4 -2188.921 -2188.724 -59563.61 -59558.26 5.353 0.9228 

Ligand + Chl-a in CCl4 -2454.492 -2454.306 -66790.16 -66785.10 5.066 0.6361 

Thr+Chl-a in CCl4 -2383.290 -2383.090 -64852.64 -64847.22 5.418 0.9879 

His+ Thr + Chl-a in CCl4 -2648.860 -2648.672 -72079.20 -72074.06 5.140 0.7104 

H2O + Chl-a in CCl4 -2265.347 -2265.148 -61643.26 -61637.86 5.401 0.9712 

Chl-a in THF -2188.935 -2188.753 -59563.98 -59559.02 4.958 0.5282 

Ligand + Chl-a in THF -2454.504 -2454.329 -66790.50 -66785.72 4.775 0.3450 

Thr+ Chl-a in THF -2383.303 -2383.120 -64853.02 -64848.03 4.992 0.5623 

His+ Thr+ Chl-a in THF -2188.908 -2188.689 -59563.26 -59557.28 5.982 1.552 

H2O +Chl-a in THF -2454.480 -2454.274 -66789.84 -66784.24 5.598 1.168 
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Table 7.15: Calculated total energies, ionization potential and oxidation energies for Chl-a’ 

 

 Eelec(Hartrees) Eelec(eV) 
IP(eV) Eox

cal(V)=IP-4.43 
Chl a Chl a+ Chl a Chl a+ 

Chl-a’  -2188.908 -2188.687 -59563.24 -59557.24 5.995 1.565 

Ligand + Chl-a’ -2454.474 -2454.269 -66789.67 -66784.08 5.591 1.161 

Thr + Chl-a’ -2383.276 -2383.052 -64852.27 -64846.19 6.081 1.651 

His + Thr + Chl-a’ -2648.843 -2648.633 -72078.72 -72073.02 5.701 1.271 

H2O +Chl-a’ -2265.331 -2265.109 -61642.84 -61636.79 6.046 1.616 

Chl-a’ in CCl4 -2188.921 -2188.725 -59563.61 -59558.26 5.358 0.9280 

Ligand + Chl-a’ in CCl4 -2454.489 -2454.303 -66790.07 -66785.02 5.051 0.6205 

Thr + Chl-a’ in CCl4 -2383.289 -2383.088 -64852.64 -64847.16 5.475 1.045 

His+Thr+Chl-a’ in CCl4 -2648.856 -2648.667 -72079.08 -72073.94 5.143 0.7126 

H2O +Chl-a’ in CCl4 -2265.347 -2265.149 -61643.27 -61637.86 5.406 0.9764 

Chl-a’ in THF -2188.936 -2188.754 -59564.01 -59559.06 4.953 0.5226 

His + Chl-a’ in THF -2454.504 -2454.329 -66790.49 -66785.73 4.763 0.3327 

Thr+Chl-a’ in THF -2383.301 -2383.121 -64852.94 -64848.05 4.897 0.4674 

His+Thr+Chl-a’ in THF -2648.871 -2648.693 -72079.47 -72074.65 4.821 0.3914 

H2O + Chl-a’ THF -2265.364 -2265.181 -61643.72 -61638.73 4.990 0.5600 
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7.5 Conclusions 

The vibrational frequency of Chl-a/Chl-a’ model structures were calculated in the presence of 

axial ligand and H-bond. The calculations show that the 131 keto and 133 ester C=O modes of 

Chl-a/Chl-a’ are coupled and display symmetric and anti-symmetric coupled vibrations in the 

presence of the axial ligand and H-bond. Including the axial ligand to the Chl-a/Chla’ model has 

no significant effect on the 131 keto and 133 ester C=O symmetric or anti-symmetric coupled 

modes. H-bond interactions on the other hand causes a significant down-shift in frequency of the 

anti-symmetrically coupled modes of 131 keto and 133 ester C=O groups. The calculated down-

shift for the anti-symmetrically coupled mode is comparable to the experimentally observed 

down-shift for the C=O group of PA chlorophyll in P700 in the presence of H-bond. Redox 

potential of Chl-a/Chl-a’ models were calculated from the electronic energy of the models. The 

calculated redox potential values show that the axial ligand reduces the reduction potentials, 

while H-bond interaction has no effect on determining the redox potential. 
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CHAPTER 8 

CALCULATED PROPERTIES OF P700, A CHLOROPHYLL-A’/CHLOROPHYLL-A 

HETERODIMER 

8.1 Introduction 

Photosystem I (PS I) [6] is a membrane-spanning, protein complex found in plants, algae 

and cyanobacteria. PS I uses light to drive the formation of reducing products that lead to the 

reduction of carbon dioxide (taken from the atmosphere) to glucose. In the PS I core, light 

illumination induces a charge separation between a (hetero) dimeric Chlorophyll-a’/a (Chl-a’/a) 

electron donor called P700 and a terminal iron sulfur cluster called FB. Chl-a’ is a 132 

stereoisomer of Chl-a. The two pigments of P700 are bound to the pseudo C2 symmetric 

membrane spanning proteins called PsaA and PsaB. The pigments of P700 bound to PsaA/PsaB 

are called PA/PB, respectively. PA/PB is the Chl-a'/Chl-a species, respectively. 

The oxidation potential (Eox) of P700 plays a significant role in determining the electron 

transfer kinetics in PS I. Eox of P700 is ~440 mV [10], significantly lower than that of monomeric 

Chl-a (~800 mV) or P680 (~1200 mV), the homodimeric Chl-a species that functions as primary 

electron donor in PS II. 

One of the goals of computational research on photosynthetic reaction centers is to model 

these extreme redox properties of the dimeric donor cofactors. Here the redox properties of P700 

were calculated and the results were compared to the calculated redox properties of P680. 

The nature of the charge distribution over the pigments in the P700
+ state is unclear. FTIR 

studies suggest that the charge distribution is 1:1 to 1:2 (PA:PB) [63]. These results may disagree 

with ENDOR studies, which indicate a localized spin distribution over the Chls of P700
+ of 1:6 to 
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1:9 (PA:PB) [66, 72]. To investigate these issues the charge and spin distributions over the 

pigments in the P700
+ state were also calculated. 

In the PS I crystal structure the macrocycles of PA and PB are parallel and separated by 

3.6 Å. Pyrole rings I and II of PA and PB overlap, and the Mg2+ ions are separated by 6.3 Å 

(Figure 8.1). The N4A-MgA-MgB-N4B dihedral angle is ~57° [6]. 

 

Figure 8.1: (a) Structure of P700 showing the Mg-Mg distance (b) The angle between the lines formed by the Mg-N4 bonds 
on either pigment is 56.9º. 

8.2 Materials and Methods 

Two different P700 models were used in the calculations presented here. For the first 

model (which is called P700_1JB0), the atomic coordinates of P700 from the crystal structure were 

used [6]. Hydrogen atoms are added and geometry optimized at the B3LYP/6-31G(d) level, 

keeping all heavy atoms fixed. In the crystal structure, ring V of PA is bent out of plane of the 

macrocycle. This is an artifact. Hence the heavy atoms of ring V were allowed to freely optimize 

along with the hydrogen atoms. The phytyl chain of both Chl’s is replaced with a methyl group 

at the 174 position. This P700 model contains 164 atoms. 

The second model (called P700_opt) also contains 164 atoms and is fully geometry 

optimized at the B3LYP/6-31G(d) level (Figures 8.2 and 8.3). 
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Mulliken population analysis implemented within Gaussian 03 [87] was used to calculate 

the charge and spin distributions over the pigments of P700
+. To model solvent effects, the 

integral equation formalism (IEF) of the polarizable continuum model (PCM) [90-95] was used, 

as it is implemented in Gaussian 03. 

The electronic energy of both model dimers was calculated at B3LYP/6-311+G(d) level, 

in vacuum and in solvents with dielectric constants of 2.228 (CCl4) and 7.58 (THF) as described 

previously [137]. 

8.3 Results and Discussion 

 

Figure 8.2: Structure of fully geometry optimized P700 in the neutral state. The angle between the lines formed by the Mg-
N4 bonds on either pigment is 74.95º for the neutral state. 

 
Figure 8.3: Structure of fully geometry optimized P700 in the cation state. The angle between the lines formed by the Mg-N4 

bonds on either pigment is 68.08º for the cation state. 
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For the optimized P700 and P700
+ models the chlorin planes deviate somewhat from 

parallel, and are separated by ~3.8 Å. The overlap of the pyrole rings of the two pigments are 

clearly different from the crystal structure. The Mg2+ ion separation is 5.60 Å and 5.65 Å and the 

N4A-MgA-MgB-N4B dihedral angles are ~75° and 68° for P700 and P700
+, respectively (Figures 8.2 

and 8.3). Optimization causes the inter-planer distance to increase slightly, while the Mg2+ ion 

separation decreases. This decrease could be due to lack of histidine ligands that pull the Mg out 

of plane of the macrocycle. From comparing the optimized structures in Figures 8.1, 8.2 and 8.3 

with the X-ray crystal structure a RMS deviation of 1.24 Å and 1.06 Å was obtained for the 

neutral and cation states, respectively. Presumably, with the incorporation of protein amino acids 

into the calculation, the pigments will have less steric freedom, and the optimized structures may 

more closely resemble the crystal structure. 

  

8.3.1 Calculated Charge/Spin Distribution 

 

Figure 8.4: The HOMO of P700
+ obtained from the fully geometry optimized model (clockwise) in the gas phase, in CCl4 

and THF. Red color represents positive electron density while green color represents negative electron density. 
The value of the isosurface is 0.01. 
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For the P700
+ structure shown in Figure 8.3 the calculated charge distribution over the two 

pigments is 1:0.998 in the gas phase. In solvents the calculated charge distribution over P700
+ is 

1:1.03 (CCl4) and 1:1.09 (THF) (see Table 8.1). These results suggest that the positive charge on 

P700
+ is delocalized over the two chlorophyll pigments of P700. 

The highest occupied molecular orbitals (HOMO’s) of the P700
+ model in the gas phase 

and in solvents are shown in Figure 8.4. The spin density distributions in the corresponding 

models are shown in Figure 8.5. It is clearly evident from Figures 8.4 and 8.5 that the unpaired 

charge/spin is delocalized over the two chlorophylls of P700. 

  

 

Figure 8.5: Spin density distribution in P700
+ obtained from the fully geometry optimized model (clockwise) in the gas 

phase, in CCl4 and THF. Blue color represents positive spin density while green color represents negative spin 
density. The value of the spin density contour is 0.0001. 

For the P700 model with only hydrogen atoms optimized, the calculated charge 

distribution over P700
+ is 1:1.35 in the gas phase and 1:1.26/1:1.05 in CCl4/THF respectively. 

Thus the calculated charge distribution from both models suggests that the charge on P700 is 

delocalized in the cation state. These results are in agreement with FTIR data [63]. The 
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calculated charge distribution is similar to that obtained by Sun et. al [139], who used a lower 

level of theory and did not include the 173 ester C=O group. 

  

 

Figure 8.6: The HOMO of P700
+ obtained from the P700_1JB0 model (clockwise) in the gas phase, in CCl4 and THF. Red 

color represents positive electron density while green color represents negative electron density. The value of 
the isosurface is 0.01. 

 

 

 

Figure 8.7: Spin density distribution in P700
+ obtained from the P700_1JB0 model (clockwise) in the gas phase, in CCl4 and 

THF. Blue color represents positive spin density while green color represents negative spin density. The value 
of the spin density contour is 0.0001. 
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Table 8.1: Charge and spin distribution for cation state of P700_1JB0 ,P700_opt and P680_2AXT models, obtained from single 
point energy calculations at the B3LYP/6-311+G(d) level. 

 

The charge distribution over P680
+ was also calculated for a P680 model with only 

hydrogen atoms optimized, starting from the crystal structure of PS II [10]. The calculated 

charge distribution over P680
+ is 1:1.63 (PD1:PD2) and 1:1.62(PD1:PD2) in the gas phase and in 

CCl4, respectively. Recently Takahashi et al. calculated a ratio of 1:1.174 (PD1:PD2) for a Chl-a 

dimer that is purported to be representative of P680
+ [140]. In their model of P680 the 173 ester 

C=O group of both chlorophylls were replaced with ethyl groups. The calculated results for 

P680_2AXT and P700_1JB0 are very similar, so are the results obtained by Takahashi et al. This is 

surprising as it is thought that the charge distribution over the pigments of P680 is highly localized 

[141]. So, for the P680 model (and probably the P700 model studied here) the calculated charge 

(and spin) distribution over the pigments may not be a reliable indicator of the appropriateness of 

the computational approach. Certainly, any calculated results are best considered only within the 

context of many calculations on various dimeric chlorophyll species that may or may not include 

a protein environment. 

The ionization potential (IP) of the Chl-a’/a dimer can be estimated from the difference 

in the calculated electronic energies of the neutral and cation states. The ionization potential for 

8.3.2 Calculated Redox Potential 

 ε = 1 ε=2.228 ε=7.58 
Charge (PA:PB) 
P700_1JB0 
P700_opt 
P680_2AXT 

 
1 : 1.35 
1 : 0.99 
1 : 1.63 

 
1 : 1.26 
1 : 1.03 
1 : 1.62 

 
1 : 1.05 
1 : 1.09 
…….. 

Spin (PA:PB) 
P700_1JB0 
P700_opt 
P680_2AXT 

 
1 : 1.16 
1 : 1.48 
1 : 0.84 

 
1 : 1.08 
1 : 1.54 
1 : 0.85 

 
1 : 0.89 
1 : 1.65 
…….. 
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P700_1JB0 and P700_opt and P680_2AXT were calculated in the gas phase and in solvents. The 

ionization potential for a monomeric Chl-a molecule was also calculated. The cofactor Eox (in 

Volts) was obtained from the calculated ionization potential by subtracting the absolute potential 

of SHE referenced to vacuum, which has been estimated to be 4.43 eV as described by 

Hasegawa et. al.[137]. The calculated Eox for P700_1JB0, P700_opt and P680_2AXT models along 

with that of a monomeric chlorophyll model in the gas phase and in solvents is given in Table 

8.2. Also given is the Eox value calculated for a P680 model by Takahashi et. al.[140]  

Table 8.2: Calculated redox potentials for P700_1JB0, P700_opt and P680_2AXT models, obtained from single point energy 
calculations at the B3LYP/6-311+G(d) level. 

 

For both optimized and unoptimized P700/P700
+ models, as well as for a monomeric Chl-

a/Chl-a+ model, the calculated Eox for ε = 1.0/2.228/7.58 are listed in Table 8.2. The dielectric 

constant around the pigments in photosynthetic reaction centers has been estimated to be 

between 2.2-7.6 [96, 97, 131-134]. Also listed in Table 8.2 is the Eox calculated for the 

P680_2AXT model and the model studied by Takahashi et al previously [140]. The calculated Eox 

values are very similar for both the hetero and homodimeric Chl-a models. This is perplexing 

given the very different Eox that P700 and P680 are known to operate at. It is also confusing to 

observe that the calculated Eox values are virtually same for P700_1JB0 and P700_opt. It is a 

valuable result, however, for diagnosing the appropriateness of the computational methods. 

Given that the same redox potentials are calculated for Chl-a dimer models that are supposedly 

 ε = 1 ε=2.228 ε=7.58 
Eox (V) 
P700_1JB0 
P700_opt 
P680_2AXT 
Chl-a 
P680[140] 

 
1.622 
1.546 
1.620 
1.827 

 
1.071 
1.064 
1.087 
1.191 

1.099(ε=2.247) 

 
0.705 
0.767 
…….. 
0.797 
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representative of systems operating at very different redox potentials, it is probably unwise to 

relate calculated IP’s directly to available experimental data. Especially so when the results are 

based on isolated calculations without consideration of the protein environment, hence more 

detailed calculations involving the protein backbone are clearly required. 

8.4 Conclusions 

The charge and spin distribution in the cation state of P700 was obtained using fully 

geometry optimized as well as un-optimized model of P700 starting from the X-ray crystal 

structure. The calculated charge and spin distribution of P700
+ in both models is delocalized over 

both chlorophylls. The charge/spin distribution was also obtained for a P680 model for 

comparison and the calculated results are similar to that of P700. This is surprising as it is thought 

that the charge distribution over the pigments of P680 is highly localized. 

The redox potential was calculated for the P700 models as well as for the P680 model. The 

calculated redox potential are very similar for both the hetero (P700) and homodimeric (P680) Chl-

a models. This is perplexing because P700 and P680 are known to operate at very different redox 

potentials. These results are valuable, however, for diagnosing the appropriateness of the 

computational methods. 

Given that the same redox potentials are calculated for Chl-a dimer models that are 

supposedly representative of systems operating at very different redox potentials, it is probably 

unwise to relate calculated IP’s directly to available experimental data. More detailed 

calculations involving the protein environment are clearly required to obtain a detailed 

understanding of the very different redox properties of P700 and P680. 
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CHAPTER 9 

DISSERTATION SUMMARY  

Photosystem I (PS I) is a pigment protein complex present in the thylakoid membrane of 

plants and bacteria that catalyses the light-induced transfer of electrons across the membrane. In 

PS I the electron transfer process is initiated by light induced oxidation of a hetero-dimeric Chl-a 

/ Chl-a’ (PB/ PA) species called P700. The protein interaction to the primary electron donor P700 is 

highly asymmetric, with PA being involved in a hydrogen bond network with several surrounding 

amino acid residues and PB being free of any such interactions. 

Low temperature FTIR Difference Spectroscopy was used to study a series of mutants 

from cyanobacterium Synechocystis sp. 6803 where the amino acid residues in the proximity of 

the C=O groups of the two chlorophylls of P700 where specifically changed. On the PsaA protein 

a single mutation of ThrA739 to Phe as well as a set of three mutations were ThrA739 changed 

to Tyr, SerA603 to Gly, and TyrA599 to Leu were studied. The aim of these mutations were to 

modify the hydrogen bonding interactions to the C=O groups of PA by making the environment 

similar to the C=O modes of PB, which exhibits no hydrogen bonding interaction with the protein 

backbone. 

The low temperature FTIR Difference spectroscopy measurements of the different PsaA 

mutants indicate that the hydrogen bonding to the C=O groups of PA have been significantly 

impacted upon mutations, which is evident from the mutation induced changes of the FTIR DS 

bands assigned to the 131 keto and 133 ester C=O groups of PA 

A similar set of mutants where the amino acid residues in the vicinity of PB were 

modified, in an attempt to introduce hydrogen bonding interaction to the C=O groups of PB, were 
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also studied. On the PsaB protein a single mutation of TyrB718 to Thr , a double mutant were 

GlyB585 was changed to Ser and LeuB581 was changed to Tyr as well as a set of three 

mutations were TyrB718 changed to Thr, GlyB585 to Ser, and LeuB581 to Tyr were studied. 

The low temperature FTIR Difference spectroscopy measurements of the PsaB mutants 

suggests the possibility that the mutations introduces H-bonding interaction to 131 keto C=O 

group of PB. 

DFT based vibrational frequency calculations of Chl-a model molecules were undertaken 

in the presence and absence of H-bond interactions to the 131 keto C=O group in order to assist 

the interpretation of the mutation induced spectral changes in the different PsaA and PsaB 

mutants. These calculations show that the ester and keto C=O groups of Chl-a molecule shows 

coupled vibrations. The spectral changes observed over a wide spectral region in these mutants 

can thus be easily explained by treating the 131 keto and 133 ester C=O groups as coupled modes. 

The FTIR difference spectroscopy data from the different PsaA and PsaB mutants 

suggests that the pigment-protein interactions are unique to each pigment and also demonstrate 

that the strong hydrogen bonding interactions that exist between the 131 keto and 133 ester 

carbonyl groups of PA and three key residues of PsaA cannot be duplicated on the PsaB side by 

simply replacing the corresponding amino acid residues by their PsaA homologues.  

The electron transfer cofactors in PS I arranged along two virtually identical branches 

extending across the thylakoid membrane from the primary electron donor, P700 raises the 

question whether both branches of cofactors are equally active in PS I. Pigments on the two 

branches are spectroscopically indistinguishable; hence the focus has been on creating site-
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directed mutants where point mutations are made for specific amino acids along the PsaA or 

PsaB branch. 

The directionality of electron transfer in PS I particles has been investigated using 

different spectroscopic techniques including, EPR and ultrafast spectroscopy. Ramesh et al. [24, 

26], employing optical ultrafast spectroscopy, reported that upon replacement of the Met axial 

ligand to A0 on the PsaA or PsaB protein by His in PS I particles from C. reinhardtii equal 

amount of A0
- was accumulated in both mutants. Also it was shown that the accumulation of A0

- 

is transient and that the reoxidation of A0
- occurs within 1-2 ns, two orders of magnitude slower 

than in wild type. These results were taken as in indication that both branches are active in 

electron transfer in C. reinhardtii PS I particles. However, these results were challenged by a 

low-temperature transient EPR study [142], which indicated that the formation of the P700
+A1

- 

radical pair was not affected in the PsaB mutant, where as it was significantly diminished in the 

PsaA mutant. The transient EPR measurements at low temperature are only sensitive to those 

reaction centers undergoing reversible charge separation while the RT ultrafast measurements 

observe the entire PS I population. Using single flash excitation FTIR DS measurements these 

two different populations of reaction centers can be observed. 

Single flash excitation FTIR DS measurements indicates that mutation of the A0 ligand 

on the A branch leads to a decrease in the reversible component of P700 while the mutation on the 

B branch lead to an increase in the reversible component. Hence it can be shown that the 

conflicting conclusions made from transient EPR and RT ultrafast measurement results were due 

to the different populations of reaction centers under observation and both measurements in fact 

show evidence that both branches are active in electron transfer in C. reinhardtii PS I particles. 
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Also, the intensity of the (P700
+-P700) FTIR DS for the PsaA and PsaB branch mutants of 

A0 are significantly reduced at RT and low temperature measurements in comparison with the 

wild type spectra. The change in intensity of the spectra from the mutants was comparable and 

suggests that both branches are impacted to a similar extent upon mutation in C .reinhardtii PS I 

particles. Hence the FTIR data also provided evidence for bi-directional electron transfer in C. 

reinhardtii PS I particles. 

(P700
+-P700) FTIR DS has been obtained under many set of conditions: from PS I particles 

from different species, to particles with site-directed mutations near P700 and A0, to globally and 

site specifically isotope labeled PS I particles [54, 71, 76, 77]. DFT based vibrational mode 

frequency calculations were undertaken for several Chl-a and Chl-a+ model molecular systems in 

order to assist in the assignment of the difference bands in the (P700
+-P700) FTIR DS to vibrations 

modes of the chlorophyll molecules constituting P700 [79, 80]. The calculated (Chl-a+-Chl-a) DS 

in solvents shows remarkable similarity to the experimental (Chl-a+-Chl-a) FTIR DS in THF. 

However, the compositions of the calculated vibrational modes are very different from that 

suggested from experiment. The calculated data was used to make new suggestions as to the 

origin of the bands in experimental (Chl-a+-Chl-a) FTIR DS. 

The effect of solvation on the calculated IR spectra of Chl-a has been mostly studied 

using the PCM method where the solvent is modeled as a dielectric continuum [79, 80]. But 

PCM method has limitations as they do not model possible axial ligands or hydrogen bonds to 

Chl-a molecule. Hence in order to include the effect of these possible interactions, on the 

vibrational modes of Chl-a, vibrational frequency calculations were performed in the presence of 

real solvent molecules using the QM/MM method. It has been shown from this study that the 
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vibrational frequency calculations using QM/MM methods are not better than the gas phase 

calculations at least at the level of theory under consideration (B3LYP/6-31G(d)/AMBER). 

Solvent calculations using PCM method gave superior results for vibrational frequencies as well 

as redox potentials as the calculated results were closer to experimental results. 

The effect of axial ligation and H-bonding on the vibrational properties and redox 

potentials of Chl-a was investigated in details using the PCM model. These calculations show 

that the axial ligands have little or no effect on the frequencies of the calculated IR DS of Chl-a. 

The calculations also shows that the axial ligands decrease the redox potential of Chl-a 

significantly, and could explain the low redox potential of P700 in PS I. 

Hydrogen bonding to 131 keto C=O group of Chl-a leads to a significant downshift in the 

vibrational frequency of the anti-symmetrically coupled 131 keto and 133 ester C=O modes. The 

calculations also show that a H-bond introduced to the 131 keto C=O group of Chl-a leads to a 

significant decrease in intensity of the symmetrically coupled 131 and 133 ester C=O modes. The 

changes in frequency and intensity of the anti-symmetrically and symmetrically coupled modes 

in the calculated spectra are comparable to the experimentally observed changes in the (P700
+-

P700) FTIR DS obtained from PsaB mutant PS I particles of S. 6803. Also the calculations show 

that the H-bonding to the 131 keto C=O group of Chl-a has no effect on the redox potential. 

DFT methods were also used to calculate the charge, spin and redox properties of two 

Chl-a/Chl-a’ dimer models that are representative of P700, the primary electron donor in 

photosystem I. In one model that adheres closely the P700 structure derived from X-ray 

crystallography, the calculated charge and spin are evenly distributed between the pigments. 

Also, a redox potential of ~1.071 V (ε=2.228) was calculated for this model. This is similar to 
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that found in previous calculations of a Chl-a dimer that was suggested to be representative of 

P680 in PS II. P700 and P680 have very different redox properties, it therefore appears that DFT 

based calculations on chlorophyll dimers in the absence of the protein environment, may not 

accurately model their redox properties. In a second model, the chlorophyll-a’/a dimer model 

was fully geometry optimized. In this case the optimized structure is quite different from that 

suggested by X-ray crystallography, but the calculated charge and spin properties of this model 

dimer are similar to that calculated for the un-optimized dimer. This may be a further indication 

that the protein environment around the pigments strongly modulates the charge, spin and redox 

properties of chlorophyll dimers. 
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