Georgia State University ScholarWorks @ Georgia State University

Nutrition Theses

Department of Nutrition

Fall 12-15-2010

Serum Vitamin Concentrations are Associated with Metabolic Syndrome and Insulin Resistance in US Children

Nida I. Shaikh Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/nutrition_theses Part of the <u>Nutrition Commons</u>

Recommended Citation

Shaikh, Nida I., "Serum Vitamin Concentrations are Associated with Metabolic Syndrome and Insulin Resistance in US Children." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/nutrition_theses/20

This Thesis is brought to you for free and open access by the Department of Nutrition at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Nutrition Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.

ACCEPTANCE

This thesis, SERUM VITAMIN CONCENTRATIONS ARE ASSOICATED WITH METABOLIC SYNDROME AND INSULIN RESISTANCE IN US CHILDREN, by Nida Shaikh, was prepared under the direction of the Master's Thesis Advisory Committee. It is accepted by the committee members in partial fulfillment of the requirements for the degree Master of Science in the College of Health and Human Sciences, Georgia State University.

The Master's Thesis Advisory Committee, as representatives of the faculty, certify that this thesis has met all standards of excellence and scholarship as determined by the faculty.

Vijay Ganji, PhD, RD, LD

Committee Chair

Murugi Ndirangu, PhD Committee Member

Anita Nucci, PhD, RD, LD

Committee Member

Date

AUTHOR'S STATEMENT

In presenting this thesis as a partial fulfillment of the requirements for the advanced degree from Georgia State University, I agree that the library of Georgia State University shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to quote, to copy from, or to publish this thesis may be granted by the professor under whose direction it was written, by the College of Health and Human Sciences director of graduate studies and research, or by me. Such quoting, copying, or publishing must be solely for scholarly purposes and will not involve potential financial gain. It is understood that any copying from or publication of this thesis which involves potential financial gain will not be allowed without my written permission.

Signature of Author

NOTICE TO BORROWERS

All theses deposited in the Georgia State University library must be used in accordance with the stipulations prescribed by the author in the preceding statement. The author of this thesis is:

Nida Shaikh 3200 Lenox Rd NE, Apt C101, Atlanta, GA 30324

The director of this thesis is: Dr.. Vijay Ganji Division of Nutrition College of Health and Human Sciences Georgia State University Atlanta, Georgia 30303

Users of this thesis not regularly enrolled as students at Georgia State University are required to attest accpetance of the preceeding stipulation by signing below. Libraries borrowing this thesis for the use of their patrons are required to see that each user records here the information requested.

NAME OF USER	ADDRESSS	DATE	TYPE OF USE
(EXAMINATION ONL)	Y OR COPYING)		

ABSTRACT

Background: Vitamin D deficiency is a concern in the US. Association between vitamin D status and metabolic syndrome (MetS), insulin resistance (IR), and inflammation is unclear in children.

Objective: The relationship between serum vitamin D and MetS, C-reactive protein (CRP), and Homeostatic Model Assessment-IR (HOMA-IR) was investigated.

Design: Data from 3 cycles of National Health and Nutrition Examination Survey, 2001-2006 for 3700 (1820, boys; 1880, girls) children and adolescents, aged 12-17 y were used to assess prevalence of vitamin D deficiency (<20 ng/mL) and association between serum vitamin D and prevalence of MetS, various components of MetS, CRP, and HOMA-IR using multivariate regression models.

Results: Overall, prevalences of MetS and vitamin D deficiency were 6.1% and 30.5%, respectively. Prevalence of vitamin D deficiency was higher in girls (52%), blacks (74%), non-supplement users (50%), persons who were examined in winter (56%), and persons in the low poverty income ratio group (57%) compared to their counterparts. Serum vitamin D was inversely associated with waist circumference (P<0.001), systolic blood pressure (P=0.009), and HOMA-IR (P=0.003) and positively associated with HDL-cholesterol (P<0.001). Children with lowest serum vitamin D are at increased risk for MetS (P=0.04; OR 2.26; 95% CI: 1.11, 4.61). Serum vitamin D was not related to CRP (P<0.10).

Conclusions: Children with poor vitamin D status are at increased risk for MetS and IR. Because of negative health outcomes associated with MetS and poor vitamin D status when existed

individually or in combination, early detection and intervention of these conditions are paramount, especially in children.

SERUM VITAMIN CONCENTRATIONS ARE ASSOICATED WITH METABOLIC SYNDROME AND INSULIN RESISTANCE IN US CHILDREN

By

Nida I Shaikh

A Thesis Presented in Partial Fulfillment of Requirements for the

Degree of Master of Science

in

Health Sciences

in

The Division of Nutrition

in

The College of Health and Human Sciences

Georgia State University

Atlanta, Georgia

2010

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Vijay Ganji for his guidance and patience that helped shape this project. I would like to thank Dr. Xu Zhang for her valuable guidance throughout the statistical analysis portion of my thesis. In addition, I thank the other members of my thesis committee Dr. Anita Nucci, and Dr. Murugi Ndirangu for their feedback and support. I would also like to thank Mrs. McCarroll for supporting me throughout the Coordinated Program and challenging me to learn SAS programming. I would like to thank both my work supervisors at the Recreational Center- Mrs. Debbie Rupp and Ms. Melissa Buchheit for their wholehearted support and flexibility in tailoring my work schedule around my academic responsibilities. I thank Yolanda Miller for her administrative help. Last but not least, I am very grateful for unending support of my family and friends.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
LIST OF TABLES	v
ABBREVIATIONS	vi
CHAPTER I	
INTRODUCTION	
CHAPTER II	
REVIEW OF LITERATURE	
VITAMIN D	
SYNTHESIS, METABOLISM & SOURCES	
FUNCTIONS OF VITAMIN D	
VITAMIN D STATUS & RECOMMENDATIONS	
VITAMIN D INSUFFICIENCY AND DEFICIENCY	6
METABOLIC SYNDROME	7
PATHOPHYSIOLOGY OF METABOLIC SYNDROME	9
PREVALENCE OF METABOLIC SYNDROME	
VITAMIN D, METABOLIC SYNDROME AND OBESITY	
VITAMIN D, METABOLIC SYNDROME, AND BLOOD PRESSURE	
INSULIN RESISTANCE	
VITAMIN D, METABOLIC SYNDROME, AND INSULIN RESISTANCE	
VITAMIN D, METABOLIC SYNDROME, & CRP	
CONCLUSION	
CHAPTER III	
SUBJECTS AND METHODS	
STUDY DESIGN AND SUBJECTS	
DESCRIPTION OF STUDY VARIABLES	
BIOCHEMICAL MEASUREMENTS	
DEFINITION OF METABOLIC SYNDROME VARIABLES	
STATISTICAL ANALYSIS	
CHAPTER IV	
RESULTS	

CHAPTER V
DISCUSSION AND CONCLUSION
REFERENCES
APPENDICES
APPENDIX A
SAMPLE SIZE AND HEALTH CHARACTERISCTICS OF 12-17 y OLD CHILDREN AND ADOLESCENTS IN NHANES 2001-2006
APPENDIX B
CHARACTERISTICS OF 12-17y OLD CHILDREN AND ADOLESCENTS WITH METABOLIC SYNDROME IN NHANES 2001-2006
APPENDIX C
DESCRIPTIVE STATISTICS FOR PREVALENCE OF VITAMIN D DEFICIENCY IN 12- 17 y OLD CHLDREN AND ADOLESCENTS IN NHANES 2001-2006
APPENDIX D
SAMPLE SIZE OF VARIABLES ACCORDING TO SERUM VITAMIN D TERTILE CATEGORIES
APPENDIX E
ASSOCIATION BETWEEEN SERUM VITAMIN D AND CONCENTRATIONS AND PREVALENCE OF METABOLIC SYNDROME
APPENDIX F
ADJUSTED CONCENTRATIONS OF INDICATORS OF METABOLIC SYNDROME ACCORDING TO TERTILES OF SERUM VITAMIN D IN 12-17y OLD CHOLDREN AND ADOLESCENTS IN NHANES 2001-2006

LIST OF TABLES

TABLE PAGE Table 1:Sample sizes and health characteristics of 12-17 y old children and adolescents 28 in the National Health and Nutrition Examination Surveys (NHANESs) 2001-2006 Table 2: Characteristics of 12-17 y old children and adolescents with metabolic 31 syndrome in the National Health and Nutrition Examination Surveys (NHANESs) NHANES 2001-2006 Table 3: Prevalence of vitamin D deficiency in 12-17 y old children and adolescents in 34 the National Health and Nutrition Examination Surveys (NHANESs) 2001-2006 Table 4: Sample sizes for serum vitamin D concentrations by age, sex, race-ethnicity, 38 PIR, BMI, use of supplements, and time-period of examination in 12-17 y children and adolescents in the National Health and Nutrition Examination Surveys (NHANESs) 2001-2006 Table 5: Multivariate-adjusted odds ratio (OR) and 95 % confidence interval (CI) for 40 metabolic syndrome according to tertiles of serum vitamin D concentrations in 12-17 y

(NHANESs) 2001-2006

Table 6: Adjusted concentrations of indicators of metabolic syndrome according to42tertiles of serum vitamin D in 12-17 y old children and adolescents in the National42Health and Nutrition Examination Surveys (NHANESs) 2001-200642

old children and adolescents in the National Health and Nutrition Examination Surveys

ABBREVIATIONS

NHANES	National Health and Nutrition Examination Survey
NCHS	National Center for Health Statistics
MEC	Mobile Examination Center
MetS	Metabolic Syndrome
T2DM	Type 2 Diabetes Mellitus
IR	Insulin Resistance
HOMA-IR	Homeostatic Model Assessment for Insulin Resistance
CRP	C-reactive protein
HDL-c	High-density lipoprotein cholesterol
CVD	Cardiovascular disease
BP	Blood pressure
SBP	Systolic blood pressure
DBP	Diastolic blood pressure
IL	Interleukin
TNF	Tumor necrosis factor
NF- _k B	Nuclear factor kappa-light-enhancer of activated B cell
VDRs	Vitamin D receptor

CHAPTER I

INTRODUCTION

Health concerns associated with low serum vitamin D are on the rise in children and adolescents. Vitamin D is required not only for bone health ¹ but also plays a role in a range of ailments such as autoimmune disease,^{2, 3} cardiovascular disease (CVD), ⁴⁻⁶ type 2 diabetes mellitus (T2DM),⁶ hypertension,⁷ depression,^{8, 9} and certain types of cancer ¹⁰. Vitamin D deficiency is widespread in the US. There is inconsistency is defining vitamin D status using serum vitamin D concentration with vitamin D deficiency being defined at <11ng/mL,^{11, 12} <15ng/mL^{13, 14} or 20 ng/mL in different studies.¹⁵⁻¹⁷ Recently, the prevalence of vitamin D deficiency (<15 ng/mL) and vitamin D insufficiency (15-29 ng/mL) was found to be 9% and 61% respectively in children and adolescents.¹⁴

Suboptimal circulating concentrations of serum vitamin D have been linked to metabolic syndrome (MetS),^{18, 19} cardiometabolic risk factors ¹⁴ and insulin resistance (IR).²⁰ MetS is an established risk factor for CVD and T2DM.⁶ While there is a lack of consistent criteria in identifying MetS given that various organizations have provided different working definitions, the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) definition is most widely used in the US. The prevalence of MetS increased among adolescents from 6.4% in the National Health and Nutrition Examination Survey (NHANES) 1999-2000 to 8.6 % in NHANES 2001-2006

. ²¹⁻²³ Obesity and IR are the underlying cause of MetS. ²⁴⁻²⁶ IR is known to contribute to the pathogenesis of T2DM. ^{20, 27} Vitamin D reduces the risk for T2DM by preserving insulin secretion and increasing insulin sensitivity. ^{20, 27, 28} However, epidemiological evidence relating vitamin D status with IR and glucose homeostasis is not consistent. ²⁷⁻³²

Recently, vitamin D has been linked to inflammation through the activation of vitamin D receptors (VDRs) on inflammatory cells.¹⁶ C-reactive protein (CRP) is a predictor of elevated inflammation, ^{33, 34} which has been linked with increased risk for CVD, ^{35, 36} obesity, ^{32, 37} and MetS.^{33, 38, 39} However, no epidemiological studies have investigated the association between vitamin D and inflammation using CRP as a marker.

Furthermore, few nationally representative studies investigated the relationship between vitamin D, MetS and its individual components, but did not include the association between vitamin D with inflammation and IR.^{14, 18} In addition, the inverse association between serum vitamin D and IR has been confirmed in adults, but similar studies on children and adolescents are lacking. Due to clinical evidence confirming the presence of VDRs on pancreatic β cells ¹ and inflammatory cells,⁴⁰ we suggest the plausible role of vitamin D in CVD, inflammation, and IR and hypothesize that an inverse association exists between serum vitamin D concentration and MetS, CRP, and IR. Therefore, we investigated the association between serum vitamin D concentrations and prevalence of MetS, individual components of MetS, CRP, and IR in children and adolescents from nationally representative sample surveys of the US population.

CHAPTER II

REVIEW OF LITERATURE

VITAMIN D

SYNTHESIS, METABOLISM & SOURCES

Vitamin D, a lipophilic vitamin, is obtained primarily upon exposure to ultra violet radiation of sunlight.^{1, 41} Vitamin D precursors, 7-dehydrocholesterol in the skin is converted to vitamin D₃. The hydroxylation of vitamin D₃ results in the formation of vitamin D (25-hydroxyvitamin D) in the liver. Further vitamin D is converted to its active metabolite 1,25-dihydroxyvitamin D (1,25 (OH)₂D) or calcitriol by 1 α -hydroxylase in the kidney.¹ Calcitriol is involved in regulating calcium homeostasis.¹

There are limited natural dietary sources of vitamin D. A few foods such as fatty fish (mackerel, salmon, and sardines), cod liver oil, liver, and egg yolk contain vitamin D. ^{1, 6} In addition, vitamin D is found in fortified foods such as milk, yogurt, margarine, infant formulas, breakfast cereals, orange juice,⁴² enriched rice, corn meal products, noodle products and macaroni products. ^{1, 43} Fortified milk (62%) and breakfast cereals (17%) are the main food sources of vitamin D in 1-5y old children.⁴⁴ Less than 10% of vitamin D is obtained from other foods and supplement sources. ⁴⁵

FUNCTIONS OF VITAMIN D

Vitamin D performs multitude of biological functions in the body. It regulates calcium and phosphorus homeostasis by enhancing calcium and phosphorus absorption in the gut and promoting bone mobilization.^{1, 16, 41} The functions of vitamin D are mediate

through VDRs. Once the vitamin D enters the nucleus of the cell, it binds with the VDRs, and together they modulate gene expression at the cellular level.¹ VDRs are transcription factors expressed in most tissues including the skeletal muscle, vascular smooth muscle, osteoblasts, endothelium, cardiomyocytes, activated macrophages, pancreatic β -cells. VDRs are also mapped in various organs systems including the small intestine, skin, heart, brain, breast, gonads, and prostate gland. ^{1,41} In addition to the role of vitamin D in calcium homeostasis, VDRs are also known to stimulate insulin production ¹ and modulate immune function. ^{16,46,47}

VITAMIN D STATUS & RECOMMENDATIONS

Circulating serum vitamin D is used as a marker of vitamin D status because it reflects the total vitamin D production from endogenous and exogenous sources and has a longer half life than calcitriol.^{1, 16, 48} Vitamin D deficiency was defined at serum vitamin D concentration <11 ng/mL (27.5 nmol/L) by the Institute of Medicine.¹² Recently, the same agency suggested serum vitamin D concentrations between 20-30 ng/mL as adequate to maintain bone health. Previous studies have demonstrated effects of vitamin D deficiency at serum vitamin D concentrations higher than 11 mg/mL.¹¹ The most consistent criteria used to categorize vitamin D in children are <20 ng/mL, 20-30 ng/mL, and \geq 30 ng/mL for deficiency, insufficiency, and sufficiently, respectively.^{15, 16, 44} However, Forouhi et al ³⁰ classified vitamin D status in 4 categories: sufficiency (\geq 30 ng/mL or \geq 75 nmol/L), hypovitaminosis D (<30 ng/mL or <75 nmol/L), insufficiency (<20 ng/mL or <50 nmol/L), and classical deficiency (<10 ng/mL or <25 nmol/L). Some investigators have also considered serum vitamin D deficiency concentrations \leq 15ng/mL $(\leq 37.5 \text{ nmol/L})$ and $\geq 20 \text{ ng/ml}$ ($\geq 50 \text{ nmol/L})$ to define deficiency and sufficiency, respectively.^{13, 14} There is ambiguity in defining vitamin D status.

Excess serum vitamin D concentration is also undesirable. Serum vitamin D concentrations \geq 80 ng/mL (200 nmol/L) are regarded as the upper limit of serum vitamin D.⁴¹ Costello ¹⁶ reported vitamin D concentrations >200 ng/mL (>500 nmol/L) is considered potentially toxic.

Numerous factors such as skin pigmentation (melanin), excessive use of sunscreen, nature and amount of clothing, geographical location or latitude, season, and age affect vitamin *de novo* vitamin D synthesis in dermis. ^{31, 44, 49, 50} Although some investigators found that the prevalence of vitamin D deficiency was higher in children with darker skin pigmentation than those with lighter skin pigmentation,^{44, 51} Cole et al ⁴⁴ found that skin pigmentation did not significantly predict vitamin D status. Clemens et al ⁵² found that non-Hispanic white need 5 to 10 times lesser sun exposure to produce serum vitamin D as compared to non-Hispanic black. Season and geographical location affects synthesis of vitamin D in the skin. Vitamin D deficiency has been found more prevalent in winter than in summer and at higher latitudes than at lower latitudes.^{51 43} Webb et al ⁵³ reported endogenous vitamin D synthesis was reduced in persons living above 35° latitude in winter.

The Food and Nutrition Board of the National Academy of Sciences recommended 200 IU/d as the adequate intake of vitamin D for children to maintain serum vitamin D concentrations >11 ng/mL (27.5 nmol/L).¹² The American Academy of Pediatrics, a non-profit professional organization recommended 400 IU/d of vitamin D supplementation for children and adolescents that are unable to get adequate exposure to sunlight or are unable to consume at least 500 mL of fortified milk daily.⁵⁴ However, with the failure to reach minimum serum vitamin D concentration of 20 ng/mL, the Institute of Medicine recently revised the recommended dietary allowance (RDA) and upper intake level of vitamin D in children and adolescents to 600 IU/d and 4000 IU/d, respectively. ⁵⁵

VITAMIN D INSUFFICIENCY AND DEFICIENCY

Vitamin D insufficiency and deficiency in children is an emerging public health concern in the US. Suboptimal vitamin D status hampers bone mineralization. Vitamin D deficiency prevents children from acquiring appropriate peak bone mass and attaining adequate height.¹ Vitamin D deficiency weakens the collagen matrix of bones leading to increased risk of bone fractures. Low serum vitamin D causes secondary hyperparathyroidism, which in turn decreases intestinal phosphorous absorption, resulting in impaired bone mineralization. Children develop rickets, adults develop osteomalacia from deranged mineralization of bones.^{1,41,56}

It is estimated that 61% of children and adolescents are at risk for vitamin D insufficiency (15-29 ng/mL) in the US.¹⁴ Using a definition of vitamin D deficiency <15 ng/mL, Kumar et al ¹⁴ found 9% of children 1-21 y old were vitamin D deficient in NHANES 2001-2004. A review of 11 studies on healthy US children revealed that prevalence of hypovitaminosis ranged from 15 to 78%. Low serum vitamin D concentrations were found in older children, in those with higher body mass index (BMI), in blacks, or in those measured in winter season.⁴³ In this review, vitamin D deficiency and insufficiency were defined as having serum vitamin D concentrations between 5 and 12 ng/mL and 10 and 32 ng/mL, respectively. Looker et al ⁵¹ assessed serum vitamin D concentrations in adolescents and adults (aged ≥ 12 y) from NHANES III (1988-1994). They categorized the study sample into 2 groups based on the season of blood sample collection for measurement of serum vitamin D concentrations. The need for categorization into 2 such groups was due to NHANES survey design that involved collection of blood sample from a mobile examination center (MEC) during summer from northern latitudes (range 25-47°N) and during the winter from southern latitudes. In the group examined during winter (lower latitude), vitamin D deficiency (<17.5 nmol/L) and vitamin D insufficiency (<37.5-62.5 nmol/L) was <1% and 25-57%, respectively. In another study on NHANES III, Saintonge et al ¹¹ investigated serum vitamin D in 12-19 y adolescents using vitamin D deficiency first as <11 ng/mL and then as <20 ng/mL. The investigators found vitamin D deficiency was significantly higher in women, non-Hispanic black, and overweight adolescents as compared to their counterparts.

Other studies investigated the prevalence of vitamin D deficiency in both northern and southern parts of the US. In the south eastern US, Cole et al ⁴⁴found 23% of children aged 1-5 y old of low-income families were deficient in vitamin D (\leq 20 ng/mL). The researchers found 73.6% of children had serum vitamin D concentrations <30 ng/mL. In the northern US (latitude 42° N), Gordon et al ¹³ found 24% (n = 74) of 11-18 y old children were deficient (\leq 15 ng/mL) and 42% (n = 129) were insufficient (< 20 ng/mL) in serum vitamin D.

METABOLIC SYNDROME

A growing body of evidence suggests that suboptimal vitamin D concentrations are linked with an increasing number of health conditions such as MetS. Previously known as Syndrome X ⁵⁷ or Insulin Resistance Syndrome.⁵⁸ MetS is a constellation of factors that link obesity, hypertension, IR, T2DM, and CVD.⁵⁹ The World Health Organization (1998),⁶⁰ the European Group for the study of IR (EGIR) (1999),⁶¹ National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) (2001),⁶² and the International Diabetes Federation (IDF) (2005) ⁶³ have established definitions for the diagnosis of MetS.

Of the numerous MetS definitions, the NCEP-ATP III is commonly used in research. According to this definition, the presence of at least 3 of the following 5 confirms having MetS for adults: WC \geq 40 inches in men or \geq 35 inches in women, serum triglycerides \geq 150 mg/dL, serum high-density lipoprotein cholesterol (HDL-c) <40 mg/dL for men or <50 mg/dL for women, high BP \geq 130/85 mm Hg, and fasting plasma glucose \geq 100 mg/dL.⁶²

There is no universally accepted definition of MetS in children and adolescents. Investigators have adapted the adult MetS definition for pediatric population.^{22, 64} The modified MetS definition proposed by Cook et al ²² includes an individual meeting 3 of the 5 following criteria: (1) WC \geq 90th percentile for age and sex, (2) triglycerides \geq 110mg/dL (1.24 mmol/L), (3) HDL-c \leq 40 mg/dL (1.03 mmol/L), (4) either systolic blood pressure (SBP) or diastolic blood pressure (DBP) \geq 90th percentile for age, sex, and height, and (5) fasting glucose concentration \geq 110 mg/dL (5.55 mmol/L). Ferranti et al ⁶⁴ proposed a modified criteria for MetS in children. Children and adolescents were classified with having MetS if they met at least 3 or more of the following: (1) fasting triglycerides \geq 100 mg/dL (1.1 mmol/L), (2) HDL-c <50 mg/dL (1.3 mmol/L), (3) fasting glucose

 \geq 110 mg/dL (6.1 mmol/L), (4) waist circumference > 75th percentile for age and gender, and (5) SBP > 90th percentile for gender, age, and height or use of antihypertensive medications. A more recent modified NCEP-ATP III pediatric MetS criteria proposed by Ford et al ⁶⁵ required that children and adolescents met 3 of the following: (1) triglyceride concentration \geq 110 mg/dL, (2) HDL-c \leq 40 mg/dL, (3) WC \geq 90th percentile (sexspecific), (4) glucose concentration \geq 100 mg/dL, and (5) SBP or DBP \geq 90th percentile (age, height, and sex-specific).

PATHOPHYSIOLOGY OF METABOLIC SYNDROME

Evidence suggests obesity, particularly visceral obesity is an important characteristic of the MetS^{23, 24, 59, 66}. Adipose tissue is not only an energy reservoir, but also an endocrine organ that secretes inflammatory adipocytokines and all components of the renin-angiotensin system (RAS).⁵⁹ The RAS regulates BP and blood volume homeostasis and excessive RAS stimulation can lead to hypertension.^{67, 68} The RAS is upregulated in obesity.⁶⁶ Adipose tissue secretes adipocytokines such as leptin, resistin, interleukin (IL)-6, plasminogen activator inhibitor-1, and tumor necrosis factor (TNF)- α .^{24, 66} Elevated concentrations of IL-6 and TNF- α stimulate the production of acute phase protein called CRP in the liver.^{35, 59} Higher circulating CRP concentrations indicate low-grade systemic inflammation and along with elevated pro-inflammatory cytokines, CRP contribute to the development of atherosclerotic plaques.^{69, 70} Thus, increase in adiposity is likely to trigger a cascade of events that includes activation of the RAS and increased secretion of pro-inflammatory adipocytokine leading to IR s causing atherogenic dylipidemia, systemic inflammation through increased secretion of inflammatory marker CRP, and decreased insulin sensitivity resulting in increased insulin resistance ^{24, 71}. Other factors such as the oxidative stress, heredity, and lifestyle factors also contribute to the development of MetS.⁵⁹ Hence, there exists a complex relationship between obesity, IR and various components of MetS.

PREVALENCE OF METABOLIC SYNDROME

The increasing prevalence of MetS in children and adolescents has become a public health concern.⁷¹ Epidemiological studies using the NCEP-ATP III definition have found the prevalence of MetS in NHANES vary from 4.2 to 12.7% ^{18, 21-23, 39}. Cook et al ²² reported a prevalence of MetS in 4% adolescents and a prevalence of 30% in overweight adolescents using the data from the NHANES III (1988-1994). Using the modified MetS definition proposed by Cook et al, ²² Duncan et al ²¹ found the prevalence of MetS further increased to 6.4% in adolescents (n = 991) in NHANES 1999-2000. In the same data, they found that the prevalence of MetS was 32.1% in overweight adolescents. DeFerranti et al⁶⁴ compared the prevalence of MetS in NHANES 1988-1994 with those in NHANES 1999-2000 in adolescents. They found that the prevalence of MetS increased from 9.2% in NHANES 1988-1994 to 12.7% in NHANES 1999-2000. An assessment of MetS in 2456 adolescents (12-19 y) in a more recent NHANES (2001-2006) using the modified MetS definition proposed by Ford et al.⁶⁵ Johnson et al 23 reported a prevalence of MetS was 8.6% overall and 28.7% in overweight adolescents. The prevalence of MetS differed by age and race. The prevalence of MetS was more common in men than in women^{21-23, 72} and is more common in Mexican-Americans than in non-Hispanic whites and non-Hispanic blacks. ^{22, 64}

VITAMIN D, METABOLIC SYNDROME AND OBESITY

It has been reported that serum vitamin D concentrations decrease with increasing body weight or BMI.^{11, 73, 74} Numerous mechanisms have been proposed for low serum vitamin D concentrations in obese individuals. One mechanism is the sequestering of vitamin D in adipose tissue leading to low circulating vitamin D concentrations decreases its bioavailability. ^{73, 74} Worstman et al ⁷⁴ suggested increased vitamin D storage with increase in adipose tissue, although they found no difference in the endogenous synthesis of vitamin D and vitamin D precursor (7-dehydrocholesterol) between obese and nonobese people. This negates the theory that obese people could possibly have lesser vitamin D precursors in the skin, which could result in less vitamin D production than that in their non-obese counterparts. Another theory is whether there is a difference in the way obese people utilize vitamin D production either through from skin or oral route. Wortsman et al ⁷⁴ investigated obese individuals' serum vitamin D concentrations from the skin as compared from an oral route and intestinal absorption in obese compared to non-obese subjects. The investigators reported that after a 24 hr sunlight exposure, there was a 57% lesser increase in serum vitamin D concentrations in obese compared to nonobese individuals. This suggests that the release of vitamin D may be affected in older persons.

In children, WC is associated with visceral adiposity, while BMI is more likely to predict subcutaneous body fat.⁷⁵ A BMI percentile between 85^{th} - 95^{th} percentiles is considered as overweight, while a BMI $\geq 95^{th}$ percentile is considered as being obese ²¹ (CDC chart) for children. Szmitko et al ³⁶ suggested that WC and skinfold thickness are independent predictors of MetS in early adulthood. Increased risk of vitamin D

deficiency was found in overweight adolescents as compared with normal-weight adolescents. Tangorra et al ⁷³ investigated the prevalence of vitamin D deficiency (<20 ng/mL) and components of MetS in 217 obese children, aged 7-18 y old. Insulin sensitivity was calculated by the quantitative insulin sensitivity check index (QUICKI). The prevalence of vitamin D deficiency was 55.2% in obese children. They found that serum vitamin D was inversely related with BMI and positively related with HDL-c. They did not investigate the association between serum vitamin D and season, exposure to sunlight, season, race-ethnicity, diet or exercise. Consistent with previous studies, the researchers reported that obesity is a risk factor for vitamin D deficiency and that vitamin D deficiency more prevalent in obese children than in non-obese children.^{11, 74}

There is emerging evidence that low serum vitamin D concentration is associated with the development of CVD and mortality.^{4, 5} An inverse association between the prevalence of MetS and vitamin D status has been established.^{19, 76} Also, low serum vitamin D concentrations have been associated with various components of MetS. Maki et al ⁴ found low serum vitamin D independently associated with MetS and with HDL-c in 257 men and women.⁴ Ford et al ¹⁹ reported an inverse association between vitamin D and MetS, abdominal obesity, hyperglycemia, and hypertriglyceridemia in NHANES III. Reis et al ⁷⁶ investigated the association of serum vitamin D and PTH with MetS in adults (\geq 20 y) in NHANES 2003-2004. They found a significant inverse association between serum vitamin D and prevalences of MetS independent of BMI, parathyroid hormone, and total calcium intake. Reis et al ¹⁸ investigated the association between serum vitamin D and cardiometabolic risk factors in 3577 adolescents in NHANES 2001-2004. Using the NCEP-ATP III definition modified by Cook et al ²² found that low serum vitamin D

was significantly associated with MetS and components of the MetS such as elevated BP and elevated fasting glucose.

In another study using the NHANES 2001-2004 data, Kumar et al ¹⁴ found serum vitamin D deficiency (<15 ng/mL) was significantly associated with elevated BP and with depressed HDL-c in 1-21 y old children and adolescents. They found only 4% of the children had taken 400 IU/d of vitamin D in the month prior to the data collection. Alberti et al ⁷¹ reported that individuals with MetS are twice as likely to develop CVD over the next 5-10 y as compared with individuals without MetS. Thus, MetS can lead to an atherogenic profile and increase the risk for CVD.

VITAMIN D, METABOLIC SYNDROME, AND BLOOD PRESSURE

A newly recognized role of vitamin D is its ability to regulate BP by inhibiting renin gene expression.⁷⁷ Renin is an enzyme and a key component of the RAS. The RAS, known to regulate BP and blood volume ⁶⁸, is upregulated in obesity.⁶⁶ This leads to sodium retention in the kidney.⁶⁶ All components of the RAS are produced in the adipose tissue.⁷⁸ For instance, angiotensin receptors are expressed in adipocytes.⁷⁹ Studies have suggested that hypertension is caused by many interrelated factors such as disrupted lipid metabolism, activation of the RAS, and hyperleptinemia. ^{66, 68} Morse et al ⁶⁶ reviewed literature on different components related to hypertension and suggested that excess weight gain is the underlying cause of elevated BP. Increased adiposity triggers increased activity of the sympathetic nervous system (SNS), RAS, and increased adipocytokine production . It has also been reported that IR from hyperinsulinemia contributes to the development of hypertension.⁵⁸ Elevated BP is one of deranged abnormalities of the MetS.^{66, 68} Recent studies have implicated low serum vitamin D concentrations as a risk factor for elevated BP.Vitamin D affects BP through regulation of the RAS, as well as its calcium mobilizing properties.⁸⁰⁻⁸² Zittermann et al ⁶⁸ postulated that vitamin D may affect vascular smooth muscle, cell proliferation, inflammation, vascular calcification, and BP through the RAS ⁶⁸. Animal studies show that vitamin D is an important regulator of the RAS system and that 1,25-dihydroxyvitamin D suppresses renin gene expression.⁶⁷ Disruption of the VDR gene leads to elevated renin production, cardiac hypertrophy, and elevated BP in mice.⁸³

Epidemiological studies have investigated the relationship between serum vitamin D concentrations and BP. In the Framingham Offspring longitudinal study, Wang et al ⁴⁸ assessed CVD risk and found twice the risk for CVD events in vitamin D deficient individuals that had hypertension than those that did not have hypertension. The authors also reported 28% of the participants had vitamin D deficiency (<15 ng/mL) and confirmed evidence that vitamin D deficiency is a risk factor for CVD. Judd et al ⁷ found obese children with serum vitamin D <20 ng/ml were found to have significantly higher SBP than obese children with serum vitamin D ≥ 20 ng/mL, in NHANES III (1988-1992). The investigators classified BP into 5 categories with a sixth category added to distinguish participants with normal SBP (<110 mm Hg) from those with high-normal SBP (110-119 mm Hg). In contrast, Maki et al ⁴ did not find an association between serum vitamin D and BP. They suggested that such an association was not found because a majority of the subjects in the study were vitamin D sufficient (>30 ng/mL) and were

non-Hispanic white. In order to reduce elevated BP, studies suggest vitamin D supplementation ^{7, 48} and weight loss, especially in obese individuals.⁸⁴

INSULIN RESISTANCE

Pancreatic β -cells promote the uptake, utilization, and storage of glucose by liver and peripheral tissues by producing insulin. The cells also express VDRs and 1 α hydroxylase which is required for the conversion of vitamin D to 1,25(OH)2D. ⁸⁵ Decreased insulin sensitivity or increased IR, a physiological state that results from impaired ability of plasma insulin to control altered glucose metabolism. It has been found that IR can also be present in individuals independent of excessive adiposity.⁷² However, in the obese state, higher secretion of adipocytokines can lead to hypertension, endothelial dysfunction, and deranged lipid metabolism.⁵⁸ Thus, IR precedes the development of MetS ^{24, 66} and is associated with increased risk for T2DM and CVD ^{15, 24}.

IR and pancreatic β -cell function are measured both by direct and indirect methods. The euglycaemic insulin clamp is considered the gold standard because this method is used to measure the IR directly and is regarded as highly sensitive.^{86, 87} Other indirect indices such as the Homeostatic Model of IR (HOMA-IR) and the QUICKI are also used to measure IR and insulin sensitivity. The HOMA-IR method, based on fasting glucose and insulin concentrations, is determined using a mathematical model.⁸⁸ The value of IR is calculated as the product of insulin concentration (μ U/mL) and fasting glucose concentration (mg/dL) divided by 405.⁸⁸ Unlike the euglycaemic insulin clamp method, the HOMA-IR is a less invasive and labor-intensive method. This method is widely used for the measurement of IR in large epidemiological studies.^{87, 89} On

evaluating 55 hospitalized Japanese patients with T2DM before and after a diet and exercise therapy treatment for 6 weeks, Katzuki et al ⁸⁷ found HOMA-IR to be useful in identifying IR. The investigators came to this conclusion after having found significant correlation between HOMA-IR and the euglycemic clamp both before and after treatment in T2DM patients. Several other epidemiological studies have shown HOMA-IR to be a reliable marker of IR. ^{32, 88}

VITAMIN D, METABOLIC SYNDROME, AND INSULIN RESISTANCE

Vitamin D is proposed to alter insulin action on the adipocyte, affect the release of insulin from the pancreatic β -cell, or regulate the RAS. ^{27, 90} The mapping of VDRs on pancreatic β -cells and binding of 1,25 (OH)₂D to it in the cell nucleus suggests a physiological role of vitamin D in regulating pancreatic β -cells functioning.²⁷ Because vitamin D deficiency causes increased renin-angiotensin II expression,⁹⁰ adequate serum vitamin D concentrations may help improve insulin sensitivity by preventing increase in renin-angiotensin II expression and its resultant stimulation of nuclear factor kappa-lightenhancer of the activated B cells (NF-_kB). ^{40, 91, 92}

Alvarez et al ²⁰ summarized the literature related to potential vitamin D influences on glucose homeostasis and insulin sensitivity. There is evidence that circulating serum vitamin D is inversely associated with IR, and a complex vitamin D action with these VDRs in the adipocyte and pancreatic β cell mediates insulin sensitivity and insulin secretion. In addition, glucose homeostasis and insulin metabolism are influenced by polymorphisms in VDR gene.^{20, 89} Stunff et al ⁸⁹ studied the association of a common *p110* β single nucleotide polymorphism (SNP) with IR using HOMA-IR in 580 severely obese (BMI > 99.6th percentile) and 606 non-obese European children. The investigators identified that the SNP was linked to elevated fasting glucose, insulin, and HOMA-IR index. Although the precise mechanism by which genetic factors affect insulin action on liver and muscle has not been elucidated, the possibility of targeting genetic VDR markers may help drive interventions to prevent development of IR and its progression to T2DM in children and adolescents.

In epidemiological studies, Forouhi et al ³⁰ found baseline serum vitamin D inversely associated with fasting glucose, fasting insulin, and HOMA-IR in a10-year follow up study. Caceres et al ⁷² studied the association between IR and MetS components in 61 Bolivian obese children and adolescents (age 5-18y) using the NCEP-ATP III modified definition. In this sample, the prevalence of MetS and IR were 36% and 39.4%, respectively. IR was significantly associated with components of MetS such as hypertension and high triglyceride concentrations. A study by Alemzadeh et al ³¹ found low vitamin D status associated with increased risk of impaired glucose metabolism, independent of body adiposity, in 127 obese children and adolescents (mean age \pm SD: 13.0 \pm 3.0 y) living in northern climate (43° N). The investigators found 32.3% of vitamin D deficiency overall, with suboptimal vitamin D concentrations (<30 ng/mL) in 74% of obese subjects. Using the QUICKI, serum vitamin D was directly associated with insulin sensitivity. There was overrepresentation of women in the study (62.2%).

Chiu et al ²⁸ investigated the relation of serum vitamin D concentrations to insulin sensitivity and β -cell function in 126 healthy adults using both hyperglycemic clamp and oral glucose tolerance test and found that hypovitaminosis D was a risk factor for MetS, and was directly associated with insulin sensitivity and inversely associated with β -cell function. Evliyaoğlu et al ⁹³ evaluated IR using oral glucose tolerance test (OGTT),

HOMA-IR, glucose/insulin ratio, and serum lipid profiles in 19 pre-pubertal girls with premature pubarche (mean age= 6.9 ± 1.7) as compared to 10 age- and Tanner stagematched controls (mean age= 7.5 ± 1.3) using indirect IR parameters. Using HOMA-IR and glucose/insulin ratio methods with 95% CI of 2.96 as the cut off for HOMA-IR, IR was found as 42.1% and 31.6%, respectively. Mean baseline insulin and HOMA-IR were significantly higher and glucose/insulin ratio was lower in the girls with premature pubarche than in the control group. In contrast, Reinehr et al ³² did not find a relationship between vitamin D, and insulin sensitivity based on the HOMA index in obese children. The study was based on a small sample size. The majority of subjects had normal 1,25 (OH)₂D concentrations. These may explain the lack of relation between vitamin D and insulin sensitivity.

Thus, evidence linking vitamin D and IR is equivocal. Adequate serum vitamin D concentrations may improve insulin sensitivity and reduce IR.^{20, 27} However, the exact mechanism through which vitamin D influences the pathophysiology associated with T2DM is not clear.

VITAMIN D, METABOLIC SYNDROME, & CRP

The role of CRP, an inflammatory biomarker, in hypertension and CVD has been explored recently ^{36, 94}. Several epidemiological studies suggest high CRP concentrations are associated with increased risk for obesity, hypertension, endothelial dysfunction, MetS ^{38, 39}, and CVD ³³. In children, there is evidence that CRP is significantly associated with obesity ^{33, 34, 37, 39}, and MetS, and components of MetS ^{33, 38, 39}. Oliviera et al ³³ investigated the association between CRP and MetS and components of MetS in 407 overweight and obese Brazilian children. They reported that children with MetS had the most elevated CRP concentrations and that elevated CRP was significantly associated with IR and MetS.³³ Ford et al ³⁸ studied low-grade inflammation in 1366 children aged 12-17 y in NHANES 1999-2000. Significantly higher CRP concentrations (> 3.0 mg/L) were found in 38.4% of children with MetS as compared to 10.3% of children without MetS. Abdominal obesity was independently associated with CRP.

To test a hypothesis that an increase in the prevalence of multiple inflammatory markers is associated with increase in body weight, Skinner et al ³⁷ investigated CRP, absolute neutrophil count, and ferritin level in children aged 1-17 y using the data from NHANES 1999-2006. They found that obese children, aged 3-5y old, had elevated CRP concentrations (>1.0 mg/L). Gillum ³⁴ also found that BMI was strongly associated with CRP concentrations in 6-11 y old Mexican-American children in the NHANES III. Sesso et al ⁹⁴ investigated IL-6 and CRP concentrations in 400 women that developed hypertension during 10 y period of follow-up in the Women's Health Study. The investigators found significantly higher risk of developing hypertension with higher CRP concentrations. They concluded that inflammation had a definite role to play in identifying individuals at risk for hypertension. DeFerranti et al ³⁹ reported that 12-19 y old adolescents with MetS had significantly higher CRP concentrations in NHANES 1999-2000.

Recent evidence links VDRs with inflammation suggesting a role for vitamin D in inflammation. The location of VDRs on inflammatory cells such as the peripheral blood mononuclear cells, T-lymphocyte, and macrophages suggests the role of vitamin D in mediating immune system response and inflammatory process. ^{40 68, 95} But, the exact mechanism through which vitamin D deficiency affects CRP is not clear. Sun et al ⁴⁰

confirmed that the expression of various cytokines such as as interleukin (IL)-1, IL-6, IL-8, and TNF are down-regulated by $1,25(OH)_2D$ and that VDR is involved in the inflammatory response pathway through its regulation of the NF-_kB. It is plausible that central obesity plays an integral role in inflammatory process by triggering the inflammatory cascade.

There are limited data on the relationship between CRP and vitamin D status. In a study by Michos et al,¹⁵ a weak inverse relation between CRP and serum vitamin D was found (n = 650). However, this association was not significant after adjusting the analysis for BMI. The mechanism through which inflammatory markers such as CRP affects vitamin D concentration or vice versa is unclear. Thus, CRP is not only an independent predictor of CVD risk ³⁶ and marker of low-grade inflammatory state in obesity, ⁹⁶ but high CRP concentration indicates inflammation that is likely to contribute to components of MetS. Clinical findings make it reasonable to support an anti-inflammatory role of vitamin D in immune system, but it is supported by limited epidemiological evidence.

CONCLUSION

Newer roles of vitamin D in addition to its function in bone health have implications in the development of many chronic diseases. It appears that there is a role for vitamin D in adipocytes. Children and adolescents with low vitamin D concentrations are at risk for rickets, obesity, MetS, and its related health conditions. Evidence stresses the need for standardization of an universally accepted definition for both MetS and vitamin D status. Much remains to be learned about the complex role of vitamin D in MetS, IR, and inflammation, and the consequences of vitamin D deficiency from childhood to adulthood

CHAPTER III

SUBJECTS AND METHODS

STUDY DESIGN AND SUBJECTS

The National Center for Health Statistics (NCHS) of the Centers for Disease Control and Prevention (CDC) conducts large nationally representative sample surveys known as NHANES on civilian, non-institutionalized US population, using a stratified, multistage, probability sample survey design. Data on demographic characteristics, diet, and health are collected from personal interviews. Physical examinations and collection of blood and urine samples are done in the MEC. Low-income persons, adolescents (12-19 y), individuals \geq 60 y, African Americans, and Mexican Americans were over sampled to yield reliable estimates for these groups. The detailed description of the survey methods and analytic guidelines are reported elsewhere. ⁹⁷ All NHANES protocols were approved by NCHS Ethics Review Board.

For this study, data on children and adolescents aged 12-17 y from NHANES 2001-2002 (n = 1905), 2003-2004 (n = 1724), and 2005-2006 (n = 1704) were combined into one master database, NHANES 2001-2006. Of 5333 eligible participants, 5186 completed the interview and the examination components of the survey. Subjects with missing values for serum vitamin D (25-hydroxy cholecalciferol or calcidiol) concentration and potential confounding variables of MetS were excluded from the data

analysis. The study was limited to children over the age of 17 because fasting plasma glucose and serum insulin was measured only in NHANES participants over the age of

DESCRIPTION OF STUDY VARIABLES

Potential confounding variables included in the data analysis were age, sex, raceethnicity, BMI, poverty income ratio (PIR), time of examination, and use of supplements. The age of the subjects was categorized into12-14 y and 15-17y age groups. Raceethnicity was reported as non-Hispanic white, non-Hispanic black, Mexican-American, and others (included multiracial). PIR is the ratio of income to the family's appropriate poverty threshold, given by the US Census Bureau to define poverty status in accordance with Office of Management and Budget (OMB) Statistical Policy Directive14.¹⁰⁰ PIR values were categorized as below poverty (<1.0), middle income (1.0-2.5), and higher income (\geq 2.5).¹⁰⁰ In NHANES, data were collected in 2 time periods. In the North, data were collected during summer (May 1 - October 31), whilst in the South, data were collected during winter (November 1 - April 30).

Measurements for waist circumference (WC), BMI, systolic blood pressure (SBP), and diastolic blood pressure (DBP) measurements were obtained from the examination component of NHANES. For children and adolescents aged 12-17 y, WC was measured at the high point of the iliac crest at the end of a normal expiration to the nearest 0.1 cm by trained personnel. Age- and sex-specific 90th percentiles of WC were derived for the study population. BMI was categorized as normal weight ($<85^{th}$ percentile) and overweight and obese ($\geq 85^{th}$ percentile) for age and sex. For each subject, up to 4 SBP and DBP measurements were obtained after resting quietly in a sitting position for 5 min and determining the maximum inflation level using a mercury sphygmomanometer. These values were used to calculate mean BP.¹⁰¹ Age- and sex-adjusted 90th percentile of SBP and DBP measurements were derived. The participants who answered 'yes' to the question "did you use supplements in the past 30 d" were regarded as supplement users.

BIOCHEMICAL MEASUREMENTS

Blood was collected by venipuncture at MEC according to standard protocol. ^{98, 99, 102} Serum vitamin D concentrations were determined using the Diasorin RIA kit assay at the NCHS, CDC. Serum HDL-C was analyzed using the heparin manganese precipitation method in NHANES 2001-2002 and a direct HDL-C immunoassay method in NHANES 2005-06. Triglyceride was measured enzymatically at Johns Hopkins Hospital, Baltimore, MD. Glucose concentration was determined enzymatically in NHANES 2001-2002 and with the Hexokinase method in NHANES 2003-2006. To trend the fasting glucose data and to be able to compare NHANES 2005-2006 to the NHANES 2003-2004 glucose data, we used the following glucose regression equation as per NCHS guidelines. ^{98, 99}

Y (2003-2004) = 0.9835*X (2005-2006), n=92, r=0.9993, intercept not significant.

Y (2005-2006) = 0.9815*X (2003-2004) + 3.5707, n=92, r=0.9919.

Serum insulin was measured with a Pharmacia method in NHANES 2001-2002, with a Tosoh immunoenzymometric method in NHANES 2003-04, and with a Mercodia ELISA immunoassay method in 2005-2006. The mean for the Tosoh method was $\approx 11\%$ lower than the mean for Pharmacia method . To account for the change in laboratory measurement procedure, CDC recommended the following linear regression to adjust the NHANES 1999-2002 Pharmacia values when comparing them to NHANES 2003-2004 values:

Y (Tosoh) = (1.0027 * Pharmacia) - 2.2934

Upon adjustment, one observation with negative insulin values was excluded from the analysis. To trend the serum insulin data and to be able to compare the NHANES 2005-2006 (Mercodia) method to the NHANES 2003-2004 (Tosoh) method, we used the following insulin regression equation to compare NHANES 2005-2006 data to NHANES 2003-2004 data as per NCHS guidelines:

Y (Tosoh) = 1.0526 *X (Mercodia) – 1.5674, n=189, r=0.9870 98, 99

Both fasting glucose and serum insulin were measured at the Diabetes Diagnostic Laboratory, University of Missouri, (Columbia, MO) for NHANES 2001-2004 and at the Fairview Medical Center Laboratory, University of Minnesota (Minneapolis, MN) for NHANES 2005-2006. IR was assessed using Homeostatic Model Assessment-Insulin Resistance index (HOMA-IR) calculated using fasting insulin (μ U/mL) × fasting glucose (mg/dL)/405⁸⁸. Serum CRP was measured with latex-enhanced nephelometry method at University of Washington, Seattle, WA.

DEFINITION OF METABOLIC SYNDROME VARIABLES

The prevalence of MetS in children and adolescents was defined according to the modified National Cholesterol Education Program –Adult Treatment Panel III ageadjusted criteria.⁶⁵ According to these criteria, the presence of at least 3 of the following will be regarded as having MetS: (1) WC \geq 90th percentile for age and sex, (2) triglycerides \geq 110 mg/dL (1.24 mmol/L), (3) HDL-C \leq 40 mg/dL (1.03 mmol/L), (4) either SBP or DBP \geq 90th percentile for age and sex /use of blood pressure medication/previous diagnosis of BP, and (5) fasting glucose $\geq 100 \text{ mg/dL}$ (5.55 mmol/L)/current diabetes status/ current insulin use or hypoglycemic medication use. STATISTICAL ANALYSIS

SAS-callable SUDAAN (version 10.0.1) and SAS (version 9.2) statistical software packages were used in the data analysis. A 6-year sampling weight and secondary sampling units, i.e., Masked Variance Pseudo-PSU and Masked Variance Pseudo-Stratum were used to produce statistically reliable estimates and correct for unequal probability of selection due to oversampling of certain study subgroups. The Taylor Linearization method was used to compute variance estimates assuming a design with replacement. Detailed descriptions on sample weights and variance estimation methods are provided in the NHANES Analytic Guidelines.⁹⁷

Combining the data from 3 NHANES cycles (2001-2002, 2003-2004, and 2005-2006) provided us more stable estimates of means, percentiles, and prevalence estimates for serum vitamin D. The status of vitamin D was classified as deficient, insufficient, and sufficient if subjects had serum vitamin D concentrations <20 ng/mL, 20-30 ng/mL, and \geq 30 ng/dL, respectively. Serum vitamin D of subjects was stratified into tertiles. The tertile ranges were <19.5 ng/dL, 19.5-26.2 ng/dL, and \geq 26.2 ng/dL. The difference in proportion of subjects with vitamin D deficiency, insufficiency, and sufficiency was determined using Rao-Scott chi-square test. The multivariate- adjusted means and 95% confidence interval (CI) for indicators of MetS , HOMA-IR, and CRP across tertiles of serum vitamin D concentrations were generated using regression analysis .

Association between prevalence of MetS and serum vitamin D concentration was analyzed with multivariate-adjusted logistic regression analysis. This analysis included sex, age, race-ethnicity, smoking, alcohol, supplement use, timing of examination, BMI, and PIR as confounding variables. Non-significant variables such as PIR, time of the examination, use of supplements, alcohol use, and smoking were dropped from the model. Multivariate-adjusted odds ratios (OR) and 95% CI were calculated for the presence of MetS for each serum vitamin D tertile category after adjusting the analysis for age, sex, race-ethnicity, and BMI. ORs for tertile 1 and 2 in relation to tertile 3 (referent category) were compared. Additionally, the association between prevalence of MetS in subjects with $BMI \ge 85^{th}$ percentile and serum vitamin D was analyzed.

Individual multivariate linear regression models were developed to ascertain the association between serum vitamin D and WC, fasting blood glucose, HDL-C, triglyceride, SBP, DBP, CRP, and HOMA-IR. Because the distribution of fasting glucose, triglycerides, CRP, and HOMA-IR were skewed, these variables were log-transformed in the analysis. Multiple comparisons (P < 0.0167) were performed to determine significant difference between the adjusted means for serum vitamin D tertiles for each indicator of MetS with Bonferroni adjustment after testing the hypothesis with unpaired 2-tailed t-test. We determined interactions between vitamin D and confounding variables. A *P* of ≤ 0.05 was considered statistically significant in all analyses.

CHAPTER IV

RESULTS

Sample sizes and health characteristics of the study population are given in **Table 1.** The study population consisted of 49.1% boys and 50.9% girls. Mean age of the sample was 14.5 y. Of the 3700 subjects, 61.8% (n = 985) were non-Hispanic white, 14.6% (n = 1226) were non-Hispanic black, and 17.5% (n = 1333) were Hispanic/Mexican American. The subjects were uniformly distributed between 12-14y (50.2%) and 15-17y (49.8%) age groups. Approximately 24% of the study population reported having taken a supplement in 1 month prior to the survey. The majority of the subjects were examined in summer ($\approx 59\%$). Detailed sample sizes and health characteristics of study population are reported in Appendix A.

The prevalence of MetS in12-17 y old children and adolescents in NHANES 2001-2006 was 6.1% (**Table 2**). The prevalence of MetS was significantly higher in boys than in girls (7.9% vs. 4.3%; P < 0.001) and in overweight and obese subjects (BMI $\ge 85^{\text{th}}$ percentile) than in non-overweight subjects (BMI $< 85^{\text{th}}$ percentile) (39.1% vs. 1.8%; P < 0.001). Additionally, MetS was significantly different across vitamin D status categories (8.7% vs. 6.4% and 3.5%; P < 0.001). Detailed descriptive statistics of the prevalence of MetS is reported in Appendix B.

The prevalence of vitamin D deficiency in 12-17 y old children and adolescents in NHANES 2001-2006 is presented in **Table 3**. Of the total study population, 30.5% had

vitamin D concentrations <20 ng/mL. Suboptimal serum vitamin D concentrations were higher in girls than in boys (51.9% vs. 42.5%), in non-Hispanic black than in multiracial ethnicity and Hispanic/Mexican American (73.6% vs. 51.9% and 46.8%), in subjects in the PIR <1.0 category than in those in the PIR 1.0-2.5 or \geq 2.5 category (57.2% vs. 50.9% and 35.3%), in subjects

Table 1: Sample sizes and health characteristics of 12-17 y old children and adolescents in the National Health and Nutrition Examination Surveys (NHANESs) 2001-2006¹

Characteristic	Values ²
Sex	
Boys	1820 (49.1)
Girls	1880 (50.9)
Race-ethnicity	
Non-Hispanic white	985 (61.8)
Non-Hispanic black	1226 (14.6)
Hispanic/Mexican American	1333 (17.6)
Other	156 (6.0)
Age	
12-14 y	1859 (50.2)
15-17 у	1841 (49.8)

Poverty income ratio³

989 (17.4)
1259 (28.8)
1280 (50.0)
1749 (58.9)
1951 (41.1)
714 (24.1)
2984 (75.8)
22.3 ± 0.1
1748 (30.5)
1541 (49.8)
411 (19.7)
213 (6.1)
78.6 ± 0.4
78.2 ± 0.5
107.1 ± 0.3
59. ± 0.4
51.4 ± 0.3

Fasting triglyceride (mg/dL) 7	77.8 ± 1.4
Fasting glucose (mg/dL) ⁷	93.0 ± 0.4
Serum insulin (μ U/mL) 7	10.5 ± 0.2
C-reactive protein $(\mu g/dL)^7$	43 ± 0.001
HOMA-Insulin Resistance 7,8	2.4 ± 0.06

n = 3700, weighted n = 17681659. NHANES 2001-2002, 2003-2004, and 2005-2006 were combined into one master database, NHANESs 2001-2006.

²Values are *n* and weighted percentages in parentheses or mean \pm SE.

³Sample sizes are slightly lower due to missing responses.

⁴The examination was performed during summer (May 1 - October 31) and winter

(November 1 - April 30).

⁵Participants who took supplements 1mo before the survey was conducted.

⁶Arithmetic means \pm SE because data are normal.

⁷Geometric mean \pm SE because data are skewed.

⁸Derived using the formula: fasting insulin (μ U/mL) × fasting glucose (mg/dL)/405.

Table 2: Characteristics of 12-17 y old children and adolescents with metabolicsyndrome in the National Health and Nutrition Examination Surveys (NHANESs)2001-20061

Characteristic	Prevalence of Metabolic syndrome, $n (\%)^2$	P-value ³
All subjects	213 (6.1)	
Sex		< 0.001
Boys	127 (7.9)	
Girls	86 (4.3)	
Race-ethnicity		0.11
Non-Hispanic white	65 (6.6)	
Non-Hispanic black	49 (4.2)	
Hispanic/Mexican American	92 (6.6)	
Other	7 (3.7)	
Age		0.74
12-14 y	106 (5.9)	
15-17 у	107 (6.3)	
Poverty income ratio ⁴		0.67
<1.0	56 (6.5)	
1.0-2.5	74 (6.4)	
≥2.5	72 (5.6)	
Time of examination ⁵		0.18
Summer	91 (6.7)	
Winter	122 (5.2)	

Use of supplements ^{4, 6}		0.01
Yes	29 (4.2)	
No	183 (6.6)	
Body mass index ⁴		< 0.001
<85 th percentile	41 (1.8)	
$\geq 85^{\text{th}}$ percentile	172 (39.1)	
Vitamin D status		< 0.001
Deficiency (<20 ng/mL)	131 (8.7)	
Insufficiency (20-30 ng/mL)	56 (6.4)	
Sufficiency (≥30 ng/mL)	26 (3.5)	

n = 3700, weighted n = 17681659. NHANES 2001-2002, 2003-2004, and 2005-2006 were combined into one master database, NHANESs 2001-2006.

²Metabolic syndrome was defined according to the modified National Cholesterol Education Program Adult Treatment Panel III criteria, the presence of at least 3 of the following criteria (waist circumference > 90th percentile for age and sex, triglycerides > 110 mg/dL (1.24 mmol/l), HDL < 40 mg/dL (1.03 mmol/l) for gender, either systolic or diastolic blood pressure >90th percentile for age, sex and height, or use of blood pressure medication, and fasting glucose >100 mg/dL (5.55 mmol/l). Values are *n* and weighted percentages in parentheses.

³ Significance in Rao-Scott χ^2 test.

⁴Sample sizes are slightly lower due to missing responses.

⁵The examination was performed during summer (May 1 - October 31) and winter (November 1 - April 30).

⁶Participants who took supplements 1mo before the survey was conducted.

	Serum vitamin D status			
Characteristic	Deficiency Insufficiency		Sufficiency	- <i>P</i> -value ²
	(<20 ng/mL)	(20-30 ng/mL)	(≥30 ng/mL)	
All subjects ($n = 3700$)	1748 (30.5)	1541 (49.8)	411 (19.6)	
Sex				< 0.004
Boys (<i>n</i> =1820)	773 (42.5)	821 (45.1)	226 (12.4)	
Girls (<i>n</i> =1880)	975 (51.9)	720 (38.3)	185 (9.8)	
Race-ethnicity				< 0.001
Non-Hispanic white $(n = 985)$	141 (14.3)	550 (55.8)	294 (29.8)	
Non-Hispanic black ($n = 1226$)	902 (73.6)	296 (24.1)	28 (2.3)	
Hispanic/Mexican American ($n = 1333$)	624 (46.8)	628 (47.1)	81 (6.1)	
Other (<i>n</i> =156)	81 (51.9)	67 (43.0)	8 (5.1)	
Age				0.91
12-14 y (<i>n</i> =1859)	869 (46.7)	790 (42.5)	200 (10.8)	
15-17 y (<i>n</i> =1841)	879 (47.8)	751 (40.8)	211 (11.5)	
Poverty income ratio ³				< 0.001
<1.0 (<i>n</i> = 989)	566 (57.2)	367 (37.1)	56 (5.7)	
1.0-2.5 (<i>n</i> =1259)	641 (50.9)	498 (39.6)	120 (9.5)	
≥2.5 (<i>n</i> =1280)	452 (35.3)	620 (48.4)	27 (2.1)	
Time of examination ⁴				< 0.001
Summer (<i>n</i> =1749)	654 (37.4)	798 (45.6)	297 (17.0)	

Table 3: Prevalence of vitamin D deficiency in 12-17 y old children and adolescents

in the National Health and Nutrition Examination Surveys (NHANESs) 2001-2006¹

Winter $(n = 1951)$	1093 (56.0)	743 (38.1)	114 (5.8)	
Use of supplements ^{3, 5}				< 0.001
Yes (<i>n</i> =714)	247 (34.6)	360 (50.4)	107 (15.0)	
No (<i>n</i> =2984)	1499 (50.2)	1181 (39.6)	304 (10.2)	
Body mass index ³				< 0.001
$<85^{\text{th}} \text{ percentile}(n=3181)$	1408 (44.3)	1391 (43.7)	382 (12.0)	
$\geq 85^{\text{th}}$ percentile (<i>n</i> = 491)	319 (65.0)	143 (29.1)	29 (5.9)	

n = 3700, weighted n = 17681659. NHANES 2001-2002, 2003-2004, and 2005-2006 were combined into one master database, NHANESs 2001-2006. Prevalence based on actual cases.

² Significance in Rao-Scott χ^2 test.

³Sample sizes are slightly lower due to missing responses.

⁴Examination was performed during summer (May 1 - October 31) and during winter

(November 1- April 30).

⁵Participants who took supplements 1mo before the survey was conducted.

examined in the winter than those examined in the summer (56.0% vs. 37.4%), in nonsupplement users than in supplement users (50.2 vs. 34.6%) and in children with BMI $\geq 85^{\text{th}}$ percentile than in children $< 85^{\text{th}}$ percentile (65.0% vs. 44.3%). Sex, race-ethnicity, PIR, time of examination, use of supplements, and BMI were significantly different for serum vitamin D concentrations across the 3 categories (*P* <0.004). Detailed descriptive statistics are reported in Appendix C.

Sample sizes and serum D concentrations for descriptive variables are given in **Table 4.** Sample sizes of girls (51.9%), non-Hispanic black (73.6%), subjects in the PIR<1.0 category (57.2%), subjects examined in the winter (56.0%), and in non-supplement users (50.2%) were higher in the lowest serum vitamin D tertile category (tertile 1 <19.5 ng/mL) as compared with the highest serum vitamin D tertile category (tertile $3 \ge 26.2$ ng/mL) and as compared to their counterparts. Sex, race-ethnicity, PIR, time of examination, use of supplements, and BMI were significantly different for serum vitamin D across the tertile categories (*P* <0.001). Detailed sample sizes of descriptive variables according to vitamin D concentration categories can be found in Appendix D.

The association between serum vitamin D concentrations and prevalence of MetS is presented in **Table 5**. In the multivariate adjusted analysis, serum vitamin D was significantly associated with prevalence of MetS (*P* for trend = 0.04). There was a significant trend in the likelihood of having MetS across the serum vitamin D tertile categories. The likelihood of children having MetS in the lowest serum vitamin D tertile category was 2.26 (95% CI: 1.11, 4.61) compared with subjects in the highest serum vitamin D tertile category. Although there was no association between serum vitamin D and MetS in children and adolescents with BMI $\geq 85^{\text{th}}$ percentile (*P* for trend = 0.33), a

trend of increasing likelihood of MetS with decreasing vitamin D concentrations was found. Detailed results of the association between serum vitamin D concentrations and prevalence of MetS are reported in Appendix E.

The associations between serum vitamin D concentrations and individual components of MetS are presented in Table 6. An inverse association between serum vitamin D and WC (P for linear trend <0.001), SBP (P for linear trend = 0.009), and HOMA-IR score (P for linear trend = 0.003) and a positive association between serum vitamin D and HDL-c (P for linear trend <0.001) were found in the multivariate-adjusted regression analysis. WC, SBP, and HOMA-IR were significantly higher and HDL-c was significantly lower in the lowest serum vitamin D tertile category compared with the highest serum vitamin D tertile category (P < 0.0167). The adjusted mean HOMA-IR of subjects was significantly higher in the lowest serum vitamin D tertile category (OR 2.59; 95% CI: 2.44, 2.75) as compared with the highest serum vitamin D tertile category (OR 2.25; 95% CI: 2.12, 2.39). There was no association between serum vitamin D and fasting plasma glucose (P = 0.38), serum triglyceride (P = 0.55), DBP (P = 0.60), and CRP (P for linear trend = 0.18). Also, no association was found between serum vitamin D concentration and CRP in children with BMI $\ge 85^{\text{th}}$ percentile (P = 0.24) (data not shown). Detailed associations between serum vitamin D concentrations and individual components of MetS are reported in Appendix F.

Table 4: Sample sizes for serum vitamin D concentrations by age, sex, raceethnicity, PIR, BMI, use of supplements, and time-period of examination in 12-17 y children and adolescents in the National Health and Nutrition Examination Surveys (NHANESs) 2001-2006¹

Characteristic	Serum vitamin D status			<i>P</i> -value ²
	Tertile 1 (<19.5 ng/mL) (<i>n</i> = 1748)	Tertile 2 (19.5-26.2 ng/mL) (n = 1133)	Tertile 3 (≥26.2 ng/mL) (<i>n</i> = 819)	
Sex				< 0.001
Boys (<i>n</i> =1820)	773 (42.5)	588 (32.3)	459 (25.2)	
Girls (<i>n</i> =1880)	975 (51.9)	545 (29.0)	360 (19.1)	
Race-ethnicity				< 0.001
Non-Hispanic white (<i>n</i> =985)	141 (14.3)	353 (38.5)	491(49.8)	
Non-Hispanic black ($n = 1226$)	902 (73.6)	239 (19.5)	85 (6.9)	
Hispanic/Mexican (<i>n</i> =1333)	624 (46.8)	492 (36.9)	217 (16.3)	
Other (<i>n</i> =156)	81 (51.9)	49 (31.4)	26 (16.7)	
Age				0.99
12-14 y (<i>n</i> =1859)	869 (46.7)	589 (31.7)	401 (21.6)	
15-17 y (<i>n</i> =1841)	879 (47.7)	544 (29.5)	418 (22.7)	
Poverty income ratio ³				< 0.001
<1.0 (<i>n</i> =989)	566 (57.2)	291 (29.4)	132 (13.3)	
1.0-2.5 (<i>n</i> =1259)	641 (50.9)	366 (29.1)	252 (20.0)	

≥2.5 (<i>n</i> =1280)	452 (35.3)	433 (33.8)	395 (30.9)	
Time of examination ⁴				< 0.001
Summer (<i>n</i> =1749)	654 (37.4)	556 (31.8)	539 (30.8)	
Winter (<i>n</i> =1951)	1094 (56.1)	577 (29.6)	280 (14.4)	
Use of supplements ^{3, 5}				< 0.001
Yes (<i>n</i> =714)	247 (34.6)	255 (35.7)	212 (29.7)	
No (<i>n</i> =2984)	1499 (50.2)	878 (29.4)	607 (20.3)	
Body mass index ³				< 0.001
$< 85^{\text{th}}$ percentile (<i>n</i> = 3181)	1408 (44.2)	1011 (31.8)	762 (24.0)	
\geq 85 th percentile (<i>n</i> =491)	319 (65.0)	118 (24.0)	54 (11.0)	

n = 3700, weighted n = 17681659. NHANES 2001-2002, 2003-2004, and 2005-2006

were combined into one master database, NHANESs 2001-2006. Sample sized based on actual cases. Percentages are given in parentheses.

 2Significance for Rao-Scott χ^2 test.

³Sample sizes are slightly lower due to missing responses.

⁴Examination was performed during summer (May 1 - October 31) and during winter

(November 1 - April 30).

⁵Participants who took supplements 1mo before the survey was conducted.

Table 5: Multivariate-adjusted odds ratio (OR) and 95 % confidence interval (CI) for metabolic syndrome according to tertiles of serum vitamin D concentrations in 12-17 y old children and adolescents in the National Health and Nutrition Examination Surveys (NHANESs) 2001-2006¹

Variable	Serum vitamin D status			<i>P</i> for
				trend ²
	Tertile 1	Tertile 2	Tertile 3	_
	(<19.5 ng/mL)	(19.5-26.2	(≥26.2 ng/mL)	
		ng/mL)		
All subjects				
Positive for metabolic syndrome n (%)	131 (8.7)	56 (6.4)	26 (3.5)	0.04
Multivariate-adjusted OR (95% CI) ³	2.26 (1.11, 4.61)	2.15 (1.14, 4.05)	1.0 4	
Subjects with body mass index $\ge 85^{\text{th}}$				
percentile	118 (42.0)	37(38.6)	17 (32.9)	0.33
Positive for metabolic syndrome n (%) ⁵	2.05 (0.77, 5.49)	1.5 (0.57, 3.97)	1.0^{4}	
Multivariate-adjusted OR (95% CI) ⁶				

n = 3444, weighted n = 16630443. NHANES 2001-2002, 2003-2004, and 2005-2006 were combined into one master

database, NHANESs 2001-2006. Metabolic syndrome was defined according to the modified National Cholesterol Education

Program- Adult Treatment Panel III criteria, the presence of at least 3 of the criteria: waist circumference $>90^{th}$ percentile for age and sex, triglycerides >110 mg/dL (1.24 mmol/l), HDL < 40 mg/dL (1.03 mmol/l), either systolic or diastolic blood pressure $>90^{th}$ percentile for age, sex and height/use of blood pressure medication, and fasting glucose >100 mg/dL (5.55 mmol/l)/current diabetes diagnosis/ current use of insulin or oral hypoglycemic drugs.

²Significance for the effect of metabolic syndrome variable in the multivariate logistic regression analysis.

³Logistic regression was adjusted for age, sex, race-ethnicity, and BMI. There was interaction between race-ethnicity and BMI (P = 0.02). Poverty income ratio, time of examination, use of supplements, smoking status, and alcohol consumption were dropped because these variable were not significant in the model.

⁴Referent category.

 ${}^{5}n = 491$. Subjects with BMI $\ge 85^{\text{th}}$ percentile.

⁶Logistic regression was adjusted for age, sex, and race-ethnicity. Poverty income ratio, time of examination, use of supplements, smoking status, and alcohol consumption were dropped because these variables were not significant in the model.

Variable		Serum vitamin D status ²				
	Tertile 1	Tertile 2	Tertile 3			
	(<19.5 ng/mL)	(19.5-26.2 ng/mL)	(≥26.2 ng/mL)			
Waist circumference (cm) ⁴	84.4 (83.1, 87,8) ^a	79.8 (79.0, 80,6) ^b	76.3 (75.4, 77.2) ^c	< 0.001		
Fasting glucose (mg/dL) ⁵	93.7 (91.8, 95.6)	93.7 (91.8, 95.6)	91.8 (90.0, 93.7)	0.38		
HDL-cholesterol (mg/dL) ⁶	48.9 (48.4, 49.9) ^a	48.9 (48.4, 49.9) ^a	51.9 (50.9, 53.0) ^b	< 0.001		
Triglyceride (mg/dL) ⁷	76.7 (72.2, 81.5)	79.8 (54.1, 83.9)	77.5 (73.0, 82.3)	0.55		
Blood pressure						
Systolic (mm Hg) ⁸	109.5 (108.5, 110.6) ^a	108.3 (107.5, 109.0) ^{a, b}	107.6 (106.8, 108.3) ^b	0.009		
Diastolic (mm Hg) ⁹	59.6 (58.7, 60.5)	59.9 (58.8, 61.0)	60.2 (59.1, 61.2)	0.60		
C-reactive protein $(\mu g/dL)^{10}$	43 (96, 48)	48 (44, 52)	49 (48, 50)	0.18		
HOMA-Insulin Resistance ¹¹	2.59 (2.44, 2.75) ^a	2.39 (2.25, 2.53) ^{a, b}	2.25 (2.12, 2.39) ^b	0.003		

Table 6: Adjusted concentrations of indicators of metabolic syndrome according to tertiles of serum vitamin D in 12-17 v old children and adolescents in the National Health and Nutrition Examination Surveys (NHANESs) 2001-2006¹

 $^{1}n = 3444$, weighted n = 16630443. NHANES 2001-2002, 2003-2004, and 2005-2006 were combined into one master database, NHANESs 2001-2006.

²Means and 95% confidence intervals. Multiple comparisons were made with Bonferroni correction after testing the hypothesis with unpaired, 2-tailed t-test. Means with different superscript letters are significantly different from each other within the row, P < 0.0167.

³Significance of metabolic syndrome indicator variable in the multivariate regression analysis.

⁴Adjusted for age, sex, race-ethnicity, time of examination, and use of supplements.

⁵Adjusted for age, sex, race-ethnicity, BMI, and time of examination. Analysis was performed on natural log transformed values.

⁶Adjusted for age, sex, race-ethnicity, BMI, and PIR. Analysis was performed using on log transformed values. Significance for the interaction between sex and race-ethnicity was P < 0.001.

⁷Adjusted for race-ethnicity, BMI, and time of examination. Analysis was performed on natural log transformed values.

Significance for the interaction between race-ethnicity and BMI was P < 0.001.

⁸Adjusted for age, sex, race-ethnicity, and BMI. Significance for the interaction between gender and race-ethnicity was P < 0.001.

⁹Adjusted for age and sex.

¹⁰Adjusted for age, race-ethnicity, BMI, and PIR. Analysis was performed on natural log transformed values.

¹¹Adjusted for race-ethnicity, BMI, and use of supplements. Analysis was performed on natural log transformed values.

CHAPTER V DISCUSSION AND CONCLUSION

To date, this is the most comprehensive study that investigated the association between serum vitamin D and MetS, components of MetS, CRP, and IR in children and adolescents in a nationally representative sample survey. We found the prevalence of MetS was 6.1% (7.0% boys, 4.3% girls). Previous studies using the modified NCEP-ATP III criteria for children found that the prevalence of MetS was between 4.2-12.7% ^{18, 21-23, ³⁹. We report the prevalence of vitamin D deficiency (<20 ng/mL) in children was 30.5%, where as others reported 22-55% using the same serum vitamin D cut-off concentrations ^{13, 44, 73}. Other reasons for differences in prevalence of vitamin D deficiency across studies are likely due to variability in defining vitamin D status and vitamin D assays ¹⁶, in characteristics of the subjects, geographical location ^{43, 51}, season in which serum vitamin D measurement was collected, and in the measurement of dietary and supplemental vitamin D intakes. ^{16, 31}}

In this study, vitamin D deficiency was significantly higher in non-Hispanic black (73.6%) as compared with other race-ethnicities ^{14, 43, 44} likely due to differences in skin pigmentation. Our findings also agree with previous findings by several investigators. ^{31, 43, 51} The variability in vitamin D concentration in race-ethnicity is because non-Hispanic black need 5-10 times longer sun exposure as compared non-Hispanic white to produce

the same amount of vitamin D.⁵² Melanin in darker skin is known to interfere with UV light production, leading to diminished synthesis of vitamin D.¹

In this large population-based study, we confirm the relationship between MetS and vitamin D status. The likelihood of having MetS in the highest tertile of serum vitamin D concentration was significantly higher relative to the lowest tertile of serum vitamin D concentration independent of age, sex, race-ethnicity, and BMI. These findings support the findings by several investigators. ^{14, 18, 19, 28, 30, 76} Additionally, serum vitamin D was significantly, inversely associated with several components of the MetS such as WC, SBP, and HOMA-IR score, and directly associated with low HDL-c in the multivariate regression analysis after adjusting the data for several confounding factors. In general, our results are in agreement with findings reported by Ford et al¹⁹, Reis et al ⁷⁶, and Kumar et al.¹⁴ Ford et al ¹⁹ reported an inverse association between vitamin D and abdominal obesity, hyperglycemia, and hypertriglyceridemia in NHANES III. Reis et al ⁷⁶ found a significant inverse association between serum vitamin D and MetS independent of BMI, parathyroid hormone concentration, and total calcium intake in adults (\geq 20 y) in NHANES 2003-2004. Using the NHANES 2001-2004 data, Kumar et al ¹⁴ found that serum vitamin D deficiency (<15 ng/mL) was significantly inversely associated with elevated BP, and directly associated with HDL-c in 1-21v old children. Reis et al ¹⁸ found low serum vitamin D was significantly associated with MetS and components of the MetS such as elevated BP and fasting glucose independent of adiposity in 3577 adolescents in NHANES 2001-2004.

We found low serum vitamin D significantly associated with increased WC, one of the measures of central adiposity. An inverse association between low serum vitamin D concentrations and body weight or BMI^{11, 74} and obesity^{31, 32, 43, 73} is documented in several epidemiological studies. The exact reasons for low serum vitamin D in overweight and obese individuals is not clear, but several mechanisms have been proposed. First, adiposity might influence the skin's capacity to produce vitamin D. However, there were no significant differences in the amount of vitamin D precursors between obese and non-obese people.⁷⁴ Wortsman et al ⁷⁴ reported a 57% less increase in serum vitamin D concentrations in obese compared to non-obese individuals after 24 hr sunlight exposure. Hence, the release of vitamin D from skin into circulation may be affected in persons with obesity, but the capacity of the skin to produce vitamin D_3 is not affected in the obese state ⁷⁴. Second, sequestering of the fat soluble vitamin D within the adipose tissue has been hypothesized for low vitamin D concentrations in obesity.⁷⁴ Low vitamin D concentrations in obese individuals may cause secondary hyperparathyroidism leading to an increased influx of intracellular calcium, which in turn may lead to increased lipogenesis.¹⁰³ In addition, overweight and obese children are spending longer time indoors due to limited mobility and sedentary lifestyle and habits. This lesser sun exposure may explain low vitamin D synthesis and circulating concentrations. Thus, poor vitamin D status in obese individuals may accentuate obesity.

Our study is the first to investigate the association between vitamin D and IR on US children using the data reported in the recent NHANES 2001-2006. In our study,

children in the lowest vitamin D tertile had significantly increased IR compared with those in the highest vitamin D tertile. Although the mechanism and role of vitamin D in IR is not clearly elucidated, it is thought that vitamin D and vitamin-D calcium binding protein alter insulin action either at the adipocyte level or affect the release of insulin from the pancreatic β-cell, thereby mediating insulin sensitivity.^{20, 27} A few findings in adults suggest an inverse association between serum vitamin D and IR and a direct association between vitamin D and insulin sensitivity.^{20, 28, 30} In contrast, Reihner et al ³² and Tangorra et al⁷³ did not find an association between serum vitamin D and IR in obese children. The lack of association may be due to a small sample size or high prevalence of normal concentrations of $1,25(OH)_2D$ in obese subjects. The association between vitamin D and IR is further corroborated by the discovery of polymorphisms in VDR gene. These have been found to modify insulin secretion leading to IR and dysregulation of glucose homeostasis.^{104, 105} Stunff et al⁸⁹ identified a single nucleotide polymorphism (SNP) on $p110 \beta$ gene that was significantly linked with elevated fasting glucose, insulin, and HOMA-IR index in obese (BMI > 99.6th percentile) children (n=580). Although a relation between serum vitamin D and IR exists, but the biological mechanism through which vitamin D influences the pathophysiology associated with T2DM remains unclear.

Another newly recognized role of vitamin D is its ability to regulate BP by suppressing renin gene expression ^{67, 77}. The RAS regulates BP and blood volume homeostasis ^{67, 68}. The RAS is upregulated in obesity ⁶⁶ and excessive RAS stimulation can lead to hypertension. The fact that adipose tissue is the site for vitamin D storage and is capable of producing all components of the RAS may explain the complex relationship

between vitamin D, adipocyte, and RAS.⁷⁸ A derangement in this complex system may potentially be the cause for elevated BP in overweight and obese individuals with low serum vitamin D concentrations.^{66, 80} Findings from epidemiological studies shed light on the association between serum vitamin D and elevated BP.^{7, 14, 18, 73} As in our study, Judd et al ⁷ also found serum vitamin D (<20 ng/mL) associated with SBP in children and adolescents in NHANES III. In the Framingham Offspring longitudinal study, Wang et al ⁴⁸ reported vitamin D deficiency (<15 ng/mL) in 28% of individuals and found twice the higher CVD risk in vitamin D deficient individuals that had hypertension. Studies suggest reducing elevated BP through vitamin D supplementation⁷ and weight loss.⁸⁴

The anti-inflammatory role of 1,25(OH)₂D has been observed by numerous investigators. ^{40, 47, 95} The location of VDRs on inflammatory cells such as the peripheral blood mononuclear cells, T-lymphocyte, and macrophages is reason to believe that vitamin D also mediates the immune system response and inflammatory process. ^{40, 47, 95} The mechanism through which vitamin D deficiency affects the inflammatory marker, CRP is not clear. ^{40, 68} Sun et al ⁴⁰ confirmed that the expression of various cytokines such as as interleukin (IL)-1, IL-6, IL-8, and TNF are down-regulated by 1,25(OH)₂D and that VDRs are involved in the inflammatory response pathway through its regulation of the nuclear factor kappa-light-enhancer of the activated B cells (NF-_kB). Evidence suggests that CRP is significantly associated with obesity ^{33, 34, 39} and MetS and its components ^{33, 38, 39} in children. In addition, low-grade inflammation is associated with CVD and hypertension as well.³⁶ Therefore, we hypothesized there would be an inverse relation between serum vitamin D and CRP. However, in this study we found no association

serum vitamin D and CRP in this study may be due to relatively modest sample size and fewer overweight and obese children (BMI $\ge 85^{\text{th}}$ percentile). Michos et al ¹⁵ found a weak inverse correlation between CRP and serum vitamin D, but this association was null after adjustment was made for BMI in the multivariate model. The use of a small sample size (*n* =650) could have deterred detection of an association.

This study has several strengths. The use of a nationally representative survey with large sample size of children and adolescents (n= 3700) allowed us to examine the relationship of vitamin D with MetS after taking into account several confounding variables. This study investigated not only the association between vitamin D and MetS, but also included the association between vitamin D and IR and inflammation. Previous studies that investigated the association between vitamin D and MetS in children had not investigated IR and inflammation.^{14, 18} In addition, the use of HOMA-IR method allowed for less expensive and less invasive measurement of IR ⁸⁹. Although HOMA-IR is not the gold standard for the measurement of IR, it is considered a valid index for measurement of IR in epidemiological studies.⁸⁹

The measurement of cause and effect relation is not possible because of the crosssectional design of the study. Lack of uniform guidelines to define vitamin D deficiency or insufficiency make interpretation and comparison of results with published results challenging. $^{43, 106}$ The possibility of variability in the vitamin D assay could influence results from the combined NHANES data, since the serum samples were collected in north (>35 °N) in summer and in south (<35 °N) during winter. This variability is unlikely because we adjusted the serum vitamin D data to account for changes in assay between NHANES cycles using the NCHS guidelines. Not all potential confounding factors influencing vitamin D concentrations could be taken into account in our analysis, because we were limited by a lack of information on geographical location, participant's use of sunscreen and nature of clothing. While the study looked at the generalized used of supplements, it would have been more useful to address only vitamin D supplement users.

In conclusion, children with poor vitamin D status are at increased risk for MetS and IR. Coexistence of poor vitamin D status with several of components of MetS such as increased WC, SBP, IR and low HDL-c is a concern because children with MetS are at high risk for future CVD. The risk is further accentuated with concomitant presence of vitamin D deficiency. Studies are warranted to define appropriate cuts off values for concentrations of vitamin D deficiency or insufficiency. Because of negative health outcomes associated with MetS and poor vitamin D status when existed individually or in combination, early detection and intervention of these conditions are paramount in children. Interventions to improve the vitamin D status of children should be targeted at improving the availability of vitamin D fortified foods in school nutrition programs and at the Women Infants and Children program

REFERENCES

- Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. *Am J Clin Nutr.* Dec 2004;80(6 Suppl):1678S-1688S.
- Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. *Lancet*. Nov 3 2001;358(9292):1500-1503.
- Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: new aetiological and therapeutic considerations. *Ann Rheum Dis.* Sep 2007;66(9):1137-1142.
- **4.** Maki KC, Rubin MR, Wong LG, et al. Serum 23-hydroxyvitamin D is independently associated with high-density lipoprotein cholesterol and the metabolic syndrome in men and women. *J Clin Lipidology*. 2009;3:289-296.
- Hypponen E, Boucher BJ, Berry DJ, Power C. 25-hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years of age: a cross-sectional study in the 1958 British Birth Cohort. *Diabetes*. Feb 2008;57(2):298-305.
- Baz-Hecht M, Goldfine AB. The impact of vitamin D deficiency on diabetes and cardiovascular risk. *Curr Opin Endocrinol Diabetes Obes*. Apr 2010;17(2):113-119.
- 7. Judd SE, Nanes MS, Ziegler TR, Wilson PW, Tangpricha V. Optimal vitamin D status attenuates the age-associated increase in systolic blood pressure in white Americans: results from the third National Health and Nutrition Examination Survey. *Am J Clin Nutr.* Jan 2008;87(1):136-141

- .8. Ganji V, Milone C, Cody MM, McCarthy F, Wang YT. Serum vitamin D concentrations are related to depression in young adult US population: the Third National Health and Nutrition Examination Survey. *Int Arch Med.* Nov 11 2010;3(1):29-30.
- 9. Hoogendijk WJ, Lips P, Dik MG, Deeg DJ, Beekman AT, Penninx BW. Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. *Arch Gen Psychiatry*. May 2008;65(5):508-512.
- Spina CS, Tangpricha V, Uskokovic M, Adorinic L, Maehr H, Holick MF.
 Vitamin D and cancer. *Anticancer Res.* Jul-Aug 2006;26(4A):2515-2524.
- Saintonge S, Bang H, Gerber LM. Implications of a new definition of vitamin D deficiency in a multiracial us adolescent population: the National Health and Nutrition Examination Survey III. *Pediatrics*. Mar 2009;123(3):797-803.
- Standing Committee on the Scientific Evaluation of Dietary Reference Intakes Food and Nutrition Board. *Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride.* : Institute of Medicine;1997.
- Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency among healthy adolescents. *Arch Pediatr Adolesc Med.* Jun 2004;158(6):531-537.
- Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML. Prevalence and Associations of 25-Hydroxyvitamin D Deficiency in US Children: NHANES 2001-2004. *Pediatrics*. 2009:e362-e370.

- **15.** Michos ED, Streeten EA, Ryan KA, et al. Serum 25-hydroxyvitamin d levels are not associated with subclinical vascular disease or C-reactive protein in the old order amish. *Calcif Tissue Int.* Mar 2009;84(3):195-202.
- **16.** Costello RB. Vitamin D and health in the 21st century: federal initiatives to advance research. *Am J Med Sci.* Jul 2009;338(1):34-39.
- Cole CR, Grant FK, Tangpricha V, et al. 25-hydroxyvitamin D status of healthy, low-income, minority children in Atlanta, Georgia. *Pediatrics*. Apr;125(4):633-639.
- Reis JP, von Muhlen D, Miller ER, 3rd, Michos ED, Appel LJ. Vitamin D Status and Cardiometabolic Risk Factors in the United States Adolescent Population. *Pediatrics.* Aug 3 2009:e371-e379.
- Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. *Diabetes Care*. May 2005;28(5):1228-1230.
- Alvarez JA, Ashraf A. Role of vitamin d in insulin secretion and insulin sensitivity for glucose homeostasis. *Int J Endocrinol.* 2010;2010:Article ID 351385.
- Duncan GE, Li SM, Zhou XH. Prevalence and trends of a metabolic syndrome phenotype among u.s. Adolescents, 1999-2000. *Diabetes Care*. Oct 2004;27(10):2438-2443.
- **22.** Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National

Health and Nutrition Examination Survey, 1988-1994. *Arch Pediatr Adolesc Med.* Aug 2003;157(8):821-827.

- Johnson WD, Kroon JJ, Greenway FL, Bouchard C, Ryan D, Katzmarzyk PT.
 Prevalence of risk factors for metabolic syndrome in adolescents: National Health and Nutrition Examination Survey (NHANES), 2001-2006. *Arch Pediatr Adolesc Med.* Apr 2009;163(4):371-377.
- **24.** Potenza MV, Mechanick JI. The metabolic syndrome: definition, global impact, and pathophysiology. *Nutr Clin Pract*. Oct-Nov 2009;24(5):560-577.
- 25. Thivel D, Malina RM, Isacco L, Aucouturier J, Meyer M, Duche P. Metabolic syndrome in obese children and adolescents: dichotomous or continuous? *Metab Syndr Relat Disord*. Dec 2009;7(6):549-555.
- 26. Lee S, Bacha F, Gungor N, Arslanian S. Comparison of different definitions of pediatric metabolic syndrome: relation to abdominal adiposity, insulin resistance, adiponectin, and inflammatory biomarkers. *J Pediatr*. Feb 2008;152(2):177-184.
- 27. Teegarden D, Donkin SS. Vitamin D: emerging new roles in insulin sensitivity. *Nutr Res Rev.* Jun 2009;22(1):82-92.
- **28.** Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. *Am J Clin Nutr*. May 2004;79(5):820-825.
- **29.** Huh SY, Gordon CM. Vitamin D deficiency in children and adolescents: epidemiology, impact and treatment. *Rev Endocr Metab Disord*. Jun 2008;9(2):161-170.
- **30.** Forouhi NG, Luan J, Cooper A, Boucher BJ, Wareham NJ. Baseline serum 25hydroxy vitamin d is predictive of future glycemic status and insulin resistance:

the Medical Research Council Ely Prospective Study 1990-2000. *Diabetes*. Oct 2008;57(10):2619-2625.

- **31.** Alemzadeh R, Kichler J, Babar G, Calhoun M. Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. *Metabolism.* Feb 2008;57(2):183-191.
- **32.** Reinehr T, de Sousa G, Alexy U, Kersting M, Andler W. Vitamin D status and parathyroid hormone in obese children before and after weight loss. *Eur J Endocrinol.* Aug 2007;157(2):225-232.
- 33. Oliveira AC, Oliveira AM, Adan LF, Oliveira NF, Silva AM, Ladeia AM. C-reactive protein and metabolic syndrome in youth: a strong relationship? *Obesity (Silver Spring)*. May 2008;16(5):1094-1098.
- 34. Gillum RF. Association of serum C-reactive protein and indices of body fat distribution and overweight in Mexican American children. *J Natl Med Assoc*. Jul 2003;95(7):545-552.
- **35.** de Ferranti SD, Rifai N. C-reactive protein: a nontraditional serum marker of cardiovascular risk. *Cardiovasc Pathol.* Jan-Feb 2007;16(1):14-21.
- **36.** Szmitko PE, Verma S. C-reactive protein and the metabolic syndrome: useful addition to the cardiovascular risk profile? *J Cardiometab Syndr*. Winter 2006;1(1):66-69; quiz 70-61.
- 37. Skinner AC, Steiner MJ, Henderson FW, Perrin EM. Multiple markers of inflammation and weight status: cross-sectional analyses throughout childhood. *Pediatrics*. Apr 2010;125(4):e801-809.

- **38.** Ford ES, Ajani UA, Mokdad AH. The metabolic syndrome and concentrations of C-reactive protein among U.S. youth. *Diabetes Care*. Apr 2005;28(4):878-881.
- **39.** de Ferranti SD, Gauvreau K, Ludwig DS, Newburger JW, Rifai N. Inflammation and changes in metabolic syndrome abnormalities in US adolescents: findings from the 1988-1994 and 1999-2000 National Health and Nutrition Examination Surveys. *Clin Chem.* Jul 2006;52(7):1325-1330.
- **40.** Sun J, Kong J, Duan Y, et al. Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor. *Am J Physiol Endocrinol Metab.* Aug 2006;291(2):E315-322.
- **41.** Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. *Pediatrics*. Aug 2008;122(2):398-417.
- 42. Tangpricha V, Koutkia P, Rieke SM, Chen TC, Perez AA, Holick MF.
 Fortification of orange juice with vitamin D: a novel approach for enhancing vitamin D nutritional health. *Am J Clin Nutr*. Jun 2003;77(6):1478-1483.
- **43.** Rovner AJ, O'Brien KO. Hypovitaminosis D among healthy children in the United States: a review of the current evidence. *Arch Pediatr Adolesc Med.* Jun 2008;162(6):513-519.
- Cole CR, Grant FK, Tangpricha V, et al. 25-hydroxyvitamin D status of healthy, low-income, minority children in Atlanta, Georgia. *Pediatrics*. Apr 2010;125(4):633-639.
- **45.** Norris JM. Can the sunshine vitamin shed light on type 1 diabetes? *Lancet*. Nov 3 2001;358(9292):1476-1478.

- **46.** Tsoukas CD, Provvedini DM, Manolagas SC. 1,25-dihydroxyvitamin D3: a novel immunoregulatory hormone. *Science*. Jun 29 1984;224(4656):1438-1440.
- **47.** Bhalla AK, Amento EP, Clemens TL, Holick MF, Krane SM. Specific highaffinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. *J Clin Endocrinol Metab.* Dec 1983;57(6):1308-1310.
- **48.** Wang TJ, Pencina MJ, Booth SL, et al. Vitamin D deficiency and risk of cardiovascular disease. *Circulation*. Jan 29 2008;117(4):503-511.
- **49.** Holick MF. Vitamin D deficiency. *N Engl J Med.* Jul 19 2007;357(3):266-281.
- **50.** Holick MF. The vitamin D epidemic and its health consequences. *J Nutr*. Nov 2005;135(11):2739S-2748S.
- 51. Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR. Serum 25hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. *Bone*. May 2002;30(5):771-777.
- Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. *Lancet*. Jan 9 1982;1(8263):74-76.
- **53.** Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. *J Clin Endocrinol Metab*. Aug 1988;67(2):373-378.
- **54.** Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. *Pediatrics*. Nov 2008;122(5):1142-1152.

- 55. Ross AC, Manson JE, Abrams SA, et al. The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. *J Clin Endocrinol Metab.* Nov 29 2010.
- **56.** Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. *Am J Clin Nutr*. Mar 2004;79(3):362-371.
- 57. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. *Diabetes*. Dec 1988;37(12):1595-1607.
- 58. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. *Diabetes Care*. Mar 1991;14(3):173-194.
- 59. Steinberger J, Daniels SR, Eckel RH, et al. Progress and Challenges in Metabolic Syndrome in Children and Adolescents. A Scientific Statement From the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. *Circulation*. Jan 12 2009.
- 60. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. *Diabet Med.* Jul 1998;15(7):539-553.
- 61. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). *Diabet Med.* May 1999;16(5):442-443.

- Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). *JAMA*. May 16 2001;285(19):2486-2497.
- **63.** Zimmet P, Alberti KG, Kaufman F, et al. The metabolic syndrome in children and adolescents an IDF consensus report. *Pediatr Diabetes*. Oct 2007;8(5):299-306.
- de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N.
 Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey. *Circulation*. Oct 19 2004;110(16):2494-2497.
- **65.** Ford ES, Li C, Cook S, Choi HK. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. *Circulation*. May 15 2007;115(19):2526-2532.
- **66.** Morse SA, Zhang R, Thakur V, Reisin E. Hypertension and the metabolic syndrome. *Am J Med Sci.* Dec 2005;330(6):303-310.
- 67. Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. *J Steroid Biochem Mol Biol.* May 2004;89-90(1-5):387-392.
- **68.** Zittermann A, Schleithoff SS, Koerfer R. Putting cardiovascular disease and vitamin D insufficiency into perspective. *Br J Nutr*. Oct 2005;94(4):483-492.
- **69.** Hatanaka K, Li XA, Masuda K, Yutani C, Yamamoto A. Immunohistochemical localization of C-reactive protein-binding sites in human atherosclerotic aortic

lesions by a modified streptavidin-biotin-staining method. *Pathol Int*. Sep 1995;45(9):635-641.

- 70. Lagrand WK, Niessen HW, Wolbink GJ, et al. C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction. *Circulation*. Jan 7 1997;95(1):97-103.
- Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. *Circulation*. Oct 20 2009;120(16):1640-1645.
- **72.** Caceres M, Teran CG, Rodriguez S, Medina M. Prevalence of insulin resistance and its association with metabolic syndrome criteria among Bolivian children and adolescents with obesity. *BMC Pediatr.* 2008;8:31.
- 73. Smotkin-Tangorra M, Purushothaman R, Gupta A, Nejati G, Anhalt H, Ten S.
 Prevalence of vitamin D insufficiency in obese children and adolescents. J
 Pediatr Endocrinol Metab. Jul 2007;20(7):817-823.
- 74. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreasedbioavailability of vitamin D in obesity. *Am J Clin Nutr*. Sep 2000;72(3):690-693.
- **75.** Brambilla P, Bedogni G, Moreno LA, et al. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. *Int J Obes (Lond)*. Jan 2006;30(1):23-30.

- 76. Reis JP, von Muhlen D, Miller ER, 3rd. Relation of 25-hydroxyvitamin D and parathyroid hormone levels with metabolic syndrome among US adults. *Eur J Endocrinol.* Jul 2008;159(1):41-48.
- 77. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. *J Clin Invest*. Jul 2002;110(2):229-238.
- **78.** Goossens GH, Blaak EE, van Baak MA. Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders. *Obes Rev.* Feb 2003;4(1):43-55.
- **79.** Engeli S, Negrel R, Sharma AM. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. *Hypertension*. Jun 2000;35(6):1270-1277.
- 80. Resnick LM, Muller FB, Laragh JH. Calcium-regulating hormones in essential hypertension. Relation to plasma renin activity and sodium metabolism. *Ann Intern Med.* Nov 1986;105(5):649-654.
- 81. Lind L, Wengle B, Wide L, Sorensen OH, Ljunghall S. Hypertension in primary hyperparathyroidism--reduction of blood pressure by long-term treatment with vitamin D (alphacalcidol). A double-blind, placebo-controlled study. *Am J Hypertens*. Oct 1988;1(4 Pt 1):397-402.
- 82. Sanchez M, de la Sierra A, Coca A, Poch E, Giner V, Urbano-Marquez A. Oral calcium supplementation reduces intraplatelet free calcium concentration and insulin resistance in essential hypertensive patients. *Hypertension*. Jan 1997;29(1 Pt 2):531-536.

- Xiang W, Kong J, Chen S, et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. *Am J Physiol Endocrinol Metab.* Jan 2005;288(1):E125-132.
- 84. Miller ER, 3rd, Erlinger TP, Young DR, et al. Results of the Diet, Exercise, and Weight Loss Intervention Trial (DEW-IT). *Hypertension*. Nov 2002;40(5):612-618.
- 85. Bland R, Markovic D, Hills CE, et al. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in pancreatic islets. *J Steroid Biochem Mol Biol*. May 2004;89-90(1-5):121-125.
- **86.** Ferrannini E, Mari A. How to measure insulin sensitivity. *J Hypertens*. Jul 1998;16(7):895-906.
- 87. Katsuki A, Sumida Y, Gabazza EC, et al. Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. *Diabetes Care*. Feb 2001;24(2):362-365.
- Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC.
 Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia*. Jul 1985;28(7):412-419.
- 89. Le Stunff C, Dechartres A, Miraglia Del Giudice E, Froguel P, Bougneres P. A single-nucleotide polymorphism in the p110beta gene promoter is associated with partial protection from insulin resistance in severely obese adolescents. *J Clin Endocrinol Metab.* Jan 2008;93(1):212-215.

- **90.** Rammos G, Tseke P, Ziakka S. Vitamin D, the renin-angiotensin system, and insulin resistance. *Int Urol Nephrol.* 2008;40(2):419-426.
- **91.** Leiter LA, Lewanczuk RZ. Of the renin-angiotensin system and reactive oxygen species Type 2 diabetes and angiotensin II inhibition. *Am J Hypertens*. Jan 2005;18(1):121-128.
- **92.** Wei Y, Sowers JR, Clark SE, Li W, Ferrario CM, Stump CS. Angiotensin IIinduced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. *Am J Physiol Endocrinol Metab.* Feb 2008;294(2):E345-351.
- **93.** Evliyaoglu O, Berberoglu M, Adiyaman P, Aycan Z, Ocal G. Evaluation of insulin resistance in Turkish girls with premature pubarche using the homeostasis assessment (HOMA) model. *Turk J Pediatr*. Apr-Jun 2007;49(2):165-170.
- 94. Sesso HD, Wang L, Buring JE, Ridker PM, Gaziano JM. Comparison of interleukin-6 and C-reactive protein for the risk of developing hypertension in women. *Hypertension*. Feb 2007;49(2):304-310.
- **95.** Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. *Science*. Sep 16 1983;221(4616):1181-1183.
- **96.** Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. *Endocrinology*. Jun 2003;144(6):2195-2200.

97. Centers for Disease Control and Prevention (CDC) National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Analytic and reporting guidelines. 2010;

http://www.cdc.gov/nchs/data/nhanes/nhanes_general_guidelines_june_04.pdf. Accessed March 1, 2010.

- 98. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Laboratory Protocol 2003-2004; <u>http://www.cdc.gov/nchs/nhanes/nhanes2003-</u> <u>2004/lab03_04.htm</u>. Accessed march 1, 2010.
- 99. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Laboratory Protocol 2005-2006; <u>http://www.cdc.gov/nchs/nhanes/nhanes2005-2006-2006/lab05_06.htm</u>. Accessed March 1 2010.
- 100. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Demographic Files. 2001-2002; http://www.cdc.gov/nchs/nhanes/nhanes2001-2002/DEMO_B.htm. Accessed March 1, 2010.
- 101. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Examination Protocol. 2001-2002; <u>http://www.cdc.gov/nchs/data/nhanes/nhanes_01_02/bpx_b_doc.pdf</u>. Accessed

March 1, 2010.

- 102. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Laboratory Protocol. 2001-2002; <u>http://www.cdc.gov/nchs/nhanes/nhanes2001-</u> <u>2002/lab01_02.htm</u>. Accessed March 1, 2010.
- **103.** McCarty MF, Thomas CA. PTH excess may promote weight gain by impeding catecholamine-induced lipolysis-implications for the impact of calcium, vitamin

D, and alcohol on body weight. *Med Hypotheses*. Nov-Dec 2003;61(5-6):535-542.

- 104. Oh JY, Barrett-Connor E. Association between vitamin D receptor polymorphism and type 2 diabetes or metabolic syndrome in community-dwelling older adults: the Rancho Bernardo Study. *Metabolism.* Mar 2002;51(3):356-359.
- **105.** Chiu KC, Chuang LM, Yoon C. The vitamin D receptor polymorphism in the translation initiation codon is a risk factor for insulin resistance in glucose tolerant Caucasians. *BMC Med Genet.* 2001;2:2.
- 106. Greer FR. Defining Vitamin D Deficiency in Children: Beyond 25-OH Vitamin D Serum Concentrations. *Pediatrics*. Nov 2009;124(5):1471-1473

APPENDICES

APPENDIX A

SAMPLE SIZE AND HEALTH CHARACTERISCTICS OF 12-17 y OLD CHILDREN AND ADOLESCENTS IN NHANES 2001-2006

SUDAAN Software for the Statistical Analysis of Correlated Data Copyright Research Triangle Institute October 2009 Release 10.0.1 DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design Sample Weight: MEC6YR Stratification Variables(s): SDMVSTRA Primary Sampling Unit: SDMVPSU Number of observations read : 30070 Weighted count :285937478 Observations in subpopulation : 3700 Weighted count : 17681659 Denominator degrees of freedom : 45 Variance Estimation Method: Taylor Series (WR) For Subpopulation: METSYNPREV = 1 by: Variable, SUDAAN Reserved Variable One. Variable size mean Gender SE _____ Waist Circumference (cm) 364878.4140.3737179978.6310.4355 Total 1 1849 78.204 0.5057 2 Variable SUDAAN Reserved Geometric size mean Variable One SE mean SE _____ Age at Screening Adjudicated -Recode Total 3700 14.499 0.0454 14.397 0.0452 3700 14.499 0.0454 14.397 0.0452 1 average diastolic 1 reading (mm/Hg) Total 3652 59,013 0,3498 58,230 0,3275 59.013 0.3498 58.230 3652 0.3275 1 average systolic 1 reading (mm/Hg) 3652 Total 107.112 0.2766 106.668 0.2809 3652 0.2766 106.668 107.112 0.2809 1 Waist Circumference (CM) 0.3737 77.470 Total 3648 78.414 0.3515

1		0040	70 414	0 0707	77 470	0.0515
-	Mass Index	3648	78.414	0.3737	77.470	0.3515
	/m**2)					
	tal	3672	22.339	0 1/11	21.859	0.1284
101	LUT	3672	22.339	0.1411		0.1284
י VITD		3072	22.009	0.1411	21.009	0.1284
	tal	3700	23.936	0.3936	22.208	0.3870
	1	3700	23.930	0.3930		0.3870
	' t HDL-	5700	20.900	0.090	22.200	0.007
	lesterol					
	/dL)					
• -	tal	3692	52.699	0.2865	51.417	0.2773
1	(a)	3692	52.699	0.2865	51.417	0.2773
-	yceride (mg/dl		52.099	0.2005	51.417	0.2115
	tal	2203	88.869	2.4247	77.828	1.3717
101	ιαί	2203	88.869	2.4247		1.3717
I GLUCOS	QE	2203	00.009	2.424/	11.020	1.3/1/
	5E tal	2216	93.865	0.5328	92.993	0.3578
101	Lal	2216	93.865 93.865	0.5328	92.993 92.993	0.3578
INSUL	TN	2210	30.000	0.0028	32.333	0.00/8
	tal	0001	13.129	0 4105	10.511	0 0459
101	ια⊥	2201		0.4185	10.511	0.2453
I HOMAIF	D	2201	13.129	0.4185	10.311	0.2453
	n tal	2198	3.145	0.1247	2.415	0.0587
1	Lai	2198	3.145	0.1247		0.0587
ı C-read	ctive	2190	5.143	0.1247	2.413	0.0007
•	tein(mg/dL) tal	3700	0.146	0.0108	0 043	0.0012
101	ιαı	3700	0.140	0.0108	0.043	
-		2700	0 146	0 0100	0 042	0 0010
1		3700	0.146	0.0108	0.043	0.0012
	REQ Procedure	3700	0.146	0.0108	0.043	0.0012
	REQ Procedure	3700 Cumulative	0.146	0.0108	0.043	0.0012
	REQ Procedure Frequency		0.146	0.0108	0.043	0.0012
The FF		Cumulative	0.146	0.0108	0.043	0.0012
The FF	Frequency	Cumulative Frequency	0.146	0.0108	0.043	0.0012
The FF age 1	Frequency 1859	Cumulative Frequency 1859 3700	0.146	0.0108	0.043	0.0012
The FF age 1	Frequency 1859 1841	Cumulative Frequency 1859 3700		0.0108	0.043	0.0012
The FF age 1 2	Frequency 1859 1841 Geno	Cumulative Frequency 1859 3700 der Cumulati	ve	0.0108	0.043	0.0012
The FF age 1 2	Frequency 1859 1841 Geno	Cumulative Frequency 1859 3700 der Cumulati ncy Frequenc	.ve :y	0.0108	0.043	0.0012
The FF age 1 2	Frequency 1859 1841 Geno NDR Frequen	Cumulative Frequency 1859 3700 der Cumulati ncy Frequenc 20 1820	ve y	0.0108	0.043	0.0012
The FF age 1 2	Frequency 1859 1841 Geno NDR Frequer 1 182	Cumulative Frequency 1859 3700 der Cumulati ncy Frequenc 20 1820	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN	Frequency 1859 1841 Geno NDR Frequer 1 182	Cumulative Frequency 1859 3700 der Cumulati ncy Frequenc 20 1820 80 3700	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188	Cumulative Frequency 1859 3700 der Cumulati ncy Frequenc 20 1820 80 3700 Cumulative	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN	Frequency 1859 1841 Geno NDR Frequer 1 182 2 188 Frequency	Cumulative Frequency 1859 3700 der Cumulati ncy Frequency 20 1820 80 3700 Cumulative Frequency	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985	Cumulative Frequency 1859 3700 der Cumulati ncy Frequency 20 1820 80 3700 Cumulative Frequency 985	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985 1226	Cumulative Frequency 1859 3700 der Cumulati ncy Frequency 20 1820 80 3700 Cumulative Frequency 985 2211	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2 3	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985 1226 1333	Cumulative Frequency 1859 3700 der Cumulati ncy Frequency 20 1820 80 3700 Cumulative Frequency 985 2211 3544	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2 3 4	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985 1226 1333 156	Cumulative Frequency 1859 3700 der Cumulati ncy Frequency 20 1820 80 3700 Cumulative Frequency 985 2211 3544 3700	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2 3 4	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985 1226 1333	Cumulative Frequency 1859 3700 der Cumulati 20 1820 80 3700 Cumulative Frequency 985 2211 3544 3700 Cumulative	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2 3 4 pir	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985 1226 1333 156 Frequency	Cumulative Frequency 1859 3700 der Cumulati 20 1820 80 3700 Cumulative Frequency 985 2211 3544 3700 Cumulative Frequency	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2 3 4 pir 1	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985 1226 1333 156 Frequency 989	Cumulative Frequency 1859 3700 der Cumulati 20 1820 80 3700 Cumulative Frequency 985 2211 3544 3700 Cumulative Frequency 989 2248	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2 3 4 pir 1 2 3 4	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985 1226 1333 156 Frequency 989 1259 1280	Cumulative Frequency 1859 3700 der Cumulati 20 1820 80 3700 Cumulative Frequency 985 2211 3544 3700 Cumulative Frequency 989 2248 3528	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2 3 4 pir 1 2	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985 1226 1333 156 Frequency 989 1259	Cumulative Frequency 1859 3700 der Cumulati 20 1820 80 3700 Cumulative Frequency 985 2211 3544 3700 Cumulative Frequency 989 2248	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2 3 4 pir 1 2 3 4	Frequency 1859 1841 Geno NDR Frequer 1 182 2 188 Frequency 985 1226 1333 156 Frequency 989 1259 1280 172	Cumulative Frequency 1859 3700 der Cumulati ncy Frequency 20 1820 80 3700 Cumulative Frequency 985 2211 3544 3700 Cumulative Frequency 989 2248 3528 3700	ve y	0.0108	0.043	0.0012
The FF age 1 2 RIAGEN race 1 2 3 4 pir 1 2 3 4	Frequency 1859 1841 Geno NDR Frequen 1 182 2 188 Frequency 985 1226 1333 156 Frequency 989 1259 1280	Cumulative Frequency 1859 3700 der Cumulati ncy Frequency 20 1820 80 3700 Cumulative Frequency 985 2211 3544 3700 Cumulative Frequency 989 2248 3528 3700	.ve :y)	0.0108	0.043	0.0012

1 2	1951 1749	1951 3700	
Any die	tary suppleme		
000010	Fraguaray	Cumulative	
DSD010 1	Frequency 714	Frequency 714	
2	2984	3698	
2	2984	3700	
5	2	3700	
		Cumulative	
bmigroup	Frequency	Frequency	
biii⊥gi oup 1	3181	3181	
2	491	3672	
3	28	3700	
Variable	20	0700	
	Reserved	Sample	
	able One		Percent
AGE: 1			
Total		3700	50.18
1		3700	50.18
Gender: 1			
Total		3700	49.14
1		3700	49.14
RACE: 1			
Total		3700	61.77
1		3700	61.77
PIR: 1			
Total		3700	17.40
1		3700	17.40
Six month	time		
period:			
Total		3700	41.14
1		3700	41.14
Any dieta			
suppleme			
taken?:	1		
Total		3700	24.13
1		3700	24.13
BMIGROUP:	I	0700	07.00
Total		3700	87.89
1 AGE: 2		3700	87.89
Total		3700	49.82
1		3700	49.82
Gender: 2		0700	43.02
Total		3700	50.86
1		3700	50.86
RACE: 2			
Total		3700	14.57
1		3700	14.57
PIR: 2			
Total		3700	28.79
1		3700	28.79
Six month	time		
period:	2		

Total 1 Any dieta Total 1 BMIGROUP Total 1	ary supple : 2	3700 3700 ements taken 3700 3700 3700 3700	?: 2	58.86 58.86 75.81 75.81 11.47 11.47		
 Variab] 	Le	 			Reserved ble One	
i				Total	1	i
RACE: 3	3	Sample size Percent		1	3700 7.60	3700 17.60
PIR: 3 		Sample size Percent 		4	3700 9.98 	3700 49.98
Any die suppler taken?;	nents	 Sample size Percent 			3700 0.06	3700 0.06
BMIGROU	JP: 3	Sample size Percent Sample size			3700 0.64 3700	3700 0.64 3700
 PIR: 4	-	Percent Sample size Percent			6.07 3700 3.84	6.07 3700 3.84
The FRFQ	Procedure					
VD Fre	equency	Percent	Cumula Freque	ency	Cumulati Percent	
1 2 3	1748 1541 411	47.24 41.65 11.11	32	748 289 700	47.24 88.89 100.00	
Varia	able One	size	 Ре	ercent	-	
VSTATUS2						
Total		3700		30.57		
1		3700		30.57		
VD: 1 Total		3700		30.57		
1		3700		30.57		
VSTATUS2	2					
Total 1		3700 3700		34.20 34.20		
VD: 2		0700		04.20		
Total		3700		49.77		
1 VSTATUS2	. 3	3700		49.77		
Total	. 0	3700		35.23		
1		3700		35.23		
VD: 3 Total		3700		19.66		
1		3700		19.66		

CHARACTERISTICS OF 12-17y OLD CHILDREN AND ADOLESCENTS WITH METABOLIC SYNDROME IN NHANES 2001-2006

The FREQ F	Procedure		
		Cumul	Lative
metsyn	Frequency	Fred	quency
0	3487		3487
1	213		3700
Table of a	age by metsyn		
age	metsyn		
Frequency	o	1	Total
, 1	1753	106	1859
2	1734	107	1841
Total	3487	213	3700
Table of F	RIAGENDR by me		
RIAGENDR (Gender) me	etsyn	
Frequency	0	1	Total
1	1693	127	1820
2	1794	86	1880
Total	3487	213	3700
Table of r	ace by metsyr	-	
Race	metsyn	I	
Frequency		1	Tatal
	0	-	Total
1	920	65	985
2	1177	49	1226
3	1241	92	1333
4	149	7	156
Total	3487	213	3700
Table of p	oir by metsyn		
pir	metsyn		
Frequency	0	1	Total
1	933	56	989
2	1185	74	1259
3	1208	72	1280
4	161	11	172
Total	3487	213	3700
	RIDEXMON by me	-	
RIDEXMON(S	Six month time	e peri	Lod)
F	metsyn		T . • •
Frequency	0	1	Total
1	1829	122	1951
2	1658	91	1749
Total	3487	213	3700

Table of DSD010 by metsyn DSD010(Any dietary supplements taken?)

	etsyn		_						
Frequency	0		Total						
1	685	29	714						
2	2801	183	2984						
3	1	1	2						
Total	3487	213	3700						
Table of bm									
omigroup	metsyn								
Frequency	0		Total						
1	3140	41	3181						
2	319	172	491						
3	28	0	28						
Total	3487	213	3700						
Table of vs	tatus2 k	oy metsyn							
vstatus2	metsyn								
Frequency	0	1	Total						
1	1617	131	1748						
2	1077	56	1133						
3	793	26	819						
Total	3487	213	3700						
Table of vs	tatus2 k	oy metsyn							
vstatus2	metsyn								
Frequency	0	1	Total						
1	201	118	319						
2	81	37	118						
3	37	17	54						
Total	319	172	491						
 Variable	l			AGE 			 		
				Total	1	2	'I		
TSYN: 1		Sample s	ize	3700		859	1841		
		Percent		6.07	-	.90	6.25		
				Gender	I		i		
METSYN: 1	5	Sample siz	e l		182	0	1880		
		Percent	I			.91	4.29		
Ì				RACE			'		
				Total	1	2	1	3	4
METSYN: 1		Sample s	ize	3700	985	122	6	1333	15
	Per	rcent	6	3700 6.07 6	6.58	4.24	6.	62 3.73	3
				PIR					
		Total		1	2	3		4	
METSYN:	1	Sample	size	3700	989	1259	1	280	17
		Percent		6.07	6.54	6.39	5	5.57 8	8.01
				Six month	time peri	od			
				Total	1	2			
METSYN: 1		Sample s	ize	3700		951	1749		
l		Percent				•	6.68		
	I			Any dietary	/ suppleme	nts taken?			
	4	Sample	size	3700)	714	2984	1	
 METSYN:	i.								~ ~
 METSYN: 	I	Percent		6.07	7	4.18	6.61	8	81.92
 METSYN: 				6.07	7	4.18	6.61	{	81.9

		Total	. 1	2	3	
METSYN: 1	Sample size	I	3700	3181	491	28
	Percent	I	6.07	1.81	39.07	0.00
		VSTA	TUS2			
METSYN: 1	Sample size	I	3700	1748	1133	819
	Percent	I	6.07	8.71	6.36	3.50
METSYN: 1	Sample size	I	491	319	118	54
BMI ≥85 th perce	entile Percent	I	39.07	41.96	38.58	32.85

DIFFERENCE IN PREVALENCE OF METS USING RAO-SCOTT CHI-SQUARE TEST Table of RIAGENDR by metsyn

			••	
			Row	Column
metsyn	Frequency	Percent	Percent	Percent
No	1693	45.2568	92.0919	48.1814
Yes	127	3.8863	7.9081	64.0239
Total	1820	49.1430	100.000	
No	1794	48.6732	95.7061	51.8186
Yes	86	2.1838	4.2939	35.9761
Total	1880	50.8570	100.000	
No	3487	93.9299		100.000
Yes	213	6.0701		100.000
Total	3700	100.000		
Rao-S	cott Modified	l Chi-Square	Test	
Pea	rson Chi-Squa	are 21.18	53	
Des	ign Correctio	on 1.28	83	
Rao	-Scott Chi-Sc	uare 16.44	42	
DF			1	
Pr	> ChiSq	<.00	01	
FV	alue	16.44	42	
Num	DF		1	
Den	DF		45	
Pr	> F	0.00	02	
	No Yes Total No Yes Total Rao-S Pea Des Rao DF Pr F V Num Den	metsyn Frequency No 1693 Yes 127 Total 1820 No 1794 Yes 86 Total 1880 No 3487 Yes 213 Total 3700 Rao-Scott Modified Pearson Chi-Squa Design Correctio Rao-Scott Chi-Soc	No 1693 45.2568 Yes 127 3.8863 Total 1820 49.1430 No 1794 48.6732 Yes 86 2.1838 Total 1880 50.8570 No 3487 93.9299 Yes 213 6.0701 Total 3700 100.000 Rao-Scott Modified Chi-Square 21.18 Design Correction 1.28 Rao-Scott Chi-Square 16.44 DF Ye > ChiSq <.00	Row metsyn Frequency Percent Percent No 1693 45.2568 92.0919 Yes 127 3.8863 7.9081 Total 1820 49.1430 100.000 No 1794 48.6732 95.7061 Yes 86 2.1838 4.2939 Total 1880 50.8570 100.000 No 3487 93.9299 Yes Yes 213 6.0701 100.000 Rao-Scott Modified Chi-Square Test Pearson Chi-Square 21.1853 Design Correction 1.2883 Rao-Scott Chi-Square 16.4442 DF 1 Pr > ChiSq <.0001

Table of race by metsyn

	Table 0	i iace by mets	, y i i		
		F	Deveet	Row	Column
race	metsyn	Frequency	Percent	Percent	Percent
Non-hispanic white	No	920	57.7061	93.4244	61.4353
	Yes	65	4.0616	6.5756	66.9123
	Total	985	61.7677	100.000	
Non-hispanic black	No	1177	13.9476	95.7597	14.8489
	Yes	49	0.6176	4.2403	10.1746
	Total	1226	14.5652	100.000	
Hispnic/Mexican American	No	1241	16.4357	93.3826	17.4979
	Yes	92	1.1647	6.6174	19.1875
	Total	1333	17.6004	100.000	
Other	No	149	5.8405	96.2722	6.2179
	Yes	7	0.2262	3.7278	3.7257
	Total	156	6.0666	100.000	
Total	No	3487	93.9299		100.000
	Yes	213	6.0701		100.000
	Total	3700	100.000		

Table of race by metsyn Rao-Scott Modified Chi-Square Test

		Pearson Chi-Sq Design Correct Rao-Scott Chi-	ion 1.1		
		DF		3	
		Pr > ChiSq		179	
		F Value	1.9	578	
		Num DF		3	
		Den DF Pr > F		135 233	
		Table of ag			
		Table of ag	le by metsyn		Column
age	metsyn	Frequency	Percent		
	No	1753	47.2201	94.1043	50.2716
	Yes	106	2.9583	5.8957	48.7366
	Total	1859	50.1784	100.000	
15-17y	No		46.7099		
	Yes	107	3.1117	6.2457	51.2634
	Total	1841	49.8216		
Total	No	3487	93.9299		100.000
	Yes	213	6.0701		100.000
	Total		100.000		
	Ra	o-Scott Modifie	•		
		Pearson Chi-Sq			
		Design Correct			
		Rao-Scott Chi-	Square 0.1		
		DF Pr > ChiSq	0.7	1 '481	
		F Value		032	
		Num DF	0.1	1	
		Den DF		45	
		Pr > F	0.7	495	
Table of age by metsyn					
				Row	Column
age	metsyn	Frequency	Percent	Percent	Percent
12-14y	No	1753	47.2201	94.1043	50.2716
	Yes	106	2.9583	5.8957	48.7366
	Total	1859	50.1784	100.000	
15-17y	No	1734	46.7099	93.7543	49.7284
	Yes	107	3.1117	6.2457	51.2634
	Total	1841	49.8216	100.000	
Total	No	3487	93.9299		100.000
	Yes	213	6.0701		100.000
	Total	3700	100.000		

Pearson Chi-Square	0.1988
Design Correction	1.9271
Rao-Scott Chi-Square	0.1032
DF	1
Pr > ChiSq	0.7481
F Value	0.1032
Num DF	1
Den DF	45
Pr > F	0.7495

Table of age by metsyn

age	metsyn	Frequency	Percent	Row Percent	Column Percent
12-14y	No	1753	47.2201	94.1043	50.2716
	Yes	106	2.9583	5.8957	48.7366
	Total	1859	50.1784	100.000	
15-17y	No	1734	46.7099	93.7543	49.7284
10 1 <i>1</i> y	Yes	107	3.1117	6.2457	51.2634
	100	107	0.1117	012407	0112004
	Total	1841	49.8216	100.000	
Total	No	3487	93.9299		100.000
	Yes	213	6.0701		100.000
	Total	3700	100.000		

Rao-Scott Modified Chi-Square TestPearson Chi-Square0.1988Design Correction1.9271

Rao-Scott Chi-Square	0.1032
DF	1
Pr > ChiSq	0.7481
F Value	0.1032
Num DF	1
Den DF	45
Pr > F	0.7495

Table of pir by metsyn

pir	metsyn	Frequency	Percent	Row Percent	Column Percent
low income: <1.0	No	933	16.9108	93.4610	17.9888
	Yes	56	1.1832	6.5390	19.7436
	Total	989	18.0939	100.000	

	moderate income: 1.0-2.5	No Yes Total	1185 74 1259	28.0230 1.9139 29.9369	93.6068 6.3932 100.000	29.8093 31.9382
Total	high income:=2.5 1280 51.9692	No Yes 100.000	1208 72	49.0736 2.8955	94.4284 5.5716	52.2019 48.3182
	Total	No Yes Total	3326 202 3528	94.0074 5.9926 100.000		100.000 100.000

Frequency Missing = 172

Table of pir by metsyn

Rao-Scott Modified Chi-Square Test

Pearson Chi-Square	1.2160
Design Correction	1.5717
Rao-Scott Chi-Square	0.7737
DF	2
Pr > ChiSq	0.6792
F Value	0.3868
Num DF	2
Den DF	90
Pr > F	0.6803
Sample Size = 35	28

Table of RIDEXMON by metsyn

RIDEXMON	metsyn	Frequency	Percent	Row Percent	Column Percent
winter	No Yes	1829 122	39.0040 2.1353	94.8095 5.1905	41.5246 35.1781
	Total	1951	41.1393	100.000	
summer	No Yes	1658 91	54.9259 3.9347	93.3152 6.6848	58.4754 64.8219
	Total	1749	58.8607	100.000	
Total	No Yes	3487 213	93.9299 6.0701		100.000
	Total	3700	100.000		

Rao-Scott Modified Chi-Square Test

Pearson Chi-Square	3.5090
Design Correction	1.9537
Rao-Scott Chi-Square	1.7960
DF	1

Pr > ChiSq	0.1802
F Value Num DF	1.7960 1
Den DF	45
Pr > F	0.1869

Table of bmigroup by metsyn

0 - 1					Row	
Column	bmigroup	metsyn	Frequency	Percent	Percent	
Percent						
92.5094	Normal wt: <85th percentile	No	3140	86.8576	98.1907	
92.3094		Yes	41	1.6005	1.8093	
26.1975						
		Total		88.4581	100.000	
-	and obese:>=85th percentile	No	319	7.0330	60.9346	
7.4906		Yes	172	4.5089	39.0654	
73.8025						
		Total	491	11.5419	100.000	
	Total	No	3459	93.8906		
		Yes Total	213 3672	6.1094 100.000	100.000	
		.star	0072			

Frequency Missing = 28 Rao-Scott Modified Chi-Square Test

Pearson Chi-Square	907.1730
Design Correction	9.1762
Rao-Scott Chi-Square	98.8612
DF	1
Pr > ChiSq	<.0001
F Value	98.8612
Num DF	1
Den DF	45
Pr > F	<.0001
Sample Size = 3	672

Table of VITAMIND by metsyn

VITAMIND metsyn		Frequency	Percent	Row Percent	Column Percent	
	deficiency	No Yes	1781 138	32.2832 3.1216	91.1831 8.8169	34.3694 51.4259
	insufficiency	Total No	1919 1309	35.4048 42.7540	100.000 95.1412	45.5169

	Yes	61	2.1834	4.8588	35.9705
	Total	1370	44.9375	100.000	
sufficiency	No	397	18.8927	96.1082	20.1136
	Yes	14	0.7650	3.8918	12.6036
	Total	411	19.6578	100.000	
Total	No	3487	93.9299		100.000
	Yes	213	6.0701		100.000
	Total	3700	100.000		

Rao-Scott Modified Chi-Square Test

Pearson Chi-Square	27.6657
Design Correction	1.4262
Rao-Scott Chi-Square	19.3982
DF	2
Pr > ChiSq	<.0001
F Value	9.6991
Num DF	2
Den DF	90
Pr > F	0.0002

Table of supp by metsyn

~ ,							
					Row	Column	
	supp	metsyn	Frequency	Percent	Percent	Percent	
	yes	No	685	23.1343	95.8201	24.6173	
		Yes	29	1.0092	4.1799	16.7519	
		Total	714	24.1435	100.000		
	no	No	2801	70.8414	93.3888	75.3827	
		Yes	183	5.0151	6.6112	83.2481	
		Total	2984	75.8565	100.000		
		Total	No	3486	93.9758		100.000
		Yes	212	6.0242		100.000	
		Total	3698	100.000			

Frequency Missing = 2 Rao-Scott Modified Chi-Square Test

Pearson Chi-Square	7.0719
Design Correction	1.2584
Rao-Scott Chi-Square	5.6197
DF	1
Pr > ChiSq	0.0178
F Value	5.6197
Num DF	1
Den DF	45
Pr > F	0.0221
Sample Size = 36	98

DESCRIPTIVE STATISTICS FOR PREVALENCE OF VITAMIN D DEFICIENCY IN 12-17 y OLD CHLDREN AND ADOLESCENTS IN NHANES 2001-2006

The FREQ Pro Table of age age VD Frequency 1 2	by VD	2 790 751	3 200 211	Total 1859 1841
Total	1748	1541	411	3700
Table of RIA RIAGENDR(Gen Frequency 1 2 Total	2	VD VD 821 720 1541	3 226 185 411	Total 1820 1880 3700
Table of rac	e by VD			
race VD)			
Frequency	1	2	3	Total
1	141	550	294	985
2	902	296	28	1226
3	624	628	81	1333
4				
- 1	81	67	8	156
Total	1748	1541	411	3700
Table of pir	by VD			
	-			
pir VD)	2	3	Total
pir VD Frequency	1	2	3	Total
pir VD Frequency 1	1 566	367	56	989
pir VD Frequency 1 2	1 566 641	367 498	56 120	989 1259
pir VD Frequency 1 2 3	1 566	367	56	989
pir VD Frequency 1 2	1 566 641	367 498	56 120	989 1259
pir VD Frequency 1 2 3	1 566 641 452	367 498 620	56 120 208	989 1259 1280
pir VD Frequency 1 2 3 4 Total	1 566 641 452 89 1748	367 498 620 56 1541	56 120 208 27	989 1259 1280 172
pir VD Frequency 1 2 3 4 Total Table of RID	1 566 641 452 89 1748 EXMON by	367 498 620 56 1541	56 120 208 27 411	989 1259 1280 172 3700
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six	1 566 641 452 89 1748 EXMON by	367 498 620 56 1541 VD ime period	56 120 208 27 411) VE	989 1259 1280 172 3700
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency	1 566 641 452 89 1748 EXMON by month t: 1	367 498 620 56 1541 VD ime period 2	56 120 208 27 411) VE 3	989 1259 1280 172 3700 Total
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency 1	1 566 641 452 89 1748 EXMON by month t: 1 1094	367 498 620 56 1541 VD ime period 2 743	56 120 208 27 411) VE 3 114	989 1259 1280 172 3700 700 Total 1951
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency 1 2	1 566 641 452 89 1748 EXMON by month t: 1094 654	367 498 620 56 1541 VD ime period 2 743 798	56 120 208 27 411) VE 3 114 297	989 1259 1280 172 3700 Total 1951 1749
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency 1	1 566 641 452 89 1748 EXMON by month t: 1 1094	367 498 620 56 1541 VD ime period 2 743	56 120 208 27 411) VE 3 114	989 1259 1280 172 3700 700 Total 1951
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency 1 2	1 566 641 452 89 1748 EXMON by month t: 1094 654 1748 0010 by VI ietary su	367 498 620 56 1541 VD ime period 2 743 798 1541	56 120 208 27 411) VE 3 114 297 411	989 1259 1280 172 3700 Total 1951 1749 3700
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency 1 2 Total Table of DSD DSD010(Any d	1 566 641 452 89 1748 EXMON by month t: 1094 654 1748 0010 by VI ietary su	367 498 620 56 1541 VD ime period 2 743 798 1541	56 120 208 27 411) VE 3 114 297 411	989 1259 1280 172 3700 Total 1951 1749 3700
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency 1 2 Total Table of DSD DSD010(Any d	1 566 641 452 89 1748 EXMON by month t: 1094 654 1748 0010 by VI ietary su	367 498 620 56 1541 VD ime period 2 743 798 1541 0 upplements	56 120 208 27 411) VE 3 114 297 411 taken?) 3	989 1259 1280 172 3700 Total 1951 1749 3700
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency 1 2 Total Table of DSD DSD010(Any d VD Frequency 1	1 566 641 452 89 1748 EXMON by month t: 1094 654 1748 010 by VE ietary su 1247	367 498 620 56 1541 VD ime period 2 743 798 1541 0 upplements 2 360	56 120 208 27 411) VE 3 114 297 411 taken?) 3 107	989 1259 1280 172 3700 Total 1951 1749 3700
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency 1 2 Total Table of DSD DSD010(Any d VD Frequency 1 2	1 566 641 452 89 1748 EXMON by month t: 1094 654 1748 010 by VI ietary su 1247 1499	367 498 620 56 1541 VD ime period 2 743 798 1541 0 upplements 2 360 1181	56 120 208 27 411) VE 3 114 297 411 taken?) 3 107 304	989 1259 1280 172 3700 Total 1951 1749 3700 Total 714 2984
pir VD Frequency 1 2 3 4 Total Table of RID RIDEXMON(Six Frequency 1 2 Total Table of DSD DSD010(Any d VD Frequency 1	1 566 641 452 89 1748 EXMON by month t: 1094 654 1748 010 by VE ietary su 1247	367 498 620 56 1541 VD ime period 2 743 798 1541 0 upplements 2 360	56 120 208 27 411) VE 3 114 297 411 taken?) 3 107	989 1259 1280 172 3700 Total 1951 1749 3700

Table of bmigrou	p by VD					
bmigroup VD		- 1				
Frequency	1 2	3	Total			
1 140		382	3181			
2 31		29	491			
3 2		0	28			
Total 174	8 1541	411	3700			
			VD			
Variable	Tot		1	2	3	
	mple size	3700				
Pe	rcent	50.18	50.05	50.37	49.89	
Gender: 1 Samp	le siz	3700	1748	1541	411	
Pe	rcent	49.14	43.60	50.79	53.58	
RACE: 1 Sa	mple si	3700	1748	1541	411	
Percent	61.77	29.46	70.09	90.96		
PIR: 1 Sa	mple size	3700	1748	1541	411	
Pe	rcent	17.40	25.72	15.24	9.93	
Six month time	Sample size	3700	1748	1541	411	
period: 1 Perce	nt	41.14	57.36	38.59	22.36	
Any dietar Sa	mple size	3700	1748	1541	411	
supplements Perc	ent	24.13	17.84	26.45	28.05	
taken?: 1						
BMIGROUP: 1 Sa	ample size	3700	1748	1541	411	1
Percent	87.89	80.13	90.69	92.86	1	
- AGE: 2 Sample	size	3700		1541	411	
Percen	t İ	49.82	49.95	49.63	50.11	1
Gender: 2 Samp	le size	3700	1748	1541	411	Ì
Perc	-	50.86	56.40	49.21	46.42	i
RACE: 2 Samp	le size	3700	1748	1541	411	İ
Perc	ent	14.57	35.23	7.00	1.60	Ì
PIR: 2 Samp	le size	3700	1748	1541	411	<u>.</u> 1
Perc		28.79		27.74	24.76	
Six month time				1541	411	
	Percent	58.86		61.41	77.64	
	Sample size			1541	411	
	Percent	75.81				•
taken?: 2		110101	01100	/0100	1 1100	I
	Sample size	3700	1748	1541	411	I
		11.47				I
RACE: 3	Sample size		1			1
	Percent	17.60			-	
PIR: 3	Sample size	3700			•	
	Percent	49.98				
 Any dietary	Sample size	3700				
	Percent	0.06				
taken?: 3		0.00	0.20	0.00	0.00	1
	Sample size	3700	1748	1541	411	I
DWIGHOUF. 3	Percent					
 RACE: 4						
NAVL. 4	Sample size					
I	Percent	6.07	10.03	5.11	1.40	I
PIR: 4	Sampla aira	3700	1710	1 = 1 4	 /++	-
FIN. 4	Sample size	3700				
I	Percent	3.84	4.37	2.26	6.99	I

DIFFERENCE IN PREVALENCE OF VITAMIN D USING RAO-SCOTT CHI-SQUARE TEST

		Number of Strata			45		
		Number of Cluste			90		
		Number of Observ			3700		
		Sum of Weights	aciono	17(581659		
		Table of RI	AGENDR b				
				y (20)	-	Row	Column
RIAGENDR		vtert	Freque	ncv	Percent	Percent	OOTUIIII
Percent			11 oquo	noy	i or oone	i di done	
Male		1: <19.5 ng/mL		773	13.3312	27.1273	3.603
		19.5-26.2 ng/mL		588	16.7110	34.0048	48.868
	Tertile	3: >26.2 ng/mL		459	19.1009	38.8679	54.216
_		Total		820	49.1430	100.000	
Female		1: <19.5 ng/mL		975	17.2424	33.9038	56.396
		19.5-26.2 ng/mL		545	17.4848	34.3804	51.131
	Tertile	3: >26.2 ng/mL		360	16.1297	31.7159	45.783
		Total	1	880	50.8570	100.000	
Total		1: <19.5 ng/mL	1	748	30.5736		100.00
		19.5-26.2 ng/mL	1	133	34.1958		100.00
	Tertile	3: >26.2 ng/mL		819	35.2306		100.00
		Total		700	100.000		
		Rao-Scott Modif	ied Chi-	Square	Test		
		Pearson Chi-S	Square	27.35	35		
		Design Correc	tion	1.41	78		
		Rao-Scott Chi	-Square	19.29	35		
		DF			2		
		Pr > ChiSq		<.00	01		
		F Value		9.640	58		
		Num DF			2		
		Den DF		9	90		
		Pr > F		0.00	02		
Table of race	by vtert						
				_			Column
	race		vtert	Free	quency F	Percent I	Percent
ercent							
Non-hispan	ic white	Tertile 1: <19.5	ö ng∕mL	141	9.0061	14.5805	9.4570
	Т	ertile 2: 19.5-26.	2 ng/m	353	22.6946	36.7418	66.366
		Tertile 3: >26.	2 ng/mL	491	30.0671	48.6776	85.343
Total	985 61.7	677 100.000					
Non-hispa	nic black	Tertile 1: <19.	5 ng/mL	902	10.7697	73.9413	35.225
	Т	ertile 2: 19.5-26.	2 ng/mL	239	2.8262	19.4037	8.264
		Tertile 3: >26.	2 ng/mL	85	0.9693	6.6550	2.7514
Total	1226 14.5	652 100.000					
lispnic/Mexican	American	Tertile 1: <19.	5 ng/mL	624	7.5480	42.8855	24.688
	Т	ertile 2: 19.5-26.	2 ng/mL	492	6.8963	39.1825	20.167
		Tertile 3: >26.	2 n	217	3.1561	17.9320	8.958
			Total	1333	17.6004	100.000)
	Other	Tertile 1: <19.	5 ng/mL	81	3.2498	53.5688	10.6295
	Т	ertile 2: 19.5-26.	-	49	1.7787	29.3202	5.2016
		Tertile 3: >26.	2 ng/mL	26	1.0381	17.1111	2.946
Tota	ıl 15						
	Total	Tertile 1: <19.			1748 3	30.5736	
100 000							

Tel		ertile 2: 19.5-26 Tertile 3: >26	•	133 34.1958 19 35.2306	3	100.000 100.000
	tal 3700	100.000				
	e of race by vter					
Rao-Scott Mod	dified Chi-Square			Chi-Square	957.3708	
		Design Correcti		5486		
		Rao-Scott Chi-	Square 375			
		DF		6		
		Pr > ChiSq	< ,	.0001		
		F Value	62	.6072		
		Num DF		6		
		Den DF		270		
		Pr > F	<	.0001		
Table of age	by vtert					
					Row	Column
age		vtert	Frequency	Percent	Percent	Percent
12-14y	Tertile 1	: <19.5 ng/mL	869	15.3010	30.4932	50.0464
	Tertile 2: 19	0.5-26.2 ng/mL	589	17.1889	34.2555	50.2660
	Tertile 3	3: >26.2 ng/mL	401	17.6886	35.2513	50.2080
		Total	1859	50.1784	100.000	
15-17y	Tertile 1	: <19.5 ng/mL	879	15.2726	30.6546	49.9536
··· · · · · · · · · · · · · · · · · ·		0.5-26.2 ng/mL	544			
		3: >26.2 ng/mL	418			
Total	1841 49.821	•				
Total	Tertile 1	: <19.5 ng/mL	1748	30.5736		100.000
Total		0.5-26.2 ng/mL	1133			100.000
		3: >26.2 ng/mL	819			100.000
Total	3700 100.00	-				
		Rao-Scott Modi	fied Chi-Sau	uare Test		
		Pearson Chi	•	0.0122		
		Design Corr		2.0214		
		Rao-Scott C	hi-Square (0.0060		
		DF		2		
		Pr > ChiSq	(0.9970		
		F Value	(0.0030		
		Num DF		2		
		Den DF		90		
		Pr > F	(0.9970		
	e Size = 3700 EXMON by vtert					
					Row	Column
RIDEXMON Percent	N	vtert	Frequency	/ Percent	Percent	
winter	Tertilo	1: <19.5 ng/mL	1094 17	7.5381 42.	.6311 57	.3637
WILLEI		9.5-26.2 ng/mL		.2560 34.6		. 3037 6892
		3: >26.2 ng/mL		.3452 22.7		5259
Total	1951 41.13	-	200 9		.00 20.	0200
summer		1: <19.5 ng/mL	654 13	.0355 22.1	463 42	6363
0		9.5-26.2 ng/mL		.9399 33.8		3108

Total Total	1749 58.8607 Tertile 1: Tertile 2: 19.5	•	539 1748 1133	25.8853 30.5736 34.1958	43.9773	73.4741 100.000 100.000
Total	Tertile 3: 3700 100.000	>26.2 ng/mL	819	35.2306		100.000
	R	ao-Scott Modi	fied Chi	-Square Te	st	
		Pearson Chi-S Design Correc		238.0872 4.4249		
		Rao-Scott Ch: DF	i-Square	e 53.8059 2		
		Pr > ChiSq		<.0001		
		F Value Num DF Den DF Pr > F		26.9029 2 90 <.0001		
Table of bmigro	up by vtert					Row Column
-	Te 3181 88.4581	rtile 1: <19.5 rtile 2: 19.5 tile 3: >26.2 100.000 entileTertile Tertile 2: 15 Tertile 3: >2	-26.2 ng ng/mL 1: <19. 9.5-26.2	1408 24 g/mL 1011 762 5 ng/mL 31 2 ng/mL 118	.6569 27 30.8415 32.9596 9 5.6778 3.4923	Percent Percent .8741 81.2827 34.8657 89.8285 37.2602 93.2871 49.1934 18.7173 30.2574 10.1715 20.5492 6.7129
			le 2: 19	9.5 ng/mL 9.5-26.2 ng 26.2 ng/mL Total	/mL 11 816 3	29 34.3338
		Frequency Rao-Scott Mod		-	Test	
		Pearson Chi-S Design Correc		88.1228 1.7194		
		Rao-Scott Ch: DF Pr > ChiSq	i-Square	e 51.2518 2 <.0001		
		F Value Num DF Den DF Pr > F		25.6259 2 90 <.0001		

SAMPLE SIZE OF VARIABLES ACCORDING TO SERUM VITAMIN D TERTILE CATEGORIES

Table of	age by vstat	us2			
age	vstatus2				
Frequency	/ 1	2	3	Total	
1	869	589	401	1859	
2	879	544	418	1841	
- Total	1748	1133	819	3700	
Totar	1740	1100	010	0700	
Table of					
	RIAGENDR by				
RIAGENDR(vstatus2			
Frequency	1	2	3	Total	
1	773	588	459	1820	
2	975	545	360	1880	
Total	1748	1133	819	3700	
Table of	race by vsta	tus2			
race	vstatus2				
Frequency	' 1	2	3	Total	
1	141	353	491	985	
2	902	239	85	1226	
3	624	492	217	1333	
4	81	49	26	156	
	1748	1133	819	3700	
Total	1740	1133	019	3700	
Table of	pir by vstat	201			
pir	vstatus2	402			
•				Tatal	
Frequency	1 1	2	3	Total	
1	566	291	132	989	
2	641	366	252	1259	
3	452	433	395	1280	
4	89	43	40	172	
Total	1748	1133 ່	819 ່	3700	
Table of	RIDEXMON by	vstatus2			
RIDEXMON(Six month ti	me perio	d) vs	status2	
Frequency	/ 1	2	3	Total	
. 1	1094	577	280	1951	
2	654	556	539	1749	
Total	1748	1133	819	3700	
locar	17 10	1100	010	0,00	
Table of	DSD010 by vs	status2			
	y dietary su		s taken?)		
565616(74	vstatus2	ppremeire	o canoni,		
Frequency		2	3	Total	
	1 1	-	-		
1	247	255	212	714	
2	1499	878	607	2984	
3	2	0	0	2	
Total	1748	1133 ່	819 ່	3700	
	bmigroup by				
bmigroup	vstatus2				
Frequency	' 1	2	3	Total	

Т	1 1408 2 319 3 21 Total 1748	1011 762 118 54 4 3 1133 819	3181 491 28 3700			
	Variable	I		VSTATUS2		
i			Total	1	2 3	3
I	AGE: 1	Sample size	3700	1748	1133	819
ļ		Percent	50.18	50.05		50.21
	Gender: 1	Sample size	3700	1748	1133	819
	 RACE: 1	Percent	49.14	43.60	48.87	54.22
1	RACE: 1	Sample size Percent	3700 61.77	1748 29.46	1133 66.37	819 85.34
1	 PIR: 1	Sample size	3700	1748	1133	819
- 1		Percent	17.40	25.72	16.87	10.70
i	Six month time	Sample size	3700	1748	1133	819
i	period: 1	Percent	41.14	57.36	41.69	26.53
İ	Any dietary	Sample size	3700	1748	1133	819
	supplements	Percent	24.13	17.84	25.27	28.48
I	taken?: 1					
	BMIGROUP: 1	Sample size	3700	1748	1133	819
		Percent	87.89	80.13	89.61	92.95
	AGE: 2	Sample size	3700	1748	1133	819
		Percent	49.82	49.95	49.73	49.79
	Gender: 2	Sample size	3700		1133	819
ļ		Percent	50.86	56.40	51.13	45.78
	RACE: 2	Sample size	3700	1748	1133	819
		Percent	14.57	35.23	8.26	2.75
- 1	PIR: 2	Sample size	3700		1133	819 25.74
1	 Six month time	Percent Sample size	28.79 3700	33.08	28.09 1133	25.74
1	period: 2	Percent	58.86	42.64	58.31	73.47
1	Any dietary	Sample size	3700	1748	1133	819
i	supplements	Percent	75.81	81.96	74.73	71.52
i	taken?: 2					71102
i	BMIGROUP: 2	Sample size	3700	1748	1133	819
i		Percent	11.47	18.45	10.15	6.69
İ	RACE: 3	Sample size	3700	1748	1133	819
		Percent	17.60	24.69	20.17	8.96
	PIR: 3	Sample size	3700	1748	1133	819
		Percent	49.98	36.83	52.84	58.61
	Any dietary	Sample size	3700	1748	1133	819
	supplements	Percent	0.06	0.20	0.00	0.00
	taken?: 3					
ļ	BMIGROUP: 3	Sample size	3700	1748	1133	819
		Percent	0.64		-	0.36
	RACE: 4	Sample size	3700		1133	819
		Percent	6.07			2.95
	PIR: 4	Sample size Percent	3700			819
I		1	3.84 mulative Cu	4.37 mulative	2.21	4.95
v	vstatus2 Freque		Frequency	Percent		
_	1 174	48 47.24	1748	47.24		
	2 11:		2881	77.86		
		19 22.14	3700	100.00		
	-					

APPENDIX E

ASSOCIATION BETWEEEN SERUM VITAMIN D AND CONCENTRATIONS AND PREVALENCE OF METABOLIC SYNDROME

Table of vst									
vstatus2	metsyn		T.+.1						
Frequency 1	0	1	Total 1748						
2	1617 1077	131 56	1133						
3	793	26	819						
Total	793 3487	20 213	3700						
Table of vst	atus2 b	y metsyn							
vstatus2	metsyn								
Frequency	0	1	Total						
1	201	118	319						
2	81	37	118						
3	37	17	54						
Total	319 ່	172 ່	491						
Variable						VSTATU	52		
				Total	1		2	3	
METSYN: 1		Sample si	ize	370	00	1748	3	1133	819
		Percent		6	.07	8.	71	6.36	3.50
METSYN: 1		Sample s			191	3	19	118	54
for BMI≥85	•	•			.07	41.	96	38.58	32.85
LOGISTIC REG									
Number of ob	servati	ons read	: 3	0070 We	eighted	count:2	2859374	478	
Observations	in sub	populatior	n :	3444 We	eighted	count:	166304	443	
Observations	used i	n the anal	Lysis :	3444 We	eighted	count:	166304	443	
R-Square for	depend	ent variak	ole METSYN	l (Cox & Si	nell, 19	989): 0	.146248	8	
-2 * Normali	zed Log	-Likelihoo	od with In	itercepts (Only :	1511.00	6		
-2 * Normali	zed Log	-Likelihoo	od Full Mo	del	:	966.5	1		
Approximate	Chi-Squ	are (-2 *	Log-L Rat	io)	:	544.5	5		
Degrees of F	reedom				:	1	1		
Response var	iable M	ETSYN: MET	TSYN						
For Subpopul	ation:	SUBGROUP =	= 1 by: In	dependent	Variabl	Les and	Effec	ts.	
Independent									
P-value									
Variables	and	Beta			Lower	95%	Upper	95%	
T-Test									
Effects		Coeff.		SE Beta	Limit	Beta	Limit	Beta T-Test	t B=0
B=0									
Intoncont		0.00	4 00			 4	60	0 75	0 4506
Intercept		-0.99	1.33		3.67	1	.69	-0.75	0.4596
VSTATUS		0.00	0.05		10		52	0.01	0 0050
1		0.82	0.35		0.10		.53	2.31	0.0258
2		0.77	0.31		0.13		.40	2.43	0.0190
3 Gender		0.00	0.00	, (0.00	0	.00		

Gender

1 0.79 0.21 0.37 1.22 3.74 0.0005 PACE 1 0.00 0.00 0.00 0.00 0.00 2 -2.35 0.67 -3.70 -1.01 -3.52 0.0002 4 -1.06 0.93 -2.47 -0.85 -4.13 0.0002 4 -1.06 0.93 -2.47 -0.85 -4.14 0.0002 4 -1.06 0.93 -2.47 -0.85 -4.13 0.0002 4 -1.06 0.93 -2.47 -0.85 -9.15 0.0002 Adjudicated - - - - - - - - - - - 0.000 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
DACE 1 0.00 0.00 0.00 0.00 2 -2.35 0.67 -3.70 -1.01 -3.52 0.0002 3 -1.66 0.40 -2.47 -0.85 -4.13 0.0002 4 -1.06 0.93 -2.93 0.81 -1.14 0.22111 Age at Soreening Adjudicated - - - -2.16 - 9.021 - 0.000 0.000 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.00	1	0.79	0.21	(0.37	1.	22	3.74	0.0005
1 0.00 0.00 0.00 0.00 2 -2.35 0.67 -3.70 -1.01 -3.52 0.0010 3 -1.66 0.40 -2.47 -0.85 -4.13 0.0002 4 -1.06 0.93 -2.93 0.81 -1.14 0.2611 Adjudicated - Recode 0.03 0.07 -0.11 0.18 0.48 0.6339 DMIGROUP 1 3.29 0.36 -4.01 -2.56 -9.15 0.0000 2 0.00 0.00 0.00 0.00 10 -0.86 1.26 -3.39 1.68 -0.66 0.4990 1 0.42 1.28 -2.16 2.99 0.33 0.7462 2 0.81 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.000 0.000 - - - - Contrast Degrees of P-value - - - - OVERALL MODEL 1 3.45 0.0404 - -		0.00	0.00	(0.00	0.	00		
2 -2.35 0.67 -3.70 -1.01 -3.52 0.0010 3 -1.66 0.40 -2.47 -0.85 -4.13 0.0002 4 -1.06 0.93 -2.93 0.81 -1.14 0.2811 Adjudicated - - Reode 0.03 0.07 -0.11 0.18 0.48 0.6339 BMIGROUP - - - -9.15 0.0000 0.00 0.00 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.81 1.28 -2.16 2.99 0.33 0.7462 2 0.81 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.00 0.00 0.00 0.00 0.00 Contrast Degrees - - - - - Ot Freedom Wald F Wald F Wald F - - - MODEL 12 75.29 0.0000 - - - - - <td< td=""><td>RACE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	RACE								
3 -1.66 0.40 -2.47 -0.85 -4.13 0.0022 4 -1.06 0.93 -2.93 0.81 -1.14 0.28111 Age at Screening Adjudicated - Recode 0.03 0.07 -0.11 0.18 0.48 0.6339 BWIGROUP 0 0.36 -4.01 -2.56 -9.15 0.0000 1 3.29 0.36 -4.01 -2.56 -9.15 0.0000 BWIGROUP 0 -0.86 1.26 -3.39 1.68 -0.68 0.4990 1 0.42 1.28 -2.16 2.99 0.33 0.7462 2 0.81 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.00 0.000 0.00 0.00 0.00 Contrast Degrees 0f P-value Predom Prevalue Prevalue </td <td>1</td> <td>0.00</td> <td>0.00</td> <td>(</td> <td>0.00</td> <td>0.</td> <td>00</td> <td></td> <td></td>	1	0.00	0.00	(0.00	0.	00		
4 -1.06 0.93 -2.93 0.81 -1.14 0.2611 Age at Screening	2	-2.35	0.67	- 3	3.70	-1.	01	-3.52	0.0010
Age at Screening Adjudicated - Recode 0.03 0.07 -0.11 0.18 0.48 0.6339 BMIGROUP - - - - - 0.000 0	3	-1.66	0.40	- 2	2.47	- 0 .	85	-4.13	0.0002
Adjudicated - Racode 0.03 0.07 -0.11 0.18 0.48 0.6339 BulGROUP 3.29 0.36 -4.01 -2.56 -9.15 0.0000 2 0.00 0.00 0.00 0.00 0.00 0.00 BUIRACE 0 -0.86 1.26 -3.39 1.68 -0.68 0.4990 1 0.42 1.28 -2.16 2.99 0.33 0.7462 2 0.81 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.00 0.00 0.00 0.00 0.00 Contrast Degrees of P-value P-value WTEATUS 2 3.45 0.0044 RIAGENDR 1 13.97 0.0005 RACE 3 8.00 0.0027 RIAGENDR 1 13.97 0.003 RIAGENDR 1 8.373 0.0000 RIAGENDR 1 8.373 0.0027 Independent Limit 0R <td< td=""><td>4</td><td>-1.06</td><td>0.93</td><td>- 2</td><td>2.93</td><td>0.</td><td>81</td><td>-1.14</td><td>0.2611</td></td<>	4	-1.06	0.93	- 2	2.93	0.	81	-1.14	0.2611
Recode 0.03 0.07 -0.11 0.18 0.48 0.6339 BMIGROUP									
1 3.29 0.36 -4.01 -2.56 -9.15 0.000 2 0.00 0.00 0.00 0.00 0.00 2 0.06 1.26 -3.39 1.68 -0.68 0.4990 1 0.42 1.28 -2.16 2.99 0.33 0.7462 2 0.61 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.00 0.00 0.00 0.00 0.00 Contrast Degrees of P-value Preson Preson<	Recode	0.03	0.07	- 0 .	.11	0.1	8	0.48	0.6339
2 0.00 0.00 0.00 0.00 BMIRACE 0 -0.86 1.26 -3.39 1.68 -0.68 0.4990 1 0.42 1.28 -2.16 2.99 0.33 0.7462 2 0.81 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.00 0.00 0.00 0.00 0.00 Contrast Degrees of P-value Preadue Precode 0.600 0.000 MODEL 12 75.29 0.0000 0.000 0.000 0.001 MOTEALL MODEL 12 75.29 0.0000 RACE 3 8.00 0.0002 RIXERCEPT 11 30.30 0.0000 RACE 3 8.00 0.0002 RIAGENDR 1 13.97 0.003 5.39 SATO 0.03 5.39 MIGROUP 1 83.73 0.000 1.00 1.00 Intercept		3.29	0.36	-4	01	-2.5	56	-9.15	0.0000
BMIRACE 0 -0.86 1.26 -3.39 1.68 -0.68 0.4990 1 0.42 1.28 -2.16 2.99 0.33 0.7462 2 0.81 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.00 0.00 0.00 Contrast Degrees of P-value Freedom Wald F Wald F 								5110	0.0000
0 -0.86 1.26 -3.39 1.68 -0.68 0.4990 1 0.42 1.28 -2.16 2.99 0.33 0.7462 2 0.81 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.00 0.00 0.00 		0.00	0.00	0.		0.0			
1 0.42 1.28 -2.16 2.99 0.33 0.7462 2 0.81 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.00 0.00 0.00 0.00 0.00 Contrast Degrees of P-value Predom Wald F Wald F VOCEALL 12 75.29 0.0000 0.000 MODEL 12 75.29 0.0000 0.000 INTERCEPT 11 30.30 0.0000 0.000 INTERCEPT 1 13.97 0.0005 RACE 3 8.00 0.0002 RIAGENDR 1 13.97 0.0005 RACE 3 3.40 0.0257 Independent Lower 95% Upper 95% Upmen 95% <t< td=""><td></td><td>-0.86</td><td>1 26</td><td>- 3</td><td>30</td><td>1 6</td><td>8</td><td>-0.68</td><td>0 4990</td></t<>		-0.86	1 26	- 3	30	1 6	8	-0.68	0 4990
2 0.81 1.31 -1.84 3.46 0.62 0.5402 3 0.00 0.00 0.00 0.00 0.00 0.00 Contrast Degrees of P-value Freedom P-value P-value P-value 00CEALL MODEL 12 75.29 0.0000 0.000 INTERCEPT 11 30.30 0.0000 INTERCEPT 11 30.30 0.0000 INTERCEPT 1 13.97 0.0005 RACE 3 8.00 0.0026 RIDAGEVR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257 Intercept 0.37 0.03 5.39 Variables and Intercept Lower 95% Upper 95% Status 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 3 1.00 1.00 1.00 1									
3 0.00 0.00 0.00 Contrast Degrees of P-value Freedom Wald F OVERALL MODEL 12 75.29 0.0000 MODEL MINUS 11 30.30 0.0000 INTERCEPT 11 30.30 0.0000 INTERCEPT 1 13.97 0.0005 RACE 3 8.00 0.0002 RIAGENDR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 Intercept 0.37 0.03 5.39 Variables and Effects Odds Ratio Limit 0R Limit 0R 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Social 0.09 0.20 0.36 3 0.09 0.20 0.36 3 0.09 0.20 0.36 3 0.09 0.20 0.36 3 0.1									
Contrast Degrees of P-value Freedom VWald F Wald F OVERALL MODEL 12 75.29 0.0000 MODEL MINUS 1 30.30 0.0000 INTERCEPT 11 30.30 0.0000 INTERCEPT 11 30.30 0.0000 RIAGENDR 1 13.97 0.0002 RIAGENDR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257 Independent Variables and Lower 95% Upper 95% Effects 0dds Ratio Limit 0R Limit 0R Intercept 0.37 0.03 5.39 VSTATUS 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 Scander 1 2.21 1.44 3.40 2 3.63 3 Intercept 0.09 0.02 0.36 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.02</td> <td>0.0402</td>								0.02	0.0402
of P-value Freedom Wald F Wald F Wald F OVERALL MODEL 12 75.29 0.0000 MODEL MINUS INTERCEPT 11 30.30 0.0000 INTERCEPT 11 30.30 0.0000 INTERCEPT . . . VSTATUS 2 3.45 0.0404 RIAGENDR 1 13.97 0.0005 RACE 3 8.00 0.0020 RIDAGEVR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257 Independent Lower 95% Upper 95% Effects Variables and Lower 95% Upper 95% Effects 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 RACE . . 1 2.21<	J	0.00	0.00	0.		0.0			
of P-value Freedom Wald F Wald F Wald F OVERALL MODEL 12 75.29 0.0000 MODEL MINUS INTERCEPT 11 30.30 0.0000 INTERCEPT 11 30.30 0.0000 INTERCEPT . . . VSTATUS 2 3.45 0.0404 RIAGENDR 1 13.97 0.0002 RIDAGEVR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257 Independent Variables and Lower 95% Upper 95% Effects Odds Ratio Limit 0R Limit 0R Intercept 0.37 0.03 5.39 VSTATUS 2 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 0.09 0.02 0.36 3.4 <td>Contrast</td> <td>Dearees</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Contrast	Dearees							
Freedom Wald F Wald F Wald F OVERALL MODEL 12 75.29 0.000 INTERCEPT 11 30.30 0.0000 INTERCEPT 1 30.30 0.0000 INTERCEPT . . . VSTATUS 2 3.45 0.0002 RIAGENDR 1 13.97 0.0002 RACE 3 8.00 0.0025 RIDAGEYR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMTRACE 3 3.40 0.0257 Independent Lower 95% Upper 95% Variables and Lower 95% Upper 95% Intercept 0.37 0.03 5.39 VSTATUS 1 2.26 1.11 4.61 2 1.00 1.00 1.00 1.00 RACE 1 0.44 0.53 4.05 3 1.00 1.00 1.00 1.00	ooneraoe	-		F	-value				
OVERALL MODEL 12 75.29 0.0000 MODEL MINUS . . . INTERCEPT 11 30.30 0.0000 INTERCEPT . . . VSTATUS 2 3.45 0.4044 RIAGENDR 1 13.97 0.0005 RACE 3 8.00 0.0022 RIDAGEYR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMTRACE 3 3.40 0.0257 Intercept 0.37 0.03 5.39 Variables and Lower 95% Upper 95% Effects 0dds Ratio Limit 0R Intercept 0.37 0.03 5.39 VSTATUS I 2.26 1.11 4.61 2 2.15 1.14 4.05 3 3 1.00 1.00 1.00 1.00 RACE 1			Wal						
MODEL MINUS INTERCEPT 11 30.30 0.0000 INTERCEPT . . . VSTATUS 2 3.45 0.0404 RIAGENDR 1 13.97 0.0005 RACE 3 8.00 0.0002 RIDAGEYR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257									
INTERCEPT 11 30.30 0.0000 INTERCEPT . . . VSTATUS 2 3.45 0.0404 RIAGENDR 1 13.97 0.0005 RACE 3 8.00 0.0002 RIDAGEYR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257		12	75	5.29	0.000)			
VSTATUS 2 3.45 0.0404 RIAGENDR 1 13.97 0.0005 RACE 3 8.00 0.0002 RIDAGEYR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257	INTERCEPT	11	30	.30	0.000)			
RIAGENDR 1 13.97 0.0005 RACE 3 8.00 0.0002 RIDAGEYR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257									
RACE 3 8.00 0.0002 RIDAGEYR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257 Independent Variables and Lower 95% Upper 95% Effects Odds Ratio Limit 0R Intercept 0.37 0.03 5.39 VSTATUS 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 AUD 0.09 0.02 0.36 3 3 0.19 0.08 0.43 4 4 0.35 0.05 2.26	VSTATUS			8.45	0.0404	4			
RIDAGEYR 1 0.23 0.6339 BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257 Independent Variables and Lower 95% Upper 95% Effects Odds Ratio Limit 0R Intercept 0.37 0.03 5.39 VSTATUS 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 1.00 RACE 1 0.01 0.01 0.01 2 0.09 0.02 0.36 3 3 0.19 0.08 0.43 4 2 0.09 0.05 2.26 Age at Screening Adjudicated - Recode 1.03 0.90 1.19 BMIGROUP 1 0.02 0.08 0.43									
BMIGROUP 1 83.73 0.0000 BMIRACE 3 3.40 0.0257 Independent User 95% Upper 95% Variables and Lower 95% Upper 95% Effects Odds Ratio Limit 0R Intercept 0.37 0.03 5.39 VSTATUS 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 Adjudicated - Recode 0.035 0.05 2.26 Age at Screening Adjudicated - Recode 1.03 0.90 1.19 BMIGROUP 1 0.04 0.02 0.08 0.43	RACE	3	8	8.00	0.0002	2			
BMIRACE 3 3.40 0.0257 Independent Variables and Lower 95% Upper 95% Effects Odds Ratio Limit 0R Limit 0R Intercept 0.37 0.03 5.39 VSTATUS 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 0.09 0.02 0.36 3 3 1.00 1.00 1.00 1.00 Rece 1 2.21 1.44 3.40 2 0.09 0.02 0.36 3 3 0.100 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 4 0.35 0.05 2.26 Age at Screening Adjudicated - . . Adjudicated - . . . Recode 1.03 0.90 1.19 BMIGROUP . <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1							
Independent Variables and Effects Lower 95% Upper 95% Effects Odds Ratio Limit OR Intercept 0.37 0.03 5.39 VSTATUS 0 1 4.61 2 2.15 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 RACE 1 2.015 0.01 1 2.21 1.44 3.40 2 1.00 1.00 1.00 RACE 1 1.00 1.00 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening Adjudicated - Acgoed 1.03 0.90 1.19 BMIGROUP 1 0.04 0.02 0.08 0.08 0.08	BMIGROUP	1	83	3.73	0.000)			
Variables and Effects Lower 95% Upper 95% Effects Odds Ratio Limit OR Limit OR Intercept 0.37 0.03 5.39 VSTATUS 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 Adjudicated - 0.19 0.08 0.43 Adjudicated - Recode 1.03 0.90 1.19 BMIGROUP 1 0.04 0.02 0.08	BMIRACE	3	3	8.40	0.0257	7			
Variables and Effects Lower 95% Upper 95% Effects Odds Ratio Limit OR Limit OR Intercept 0.37 0.03 5.39 VSTATUS 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 Adjudicated - 0.19 0.08 0.43 Adjudicated - Recode 1.03 0.90 1.19 BMIGROUP 1 0.04 0.02 0.08	Independent					-			
Effects Odds Ratio Limit OR Limit OR Intercept 0.37 0.03 5.39 VSTATUS			Lower	95%	Upper	95%			
VSTATUS 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 RACE 1 1.00 1.00 1 1.00 1.00 1.00 2 0.09 0.02 0.36 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening Kecode 1.03 0.90 1.19 BMIGROUP 1 0.04 0.02 0.08	Effects	Odds Rat							
VSTATUS 1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 RACE 1 1.00 1.00 1 1.00 1.00 1.00 2 0.09 0.02 0.36 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening									
1 2.26 1.11 4.61 2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 RACE 1 1.00 1.00 1 1.00 1.00 1.00 2 0.09 0.02 0.36 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening Kecode 1.03 0.90 1.19 BMIGROUP 1 0.04 0.02 0.08	•	0.3	37	0.03		5.39			
2 2.15 1.14 4.05 3 1.00 1.00 1.00 Gender		2.2	26	1.11		4.61			
3 1.00 1.00 1.00 Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 RACE 1 1.00 1.00 2 0.09 0.02 0.36 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening									
Gender 1 2.21 1.44 3.40 2 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 2 0.09 0.02 0.36 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening Adjudicated - Recode 1.03 0.90 1.19 BMIGROUP 0.02 0.08 1 0.04 0.02 0.08									
1 2.21 1.44 3.40 2 1.00 1.00 1.00 RACE - - - 1 1.00 1.00 1.00 2 0.09 0.02 0.36 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening - - Adjudicated - - - Recode 1.03 0.90 1.19 BMIGROUP - - - 1 0.04 0.02 0.08									
2 1.00 1.00 1.00 RACE 1 1.00 1.00 1.00 2 0.09 0.02 0.36 3 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening		2.3	21	1.44		3.40			
RACE 1 1.00 1.00 1.00 2 0.09 0.02 0.36 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening									
1 1.00 1.00 1.00 2 0.09 0.02 0.36 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening									
2 0.09 0.02 0.36 3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening		1.0	00	1.00		1.00			
3 0.19 0.08 0.43 4 0.35 0.05 2.26 Age at Screening									
4 0.35 0.05 2.26 Age at Screening									
Age at Screening Adjudicated - Recode 1.03 0.90 1.19 BMIGROUP 1 0.04 0.02 0.08									
Recode 1.03 0.90 1.19 BMIGROUP 0.04 0.02 0.08	Age at Screening			0100		2120			
1 0.04 0.02 0.08	Recode	1.0	03	0.90		1.19			
		0.0	04	0.02		0.08			
	2			1.00		1.00			

BMIRACE 0.42 0.03 5.35 1.52 0.12 19.88 0 1 2 2.25 0.16 31.81 1.00 1.00 3 1.00 LOGISTIC REGRESSION FOR SUBJECTS WITH >85th PERCENTILE Number of observations read : 30070 Weighted count:285937478 Observations in subpopulation : 441 Weighted count: 1868574 Observations used in the analysis : 441 Weighted count: 1868574 R-Square for dependent variable METSYN (Cox & Snell, 1989): 0.082810 Response variable METSYN: METSYN For Subpopulation: SUBGROUPBMI = 1 by: Independent Variables and Effects. _____ Independent P-value Variables and Beta Lower 95% Upper 95% T-Test Coeff. SE Beta Limit Beta Limit Beta T-Test B=0 Effects B=0 _____ -2.61 1.50 -5.64 0.42 -1.74 Intercept 0.0892 VSTATUS 0.72 0.49 -0.27 1.70 1.47 1 0.1483 2 0.40 0.48 -0.57 1.38 0.84 0.4072 0.00 0.00 0.00 0.00 3 • . Gender 0.840.270.301.393.100.000.000.000.00RACE0.000.000.000.00.1.150.35-1.86-0.44-3.270.020.34-0.670.710.050.310.79-1.891.28-0.39 0.0033 1 2 1 2 0.0021 3 0.9607 4 0.6994 Age at Screening Adjudicated -0.10 0.11 -0.12 0.31 0.92 0.3638 Recode -----Contrast Degrees of P-value Freedom Wald F Wald F 8 8.19 OVERALL MODEL 0.0000 MODEL MINUS 7 INTERCEPT 4.34 0.0010 INTERCEPT . . . VSTATUS 2 1.12 0.3347 RIAGENDR 9.60 0.0033 1 RACE 3 5.86 0.0018 RIDAGEYR 1 0.84 0.3638 Independent Variables and Lower 95% Upper 95% Odds Ratio Limit OR Limit OR Effects -----0.07 0.00 1.52 Intercept VSTATUS

1	2.05	0.77	5.49
2	1.50	0.57	3.97
3	1.00	1.00	1.00
Gender			
1	2.33	1.34	4.03
2	1.00	1.00	1.00
RACE			
1	1.00	1.00	1.00
2	0.32	0.15	0.64
3	1.02	0.51	2.03
4	0.74	0.15	3.59
Age at Screening			
Adjudicated -			
Recode	1.10	0.89	1.36

APPENDIX F

ADJUSTED CONCENTRATIONS OF INDICATORS OF METABOLIC SYNDROME ACCORDING TO TERTILES OF SERUM VITAMIN D IN 12-17y OLD CHOLDREN AND ADOLESCENTS IN NHANES 2001-2006

Number of obse	ervations	read :	30070 We	eighted count:	285937478	
Observations :	in subpopu	ulation :	773 We	eighted count:	3322590	
Observations u	used in th	ne analysis :	773 We	eighted count:	3322590	
Weighted mean						
		the dependent	variable LO	GCRP: 0.027673	}	
Response varia						
	tion: CRPE	BMI = 1 by: In	dependent Va	ariables and E	ffects.	
Independent						
P-value						
Variables an		Beta		Lower 95%		
	t Coeff SE	E Beta Limit	Beta Lim:	it Beta T-Te	est B=0 B=0	
Intercept						
-1.91	0.23	-2.37	-1.46	-8.41	0.0000	
VSTATUS						
1	-0.02	0.19	-0.41			
2	-0.22	0.17	-0.56			0.2205
3	0.00	0.00	0.00	0.00	•	•
RACE	0.45			0.00	0.00	
1	0.15	0.23	-0.32	0.62	0.63	0.5338
2	0.30	0.19	-0.09	0.68	1.54	0.1312
3	0.34	0.23	-0.12	0.80	1.49	0.1428
4	0.00	0.00	0.00	0.00	•	•
NEWAGE	0.09	0.03	0.02	0.15	2.74	0.0088
Contrast		Degrees				
Contrast		Degrees of		P-value		
Contrast		Degrees of Freedom	ا Wald F	P-value Nald F		
		of	Wald F \	Wald F		
		of Freedom	Wald F \	Nald F		
		of Freedom	Wald F \	Nald F		
OVERALL MODEL		of Freedom	Wald F \	Nald F 0.0000		
OVERALL MODEL MODEL MINUS		of Freedom 7	Wald F \ 180.71	Nald F 0.0000		
OVERALL MODEL MODEL MINUS INTERCEPT		of Freedom 7 6	Wald F N 180.71 2.64 1.45	Wald F 0.0000 0.0282 0.2460		
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT		of Freedom 7 6	Wald F N 180.71 2.64 1.45	Wald F 0.0000 0.0282		
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS		of Freedom 7 6 2 3 1	Wald F N 180.71 2.64 1.45	Wald F 0.0000 0.0282 0.2460		
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE		of Freedom 7 6 2 3 1	Wald F N 180.71 2.64 1.45 1.19	Wald F 0.0000 0.0282 0.2460 0.3237		
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma		of Freedom 7 6 2 3 1 Condition-	Wald F N 180.71 2.64 1.45 1.19	Wald F 0.0000 0.0282 0.2460 0.3237		
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE		of Freedom 7 6 2 3 1 Condition- al	Wald F N 180.71 2.64 1.45 1.19 7.51	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088	D uplus	
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma #1	arginal	of Freedom 7 6 2 3 1 Condition- al Marginal	Wald F N 180.71 2.64 1.45 1.19 7.51 SE	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088 T:Marg=0		
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma #1	arginal	of Freedom 7 6 2 3 1 Condition- al	Wald F N 180.71 2.64 1.45 1.19 7.51 SE	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088 T:Marg=0		
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma #1	arginal	of Freedom 7 6 2 3 1 Condition- al Marginal	Wald F N 180.71 2.64 1.45 1.19 7.51 SE	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088 T:Marg=0		
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma #1 VSTATUS 1	arginal	of Freedom 7 6 2 3 1 Condition- al Marginal -1.73	Wald F 1 180.71 2.64 1.45 1.19 7.51 SE 0.11	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088 T:Marg=0 -15.87	0.0000	
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma #1	arginal	of Freedom 7 6 2 3 1 Condition- al Marginal -1.73 -1.92	Wald F 1 180.71 2.64 1.45 1.19 7.51 SE 0.11 0.10	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088 T:Marg=0 -15.87 -18.73	0.0000 0.0000	
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma #1 VSTATUS 1 2	arginal	of Freedom 7 6 2 3 1 Condition- al Marginal -1.73	Wald F 1 180.71 2.64 1.45 1.19 7.51 SE 0.11	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088 T:Marg=0 -15.87	0.0000	
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma #1 VSTATUS 1 2	arginal	of Freedom 7 6 2 3 1 Condition- al Marginal -1.73 -1.92	Wald F 1 180.71 2.64 1.45 1.19 7.51 SE 0.11 0.10	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088 T:Marg=0 -15.87 -18.73	0.0000 0.0000	
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma #1 VSTATUS 1 2 3	arginal	of Freedom 7 6 2 3 1 Condition- al Marginal -1.73 -1.92	Wald F 1 180.71 2.64 1.45 1.19 7.51 SE 0.11 0.10	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088 T:Marg=0 -15.87 -18.73	0.0000 0.0000	
OVERALL MODEL MODEL MINUS INTERCEPT INTERCEPT VSTATUS RACE NEWAGE Conditional Ma #1 VSTATUS 1 2 3 Contrasted	arginal	of Freedom 7 6 2 3 1 Condition- al Marginal -1.73 -1.92 -1.71	Wald F 1 180.71 2.64 1.45 1.19 7.51 SE 0.11 0.10	Wald F 0.0000 0.0282 0.2460 0.3237 0.0088 T:Marg=0 -15.87 -18.73	0.0000 0.0000	

_____ COND_EFF Contrast # 1 0.190.141.420.1622COND_EFF Contrast # 2 -0.020.19-0.100.9178COND_EFF Contrast # 3 0.220.17-1.240.2205 _____ LOGCRP LINEAR REGRESSION Number of observations read : 30070 Observations in subpopulation : 4414 Weighted count:285937478 Weighted count: 21553668 Observations used in the analysis : 4414 Weighted count: 21553668 Weighted mean response is -3.059159 Multiple R-Square for the dependent variable LOGCRP: 0.168923 Response variable LOGCRP: LOGCRP For Subpopulation: CRPVITD = 1 by: Independent Variables and Effects. -----Independent P-value Variables and Beta Lower 95% Upper 95% T-Test Effects Coeff. SE Beta Limit Beta Limit Beta T-Test B=0 B=0 _____ -1.89 0.13 -2.15 -1.63 -14.66 Intercept 0.0000 VSTATUS
 -0.14
 0.07
 -0.28
 0.01
 -1.84
 0.0719

 -0.03
 0.06
 -0.16
 0.09
 -0.59
 0.5609
 1 2 3 0.00 0.00 0.00 0.00 • • RACE -0.15 -0.06 0.10 0.00 0.07 0.30 1 0.11 0.63 0.5291 0.33 0.50 0.10 0.10 2 0.14 0.10 1.40 0.1676 3 0.30 3.06 0.0038 0.00 0.00 0.00 4 . BMIGROUP -1.65 -1.36 0.0000 -1.50 0.07 -20.88 1 0.00 2 0.00 0.00 0.00 . . 0.03 0.29 -0.09 0.16 0.00 0.00 PIR 0.16 0.06 1 2.54 0.0144 0.04 0.06 0.58 2 0.5629 0.00 . 3 0.00 . 0.09 NEWAGE 0.02 0.06 0.12 0.0000 6.17 Contrast Degrees of P-value Freedom Wald F Wald F OVERALL MODEL 10 2020.33 0.0000 MODEL MINUS INTERCEPT 9 84.63 0.0000 INTERCEPT . . . VSTATUS 2 1.78 0.1801 RACE 3 7.94 0.0002 BMIGROUP 1 436.17 0.0000 2 3.27 PIR 0.0473 NEWAGE 1 38.04 0.0000

Conditional Marginal Condition-

#1

al Marginal SE T:Marg=O

=0 P-value

_____ VSTATUS
 -3.14
 0.05
 -58.78
 0.0000

 -3.04
 0.04
 -69.74
 0.0000

 -3.01
 0.04
 -70.77
 0.0000
 1 2 3 _____ COND_EFF Contrast # 1-0.100.07-1.500.1415COND_EFF Contrast # 2-0.140.07-1.840.0719COND_EFF Contrast # 3-0.030.06-0.590.5609 _____ LOGHOMA LINEAR REGRESSION Number of observations read : 30070 Observations in subpopulation : 2184 Weighted count:285937478 Weighted count: 10355404 Observations used in the analysis : 2184 Weighted count: 10355404 Weighted mean response is 0.880053 Multiple R-Square for the dependent variable LOGHOMA: 0.229754 Response variable LOGHOMA: LOGHOMA For Subpopulation: HOMAVITD = 1 by: Independent Variables and Effects. - - - -Independent P-value Variables and Lower 95% Beta Upper 95% T-Test Effects Coeff. SE Beta Limit Beta Limit Beta T-Test B=0 B=0 _____ Intercep1.61 0.12 1.37 1.84 13.79 0.0000 VSTATUS
 0.14
 0.04
 0.06
 0.22
 3.43
 0.0013

 0.06
 0.04
 -0.03
 0.15
 1.39
 0.1715

 0.00
 0.00
 0.00
 .
 .
 1 2 3 RACE
 0.05
 0.08

 -0.11
 0.08

 -0.02
 0.08

 0.00
 0.00
 -0.21 0.11 -0.65 0.5167 1 -0.21 -0.27 -1.33 0.1916 2 0.06 -0.19 0.00 -0.28 3 0.14 0.7790 4 0.00 . . BMIGROUP -0.84 0.06 -0.96 -0.73 -14.59 1 0.0000 2 0.00 0.00 0.00 0.00 . . Any dietary supplements taken? -0.09 1 0.04 -0.18 -0.01 -2.13 0.0389 2 0.00 0.00 0.00 0.00 . . _____ - - - - - - - -Contrast Degrees of P-value Freedom Wald F Wald F 8 508.75 0.0000 OVERALL MODEL MODEL MINUS INTERCEPT 7 36.61 0.0000 INTERCEPT . • . 2 6.28 0.0039 VSTATUS RACE 3 2.11 0.1124

BMIGROUP DSD010			212.92 4.52			
Conditional Marg: #1	al	ndition-				
	Ma	rginal	SE	T:Marg=0	P-value	
VSTATUS						
1		0.95	0.03	35.95	0.0000	
2				29.01		
3		0.81	0.03	23.57	0.0000	
Contrasted Conditional Marginal #1	CO Co		SE	T-Stat	P-value	
COND_EFF Contrast COND_EFF Contrast						
COND_EFF Contrast						
LOGGLU LINEAR REG	RESSSION					
Observations in s Observations used Weighted mean res Multiple R-Square Response variable For Subpopulation	d in the sponse is e for the e LOGGLU:	analysis : 4.532903 dependent v LOGGLU	2206 We ariable LOG		: 10446523)	
Independent						
P-value						
Variables and	Be	ta		Lower 95%	Upper 95%	
T-Test Effects B=0	Co					
		eff.	SE Beta	Limit Beta	Limit Beta	a T-Test B=O
		eff.	SE Beta	Limit Beta	Limit Beta	a T-Test B=0
Intercept VSTATUS	4.54	eff. 	SE Beta 4.4			a T-Test B=0 4.55 0.0000
	4.54 0.01			19 4.1	58 204	
Intercept VSTATUS 1 2	0.01 0.01	0.02 0.01 0.01	4.4 -0.01 -0.01	9 4.5 0.03 0.03	58 204 3 1 3 1	4.55 0.0000
Intercept VSTATUS 1 2 3	0.01	0.02	4.4 -0.01	9 4.5 0.03 0.03	58 204 3 1 3 1	4.55 0.0000 .39 0.1721
Intercept VSTATUS 1 2 3 Gender	0.01 0.01 0.00	0.02 0.01 0.01 0.00	4.4 -0.01 -0.01 0.00	9 4.9 0.03 0.03 0.00	58 204 3 1 3 1 0 .	4.55 0.0000 .39 0.1721 .07 0.2918
Intercept VSTATUS 1 2 3	0.01 0.01	0.02 0.01 0.01	4.4 -0.01 -0.01	4.9 0.03 0.03 0.04 0.00 0.00	58 204 3 1 3 1 0 7 7 7	4.55 0.0000 .39 0.1721 .07 0.2918
Intercept VSTATUS 1 2 3 Gender 1	0.01 0.01 0.00 0.06	0.02 0.01 0.01 0.00 0.01	4.4 -0.01 -0.01 0.00 0.04	4.9 0.03 0.03 0.04 0.00 0.00	58 204 3 1 3 1 0 7 7 7	4.55 0.0000 .39 0.1721 .07 0.2918 .43 0.0000
Intercept VSTATUS 1 2 3 Gender 1 2 RACE 1	0.01 0.01 0.00 0.06 0.00 -0.01	0.02 0.01 0.01 0.00 0.01 0.00 0.02	4.4 -0.01 -0.01 0.00 0.04 0.00 -0.04	4.9 0.03 0.03 0.00 0.00 0.00 0.00 0.00	58 204 3 1 3 1 7 7 0 7 3 -0	4.55 0.0000 .39 0.1721 .07 0.2918 .43 0.0000 .38 0.7078
Intercept VSTATUS 1 2 3 Gender 1 2 RACE 1 2	0.01 0.01 0.00 0.06 0.00 -0.01 -0.05	0.02 0.01 0.01 0.00 0.01 0.00 0.02 0.01	4.4 -0.01 -0.01 0.00 0.04 0.00 -0.04 -0.08	19 4.1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	58 204 3 1 3 1 7 7 0 3 -0 2 -3	4.55 0.0000 .39 0.1721 .07 0.2918 . . .43 0.0000 . . .38 0.7078 .94 0.0003
Intercept VSTATUS 1 2 3 Gender 1 2 RACE 1 2 3	0.01 0.01 0.00 0.06 0.00 -0.01 -0.05 -0.01	0.02 0.01 0.01 0.00 0.01 0.00 0.02 0.01 0.01	4.4 -0.01 -0.01 0.00 0.04 0.00 -0.04 -0.08 -0.04	19 4.3 0.03	58 204 3 1 3 1 7 7 7 7 9 -0 2 -3 1 -0	4.55 0.0000 .39 0.1721 .07 0.2918 . . .43 0.0000 . . .38 0.7078 .94 0.0003 .98 0.3315
Intercept VSTATUS 1 2 3 Gender 1 2 RACE 1 2 3 4	0.01 0.01 0.00 0.06 0.00 -0.01 -0.05	0.02 0.01 0.01 0.00 0.01 0.00 0.02 0.01	4.4 -0.01 -0.01 0.00 0.04 0.00 -0.04 -0.08	19 4.3 0.03	58 204 3 1 3 1 7 7 7 7 9 -0 2 -3 1 -0	4.55 0.0000 .39 0.1721 .07 0.2918 . . .43 0.0000 . . .43 0.7078 .94 0.0003
Intercept VSTATUS 1 2 3 Gender 1 2 RACE 1 2 3 4 BMIGROUP	0.01 0.01 0.00 0.06 0.00 -0.01 -0.05 -0.01 0.00	0.02 0.01 0.01 0.00 0.01 0.00 0.02 0.01 0.01	4.4 -0.01 -0.01 0.00 0.04 0.00 -0.04 -0.08 -0.04 0.00	19 4.3 0.03 0.03 0.04 0.03 0 0.04 0 0.04 0 0.04 0 0.05 0 0.06 0 0.07 0 0.07 0 0.07 0 0.07 0 0.07 0 0.07	58 204 3 1 3 1 5 7 7 7 7 7 3 -0 2 -3 1 -0 0 -0	4.55 0.0000 .39 0.1721 .07 0.2918 . . .43 0.0000 . . .38 0.7078 .94 0.0003 .98 0.3315
Intercept VSTATUS 1 2 3 Gender 1 2 RACE 1 2 3 4	0.01 0.01 0.00 0.06 0.00 -0.01 -0.05 -0.01	0.02 0.01 0.01 0.00 0.01 0.00 0.02 0.01 0.01	4.4 -0.01 -0.01 0.00 0.04 0.00 -0.04 -0.08 -0.04	19 4.4 0.03	58 204 3 1 3 1 7 7 7 7 9 -0 2 -3 1 -0 9 -2	4.55 0.0000 .39 0.1721 .07 0.2918 . . .43 0.0000 .38 0.7078 .94 0.0003 .98 0.3315

period								
1	-0.01	0.0	-0.		0.00		. 87	0.0680
2	0.00		0 0.	00	0.00			
NEWAGE	0.01	0.0	-0.	01	-0.00	- 3	.77	0.0005
Contrast		Degrees						
		of		P-value				
		Freedom	Wald F	Wald F				
OVERALL MODEL		10	300552.16	0.0000				
MODEL MINUS								
INTERCEPT		9	14.86	0.0000				
INTERCEPT								
VSTATUS		2	0.96	0.3895				
RIAGENDR		1	55.27	0.0000				
RACE		3	11.75					
BMIGROUP		1	6.14	0.0171				
RIDEXMON		1	3.50	0.0680				
NEWAGE		1	14.21	0.0005				
	 · • •							
Conditional Marg	inal							
#1		al			-			
		Marginal	SE	T:Ma	rg=0	P-value		
VSTATUS								
1		4 54	0.01	79	4 84	0 0000		
2			0.01					
3			0.01					
		4.52	0.01			0.0000		
Contrasted								
Conditional		CONDMARG						
Marginal #1		Contrast	SE	т-	Stat	P-value		
COND_EFF Contras								
COND_EFF Contras					1.39	0.1721		
COND_EFF Contras	t #	3 0.01	0.01		1.07	0.2918		
BMXWAIST LINEAR	REGRES	SION						
Number of observ	ations	read	: 30070	Weighted	count:2	285937478		
Observations in				Weighted				
Observations use								
Multiple R-Squar		-		-				
Response variabl					010012			
For Subpopulatio					and Et	ffects.		
Indopondont								
Independent P-value								
		Poto		Lowor	0.5%	Uppor OF		
Variables and		Beta		Lower	92%	Upper 95%		
T-Test		0			D.t.	Linia D :		
Effects		Coeff.	SE Beta	a Limit	вета	Limit Beta	а I-Г€	est B=O
B=0								
 Tatoacat		00	1 10	<u> </u>		<u> </u>	co c=	0 0000
Intercept	/1	.23	1.19	68.84	/3	.62	60.05	0.0000
VSTATUS	~	10	07	6 95	~ ~		0.00	0 0000
1	8.	10 C	.87	6.35	9.8	30	9.30	0.0000

0	0.51	0.47	0.57	4 45	7 50	0.000
2 3	3.51 0.00	0.47 0.00	2.57 0.00	4.45 0.00	7.52	0.000
RACE 1	6.80	1.20	4.37	9.22	5.64	0.000
2	1.55	1.01	-0.48	3.58	1.54	0.130
3	6.45	1.08	4.27	8.63	5.96	0.000
4	0.00	0.00	0.00	0.00		
Gender					-	-
1	1.45	0.56	0.31	2.58	2.57	0.013
2	0.00	0.00	0.00	0.00		
Six month time period						
1 -	1.98	0.64	-3.27	-0.70	-3.11	0.0033
2	0.00	0.00	0.00	0.00		
Any dietary						
supplements taken?						
			-3.06	-0.95	-3.81	0.0004
			0.00	0.00	•	•
NEWAGE	1.54	0.18	1.17	1.90	8.41	0.0000
	Der					
Contrast	Degrees		P voluo			
	of Freedom	Wald F	P-value Wald F			
	Freedom		wa⊥u F			
OVERALL MODEL	10		0.0000			
MODEL MINUS			2.2000			
INTERCEPT	9	68.11	0.0000			
INTERCEPT						
VSTATUS	2	56.84	0.0000			
RACE	3	32.16	0.0000			
RIAGENDR	1	6.61	0.0135			
RIDEXMON	1	9.64	0.0033			
DSD010	1	14.54	0.0004			
NEWAGE	1	70.81	0.0000			
Conditional Marginal						
#1	al	-				
	Marginal	S	E T:Mar	g=0 P-va	aiue	
VSTATUS						
1	84.41	0.7	1 118	.40 0.0	0000	
2	79.81	0.4	1 192	.58 0.0	0000	
3	76.30	0.4	8 157	.92 0.0	0000	
Contrasted						
Conditional	CONDMARG					
Marginal #1	Contrast		E T-S			
COND_EFF Contrast #				.28 0.0		
COND_EFF Contrast #	2 8.10	0.8	7 9	.30 0.0	0000	
COND_EFF Contrast #						
LOGHDD LINEAR REGRES						
Number of observatio	ons read	: 30070	Weighted c			
Observations in subp Observations used in	oopulation	: 4404	Weighted c			
Observations used in	n the analysis	: 4404	Weighted c	ount: 21499	9913	
Response variable LC						

Independent P-value Variables and	Beta			Lower	95%	Upper 9	15%		
T-Test								T T	- D-0
Effects	Coeff.		SE Bela	Limit	вета	Limit B	ela	I-les	L В-О
B=0									
Intercept	3.94	0.04		3.87	4.	01	110.8	35	0.0000
VSTATUS 1	-0.06	0.01		0.08	-0.		-4.4		0.0001
2	-0.06	0.01		0.08	-0.		-5.4	15	0.0000
3	0.00	0.00		0.00		00			
BMIGROUP									
1	0.17	0.01		0.15	0.	20	15.4	15	0.0000
2	0.00	0.00		0.00		00			
PIR									
1	-0.04	0.01	-	0.07	-0.	01	-2.8	38	0.0061
2	-0.02	0.01		0.04	0.		-1.3		0.1864
3	0.00	0.00		0.00	0.				
NEWAGE	-0.01	0.00		0.01	-0.		-2.4		0.0191
Gender, RACE						-		-	
1, 1	-0.22	0.03	-	0.28	-0.	15	-6.6	53	0.0000
1, 2	-0.04	0.03		0.11	0.		-1.2		0.2093
1, 3	-0.13	0.03		0.19	-0.		-4.5		0.0000
1, 4	-0.16	0.00		0.24	-0.		-4.0		0.0002
2, 1	-0.10	0.03		0.17	-0.		-2.9		0.0053
2, 2	-0.00	0.03		0.07	0.		-0.0		0.9286
2, 2	-0.07	0.03		0.13	-0.		-2.1		0.0335
2, 4	0.00	0.00		0.00	0.				5.0000
Contrast	Degrees	2.00				-	•		
	of			P-value					
	Freedom		Wald F	Wald F					
OVERALL MODEL	14		506.69	0.000	C				
MODEL MINUS									
INTERCEPT	13	ł	113.79	0.000	C				
INTERCEPT									
VSTATUS	2		16.01	0.000	C				
BMIGROUP	- 1		238.70	0.000					
PIR	2		4.44	0.017					
NEWAGE	- 1		5.91	0.019					
RIAGENDR * RACE				0.000					
Conditional Margi		n -							
#1	al								
	Marginal		SE	T:Ma	arg=0	P-valu	ie		
							-		
VSTATUS									
1		89		4					
2				5					
3	3.	95	0.01	43	36.90	0.000	0		
							-		
Contrasted									
Conditional									
Marginal #1				T					
COND_EFF Contrast			0.01			0.965			
COND_EFF Contrast			0.01			0.903			
JoinD_LII JUIILIASL	<i>π</i> ∠ -0.	00	0.01		4.40	0.000			

t#3	-0.06	0.01	-	5.45	0.00	00	
ations subpopu d in th sponse e for t e LOGTR n: TRIV	read : 3 lation : e analysis : is 4.355361 he dependent va : LOGTR TTD = 1by: Inde	2191 We: 2191 We: ariable LOG ependent Van	ighted ighted TR: 0.1 riables	count: count: 30919 and E ⁻	103763 103763 ffects.	77 77	
						95%	
	Coeff.	SE Beta	Limit	Beta	Limit	Beta	T-Test B=0
5.30	0.53	4.23		6.38		9.93	0.0000
-0.00	0.04	-0.08		0.08		-0.04	0.9705
0.03	0.03	-0.04		0.10		0.91	0.3659
0.00	0.00	0.00					.Six
bc							
-0.07	0.03	-0.13		-0.01		-2.26	0.0287
0.00	0.00	0.00		0.00			
-0.94	0.53	-2.01		0.13		-1.77	0.0835
-1.20	0.53	-2.27		-0.13		-2.25	0.0291
-0.95	0.53	-2.02		0.13		-1.78	
-0.96	0.52	-2.01		0.08		-1.87	0.0686
-0.57	0.54	-1.67		0.52		-1.06	0.2953
-0.93	0.52	-1.98		0.12		-1.78	0.0824
-0.53	0.53	-1.59		0.53		-1.01	
0.00	0.00			0.00		•	•
	Degrees						
	RESSION ations subpopu d in th sponse e for t e LOGTR n: TRIV 5.30 -0.00 0.03 0.00 -0.07 0.00 -0.07 0.00 -0.94 -1.20 -0.95 -0.96 -0.57 -0.93 -0.53 0.00	RESSION ations read : 3 subpopulation : d in the analysis : sponse is 4.355361 e for the dependent va- e LOGTR: LOGTR n: TRIVITD = 1by: Inde Beta Coeff. 5.30 0.53 -0.00 0.04 0.03 0.03 0.00 0.00 od -0.07 0.03 0.00 0.00 od -0.07 0.03 0.00 0.00 cod -0.94 0.53 -1.20 0.53 -0.95 0.53 -0.95 0.53 -0.95 0.53 -0.96 0.52 -0.57 0.54 -0.93 0.52 -0.53 0.53 0.00 0.00	RESSION ations read : 30070 We: subpopulation : 2191 We: d in the analysis : 2191 We: sponse is 4.355361 a for the dependent variable LOG a for the dependent variable LOG a for the dependent variable LOG b LOGTR: LOGTR n: TRIVITD = 1by: Independent Variable b Eta Coeff. SE Beta 5.30 0.53 4.23 -0.00 0.04 -0.08 0.03 0.03 -0.04 0.00 0.00 0.00 odd -0.07 0.03 -0.13 0.00 0.00 0.00 0.00 odd -0.53 -2.27 -0.95 0.53 -2.01 -1.20 0.53 -2.02 -0.96 0.52 -2.01 -0.57 0.54 -1.67 -0.93 0.52 -1.98 -0.53 0.53 -1.59 0.00 0.00 0.00	RESSION ations read : 30070 Weighted subpopulation : 2191 Weighted d in the analysis : 2191 Weighted sponse is 4.355361 a for the dependent variable LOGTR: 0.1 a for the dependent variable LOGTR: 0.1 b LOGTR: LOGTR n: TRIVITD = 1by: Independent Variables Beta Lower Coeff. SE Beta Limit 5.30 0.53 4.23 -0.00 0.04 -0.08 0.03 0.03 -0.04 0.00 0.00 0.00 odd -0.07 0.03 -0.13 0.00 0.00 0.00 -0.00 odd -0.07 0.03 -0.13 0.00 0.00 0.00 -0.00 odd -0.53 -2.27 -0.95 0.53 -2.02 -0.96 0.52 -2.01 -0.57 0.54 -1.67 -0.93 0.52 -1.98 -0.53 0.53 -1.59 0.00 0.00 0.00	RESSION ations read : 30070 Weighted count:: subpopulation : 2191 Weighted count:: subpose is 4.355361 e for the dependent variable LOGTR: 0.130919 e LOGTR: LOGTR n: TRIVITD = 1by: Independent Variables and E Beta Lower 95% Coeff. SE Beta 5.30 0.53 4.23 6.38 -0.00 0.04 -0.08 0.08 0.03 0.03 -0.04 0.10 0.00 0.00 0.00 0.00 odd - - - -0.07 0.03 -0.13 -0.01 0.00 0.00 0.00 0.00 odd - - - -0.94 0.53 -2.27 -0.13 -0.95 0.53 -2.02 0.13 -0.95 0.53 -2.02 0.13 -0.95 0.52 -2.01 0.08 -0.57 0.54 -1.67 0.52 -0.93 0.52 -1.98 0.12 -0.53	RESSION ations read : 30070 Weighted count:2859374 subpopulation : 2191 Weighted count: 103763 d in the analysis : 2191 Weighted count: 103763 sponse is 4.355361 e for the dependent variable LOGTR: 0.130919 e LOGTR: LOGTR n TRIVITD = 1by: Independent Variables and Effects. Beta Lower 95% Upper Coeff. SE Beta Limit Beta Limit 5.30 0.53 4.23 6.38 -0.00 0.04 -0.08 0.08 0.03 0.03 -0.04 0.10 0.00 0.00 0.00 0.00 odd -0.07 0.03 -0.13 -0.01 0.00 0.00 0.00 0.00 0.00 odd -0.53 -2.01 0.13 -0.94 0.53 -2.02 0.13 -0.95 0.53 -2.02 0.13 -0.96 0.52 -2.01 0.08 -0.57 0.54 -1.67 0.52 -0.93 0.52 -1.98 </td <td>RESSION ations read : 30070 Weighted count:285937478 subpopulation : 2191 Weighted count: 10376377 din the analysis : 2191 Weighted count: 10376377 sponse is 4.355361 e for the dependent variable LOGTR: 0.130919 e LOGTR: LOGTR ntrable LOGTR: 0.130919 e LOGTR: LOGTR ntrable Ntrables 1: TRIVITD = 1by: Independent Variables and Effects. 5.30 0.53 4.23 6.38 9.93 -0.00 0.04 -0.08 0.08 -0.04 0.03 0.03 -0.04 0.10 0.91 0.00 0.00 0.00 . . -0.07 0.03 -0.13 -0.77 -2.26 0.00 0.00 0.00 . . -0.94 0.53 -2.01 0.13 -1.77 -1.20 0.53 -2.27 -0.13 -2.25 -0.95 0.53 -2.02 0.13 -1.78 -0.96 0.52 -2.01 0.08 -1.87 <</td>	RESSION ations read : 30070 Weighted count:285937478 subpopulation : 2191 Weighted count: 10376377 din the analysis : 2191 Weighted count: 10376377 sponse is 4.355361 e for the dependent variable LOGTR: 0.130919 e LOGTR: LOGTR ntrable LOGTR: 0.130919 e LOGTR: LOGTR ntrable Ntrables 1: TRIVITD = 1by: Independent Variables and Effects. 5.30 0.53 4.23 6.38 9.93 -0.00 0.04 -0.08 0.08 -0.04 0.03 0.03 -0.04 0.10 0.91 0.00 0.00 0.00 . . -0.07 0.03 -0.13 -0.77 -2.26 0.00 0.00 0.00 . . -0.94 0.53 -2.01 0.13 -1.77 -1.20 0.53 -2.27 -0.13 -2.25 -0.95 0.53 -2.02 0.13 -1.78 -0.96 0.52 -2.01 0.08 -1.87 <

	of Freedom			
OVERALL MODEL	11			
MODEL MINUS				
INTERCEPT	10	44.33	0.0000	
INTERCEPT				
VSTATUS	2	0.59	0.5595	
RIDEXMON	1	5.11	0.0287	
BMIGROUP * RACE	7		0.0000	
Conditional Marginal#1				
-	Marginal		T:Marg=0	
VSTATUS				
1	4.34	0.03	165.30	0.0000
2	4.38	0.02	175.73	0.0000
3	4.35	0.03	146.47	0.0000

Contrasted

Conditional CONDMARG Marginal #1 Contrast SE T-Stat P-value _____ COND_EFF Contrast # 1-0.030.04-0.880.3859COND_EFF Contrast # 2-0.000.04-0.040.9705COND_EFF Contrast # 30.030.030.910.3659 COND_EFF Contrast # 3 -----BPSY LINEAR REGRESSION : 30070 Number of observations read Weighted count:285937478 Observations in subpopulation : 4513 Weighted count: 21903379 Observations used in the analysis : 4513 Weighted count: 21903379 Weighted mean response is 108.411819 Multiple R-Square for the dependent variable BPSY: 0.157109 Response variable BPSY: average systolic 1 reading (mm/Hg) For Subpopulation: BPSYVITD = 1by: Independent Variables and Effects. _____ Independent P-value Variables and Beta Lower 95% Upper 95% T-Test Effects Coeff. SE Beta Limit Beta Limit Beta T-Test B=0 B=0 106.96 1.21 104.53 109.40 Intercept 88.50 0.0000 0.63 VSTATUS 1 1.99 0.71 3.13 0.0031 3.26 0.70 0.54 -0.39 1.79 1.30 0.2011 2 0.00 0.00 0.00 0.00 3 . . BMIGROUP -6.64 0.51 -7.67 -5.61 -12.98 0.0000 1 2 0.00 0.00 0.00 0.00 . NEWAGE 0.93 1.14 0.10 1.34 11.06 0.0000 Gender, RACE 1, 1 8.56 1.12 6.30 10.82 7.63 0.0000 1, 2 9.66 1.10 7.44 11.87 8.79 0.0000 1, 3 7.60 5.15 10.04 6.26 0.0000 1.21 11.24 4.67 1, 4 7.85 1.68 4.47 0.0000 1.75 6.43 4.09 3.52 0.0010 2, 1 1.16 2, 2 2.47 6.97 4.23 4.72 1.12 0.0001 3.59 3.09 0.0034 2, 3 1.16 1.25 5.93 0.00 0.00 0.00 0.00 2,4 . Contrast Dearees of P-value Freedom Wald F Wald F 12 18780.14 0.0000 OVERALL MODEL MODEL MINUS INTERCEPT 78.67 0.0000 11 INTERCEPT . . . VSTATUS 2 5.14 0.0098 BMIGROUP 168.36 0.0000 1 122.36 NEWAGE 1 0.0000 RIAGENDR * RACE 7 65.59 0.0000 Conditional Marginal Condition-#1 al SE T:Marg=0 Marginal P-value

_____ VSTATUS 0.53 208.47 0.40 269.69 0.39 274.75 0.0000 109.54 1 108.26 2 0.0000 107.56 0.39 0.0000 З _____ COND_EFF Contrast # 11.280.542.390.0211COND_EFF Contrast # 21.990.633.130.0031 COND_EFF Contrast # 3 0.70 0.54 1.30 0.2011 _____ BPDI LINEAR REGRESSION Number of observations read : 30070 Observations in subpopulation : 4536 Weighted count:285937478 Weighted count: 21964438 Observations used in the analysis : 4536 Weighted count: 21964438 Multiple R-Square for the dependent variable BPDI: 0.044782 Response variable BPDI: average diastolic 1 reading (mm/Hg) For Subpopulation: BPDIVITD = 1 by: Independent Variables and Effects. Independent P-value Variables and Lower 95% Upper 95% Beta T-Test Effects Coeff. SE Beta Limit Beta Limit Beta T-Test B=0 B=0 _____ 61.79 0.58 60.61 62.96 106.34 0.0000 Intercept VSTATUS -0.55 0.67 -1.90 0.80 -0.82 0.4188 1 -0.78 -2.35 0.79 -1.00 0.3232 2 0.78 3 0.00 0.00 0.00 0.00 . . Gender 1 -3.22 0.51 -4.24 -2.20 -6.38 0.0000 . 0.51 0.00 0.00 0.00 0.00 2 . . 0.12 NEWAGE 1.10 0.85 1.35 9.01 0.0000 Contrast Degrees of P-value Freedom Wald F Wald F 8339.62 OVERALL MODEL 5 0.0000 MODEL MINUS INTERCEPT 38.22 0.0000 4 INTERCEPT . . . 2 0.51 VSTATUS 0.6013 RIAGENDR 1 40.65 0.0000 81.23 0.0000 NEWAGE 1 Conditional Marginal Condition-#1 a1 Marginal SE T:Marg=0 P-value VSTATUS 59.62 0.47 127.16 0.0000 1 2 59.39 0.56 106.35 0.0000 3 60.17 0.55 108.76 0.0000 Contrasted Conditional CONDMARG SE T-Stat P-value Marginal #1 Contrast -----COND_EFF Contrast # 1 0.23 0.58 0.40 0.6920 COND_EFF Contrast # 2 -0.55 0.67 -0.82 0.4188 COND_EFF Contrast # 3 -0.78 0.78 -1.00 0.3232 _____