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ABSTRACT 

 

WHAT IS MATHEMATICS? 

AN EXPLORATION OF TEACHERS‘  

PHILOSOPHIES OF MATHEMATICS  

DURING A TIME OF CURRICULUM REFORM 

by 

Kimberly White-Fredette 

 

Current reform in mathematics teaching and learning is rooted in a changing 

vision of school mathematics, one that includes constructivist learning, student-centered 

pedagogy, and the use of worthwhile tasks (National Council of Teachers of Mathematics, 

1989, 1991, 2000). This changing vision not only challenges teachers‘ beliefs about 

mathematics instruction but their philosophies of mathematics as well (Dossey, 1992). 

This study investigates the processes that four teachers‘ go through as they implement a 

new task-based mathematics curriculum while exploring their personal philosophies of 

mathematics.  The participants were part of a graduate-level course that examined, 

through the writings of Davis and Hersh (1981), Lakatos (1976), Polya (1945/1973), and 

others, a humanist/fallibilist philosophy of mathematics.  These participants shared, 

through reflective writings and interviews, their struggles to, first, define mathematics 

and its purpose in society and in schools, and second, to reconcile their views of 

mathematics with their instructional practices. The study took place as the participants, 

two classroom teachers and two instructional coaches, engaged in the initial 

implementation of a reform mathematics curriculum, a reform based in social 

constructivist learning theories. 



Using narrative analysis, this study focuses on the unique mathematical stories of 

four experienced educators. Each of the participants initially expressed a traditional, a 

priori view of mathematics, seeing mathematics as right/wrong, black/white, a subject 

outside of human construction. The participants‘ expressed views of mathematics 

changed as they attempted to align their personal philosophies of mathematics with their 

(changing) classroom practices. They shared their personal struggles to redefine 

themselves as mathematics teachers through a process of experimentation, reflection, and 

adaptation. This process was echoed in their changing philosophies of mathematics. 

These participants came to see mathematics as fluid and a human construct; they also 

came to see their philosophies of mathematics as fluid and ever-changing, a process more 

than a product. 
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1 

CHAPTER 1 

INTRODUCTION 

The teaching and learning of mathematics is going through tremendous changes. 

The National Council of Teachers of Mathematics (NCTM, 2000) Principles and 

Standards for School Mathematics calls for changes to curriculum and mathematics 

instruction. Constructivist learning, student-centered classrooms, worthwhile tasks, and 

reflective teaching are all a part of NCTM‘s vision of mathematics in the 21
st
 century. In 

Georgia, a new curriculum, the Georgia Performance Standards, is ushering in not just 

mathematical content changes, but calls for instructional changes as well:  

The implementation of this curriculum will require that mathematics 

classrooms at every grade be student-focused rather than teacher-focused. 

Working individually or collaboratively, students should be actively 

engaged in inquiry and discovery related to real phenomena. Knowledge 

and procedural skills should be developed in this context. Multiple 

representations of mathematics, alternative approaches to problem solving, 

and the appropriate use of technology are all fundamental to achieving the 

specified goals of the curriculum (Georgia Department of Education, n.d., 

p. 3). 

 

Along with calls for changes in how mathematics is taught, there are numerous 

calls for changes in who engages in higher-level mathematics courses. The National 

Council of Teachers of Mathematics‘ Principles and Standards for School Mathematics 

places the equity principle first (NCTM, 2000). NCTM‘s Equity Principle calls for high 

expectations, challenging curriculum, and high-quality instructional practices for all 

students. Closing the achievement gaps that exist in mathematics education between 

white students and students of color, between upper-middle class students and working 
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class students, demands more than high expectations and teachers who are 

knowledgeable about mathematical content (although these are, of course, important). 

This changing vision of school mathematics—mathematics success for all, student-

centered pedagogy, constructivist learning in our classrooms—cannot come about 

without a radical change in instructional practices and an equally radical change in 

teachers‘ views of mathematics teaching and learning, and the discipline of mathematics 

itself.  

As state curriculums, assessment practices, and teacher qualifications are re-

examined and revamped, a clear and discernable theoretical framework is essential to the 

reform process (Brown, 1998). This theoretical framework must include a re-examination 

of mathematics as a subject of learning. What are teachers‘ beliefs about mathematics as 

a field of knowledge? Do teachers believe mathematics is an accessible subject, one in 

which all student may learn successfully?  

Recent studies have explored teacher change, examining teacher beliefs and 

mathematical reform (see, e.g., Becker, Pence, & Pors, 1995; Bibby, 1999; Chapman, 

2002; Cooney, Shealy, & Arvold, 1998; Foss & Kleinsasser, 1996; Hart, 2002a; 

Mewborn, 2002; Preston & Lambdin, 1995; Steele, 2001; Sztajn, 2003). Research is 

needed that seeks to understand how teachers view mathematics and mathematics 

teaching and learning. Such research, unlike many previous studies, should examine 

teachers‘ philosophies, not simply their beliefs, regarding mathematics. Philosophy and 

beliefs, although similar, are not identical. Beliefs are defined in many ways. Beswick 

(2006) asserted that there is no agreed upon definition of the term beliefs, but that it can 

refer to ―anything that an individual regards as true‖ (p. 96). Pajares (1992) affirmed the 
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importance of researching teacher beliefs, although he acknowledged that ―defining 

beliefs is at best a game of player‘s choice‖ (p. 309). Not only is any definition of beliefs 

tenuous, but distinguishing beliefs from knowledge is also a difficult process (Pajares, 

1992). I argue that a study of philosophy moves beyond the tenuousness of beliefs and/or 

knowledge, in that philosophy is a creative process, what Deleuze and Guattari 

(1991/1994) termed ―knowledge through pure concept‖ (p. 7). ―Philosophy is not a 

simple art of forming, inventing, or fabricating concepts, because concepts are not 

necessarily forms, discoveries, or products. More rigorously, philosophy is the discipline 

that involves creating concepts‖ (Deleuze & Guattari, 1991/1994, p. 5). A goal of this 

study is to affect the creation of philosophy by engaging teachers in an examination of 

philosophies of mathematics that might indeed be new and foreign to them. 

Why Philosophy? 

Webster’s Dictionary (2003) defines philosophy as ―the critical study of the basic 

principles and concepts of a particular branch of knowledge, especially with a view to 

improving or reconstituting them‖ (p. 1455). A study examining philosophy, therefore, 

seeks to better understand those basic principles and concepts that a teacher holds 

regarding the field of mathematics. Current calls for reform in mathematics education are 

not without controversy (Schoenfeld, 2004). This controversy, and the reluctance towards 

change, may be rooted in philosophical considerations (Davis & Mitchell, 2008). But 

philosophy, not just philosophy of mathematics teaching and learning, but philosophy of 

mathematics, is rarely examined explicitly: ―Is it possible that teachers‘ conceptions of 

mathematics need to undergo significant revisions before the teaching of mathematics 

can be revised?‖ (Davis & Mitchell, p. 146). 
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Teachers are not often asked to explore their philosophy of the mathematics they 

teach. But my study is in keeping with the writings of Davis and Hersch (1981), Restivo 

(1993), Hersh (1997), Tymoczko (1998), and others in the field of mathematics that have, 

in recent years, sought to problematize
1
 the concept of mathematics. If we are to change 

the nature of mathematics teaching and learning, we have to look beyond the traditional 

view of mathematics as fixed and rigid, a subject of absolute truths, what Lerman (1990) 

terms an absolutist view of mathematics. Constructivist teaching and inquiry-based 

learning demands a new view of mathematics, the fallibilist view, which ―focuses 

attention on the context and meaning of mathematics for the individual, and on problem-

solving processes . . . a library of accumulated experience, to be drawn upon and used by 

those who have access to it‖ (Lerman, p. 56). 

Ernest (2004) called upon educators to look more deeply at the subject of 

mathematics and to ask five essential questions about the mathematics that is taught. 

What is mathematics? How does mathematics relate to society? What is learning 

mathematics? What is teaching mathematics? What is the status of mathematics 

education as a field of knowledge? These questions challenge educators to not only 

reflect on their instructional practices, but also to question their own beliefs about 

mathematics and mathematical teaching. Is true reform in mathematics education 

possible if we do not ask ourselves these questions?  

                                                 
1
 The term problematize is based on Freire‘s (1970/2000) model of problem-posing education: an education 

that emphasizes consciousness, intentionality, and the practice of freedom. Problem-posing education, 

wrote Freire, ―strives for the emergence of consciousness and critical intervention of reality‖ (p. 81). Crotty 

(1998) termed Freire‘s problematization a ―demystification‖ (p. 156), a transformative process in which 

people cast off a culture of silence and construct a new view of reality along with a hope for freedom. Thus 

to problematize is to let go of accepted meanings and values, and to seek a more critical, reflective view, a 

view tied explicitly to issues of power. 



 5 

 

 In the preceding paragraph, and throughout this paper, I use the term reform. 

While that term is not without controversy (see, e.g., Amit & Fried, 2002; Apple, 2000; 

Frykholm, 2004; Martin, 2003), it is a difficult term to avoid when describing the 

mathematics educational landscape of the early 21
st
 century. Educational reform in 

mathematics is certainly not new. There is, in fact, a long and well documented history of 

mathematics reform in K–12 educational policy and research (see, e.g., Apple, 2000; 

Bracey, 2007; Kilpatrick, 1992; Schoenfeld, 2004).  Bracey described the cyclical nature 

of reforms in mathematics education that have occurred since the Soviet launching of 

Sputnik in 1957. These reforms have been driven by varying factors: scientific 

competition during the Cold War of the 1950s and 60s, a collapsing industrial market that 

led to fears of dominance by the Japanese in the 1980s, and a continued worry of the 

(slipping) place of the United States in the world economy in the 1990s, continuing to 

present day. Reform of mathematics education, often rooted in economic concerns, has 

been more recently tied to issues of equity and achievement (see, e.g., Martin, 2003; 

Secada, 1995). Questions of who is engaged in the learning of higher-level mathematics 

and how is mathematics taught have become the focus of mathematics educational reform 

in the last 15 years. While those two questions are related to this study, it is not my intent 

to address specifically the use of the term, reform. I do not dispute that reform is a 

contested term, one which continues to require examination and dissection. But as I write 

of mathematics education reform in regards to this study, I am employing the term as 

Ellis and Berry (2005) envisioned it, a transformative process that goes beyond the 

(almost constant) periodic revisions common to educational process:  

Reform raises questions about the core beliefs of mathematics education, 

moving to restructure thinking about the nature of mathematics, how it is 
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taught, how it is learned, and, ultimately, what constitutes success in 

learning it. (p. 8) 

 

Specifically, in this study, I address the mathematics education reform occurring 

in Georgia through the introduction of a new curriculum (Georgia‘s curricular changes 

will be described further in the following section), and I address the instructional changes 

that teachers are being asked to implement as they engage in that new curriculum.  

A Personal Story 

 This study began as a personal journey, an exploration of the philosophy of 

mathematics. The journey began as I engaged in an extensive reading of the works of 

Paul Ernest (1988, 1991, 1994, 19998a, 1998b, 1999, 2004). Ernest (2004) challenged me 

to ask, ―What is the purpose of teaching and learning mathematics?‖ (p 1). As a 

mathematics teacher, in elementary and secondary schools, I had tried to engage my 

students in understanding the way mathematics worked. Rather than just memorize 

formulas, I wanted students to make sense of the formulas; before learning prescribed 

algorithms, I had my students act out the mathematics with manipulatives; instead of 

completing 25 ―naked‖ mathematics problems, I engaged my students in solving 

problems with mathematics. I had always been a good mathematics student, not because I 

could memorize rules and formulas, but because I could reason things out and come to 

understand how the mathematics worked. I sought to bring the same understanding to my 

students and to engage all students in the same love of mathematics I had always had.  

 In the fall of 2005, I left the classroom and became a ―teacher of teachers.‖ I took 

a job as a mathematics consultant, providing professional development to K–12 teachers 

of mathematics, as well as instructional coaches and administrators. What I found, as I 

left my own classroom and entered the larger educational sphere, was that what I had 
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valued and emphasized in the teaching and learning of mathematics, was by no means 

universal. I found elementary school teachers who engaged in mathematics instruction 

reluctantly, bringing their own fears and insecurities about mathematics to their 

classrooms. I found high school teachers who viewed mathematics almost as a contest, 

with winners (the mathematically able) and losers (the mathematically inept). I 

discovered that many teachers, although defining mathematics as a problem-solving 

activity, taught it as only rote procedures, rules and formulas to memorize and follow 

blindly. I began to wonder, is this disparity in our views of mathematics about pedagogy, 

or is it really about philosophy? Are teachers‘ views of mathematics grounded in a set of 

beliefs and values that truly keep us worlds apart as we engage in the teaching and 

learning of mathematics?  

 My personal journey, and this study, were spurred on, not only by my 

professional role and my studies of mathematics education, but by the changes taking 

place in Georgia‘s K–12 schools. In the 2005–2006 school year, as I began my work with 

teachers, Georgia introduced a new mathematics curriculum. Over the next several years, 

the Georgia Performance Standards Mathematics Curriculum was rolled out in K–8 

schools. My work with teachers began just as the new curriculum was instituted, 

therefore the focus of my work was to support teachers in the implementation of the 

Georgia Performance Standards (GPS). The GPS rely on the use of ―performance tasks‖ 

in the day-to-day instruction of mathematics:  

Performance tasks involve the application of knowledge and skills rather 

than recall and result in tangible products or observable performances. 

They involve meaning-making, encourage self-evaluation and revision, 

require judgment to score and are evaluated using predetermined criteria. 

(Georgia Department of Education, 2007, p. 5) 
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 As I worked with teachers to support their adoption of the new curriculum, I 

concentrated on the pedagogical changes called for in the GPS. Mathematics was no 

longer about memorization and ―recall,‖ it was about making sense, doing tasks, and 

solving problems. But I came to realize, in my work with teachers, that this view of 

mathematics, while it aligned with my own personal views, did not always agree with 

how teachers viewed mathematics (or at least how they had traditionally taught 

mathematics). I began to wonder, have teachers ever examined their personal views of 

mathematics and questioned its purpose in our schools?  

 These questions led me on a personal exploration of mathematics. While I had 

always enjoyed the learning of mathematics and was comfortable teaching in ways that 

the new curriculum now emphasized, I had never really asked myself, what is 

mathematics? With the assistance of my major advisor, David Stinson, I began to 

investigate that question. The investigation began with Davis and Hersh‘s (1981) often-

cited book, The Mathematical Experience, and included Russell‘s (1919/1993) 

Introduction to Mathematical Philosophy, Lakatos‘ (1976) Proofs and Refutations: The 

Logic of Mathematical Discovery, Polya‘s (1954/1973) How to Solve It: A New Aspect of 

Mathematical Method, and Hersh‘s (1997) What is Mathematics, Really? As Dr. Stinson 

and I explored the idea of a philosophy of mathematics and discussed our own 

philosophies of mathematics, we also began to develop what was to become a course on 

the philosophy of mathematics. This graduate-level course, described in further detail in 

chapter 4, became the basis of this study. For through my own reading about philosophy, 

I came to see that changing pedagogy, teaching mathematics through tasks with an 

emphasis on mathematical discourse and conceptual understanding, challenged teachers‘ 
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views of mathematics. What was needed, I believed, was an exploration of teachers‘ 

personal philosophies of mathematics, questioning just what teachers define as 

mathematics, and then guiding them to explore other, perhaps opposing, philosophies of 

mathematics. The question I had asked teachers in my work as a professional developer, 

why do we teach mathematics, became, in my role as a researcher, a new question: what 

is mathematics? This study links those two questions through the stories of four 

mathematics educators. 

Research Questions 

My study examines the process of teachers‘ development of a personal 

philosophy of mathematics. What happens when teachers explore modern philosophies of 

mathematics, particularly fallibilist philosophies of mathematics, as they attempt to 

implement curricular changes in their classrooms? My study guides a group of 

elementary and secondary teachers through this philosophical exploration and examines, 

through their personal narratives, the processes they each go through as they struggle to 

define their own philosophies of mathematics and examine their teaching practices in 

light of that philosophy and the changing curriculum in Georgia. Guiding questions of 

this research are: 

1. How do teachers define their personal philosophies of mathematics and 

mathematics teaching and learning? 

2. As teachers explore humanist/fallibilist philosophies of mathematics, how 

do their perceptions of mathematics and mathematics teaching and 

learning change? 
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3. How do teachers perceive their own instructional practices in light of their 

personal philosophies of mathematics and the current mathematics 

curricular reform? 



 

11 

CHAPTER 2 

LITERATURE REVIEW 

The purpose of this literature review is to present an overview, as well as a 

critique, of recent studies that have explored teacher beliefs and conceptions about 

mathematics. This review will examine how research into teacher beliefs has developed 

over the past several decades, since Thompson‘s (1984) pivotal study, ―The Relationship 

of Teachers‘ Conceptions of Mathematics and Mathematics Teaching to Instructional 

Practice.‖ I will demonstrate that, although there have been a number of studies that 

explored teacher beliefs and advocated for changing teacher beliefs about mathematics in 

order to affect changes in classroom practices, few studies have investigated the 

implications of a focused exploration of teachers‘ philosophies of mathematics.  

The structure of this literature review strengthens my assertion that research needs 

to move beyond teacher beliefs and into an investigation of teachers‘ philosophies. I have 

organized the review into five themes: (a) research that explored the relationship between 

teachers‘ beliefs and their instructional practices; (b) research that sought to identify the 

particular beliefs that align with current mathematics education reform; (c) research that 

investigated the process of changing teachers‘ beliefs; (d) research that examined the 

difficulties of defining beliefs; and (e) research that pushed beyond beliefs, that opened 

up a discussion of teachers‘ philosophies. Although this review is not meant to be a 

historical presentation of research, the studies do, in some ways, present an evolution of 

the past 25 years of research in the area of teachers‘ conceptions of mathematics. An 
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extensive search of the available research was conducted for this literature review and I 

believe the studies included to be representative of the significant studies in this area, 

with a focus towards more recent research. I conclude the literature review with a brief 

discussion of the terms beliefs, conceptions, knowledge, and philosophy and a 

clarification of the use of these terms in my study. 

Identifying Teacher Beliefs 

Teacher Beliefs and Instructional Practices 

Thompson‘s (1984) pivotal research on teacher conceptions was one of the first 

studies to explore the relationship between teachers‘ views of mathematics and their 

classroom practices, and to make the mathematics the central focus of the research 

(NCTM, 2004). Using case studies, Thompson looked at teachers‘ conceptions of 

mathematics—defining conceptions as their beliefs, views, and preferences—and 

examined how those conceptions shaped teachers‘ instructional practices. The case 

studies focused on three junior high mathematics teachers. Data was collected over a 

period of 4 weeks—the initial 2 weeks involved daily classroom observations and the 

next 2 weeks included both classroom observations and daily interviews focused on what 

the researcher had observed in the classroom. Thompson gathered additional information 

about the participants‘ views of doing mathematics by having each participant complete a 

series of six tasks and then discuss the results.  

Thompson (1984) examined how the teachers‘ differing views of mathematics 

affected their differing practices in the classroom. In particular, she analyzed the 

integratedness and reflectiveness of each of her participants. Integratedness is defined as 

the extent to which someone‘s views and beliefs form a coherent system, as opposed to 
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each belief existing in isolation. Reflectiveness is the individual‘s tendency to think about 

her actions in relation to her beliefs. What Thompson found was that a teacher‘s beliefs 

and practices exist in a complex relationship, although she observed a consistency in 

teacher beliefs and classroom practices. Thompson called for further studies that explore 

a teacher‘s reflectiveness and its relationship to her beliefs and practices. Thompson‘s 

study is significant because, in highlighting the complexity of the intersection of beliefs 

and instructional practices, she cited the limitations of the traditional experimental or 

large-scale correlational studies that had, up to that point, been the norm in mathematics 

education research. 

Other studies further examined the complex relationship between teachers‘ views 

about mathematics and their instructional practices. Taylor (1996) used an action research 

approach, combining autobiographical narrative with case study, to explore the cultural 

foundations of teachers‘ beliefs and values about mathematics. Taylor‘s study was 

influenced by his own work as a teacher educator who provided postgraduate 

professional development opportunities to secondary mathematics teachers. The case 

study focused on Ray, an experienced mathematics teacher working within the 

constraints of the British educational system that required the administration of state-

produced end-of-year exams as well as periodic practice testing. Taylor defined his role 

as collaborative researcher as he worked with Ray to study Ray‘s instructional practices 

and his students‘ conceptual development. Taylor‘s work is framed by a critical 

constructivist epistemology, which he articulated through the work of Paul Ernest in 

social constructivism and mathematics, as well as Ole Skovsmose in critical mathematics 

education. Taylor‘s critical constructivism ―serves as a powerful theoretical framework 
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for making visible and deconstructing repressive cultural myths that distort social roles 

and discursive practices‖ (p. 159).  

What Taylor (1996) found were two influential cultural myths that served to limit 

the relationship between a teacher‘s professed constructivist views of mathematics 

teaching and learning and his classroom instructional practices. The myth of cold reason 

includes ―a belief in the certainty of mathematical knowledge which leads to the 

perception that disembodied mathematical facts are knowable by means of an asocial 

cognitive activity of pure reason that transcends human lifeworlds‖ (p. 162), and the 

myth of hard control ―renders as natural the teacher‘s classroom role of teacher as 

controller and that locks teachers and students into grossly asymmetrical power 

relationships designed to reproduce (rather than challenge) the established culture‖ (p. 

165). Taylor concluded that these two repressive myths stand firmly in the way of 

mathematics educational reform and, unless directly challenged, continue to block any 

lasting change.  

It is the myth of cold reason that is particularly relevant to my own study, in that 

this myth influences how teachers view the mathematics they teach. ―In mathematics 

classes where the myth of cold reason prevails,‖ wrote Taylor, ― students work in 

splendid cognitive isolation, striving to (re)discover, by means of cold reason, the a priori 

universal Truths of mathematics‖ (p. 163). Taylor concluded that both these myths had to 

be, first, acknowledged and then, challenged in order to affect change in teachers‘ 

instructional practices. He advocated a historical exploration of mathematical 

development, such as non-Euclidean geometries, to assist in shaking teachers‘ 

assumptions about the infallibility of mathematics and the certainty of mathematical 
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knowledge. My own study, in many ways, picks up on Taylor‘s conclusions from over a 

decade ago by having teachers problematize the perception of mathematics as infallible 

and unchanging. 

Bibby‘s (1999) study focused on what she termed the ―mathematical histories‖ of 

elementary school teachers and the part those histories play of teachers‘ beliefs and 

practices. Through a series of interviews with four primary school teachers, Bibby 

explored each teacher‘s early experiences as a learner of mathematics and identified two 

major themes: time and confidence. Each participant spoke often of feeling rushed as a 

student by teachers who did not seem to care about students but about covering 

curriculum. The idea of building up or destroying confidence also occurred frequently in 

the interviews. Bibby‘s research took place in England and each of her study‘s 

participants was schooled in the British school system. Thus, the theme of confidence (or 

lack thereof) often was expressed through the participants‘ experiences with the exam 

system of British schools. Bibby concludes that the common view of professional 

development as ―unproblematic‖ fails to take into consideration teachers‘ previous 

experience with subject matter, in this case mathematics, and that beliefs are often 

formed early in a teachers‘ career, in fact, long before they even begin teacher education 

programs. Although much of the teacher interviews focused on processes unique to the 

British education system, Bibby‘s study does support Thompson‘s earlier study in 

pointing out the complexities of researching teachers‘ beliefs and practices. What is most 

significant in Bibby‘s study is her use of teachers‘ stories to uncover their beliefs and the 

effects of their own mathematical histories on their current teaching practices. 
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Recent research by Skott (2001) also examined the complexities of studying 

teacher beliefs and practices. Skott‘s earlier research focused on teachers‘ school 

mathematics images (SMIs) that he defined as ―expressions of unique personal 

interpretations of and priorities in relation to mathematics, mathematics as a school 

subject, and the teaching and learning of mathematics‖ (p. 6). The 2001 study was a 

follow-up to his earlier research, conducted in 1997, in which 115 Danish preservice 

teachers completed a questionnaire on school mathematics just prior to their graduation. 

From the original 115, Skott choose 11 individuals (who demonstrated a variety of SMIs) 

to interview. Four of these individuals were then part of a continued 18 month study as 

they entered the classroom.  

In the later study, Skott (2001) uses the case of one of the four novice teachers, 

Christopher, to investigate how a teacher‘s SMIs relate to the ways in which he deals 

with the complexities of the mathematics classroom. In particular, Christopher was 

chosen because his school mathematics images seemed to align well with what Skott 

terms reformist educational practice—viewing mathematics as a process through which 

students learn by experimentation and investigation. Christopher taught sixth-grade 

mathematics and music in a grade 1 to 10 school in a suburb of Copenhagen. Skott‘s data 

included the earlier questionnaire Christopher had completed, a series of interviews, and 

videotaped classroom observations. In addition, Skott shared and discussed the 

videotapes with Christopher. Skott found that Christopher‘s teaching practices did not 

consistently align with his images of what school mathematics should be. At times, 

Christopher was more didactic and traditional in his instruction. Yet Christopher did not 

express concern when observing his changing instructional style. Skott concluded that a 
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teacher is often faced with ―multiple and sometimes conflicting education priorities‖ (p. 

18), and that one‘s beliefs about mathematics are never the sole determinant of one‘s 

instructional practices.  

Although Skott‘s (2001) study took place in Denmark and there are certain 

cultural aspects to Christopher‘s classroom that are not applicable to a study conducted in 

the United States, his research does demonstrate the difficulties in drawing conclusions 

about a teacher‘s beliefs, and judging the consistency of beliefs and practices, through 

researcher observations. Thompson‘s earlier study highlighted the complications of 

bringing research out of the laboratory and into the real classroom setting, and Skott‘s 

study only reinforced those complications. Whether it be the socially situated myths of 

cold reason and hard control that Taylor (1996) identified, the personal mathematical 

histories that Bibby‘s (1999) participants related, or the myriad of instructional decisions 

that Christopher made in Skott‘s (2001) case study, researchers continue to bring to light 

the complexities of classroom instruction that seem to interfere with a teacher‘s beliefs 

about mathematics and mathematics teaching and learning. 

Identifying Beliefs That Align With Reform 

 One underlying assumption in all of the studies in this literature review is the 

importance of changing instructional practices in mathematics classrooms to align with 

the intent of current reform. Higher value is therefore placed on inquiry learning, 

problem-based teaching and learning, and student-centered instruction. A number of 

studies have focused on changing what are thought to be ―traditional‖ beliefs about 

mathematics and mathematics education to more reform minded beliefs. Before looking 

at studies specifically focused on changing teacher beliefs, I want to describe several 
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studies that sought to define those beliefs that are more aligned with current mathematics 

education reform. Although most of these studies took place outside of the United States, 

their discussions warrant review here, if for no other reason than to point out the dearth of 

studies in the United States that focus on defining teacher beliefs about mathematics. Too 

often, the research on teachers‘ beliefs and conceptions of mathematics conducted in the 

United States do not deeply explore just what beliefs teachers hold and how those beliefs 

relate to the curriculum teachers are called upon to teach. 

 Bibby (2002) developed her study as a search for a teacher‘s epistemology of 

primary school mathematics (this study, like the Bibby study addressed earlier, was 

conducted in England) as ―constructed through an exploration of the teachers‘ 

experiences, values, and beliefs‖ (p. 165). Her goal, as stated, was to seek the underlying 

philosophy of school mathematics by asking, as Ernest (2004) did: What is mathematics? 

Bibby interviewed seven primary school teachers whose experience ranged from 2 to 20 

years in the classroom. In her analysis of over 40 interviews, Bibby identified two 

dominant metaphors of mathematics: mathematics as a hierarchy that builds on the basics 

and mathematics as a tool. In her exploration of the metaphor of mathematics as a tool, 

Bibby highlighted instances where teachers often felt a lack of control over the tool and 

encouraged the use of ―tricks and cheats‖ to aid their students in their learning. Bibby 

acknowledged in her study that, given the non-negotiable status of England‘s national 

curriculum, teachers seldom questioned the mathematics that they taught, even if they did 

question its utility. Although the United States is not currently faced with similar 

restrictions of a national curriculum, Bibby‘s 2002 study (along with her earlier cited 

1999 study) have implications for current reform movements here in the United States. 
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Teachers bring a personal history as well as a sense of school mathematics to their 

classrooms that may, or may not, align with the official idea of mathematics embraced by 

their state or school system. How they then negotiate those differences certainly bears 

further research. 

MacNab and Payne‘s (2003) large-scale study looked at preservice teachers‘ 

mathematics beliefs, attitudes, and practices. MacNab and Payne surveyed all primary 

school teacher education students in Scotland, both those pursuing the traditional 4 year 

education degree, as well as those pursuing a post-graduate certification in education. 

Over 1,000 students were surveyed. MacNab and Payne used a questionnaire designed to 

―elicit information about the student teachers‘ feelings, confidence and understanding of 

mathematics, together with their attitudes towards teaching and learning of the subject 

and the primary school mathematics curriculum‖ (p. 56). The researchers then conducted 

semi-structured interviews with a small, self-selected group of 25 students in order to 

provide additional insight into the views of the participants.  

Overall, the results of the survey found the student teachers were confident about 

their ability to teach primary mathematics, but less positive about the mathematics itself. 

In addition, their survey responses indicated that the future teachers expected 

mathematics to be the least exciting and most taxing of the academic subjects they would 

be teaching. The questionnaires were sent to both Year-1 and Year-4 undergraduate 

education students, and the authors state that, by Year-4, the students had changed their 

views on teaching and learning mathematics to a more constructivist view. This 

conclusion does not seem substantiated as the questionnaire was given only once; the 

Year-1 and Year-4 groups were, therefore, different respondents. The authors state that 
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―there is no evidence of significant change in the character of the student group as it 

moves through…from Year 1 to Year 4‖ (2003, p. 65). A different research design would 

be needed to test the authors‘ conclusion. All in all, this study does provide interesting 

data regarding student teachers‘ beliefs and attitudes about the teaching and learning of 

primary school mathematics and establishes the need for further study into teachers‘ ideas 

about mathematics as a subject of learning. Why do teachers feel confident about 

themselves as teachers of primary school mathematics, yet carry negative feelings about 

both mathematics and the teaching and learning of mathematics? And what are the 

implications of those negative feelings on teachers‘ instructional practices? 

One additional study from outside the United States that sought to identify beliefs 

of mathematics teachers is Beswick‘s (2007) recent study that took place in the 

Australian state of Tasmania. Beswick acknowledges the difficulty in defining beliefs and, 

even more, the difficulty in distinguishing beliefs from knowledge, particularly from a 

constructivist perspective. What her study examined were the beliefs, in action, that 

resulted in a classroom environment that was consistent with constructivist principles. 

These principles are outlined by Beswick as: (a) a focus on the students—their needs, 

backgrounds, interests, and existing mathematical understandings; and (b) facilitation of 

dialogue. 

Although many of the studies I found that sought to tie particular teacher beliefs 

of mathematics with mathematics education reform took place in the United Kingdom 

and Australia, I did find one relevant study that took place in the United States. Simon, 

Tzur, Heinz, and Kinzel (2000) investigated the development of teachers‘ perspectives of 

mathematics through a 30-month study that involved both preservice and inservice 
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elementary school teachers. Nineteen participants were included in the study and data 

were collected through interviews as well as classroom observations (which also included 

follow-up discussions). Interviews were audio-taped and classroom observations were 

videotaped. Analysis and interpretation was done in a negotiated manner, making the 

participants an active member of the research team.  

Simon, Tzur, Heinz, and Kinzel (2000) identified two major perspectives of 

mathematics: a conception-based perspective, whereas mathematics is seen as a human 

activity and mathematical learning is a ―process of transformation of one‘s knowing and 

ways of acting‖ (p. 584); and the perception-based perspective, whereas mathematics is 

seen as an interconnected and understandable body of knowledge that exists independent 

of human activity, and mathematics learning depends upon firsthand experiences in 

perceiving or discovering mathematical ideas and is generally the same for each 

individual, dependent only upon their prior knowledge and understanding of mathematics. 

It is the researchers‘ assertion that the conception-based perspective is generally aligned 

with current reform and widely accepted in academic circles while the perception-based 

perspective was widely identifiable with their preservice and inservice teacher 

participants. The researchers therefore saw a major goal of teacher education and 

professional development as the ―advancement‖ of teachers from one perspective—

perception-based—to the other, ―more correct‖ perspective—conception-based. (The use 

of the terms ―advancement‖ and ―more correct‖ is my own; the authors of this study use 

the term paradigm shift to describe the transformation they intend.) Yet this study is 

telling of the divide in perspectives that both researchers and teachers bring, not just to 

research, but to education in general. Researchers focusing on teacher beliefs and 
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conceptions rarely bring a value-free perspective to that research. Change is usually what 

is sought even if that change is not the initial focus of the research. The next section, 

though, will deal with research that explicitly investigated changing teacher beliefs. 

Changing Teacher Beliefs and Conceptions about Mathematics 

 A frequent assumption in the studies I have reviewed is that, if changing teacher 

practices is our goal in mathematics education, one must first change teachers‘ beliefs 

about mathematics and mathematics education to reflect current educational reforms. 

There are a number of studies that investigated the beliefs of both preservice and 

inservice teachers and the changes that occurred (or did not occur) in those beliefs when 

certain interventions were put in place. I will conclude this section with several studies 

that examined what caused teachers to change who were not involved in direct 

interventions (e.g.., educational coursework, staff development, research projects, etc.) 

Preservice Teachers 

A common focus in belief studies has been to engage preservice teachers in 

coursework that exposes them to new pedagogical practices and, therefore, seeks to 

change their beliefs about what it means to teach and learn mathematics. If teachers 

implement the instructional practices with which they are most familiar (Wilson & 

Cooney, 2002), in other words, if teachers continue to teach the way they were taught, 

then what are the results of engaging them in different instructional practices? If inquiry-

based instructional practices are the goal, should preservice teachers not themselves be 

taught in that manner? And is that learning experience sufficient to change teachers‘ 

beliefs about mathematics instruction? I will review several studies that investigated, with 
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mixed results, the effects of a constructivist-based instructional model on perspective 

teachers. 

Foss and Kleinsasser (1996) used a mixed methodology to investigate the effects 

of an interactive methods course, where preservice elementary teachers were engaged in 

experiencing mathematics through active problem solving and collaborative learning. The 

course instructor (not one of the researchers) identified herself as constructivist and 

―through her organizational finesse, [she] integrates variable instructional strategies, 

mathematics content, and educational theory in almost every class session, confronting 

the preservice teachers with constructivism and developmentalism weekly‖ (p. 432). Foss 

and Kleinsasser collected quantitative data from surveys, demographic questionnaires, 

course evaluations, and teaching evaluations. Their qualitative data included interviews, 

preservice teachers‘ written coursework, observations of student teaching experiences as 

well as interactions within the mathematics methods course. At least three interviews 

were conducted with each of the participants of the study, which included 22 preservice 

teachers and the instructor of the methods course.  

Overall, Foss and Kleinsasser (1999) found that the beliefs and conceptions of the 

preservice teachers changed very little, if at all, during the time they spent in the methods 

course. The preservice teachers, for the most part, continued to view mathematics as 

primarily a subject of rote memorization and computational skill, not a subject of 

creativity or reasoning, despite their involvement in the methods course. The preservice 

teachers seemed more influenced by their childhood education and experience when 

formulating their conception of mathematics than the philosophy and instructional 

practices of the methods course instructor. They expressed a continued belief that drill 
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and practice was essential to mathematics learning, and they discounted the effectiveness 

of the techniques advocated (and utilized) in the methods course. Foss and Kleinsasser‘s 

study emphasized the difficulty in changing teacher beliefs about the subject of 

mathematics, as well as the teaching and learning of mathematics. The study also 

underscored the limitations of a single exposure to constructivist teaching practices. In 

fact, the researchers recommended that the contrasting beliefs between instructor and 

preservice teachers be openly discussed and debated, and that a teacher education ethos 

being created where ―attention to preservice teachers‘ beliefs is in the forefront‖ (p. 441).  

Other studies, perhaps picking up on Foss and Kleinsasser‘s (1996) 

recommendations, found more success in changing preservice teacher beliefs about 

mathematics. Cooney, Shealy, and Arvold (1998) explored the beliefs and belief 

structures of four preservice secondary mathematics students and frame their study within 

the constructivist framework. The researchers collected data over a full year of teacher 

education coursework. Based on an initial survey, classroom observations, and written 

assignments, four student educators were chosen for the study. The four individuals (two 

men and two women) were selected due to their varying beliefs regarding mathematics 

teaching and learning. During the year-long study, the students participated in an 

integrated content and pedagogy curriculum course, a methods course that included 

middle and high school field experience, a post-student teaching seminar, as well as a 

problem-solving course and two technology courses. Four open-ended interviews and a 

follow-up survey were administered throughout the year. The researchers explored the 

catalyst for reflective practice—what spurred these preservice teachers to reflect on their 

instructional practices as well as their beliefs about mathematics and mathematics 
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teaching and learning. If our goal in teacher education is to produce ―reflective 

connectionists‖ (Cooney et al., 1998, p. 330), then what are the implications when some 

education students are more reflective than others? One of the authors‘ goals was to 

better understand teachers‘ belief structures and the processes through which those belief 

structures change. They recognized the need for more long-term involvement in 

constructivist practices, as well as the importance of reflective practice for preservice 

teachers. Their study did not simplify the process of changing teacher beliefs, but instead 

placed that change in a context of prolonged involvement with a consistent pedagogy of 

constructivism, as well as reflective practice.  

Hart‘s (2002a) study also emphasized the importance of reflection in the process 

of change. Hart‘s study focused on 14 early childhood education students at a large urban 

research university. The students were involved in an alternative certification program 

with two phases. First, students (all of whom already had a 4-year non-teaching 

undergraduate degree) participated in needed coursework for teacher certification, as well 

as student teaching experiences. The next phase followed teachers into the classroom 

during their first year of employment, and supported teachers as they completed 

necessary coursework for a masters-level degree in education. Hart‘s study followed the 

teachers during their initial phase of coursework and student teaching. In order to 

challenge student teachers‘ understanding of mathematics and mathematics education, the 

program integrated the methods and mathematics courses. Because the goal was to 

intimately familiarize the future teachers with a social constructivist view of mathematics, 

the integrated coursework sought to teach mathematics to the student teachers in a 

manner consistent with constructivism.  
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The education students, wrote Hart (2002a), ―need to construct new thinking 

models through hands-on, problem-solving experiences that required analysis and 

reflection‖ (p. 5). Hart collected both survey data and written participant data (weekly 

teaching logs) throughout the three semesters of the coursework. One goal of the program 

was to encourage preservice teachers to reflect on their coursework as well as their 

student teaching experiences. The weekly teaching logs were used to respond to open-

ended questions (such as ―what is mathematics?‖), as well as to comment on their 

emerging instructional practices. Overall, Hart found that preservice teachers became 

more comfortable with the constructivist view of both learning and teaching mathematics, 

and felt prepared to teach elementary students utilizing a constructivist approach. Hart 

cautioned, however, that these changing beliefs had not yet been tested in the classroom. 

What happened when a teacher is on her own, behind closed doors, confronted with the 

realities of public schooling, and no longer engaged in the reflective practices of teacher 

preparation?  

Szydlik, Szydlik, and Benson (2003), conducted a large scale, quantitative study 

with 93 preservice elementary teachers enrolled in a public university undergraduate 

program. The participants, who were involved in a series of three required mathematics 

courses, completed pre- and post-coursework questionnaires designed to measure their 

perceptions of mathematics and the learning of mathematics. The coursework was 

designed to engage students in student-centered mathematical inquiry that emphasized 

problem solving, reasoning and proof, and communication. A collaborative effort was 

emphasized, with the instructor serving as guide, not expert. Szydlik, et al. noted 

significant changes in preservice teacher beliefs and cite the reflective nature of their 
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study: ―All participants, but particularly those who participated in the interviews, had the 

opportunity to reflect on their mathematical beliefs through their work on the 

questionnaire items, as well as through course assignments‖ (pp. 276–277). I question the 

reflective nature of completing a questionnaire but acknowledge that this study 

emphasizes the importance of prolonged experience with constructivist learning, rather 

than the single course described in the Foss and Kleinsasser (1996) study. And I agree 

with Szydlik, et al. that their study would have been improved by making the reflective 

processes more ―transparent‖ to the participants.  

A number of quantitative studies replicate the findings of Szydlik, et al. (2003). 

Ambrose (2004), Wilkins and Brand (2004), and Barlow and Cates (2006) each used 

statistical analysis of pre- and post-coursework survey data to conclude that involvement 

in an inquiry-based, constructivist learning experience changed the beliefs of preservice 

elementary teachers to align more with current reform. Several concerns are raised in 

each of these studies. In each study, one of the researchers was an instructor of the 

coursework, thus opening up questions of bias and influence (and none of the studies 

explored the implications of these dual roles). The question raised by previous studies 

must also be raised here: Does this perceived change in preservice teacher beliefs 

continue as they move into the realities of day-to-day teaching? In addition, as 

Thompson‘s (1984) earlier study demonstrated, survey data is limited in what it reveals 

when researching the complexities of teacher beliefs and practices. 

Novice Teachers 

 Studies of preservice teachers present researchers with obvious limitations. 

Change may seem significant within a teacher preparation program but what happens 
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when the teacher moves into the realities of the classroom? Is the change observed in 

beliefs and instructional practices carried into the classroom environment? In order to 

address the issue of sustained change, Mewborn (2002) conducted a longitudinal case 

study of an elementary school teacher. Using Green‘s work on the structure of belief 

systems and how those beliefs are held, as well as Dewey‘s call for reflective thinking 

development in educators, Mewborn collected data on ―Carrie‖ during her teacher 

education experience as well as her first 2 years as an educator. Using Carrie‘s 

autobiographical writings, interviews, journals, classroom observations, and audiotapes 

of small group instruction, Mewborn explored how Carrie‘s beliefs in mathematics and 

mathematics instruction changed as a result of her educational experiences. Carrie‘s 

initial inconsistencies between her general beliefs about teaching and learning, and her 

specific beliefs about mathematics teaching and learning lessened as she became more 

comfortable about the mathematics she was teaching and her role as a mathematics 

teacher. Mewborn concluded that ―as teacher educators, we need to take a broader view 

of our students and their beliefs and try to understand not just their beliefs about 

mathematics but also their wider beliefs about education, human relationships, and a 

person‘s role in society‖ (p. 27). Her study emphasized the need to help elementary 

school teachers explore their beliefs about mathematics and mathematics instruction, as 

well as their general beliefs and philosophy of education, if they are to teach students in 

an accessible and constructivist manner. 

 Steele (2001) also conducted a longitudinal study of four elementary school 

teachers, beginning with their participation in her university methods course. Steele 

collected quantitative (pre- and post-surveys) data during the preservice teachers‘ 
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coursework. Four years later, after the teachers had 2 years of classroom experience, 

Steele collected qualitative data including formal and informal interviews with the 

participants, their principals and co-workers (other teachers in the schools), as well as 

participant observations during classroom instruction, lunch-time interactions, and 

school-wide meetings. In addition, Steele collected written data including teacher plans, 

worksheets, curriculum guidelines, and tests. Steele found, initially, that preservice 

teachers‘ beliefs about mathematics and mathematics instruction changed during their 

university training, becoming more aligned with constructivist, reform models. But as 

Steele followed her four participants into the classroom, that change did not hold 

consistently. Two of the teachers felt pressured by their working environments to teach 

mathematics in a more traditional manner. Textbook driven instruction in mathematics, 

and pressure from other teachers and administrators to conform, forced these teachers to 

let go of many of their previously expressed beliefs about mathematics.  

Steele‘s (2001) study offers compelling evidence of the limitations of changing 

preservice teacher beliefs and ignoring their journey into the classroom, suggesting that 

―school culture is a major problem when implementing reform-based mathematics 

instruction‖ (p. 169). Mathematics educators cannot focus solely on changing preservice 

teacher beliefs and conceptions about mathematics. Change needs to occur at the school 

level as well: ―When preparing reform-oriented mathematics teachers, mathematics 

educators should help prepare the context of teaching by working with schools in order to 

change the culture of teaching mathematics in schools‖ (p. 169). Therefore, studies are 

needed that address reform and teacher beliefs at the school level, studies that examine 
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how school culture affects a teacher‘s ability to change beliefs as well as the ability to 

embrace reform curricular ideas. 

Inservice Teachers 

Changing the school culture means a focus on classroom teachers (i.e., inservice 

teachers). As previously cited studies have demonstrated, changing instructional practices 

is often tied to changing teachers‘ beliefs and conceptions about mathematics. If the goal 

of mathematics reform is to change teachers‘ beliefs and practices about mathematics, 

what has research taught us about such change among inservice mathematics teachers? I 

will next review two general areas in the research of practicing teachers: attempting 

teacher change through intervention and investigating teachers who have changed on 

their own, that is, teachers who were not involved in coursework or professional 

development that focused on changing instructional practices. 

 Research may, itself, affect the participants and result indirectly, or directly, in 

change. Wood, Cobb, and Yackel‘s (1991) study was initially designed to examine 

student learning in an elementary classroom. Their investigation soon focused on the 

teacher in the classroom and her changing instructional practices. Through her 

involvement in the research project, the veteran teacher underwent what the researchers 

termed ―pedagogical conflict‖ as the research team guided her towards implementing 

problem-centered activities and collaboratively learning in her second-grade classroom. 

This pedagogical conflict resulted in changes in the teacher‘s beliefs about mathematics 

and mathematics teaching and learning: ―The teacher found that accepting her students‘ 

incorrect answers unconditionally created a contradiction with her beliefs about the 

nature of mathematics and her role as a teacher and member of the wider society‖ (p. 
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602). This study reinforces the notion that changing beliefs about mathematics, and not 

just exposure to new (constructivist) instructional practices, is needed to change how 

mathematics is taught in our schools. Wood, et al. contended: 

If reform in learning mathematics, which has been advocated by 

mathematicians and mathematics educators, is to be successful, attention 

must be given to the way in which math is currently taught and the 

existing practices of elementary school mathematics as well as the 

development of preservice teaching. As the view of learning mathematics 

changes, so must the practice of teaching mathematics. . . . Research that 

focuses on beginning teachers only without considering their later 

acculturation into the traditional practice of teaching ignores a critical 

aspect of teachers‘ learning. (pp. 588–589) 

 

Thus, changing teacher beliefs must be carried into the practicing teacher‘s classroom 

where the realities of teaching often draw teachers back into a traditional idea of both 

mathematics and mathematics instruction. 

Simon and Schifter (1991) recognized the need to work towards changing 

perspectives of inservice teachers. They designed a four stage intervention program (the 

Educational Leaders in Mathematics Project, or ELM) that sought to stimulate the 

development of a constructivist view of learning among elementary and secondary 

teachers. The program included a summer institute, during which teachers engaged in 

mathematical tasks and discussions; classroom follow-up during the following school 

year that included weekly visits and interviews; continued professional development 

during the school year; and a leader apprenticeship, through which the program 

participants co-led workshops and other professional learning opportunities. One of the 

guiding principles of the ELM project was: ―Teachers must be encouraged to examine the 

nature of mathematics and the process of learning mathematics as a basis for deciding 

how to teach mathematics‖ (p. 312).  
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The study by Simon and Schifter (1991) focused on the 14 participants of the 

program‘s pilot year (1985), as well as the 30 participants in each following year. Data 

collected included teachers‘ writings and interviews with the participating teachers. 

Generally, the teachers indicated that their participation in the program had a substantial 

impact on their beliefs about mathematics and on their teaching practices. Simon and 

Schifter concluded that the ELM Project provided evidence that an inservice program in 

mathematics education could be successful in guiding teachers to a vision of mathematics 

consistent with recent reform movements, as well as helping them to develop new 

instructional strategies. Yet, they asserted, the ELM Project was ―labor, cost, and time 

intensive‖ (p. 328). But the single most important feature that the Simon and Schifter 

pointed out, one quite relevant to my own study, was: 

That teachers were encouraged to develop their own theories of learning 

as the basis for their curriculum and instructional decisions. How teachers 

think about mathematics learning is a key determinant of how they 

teach. . . . Whereas previously teachers may have looked to be told what to 

teach and how to teach it, the development of their own epistemological 

view enables them to base decisions on their own, informed, professional 

judgment. . . . Empowerment of this type may contribute to teachers‘ 

development as educational leaders. (p.329) 

 

While Simon and Schifter speculated that such change is possible without the same level 

of time, labor, and cost, they left it to future professional developers and researchers to 

pursue. 

It is as important to investigate teachers who navigate change successfully as it is 

to explore why others fail to change. Preston and Lambdin (1995) examined why two 

teachers involved in a middle school mathematics reform project chose to drop out of the 

program. The teachers had been involved in the Connected Mathematics Project (CMP), 

a National Science Foundation (NSF) funded reform curriculum for middle school 
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mathematics. Due to their identified strength in mathematical content knowledge, 

supportive work environments, and perceived reform-aligned instructional philosophies, 

it had been expected that these two teachers would successfully implement the CMP 

curriculum. The researchers used teacher and student questionnaires, as well as classroom 

observation in their data collection. Their analysis of the data found that, although 

teachers may verbalize agreement with the intentions of educational reform (e.g., student-

centered instruction, open-ended problem solving), their teaching practices can actually 

reflect a much different approach to instruction, thus making it difficult to implement 

change. Tied to their lack of change seemed to be the teachers‘ limited depth of 

understanding of mathematical content (their identified strength in content knowledge 

being limited to a more rote, procedural understanding). This study again reinforces the 

need for support, both in terms of teacher beliefs as well as teacher knowledge, when 

implementing change in mathematics instruction.  

 Becker, Pence, and Pors (1995) studied high school mathematics teachers, 

examining the effects of a staff development project on the teachers‘ pedagogical 

practices and beliefs about mathematics teaching and learning. The focus of the staff 

development was the implementation of a new reform curriculum as well as issues of 

equity in the classroom, specifically the concept of ―algebra for all.‖ How well did 

teachers implement change in their instructional practices? Did the staff development 

project result in lasting philosophical changes in the participating teachers? And did the 

goal of ―algebra for all‖ actually translate into equitable pedagogical practices in their 

classrooms? Through in-depth interviews with five participating teachers (selected 

purposefully based on demographic diversity, including gender, race, ethnicity, and years 
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of experience), the researchers gathered data about the teachers‘ perceptions of the 

project and its impact on their teaching. Triangulation was achieved through classroom 

observation and quantitative analysis of student achievement data. The results of the 

study showed that changes in teacher beliefs and practices come slowly and over time, 

and only with on-going support and mentoring. Becker, et al. reinforced the notion that 

change and, hence, educational reform, is a journey that must be supported on an ongoing 

basis if it is to be achieved. Along with Preston and Lambdin (1995), the Becker et al. 

study raised issues of empowerment also addressed by Simon and Schifter (1991)—how 

much do teachers really change when change is thrust upon them? How important is it 

that teachers feel invested in the change process? And how is this change related to 

teachers‘ basic philosophical beliefs about teaching and learning as well as mathematics? 

 Hart (2002b) addressed some of those issues in a study with classroom teachers 

(see earlier cited study with preservice teachers, Hart, 2002a). Working with experienced 

teachers involved in the Atlanta Math Project (AMP), Hart‘s study asked, ―Why are some 

teachers reluctant to change and hold fast to their traditional methods while others are 

embracing reform practices and changing the environment of their mathematics 

classroom? … Why are some projects, courses, experiences, etc., able to impact teachers‘ 

beliefs about teaching and learning mathematics and others are not? ‖ (2002b, p. 162). 

These are vital questions for researchers, like me, whose goal is to positively impact 

reform practices in mathematics education. Hart‘s study examined teachers‘ beliefs about 

educational change as they attempted to reform their teaching. Through the use of a 16-

item survey, Hart identified factors that affected teacher change. Interviews with a select 

group of surveyed teachers were then used to confirm and expand the survey data. Survey 
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results were analyzed using descriptive statistics and qualitative methods were used to 

analyze the interview results. The overall results indicated that teachers saw changes in 

their teaching practices in the areas of classroom discourse, the use of multiple 

representations, and increased problem-solving activities. They attributed those changes 

to increases collaboration with colleagues, the use of modeling techniques, and their own 

use of reflective practice. They also cited learning from their students and becoming a 

student themselves as factors in their professional growth. Hart‘s study is important in 

that she allowed the teachers to speak for themselves; it is their voices we hear in the 

research through the use of extended quotations. In this study, Hart again pointed out the 

importance of reflection in the change process. But questions regarding the staying power 

of the changes remain, just as they did in earlier cited studies with preservice teachers. 

Are there lasting effects to these professional development opportunities or do teachers 

―revert‖ soon after a project ends?  

Inservice Teachers—Changing on Their Own 

 Perhaps one way to answer the previous questions is to look at teachers who 

change on their own and not due to any one particular professional development project. 

If, as Simon and Schifter (1991) asserted, change is linked to empowerment, then the 

teacher who changes her practices independently is perhaps a good case to study. 

Chapman (2002) studied just that in an interpretative study of the professional growth of 

four high school mathematics teachers who changed their instructional practices without 

participating in any specific staff development program. The four teachers, whose 

experience ranged from 16 to 33 years in the classroom, were all involved, at the start of 

Chapman‘s study, in reviewing and/or writing mathematics textbooks, conducting 
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workshops, and presenting at professional conferences. Thus they were purposefully 

chosen by the researcher for their accomplishments in the field of mathematics education. 

As Chapman noted, ―they were very articulate and open about their thinking and 

experiences in teaching mathematics‖ (p. 180).  

Chapman‘s (2002) study focused on mathematics educators‘ thinking in teaching 

mathematical word problems. Data were collected and analyzed following what 

Chapman  described as a humanistic approach framed in phenomenology. Data included 

interviews, role-plays, and classroom observations. The teachers were asked to give 

detailed narrative accounts of their lived experiences. Further interviews explored why 

particular stories were chosen for re-telling. The focus of Chapman‘s analysis was the 

mathematical beliefs of the participants, in the assumption that beliefs strongly affect 

behavior. Thus, reasoned Chapman, if teachers are to change their instructional practices, 

they must first change instructional beliefs. Chapman did not utilize a framework of 

belief structures, but instead looked at each individual participant‘s expressed beliefs. 

What she found were strong themes of pedagogical conflict in two of her participants. 

Pedagogical conflict refers to conflicts in the teaching act, the teacher‘s intentions and 

expectations, and the outcome of the teaching act as reflected in students‘ performance, 

behavior, and attitudes, and was cited in the Wood, et al. (1991) study as well. As 

teachers realized that their beliefs about teaching were misaligned with their actual 

teaching behavior, change occurred. Continued conflict resulted in continued change. 

This detailed study reinforces the role of beliefs (and time) in educational change. What I 

find particularly relevant to my own study is the author‘s contention that both the 

deconstruction of an existing set of beliefs and attitudes incompatible with a reform 
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perspective as well as the construction of a new set of beliefs compatible with the 

intended reform are essential if change is to occur. 

 Sztajn (2003) also used case study to investigate the beliefs and practices of two 

elementary school teachers. The goal of Sztajn‘s research was to unveil ―factors that 

shape how teachers adapt reform rhetoric when trying to adopt it‖ (p. 54). Sztajn chose to 

study a third-grade teacher and a fourth-grade teacher, neither of whom were involved in 

any formal reform project. Both teachers had been in the classroom for 9 years and had 

met the researcher through their participation in graduate-level coursework (one teacher 

was actually a doctoral student). They taught in public school classrooms in two small 

Midwestern towns. Data were collected through classroom observation, five semi-

structured interviews, and artifacts such as classroom handouts and teachers‘ planning 

notes. In addition, Sztajn interviewed the principals, other teachers, and a few parents at 

each school. Sztajn developed, through her analysis of the data, portraits of each teacher 

that included a ―justified description of her practice, that is, a summary of her teaching 

combined with her explanations for specific actions‖ (p. 60). Sztajn used the 1989 NCTM 

Curriculum and Evaluation Standards for School Mathematics as a lens through which to 

view the teachers‘ practices and beliefs.  

Sztajn‘s (2003) was a descriptive study and she was able to provide rich 

descriptions of each teacher‘s personal beliefs (about mathematics and mathematics 

education) and instructional practices. Although Sztajn found that both teachers thought 

their practices were aligned with recommendations for change in school mathematics 

(based on the 1989 NCTM Standards), their instructional practices and conceptions of 

mathematics were very different. Teresa was a very traditional teacher who emphasized 
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drill and practice, rote memorization, and the importance of structure and order, which 

she believed mathematics exemplified. Julie, on the other hand, believed students needed 

to be interested and happy in order to learn, and she emphasized experiential problem 

solving and higher-order thinking in her mathematics instruction.  

How do two such different teachers each believe that they are adopting a reform 

curriculum? Sztajn (2003) found that teachers‘ concepts of what their students need 

influenced their adaptation to and adoption of reform rhetoric. Teresa worked in a low-

income area with a majority of single-parent families and believed her students needed to 

be taught the value of hard work, structure, and discipline. Julie worked in a much more 

affluent area with traditional two-parent families who wanted, she believed, to know their 

children where happy at school. Each teacher was, therefore, responding to what they 

identified as the students‘ primary educational needs. Sztajn concludes that reform 

rhetoric does not challenge teachers‘ conceptions of mathematics or their perceptions of 

what their students need when learning mathematics.  

Gates (2006) sought to understand why attempts to change teacher beliefs often 

fail. His study examined teacher beliefs, not as a cognitive construct, but as a social 

construct, asserting that the ―hegemonic nature of these beliefs may be responsible for the 

widespread failure of the history of reform in mathematics education‖ (p. 349). Gates 

drew on three key components to substantiate his social perspective of teacher beliefs: 

habitus, ideology, and discourse. Gates wrote that habitus is ―history turned into second 

nature‖ (p. 352). A teacher‘s habitus influences her structures of thought, style of dress, 

figures of speech, and day-to-day practices. Ideology is what makes us the same as or 

different from others. Ideology, wrote Gates, are ―particular sets of dispositions which 
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become organized through social engagement‖ (p. 353). Finally, discourses are the 

―interactional means whereby we live out and act out ideological framework and 

dispositions‖ (p. 354).  

Gates‘ (2006) study investigated the beliefs of two secondary school teachers of 

mathematics. Data collected included interviews, observations, and written documents. 

The site of the study was a state comprehensive high school in Great Britain. In particular, 

Gates analyzed the differing beliefs and practices of Fran, the former Head of 

Mathematics, and Alan, the current (at the start of the study) Head of Mathematics. Gates 

found that Alan was a very traditional teacher whose primary goal was student success on 

a key examination. Alan supported ability grouping of students, was well organized, 

dressed formally, and, as department head, felt empowered to impose unilateral decisions. 

Fran, on the other hand, was committed to seeing strengths in all students. She dismissed 

the importance of formal assessments, and saw education as bigger than preparation for 

examinations. As head of department, she had exercised shared responsibility and 

collaborative work. Gates‘ goal in this study was to emphasize how entrenched certain 

instructional beliefs and practices are, and to explore the implications for educational 

change: ―Attention needs to shift from surface aspects of the discursive positions which 

teachers adopt, to the deeper ideological frameworks which constitute teachers and play a 

significant role in the establishment of their work with children‖ (p. 365). Gates‘ study is 

relevant here because he stresses the social aspects of teacher beliefs and advocates a 

deeper look at what he terms ideological frameworks, deeply embedded belief structures 

that may indeed be in conflict with the principles of educational and mathematical reform. 
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Difficulties in Defining ―Beliefs‖ 

One dilemma common to the previously reviewed research is the difficulty in 

defining beliefs. As cited earlier, Beswick (2006) described beliefs as ―anything a person 

regards as true‖ (p. 96). Thompson‘s (1984) study focused on conceptions of 

mathematics that she characterized as ―teachers‘ professed beliefs, views, and preferences 

about mathematics and mathematics teaching‖ (p. 107). In a review of study on beliefs, 

Thompson (1992) acknowledged the difficulty of distinguishing between beliefs and 

knowledge, and added that ―researchers interested in studying teachers‘ beliefs should 

give careful consideration to the concept, both from a philosophical as well as a 

psychological perspective‖ (p. 129). Wilson and Cooney (2002) defined knowing as a 

stronger claim than believing, yet recognize that ―when the emphasis of research shifts 

towards a sense-making perspective, boundary lines between knowing and believing 

become blurred as we seek to understand the phenomena of teacher change and what 

drives that change‖ (p. 131). 

Skott (2001) moved beyond the elusive notion of beliefs and adopted the term 

school mathematics images (SMI) to describe teachers‘ ―idiosyncratic priorities in 

relation to mathematics, mathematics as a school subject and the teaching and learning 

and learning of mathematics in schools‖ (p. 6). Skott went on to describe these images as 

―expressions of unique personal interpretations of and priorities in relations to 

mathematics, mathematics as a school subject, and the teaching and learning of 

mathematics in schools‖ (p. 6). Hart (2002a, 2002b) surveyed her participants regarding 

their beliefs yet did not offer her definition of beliefs. Steele (2001) used the term 

conceptions in her longitudinal case study but did not define conceptions. Studies by 
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Cooney, Shealy, and Arvold (1998) and Mewborn (2002) gave detailed explanations of 

beliefs and belief structures, using Green‘s metaphorical analysis that focused on three 

different aspects of belief structures: the quasi-logical relation between beliefs—central 

beliefs held strongly and peripheral beliefs that are more susceptible to change; the 

psychological strength of beliefs; and the clustering of beliefs, which prevents cross-

fertilization or confrontation among conflicting beliefs. Gates (2006) adopted a more 

social perspective to belief structure when he identified the three essential components of 

habitus, ideology, and discourse. 

Leatham (2006) warned against identifying teachers‘ beliefs as inconsistent: 

―Beliefs become viable for an individual when they make sense with respect to that 

individual‘s other beliefs. This viability via sense making implies an internally consistent 

organization of beliefs, referred to herein as a sensible system‖ (p. 93). Leatham also 

argued: 

The challenge for teacher education is not merely to influence what 

teachers believe—it is to influence how they believe it…The sensible 

system framework offers teacher educators a constructive approach for 

viewing teachers‘ belief systems as well as changes in those systems. 

Through this framework, teachers are seen as complex, sensible people 

who have reasons for the many decisions that make. When teachers‘ belief 

systems are viewed in this way, we have a basis for constructing a 

different type of teacher education. Teacher educators should provide 

teachers with opportunities to explore their beliefs about mathematics, 

teaching and learning. (p. 100) 

 

I agree that researchers should refrain from critiquing the consistency of teachers‘ beliefs 

and should instead focus on the social structures that influence both beliefs and 

instructional practices. In fact, Leatham seemed to be advocating for a teacher education 

program that begins with an exploration of teacher beliefs, which then makes that 



 42 

 

exploration essential to anything else. What knowledge of mathematics is sufficient if 

teachers are never expected to explore their beliefs about mathematics? 

Some researchers have advocated a view beyond beliefs. As the definition of 

beliefs grows to include ―conceptions, personal ideologies, worldviews, and values that 

shape practice and orient knowledge‖ (Speer, 2005, p. 365), are we not looking at a 

teacher‘s philosophy? The next section will examine a number of studies that expanded 

the research of teacher beliefs about mathematics to examine philosophy. As Ernest 

(1988) stated, ―Teachers‘ conceptions of the nature of mathematics by no means have to 

be consciously held views; rather they may be implicitly held philosophies‖ (¶ 4). 

Exploring Philosophy 

Lerman‘s (1990) study is one of the first that focused on teachers‘ philosophies of 

mathematics, which he termed teachers‘ attitudes towards the nature of mathematics. 

Identifying two distinct philosophies of mathematics—absolutism (mathematics as 

certain, absolute, value-free and abstract) and fallibilism (mathematics as a social 

construction, focusing on the context and meaning of the mathematics for each 

individual)—Lerman developed a questionnaire that he used to gather data on student 

teachers‘ views of mathematics. He surveyed 42 graduate-level education students, all 

working towards initial certification. The students were then shown a videotaped teaching 

session of a mathematics lesson. The videotape presented a 5-minute didactic, teacher-

centered (yet engaging) lesson on solving an algebraic equation. Lerman later 

interviewed, at depth, four of the student teachers—two identified as extremely absolutist 

and two at the extreme fallibilist paradigm based on the questionnaire results. Not 

surprisingly, the two absolutist student teachers criticized the videotaped lesson as not 
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directive enough and not providing the students enough support. The two student teachers 

Lerman identified as fallibilist felt the teacher was too directive and not open enough in 

her instruction. How do four preservice teachers view an identical lesson and come away 

with such different interpretations? Lerman‘s study has many implications for the 

postmodern researcher. We each view experiences through our own individual lenses and 

researchers must be careful to let participants‘ interpretations be recognized and 

understood (as well as they can be). Teachers bring to the classroom their own, often 

embedded, philosophies, not just of mathematics teaching and learning but about the very 

nature of mathematics. 

Wiersma and Weinstein (2001) investigated the mathematical sophistication and 

educational philosophies of first-year secondary mathematics teachers. The researchers 

used Weinstein‘s Ways of Knowing Mathematics, a hierarchical scale based on 

intellectual development theory, as well as Ernest‘s (1991) five mathematical 

philosophies of education—Industrial Trainer, Technological Pragmatist, Old Humanist, 

Progressive Educator, and Public Educator. Weinstein‘s hierarchy examines the impact of 

beliefs on the behavior of the teacher as a learner, whereas Ernest‘s classifications 

explore the impact of philosophy on the teacher‘s instructional practices (Wiersma and 

Weinstein use the terms beliefs and philosophies interchangeably in their description of 

the study).  

Ernest‘s (1991) five classifications move from a conservative, rigid, fixed view of 

mathematics (the Industrial Trainer) to a social constructivist, cultural, reform-based view 

of mathematics (the Public Educator). Each philosophical view of the nature of 

mathematics in Ernest‘s classifications influences the teaching and learning of the 
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subject—the Industrial Trainer, viewing mathematics as a set of absolute truths, 

emphasizes hard work, memorization, drill and practice, and the absence of technology. 

The Technological Pragmatist, who also views mathematics as an unquestioned body of 

useful knowledge, recognizes the usefulness of mathematical learning. The Old Humanist 

sees the beauty in mathematics yet transmits this idea in education by promoting 

mathematics as a remote ideal. The Progressive Educator embraces a child-centered idea 

philosophy of education, and values the process view of mathematics. The Progressive 

Educator embraces the ideal of mathematics for all without questioning the mathematics 

to be learned. And finally, in Ernest‘s classifications, the Public Educator sees 

mathematics as a social construct, accepts the fallibility of mathematics, and believes that 

mathematics must be recreated in each student‘s mind to be made relevant and 

worthwhile. 

Wiersma and Weinstein (2001) gathered data on five first-year math teachers 

through 45-minute structured interviews. The transcripts were then coded using key 

words extrapolated from the Ernest and Weinstein frameworks. The teachers, four 

females and one male, were all White, middle-class teachers with diverse educational 

backgrounds. They were in their early-to-late 20s. The four teachers with undergraduate 

degrees in mathematics demonstrated a higher level of mathematical sophistication (using 

the Weinstein framework) than the fifth teacher, whose degree was in business. The 

teachers‘ philosophies of mathematics education fit primarily into the Technological 

Pragmatist or Industrial Trainer models, meaning a view of mathematics as fairly rigid, 

no-nonsense and absolutist, espousing set rules and procedures, and dependent on 

teacher-centered instruction. Wiersma and Weinstein recommended using such 



 45 

 

frameworks in mentoring novice teachers, particularly when the goal is to change 

instruction and teacher behavior to a more student-centered, constructivist approach. In 

addition, the researchers noted the application of the frameworks in building teacher 

reflection, especially in times of educational reform.  

Lloyd‘s (2005) research is a more recent case study of a preservice high school 

teacher, one in which the researcher closely examined the teacher‘s beliefs about his role 

as a teacher in the mathematics classroom, particularly his role in shaping mathematical 

discourse within his classroom. Lloyd defined mathematical classroom discourse as the 

―ways that teachers and students interact during classroom activities and the ways that 

mathematics is represented and develop through those interactions‖ (p. 442). Rather than 

look for contradictions between a teacher‘s beliefs and practices, Lloyd sought to 

understand how a preservice teacher makes sense of his beliefs while learning to 

negotiate the realities of classroom teaching. Although she does not define her use of the 

term beliefs, Lloyd looked at her participant‘s images of mathematics through the use of 

fictional accounts as well as other data.  

Lloyd‘s (2005) participant, Todd, was enrolled in a graduate-level secondary 

mathematics certification program and was, at the time of the study, completing an 8-

week field experience. Data collected included Todd‘s written assignments (for his 

methods course), including both fiction and non-fiction writings; interviews; and 

observations of Todd‘s student teaching. Among Todd‘s written assignments was an 

analogy assignment, in which the student teacher identified an analogy that fit his idea of 

what it meant to be a mathematics teacher. Lloyd used narrative analysis to analyze that 

and other written assignments. The research findings demonstrated that, although Todd 
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embraced non-traditional notions of teaching—eschewing lecture, embracing teacher as 

facilitator and questioner—his views of mathematics were fairly static: ―Todd‘s views 

did not appear to include the notion that increased student exploration and 

communication may actually develop and change the mathematical content of classroom 

tasks and activities, thus allowing classroom discourse to encompass a more dynamic 

treatment of mathematics‖ (p. 454). In other words, Todd was ready to challenge the 

traditional view of mathematics instruction but not the traditional view of mathematics.  

Lloyd‘s (2005) study has tremendous implications for my research, one goal of 

which is to begin to challenge, to deconstruct and reconstruct teachers‘ conceptions of 

mathematics. Lloyd‘s findings strengthen the argument for a detailed investigation into 

teachers‘ philosophies of mathematics. A limitation of Lloyd‘s study, which she touches 

on only briefly, is that the researcher was also the course instructor, as well as Todd‘s 

field-experience supervisor. The issue of overlapping roles, and the effect of those roles 

on both the researcher and the participant, is one that I share with Lloyd, and is addressed 

in the methodology, analysis, and discussion sections of this study. 

None of the studies described here examined specifically the results of an 

exploration of philosophy. What happens when teachers are presented with non-

traditional views of mathematics, when teachers explore philosophical writings about 

mathematics? At a university in Greece, Toumasis (1993) developed a course for 

preservice secondary school mathematics teachers that focused on readings on the history 

and philosophy of Western mathematics, as well as ―discussion and an exchange of 

views‖ (p. 248). The purpose of the course was to develop a reflective mathematics 

teacher: 
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To be a mathematics teacher requires that one know what mathematics is. 

This means knowing what its history, its social context and its 

philosophical problems and issues are. . . . The goal is to humanize 

mathematics, to teach tolerance and understanding of the ideas and 

opinions of others, and thus to learn something of our own heritage of 

ideas, how we came to think the way we do. (p. 255) 

 

According to Toumasis, mathematics teachers continued to be shortchanged when their 

teacher preparation programs focused only on participation in higher level mathematics—

Linear Algebra, Discrete Mathematics, Analysis. Knowledge of mathematics, especially 

if one is to teach mathematics, must include a reflexive study of mathematics. 

Toumasis (1997), in a later article, argued that the philosophical and 

epistemological beliefs about the nature of mathematics are intrinsically bound with the 

pedagogy of mathematics. In his examination of the philosophical underpinnings of 

NCTM‘s Curriculum and Evaluation Standards for School Mathematics (1989), 

Toumasis identified a clear fallibilist point of view—a view that mathematics truth is 

uncertain, fallible, and tentative; that mathematics is ―a dialogue between people tackling 

mathematical problems‖ (p. 320). Yet in our current attempts to reform mathematics, a 

reform certainly based on both the 1989 Standards and the later Principles and Standards 

for School Mathematics (NCTM, 2000), an investigation of philosophy is rarely 

undertaken. Although teachers are often identified as having an absolutist view of 

mathematics (i.e., mathematics as a subject of objective knowledge and absolute, certain 

truths), as evidenced in the studies included in this literature review, I was unable to find 

any research that investigated teachers‘ personal exploration of philosophy of 

mathematics. Toumasis, although recommending a similar course for other mathematics 

teacher preparation programs, did not investigate the results of his course. 
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Summary 

The studies on which I have focused inspire many new research questions. 

Studies exploring the beliefs and attitudes of elementary school teachers towards 

mathematics demonstrate the need for more work in this area, particularly with a focus on 

teachers at the secondary level. Do teachers with deeper mathematics backgrounds, 

having participated in higher-level mathematics courses, and many of whom experienced 

success in traditional mathematics instructional models, face greater challenges when 

implementing reform-based models of instruction? Several studies that I cited 

emphasized the importance of the participants‘ voices being heard in the research. 

Lerman‘s (1990) study is a reminder that individuals each interpret events through a 

unique lens, a lens influenced by beliefs and attitudes, as well as by lived experiences. 

Although frameworks are useful in examining teacher beliefs and attitudes, Chapman 

(2002) let her participants speak for themselves and, thus, provided a clearer, more 

complete picture of who a teacher is and why she makes the decisions she does in the 

classroom. Hart (2002b) also used the voices of her participants to strengthen her study. 

Thompson‘s (1984) landmark study highlighted the intricacies of teacher beliefs and 

practices, reinforcing the need to look beyond surveys and questionnaires, and to deeply 

investigate the instructional practices and beliefs of classroom teachers. More recent 

studies, including Sztajn (2003), and Becker, Pence, and Pors (1995) examined teacher 

change and its relationship to teachers‘ beliefs and values. A few studies have even 

investigated the lack of teacher change and its tie to beliefs, including Preston and 

Lambdin (1995) and Gates‘ (2006) more recent study.  
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Each of these studies has in common a research focus on how mathematics is 

taught in schools. But additional research is needed that focuses on what we teach as 

mathematics and, even more so, how teachers view the mathematics that they teach. Is 

mathematics transcendental and pure, something that exists outside of humanity, or is it a 

social activity, a social construction whose rules and procedures are defined by humanity 

(Restivo & Bauchspies, 2006)? An extensive review of the literature found no studies that 

lead teachers to explore their philosophies of mathematics and investigated the results. 

Yet Restivo and Bauchspies recognized the need to push teachers‘ understanding of 

mathematics beyond the debate of mathematics as a social construction. To understand 

mathematics (and thus to teach mathematics) is to understand the social, cultural, and 

historical worlds of mathematics (Restivo & Bauchspies). Should we not then explore 

mathematics, explore it in a philosophical sense, its ―basic principles and concepts…with 

a view to improving or reconstituting them‖ (Webster’s Dictionary, 2003, p. 1455)?  

Change in classroom practices may not be possible without first ―improving or 

reconstituting‖ teachers‘ philosophies of mathematics. But, as Taylor (1996) pointed out, 

school mathematics continues to be heavily influenced by certain myths—including the 

myth of cold reason. It is this myth—the myth that mathematics is a dispassionate and 

impersonal subject, a subject of pure reason—that my study leads teachers of 

mathematics to confront through an exploration of readings from modern philosophers of 

mathematics and mathematicians. 

I end this literature review by revisiting a definition of philosophy, this time 

specifically, philosophy of mathematics: ―The philosophy of mathematics is basically 

concerned with systematic reflection about the nature of mathematics, its methodological 
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problems, its relations to reality, and its applicability‖ (Rav, 1993, p. 81). If our goal in 

mathematics education reform is to make mathematics more accessible and more 

applicable to real-world learning, should we not then help guide today‘s teachers of 

mathematics, those who develop and nurture tomorrow‘s mathematicians, to delve into 

this realm of systematic reflection and to ask themselves, what is mathematics? 
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CHAPTER 3 

THEORETICAL FRAMEWORK 

Mewborn (2005) compared a theoretical framework to a picture frame, a bed 

frame, or the frame of a house. A researcher‘s theoretical framework, wrote Mewborn, 

―can help ‗set off‘ ideas from other data to draw attention to them, giving them names 

and robust definitions. It can support the building up and deepening of an idea, or it can 

provide a structure on which to hang new ideas‖ (p. 2). For Kilbourn (2006), the 

―theoretical framework represents a point of view that legitimizes the manner in which 

the interpretations are justified or warranted‖ (p. 533). The theoretical framework for my 

study stems from two sources—modern explorations in the philosophy of mathematics 

that troubles the traditional absolutist view of mathematics (Davis & Hersh, 1980; Hersh, 

1997; Lakatos, 1976; Tymoczko, 1998), which will be explored further in a later section, 

and Ernest‘s (1988, 1991, 1998b, 2004) work on social constructivism as a philosophy of 

mathematics. If radical instructional change is our goal—and it is my contention that the 

current reform movement in mathematics teaching and learning calls for just that—then 

research is needed that more deeply explores teachers‘ philosophies of mathematics (and 

not just their philosophies of education or mathematics education). Thus, challenges to 

traditional ideas of mathematics must be brought into the mathematics classroom. 

Social Constructivism 

Social constructivism, a learning theory that grew out of the early 20
th

 century 

work of Russian Lev Vygotsky, is in many ways the driving force behind mathematical 
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reform in the United States and other nations (Forman, 2003). Forman and others (e.g., 

Restivo & Bauchspies, 2006; Toumasis, 1997) have argued that NCTM‘s Professional 

Standards for Teaching Mathematics (1991) and the later Principles and Standards for 

School Mathematics (2000) clearly build upon a social constructivist model of learning. 

But Ernest (1991, 1994, 1998b, 1999) argues that social constructivism is more than just 

a learning theory applicable to the teaching and learning of mathematics. Social 

constructivism, according to Ernest, is a philosophy of mathematics, one that views 

mathematics as a social construction. In this section, I will define social constructivism 

as it applies to the teaching and learning of mathematics and will then describe Ernest‘s 

view of social constructivism as a philosophy of mathematics. This section will close 

with an explanation of how Ernest‘s work can be used as a theoretical framework, a lens 

through which to view a research study that explores and challenges teachers‘ 

philosophies of mathematics. The next section will further develop the use of Ernest‘s 

work as a theoretical frame. 

Constructivism as a theory of learning may be defined in a number of ways. Using 

Confrey‘s (1990) definition: 

Constructivism can be described as essentially a theory about the limits of 

human knowledge, a belief that all knowledge is necessarily a product of 

our own cognitive act…We construct our understanding through our 

experiences, and the character of our experience is influenced profoundly 

by our cognitive lenses…When one applies constructivism to the issue of 

teaching, one must reject the assumption that one can simply pass on 

information to a set of learners and expect that understanding will result. 

(p. 108–109) 

 

Thus constructivism requires an active educational process, not merely the memorization 

of facts and the practicing of procedures, but the engagement of the learner in doing 

mathematics. 
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 Constructivism is often divided into two camps: radical constructivism and social 

constructivism (Davis, Maher, & Noddings, 1990; Lerman, 1994). Radical constructivism 

focuses primarily on the individual in the learning process and is greatly influenced by 

the work of Piaget and von Glasersfeld. Social constructivism focuses on the community 

of the mathematics classroom and the communication that takes place there (Noddings, 

1990). As cited earlier, social constructivism grew out of the work of Vygotsky (1978) in 

social learning theory and has been further developed in mathematics teaching and 

learning through the work of Confrey (1990); Lerman (1990, 1998, 1999); Damarin 

(1999); and others. This theory is in keeping with NCTM‘s (2000) views of mathematics 

instruction that emphasizes the social interplay necessary to mathematics instruction: 

Students‘ understanding of mathematical ideas can be built throughout 

their school years if they actively engage in tasks and experiences 

designed to deepen and connect their knowledge. Learning with 

understanding can be further enhanced by classroom interactions, as 

students propose mathematical ideas and conjectures, learn to evaluate 

their own thinking and that of others, and develop mathematical reasoning 

skills. Classroom discourse and social interaction can be used to promote 

the recognition of connections among ideas and the reorganization of 

knowledge. (p. 21) 

 

Overall, social constructivism moves educators from a view of mathematical learning as 

something people gain to a broader view of mathematical learning as something people 

do (Forman, 2003). 

 It is upon this foundation, mathematics as something people do, that Ernest 

(1998b) built his theory of social constructivism as a philosophy of mathematics. He 

argued that the teaching and learning of mathematics is indelibly linked to philosophy of 

mathematics:  

Thus the role of the philosophy of mathematics is to reflect on, and give 

an account of, the nature of mathematics. From a philosophical 
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perspective, the nature of mathematical knowledge is perhaps the central 

feature which the philosophy of mathematics needs to account for and 

reflect on. (p. 50) 

 

Without that link, Ernest argued, we cannot truly understand the aims of mathematics 

education. Ernest (2004) emphasized the need for researchers, educators, and curriculum 

planners to ask ―what is the purpose of teaching and learning mathematics?‖ (p. 1). But, 

in order to answer that, both mathematics and its role and purpose in society must be 

explored. Dossey (1992) echoed Ernest‘s emphasis on philosophy of education: 

―Perceptions of the nature and role of mathematics held by our society have a major 

influence on the development of school mathematics curriculum, instruction, and 

research‖ (p. 39). Yet there is in the educational sphere a lack of conversation about and 

exploration of philosophy: ―The lack of a common philosophy of mathematics has 

serious ramifications for both the practice and teaching of mathematics. This lack of 

consensus, some argue, is the reason that differing philosophies are not even discussed‖ 

(Dossey, p. 39).  

Ernest (1991, 1998b) described two dichotomist philosophical views of 

mathematics—the absolutist and the fallibilist. The Platonists and formalists schools of 

philosophy, which will be further described in a later section, both stem from an 

absolutist view of mathematics—mathematics as a divine gift or mathematics as a 

consistent, formalized language without error or contradiction. Both of these schools of 

thought hold mathematics up to be infallible, without error owing either to its existence 

beyond humanity, waiting to be discovered (the Platonist school) or to its creation as a 

logical, closed set of rules and procedures (the formalist school). The fallibilist 

philosophy, what Hersh (1997) termed a philosophy of humanism, views mathematics as 
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a human construction and, therefore, fallible and corrigible. One important implication of 

the fallibilist philosophy of mathematics is that if mathematics is a human construct then 

so must the learning of mathematics be a human construct. Mathematics is no longer 

knowledge that is simply memorized in a rote fashion, but it is knowledge with a societal 

purpose that must be learned in a manner that brings meaning to the subject. The 

constructivist approach to learning, therefore, aligns well with the fallibilist philosophy of 

mathematics.  

Ernest (1991, 1998b) characterized a cycle of subjective knowledge to objective 

knowledge back to subjective knowledge to further support his view of the social 

constructivist foundations of mathematical knowledge. In this cycle, new knowledge 

begins as subjective knowledge, the mathematical thoughts of an individual. This new 

thought becomes objective knowledge through a social vetting process; it enters the 

public domain and is tested, reformulated and refined, a method akin to Lakatos‘ (1976) 

system of proofs and refutations (described further in a later section). This objective 

knowledge then becomes internalized and understood by the individual, thus becoming 

once again subjective knowledge. Through this cycle, Ernest explained how objective 

knowledge, knowledge that may appear to exist independent of humanity, is actually 

knowledge made legitimate and real through social interaction and acceptance. The social 

process of learning and then knowing mathematics is, therefore, intricately linked to 

society‘s ideas of what is and is not mathematics. Using this cyclical nature of knowledge 

building, Ernest was able to connect a learning theory, social constructivism, with a 

philosophy of mathematics. 
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A Postmodern View of Mathematics 

During the past 50 years, there has been a growing questioning of the historical 

and philosophical foundations of mathematics. What was once seen as certain and 

unquestionable, existing beyond humankind and waiting to be discovered, is now viewed 

by some as a historical and social construction, changing and malleable, as subjective as 

any social creation. Aligned with these changing views of mathematics are new ideas 

about mathematics instruction. The absolutist view of mathematics is associated with a 

behaviorist approach, utilizing drill and practice of discrete skills, individual activity, and 

an emphasis on procedures. The fallibilist view of mathematics aligns itself with the 

constructivist pedagogy, utilizing problem-based learning, real-world application, 

collaborative learning, and an emphasis on process (Threlfall, 1996). But, while there 

have been numerous calls to change and adapt our teaching of mathematics, embracing a 

constructivist epistemology, little has been done to challenge teachers‘ conceptions of 

mathematics. The push towards constructivist instructional practices in the mathematics 

classroom and the modern challenges to our views of mathematics have been brought 

together through Ernest‘s work over the past 20 years: ―Teaching reforms cannot take 

place unless teachers‘ deeply held beliefs about mathematics and its teaching and 

learning change‖ (Ernest, 1988).  

Ernest‘s (2004) more recent work is embedded in the postmodern
2
—challenging 

absolutes about human knowledge and understanding while questioning the rationality 

                                                 
2
 Lyotard (1979/1984) defines the postmodern, quite simply as an ―incredulity toward metanarratives‖ (p. 

xxiv). Leistyna, Woodrum, and Sherblom (1996) define the postmodern as a rejection of universal truths 

and values: ―Postmodernists don‘t believe that the mind has an innate, universal structure; rather, they see 

consciousness, identities, and meaning as socially and historically produced‖ (p. 341). Although 

acknowledged as a contested terrain, Usher and Edwards (1994) emphasize that the postmodern rejects the 

modernist view of science and scientific research as value-free and objective. And, in fact, ―the significant 
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and objectivity of mathematics. He seeks to break down the influence of what he terms 

the ―narratives of certainty‖ that have resulted in ―popular understandings of mathematics 

as an unquestionable certain body of knowledge‖ (p. 16). Certainly this understanding 

still predominates in mathematics classrooms today (see, e.g., Bishop, 2002; Brown, 

Jones, & Bibby, 2004; Davison & Mitchell, 2008; Golafshani, 2004; Handel & 

Herrington, 2003). But Ernest draws upon postmodern philosophers such as Lyotard, 

Wittgenstein, Foucault, Lacan, and Derrida, to challenge traditional views of mathematics 

and mathematics education. He embraces the postmodern view because it rejects the 

certainty of Cartesian
3
 thought and places mathematics in the social realm, a human 

activity influenced by time and place. Ernest is joined by others who have explored 

mathematics and mathematics instruction through the postmodern (see, e.g. Brown, 1994; 

Walkerdine, 1994; Walshaw, 2004). Neyland (2004) calls for a postmodern perspective 

in mathematics education to ―address mathematics as something that is enchanting, 

worthy of our esteem, and evocative of wonder‖ (p. 69). In so doing, Neyland hopes for a 

movement away from mathematics instruction emphasizing procedural compliance and 

onto a more ethical relationship between teacher and student, one that stresses not just 

enchantment in mathematics education but complexity as well.  

Walshaw (2004) ties sociocultural theories of learning to postmodern ideas of 

knowledge and power, drawing, as Ernest does, on the writings of Foucault and Lacan: 

―Knowledge, in postmodern thinking, is not neutral or politically innocent‖ (p. 4). Thus, 

                                                                                                                                                 
thing is that in postmodernity uncertainty, the lack of a centre and the floating of meaning are understood as 

phenomena to be celebrated rather than regretted‖ (Usher & Edwards, p. 10). 

 
3
 Cartesian thought stems from the work of 17

th
 century philosopher and mathematician, Rene Descartes. 

Descartes believed in the certainty of mathematics and viewed it as the primary tool for revealing truths 

about nature. Through his 1637 Discourse in the Methods, Optics, Geometry, and Meteorology, Descartes 

―proclaims the importance of individual autonomy in the search for truth‖ (Hersh, 1997, p. 111).  
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for example, issues of equity in mathematics can be seen in ways other than who can and 

cannot do mathematics. Indeed, societal issues of power and reproduction must be 

considered. A postmodern analysis forces a questioning of mathematics as value-free, 

objective, and apolitical (Walshaw, 2002). Why are the privileged mathematical 

experiences of the few held up as the needed (but never attained) mathematical 

experiences of all? Furthering a postmodern view of mathematics, Fleener (2004) draws 

on Deleuze and Guattari‘s idea of the rhizome
4
 in order to question the role of 

mathematics as lending order to our world: ―By pursuing the bumps and irregularities, 

rather than ignoring them or ‗smoothing them out,‘ introducing complexity, challenging 

status quo, and questioning assumptions, the smoothness of mathematics is disrupted‖ (p. 

209). The traditional view of mathematics has ignored the bumps and holes, and forced a 

vision of mathematics as smooth, neat, and orderly. 

Another postmodern view is that our representations of mathematics cannot be 

divorced from the language we use to describe those representations: 

Any act of mathematics can be seen as an act of construction where I 

simultaneously construct in language mathematics notions and the world 

around me. Meaning is produced as I get to know my relationships to 

these things. This process is the source of the post-structuralist notion of 

the human subject being constructed in language. (Brown, 1994, p. 156) 

 

Brown uses Derrida‘s ideas on deconstructing
5
 language to examine how the social 

necessity of mathematical learning means that mathematics is always, in some way, 

                                                 
4
 Building from the botanical definition of rhizome, Deleuze and Guattari (1980/1987) used the analogy of 

the rhizome to represent the chaotic, non-linear, postmodern world. Like the tubers of a canna or the 

burrows of a mole, rhizomes lead us in many directions simultaneously. Deleuze and Guattari described the 

rhizome as having no beginning or end; it is always in the middle.  

 
5
 Although an elusive term to define, deconstruction involves the continuous critique of text and language, 

a way to look beyond accepted meanings and explore the ―multiplicity of truth‖ (Usher & Edwards, 1994, p. 

120). ―The goal is to keep things in process,‖ wrote Lather (1991), ―to disrupt, to keep the system in play, 

to set up procedures to continuously demystify the realities we create, to fight the tendencies for our 
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constructed. And, in examining new mathematical ideas, the learners cannot help but 

bring their entire mathematical and personal history to the process (Brown, 1994). This 

view strengthens Ernest‘s (1998b) own contention of the philosophical basis of social 

constructivism. Mathematical ideas begin as social constructions but ―become so 

embedded within the fabric of our culture that it is hard for us to see them as anything 

other than givens‖ (Brown, p. 154). Thus the establishment of mathematical meta-

narratives
6
 camouflages the social/culture roots of mathematical knowledge. As a result, 

mathematics continues to be viewed as something discovered, not constructed, especially, 

I believe, by K–12 teachers and students.  

Siegel and Borasi (1994) describe the pervasive cultural myths that continue to 

represent mathematics as the discipline of certainty. In order to confront this idealized 

certainty, they contend, what is needed is an inquiry epistemology that ―challenges 

popular myths about the truth of mathematical results and the way in which they are 

achieved, and suggests, instead, that: mathematical knowledge is fallible…[and] 

mathematical knowledge is a social process that occurs within a community of practice‖ 

(p. 205). This demystifying process is necessary, argue Siegel and Borasi, if teachers are 

to engage students in doing mathematics, not simply memorizing rote procedures and 

discrete skills. The inquiry classroom described by Siegel and Borasi mirrors the 

                                                                                                                                                 
categories to congeal‖ (p. 13). ―The word ‗deconstruction‘, like all other words,‖ wrote Derrida (1985), 

―acquires its value only from its inscription in a chain of possible substitutions, in what is too blithely 

called a ‗context‘…What deconstruction is not? Everything of course! What is deconstruction? Nothing of 

course!‖ (p. 3–4) 

 
6
 A meta-narrative, wrote Kincheloe and Steinberg (1996), ―analyzes the body of ideas and insights of 

social theories that attempt to understand a complex diversity of phenomena and their interrelations‖ (p. 

171). It is, in other words, a story about a story; a meta-narrative seeks to provide a unified certainty of 

knowledge and experience, removed from its historic or personalized significance. 
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mathematics teaching and learning outlined in NCTM‘s 2000 Principles and Standards 

for School Mathematics.  

If, as Lerman (2001) asserts, the object of educational research is a particular 

moment in the zoom of a lens, then using Ernest‘s work as the lens opens up the 

possibilities of a postmodern view of both mathematics and mathematics education. 

Framing my research around Ernest, one goal of my study is to have teachers 

problematize the idea of mathematics as objective and value-free, thus opening new and, 

perhaps, unexplored views of mathematics. My research, therefore, utilizes Ernest‘s 

theories to merge the social constructivist approach of current educational reform in 

mathematics with the philosophical questioning of mathematics, described in the next 

section. 

Mavericks in the Philosophy of Mathematics 

A world of ideas exists, created by human beings, existing in their shared 

consciousness. These ideas have objective properties, in the same sense 

that material objects have objective properties. The construction of proof 

and counterexample is the method of discovering the properties of these 

ideas. This branch of knowledge is called mathematics. (Hersh, 1997, p. 

19) 

 

 A reawakening of the philosophy of mathematics occurred during the last part of 

the 20
th

 century (Hersh, 1997). Davis and Hersh (1981) explored ideas of mathematics as 

a human invention, a fallibilist construct, in their landmark book, The Mathematical 

Experience. In their book, Davis and Hersh described several schools of philosophical 

thought regarding mathematics—including Platonism and formalism. The Platonist views 

mathematics as being outside of human beings, bigger than humans: ―Mathematics, in 

this view, has evolved precisely as a symbolic counterpart of the universe. It is no wonder, 

then, that mathematics works; that is exactly its reason for existence. The universe has 
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imposed mathematics upon humanity‖ (p. 68). The Platonist not only accepts, but 

embraces god‘s (God?) place in mathematics. For what is mathematics but god‘s gift to 

us mortals? (Plato, trans. 1956) The Platonist, forever linking god and mathematics, sees 

the perfection of mathematics. If there are errors made in our mathematical discoveries 

(and, of course, they are discoveries not inventions because they come from a higher 

power), then the errors are ours as flawed humanity, not inherent to the god-given 

mathematics. And because mathematics is this higher knowledge, a gift from god, it 

follows that some will succeed at mathematics while others fail. Mathematics, in the 

Platonic view, becomes a proving ground, a place where those who are specially blessed 

can understand mathematics‘ truths (and perhaps even discover further truths) while the 

vast numbers are left behind. Euclid‘s Elements was (and still is) the bible of belief for 

mathematical Platonists. So naturally, as Davis and Hersh pointed out, ―the appearance a 

century and a half ago of non-Euclidean geometries was accompanied by considerable 

shock and disbelief‖ (p. 217). The creation of non-Euclidean geometries—systems in 

which Euclid‘s fifth postulate (commonly known as the parallel postulate) no longer held 

true—momentarily shook the very foundations of mathematical knowledge:  

The loss of certainty in geometry was philosophically intolerable, because it 

implied the loss of all certainty in human knowledge. Geometry had served, from 

the time of Plato, as the supreme exemplar of the possibility of certainty in human 

knowledge. (Davis & Hersh, p. 331) 

 

 A result of the uncertainty brought on by the formation of non-Euclidean 

geometries was the development of formalism. As Davis and Hersh (1981) wrote, ―the 

formalist makes a distinction between geometry as a deductive structure and geometry as 

a descriptive science‖ (p. 341). While the first, the deductive logic of geometry, is 

acknowledged as mathematics by the formalist, the second, the descriptive aspect of 
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geometry, utilizing pictures and diagrams, are non-mathematical according to the 

formalist, as they merely describes physical world around us. In formalism, mathematics 

is the science of rigorous proofs, a language for other sciences (Davis & Hersh). ―The 

formalist says mathematics isn‘t about anything, it just is‖ (Hersh, 1997, p. 212). In the 

early part of the 20
th

 century, Frege, Russell, and Hilbert, each attempted to formalize all 

of mathematics through the use of the symbols of logic and set theory. Russell and 

Whitehead‘s ―unreadable masterpiece‖ (Davis & Hersh, p. 138), Principia Mathematica, 

attempted the complete logical formalization of mathematics. But the attempts to 

complete the logical formalization of mathematics were doomed to failure as 

demonstrated later by Gödel‘s Incompleteness Theorem that proved that any formal 

system of mathematics would remain incomplete, not provable within its own system 

(Goldstein, 2005). 

 Proofs and Refutations: The Logic of Mathematical Discovery, a beautifully 

written exploration of the philosophy of mathematics penned by Imre Lakatos and 

published posthumously in 1976, offers a third philosophy of mathematics—one that has 

been termed the humanist philosophy by Davis, Hersh, Ernest, and other modern 

philosophers of mathematics. In Proofs and Refutations, Lakatos used the history of 

mathematics as well as the structure of an inquiry-based mathematics classroom to 

explore ideas about proof. Through a lively Socratic discussion between fictional teacher 

and students, Euler‘s formula (V – E + F = 2) is dissected, investigated, built upon, 

improved, and finally made nearly unrecognizable. Lakatos used the classroom dialogue 

to challenge accepted ideas about proof—forcing the reader to question whether proofs 

are ever really complete or do mathematicians just agree to ignore that which contradicts 
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the proof, what Lakatos‘ students termed monsters. Through this analogy, Lakatos 

demonstrated that in mathematics there are many monsters, most of which are ignored, as 

though the mathematical community has made a tacit agreement to turn away from that 

which makes it uncomfortable. 

Ernest built much of his philosophy of mathematics and mathematics education 

on the writings of Lakatos. Like Lakatos, Ernest (1998b) saw mathematics as indubitably 

tied to its creator—humankind: ―Both the creation and justification of mathematical 

knowledge, including the scrutiny of mathematical warrants and proofs, are bound to 

their human and historical context‖ (p. 44). Hersh (1997), in his book, What is 

Mathematics, Really?, included both Lakatos and Ernest on his list of ―mavericks‖—

thinkers who see mathematics as a human activity and, in so doing, having impacted the 

philosophy of mathematics. Others are included as well—philosophers Charles Sanders 

Peirce (cited by Siegel & Borasi, 1994) and Ludwig Wittgenstein (cited by Ernest, 1991, 

1998b); psychologists Jean Piaget and Lev Vygotsky (cited by Confrey, 1990, and 

Lerman, 1994); and mathematicians George Polya and Philip Kitcher. 

 Polya‘s (1945/1973) classic, How to Solve It: A New Aspect of Mathematical 

Method, revived the study of the methods and rules of problem solving—called 

heuristics—in mathematics. Although he eschewed philosophy, Polya certainly 

influenced the philosophers of mathematics who succeeded him by viewing mathematics 

as a human endeavor. He described the messiness of the mathematician‘s work:  

Mathematics in the making resembles any other human knowledge in the 

making. You have to guess a mathematical theorem before you prove it; 

you have to guess the idea of the proof before you carry through the 

details. You have to combine observations and follow analogies; you have 

to try and try again. The result of the mathematician‘s creative work is 

demonstrative reasoning, a proof; but the proof is discovered by plausible 
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reasoning, by guessing…Demonstrative reasoning is safe, beyond 

controversy, and final. Plausible reasoning is hazardous, controversial, and 

provisional. (Polya, 1954/1998, pp. 99–100) 

 

Both Polya and Lakatos led mathematicians into new areas that questioned the 

very basis of mathematical knowledge. Their combined impact on the philosophy of 

mathematics was as important as the development of non-Euclidean geometries and 

Gödel‘s Incompleteness Theorem (Davis & Hersh, 1981). By defining mathematics as a 

social construct, they opened up the field to new interpretations. No longer was 

mathematics a subject for the elite. Polya‘s heuristic emphasized the accessibility of 

problem solving—and mathematics for Polya was about solving problems. Lakatos, by 

using dialogue to trace the evolving knowledge of mathematics—the proofs and 

refutations—stressed the social aspects of mathematical learning as well as the fallibility 

of mathematical knowledge and defined mathematics as quasi-empirical. Ernest (1998b) 

credited Lakatos with a synthesis of epistemology, history, and methodology in his 

philosophy of mathematics—a synthesis that impacted the sociological, psychological, 

and educational practices of mathematics. 

Ernest (1998b), like Hersh (1997), also referred to Kitcher as a maverick, in that 

Kitcher stressed the importance of both the history of mathematics and the philosophy of 

mathematics, a point Ernest makes as well. Kitcher (1983/1998), in his work, 

underscored the concept of change in mathematics: ―Why do mathematicians propound 

different statements at different times? Why do certain questions wax and wane in 

importance? Why are standards and styles of proof modified?‖ (p. 217). His conclusion: 

that mathematics changes in practice, not just in theory. Kitcher identified five 

components of mathematical practice—language, metamathematical views, accepted 
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questions, accepted statements, and accepted reasonings—that are compatible (Hersh, 

1997). As one component changes, others must change as well. Kitcher‘s five 

components emphasized the social aspect of mathematics, mathematics as a community 

activity with agreed upon norms and practices. Kitcher‘s view of mathematics mirrors 

Ernest‘s cycle of subjective knowledge → objective knowledge → subjective knowledge 

and Lakatos‘ idea of proofs and refutations in that each generation simultaneously 

critiques, internalizes, and builds upon the mathematics of the previous generation (Hersh, 

1997). 

I will add to the list of mavericks one more name (although there are many more): 

Sal Restivo. Restivo is a sociologist and social scientist at Rensselaer Polytechnic 

Institute who wrote that ―math worlds are social worlds‖ (1993, p. 269). Hersh (1997) 

terms Restivo a constructivist sociologist. Ernest (1998b) credited Restivo with 

challenging the Cartesian dualism of mind and body by viewing human thinking and 

doing as one. But Restivo views mathematics as a political entity as well (for if it‘s social, 

is it not also political?). Restivo (1993) highlighted issues of equality and power when he 

describes mathematics as a tool of ruling elites: 

As a social institution, modern mathematics is itself a social problem in 

modern society…It tends to serve ruling-class interest; it can be a resource 

that allows a professional and elite group of mathematicians to pursue 

material rewards independently of concerns for social, personal, and 

environmental growth, development and well-being; aesthetic goals in 

mathematics can be a sign of alienation or of false consciousness 

regarding the social role of mathematicians; and mathematical training and 

―education‖ may stress ―puzzle solving‖ rather than ingenuity, creativity, 

and insight…If we adopt the constructivist perspective that social talk 

about mathematics is the key to understanding mathematics (including 

mathematical knowledge), then our approach to solving the social 

problems of mathematics and the problems of ―mathematics as a social 

problem‖ will necessarily focus on social roles and institutions. (pp. 275–

276) 
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Thus, Restivo asserted, mathematics educational reforms cannot occur without a view 

towards the broader issues of power, social structure, and values. How these issues of 

power, social structure, and values intersect with Ernest‘s philosophy of mathematics and 

my own research is the focus of the next section. 

A Personal Theoretical Lens 

Although I have long been a feminist, I first became familiar with the idea of 

postmodern feminism through the writings of Elizabeth St. Pierre and Patti Lather.
7
 My 

feminism is inextricably linked with my role as a mathematics educator and researcher. 

As a student, my experience of mathematics was distinctly female, constantly feeling 

awkward and out of place for succeeding where society thought I should not. As a teacher, 

I was shocked to find my mathematically-talented female students affecting ignorance 

and misunderstanding in my advanced algebra courses. Had the world not changed for 

these young women in the past 30 years? As I move into a research sphere, although the 

experiences of girls and women are not the focus of my study, I cannot help but be 

influenced by issues of equity and power in the mathematics classroom. Poststructural 

feminist use of critiques such as deconstruction lead researchers to investigate how 

women and other disenfranchised groups are left out of the mainstream of educational 

success, particularly in the areas of mathematics and science. And, as St. Pierre (2000) 

noted, ―deconstruction is not about tearing down but about rebuilding; it is not about 

pointing out an error but about looking at how a structure has been constructed, what 

holds it together, and what it produces‖ (p. 482). Thus a feminist view of deconstruction 

                                                 
7
 The terms postmodern and poststructural are often used interchangeably, although some scholars insist on 

distinct meanings (Crotty, 1998). St. Pierre generally uses the term poststructural, perhaps due to her 

emphasis on language and text. I will follow Lather‘s (1991) lead, however, and use the terms 

interchangeably, primarily using postmodern unless the cited author has used a different term. 
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is not a destructive one but an affirming one. The postmodern feminist is more than 

willing to let go of the meta-narratives of the past and to look forward to newly 

constructed understandings, understandings that may vary from person to person, 

influenced by social relations, as well as varied representations of race, class, and gender 

(Lather, 1991). But the postmodern feminist does not forgo responsibility:  

Poststructuralism does not allow us to place blame elsewhere, outside our 

own daily activities, but demands that we examine our own complicity in 

the maintenance of social injustice. Feminism‘s slogan that everything is 

political must be joined with the poststructural idea that ―everything is 

dangerous‖ (Foucault, 1984/1983, p. 343). (St. Pierre, 2000, p. 484) 

  

Postmodern feminism, therefore, holds us each accountable to examine the meta-

narratives and to challenge their effects on teachers and students. Pedagogy is not neutral, 

Lather (1991) told us. The teacher is not a neutral transmitter of knowledge, the student is 

not a passive receiver, and the knowledge itself is never value-free and immutable. Thus 

Lather echoed Ernest‘s pedagogical belief in social constructivism. Yet how do we as 

mathematics educators and education researchers embrace the postmodern while still 

acknowledging our understanding of the mathematical and scientific? ―What does it 

mean to recognize the limits of exactitude and certainty, but still to have respect for the 

empirical world and its relation to how we access and formulate theory?‖ (Lather, 1991, 

pp. 124–125). 

Walkerdine (1994), Burton (1995), and Walshaw, (2001) help us to bridge the gap 

between postmodern feminism and philosophies of mathematics and mathematics 

education. Walkerdine used a postmodern analysis in her research to ―understand how I, 

and other oppressed and exploited peoples come to see themselves as unable to think‖ (p. 

61). Walkerdine sought to question not only the meta-narratives of science and scientific 
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knowledge, but the very foundations of developmental theory. Do our understandings of 

development privilege the male way of knowing and reasoning while diminishing that of 

our girls?  

My argument therefore is that it is not simply the case that girls are poor at 

mathematics, reasoning and so forth, but that the ―truth‖ of child 

development pathologizes and defines their performance in such a way as 

to read it as bad. (Walkerdine, p. 68) 

 

But Walkerdine (1994) was not just looking at the differences between girls and boys in 

our educational system; others such as non-Europeans, Black and White working-class 

children are also devalued in their mathematical thinking, argued Walkerdine.  

Burton (1995), though describing a ―feminist epistemology‖ of mathematics, also 

moved the focus beyond the education of females as she describes a ―colonization of 

mathematics‖ that has diminished the contributions of non-Western cultures. And, 

although Burton championed social constructivism as a philosophical position with 

profound implications for pedagogy, she wanted educators to go further than challenging 

and changing their classroom practices: ―Scratch a pedagogical or philosophical 

constructivist and underneath you are likely to expose an absolutist‖ (p. 214). Why are 

our views of mathematics are non-negotiable, Burton asked, even as we attempt to bring 

about pedagogical reform.  

Walshaw (2002) echoed this ―epistemological double standard,‖ whereas we 

adduce mathematics as objective and value-free while, at the same time, privilege the 

mathematical experiences and knowledge of some at the expense of others. But Walshaw 

(2001) moved away from Burton‘s standpoint theory of knowledge, that in some ways 

essentialized the learning of girls, and looked instead at the complexity of learning and 

learners in her postmodern ―gaze.‖ The desire to stay clear of essentializing the learning 
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of mathematics has led me to blend the ideology and epistemology of postmodern 

feminism with recent concepts of critical pedagogy as well as the theories of progressive 

educators such as Dewey and Freire.  

Kincheloe and Steinberg (1996) drew on postmodern feminist theory as well as 

critical pedagogy to frame their ―critical constructivism (a constructivism grounded on an 

understanding of critical theory and postmodernism)‖ (p. 171). Kincheloe and Steinberg 

called for this critical constructivism to transcend cognitive essentialism and 

acknowledge the complexities of what they term ―post-formal thinking.‖ Issues of power 

and knowledge are ineffaceably linked and must be uncovered and affirmed: ―Critical 

postmodern theory has taught us that little is as it appears on the surface‖ (p. 181). Like 

other postmodern researchers and educators, Kincheloe and Steinberg emphasized the 

process of deconstruction, noting that what is absent in a text might often be as important 

as what is present. These authors recall Dewey‘s concerns, nearly a century before, of 

decontextualized knowledge, and his contention that knowledge should never be viewed 

outside the context of its relationship to other information. 

Both Ernest (1991, 1998b) and Noddings (1990) recognized Dewey‘s 

contributions to social constructivism. By stressing the essential role that social 

experiences play in constructing knowledge, Ernest (1998b) credited Dewey as one of the 

first philosophically-minded theorists to give attention to social interaction. Ernest (1991) 

even described Dewey‘s philosophy of mathematics as ―more empiricist, even fallibilist, 

than absolutist‖ (p. 184). Unfortunately, Ernest noted, Dewey did not further develop his 

philosophy of mathematics and others failed to take up the standard. ―It is,‖ wrote Dewey 

(1938/1963), ―easier to walk in the path that has been beaten‖ (p. 30).  
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Dewey‘s philosophy of education rested on a philosophy of experience. Students 

bring to their learning their own prior experiences and (mis)understandings that cannot be 

discounted. In addition, Dewey believed, students learn through experience, as well as 

through social interaction with others. Dewey (1938/1963) also anticipated the rapidly 

changing future that education is faced with today:  

The principle of continuity in its educational application means, 

nevertheless, that the future has to be taken into account at every stage of 

the educational process. This idea is easily misunderstood and is badly 

distorted in traditional education. Its assumption is, that by acquiring 

certain skills and by learning certain subjects which would be needed 

later…pupils are as a matter of course made ready for the needs and 

circumstances of the future…It is a mistake to suppose that acquisition of 

skills in reading and figuring will automatically constitute preparation for 

their right and effective use under conditions very unlike those in which 

they were acquired. (p. 47) 

 

Dewey (1937/1987) also warned educators against indoctrination: ―the systematic 

use of every possible means to impress upon the minds of pupils a particular set of 

political and economic views to the exclusion of every other‖ (p. 415). Skovsmose (2005) 

carried this idea even further when he warned us about the hidden agenda of mathematics: 

―Could it be that mathematics education operates as an efficient social apparatus for 

selection, precisely by leaving a large group of students as not being ‗suitable‘ for any 

further and expensive technological education?‖ (p. 11). For a long time, mathematics 

has served as the gatekeeper (Stinson, 2004)—the course of study that separates those 

who will reap the financial and intellectual rewards of our educational system from those 

who will remain economically disenfranchised. Seventy years ago, Dewey (1937/1987) 

wrote ―that society is in process of change, and that the schools tend to lag behind‖ (p. 

408). Others now also warn of the dangers of elitism in our mathematics educational 

policies: ―In effect, math instruction weeds out people and you wind up with what 
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amounts to a priesthood, masters of the arcane secrets of math through what appears to be 

some god-given talent or magic‖ (Moses & Cobb, 2001, pp. 9–10). Nearly a century ago, 

Dewey challenged society to change its view of education, just as Moses and Cobb (as 

well as Ernest) challenge us today to change our views of mathematics and mathematics 

education. Paulo Freire offered the same challenge: 

To teach is not to transfer knowledge, to transfer contents. To teach is to 

struggle, together with the students; it is to create conditions for the 

construction of knowledge, for the reconstruction of knowledge. For me, 

this is to teach. (Freire, D‘Ambrosio, & Mendonca, 1997, p. 9) 

 

In Pedagogy of the Oppressed, Freire (1970/2000) warned educators that sciences 

and technology, including mathematics, were powerful instruments of oppression. To 

fight this oppression, as well as the banking concept of education in which ―knowledge is 

a gift bestowed by those who consider themselves knowledgeable upon those whom they 

consider to know nothing‖ (p. 72), Freire advocated an empowering ideal of education, 

one in which teachers are partners with their students. Similar to Dewey‘s vision of 

experiential education, Freire described a problem-posing education that embodied 

communication—a liberating education. Freire emphasized the need for dialogue in this 

educational model, a model in which both teacher and student are learners. Ernest (1991) 

embraced this view of education and aligned his philosophy of mathematics education 

with Freire‘s pedagogy of the oppressed: ―Freire argues, as we have done, that objective 

knowledge is continually created and re-created as people reflect and act on the world‖ (p. 

84). Ernest, Freire, Dewey—all educators who underscore the need for learners to make 

sense of their learning and to be active participants in the learning process, as well as the 

importance of the social process of education.  
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Like Stinson (in press), I have found it necessary to adopt an eclectic theoretical 

framework. As a researcher, I am still many selves: woman, mother, teacher, scholar, 

learner, agent of change. My framework, that which supports and legitimizes my study, 

must encompass all that I am. And so I have blended the social constructivist philosophy 

of Ernest, the humanist philosophies of mathematics, a postmodern feminism, and the 

progressive educational theories of Dewey and Freire. I strive to be ethical in my research 

as in my life and I adopt what I see as an ethical framework—one that recognizes the 

diverse needs of the students and teachers in our classrooms. I share a goal with the many 

others I have cited, to improve mathematics teaching and learning in our schools, but in 

so doing I want to embrace all that is unique and extraordinary in our learners. ―Purposes 

are constructed as well as knowledge,‖ wrote Noddings (1993), and my eclectic 

theoretical framework constructs and frames the purposes of my research. Recognizing 

that mathematics often serves as a filter, as a gatekeeper, Hart (2003) advocated new 

avenues in research on equity and justice in mathematics education. An exploration of 

teachers‘ philosophies of mathematics, challenging traditional views of mathematics and 

mathematics teaching and learning, is one such avenue.  
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CHAPTER 4 

METHODOLOGY  

In this chapter, I present a detailed explanation of my study, including a general 

description of the study, the conceptual framework that guides the design of the research 

and the analysis of the data, and a detailed account of narrative analysis as a research 

methodology. In addition, I explain the type of data that was collected and the method of 

analysis of that data. I conclude the chapter by addressing my role as a researcher, as well 

as issues of validity, confidentiality, and researcher ethics. 

Description of Study 

The purpose of this study is to examine the process that educators go through as 

they formulate a personal philosophy of mathematics at a moment in time when they are 

also implementing a new, task-based mathematics curriculum. Four mathematics 

educators who had participated in a graduate-level course in the philosophy of 

mathematics were interviewed over a period of 18 months. Discussions of philosophy, 

mathematical background, and instructional practices were the foci of those interviews 

with the intent of creating a ―mathematical story‖ for each of the four participants.  

The participants of this study were all, at the onset of the study, graduate students 

in a major urban university in a large southeastern city. The graduate students chosen for 

the study were public school educators, enrolled part-time in a Specialist or Doctoral 

level degree program. The study participants included elementary and secondary school 

mathematics educators working as classroom teachers or instructional coaches. Each of 
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the participants was part of a graduate-level mathematics education course that was 

offered during the summer of 2007. The focus of that course (referred to in this paper as 

the summer course) was to challenge teachers‘ conceptions of mathematics through an 

exploration of (perhaps) new and different philosophies of mathematics and mathematics 

education. Modern philosophical writings in mathematics used in the summer course 

included Russell‘s (1919/1993) Introduction to Mathematical Philosophy, Lakatos‘ (1976) 

Proof and Refutations: The Logic of Mathematical Discovery, Davis and Hersh‘s (1981) 

The Mathematical Experience, Tymoczko‘s (1998) New Directions in the Philosophy of 

Mathematics, and Hersh‘s (1997) What is Mathematics, Really? (see Appendix A for the 

course syllabus). Course participants submitted a reading journal, a personal reflection on 

each of the readings, at the conclusion on the course. In addition to the reading journal, 

the course participants wrote two reflective essays during the course to help them explore 

their own philosophies of mathematics and to investigate the influence of their personal 

philosophies on their instructional practices. Course discussions were conducted in a 

Socratic method, with participants being encouraged to question themselves and each 

other during their philosophical explorations. Each week a course participant would be 

responsible for leading the class discussion, while another would scribe, or keep minutes 

of the discussion. Course participants were given graduate-level credit for the class. I was 

a co-creator as well as a co-instructor of the course, working with Dr. David Stinson, my 

major advisor. The summer course grew out of an exploration of philosophy of 

mathematics that Dr. Stinson and I had undertaken earlier the previous year, and the 

readings focused on the ―mavericks‖ in the philosophy of mathematics. As my advisor, 

David Stinson, and I organized the readings that became the focus of our summer course, 
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our intent was not to present a ―balanced‖ view of mathematical philosophies. Our intent 

was to trouble teachers‘ philosophies of mathematics, to deconstruct the meta-narratives 

of mathematics as value-free, objective, and privileged. We chose readings that 

challenged the traditional view of mathematics.
8
 Our goal was to engage the course 

participants in a problematization of the nature of mathematics, and to begin a process 

that led them to question previously held perceptions about mathematics and mathematics 

education. The intent was not ―innocent‖ as this study was not merely descriptive, but 

actively sought change in teachers‘ perceptions and even instructional practices. I will 

address our intent further in the following section. 

Conceptual Framework 

 It is important to be explicit about the conceptual framework of a research project, 

particularly a project that seeks change. As Lather (1991) posited, no research is neutral. 

Each researcher and each research project represents a particular lens, a ―point of view 

that legitimizes the manner in which the interpretations are justified or warranted‖ 

(Kilbourn, 2006, p. 533). The conceptual framework should be interwoven throughout a 

research project: from design of the project and choice of data collected, to method of 

data analysis, interpretation of the findings, and even the manner in which the data is 

presented (Mewborn, 2005). In addition, Brown (1998) argued quite convincingly that 

pragmatic reasons alone do not justify research in mathematics education, that a fully 

articulated theoretical framework is essential if a research project is to impact educational 

                                                 
8
 We also, unfortunately, chose readings that privileged the Western, Greek-based mathematics that is 

favored in our educational system. We did this because, like Hersh (1997), we found that the literature on 

non-Western mathematics was limited in its philosophical focus. I believe that a comprehensive 

examination of non-Western mathematics and its influences on the mathematics taught in this country, is a 

much needed topic and hope that future research will move in that direction. 
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practices. I will, therefore, spend some time addressing the conceptual framework of this 

study, in particular how it relates to this study‘s methodology.  

There has been a call, in recent years, to challenge the traditions of mathematics 

education research and to pursue alternative research directions, including both 

constructivist and postmodern research paradigms (see, e.g., Ernest, 1998a, 1998b, 2004; 

Lerman, 1998, 2000, 2001; Lester & Lambdin, 1998; Valero, 2004). Other researchers 

have explored issues of equity and access in mathematics education through a new lens as 

well, advocating new ways to view not just how we teach mathematics, but how we view 

the mathematics that we teach (see, e.g., Boaler, 2002; Hart, 2003; Martin, 2003; NCTM 

Research Committee, 2005). The conceptual framework of this project follows suit by 

embracing a postmodern lens through which to view the research. At the same time, I 

acknowledge the importance of social constructivist epistemologies of teaching and 

learning, both in the classroom and in research as well. A researcher embracing a 

constructivist paradigm believes that knowledge is socially constructed and that one of 

the goals of research is to understand the complexity of the social world, the world in 

which we all live and learn, from the point of view of those who live in it (Mertens, 2005). 

Hart (2003) offers a criticism of mathematics education research that is too narrowly 

focused when she writes that ―to understand what is happening in an individual 

mathematics classroom it is important to examine the experiences of teachers both inside 

and outside the classroom‖ (p. 36). Both the constructivist and the postmodern views of 

education and research are needed in this study, which examines and challenges teachers‘ 

philosophical views of mathematics, views that influence their instructional practices as 

well as their responses to the current reform initiatives in mathematics education. 
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A postmodern approach to mathematics education research seeks to critique the 

predominance of scientific rationalism in mathematics educational research (and other 

research domains as well). As Valero (2004) wrote, this critique is necessary for two 

reasons: ―The first is to support a search for plausible, alternative understandings of 

mathematical education in schools; the second is to break with the deeply entrenched 

modern systems of reason in which our discipline (mathematics education) has built‖ (p. 

51). Teppo (1998) also acknowledged this changing view of mathematics education 

research: 

The multiple perspectives from which the nature of mathematics is now 

being considered and the variations in processes and contexts that are 

increasingly being used to characterize school mathematics reflect a 

paradigm shift from a modernist to a postmodernist worldview. This shift 

represents a reconceptualization of the nature of knowledge from a single 

and external reality to a set of multiple and subjective realities. (pp. 9–10) 

 

By recognizing the complexities of knowing and learning, some educators and 

researchers are changing their views on what it means to ―do math‖ as well as what it 

means to ―do research.‖ Research in mathematics education must be more reflexive 

(Ernest, 1998a); researchers and educators must look not only at the teaching and 

learning of mathematics, but at the mathematics itself. In fact, this study is framed around 

Ernest‘s ongoing work in the field of philosophy of mathematics. Ernest (2004) identified 

five key questions that can focus our exploration of mathematics using a philosophical 

approach. What is mathematics? How does mathematics relate to society? What is 

learning mathematics? What is teaching mathematics? What is the status of mathematics 

education as a knowledge field? Ernest (1998a, 1998b) called for research that challenges 

not only our views of mathematics teaching and learning, but our views of mathematics 

itself. Ernest (1998b) described:  
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A move to reconceptualize accounts of mathematics to accommodate 

greater plurality and diversity, including external, social dimensions of 

mathematics—its history, applications, and uses…The outcome is a 

demystification of mathematics to the benefit of the discipline and 

mathematicians and also to students, teachers, and other users of 

mathematics in society. (pp. 25–26) 

 

This study, which examines teachers‘ philosophies of mathematics and challenges 

them to explore what it means to ―do mathematics‖ in their classroom and in society, also 

examines what it means to do research. Just as Hersh and Davis (1981) and other 

―humanist‖ philosophers of mathematics question societal assumptions of mathematics as 

value-free, this study does not consider research to ever be value-free. All research takes 

on a certain point of view (Lather, 1991); it assumes an often unspoken view of the world. 

This study, by acknowledging and embracing the postmodern ideas of complexity and 

non-certainty, also embraces an empowering agenda. Lather (1991) advocated for the 

―development of research approaches which empower those involved to change as well 

as to understand the world‖ (p. 3). The understandings sought in this study were not 

predetermined; the participants and the researcher were challenged to question their ideas 

of mathematics, mathematics education, and mathematics education research. The results 

of that challenge are not fixed and the data presented in the next chapter, as well as my 

analysis of that data, are only a snapshot of a particular time in the lives of the 

participants and the researcher.  

Narrative Analysis 

 Several authors have sought to differentiate between the terms methods and 

methodology (see, e.g., Bogdan & Biklen, 2003; Grbich, 2007; Mertens, 2005), 

sometimes with differing conclusions. While the previous section described the 

methodological or conceptual framework of this study, this section will describe how 
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narrative analysis framed the specific methods of data collection and analysis that were 

used in the study. 

Pirie (1998a) called on the mathematics education researcher to ask herself 

numerous questions about her research focus and methodology, terming the choice of 

research methods a ―very personal decision‖ (p. 21). Methodology must not only be 

determined by our research questions but must be consistent with both our theoretical 

perspective and our research framework. As a feminist, postmodernist, and mathematics 

educator, I am not seeking answers but instead am seeking insight into teachers‘ 

perceptions of mathematics. Narrative analysis, sometimes referred to as narrative 

inquiry (Clandinin & Connelly, 2000), narrative construction (Barone, 2007), or simply 

narrative research (Casey, 1996), focuses on the stories of research participants (Grbich, 

2007). Researchers use narrative analysis based on the belief that ―we find and construct 

meaning in our lives by telling our stories‖ (Johnson-Bailey, 2004). Participants share 

their stories which are then accepted as their beliefs and understandings at a particular 

time within a particular context. Thus, narrative analysis does not seek an objective truth; 

it does not question the ―reality‖ of a participant‘s story:  

Narrative analysis takes as its object of investigation the story itself. . . . 

The purpose is to see how respondents in interviews impose order on the 

flow of experience to make sense of events and actions in their lives. The 

methodological approach examines the informant‘s story and analyzes 

how it is put together, the linguistic and cultural resources it draws on, and 

how it persuades a listener of authenticity. Analysis in narrative studies 

opens up the forms of telling about experience, not simply the content to 

which language refers. We ask, why was the story told that way? 

(Riessman, 1993, pp. 1–2) 

 

Narrative analysis does not seek truth in the traditional sense. Researchers 

engaged in narrative analysis do not employ triangulation of multiple data sources to test 
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the validity of data. Instead narrative researchers seek prolonged engagement in the field. 

In this study, multiple interviews, reflective essays, and reading journals were all used to 

elicit multiple stories centering on a common theme. By exploring stories on multiple 

occasions, both participant and researcher made sense of the experience. Cortazzi (2001) 

cites the usefulness of narrative analysis as ―an especially powerful research tool if the 

narratives are accounts of epiphanic moments, crises, or significant incidents in people‘s 

lives, relationships or careers‖ (p. 384). Narrative analysis therefore is an informative 

methodology in a study that pushes teachers to explore their own philosophies of 

mathematics at a historical moment when they are being challenged to shift their 

instructional practices in their classrooms due to educational reform. Narrative analysis 

celebrates the lives of ordinary people and recognizes the political nature of their 

personal and professional struggles (Casey, 1996). Narrative analysis is often viewed as 

an empowering methodology—it invites participants to make meaning and to interpret 

the events of their own lives, it gives them a voice (Johnson-Bailey, 1999). But the voices 

of the participants are not alone in the research. As the researcher, I directed the study. I 

chose the design of the research, I framed the questions. Although I attempted to follow 

the lead of the participants as they told their stories, and to allow their stories to point the 

way, I came to each interview with an outline, an idea of the questions I wanted to ask 

and a direction in which I planned to guide the study. Riessman (2008) cautioned against 

viewing narrative analysis (or any research methodology) as empowering, especially 

when working with marginalized groups, of which teachers must be included (Apple, 

1986). Although I view the participants in my study as fellow students and fellow 

educators, I must be aware that my role as teacher (in the summer course) and as 
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researcher changed the dynamics of our relationship and created unequal position of 

power. As I conducted the study and analyzed my data, I had to be aware not to overstate 

issues of empowerment and voice. 

Cortazzi (2001) cited narrative analysis as an effective tool of professional 

development. Smeyers and Verhesschen (2001) described narrative analysis as a 

philosophical endeavor, one that seeks to change how both researcher and participant see, 

if not the world, then at least themselves within the world. In education, narrative 

analysis has been used in studies that explored the social and personal transformations of 

mature college students (Britton & Baxter, 1999); examined the effects of a co-principal 

shared leadership initiative (Court, 2004); explored the experiences of preservice to 

inservice elementary school teachers as they learned and taught science (Mulholland & 

Wallace, 2003); examined the field of teacher knowledge research (Rosiek & Atkinson, 

2007) and other teacher practices (Clandinin, Pushor, & Orr, 2007); and investigated the 

effects of race, class, and gender on educational settings (see, e.g., Johnson-Bailey, 1999, 

2004). 

Given that narrative analysis allows for the systemic study of personal experience 

and meaning (Riessman, 2002), it seemed an appropriate methodology for this research 

study. If, as Hatch and Shiu (1998) claimed, teachers are a critical part of mathematics 

education research and should have access to the outcomes of that research, a 

methodology that intimately involves teachers as participants is essential: ―Teachers of 

mathematics are uniquely placed to investigate—and record—aspects of their teaching, 

their classroom and their students that are hidden from others‖ (Hatch & Shiu, p. 297). 

Narrative analysis is an overtly political act (Barone, 2007), one whose aim ―is not to 
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seek certainty about correct perspectives on educational phenomena but to raise 

significant questions about prevailing policy and practice that enrich an ongoing 

conversation‖ (p. 466). Narrative analysis is a divergent methodology (Rosiek & 

Atkinson, 2007); it does not seek resolution and conclusion but rather experiential 

understanding, a story as metaphor for life. Narrative analysis aligns with a social 

constructivist paradigm of learning: ―By acknowledging the social construction of 

knowledge, narrative has provided a methodology that has taken into account the situated, 

partial, contextual, and contradictory nature of telling stories‖ (Hendry, 2007, p. 489). 

Data Collection 

The data collected for this study included written course assignments, class 

discussions, and interviews with the participants. The teachers enrolled in the summer 

course wrote an initial reflective essay on their personal philosophy of mathematics. Each 

course member was responsible for a summary of one week‘s readings and led that 

week‘s discussion. Weekly class discussions were scribed by another member of the 

course. A final, more scholarly paper (including citations of class readings) was turned in 

at the conclusion of the course. This written data, along with the interview data, were 

utilized during data analysis.  

There were four interview phases to this study. The first phase, conducted as the 

participants were enrolled in the graduate course in the summer of 2007, included initial 

interviews with three participants—one middle school mathematics instructional coach 

and two high school teachers. The initial interview focused on each teacher‘s 

mathematics background and professional experiences, the intent being to build a 

relationship as well as collect background information. The information discussed in the 
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interview included personal school experiences with mathematics, educational 

background, and information about each participant‘s current teaching assignment (see 

Appendix C for a copy of the Initial Interview Protocol). The protocol was not strictly 

followed as I responded to each participant‘s conversation in order to establish a positive 

and comfortable relationship. 

The second phase of the study included the addition of two new participants—a 

high school mathematics instructional coach and an elementary school mathematics 

instructional coach.  (The middle school instructional coach was no longer available for 

interviews and her data was not used in this dissertation study.)  I conducted initial 

interviews with these two teachers using the same interview protocol in order to gather 

background information. These interviews took place in the spring of 2008. The third 

phase, which took place in the summer of 2008, included a second interview with each of 

the four participants that further explored each participant‘s philosophy of mathematics. 

Prior to these second interviews, I provided the participants with copies of their own 

reflective essays written during the summer course, as well as transcripts of their initial 

interviews. This form of member checking allowed participants to reflect back on their 

earlier statements, to remember the context of our initial interview, and to consider the 

previous readings and writings from the summer course on their current philosophies of 

mathematics. 

The final interview phase took place in November 2008. The purpose of the third 

and final interview was to investigate the relationship between the participants‘ 

philosophies of mathematics and their perceived instructional practices, especially in 

light of the curricular and pedagogical changes being implemented in Georgia through 
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the Georgia Performance Standards (GPS). The participants were asked to explore the 

effects (if any) their exploration of the philosophy of mathematics had had on their 

perceptions of mathematics as a field of knowledge and to share any changes they might 

have observed in their professional practices. This final interview took place well into the 

school year (the school year having begun in early to mid-August) so that the participants 

could reflect on the curriculum changes that took place in high school that year (as three 

of the four participants were high school mathematics educators). 

Although the initial interview included a list of possible questions, like Riessman 

(1993), I preferred a less structured interview style: ―Interviews are conversations in 

which both participants—teller and listener/questioner—develop meaning together, a 

stance requiring interview practices that give considerable freedom to both‖ (p. 55). 

Unlike a typical social conversation, though, an interview is guided by the researcher 

through the use of focused questions, questions that encourage the interviewee to speak in 

depth and at length (Rubin & Rubin, 2005). It was important, in the interview process, to 

put the interviewee at ease, to create a relaxed, safe environment, one in which the 

interviewee felt comfortable sharing what may well be personal and painful or awkward 

memories and events (Weiss, 1994). As a researcher, it was important that I be interested 

in my participants‘ stories, that I demonstrate a willingness to learn from their stories 

(Rubin & Rubin, 2005). The goal in data collection was to gather a substantial amount of 

rich, thick descriptive data (Geertz, 1973), over a period of time, through the words of the 

participants. Then through the analysis of this data, teacher stories emerged and meaning 

was constructed. But, as I analyzed my data, I remained aware of my own ―conscious and 

unconscious baggage‖ (Scheurich, 1997, p. 73), the biases and background that I brought 
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to the research process. I did strive to be transparent, as a postmodern researcher, and 

recognize the impossibility of removing my own voice from the research.  

Data Analysis 

Riessman (1993) outlined five levels of representation in the research process of 

narrative analysis: attending, telling, transcribing, analyzing, and reading. I will address 

the first four of these five levels in this section (reading, the presenting of the study, will 

be addressed in a later section). Attending to an experience, research participants note 

certain features of that experience, that is, certain images, thoughts, memories, and 

visions. Their telling of those experiences then depends on their memories—what made 

an impression, what did not. We acknowledge that there is always a gap between the 

lived experience and the telling of it (Riessman, 1993). But meaning also shifts within the 

actual experience of telling; it is no longer just an experienced event, it has now been 

shared with another. Meaning is constructed anew with each additional telling.  

The transcribing of experience is in many ways unique to the research process. It 

is through transcription that the researcher begins the interpretation of the lived 

experiences. Within this study, interviews were audio-recorded and transcribed. The 

transcriptions included pauses, facial expressions, and body language. Thus the 

transcriptions noted how a story was told not just the words that were used because, as 

Riessman (1993) asserted, ―forms of transcription that neglect features of speech miss 

important information‖ (p. 20). My analysis of the data began as I transcribed each 

interview because ―analysis cannot be easily distinguished from transcription‖ (Riessman, 

p. 60). Following an initial transcription, I listened again to each recording, adding my 

initial observer comments to the transcription, which began my reflective work as a 
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researcher. At that second listening, I noted my reactions to the participants‘ words, the 

emotions I sensed, and the expressions I observed.  

Analysis of the narrative continued with readings and re-readings of the 

transcripts. Narratives are not read simply for content; it is often the structure of a 

narrative that tells a story. How is it organized, why does a participant choose to tell a 

particular story, or to tell it in a particular manner? I have utilized two methods of 

narrative analysis—thematic analysis and dialogic/performance analysis (Riessman, 

2008). Thematic analysis has been used for the interview data as well as the written data 

collected during the course. Thematic analysis focuses on what is said in a narrative. 

Thematic narrative analysis differs from more traditional approaches such as grounded 

theory and interpretive phenomenological analysis in that narrative analysis attempts to 

―keep the story intact for interpretive purposes and…attends to time and place of 

narration and, by historicizing a narrative account, rejects the idea of a generic 

explanation‖ (Riessman, 2008, p. 74). Through thematic analysis, I have identified 

themes within a participant‘s narrative rather than attempted to identify themes common 

to all the study‘s participants, what Riessman terms a ―case-centered commitment‖ (p. 

74). Thus, in my analysis chapter, each participant‘s story stands alone. As part of the 

thematic analysis of each participants‘ story, I created a concept map to organize the data. 

The use of the concept map helped me to organize the themes I observed in the data and 

served as a tool to share my initial analysis with the participants (Raymond, 1997). I 

forwarded the applicable concept maps to each participant and invited comments on my 

interpretations (only one participant responded with a clarifying point). Although I 
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received little feedback from my participants on the concept maps, they served as a useful 

tool in my analysis process. 

My thematic analysis is integrated with a dialogic/performance analysis. Just as 

thematic analysis focuses on what is said, a dialogic/performance analysis focuses on 

who a participant is speaking to, as well as when and why that participant speaks. Thus, 

through dialogic/performance analysis, the researcher is made transparent, for a 

participant is responding to a particular set of questions, asked at a particular time, and 

for a particular purpose. It is this contextual component of dialogic/performance analysis 

that appeals to me. As Riessman (2008) asserted, ―investigators carry their identities with 

them like tortoise shells into the research setting, reflexively interrogating their influences 

on the production and interpretation of narrative data‖ (p. 139). Thus it is through the 

dialogue between speaker and listener, between participant and researcher, that meaning 

is made. It has been important for me to recognize my active role in this study, to 

recognize that it is my choice of readings, my questions, and my own beliefs about 

mathematics that are guiding this study. In my analysis, as I tie each participants‘ story to 

both a social constructivist frame of mathematics education and a postmodern view of 

mathematics, I have sought to focus on the telling of the stories, in other words, which 

stories were chosen, the manner in which they were told, and the words selected in the 

telling. Yet this form of analysis places me dangerously in the center of the research, a 

construct I will explore in the following section. 

Troubling the Role of the Researcher 

An important issue to consider in narrative analysis, or any qualitative research 

project, is the role of the researcher. As a qualitative researcher, I have a tremendous 
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impact on the research but I must not be myopic in my analysis and see and hear only 

what I expect to see and hear. It is necessary, in my role as a researcher, to address issues 

of transparency and integrity (Rogan & de Kock, 2005): transparency by sharing who I 

am and what history I bring to this research, and integrity by acknowledging the political 

nature of research, as well as educational and social relationships. Yet I must beware of 

foregrounding my own perspective: ―How do we explore our own reasons for doing 

research without putting ourselves back at the center?‖ (Lather, 1991, p. 91).  

My research project must include, therefore, some autobiography—who am I and 

what has brought me to this research. I am not neutral observer. I am, as Amit and Fried 

(2002) describe, a reform researcher. My work includes professional development with 

K–12 teachers with a focus on changing instructional practices toward a social 

constructivist paradigm. My research is influenced by my professional experiences. All 

mathematics education research, argued Amit and Fried, should be connected to reform, 

as their ultimate end must be the improvement of mathematics education. Being a reform 

researcher, whose acknowledged goal is to change what goes on in the mathematics 

classroom, it is essential that I adopt a methodology that is not only active but reflective. 

Narrative analysis is that active methodology, but the onus is on me, the researcher, to 

utilize a reflective stance as I collect and analyze data.  

To maintain transparency and integrity, I kept a researcher journal during data 

collection and analysis. My journal included the following: comments on data 

collection—difficulties or road blocks that I encountered and concerns that I had; 

reflections on analysis—what I was observing and what struggles I had in making sense 

of my data; reflections on methods—comments on procedures and strategies as well as 
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decisions I made regarding the design of the study; points of clarification—what I needed 

to pursue further to understand better; and reflections of ethical dilemmas and conflicts as 

well as my own state of mind—to be self-reflective and self-critical (Bogdan & Biklen, 

2003). These journal entries served to uncover my own biases and prejudices, to ensure 

not objectivity but transparency and integrity. One particular issue I focused on in my 

journal was the problematic nature of my overlapping roles in this study—I am a teacher 

and a researcher; I am researcher and professional developer. I was the co-creator and co-

instructor (along with my major advisor, David Stinson) of the graduate-level course, an 

active participant (and, at times, leader) of class discussions, the assessor (and grade-

giver) of the participants‘ work, as well as the researcher. Dr. Stinson and I purposefully 

chose the readings with an eye, not towards a balanced presentation of 20
th

 century 

philosophies of mathematics, but towards challenge and disequilibrium. The readings and 

discussion of mathematics philosophy in which the educators in this study participated 

affected the stories they then told. My professional work—supporting and guiding 

teachers as they implement statewide curriculum mathematics reform—is proactive, not a 

passive role. Professionally, I have a goal in mind—changing instructional practices. 

Does this interfere with my role as a researcher? My study is an active one; reform is my 

goal as a researcher as well—to change teachers‘ conceptions of mathematics. I am not 

the proverbial fly-on-the-wall. Yet I did not enter this research claiming objectivity. It is 

my voice that may be the clearest in this study and I must be self-critical in how I use that 

voice (Tierney & Lincoln, 1997).  

An additional dilemma I had as a researcher was how to make sense of my data. 

In many ways, the qualitative researcher is in the midst: ―in the midst of a three-
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dimensional narrative inquiry space, and…in the midst of a temporal storied flow‖ 

(Clandinin & Connelly, 2000, p. 65). As teachers share their stories, the researcher is 

placed into a real time and space (or at least the participant‘s perception of a real time and 

space). Narratives move back and forth in time; stories change from telling to telling. 

How do I make sense of this complex process that is narrative analysis (Rogan & de 

Kock, 2005)? In many ways, this process required what Hendry (2007) termed faith: 

―Research is not ultimately about interpretation but about faith. Trusting in the stories and 

the storyteller‖ (p. 494). This faith, Hendry argued, is a political act, one that 

acknowledges research participants as whole, as meaning makers of their own lives and 

as central to the researcher‘s meaning making. My task as a narrative researcher, then, 

was to listen; to let my participants‘ stories guide the direction that the research took; and 

to be humble in my role as researcher. Clandinin and Connelly (2000) wrote of the 

―mutuality of the interaction‖ (p. 91) in narrative research. Thus interviews are not 

formalized but are, instead, conversations, unstructured and informal, led often by the 

participants.  

Addressing Validity 

Ultimately, the researcher‘s analysis of the narrative are tied to the evolving 

research questions, and are also linked to the researcher‘s own history, her own values 

and biases (Riessman, 1993). Thus, issues of validity are raised within narrative analysis 

and must be addressed. Validity within the research process concerns the believability of 

a statement or research claim (Polkinghorne, 2007). Within narrative analysis, validity 

means not truthfulness but trustworthiness. Narratives are not static; they are dependent 

on the teller, on the time, and even on the listener‘s point of view. How then does the 
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researcher address issues of trustworthiness? And what indeed is meant by 

trustworthiness? Riessman (1993) presented four criteria to address issues of validity or 

trustworthiness: persuasiveness, correspondence, coherence, and pragmatic use. 

Persuasiveness asks ―is the interpretation reasonable and convincing‖ (Riessman, 1993, p. 

65)? To increase persuasiveness, the researcher should support claims with ample 

evidence from the participants‘ narratives. Hence my analysis in the following chapter 

includes detailed words from the participants. Correspondence refers to the researcher 

sharing results with the participants of the study, what other researchers often call 

member checking. What do our participants think of our interpretations? As I developed 

my analysis of the data, I shared my ideas both through the interview process and in the 

concept maps I had created, inviting the reactions of the participants.  

Riessman‘s coherence criterion refers to the manner of the storytelling—what are 

the overall goals of the narrator, what linguistic devices are employed, what themes are 

repeated and reiterated throughout the narration? The coherence of my interpretation is, 

again, presented through the use of the participants‘ words, and illustrated through the 

use of similar stories from multiple sources (e.g., several interviews, reflective essays, 

reading journals). And lastly, pragmatics use—to what extent is a study useful to others; 

what will be its future uses? The pragmatic uses of my study will be addressed in the 

closing chapter. Riessman stressed the fluidity of her criteria; they are not meant as a 

checklist for validity but as guides for the researcher in the development and evolution of 

a study. 

Mulholland and Wallace (2003) offered their own set of criteria for assessing the 

value of knowledge claims within narrative research. The first, the strength criterion, 
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focuses on issues of trustworthiness of data, and is addressed through sufficient time in 

the field, use of multiple data sources, member checks, presence of the participants‘ 

voices, documentation of researcher bias, and discussions of the limitations of a study. 

Polkinghorne (2007) recommended at least three interviews spread out over a period of 

time. My own study included extended time with participants, multiple data sources 

(interviews, written reflections, and class discussions) and three interviews with each 

participant. Mulholland and Wallace‘s second criterion, the sharing criterion, refers to the 

―validation or legitimation that is won from the reader‖ (p. 8). This criterion, argued the 

authors, comes about through thick description, allowing the reader to make contact with 

the participants of the study, to connect with them at a personal level. The authors 

recommended telling the story of the research itself along with the participants‘ stories to 

meet this criterion. Throughout this paper, I have sought to share my own story as 

researcher with the reader, in order to share the journey I experienced as well as the 

journeys of my participants. A final criterion is the service criterion, similar to 

Riessman‘s criterion of pragmatic use. Will this study provide service to the field of 

mathematics education; will it be useful to future researchers, educators, and students? 

The service criterion is a future oriented criterion—the goal of all research is to serve a 

purpose but, although my intent will be shared in the final chapter, the service criterion is 

the most difficult to document in the present. 

 Some points need to be raised here as to the differences between qualitative and 

quantitative research as regards to issues of validity, such as ideas of generalizability, and 

reliability. These concepts are used frequently to assess the credibility of a research 

project but must carry different meanings when applied to qualitative research studies 
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such as narrative analysis. Bogdan and Biklen (2003) offered substantial clarification on 

the relevance of these criteria to qualitative research, which I will touch on briefly here. 

Regarding generalizability, first, not all researchers are concerned with issues of 

generalizability, or whether the findings of a particular study may hold true in other 

settings, with other participants, and in other times. Postmodern researchers, for one, 

question the very idea of generalizability (Lather, 1991). Some researchers focused the 

question not on whether findings can generalize, but to what other particular settings and 

subjects the findings may generalize (Bogdan & Biklen, 2003). Other researchers looked 

towards a plethora of related studies to address the issue of generalizability (Mertens, 

2005).  

This is a study of four educators, four mathematics teachers engaged in the 

struggle to engage students and other teachers in the learning of mathematics. Did I 

attempt to choose a demographic cross section of teachers? While this study included 

three White teachers, and one Black teacher, three female teachers and one male teacher, 

those demographics were not key to their participation. Was it my intent to focus on 

educators employed in a particular type of school or working within a particular grade 

band? While my participants included both elementary and secondary educators, teachers 

in upper-middle class schools as well as working-class schools, the participants were 

chosen more purposefully based on their initial reflections in our graduate course, and 

their varying ideas about mathematics and mathematics education. My goal in this study 

was not to generalize about teachers‘ philosophies of mathematics or instructional 

practices. Pirie (1998) encouraged us to ask: ―Do we seek insight or do we want 
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generalizability?‖ (p. 21) as we engage in educational research. Insight was clearly my 

intent in this study.  

As to the issue of reliability, in other words, will a second researcher be able to 

reproduce the findings of a particular study, qualitative researchers again define the issue 

in a different manner. Reliability in a research study is tied to issues of subjectivity. 

Qualitative researchers acknowledge that each researcher brings to a study her own 

philosophical, theoretical, and experiential background that directly influence analysis 

and interpretation of data. The qualitative researcher argues that all research is subjective, 

that objectivity is a falsehood that is often hidden behind sterile numbers and statistics. 

Issues of reliability in qualitative research are actually addressed through laying bare a 

researcher‘s biases and subjectivity, to guide the reader towards an understanding of how 

a particular interpretation was obtained (Bogdan & Biklen, 2003). By providing sufficient 

data examples and a transparency of researcher biases, it is my hope that this study 

sufficiently addresses the issues of validity and reliability. 

The Research Report 

Earlier I presented Riessman‘s (1993) five levels of representations involved in 

narrative analysis: attending, telling, transcribing, analyzing, and reading. Reading is the 

(final) stage in which a researcher shares her work. Although the final product of 

narrative analysis can often itself be a narrative, a story with a beginning, middle, and end, 

it has been my intent to present the findings of this research project in a traditional 

research format. The participants‘ narratives, however, cannot be lost through a 

conglomeration of analysis; hence this written report includes an accumulation of lengthy 

quotes and excerpts from my collected data. Like Lather (1991), my use of quotes and 
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excerpts is ―an effort to be ‗multi-voiced,‘ to weave varied speaking voices together as 

opposed to putting forth a singular ‗authoritative‘ voice‖ (p. 9). The goal is to be true to 

my participants and yet create a reading that is accessible and interesting. It is at the 

reading level of representation that issues of validity come to the forefront: 

It is the readers who make the judgment about the plausibility of a 

knowledge claim based on the evidence and argument for the claim 

reported by the researcher. The confidence a reader grants to a narrative 

knowledge claim is a function of the cogency and soundness of the 

evidence-based arguments presented by the narrative researcher. 

(Polkinghorne, 2007, pp. 484-485) 

 

Yet even the reading of a study is a changing experience, one based in a given 

time and a particular context. ―All texts stand on moving ground,‖ wrote Riessman (1993, 

p. 15). As a researcher, my goal in this project is to affect reform in mathematics 

instruction, to add to the research on mathematics teaching and learning, and to share the 

stories of teachers as they examined their own personal philosophies of mathematics and 

explore the relationship between philosophy and practice. I know the interpretations each 

reader brings to this research may vary, may not be my own, and may not be that of the 

participants. Again, there is no one truth that I am seeking through this research: 

Writing ethnography as a practice of narration is not about capturing the 

real already out there. It is about constructing particular versions of truth, 

questioning how regimes of truth become neutralized as knowledge, and 

thus pushing the sensibilities of readers in new directions. (Britzman, 2000, 

p. 38) 

 

Will the reader experience the research text as a transformative process, one that 

compels that reader to examine her own mathematical and educational philosophies, and 

to begin to explore the relationship between her philosophies and her teaching practices? 

As a reform researcher, my goal is just that—to produce research that, in some way, 

transforms the reader, the participants, and me, the researcher. 
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Concluding Remarks on Methodology 

How one learns, how one teaches, how one conducts research—these ideas should 

align philosophically, epistemologically, ontologically, and methodologically (Conle, 

2001; Moen, 2006). If one adopts a constructivist paradigm, with the understanding that 

knowledge is socially constructed, then that paradigm that influences how one views the 

learning process should also affect how one views the research process (Mertens, 2005). 

Qualitative research is not, however, a monolithic concept (Preissle, 2006). Qualitative 

researchers differ greatly in methods and design, as well as in theoretical and 

philosophical frameworks. What is common to qualitative research, Preissle argued, are 

three ideas. First, qualitative research emphasizes the description of direct experience and 

meaning. Second, qualitative research ―specifies conceptual framing while leaving open 

the ‗what and why‘ of experience and meaning that vary by the philosophical, theoretical 

and disciplinary orientations that researchers bring to their studies‖ (p. 687). And, third, 

qualitative research is a ―theory-practice nexus‖ that brings together theory and practice, 

that necessitates theory and practice as interactive and interdependent entities. Lather 

(1991) reiterates this third point in her description of research as praxis as ―philosophy 

becoming practical‖ (p. 11). 

The writer of qualitative research invites the reader to join her in the interpretation 

of the data. Through researcher transparency, the use of thick descriptions, and the 

inclusion of her participants‘ voices, the researcher traces the path of her own 

interpretations. Whether the reader comes to agree with those interpretations is not a 

necessity; what qualitative research expects is that the reader at least comes to understand 

how the researcher reached her conclusions. In keeping with a constructivism paradigm, 
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the qualitative researcher acknowledges that interpretation, like knowledge, is 

constructed. Qualitative research, in many ways, emphasizes process more than product. 

Interestingly, this parallels the focus of the current reform movement in mathematics 

education that stresses the significance of process in mathematics teaching and learning, 

and the use of a social constructivist epistemology (Ernest, 1999). 
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CHAPTER 5 

TEACHER STORIES 

 I present in this chapter my analysis of the mathematical stories of my participants. 

Over a period of 18 months, each participant and I explored his or her personal 

philosophy of mathematics, troubled what it means to teach and learn mathematics, and 

discussed the struggles of changing one‘s instructional practices as a mathematics 

educator. My analysis of the data—including interviews and reflective writings—seeks to 

keep each participant‘s story distinct. Thus this chapter is organized by participant; my 

analysis of each participant‘s relationship with mathematics is presented in a separate 

section. I describe each participants‘ background as a mathematics student and, later, 

teacher, recognizing the importance of what Bibby (1999) called ―mathematical 

histories.‖ I also describe the processes these educators go through as they implement a 

new curriculum, recognizing the need for reflection (see, e.g., Hart, 2002a, 2002b; 

Thompson, 1984) to guide the change process. Each participant‘s story is presented as a 

unique experience; there are, however, commonalities to the stories and these will serve 

as the organizing structure to each section and are addressed in more detail in the closing 

section. 

My four participants, as indicated in the previous chapter, were all graduate 

students involved in a course during the summer of 2007 (see Table 1 for a summary of 

the participants‘ teaching experience and graduate enrollment status). Two of the 

participants, Katie and Michael, were part of a pilot study I had conducted in 2007. Both 
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Katie and Michael were working on an Education Specialist degree in mathematics 

education during the initial pilot study. They were also both public high school 

mathematics teachers. The other two participants in this study, Julia and Diane, were both 

Ph.D. students—Julia in the area of mathematics education and Diane in early childhood. 

Both Julia and Diane, at the time of the summer course, served as mathematics 

instructional coaches in public schools. Julia worked as a mathematics coach at a 

metropolitan area high school. Diane worked as an elementary school mathematics coach 

in a small, rural school system. These four participants wrote and spoke of their personal 

relationships with mathematics, their views of mathematics as a subject, their ideas about 

the teaching and learning of mathematics, and their struggles as mathematics educators in 

a time of tremendous curriculum change in Georgia. My analysis of those stories follows. 

 

Table 1 

Summary of Study Participants 

 

 

Name 

 

Years of professional 

experience in education 

 

Professional role 

 

Graduate student status 

 

Katie 

 

8 years 

 

High school mathematics 

teacher 

 

Completing Ed.S. in 

mathematics education 

 

Michael 8 years High school mathematics 

teacher 

Completing Ed.S. in 

mathematics education  

 

Julia 15 years Mathematics Instructional 

Coach (high school) 

Ph.D. student in 

mathematics education 

 

Diane 26 years  Mathematics Instructional 

Coach (elementary school) 

Ph.D. student in early 

childhood education 
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Katie‘s Story 

Background 

Katie is a White woman who has taught for 8 years at a predominately White, 

middle class high school in a suburban school system. She was just beginning 

coursework for an Education Specialist degree at the time of our summer graduate course 

in Philosophy of Mathematics. After completing undergraduate and Master‘s degrees in 

mathematics education at two local state universities, Katie was thrilled to be offered a 

teaching position at Lake High School—the school from which she had graduated just 6 

years earlier. Katie enjoyed the comfort and familiarity of being back again at her old 

high school, describing it as ―like a dream come true.‖ ―I mean, it hadn‘t been that many 

years so most of the teachers that taught me were still there. It was just comfortable‖ 

(Interview 1). Throughout our three interviews, Katie often referred to herself as a ―new‖ 

teacher, probably a result of working beside teachers who had taught her just a few years 

earlier.  

Katie told me she had known she wanted to be a teacher for a long time and, in 

fact, had planned on teaching mathematics since the 8
th

 grade. Her mother had been an 

elementary school teacher and so Katie felt it was natural to be drawn to teaching. She 

chose to teach mathematics because it was a subject she liked and was good at although 

―I was no genius‖ (Interview 1). In fact, Katie spoke often of her struggles to do well in 

mathematics and how hard work and determination resulted in success, not any natural 

ability: 

I was good at it but I always took just the normal courses that are, I mean 

it was never like I was in any honors anything. I just, I really did, I liked it. 

And I still, you know, there‘s a huge satisfaction of taking a lot of time, 

working through a problem and then getting the right answer. (Interview 1) 
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This belief in overcoming her own ―natural‖ limitations through hard work and 

perseverance affected both how Katie viewed the purpose of mathematics in school and 

her approach to teaching mathematics as evidenced in the next section.  

Views of Mathematics and Mathematics Teaching 

 Katie‘s views of mathematics did not change greatly throughout our 18 months 

together. At the beginning of our course, Katie described her views of mathematics as 

well as her views of teaching mathematics as traditional. She saw mathematics as being 

everywhere through the numbers in our daily lives, that we cannot live without 

mathematics. To Katie, mathematics made sense; it was right or wrong, black or white. 

That is what drew Katie to mathematics as a child: 

I have always liked mathematics because the material seemed so 

straightforward. You follow certain steps when solving problems and then 

you arrive at your answer. Example problems were given in class and then 

you had more practice on these same types of problems for homework. By 

the time you were tested over the material, it seemed pretty clear that you 

either knew it or you didn‘t. (Initial reflection paper) 

 

Katie never much thought about the why‘s of mathematics until she got to college 

courses. Prior to this, she had memorized steps and repeated them back. Higher 

mathematics courses in college forced her to think about why rules and procedures 

worked as they did. This led Katie, as a teacher, to want to help her students understand 

how we derive formulas not just get them to memorize the formulas. But Katie continued 

to see mathematics as absolute and unquestionable. During our summer course, 

discussions about religious views and views of mathematics were not uncommon. Katie 

drew parallels between her unquestioning religious faith and her ideas about mathematics: 

Prior to this class, I had not thought about religion and mathematics 

having any connections. However, through our reading I have seen 
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religion compared to mathematics quite often…This idea was quite 

interesting to me. My favorite point made relating these two was when 

Davis and Hersh (1997) said that ―God is a Mathematician‖ (p. 51). I just 

thought that of course He is, God is anything and everything. I do see that 

my philosophy of mathematics and my philosophy of religion are very 

similar in that I do not need to have proof to believe. Just as I believe in 

God without proof of His existence, I believe the mathematics I have been 

taught without proof that it exists. (Final reflection paper) 

 

Thus Katie was more comfortable accepting mathematics as is than questioning either its 

(supposed) absolute nature or its purpose in school. Mathematics, for Katie, just was. 

 More than anything, Katie viewed mathematics as a subject that rewarded hard 

work and perseverance. It was her goal to get her students to believe in themselves and in 

their own abilities through success in mathematics. Throughout her teaching career Katie 

had asked to work with students that many experienced teachers chose to avoid—the 

struggling students just entering high school. Katie‘s goal was to instill in these students a 

sense of purpose and accomplishment as they struggled and succeeded in mathematics. 

Katie hoped that her students would remember her for having taught them to work hard 

to achieve what they wanted and that mathematics was just the tool to help her do that. 

Just as she felt proud that she had struggled through mathematics and achieved 

knowledge through that struggle, she wanted her students to feel that same sense of 

accomplishment. When asked what she would want her students to most remember about 

her, it was this idea of hard work, teaching students to persevere that she described:  

I think I would want my kids to come back and say that, you know, you 

taught me never to give up or you taught me that I can do anything that I 

put my mind to as long as I work hard at it…But I think more than 

anything it would be that they felt motivated when they left and 

encouraged and they didn‘t want to give up in anything. (Interview 1) 

 

As Katie and I developed a relationship over the 18 months of this study, she 

continued to emphasize the importance of hard work in mathematics. In this, she was 
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echoing a common theme in school mathematics: that effort is a significant factor in the 

success, or lack thereof, in mathematics (see, e.g., National Mathematics Advisory Panel, 

2008). Although Katie felt that some people had a gift, a natural ability to do 

mathematics (and she did not identify herself as one of those individuals), she also 

believed strongly that all students could succeed in mathematics: 

I think there are definitely people who are better at math than others but I 

don‘t, I really don‘t think that people can‘t do it. I think, and my attitude 

has always been, if you apply yourself and you want to do well at 

whatever, anything, you can do it. (Interview 1) 

 

For Katie, the idea that her success in mathematics did not come naturally but was, 

instead, the result of hard work, made that success even more worthwhile. 

Katie‘s personal experiences with mathematics as a subject that was difficult but 

rewarded her efforts with correct answers and a sense of satisfaction were paramount to 

her teaching style. She strove to make the learning of mathematics accessible to her 

young students. She hoped they would feel the same sense of accomplishment that she 

had known when solving a difficult problem. But for Katie, a large part of that 

satisfaction came from her own view of the closed nature of mathematics—it was right or 

it was wrong. To view mathematics as an open-ended subject, one with many solutions 

and no clear answers, was not easy for Katie. Both her readings in our summer course 

and her professional development experiences a year later in preparation for the teaching 

of a new high school curriculum began pushing her to look at mathematics in a very 

different light. Those changes will be explored in the next section. 

Struggles Amidst Change 

Over the years, Katie had adapted her teaching methods to help her students 

succeed in her classes; she encouraged student questions, had them worked in small 
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groups to share and teach each other, demonstrated multiple methods to solve problems, 

and displayed a caring demeanor with her students. But Katie never questioned what it 

meant to learn and teach mathematics. She believed in traditional, teacher-directed 

instruction. She was in the front of the classroom, sharing examples, guiding her students 

through various problems, and working them towards independence in completing the 

examples. That, for Katie, was what it meant to teach mathematics as evidenced in our 

initial interviews as she struggled to view mathematics instruction differently: 

When you do a task it‘s supposedly going to teach them the same thing as 

if you‘d done the real teaching! (Interview 1) 

 

It‘s going to be hard for me not to be the one, not to teach. Like I just feel 

like everything I‘ve done has been so traditional and I‘m not one to say, 

you know, here‘s a formula, memorize it. I mean I do, I want them to, I 

want it to make sense. I do try to go over, well this is where the distance 

formula comes from or whatever the case is. But I just think, for me the 

hardest part is thinking that they‘re going to get everything that I normally 

would teach to them just from doing this task. (Interview 1) 

 

But as far as my role as a teacher, I mean I really feel like my role is to try, 

you know, to have every student in my class master what they should 

master and pass the class. (Interview 1) 

 

I think it‘s going to be a big challenge. And I think it‘s going to be hard 

for me because I‘ve been so used to, in the past, helping kids. You know, 

answering questions more straightforward. And teaching, I mean really 

using direct instruction. (Interview 2) 

 

Katie believed in teacher-directed instruction, with the teacher‘s role being to 

guide students through a process, show them how it was done, and then watch as they 

duplicated her efforts. She had never questioned this idea of teaching even as she sought 

to help her students find success in mathematics, she continued to envision a teacher-

centered instructional model. She was aware that the new curriculum was going to 

demand something different from her but she struggled with just what that would look 
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like. In our second interview, which took place the summer prior to her implementation 

of the new high school curriculum, Katie remained optimistic: 

But in a way I think this year‘s going to be good because you don‘t have 

any ideas of what students are going to say or how they‘re going to work 

things out which in a way makes it probably more interesting and better in 

the respect that I‘m not going to lead them in a direction…because I don‘t 

know where they‘re going to be going. (Interview 2) 

 

 The implementation of the new Georgia high school curriculum for 9
th

 graders, 

termed Mathematics I, began during the 2008–2009 school year. I met with Katie for our 

final interview 3 months into that school year. Katie began our interview expressing 

frustration about teaching through tasks and her students‘ ability to engage in the new 

curriculum: 

It really has been a disappointment, I‘ll be honest. When I first started this 

year, I wanted to do exactly what the state, you know, had told us, and 

here is a task, hand it out to the kids, and let them work together in groups, 

which groups I have very strategically picked, and let them try the task! 

And I was getting nothing! Nothing. Absolutely nothing. (Interview 3) 

 

In many ways, Katie no longer felt like a mathematics teacher, as she had always defined 

the role. Watching students do tasks (or, as she described, not do the tasks) left her 

feeling removed from the mathematics. Her previously identified strengths as a teacher—

hard-won knowledge of mathematics, ability to present the ―why‘s‖ of rules and formulas, 

guiding students through the difficult procedures—did not seem to be needed in a 

classroom where students were left to work through tasks independently. 

 Katie continued to discuss the frustration she was feeling, not just with her 

students, but with her changing role as teacher. For her, teaching mathematics meant 

helping students to see the right answers and, when I asked her what her biggest 

challenge was as a teacher with the new curriculum, she discussed the difficulties: 
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I think trying to not be the teacher who is just giving the direct instruction. 

Trying to step away and let the kids struggle more than they have in the 

past. And it‘s been hard. . . . Well it is hard because I just feel like too 

often they just give up. . . . It‘s hard to just walk around and knowing that 

they‘re not getting anywhere. It‘s like, where do you draw the line, you 

know, and I try to let them struggle and I try to let them talk about it. But I 

think for me, that‘s been the hardest. I mean obviously it‘s a lot easier to 

say, here‘s what we‘re doing and here‘s how to do it. (Interview 3) 

 

Katie was tied to what Taylor (1996) had described as the myth of hard control, where 

the mathematics was hers to give and the students to receive. This, to Katie, was what 

mathematics teaching entailed. Otherwise, what was the purpose of all her mathematical 

knowledge? 

Katie‘s struggles to implement a constructivist teaching style, to guide her 

students through tasks without providing answers and step-by-step instruction, was 

stymied by her own experiences as a (successful) learner of mathematics. Her personal 

knowledge of social constructivism as an instructional theory were just that—theoretical. 

When asked, Katie could not recall ever learning mathematics in a social constructivist 

setting: 

I know in high school, I mean it was definitely traditional all the way 

around. And really in college too. So no, if anything I‘ve probably seen it 

more possibly in like my education classes. I can‘t think of specific 

examples but that would probably be more of where I‘ve seen it. Not in a 

real math class. (Interview 1)  

 

Katie did not really grasp her role in this new mathematics classroom as it was outside 

her own personal experience. Her personal history as a mathematics student and as a 

mathematics teacher had never prepared her to view the instructional method differently.  

In fact, Katie admitted to giving very little thought to her philosophy of 

mathematics or of mathematics education prior to her enrollment in the summer course:  
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And I‘ve never, to be honest, sat down and thought about what is my 

philosophy of math? Honestly. And for me it‘s always, it always goes 

back to teaching of course. I mean that‘s my only, that‘s my passion. But 

it‘s, it‘s, yeah, I really haven‘t thought about why I teach the way I do and 

it‘s just kind of, I feel like I‘ve just been kind of molded into that type of 

teacher. (Interview 1) 

 

Katie‘s words reinforce Davison and Mitchell‘s (2008) contention that ―students trained 

in an absolutist philosophy who become teachers will likely teach from the absolutist 

standpoint‖ (p. 147).  

Although Katie had expressed an understanding that change was needed in her 

teaching style, and a willingness to change, her ability to embrace a social constructivist 

instructional model was limited by her lack of experience as a learner of mathematics 

through social constructivism. Katie taught the way she had learned (Cooney, Shealy, & 

Arvold, 1998). Her teaching style was reinforced by her own view of mathematics as a 

rigorous activity that provided satisfaction and a sense of pride through the conquering of 

its rules and procedures. In addition, Katie had been drawn to mathematics by its 

structure, its absolute nature, in her view, of right/wrong, black/white. Katie 

acknowledged that in a constructivist classroom, she would lose the absolute certainty of 

mathematics that is such a comfort to her: 

And my question is how will I know? You know, how will I know, did 

they get it? And then again, how do I know just what I normally would 

teach them is really what they should get out of that. (Interview 1) 

 

Here Katie expressed concern about not just a changed instructional style but the very 

nature of the mathematics she had traditionally taught. Her views of mathematics—a 

subject that rewards discipline and hard work, a subject of unchanging, absolute rules and 

procedures—are troubled by a humanist view of mathematics that stresses context, 

problem solving, and personal sense making.  
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In many ways, Katie had been caught in the midst (Clandinin & Connelly, 2000) 

in this study—caught between the teacher she was and the teacher the new curriculum 

expected her to be. Her views of mathematics, although not essentially changed, were 

being questioned. She knew her traditional teaching style must also change. But she is 

unsure of where to go and how to get there. Katie struggled to redefine what it means to 

teach. A constructivist view of mathematics education envisions students engrossed in 

dialogue, immersed in mathematical tasks that call for multiple pathways toward multiple 

solutions, a reflective process whereas students question, explore, and justify the 

mathematics in which they are engaged (Confrey, 1990). This view was neither familiar 

nor comfortable for Katie. During our final interview, Katie‘s frustrations with this new 

idea of teaching were evident: 

I think that the kids are not doing the critical thinking that is expected of 

them. And so I‘m hoping again after, maybe, two or three, four more years, 

it‘s better. But overall, I think that part has been a big disappointment, to be 

honest. (Interview 3) 

 

But Katie‘s struggles were not just in redefining the teaching of mathematics, she 

also struggled to redefine the mathematics itself. In many ways, Katie no longer 

recognized the mathematics with which she had felt so secure and knowledgeable: 

I really, you know, I think of math as being numbers. Regardless of if 

you‘re in the grocery store or out to dinner or in a math textbook, math is 

just everywhere…I never thought of math as being so wordy. You know, 

because you, I mean I really do think more numbers. And the new 

curriculum, especially going through these tasks, it is word, after word, 

after word, after word. (Interview 3) 

 

The persistent contextual nature of the mathematical tasks that the new curriculum 

entailed troubled Katie. She felt that, somehow, the mathematics was being lost in this 

new curriculum. In this, Katie was caught between the traditional view of mathematics as 
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an abstract, organized structure, and mathematics as a social construct, one that best 

makes sense through the solving of real-world problems (Sfard, 2003). 

As the year progressed, Katie knew she was slipping back into instructional 

practices not aligned with the new constructivist curriculum: ―So, to answer your 

question, I really think that I am, I don‘t want to say spoon feeding, but I feel like I‘m 

more back into that routine of doing a lot for them‖ (Interview 3). And Katie found 

herself turning to the traditional textbook for assistance: ―It doesn‘t hurt to give them 

some real practice out of the book‖ (Interview 3). 

Katie‘s experiences demonstrate the difficulties of implementing new pedagogical 

practices in our mathematics classrooms. Katie understood that change was required and, 

to some extent, understood what that change should look like (e.g. mathematical 

discussion, use of tasks, multiple solutions). For Katie, the challenge was how to create 

that environment in her classroom. With no concrete example in her own learning 

experiences to work from, Katie struggled to change the environment for her high school 

mathematics students. Her hope was for students in ―2, 3, or 4 more years,‖ to come to 

her changed, ready to engage in the mathematical discourse the new curriculum 

demanded. In many ways, Katie was asking the same question asked by Sfard (2003) in 

her critique of building mathematical discourse in the classroom: ―How can the children 

play a game whose rules they do not know?‖ (p. 375). Katie was not sure how to teach 

her students these new rules; that role was outside of her experiences as a mathematics 

teacher. It was her hope that they would come to her, sometime in the future, already 

knowing the rules of the game. 
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Katie knew how to be a mathematics teacher in a traditional classroom. But to 

facilitate tasks, to teach students to communicate about mathematics, to guide students to 

mathematical understandings through their engagement in contextual problems, none of 

those activities seemed to fit Katie‘s perception of the role of mathematics teacher. Katie 

did not see the need for her strengths—knowledge of mathematics and the ability to help 

students see why procedures and rules worked in mathematics—in the new instructional 

model.  

As we ended our final interview, Katie remained optimistic. Her own reliance on 

hard work and effort was evidenced in her not giving up on the new curriculum, her 

willingness to strive to make things work even as she was not sure how: 

And I really, I mean I really have enjoyed this year, it really overall has 

been a great year. I can‘t, I can‘t complain. I mean, it has been so much 

work but I have enjoyed it, really and truly, it has been fun for me. 

Because the curriculum is so different. I mean, I guess my point is that 

teaching Algebra I for probably like  years, something needed to change. 

You know, we were pretty much doing the same thing. And there needed 

to be a change. So I think this change is good. And it‘s been good for me 

to be challenged and to do things differently. And it‘s kind of cool to have 

a year where there‘s no fear in trying something different because if it fails, 

it fails, you know, just learn from it and, and do it differently the year after. 

(Interview 3) 

 

Katie was beginning to see the freedom that the new curriculum was granting 

her—the freedom to try new instructional methods, the freedom to see mathematics 

teaching and learning in new ways, and perhaps even the freedom to explore new ideas of 

just what is mathematics. This freedom, along with the ―pedagogical conflict‖ (Wood, et 

al., 1991; Chapman, 2002) she was experiencing, hinted at the tremendous changes that 

Katie was in the midst of undertaking. 
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Michael‘s Story 

Background 

 Michael is a White man who, like Katie, had worked at one high school during his 

8 years of teaching. The school where Michael taught is predominately White and one of 

several high schools located in an upper-middle class suburb. Throughout his teaching 

career, Michael has taught primarily Algebra 1 and 2, Advanced Algebra/Trigonometry, 

and the first of a 2-year sequence of algebra known as the ―applied‖ classes. Also like 

Katie, Michael enjoys and requests to work with the students that many other teachers 

avoid—the struggling freshmen. 

 Michael comes from an extended family of educators—both of his parents were 

teachers, as were his grandparents, uncles, and aunts. By high school, Michael knew he 

wanted to be a teacher as well, primarily due to practical reasons. Teaching was a 

familiar profession and would allow him the extended summer vacations he had enjoyed 

with his family. Choosing mathematics was also a practical decision; Michael found 

equal interest in all subjects but realized, with the aid of his mother, a school guidance 

counselor at the time, that the need for teachers of  the maths and sciences would be 

greatest. In high school, Michael had attended a small, private Christian school, and he 

chose a similar setting for college, attending a small Christian college less than 2 hours 

from his home. Michael majored in mathematics education but, due to the small size of 

the college, he attended many classes alongside mathematics and science majors. Michael 

found benefits to studying with non-education majors:  

I had a group of folks I studied with, and three of us were math ed majors 

and four of them were pure math or science majors. And I learned a lot 

from them because, because they thought totally differently than I did. . . .  

It was really interesting because I would learn a lot from them because 
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they just thought completely differently than I did. Because I really had, I 

struggled with the usefulness of things. (Interview 2) 

 

These two ideas, that mathematics needed to be useful plus an identified dichotomy 

between what Michael terms pure mathematics and applied mathematics were common 

themes in Michael‘s conversations and will be explored further in the following section. 

After completing his undergraduate degree, Michael taught for a few years, then 

worked on a Masters degree in mathematics education at a local state university while 

continuing to work full-time. A few years later, he once again went back to graduate 

school at the same state university while still working full-time. Michael was close to 

completing his Education Specialist degree in mathematics education during the summer 

graduate course (he finished his degree the following semester). In addition to teaching 

full-time, Michael also began work that summer as a contracted trainer for the state 

Department of Education, facilitating professional development for the high school 

mathematics teachers who were preparing to implement the new statewide mathematics 

curriculum. In that position, Michael and I worked together on several occasions. Thus 

we had a professional relationship I did not share with the other participants. 

Michael described himself as a mediocre student of mathematics. Although he 

had done well in average track mathematics classes in his small high school, he had 

found himself struggling in college: 

It was good [in high school] in the sense that, not necessarily all A‘s but I 

felt good about what I did. Got into college, struggled a lot. Questioned 

whether I‘d made the right decision about a major, you know, and was a 

very B, C student in calc, in college, and struggled. Failed a class, went 

back and took it again, you know, Calc 2 and me did not get along. But no, 

it was very mediocre and really a struggle for me to make sense of a lot of 

things because I didn‘t really speak, I didn‘t feel like I spoke the language 

well. Which I think has been one of my biggest attributes in teaching. 

(Interview 1) 
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In many ways, then, Michael felt shut out of the mathematical community. His 

experiences as a struggling mathematics student who didn‘t quite ―speak the language‖ 

helped him reach out to the students he would later teach: 

I do think I have a better connection with students who don‘t do as well or 

not, it doesn‘t come natural because it came natural to me all the way 

through high school and then, all of a sudden, I found out in a hurry what 

didn‘t come natural so…I feel like I struggle instead of getting there by 

intuition, I feel like I get there through sweating, by sweating a little bit 

and that, I think that makes a difference. But it‘s also been a good point, 

it‘s been a good avenue for me to talking to kids I work with to keep them 

motivated, you know. Some of them go, what, you failed a class in college? 

You‘re going to be our math teacher? And it‘s like, well hang on. I think 

that having to go through that process made a big difference for me. It 

really kind of pushed me on to do what I wanted to do. I mean to follow 

through with math. (Interview 1) 

 

Michael explained how he continued to struggle through mathematics courses in 

his graduate studies but, interestingly, never avoided the difficult coursework. One lesson 

he believed his struggles had taught him was not to value those for whom mathematics 

came naturally over other students. This lesson influenced his views not just on 

mathematics but on the structures of mathematics education, particularly in the school 

system in which he taught. Those issues will be addressed in the following sections. 

Views of Mathematics and Mathematics Teaching 

 Michael described his views of mathematics and of mathematics education as 

―joined at the hip‖ (Initial Reflection paper). He reiterated throughout our conversations 

that he could not separate his philosophy of mathematics from his philosophy of 

mathematics education. Thus his philosophy of mathematics was tied to the usefulness of 

mathematics: 

I see mathematics as a tool that grows and cultivates logical understanding. 

It is the nature of our growth and maturity that can be demonstrated in the 
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understanding that we possess through the mathematics that we can do. 

The use of mathematics in the education field is to promote thinking skills. 

I do not feel that mathematics is some set of rules and operations to be 

learned for the sake of knowing them. The knowing of these things that we 

have determined to be mathematics is not the end goal. It is often the 

aspect that we evaluate, but it is not the end goal for me. I want to see that 

my students have grown their understanding of the world around them. 

(Initial Reflection paper) 

 

For Michael, mathematics not only teaches logic and critical thinking skills, but also is 

used to explain the ―world around them.‖  

In his reflection papers and throughout our three interviews, Michael described 

himself firmly as a Platonist in his views of mathematics. And he described his firm 

Platonic views of mathematics as stemming from his strong religious beliefs: 

I hold to the idea that our world has origins that are far beyond myself, and 

that origin is the work of God. I am not sure how to interpret all the 

references to God that I see within the text that has been read so far, but I 

do believe in God as creator of the world we live in. I also see our world 

as more than a chaotic place of coincidence. Our world seems to be 

created with great order and purpose. It is an incredible experience to 

explore and study it. With this study comes the realization of the great 

detail it contains. Mathematics gives us the ability to record, measure, and 

make predictions about the patterns that are occurring within our world. 

(Initial Reflection paper) 

 

Mathematical objects exist. I can describe them and I can see them. 

Mathematicians are discovers. I am not here to create mathematics, only to 

discover what is here already. I find that this holds closely to my religious 

beliefs. A created world is created with order, not out of chaos. The 

patterns that are used by the One that creates are here for us to discover 

and apply. (Final Reflection paper) 

 

I live in a space where I have the utmost faith in God, and I live my life 

with perspective of his creation. With this belief system, I can only see 

that our world is a created space with attention to the smallest detail. I see 

mathematics as the study of the discovery of patterns within our 

world….Standing on the premise of a created world, there must be a 

respect for the Creator. I know this is going to isolate me from many 

philosophers, but this is the foundation on which I have chosen to stand. 

From here, everything else in mathematics begins to build. (Final 

Reflection paper) 
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Michael realized, in his reflection papers, that his views were different than others 

in the class, were certainly different than many of the readings we had done. But he did 

not embrace a postmodern view of mathematics (and the world) that left uncertainty and 

unanswered questions. Michael was quite clear on his need for a foundation on which to 

stand, and he used a mathematical analogy to explain this perspective: 

Strangely enough, the foundation is the key part of our conversation this 

semester that seems to be missing. The fact that everything I have read is 

built from an axiomatic system. Axioms give us a starting point, but to call 

it a foundation is an overstatement. The starting point is fine, but I cannot 

stand on a point. Please pardon the mathematics humor, but a point is not 

proven to exist. A foundation is a place to stand and build upon. When 

considering the fact that I do not sit in an ivory tower and contemplate 

mathematics, I need a foundation to stand on. I base my livelihood, my 

career, on this mathematics. To stand in front of a crowd, or classroom, 

substantial support is needed. (Final Reflection paper) 

 

This need for a foundation was, for Michael, answered by his belief in God. In his 

reading journal, he compared himself to Lambda in Proofs and Refutations (1945/1976), 

searching for certainty: ―I still trust that the light of absolute certainty will flash up when 

refutations peter out!‖ (p. 53).  

Later, Michael dismissed a discussion by Hersh (1997) on the mathematical 

properties of the 4-cube: ―A 4-cube does not exist, as far as I know, so I feel like I am 

wasting my time discussing it‖ (Reading Journal). Michael needed a mathematics routed 

in the practical. Although he acknowledged the existence of this other mathematics, the 

pure mathematics, it served no purpose in his world. 

 Michael consistently described himself as a Platonist in his views of mathematics, 

yet he also embraced a constructivist view of the learning of mathematics. His own 

experiences as a struggling student of mathematics taught him the importance of building 
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interest in the subject. What you are interested in, you are motivated to learn (Sfard, 

2003). And Michael believed that engaging students in doing mathematical tasks, 

working collaboratively, discussing multiple solutions, and asking them open-ended 

questions would succeed in piquing their interest in mathematics. Even before the 

implementation of the new high school curriculum, Michael described the changes he had 

begun in his classroom instruction:  

A lot of it is, you know, an activity or a word problem or something that 

you can discuss and get some information about and be open-ended with 

or at least open method about. You know the fact that they can, they can 

present different ways, they can turn in multiple representations of things 

but there still may be one answer. But just in that sense of getting beyond 

me at the board, talking, calling on them, putting an overhead up, and then 

going on to the next thing. (Interview 1)  

 

 Michael saw no contradiction between his Platonic beliefs of mathematics as a 

given, something out there waiting to be discovered, and his constructivist beliefs in 

facilitating student learning of mathematics. Mathematics, for Michael, need not be a 

human construct in order to discover its meaning and purpose. His goal was to move 

students away from a rote recitation of the rules and procedures of mathematics, to a 

discovery of its wonders: 

I want them to find that discovery, not just me tell them what it is. . . . I 

think giving them a chance to really, and not necessarily be just so 

discovery-based but even if I had showed them some things, that they can 

do the discover part of actually seeing how it works, and where it comes 

from. And they get a little application with that. That allows them to see 

the value of it. And I think we‘ll find things to study more deeply. Find 

more in it than just wanting to do, to get to this test or just to finish this 

assignment. Though that‘s the teacher‘s dream, you know the pipe dream. 

(Interview 2) 
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Michael felt comfortable experimented with task-based learning because the contextual 

nature of tasks was in keeping with his own appreciation of the applicability of 

mathematics and his rejection of the more abstract realm of pure mathematics. 

Michael believed that all kids should be given the opportunity to succeed in 

mathematics because he understood the power that mathematics held for his students. His 

own experiences in college as a mathematics learner had demonstrated for him how the 

knowledge of mathematics could open or close doors. For Michael, teaching both the 

―lower-tracked‖ and the ―on-tracked‖ mathematics students at a predominately upper-

middle class high school crystallized the different opportunities provided to the students 

at his school. And he realized those opportunities were tied to something beyond 

mathematical ability, but were tied to class, race, and other factors. Michael spoke 

frequently and passionately about issues of socioeconomic class and its ties to 

mathematics during our first two interviews: 

Um, kids are, it‘s not necessarily that the kids were different. They came 

with different backgrounds. A lot of kids came in with family, right off the 

bat, families volunteered information that was very different from. . . 

personal information. . . . Just even in race, there‘s a big difference 

between the two classes [his Applied Problem Solving, a lower-tracked 

course, and Algebra 1, the typical freshmen level mathematics course]. 

But in the sense, in some things I pursued more just out of curiosity‘s sake, 

but in our free-and-reduced lunch numbers. Much greater in one class that 

the other. I was mailing home letters at one time and I realized over half of 

the letters that I mailed home to my Applied Problem Solving class were 

all in one apartment complex. . . . You‘re dealing with kids who ride the 

bus to school together, take classes all day together, and then go home 

together. (Interview 1) 

 

What Michael observed was a group of students, primarily Black, living in the same 

neighborhood, who were isolated from the rest of their schoolmates by their daily 

schedule: 
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I think you can track kids sometimes but yet they don‘t appear tracked 

because they may have different classes. But when there‘s so few, that 

tracking ends up, they just, they follow right through the schedule together 

and they go from Applied English, you know, they put you into Applied 

Math to Science, you know, they‘re all in the same science class. . . . We 

are very tiered, even in the sense of college-prep and the AP kids, or the 

gifted-honor kids. I mean, you really fall into one of three molds. You are 

taking the applied track, you are taking the basic college-prep track, which 

is broader, or you‘re in the honors-gifted AP route. And there‘s a lot of 

value put on those kids [the honors-gifted]. (Interview 1) 

 

As Michael described the rigid tracking within his high school, I envisioned an apartheid-

like system, where students‘ futures are prescribed, not by what they can or cannot do, 

but by the neighborhood in which they live. Michael realized that mathematics, 

particularly school mathematics, was neither neutral nor innocent (Walshaw, 2002), that 

it held great power. 

Michael looked forward to the changes the new curriculum would bring in its 

elimination of the applied track of study. He had learned, in his own teaching experiences, 

that students deemed ―not capable‖ often embraced his constructivist style of instruction, 

a style emphasized in the new high school mathematics curriculum. He told me several 

stories of students who had traditionally struggled in mathematics but were excited to be 

working through tasks and learning concepts instead of memorizing rules: 

But just given time she could, you know, see concepts, understand, and 

she was dealing with some learning disabilities as well but there were just 

a lot of things when it came to the task, she had much more opportunity to 

show what she could learn as opposed to, you know, as opposed to just 

popping out with materials. But I think I saw that with a lot of kids, and it 

took me looking for that because it hit me in the face, it hit me in the face 

once when I realized, wait, hold on, my kid with a 55 average is doing 

well on this task but he‘s not doing anything else. (Interview 1) 

 

Because she‘s accomplishing, she is working on, she‘s working to answer 

the question, doing the best way she knows how, using stuff we‘ve done in 

class. You know, she‘s shown me more in the last week, with stuff that 

we‘ve done in the geometry unit, than she has all year long. And she‘s an 
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autistic kid at that. . . . She answered questions today. We have, we have 

come somewhere. This girl is now raising her hand, and verbally from 

across the room, asking me a question. We have accomplished something 

with her. . . . And it‘s showing up, it‘s in the format of math. Like I said, 

it‘s been an avenue for her to, it‘s allowed that to happen. (Interview 3) 

 

So Michael saw that mathematics could become an arena to empower students who had 

traditionally been shut out. And he believed that teaching mathematics differently, in a 

constructivist manner, was making that happen. 

Michael also related his own views of mathematics to issues of class. In 

describing the difference between what he termed pure versus applied mathematics, he 

said, ―It‘s almost a white collar, blue collar difference in looking at math‖ (Interview 2). 

And Michael definitely aligned himself with the blue collar mathematics through his need 

for the usefulness of mathematics and his rejection of pure mathematics that seemed, at 

least for him, to have lost its purpose (e.g., the 4-cube). But even as he rejected the 

importance, in his own life, of the pure mathematics, he did not discard the idea of 

himself as mathematician:  

In my current curriculum, there‘s no, there‘s no room for me to be a 

mathematician. I am delivering material and they‘re coming back with it. 

There‘s nothing new…And some open-endedness I think almost gives me 

a chance, forces me a little bit, but gives me a chance to be a 

mathematician. (Interview 2) 

 

For Michael, being a mathematician was not about working in the abstract world of pure 

mathematics; it was about doing mathematics in a useful and practical way.  

Michael was very comfortable with his views of mathematics. His preference for 

the applied mathematics worked well with his students and aligned with the task-driven 

instruction of the new curriculum. His desire to open doors, through mathematics, also 

agreed with the elimination of the applied track that the new curriculum promised. 
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Michael knew mathematical concepts existed that did not fit into his own personal views 

of mathematics, but he did not need those troubling concepts to be a part of his world as a 

mathematics teacher. For Michael, mathematics was a tool to understand the world and to 

empower his students, to make them feel valued: ―I had someone say, you know, I felt 

important in your class, and that‘s huge! I think that‘s more my philosophy of how 

teaching is, you know, I want kids to feel valued‖ (Interview 1). Michael viewed 

mathematics, in his life, as having a higher purpose: 

You know, it‘s almost more, it‘s almost more of a platform. I mean there‘s, 

I mean math is the platform that I stand on to be able to have an impact on 

kids. I don‘t think you could just have a group of kids in your room and 

say, okay now I‘m going to teach you. Okay, I‘m going to teach you what? 

What I want! You know, you‘ve got to have a platform to stand on and 

then run from there. . . . I mean, that‘s legitimate, that‘s the thing. And in 

the process, if I can have a positive impact on them along the way while 

we have a meaningful thing, an important thing to discuss, it‘s going to be 

beneficial to them in the learning process. But just to, to tie all that 

together. (Interview 1) 

 

Michael saw a consistency in his views of mathematics and teaching mathematics 

with his world view: ―I can‘t really, they‘re not two distinct things. But I think it‘s too, 

it‘s just because mathematics to me is a part of life‖ (Interview 1). In our summer course, 

we had talked often of fragmented philosophies, putting together philosophies from 

various scholars that make up our own personal philosophy. But Michael did not see his 

philosophy as fragmented: ―You know, our philosophy‘s probably not that fragmented 

but the language that we use to describe it is fragmented because it comes from different 

places‖ (Interview 1). And for Michael, it all came together in a way that made sense: 

Where I walk is where I walk altogether and everything comes together 

and I carry all of that with me, and that‘s important because I don‘t want 

one part of my life to conflict with another part of my life. You know, 

whether I teach mathematics or if I coach baseball or if I, you know, 
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whatever it may be, I mean, I want those things to go together. (Interview 

1) 

 

Michael felt there was a consistency in his teaching, in his religious faith, and in his 

perceptions of mathematics. In our discussions, he seemed to find strength and accord in 

each of these areas even while recognizing that others might see contradictions. 

Struggles Amidst Change 

I met with Michael for our final interview 4 months into the school year. It was 

the first year of the implementation of the new high school curriculum. Although Michael 

had experimented with new instructional practices (e.g., use of open-ended tasks, 

collaborative learning, sharing multiple solution paths) and was intimately involved with 

the changes in curriculum through his role as a state trainer for other high school teachers, 

he found he was struggling with the reality of implementation. During our previous 

interviews, Michael had expressed eagerness about the ―de-tracking‖ of the mathematics 

curriculum: 

I‘m interested to see what happens when we bring these kids together. I 

don‘t know if it‘s going to work every time. And I know that our 

community, particularly our school, is not going to embrace that. But if we 

start to do that, start just trying to cross some things up adjust see what 

these kids can bring to each other. (Interview 1) 

 

I was just thinking about, one of the biggest things I‘m excited about with 

this curriculum, I think it a lot of people‘s biggest fear, from what I hear 

from folks, but I am really excited about having a variety of kids in the 

same classroom. I really think that‘s going to bring a lot. (Interview 2) 

 

Michael had believed the new curriculum would eliminate the pervasive ―tracking by 

neighborhood‖ that he had witnessed at his school and, thus he hoped, usher in a more 

egalitarian instructional policy.  
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During our final interview, Michael talked about complex struggles he was 

experiencing as he implemented the task-based, open-ended learning of the new 

curriculum. The foremost issue he noted was issues of maturity that aligned with his view 

of mathematics as critical thought: 

You know, I do want them to, I know we‘re going to push them to do 

things earlier and do more with them. But they‘re still 13 and 14 year old 

students, and we‘re asking a lot of them. I don‘t know that their brains 

sometimes are, I don‘t know that they‘re capable of reasoning in a way 

that I‘m asking them to reason. (Interview 3) 

 

And I wonder if it does take a kid, and I guess I would say to that, and that 

would get tied back to the maturity, even if it is mathematic maturity and I 

don‘t know if that‘s even appropriate to say, but something that has, they 

have a perspective anyway to see why it does make sense. Where a kid 

hasn‘t gotten to that point yet, this is still foreign to them. (Interview 3) 

 

Michael had begun to connect this idea of mathematical maturity with the need for the 

tracking that had previously occurred in his school. And so Michael was unsure if the de-

tracking he had looked so forward to was helping all students: 

There is another student that is working hard, and she‘s capped out at her 

abilities, and there‘s some emotional stuff that is also a struggle. We‘re 

looking at giving her credit for the course even though she is not, because 

she‘s not at the same spectrum as the other, it‘s kind of operating at a 

different level. So I haven‘t seen the benefit that I was expecting from that. 

Um, almost quickly swinging the other way. I love the thought behind this, 

but it‘s not happening yet. (Interview 3) 

 

But as we talked further, it was clear that what Michael was questioning was the 

true constructivist nature of the new mathematics classroom. Although the tasks were 

routinely described as open-ended, Michael realized that it was not truly discovery-based 

learning, that the intent of the curriculum was for students to ―discover‖ a certain 

mathematical concept and to move through the task in a given direction: 

We‘re almost forcing, it‘s horrible, are we forcing them to all think the 

same way when we‘re saying we want to approach, we want to approach 
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them as individual thinkers, when we‘re trying to, we‘re shuffling them all 

in this direction. (Interview 3) 

 

Michael was realizing the limits of a task-based curriculum, at least as adopted in his 

school. His struggle was in keeping his students engaged in the mathematical tasks while 

still ensuring they learned the defined mathematics concepts identified in the curriculum. 

Michael shared a story about a particular student, during an activity exploring 

centers of triangles (orthocenter, circumcenter, and incenter), who refused to follow the 

mathematical line of reasoning as identified in the curriculum:  

And we say, where are you going to place the airport? And she said, I 

want to put it here. And she just put it in a random spot. And I said, well 

why? And she just said, well it‘s in the middle of everything. Well okay, 

what about it (that random spot) is special? And so we had to walk 

through that process and it‘s kind of those things where she got to the 

point where she read a question and she had an answer for it. She just 

didn‘t have any support for her answer. And did not desire any support for 

her answer. This works, I would put it here. It looks good there…You 

don‘t see the need for my incenter or my circumcenter to be helpful for 

you in this process, to answer this question. You don‘t see the need for it. 

(Interview 3) 

 

This experience led Michael to question the intent of the task-based learning he 

had so heartily endorsed: ―When we start to really apply, answer a question and give me 

a why, am I setting myself up as a math teacher to have to be okay with your why?‖ 

(Interview 3). In this, Michael is echoing what Ernest (1998) termed the dangers of a 

relativist epistemology such as social constructivism. Do we give up, in social 

constructivism, the (previously inherent) qualities of mathematical knowledge such as 

necessity, stability, and autonomy? Do we even allow our students to question what 

mathematics is needed and when? In many ways, the interaction Michael described 

questioned the very nature of mathematical knowledge and mathematics teaching and 

learning. If we are to ask students why, must we then accept their responses (if the 
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response do indeed work)? If Michael‘s student can find, using mathematical precision, 

the correct incenter, orthocenter, and circumcenter of the three given vertices, yet chooses 

to disregard those in her response, has she somehow come up short in our estimation of 

her mathematical ability and understanding? By searching through these questions, 

Michael has begun questioning just what it means to teach mathematics, particularly 

teaching mathematics as a social construction.  

And for Michael, teaching mathematics had been a way to hold on to certainties, 

to the concrete he needed but often found lacking in his previous studies of higher 

mathematics: 

You know I think we wanted, I wanted truth. And I think that‘s my 

perspective, I think that‘s me a little bit. I need truth, I need a concrete to 

stand on. I need a rock to stand on. And then let‘s go from there. . . . I 

think that‘s a little bit of my comfort in the teaching realm, it‘s because we 

have parameters. You know, we don‘t necessarily go back to an 

ideological thing. But we have the parameters of requirements and 

curriculum and things. And there are, yeah, we got a curriculum. There 

may be nothing underneath that curriculum but I‘ve got a curriculum to 

stand on, as a teacher. (Interview 2) 

 

But even as Michael was defining his comfort in teaching and the parameters it afforded 

him, he realized that those parameters were shifting: 

I think that, yeah I do, I find it interesting that part of the goal of our class 

was not that we would leave with answers but we would leave with more 

questions. Maybe better questions…I don‘t know if better is a good word 

there. But you know, we‘re leaving with questions that are different. And I 

think, see my personality was drawn to math maybe a little more so that 

this is concrete, this is really, this is solid. This is what we do, we‘ve done 

this for the last 50 years, we‘ll do this for the next 50 years. So I‘m safe in 

my little 30 year zone in that. But I found out there are questions still in 

that, in how we do it and the fact that you have the variable of people, you 

know, kids that are always changing to make that fit. (Interview 2) 

 

For as much as Michael looked to mathematics, and the teaching of mathematics, for 

certainty, he accepted and embraced the uncertainties it often brought him: 
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I feel like, from a lot of people I know, I‘m much more comfortable being 

uncertain in front of my students. Because I don‘t have a problem looking 

at them and going, hey, we‘re going to come back to this tomorrow. I‘ve 

got to do some more with this. Or, you know what, you‘re right, that 

doesn‘t make sense. (Interview 2) 

 

This attitude, that it is okay to not know, was reflected in Michael‘s final 

judgment of our exploration of philosophy of mathematics: ―I am starting to see that the 

questions are what is important, not necessarily the answers‖ (Final Reflection paper). As 

Michael struggled to implement a changing mathematics classroom, he seemed to be 

comfortable having more questions than answers. A new curriculum not only made him 

look at the teaching and learning of mathematics in new ways, but even made him think 

about mathematics in a changing light. 

Julia‘s Story 

Background 

 Julia is a Black woman who works as an instructional coach for mathematics in a 

suburban high school. She works for a large and diverse school system. Her high school 

is predominately Black and many of the teachers there are new to teaching and following 

an alternative route to certification (i.e., did not attend a traditional college or university 

education program). Julia began her teaching career as a high school mathematics teacher. 

Like Katie and Michael, she found herself drawn to the struggling students and the 

entering freshmen. After 3 or 4 years, she pursued certification in educational leadership 

and awaited a school administrative position. Instead Julia got a call to serve as a 

mathematics instructional coach at a local middle school: 

Then I aspired to be an administrator. I should have had my head checked. 

And I got a call, and I thought that was what it was for, but they, the 

principal said, no, I want you to be a math coach. I was told you were the 

best math teacher in this area. So, what is a math coach? (Interview 1) 
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 Julia worked a few years at the middle school then moved on to her current 

position as a high school mathematics coach. Her responsibilities were varied: 

I am responsible for, I like to sum it up as helping math teachers transform 

their world and their work. . . . To help them implement best practices that 

will in turn help promote student achievement. I am on-site professional 

development…I am the resource for anything they need. I‘m supposed to 

be the expert on strategies, classroom management, even be a parent 

resource, a facilitator, in some regards. I model lessons, especially if 

there‘s a different strategy that they have not, that they‘re not familiar with, 

I would model that lesson. . . . I observe their pedagogy and give feedback 

to them. Help with all different types of school-based initiatives, prepare 

them for high-stakes testing, pull-outs, you name it. Whatever needs to be 

done, I will do it. (Interview 1) 

 

Julia received her undergraduate degree in mathematics, a subject she had 

―always loved‖ (Interview 1). Although she initially wanted to be a teacher, her father 

encouraged her to pursue a different career. So she came to teaching following 10 years 

in the military. Her move to teaching, though, was like ―coming full circle‖ (Interview 1) 

as she came from a family of educators. Her brother was a special education teacher who 

―really inspired me‖ (Interview 1), and her father was a teacher of mathematics. Her 

father‘s influence was tremendous, as Julia was, at an early age, drawn to the subject he 

taught. In addition, Julia credited her success in mathematics to the encouragement she 

got at home: 

I would just pick up some of his books; try to figure out what was going 

on with them. I would finish my homework, grab some of his books, and 

just try to go through the problems. I guess the challenge of it, in that 

regard. It‘s the only place where I like a challenge is in math. (Interview 1) 

 

When I was in school, I just remember I could go through the problems, 

and that‘s when I was saying, I would pick up my daddy‘s books and do 

his math. Now, my daddy says that we were very nerdy when we were in 

school because when I finished my math book, I‘d always look ahead. I 

was always like a week ahead. But that doesn‘t say I was smarter, I just, I 

just liked math and no one ever said to me that I couldn‘t do something or 
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that my mama wasn‘t that good at math or she never said that. . . . My 

daddy did not because, again, he was a math teacher. I didn‘t come up in 

that environment where, you know, well you‘re not going to be able to do 

it because I didn‘t know. (Interview 1) 

 

Julia did not identify herself as a ―natural‖ in mathematics; she simply recognized 

the support in her home for mathematical learning and the access she had, through her 

father‘s textbooks, to push herself further. Throughout our conversations, Julia never 

described her talent in mathematics as a gift; she instead recognized the culture of 

learning her family had afforded her. 

During our summer course and throughout the period of our interviews, Julia was 

a doctoral student in mathematics education. Prior to her participation in the summer 

course, Julia and I had taken several classes together and had a passing acquaintance. 

During the study, Julia joined the group of state curriculum trainers to which both 

Michael and I belonged. Julia was a very confident and thoughtful individual to interview. 

At times, though, I realized that our ways of conversing collided. Julia had been brought 

up in the rural south, and I had grown up in the urban northeast. Julia spoke slowly and 

carefully while I spoke rapidly, often talking over others. As time went on, I learned to 

listen better to Julia‘s deliberate speech, allowing her, not me, to fill in the pauses. Unlike 

my relationship with Katie and, somewhat, with Michael, Julia and I had many shared 

experiences as professional developers, working with adults, and not students, to 

facilitate change. Much of our focus, then, was on that work and its effects on Julia‘s 

views of mathematics and mathematics education. 
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Views of Mathematics and Mathematics Teaching 

 Julia‘s views of mathematics followed two basic themes: mathematics as beauty 

and mathematics as power. Throughout her writings and our interviews, Julia described 

the beauty she saw in mathematics: 

The beauty in math is making your own sense of the process of problem-

solving and understanding. . . . The beauty of mathematics is doing 

mathematics. I see beauty in mathematical solutions which make 

connections between two areas of mathematics that at first seemed like 

they had nothing in common. The most intense experience of 

mathematical beauty for me comes from actively engaging in the 

mathematics. (Final Reflection paper) 

 

I guess I‘m kind of relating to art and how he [the artist] would sit and 

capture this object he‘s going to paint and you begin to get, what colors 

and all that kind of stuff that you want to put in your picture and, as a math 

problem, I think I related it to the trig [solving trigonometric identities] 

because that‘s my favorite. I would pick the hardest one and okay, how am 

I going to take this apart? What do I know? And sometimes those trig 

identities would take 2 or 3 pages of a whole board. And then I would just 

sit back and look at it, like I had created this great masterpiece. (Interview 

1) 

 

 For Julia, the beauty of mathematics was never a cold, dispassionate thing, 

disconnected from the humanity of the subject. Her view of mathematics‘ beauty aligns 

with Neyland‘s (2004) postmodern view of the wonder and enchantment of mathematics 

as an ethical choice. For Julia associated the beauty of mathematics with the doing of 

mathematics and, hence, with the potential power of mathematics: ―I align my beliefs 

with those of Polya‘s that to know mathematics is to be able to do mathematics. When I 

do math, I am discovering patterns and order, trying to figure out how something works 

and making connections‖ (Final Reflection paper). It is this importance in the doing of 

mathematics that gives it power, not just power to those who come to know mathematics, 

but power to the teachers of mathematics, the dispensers of the knowledge. Thus 
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mathematics becomes a priesthood (Moses & Cobb, 2001), one in which some are 

accepted but many are shut out: ―The math teachers use this math power to determine 

who will be successful in life and who will not‖ (Initial Reflection paper). This is a lesson 

Julia learned early in life as teachers dictated to this mathematically creative child their 

right way to do a math problem: 

Yeah, definitely. You‘ve got to do it this way. And I would do it that, I 

guess, that was my thing then, back then, was multiple representations. I‘ll 

do it your way but here‘s my way on the other side. . . . But I, trust me, I 

learned early on, which is still happening now, the power that they possess! 

The power that they possess so I gave her what she wanted but I feel like 

my brain, my way of thinking to come out, I don‘t want it to be stifled 

otherwise I wouldn‘t progress. (Interview 1) 

 

Thus Julia subverted the teachers‘ power, by utilizing her own representations even as 

she copied their ―correct‖ procedures. 

Julia believed this mathematical power could be transferred to students through 

their own success in problem solving. It was her goal to eliminate the priesthood of 

mathematics and make it, instead, accessible to all by making her students successful 

doers of mathematics: 

Problem solving places the focus of the student‘s attention on ideas and 

sense making. Problem solving develops the belief in students that they 

are capable of doing mathematics and that mathematics makes sense. 

Once they make the connections, the students have confidence and will 

tackle any problem you put before them. Problem solving develops 

mathematical power (Julia‘s emphasis). Wow, there‘s that power I was 

referring to earlier but look who has the power, the student. Understanding 

gives confidence and engagement; not understanding leads to frustrations 

and disengagement. (Interview 1) 

 

 So Julia‘s goal, as a teacher of mathematics, had been to ensure her students felt 

that power. To do that, she used what had often been taught as a rote process in high 
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school mathematics: the proof. And she encouraged what had been lacking in her own 

mathematics instruction—creativity: 

Just seeing it come, I guess seeing it come alive as something that I did, I 

created, because you know, I used some of the theorems or proofs, putting 

them all together in my own way. Because that‘s what I did, because you 

can prove those in so many different ways. You know, just arriving to the 

different answer. There were different ways to do it. And that‘s what I 

liked about those because I guess they gave students a realm of free 

expression. (Interview 1) 

 

Julia was redefining proof, rejecting the traditional mathematically confining definition 

of proof for a more empowering, sense-making definition of proof. There was not one 

correct proof. Proof was, instead, understanding and justifying and finding one‘s own 

way. 

The power of mathematics, for Julia, was tied as well to the hard work involved in 

working it through. Determination, what Julia termed ―dig-in-ness‖ (Interview 1), to 

solve a mathematics problem, to see it through to the end, was something she saw 

missing in the traditional school mathematics curriculum: 

I think that‘s part of the problem, the way we teach math, we want a quick 

answer. Of course, you know, x + 7 = 11, that‘s quick. But we have to 

teach them that endurance, they need to understand, when they get out in 

the world, when they, when they are confronted with problems, they first, 

you know, try to figure out how to solve the problem, hang in there to see 

it through. (Interview 1) 

 

This dig-in-ness, for Julia, connected to the bigger purpose of mathematics in our 

schools—to teach that endurance she believed her students, Black students in a racialized 

society, needed to succeed in life: 

Well, it‘s important I think to empower them here because, one of my 

philosophies is, not so much being concerned with them, of course I want 

them to be successful in school, but I‘m more concerned about how you 

are outside of school. I take personal accountability for my students. So 

you want to see you, beyond these walls, be successful, be productive 
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citizens. Teach them competence, being able to deal with change, stamina. 

That‘s another thing, to dig in. (Interview 1) 

 

Like other educators in this study, Julia saw mathematics as a life lesson, a platform to 

teach the bigger ideas that she wanted students to learn. 

Julia also wanted her students to know that it was not a predisposition, a natural 

ability that had led to her own success with mathematics, but perseverance, a desire to 

succeed: 

Our students haven‘t been as successful in math because they just don‘t 

stick with it. And I always tell my students, it‘s not hard. You say that 

cause you‘re good at math. No, because I sat down with math, hours after 

hours. . . . But that‘s because I wanted to know. (Interview 1) 

 

Julia recounted a story of how her class had been struggling through trigonometric 

identities and how that struggle led them to understand the power that success in 

mathematics could bring: 

And that‘s why I remember my kids with those trigonometric identities, I 

mean they‘re such a challenge. They wanted to cry. Most of them dug in 

with, I mean we worked that problem one day, we didn‘t have it done. I 

mean, both boards were full. I said, okay, you work on it at home and 

when you get it, call me. Most of them called me at 11:30. Hey Ms. G, we 

got the answer! I said, I just found it myself! That‘s what I‘m talking 

about, that‘s what I want to see. That they‘re just digging in, see it through. 

I used to have this word, dig-in-ness. (Interview 1) 

 

So Julia wanted students to reject the idea of there being ―math people‖ and ―non-math 

people.‖ Instead, she urged her students to take on that persona for themselves—I am a 

math person because I do math! 

Julia realized that the power in mathematics was in doing the mathematics, not in 

watching the mathematics get done, a mistake she herself had learned and wanted to pass 

on to the teachers with whom she worked: 
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Memories of a proof taking about an hour to prove and taking up the entire 

chalkboard were a real piece of artwork to me. Notice that I did say to me. 

As I reflect back to those days now, I wonder how much was learned by 

my students. I wonder, do we measure how much we have accomplished 

in class by how much we have proven in our lectures? (Final Reflection 

paper) 

 

The one who does the most talking does the most learning. The lecturer 

goes on and on to her him/herself speak or for self gratification of proving 

a proof. Let the students explore and take charge and follow their way of 

thinking. Let the math be their math. (Reading Journal) 

 

 When we first met, prior to the implementation of the new high school curriculum, 

Julia looked forward to the changes she hoped would occur. She believed the new 

Georgia Performance Standards (GPS) aligned much more with her own personal views 

of mathematics and mathematics education:  

One reason why I like the GPS, because a lot of those problems are 

problematic. What I mean by that is that they make sense to them (the 

students), they can apply them to the real world. They want to know the 

answer, so they‘re going to dig in with them. (Interview 1) 

 

Julia also looked forward to the pedagogical changes called for in the new 

curriculum. She believed her own love of creativity in mathematics, of solving a problem 

in your own fashion, would be realized through the use of multiple pathways and 

multiple solutions in the tasks of the new curriculum: 

The beauty and elegance of math is also rooted in the realization that 

fundamental mathematical concepts can inevitably be explored from 

multiple directions. The strategy of solving a single problem with tools 

from a variety of approaches is imperative to student success. This 

strategy is also, however, central to my approach to teaching. (Final 

Reflection paper) 

 

Again, the wonderment of mathematics was tied to the ethics of how mathematics 

is taught. For Julia, the beauty and power of mathematics were connected through its 

problem-solving nature. What became a struggle for Julia, as an instructional coach, was 



 133 

 

 

bringing her own beliefs about just what mathematics is and what it means to learn 

mathematics, to the teachers with whom she worked. 

Struggles Amidst Change 

 When I met with Julia for our second (final) interview
9
 in November of 2008, she 

had been working with her teachers for 3 months on the implementation of the new high 

school curriculum. Her frustration was evident. Although Julia‘s job was to support 

teachers in their implementation of the Georgia Performance Standards, it was clear that 

her focus remained on the learning of the students. She began our interview by reiterating 

her goals for her students: 

I want my students to see math as a space that they are welcome in. That 

they can do it. I think too if they look at it as a means to, of empowerment, 

then they would probably embrace it more. Look at it, you know, they say 

they hate it, but look at it more as a challenge, a puzzle that I want to 

solve. . . . They see it as a wall. And I said, I think I said before was the 

perception that a teacher gives to them, that it is a privileged space. You 

know, if you don‘t have a certain skill, if you don‘t understand the way I 

do, then you‘re not welcome into this space. Whereas to validate how they 

see it, how they reason through it, you know, I think that would help them, 

helps them a whole lot more to embrace it. Like I was telling them, you 

don‘t have to take it to the dance, just have confidence that you can do it, 

you know. And you may not solve it the way I do, but if it makes sense to 

you and it works and you get the same answer every time, then that‘s good, 

that‘s good enough for me. (Interview 2) 

 

Julia was disappointed in her teachers‘ unwillingness to embrace what she saw as 

the pedagogical intent of the new curriculum—learning mathematics by doing 

mathematics (i.e., engaging in tasks and mathematical talk, encouraging students‘ 

multiple representations and solution paths). Julia believed that it was teachers‘ own fear, 

fear of the unknown that stood in the way of change: 

                                                 
9
 Julia and I had our initial interview in the summer of 2008 and we were only able to schedule one 

additional interview. Both of the interviews, therefore, lasted an extended amount of time. Our first 

interview was used to discuss Julia‘s mathematical background, teaching experience, and initial thoughts 

on philosophy of mathematics.  
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It might be a fear that they cannot explain it. Once that student ventures to 

another way, and they can‘t explain it, or understand it, then that‘s where 

their fear or lack of confidence may be. And a lot of them [the teachers] 

are afraid to let that be seen. You know, I would easily say, I would never 

have thought of that when they solve a problem that I, that I wouldn‘t have 

done it that way! I quickly tell them that. And that builds their confidence 

even more. But I think that‘s part of it, them [the teachers] being afraid 

that they don‘t know and don‘t want the kids to know. (Interview 2) 

 

Julia knew the teachers‘ fear was stopping them from seeing mathematics differently and 

that seeing mathematics differently was needed in order to teach it differently.  

Julia understood the difficulty the teachers were having in changing their 

approach to the teaching of mathematics. Too many teachers had relied on textbook 

driven instruction. That is what they had experienced as students and that is what they 

were used to as teachers. Julia also realized that many of her teachers were challenged by 

the mathematical content which they were now teaching: 

It‘s not a stand and deliver approach. However they‘re trying to make it 

that way. It‘s more of discovery which is not a lot of the way they have 

taught. (Interview 2) 

 

It is because math teachers, a lot of them are linear. Freaking out because 

it‘s not page to page…I always say, just teach the standard. So therefore 

you may find resources here, something here, whatever. I‘m not tied to a 

textbook. It is just a resource. It needs to go page to page [is the teachers‘ 

response]. They got bogged down on Pascal‘s Triangle [which is not in the 

curriculum] because it was the next section. I said, why are you teaching it? 

You know, it was the next section. (Interview 2) 

 

And because this is an integrated math, high math, they have no 

familiarity with it because, of course, as a first year teacher, well they‘ve 

been teaching Algebra 1, okay? So now you‘re asking them to go into a 

world they really don‘t know anything about. So constantly it‘s like, what 

is this? So that adds on to the fear. Okay, and the uncertainty. They‘re 

starting to question their own abilities. (Interview 2) 

 

Again, as Taylor (1996) described, Julia saw the hesitancy of letting go of the myth of 

hard control that mathematics had given teachers for so long. As long as the teacher 
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controlled the dispensing of knowledge, the control remained the teachers. Yet Julia 

knew the teachers had to let go of the control, to let the students explore the mathematics, 

wherever it may lead them. 

Julia believed the teachers‘ response to the new curriculum, their clinging to their 

traditional ways of teaching was more than just habit, more than just what they had 

always known. Julia related this reluctance to change their teaching practices to the 

teachers‘ (perhaps unconscious) views of mathematics as power, as well as a clinging to 

what Freire (1970/2000) termed the banking concept of education—depositing 

knowledge into students as though they were what Julia termed ―empty cups‖ (Initial 

Reflection paper): 

What I see more now is when a kid does not know math, like let‘s say the 

basic skills or whatever, how they‘re stripped, demoralized. And it bothers 

me that it continues instead of empowering. I feel like when they‘re given 

confidence that they can do it, at their level, then you are empowering that 

student, you‘re giving them the confidence to be able to do any and 

everything. . . so when teachers start to, I won‘t say dumb them down, but 

you know, keep them at that particular level, they are stripping them of 

any type of power that they will ever experience. And that‘s unfortunate 

because, and maybe that‘s how it‘s designed, I don‘t know, because 

teachers have to feel they‘re in this power mode, and so the kid must be at 

a certain, and if you don‘t come with it, you have to be at a certain level. . . 

a certain status. (Interview 2) 

 

They still believe that I am the giver of knowledge. And it‘s only by me, 

going back to that space, that the only way you‘re going to get it is 

through me giving it to you. (Interview 2) 

 

 Julia saw that on some level she was asking that her teachers change their 

philosophy of mathematics education, as well as their perceptions of mathematics. She 

wanted her teachers to embrace a constructivist model of teaching and learning, to 

understand and accept that students could learn mathematics through doing mathematics: 
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The main thing that I try to do when working with them is changing their 

philosophy of their approach, and of their students, believing that they can. 

This is different. But we can do it! (Interview 2) 

 

But as I was teaching, I don‘t know, because I was in the military before I 

became a teacher, but I never gave a formula, they always derived it. 

Because I felt that they would remember them, they would remember 

them. So that I never gave a formula. And this is how I see the standards. 

That the learning that‘s supposed to come from the standards is you 

constructing your own understanding. Just like finding the area of a 

rectangle, a triangle. You give it to them, you say it over and over. Do 

they remember? No! But once you have them do the model, do the blocks, 

so they can see that. But then when you go half it from the rectangle, you 

draw the triangle, then you say, what did you do? Cut it in half. There‘s a 

triangle there. There it is. And I never see that done. I just see, here‘s the 

formula, on the sheet. Never see that done. I think that‘s where we‘ve 

gong wrong. So we‘re trying to correct that now. And it‘s going to take 

awhile, it‘s going to take awhile. (Interview 2) 

 

Julia was expressing here the same concept Ernest (2004) noted as the Topaze effect: ―the 

more explicitly the teacher states what the learner is supposed to learn, the less possible 

the learning becomes‖ (p. 29). Julia rejected that way of learning and wanted her teachers 

to do the same. Julia remained hopeful that her teachers would begin to change. And her 

approach to teacher change was the same as her approach to instructing students—let 

them experience the learning:  

That‘s the big thing, that‘s it right there. Because sometimes they do get 

stuck in the old ways, so I try to give them confidence. Let‘s try it, we‘ll 

try it together. Always, first thing I say is, it may work, it may not. But 

we‘re going to try it. Cause we‘ll never know. Okay, then if it doesn‘t 

work then we‘ll go back and be reflective. Why doesn‘t, why didn‘t this 

work? What could we have done differently? Then we go back and try it 

again. And the, most time it works. And that‘s how I get them to believe, 

feel empowered, this stuff does work, what she‘s saying. And they can try 

it again. (Interview 2) 

 

 In many ways, Julia was working to get her teachers to see mathematics 

instruction as similar to the mathematical idea of proofs and refutations (Lakatos, 

1976)—a continuous cycle of trying, adapting, rejecting, and reflecting. She encouraged 
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her teachers to view the new curriculum as an experiment, one in which they should 

believe, but one that will only succeed through reflection and adaptation. In this way, 

Julia empowered her teachers to take a risk, to feel confident, and to see it through.  

 As Julia worked with her teachers, strengthening their resolve as they struggled to 

implement the new curriculum, she realized that many of her old ideas about mathematics 

had been left behind, thanks, in part, to the readings from our summer course: 

Because I, you know, when I came in, when I started teaching math, one 

of the reasons I gave back then was math is objective, it‘s either, you 

know, it‘s a right answer or you‘re wrong. To me it was easy, versus 

another subject like English or whatever, and it‘s nice and clean. But then 

after that class [our summer course], I don‘t know. They [the readings] 

kind of start making me think a little more about how, you know, I used to 

regard it. I don‘t know how objective it really is. . . . And see now, to 

embrace open-ended, the different representations, the different methods 

of doing it. And now we‘re saying, it might be more, it‘s not one correct 

answer. I am now, but like I said, back then I used to go, yeah, this is clean, 

cut and dry. But now, now it‘s, but that‘s a good thing because I remember 

when I was in school, as a child, and if you did not do it the way the 

teacher did the problem, it was wrong. You know, you may have the same 

answer, and they would say, no you got to do it this way. And that 

bothered me. So when I began to teach, I would pray that I would see kids 

do it a different way. Because what it does is validate everyone‘s thinking. 

And that goes back to my empowerment, that empowers that kid that, oh, I 

can do this, I just did it differently. (Interview 2) 

 

Yet in many ways, Julia‘s philosophy of mathematics had formed in her early 

years, when, as a child, she did the mathematics the teacher‘s way but then secretly did it 

her own way as well. Later, as a teacher, she had wanted her own students to feel that 

same sense of accomplishment, that same feeling of artistry that she had felt when ―doing 

math.‖ Now working with teachers, her goal had become to change their views of 

mathematics, to see learning mathematics as doing mathematics, to see that the power 

was in the doing, and to transfer that power from themselves, the teachers, to their 

students. 
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Diane‘s Story 

Background 

 Diane has been a teacher for 26 years. She began her career right out of college, 

teaching first in a middle school and then in a high school in New England. Diane, a 

White woman, has taught in diverse settings throughout the world. Her experience 

includes teaching at international schools in England and Japan. In London, Diane taught 

both high school and elementary school students; her students came primarily from the 

Middle East and Europe. In Japan, Diane taught 2
nd

 grade at the Yokahama International 

School. In Georgia, Diane has taught elementary and middle school students. After 

teaching for nearly 10 years in a large, demographically diverse suburban school system, 

Diane had taken a position as a mathematics instructional coach for a small rural school 

system. Although her position required her to work with district-wide mathematics 

teachers in grades 3 through 12, her primary responsibility was to assist and support 

teachers in the upper elementary grades as they implemented the new statewide 

curriculum, the Georgia Performance Standards for mathematics. 

 Diane was first inspired to be an educator by her 1
st
 grade teacher, Mrs. 

O‘Connell. What Diane most remembered about Mrs. O‘Connell was how good she 

made her students feel in her classroom so many years ago: ―I guess that‘s more it, it was 

how she made me feel and how I saw her impacting the kids in the classroom. It was just 

that overall feeling‖ (Interview 1). Diane attended a small women‘s college in 

Massachusetts, earning a degree in elementary education, with a minor in mathematics. It 

was in college that she first became interested in both the teaching and learning of 

mathematics.  
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I didn‘t like math until I got to college. I think people looked at me and 

thought, teachers would look at me and think I was a good math student 

but I guess I‘m really good at memorizing things and following 

procedures and um, I had no clue what I was doing. I mean, I did what 

they told me to do and, no understanding. And when I went to college, I 

took classes, the college I went to [was primarily a teaching college] and 

so every class that you took, they knew that you were going to be a teacher. 

So there was no Math 101 things in a big lecture hall, there was, you know, 

all the classes that I took, our Math 101 was, had maybe 20 students in it 

and it was, it was all, we got to learn about manipulatives and we were 

taught higher level, they taught higher level math concepts but they did it, 

you know, in a constructivist way. And so then, I just remember, 

everything just started making sense to me. . . . When I got to college, it 

clicked and that‘s when I decided to minor in math because I really liked 

the math classes that I was taking. (Interview 1) 

 

Diane‘s preparation through a teacher education program where ―everything we 

did, you thought about how did this translate into you being a teacher in the classroom‖ 

(Interview 1), had a tremendous impact on her own instructional practices. More than the 

other participants of this study, Diane had long-term personal experience with 

constructivist teaching and learning. As a practicing teacher, she had independently 

sought out training that strengthened her understanding of what it meant to teach and 

learn mathematics. She attended several Marilyn Burns workshops that focused on the 

use of manipulatives and teaching conceptually; she became involved with the 

prepublication use of Investigation, a task-based curriculum being field tested in the 

1990‘s; and she continues to the present day to seek out professional development 

opportunities that challenge her to question and explore what it means to teach 

mathematics. For Diane, teaching mathematics never meant opening a textbook and 

working your way through it with your students. Diane shared a story of her first years 

teaching that exemplified this belief: 

When I interviewed for the job, I asked a math coordinator, this just 

cracked me up, I asked the math coordinator, so where‘s the curriculum? 
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He opened up the textbook and said, chapters 1 through 6. That‘s the 

curriculum. I‘m like, okay, I don‘t think it‘s supposed to be this way. 

(Interview 1) 

 

At the time of our summer course, Diane was a doctoral student in early 

childhood education, with a focus in mathematics education. Although Diane had spent 

years developing a strong philosophy of mathematics education by constantly challenging 

herself to explore what it meant to learn and teach mathematics, she admitted in her 

course writings that she had never much thought about her philosophy of mathematics: 

Earlier this summer, I didn‘t know that one could have a philosophy of 

mathematics. I now know better. My philosophy is still in its infancy. 

Through discussions, readings, and in unexpected places, the philosophy 

of mathematics has presented itself to me. (Final Reflection paper) 

 

Through her writings and in our interviews, Diane was very open about her changing 

views of mathematics, her personal struggles to define what it meant to teach 

mathematics, and her developing role as an educator moving beyond her own personal 

classroom into the larger mathematics educational community. 

Views of Mathematics and Mathematics Teaching 

 Diane first described mathematics in a Platonic manner: ―mathematics is all 

around us waiting to be discovered or found‖ (Reading Journal). She expounded on this 

belief in her initial reflection:  

I believe that mathematics exists all around us. How can one not believe 

that mathematics is all around us when mathematical patterns are found in 

nature and in all types of human interactions? Everything fits together too 

neatly for mathematics not to exist. (Initial Reflection paper) 

 

This emphasis on mathematical patterns is a recurring theme for Diane. And initially, for 

Diane, these patterns were proof of mathematics‘ a priori existence, the idea that 

mathematics exists independent of human experience: 
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I feel the power of mathematics in the chill I get when I make yet another 

connection between different representations of numbers. Today I was 

talking about patterns with square numbers. Between square numbers, 

students identified a pattern of the number of non-square numbers. 

Between 1 and 4, there are two numbers; between 4 and 9 there are four 

numbers; between 9 and 16 there are six numbers, and so on. So from 1, 4, 

9, 16, 25, 36, …students found the pattern 2, 4, 6, 8, 10, …When finding 

the change between each of these numbers you find 2, 2, 2, 2, 2, …When 

you find a constant rate of change at the second level, you know it is a 

quadratic function. In this case, x
2
, which is how any square number can 

be represented. The interrelatedness of things and how everything fits 

together so neatly, as in this example, is what convinces me that 

mathematics not only exists but is so powerful. I don‘t mean powerful as 

in the power of God. I don‘t believe that mathematics was created. I 

believe it just is. Religiously, I guess I would describe myself as an 

agnostic…It may seem obvious that because my beliefs are agnostic, I 

wouldn‘t believe that mathematics was created. (Initial Reflection paper) 

 

But Diane soon began to question her Platonic views of mathematics, especially 

in relationship to her views about god and religion: 

Am I a Platonist? I am agnostic which means I fit right in with the 

mathematicians and scientists. I can see how they need to keep things 

separate, but how does a Platonist see mathematics as a gift from God and 

yet be agnostic? (Reading Journal) 

 

Despite seeing a disconnect between her religious beliefs and her views of mathematics, 

in her final course writings, Diane still believed in the independent existence of 

mathematics: 

Mathematics is about simplicity, beauty, and predictability. It is about 

comfort, fluidity, and life. It is familiar, structured, and artful. 

Mathematics exists all around us; it is a part of us. Everything is connected 

and fits together too neatly for mathematics not to exist. (Final Reflection 

paper) 

 

For Diane, as for the other participants of this study, her philosophy of 

mathematics could not be separated from her teaching of mathematics. And in her 

teaching of mathematics, the importance of patterns and predictability was once again 

evident: 
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In the classroom, my students are mathematicians. They discover, describe, 

prove, argue, and use their senses just as other mathematicians do. I go on 

their journey with them. I get excited when we, as a class, make 

discoveries. I may not always know how to get there, or what the answer 

is, but I do know that there is an answer, and we will (eventually) find it. 

(Final Reflection paper) 

 

And like Julia, Diane associated the power of mathematics with the effort involved in 

working through and solving mathematical problems: 

Part of my job is to help students realize and appreciate the importance of 

perseverance, especially with mathematics. . . . In my classroom, students 

often perceive me as knowing the answer, while letting them find their 

own way. Many teachers like to know the answer and how to get there, 

propagating the idea that mathematics has one right way to find the right 

answer. This should not be the case. Sometimes I don‘t want to know the 

path to the answer because it takes the fun out of mathematics. The 

struggle is part of the process and without it, working on a problem is not 

nearly as interesting. I allow students to find the connections, beauty, and 

structure of mathematics just as mathematicians have done for thousands 

of years. (Final Reflection paper) 

 

I want my students to struggle with ideas. I believe they create knowledge 

for themselves and being aware of other people‘s strategies gives them 

power (choices) that they wouldn‘t have otherwise. But I struggle not to 

make math rote and predictable. I have seen some students struggle (even 

third grade) with ideas in mathematics, and they just want me to tell them 

so that it is easier. It is difficult as a nurturing teacher not to want to do 

that for them. (Reading Journal) 

 

This idea of learning through effort, of gaining power through that struggle, was a 

recurring theme for Diane. But for Diane, as for Julia, it was not simply the ideal of 

working hard and finding success through that hard work. For both Diane and Julia, the 

power issues in mathematics instruction were more about teachers letting go of their 

position of power as the holder of mathematical knowledge, using an empowering notion 

of education (Freire, 1970/2000) that credits the mathematical knowledge of the learners. 

For Diane saw that mathematics was not just about finding an answer, but about the 

processes involved in finding that answer. With her young students, she emphasized 
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discourse: thinking aloud, talking about the problem-solving processes, exploring ideas 

through mathematical discussions. Diane termed this ―bringing the math out of the kids 

instead of dumping the math into their heads‖ (Interview 1). And as Diane described the 

mathematical conversations her students had, the idea of mathematical beauty once again 

emerged: 

I just think that there‘s a lot of beauty in elementary school. It‘s like when 

kids see, just when kids take apart numbers in their heads and they‘ll be 

like, oh well I multiplied four 20‘s and then four 5‘s. And the other kid 

said, well you know, I thought about money and did four quarters. I don‘t 

know, those connections, to me, just is exciting. And I don‘t know if 

you‘d really call it beautiful but in some situations, it just seems really 

pretty to me. You know, it just looks really pretty up there when you‘re 

sharing all different ways that people thought about something. (Interview 

1) 

 

Diane created, in her own classroom, a mathematical discourse much like that in Lakatos‘ 

(1976) Proofs and Refutations, in which a teacher facilitates her students‘ exploration, 

questioning, and redefining of mathematical ideas. 

Diane believed firmly in a constructivist model of mathematics teaching and 

learning. This belief had first been formed in college when, through her own 

constructivist learning, mathematics ―just started making sense‖ (Interview 1). Her 

constructivist instructional practices were reinforced by both her participation in a series 

of Marilyn Burns mathematics workshops and her introduction to the Investigations 

textbook series: ―Using those materials was really transforming for me because it really 

changed the way, having those materials really changed the way that I taught‖ (Interview 

1).  

Diane realized that teaching through tasks, having students explore mathematical 

problems and talk extensively about the mathematics they were doing, was a radical 
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change for most students and their parents. So she reached out to her students‘ families to 

help them to view mathematics in a different light: 

I was very proactive when I used Investigations. Like I had math mornings 

and I would invite the parents in and I would model how I taught the kids. 

And I would model some whole group work. And then I‘d let the kids 

teach their parents games that we had. I wanted the parents to hear how I 

was talking to their kids. You know, like what kinds of conversations we 

were having. And we had some great conversations when the parents were 

there. (Interview 1)  

 

But even as Diane embraced a constructivist view of mathematics teaching and learning, 

she acknowledged the difficulties in its implementation. What scared her most was the 

inability to follow the thoughts and ideas of all the classroom students as they explored 

mathematical ideas: 

It makes me wonder, you know, when some kid makes a comment that 

seems so far out in left field, you‘re like, well that could be and you move 

on. Um, maybe that kid has a thought that if you could just rein it in 

enough so you could just understand what they‘re saying. And sometimes 

I try to, but not all the time. It always makes me wonder. But the whole 

idea of addressing the needs and thought of all the kids is so intimidating 

to me. And it, it always has been. It‘s just, it‘s overwhelming. (Interview 2) 

 

 Despite the immense effort, Diane never wavered from her commitment to having 

her students construct their own knowledge about mathematical problems and processes. 

Although Diane had taught mathematics at all grade levels, she felt most committed to 

working with upper elementary students. And she realized how much of the traditional 

mathematics curriculum in grades 3 to 5 was dedicated to the teaching and learning of 

computational algorithms. But Diane felt strongly that the teaching of algorithms was to 

be avoided or at least postponed: ―Once you teach them the algorithms, thinking stops. 

And I absolutely believe that‖ (Interview 2). It was Diane‘s own personal experience as a 
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student of mathematics that reinforced this belief: ―I was really good at remembering 

how to do things and doing it. Not real good at what I was doing‖ (Interview 2). 

Diane understood that working through mathematical problems, rather than simply 

applying an algorithm, was much more difficult: 

I think it is more work in that you have to process things and make sense 

of it yourself. And to me, that‘s more work than saying, do it this way, do 

this, do this. You don‘t have any understanding but you can get to an 

answer without much mental work. (Interview 2) 

 

When I taught 3
rd

 grade, you know, we would talk about how you multiply 

two 2-digit numbers. And there would always be a kid, at least one who 

would say, but Mrs. D, it‘s just so easy, you know, you just do this and 

carry the 2 and why are you making me do all this work, why are you 

making me think about this more? And there were always those kids who 

were questioning me. Saying I was making it too hard for them, I was 

making their life harder. And they would complain because I would, we 

would share all the different ways you could think about it and they would 

just be like, no just tell me one way to do it. (Interview 2) 

 

Diane understood her role, as the teacher, was to not give in to the search for an ―easy‖ 

way to do mathematics, but was to push her students toward mathematical understanding 

by facilitating their exploration of mathematical problems and patterns. 

Diane, like others in this study, saw that the struggle to gain mathematical 

understanding as more than just a school lesson. For her, the struggle to solve problems, 

to understand mathematical concepts and not just memorize rules and procedures, was a 

lesson about life: 

I want to say that, you have, everything‘s not always going to come easy 

to you. And maybe, maybe that shouldn‘t be a math lesson, maybe math 

shouldn‘t be a life lesson or vice versa. But it just seems like when you 

struggle through something and you come out the other end and it‘s all 

making sense, it was worth the effort. But you‘re not going to feel that 

feeling of success or that feeling of satisfaction unless you persevere and 

work through the problem or work whatever it is. And maybe that 

shouldn‘t be a math thing, but I feel like, I feel like math is maybe a good 

allegory for, you know, maybe it‘s a good place to do that. (Interview 2) 
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And again, for Diane, this ability to see things through, to persevere and succeed, is what 

gave mathematics its power: 

I think you need to study math so you have that mathematical power. . . . 

Just feeling powerful, self-empowerment that, that you are capable and 

that you can deal with whatever situation, you know, you have enough 

background knowledge to be able to make decisions, depending on what 

situations you‘re in. (Interview 2) 

 

 One area of mathematics that Diane continued to question was the nature of 

higher mathematical learning, what she termed pure mathematics. Diane often wondered 

why mathematicians pursued concepts that seemed too complex for the vast majority of 

people to understand: ―I get muddled when I think about the ‗pure‘ mathematics that only 

a handful of people will ever understand. Is that math really ‗there‘?‖ (Reading Journal). 

While there is so much mathematics that is prevalent and so many 

connections that make mathematics seem simple and perfect, there is 

another side to mathematics that is not easy to understand and apply. This 

is where I wonder about its importance. If very few people understand it, 

and no application is found, is pure mathematics contrived? Was it there 

all along? Does it really exist? It seems like it is not being recognized but 

is forced into being. In my mind, it‘s the simplicity of mathematics that 

makes it real. (Initial Reflection paper)  

 

Mathematics is not so comfortable, fluid, and simple when I think about 

the pure mathematics that only a handful of people will ever understand. Is 

it mathematics that has not yet been realized? Or is it really mathematics 

at all? (Final Reflection paper) 

 

In many ways, this struggle to define the mathematics that really existed as opposed to 

the higher mathematics that seemed somehow contrived crystallized for Diane a 

contradiction in her own views about mathematics, and began a self-questioning process 

regarding the a priori nature of mathematics. 
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Struggles Amidst Change 

 More than the other participants, Diane strove to align her views of mathematics 

with her philosophy of mathematics education. She saw a disconnect between the 

constructivist beliefs she had developed as a teacher of mathematics with the Platonic 

views she initially expressed regarding the nature of mathematics. Interestingly, this 

contradiction became clearer as she continued her reading of mathematics philosophy in a 

later class: 

My paper from the summer, I was still on board with Platonist views. But 

something we read, and I think it was Ernest, um, a Social Constructivist 

view of Mathematics [Paul Ernest‘s 1998 Social Constructivism as a 

Philosophy of Mathematics], when I read that and they started talking 

about, he started talking about the whole idea that math understanding is 

constructed and I thought, well, and my philosophy is constructivism, then 

how can I be a Platonist if, you know, and I had that, but that conflict 

didn‘t come until later. (Interview 1) 

 

Diane was quite comfortable with a changing view of mathematics and had, in fact,  

expressed this idea of continuous change in one of her course writings: 

If nothing else, our understanding of mathematics is always changing. ―At 

any given moment, mathematicians have only an incomplete and 

fragmentary vision of this world of ideas‖ (Thom, 1998, p. 72). A 

teacher‘s job is to help students realize that this is true for mathematicians 

and philosophers, so why shouldn‘t it be the same for them? If the world is 

always changing, wouldn‘t it make sense that mathematics is always 

changing as well? Often students are not let in on this secret about 

mathematics. They need to be told so that their experiences with 

mathematics is finding answers rather then getting the right answers. 

(Final Reflection paper) 

 

This idea, that mathematics holds secrets that teachers do not share with students, secrets 

which perpetuate the myth of  cold reason (Taylor, 1996)—mathematics as a priori and 

unchanging, transcending human experience—led Diane to question her previously stated 

Platonic philosophy of mathematics. 
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What began to unfold in our interviews was Diane‘s realization that she wanted a 

philosophy of mathematics that seemed more in line with what she believed about the 

teaching and learning of mathematics: 

Now my thinking has changed and, um, do you want me to go into that?  I 

think, I think what we‘ve done is, the things that are out there, that are 

mathematics, we‘ve assigned a, a way of processing or dealing with it, 

using numbers. So it‘s more we‘ve made sense of things or we‘ve 

connected numbers to phenomena that happened. You know, I mean, 

whatever it is. Um, so I, the reason I changed camps is because I believe 

that people have to construct knowledge. Well if you construct knowledge 

then why do I believe that everything‘s just given to me. And so, but it 

took me awhile to even see that there was a conflict there when I wrote it 

[her final reflection paper]. All of a sudden I‘m like, what was I thinking. 

Like this is so conflicting, these are two conflicting ideas that I have to 

make sense of so, that‘s how I make sense of it. (Interview 2) 

 

For Diane, her emerging view of mathematics as a human construct not only aligned with 

her views of mathematics education, but also explained her discomfort with the study of 

higher mathematics: 

I think one thing that really struck me in our reading was, they had some 

story about how when you study mathematics, like you‘re on a river of 

mathematics and you get off, and you‘re in a stream of mathematics, and 

then it kind of dissipates, you know, just kind of gets so spread out…the 

whole idea that, it just seems like some mathematics have gotten off on 

this, this path or stream that‘s made sense to them. And they‘ve continued 

on this path, but they‘re so far away from what we can recognize. But that 

doesn‘t mean that it doesn‘t make sense to them and they, it‘s explaining 

something for them. So, in that realm, it‘s the same as, you know, the 

mathematics that we use. It‘s explaining or it‘s a way to express 

something that we know. (Interview 2) 

 

 Another struggle that Diane discussed during our interviews was her growing 

realization that mathematics was not a culture-free discipline. During her own teaching 

experiences at a predominately African American and Hispanic middle school, Diane saw 

that her way of teaching mathematics, of building mathematical discourse, was dependent 

upon building a sense of community. Yet this sense of community was not coming 
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together in Diane‘s middle school mathematics classrooms. Diane was not able to 

identify whether her struggles at the middle school where due to the age of her students 

or the lack of a shared culture with her students:  

I really want kids to be talking. And I wasn‘t as successful, the last place I taught. 

It was a middle school and I had a much harder time getting kids to talk about 

math in middle school. And I think it was, I mean I think there‘s a lot of cultural 

reasons. And it all came to play and I didn‘t understand the culture that they were 

coming from and the whole idea that you, I don‘t know, they just didn‘t want to 

be verbal about. . . . You know, I wanted to get into mathematical discourse. But 

they, they either didn‘t understand where I was going or there‘s something about 

the way they perceived it, it just didn‘t, it just didn‘t agree with them. (Interview 1) 

 

Diane realized that, in many ways, she was just not connecting on a personal level with 

her middle school students. This failure to connect emphasized, for her, that the 

mathematical community that she had previously created in her classrooms was 

dependent upon more than her own personal passion for mathematics teaching and 

learning: 

I taught at diverse schools, I taught in schools where it was, you know, a 

meshing of cultures and I just thought, I just thought, I have experience 

with this and it just frustrates me so much that it just didn‘t go as well as I 

wanted it to go. That really, I mean I thought I had, you know, a 

background that would allow me to do well in that kind of environment 

but it didn‘t. . . . I was really excited about teaching there but now I wish I 

could go back and teach there after having some of the conversations that 

I‘ve had here [in her graduate program]. Because I, I‘m much more aware 

of where I, my thinking was wrong and it maybe made my life more 

difficult. My thinking made my life more difficult. (Interview 1) 

 

Diane was beginning to see that mathematics was not as simple as she had 

perceived it and that simply looking at patterns and connections in mathematics may not 

be enough to get all students engaged in the learning. She had begun to see the 

connection between mathematics learning and culture: 

You know, it kind of seems in a lot of cases the math that we teach, we 

teach it regardless of what they bring with them. And it seems like we 
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could do a lot more to empower kids if we took into account the equity 

that they bring to the classroom. You know, the strength and skills and 

knowledge that they have. And a lot of times, it‘s ignored or it‘s ignored 

because they don‘t make those connections. You know, the teacher 

doesn‘t, doesn‘t connect. You know, this is what you‘re coming with, this 

is the math, let‘s see how they come together. It‘s just, this is the math, 

let‘s talk about it. So I think that there‘s a real disconnect with what kids 

bring in. (Interview 2)  

 

Diane shared with me the story of one lesson she felt had been truly effective with her 

middle school students: 

One of the best things I did, that the kids were really engaged in, was, and 

I had no clue what I was doing, because I just put it out to them. You 

know, like if you turn on a radio station, that‘s where I started, what radio 

station would you turn on? Because I don‘t even know what station they 

listen to, and so they told me. And so, okay, what would be a really great 

song that you would hear? And it was some singer, I don‘t remember. And 

then I said, okay, so then I set up this whole scenario where, we were 

doing multiples, least common multiples, common multiples, whatever. So 

I said, okay, you‘re in line to get tickets and every second person is going 

to get a ticket on the floor. But every 10
th

 person, or every 7
th

 person, or 

whatever is going to also get a ticket to go backstage. And so the question 

would be, how many students, how many people in line are going to get 

both, a ticket for the floor and a ticket for backstage? And they really got 

into it, they did because they had given me the scenario. But see, it took 

them to give me the scenario and to work from there. (Interview 3) 

 

Although Diane was coming to appreciate the importance of recognizing cultural 

difference in the learning of mathematics, she also realized that it was still the teacher‘s 

responsibility to get her students to connect to the mathematics, culturally as well as 

intellectually. And she knew that would best be done by knowing, and listening to, the 

students: 

I think the kids need to bring it in. I think it needs to be informed by those 

students. I don‘t think, I don‘t think if you‘re trying to, if you‘re trying to 

connect with the kids because of their backgrounds and their 

understandings, then you need to connect with the kids to get, you know, 

informed by the kids. And that means every single class is different. And 

that‘s really easily said, very difficultly done, very difficult to do. 

(Interview 3) 
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Diane‘s changing role, from classroom teacher to coach and mentor of teachers, 

caused her to reflect further, not just on the nature of mathematics and mathematics 

teaching and learning, but also on how to change teachers‘ views of both mathematics 

and mathematics education. At the time of our final interview, Diane was finding 

consistency in her views of mathematics and her views of mathematics education: ―I‘m 

starting to see math as a construct, something that we‘ve constructed to represent what 

happens in the world‖ (Interview 3). She saw her changing views of mathematics as more 

representative of how she had, for years, taught mathematics:  

This doesn‘t change it [my view of teaching mathematics] but it probably 

reaffirms the whole idea that students need to construct their 

understanding of mathematics, which I‘ve always felt strongly about. So I 

guess it was kind of a dichotomy to think otherwise [about the 

mathematics]. But I hadn‘t really, before the class, I hadn‘t really thought 

about what my thinking was so I guess there wasn‘t any distress because I 

hadn‘t really given it any thought. . . . I think it‘s been a process. Because 

during the class, if you had asked me, I would have said, math is 

discovered. And it‘s everywhere. But I think it makes more sense for me 

now. And I think it was more, I‘m very comfortable with my position now 

because that‘s how I feel children should learn. So if that part made sense, 

but I guess I had to come full circle. You know like, didn‘t know, figured 

it out, though something different, then tried to balance it with my 

teaching beliefs or student learning beliefs. (Interview 3) 

 

That circle of understanding and defining one‘s beliefs which Diane described 

above, of not knowing, exploring, thinking differently, and searching for balance, was 

one she now was helping her own teachers work through. She knew that many teachers 

were struggling to implement the new curriculum as well as struggling with their own 

identity as teachers of mathematics: 

I think there‘s a real disconnect with how to do it [change instructional 

practices]. But the problem is, how do you address those needs without 

insulting the people who have been doing that for 20 years or 10 years or 
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for as ever long as they‘ve been teaching. . . . Because they don‘t know 

what they don‘t know. (Interview 3) 

 

Diane, like Julia, knew that a great deal of teachers‘ reluctance to change their practices 

came from teachers‘ own fears—fears of the unknown mathematics in which their 

students might engage: 

And that‘s something that I‘ve discovered over the last few years that the 

amount of math, I guess it came natural to me because I had different math 

courses. I didn‘t have that nervousness. You know, like, I was comfortable 

enough to listen to a kid and let them explain and not worry much about 

whether I‘m going to understand them or not. I know I can understand 

them. Whereas I think some elementary teachers might be worried that 

they‘re not going to understand or they‘re not, they‘ll know it‘s wrong but 

they don‘t know why it‘s wrong. (Interview 3) 

 

Diane was echoing previous research that emphasized the importance of teachers‘ 

mathematical knowledge (see, e.g., Fennema & Franke, 1992; Mewborn, 2003). She 

realized the discomfort teachers faced when the mathematical discourse in their 

classrooms ventured beyond their own mathematical knowledge. 

Being the strong believer in the power of constructivist learning, Diane turned to a 

constructivist view of professional development to help her teachers begin to change their 

own instructional practices and to address their mathematical knowledge and beliefs: 

Well, I mean, you can lead a horse to water. But I just feel like if, and 

maybe this is personal because of me but I just feel like if you give them 

experiences where they‘re going to see the same connections that you see 

and that the kids could make, then that excitement is going to translate into 

them wanting their kids to have the same sense of excitement. So for me, 

it‘s just providing those experiences and thinking about it and can you do 

or can you explain, and having them process it and construct an 

understanding. And I just feel, for me, that gets me excited and I want 

them to have that. (Interview 3) 

 

 Diane‘s goal, in her new work with teachers, was to get them to understand the 

why‘s of mathematics. As a dedicated elementary school teacher and as a mathematics 
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educator, Diane had come to realize that the mathematics being taught in the early grades 

was much more complex than she, or most others, had recognized: 

I really want teachers to have an understanding of the math that they teach. 

I know I said this already, but it goes back to, I think that society as a 

whole that you‘re not a good math teacher unless you‘ve had these really 

hard, high level math classes. And I disagree with that. I think that the 

math that even the kindergarten through fifth grade teachers teach, it‘s 

very intricate, and how you teach it, and the experiences you provide your 

kids, and knowing why you‘re providing those experiences for the kids, is 

much more important than having Differential Equations or whatever. 

(Interview 3) 

 

So, for Diane, it was not about how much mathematics a teacher had learned, but how 

deeply the teacher had explored mathematical concepts.  

Diane‘s goal was to give her teachers those in-depth experiences with elementary-

level mathematics. And then, through exploration, discovery, and discussion, she hoped 

they would begin to understand the mathematics in ways that would then benefit their 

own students‘ learning. She had come to see mathematics differently, more in keeping 

with her perceptions of mathematics education, and she felt comfortable pushing the 

teachers with whom she worked to view mathematics differently as well. Just as she 

came to see mathematics as a human construction by engaging in constructivist learning, 

Diane worked with other teachers to offer them the same experiences. 

Summary 

It has been my intent to present these individual teacher stories as just that—

individual stories of teachers‘ struggles to define mathematics and to teach mathematics 

in a manner that aligns with their own personal beliefs about the nature of mathematics. 

Yet there are still questions that must be asked. What does this study tell the reader about 

teachers‘ personal philosophies of mathematics? How do those teachers‘ philosophies 
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change over time as they engage in a scholarly study of mathematics philosophy and as 

they attempt to implement a new task-based curriculum? What issues do teachers raise as 

they define and refine their views of mathematics education, and try to answer the 

question, what is mathematics? 

The philosophy of each of the mathematics educators in this study was influenced 

by their personal experiences with mathematics, first as students and later as teachers. It 

was evident in the interviews that each participant formed a relationship with 

mathematics early in life. Julia‘s father, a teacher of mathematics, played a large role in 

her own love of mathematics. Through him, she had access to higher level mathematical 

learning. She was able to pursue more advanced mathematics by exploring his textbooks; 

this opened up possibilities not found in her own classroom experiences. Perhaps it was 

this influence that gave Julia the courage to do mathematics in her own way—to follow 

the prescribed procedures of her teacher and then to use her method ―on the side‖ 

(Interview 1). Curiously, Julia was the only participant who did not immediately pursue a 

career in education. But after a career in the military, she came back ―full circle‖ 

(Interview 1) to her love—mathematics and mathematics education. 

Unlike Julia, the other three participants described an inconsistent relationship 

with mathematics. Katie, Michael, and Diane all knew early in life that they wanted to be 

teachers. They were then drawn to the teaching of mathematics, though, for varying 

reasons. Katie did not see herself as a ―brilliant‖ student of mathematics (Interview 1), 

but she had always enjoyed mathematics and never imagined teaching any other subject. 

Michael also identified himself as an average mathematics student prior to college, but 

saw the practicalities of being a mathematics teacher because the demand was high. And 
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both Katie and Michael admitted to struggling in college-level mathematics courses. 

Diane began her college career in elementary education but enjoyed the constructivist 

instructional methods of her mathematics instructors so much that she then pursued a 

minor in mathematics. For all four of these educators, the joy of learning mathematics 

came from the struggle to understand, the determination to see it through, and the 

satisfaction of solving a mathematical problem. For each of them, mathematics 

represented an effort achieved through hard work; none of them saw mathematics as 

something that came easy. And that idea—mathematics as achievement, rewarded for 

hard work—was something that Katie, Michael, Julia, and Diane brought to their 

classrooms as mathematics teachers. It was a goal for each of them to help their students 

feel the same sense of pride they had felt through their successes in mathematics. For 

these educators, mathematics was satisfying not because it came easily or naturally, but 

because they had worked hard to understand it. But for each of them, it was never just the 

understanding of mathematical rules and procedures that gave them satisfaction and pride, 

it was the actual ―doing‖ of mathematics—Julia‘s trigonometric identities, Diane‘s use of 

primitive algebra tiles to understand how to solve equations, Katie‘s and Michael‘s 

struggles through higher-level mathematics courses to understand differential equations 

or linear algebra.  

Power and mathematics were inseparable for these four educators. They all talked 

about power in our interviews, although they each characterized the relationship between 

power and mathematics differently. For Katie, the issue of power was primarily focused 

on the sense of confidence and assurance she found in her own personal success in 

mathematics. Katie emphasized the importance of effort—effort to learn mathematics 
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despite its difficulties, effort to complete a problem and see it through to the end. When 

she tried hard and succeeded, she felt empowered because she felt successful. It was this 

feeling of empowerment through success that she wanted to pass onto her students. She 

enjoyed working with freshmen because she believed she could teach them the 

importance of putting forth effort to achieve a particular goal. In her class that goal was 

to learn mathematics but, for Katie, the primary focus was the importance of hard work, 

to teach kids that ―I can do anything that I put my mind to as long as I work hard at it‖ 

(Interview 1). In her view of effort, Katie held similar views to those put forth by the 

National Mathematics Advisory Panel (2008) when they emphasized the importance of 

effort in student achievement. Katie did not deconstruct this notion of effort; she did not 

question the many factors that may contribute to a student‘s own beliefs about 

mathematics or mathematics instruction. She was, in many ways, reacting from her own 

personal mathematics history (see Bibby, 1999) when she stressed the role of effort in the 

learning of mathematics. Her experience had shown her that effort made a difference and 

it was that experience that she sought to pass on to her students. 

Michael viewed mathematics and power as inseparable as well. Like Katie, he 

saw mathematics as the ―platform that I stand on‖ (Interview 1) in order to have an 

impact on his students. He too had struggled through the learning of mathematics and felt 

empowered by his eventual success. And he wanted his students to feel that same sense 

of accomplishment. He did not hesitate to share with his students his own struggles with 

mathematics. Both Michael and Katie felt comfortable making mistakes in front of their 

students and then working together to correct those mistakes. Thus they wanted their 
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students to see mathematics as a subject one struggles through, learns from errors, and 

gains strength through success.  

But for Michael, issues of mathematics and power went beyond personal 

empowerment through the learning of mathematics. Michael was confronted with the 

realities in his school system of mathematics as an instrument of socio-economic power. 

His realization that certain students, students of a particular race and class, were being 

isolated from the school population at large through their participation in lower tracked 

courses, was troubling for him. Michael was proud to be working with those students, 

proud to be engaging them in interesting and challenging mathematics. But he also 

acknowledged the injustice of an educational system that kept those students apart from 

others and he hoped to see changes to that system with a new, less tracked mathematics 

curriculum. Michael had come to see mathematics not as empowering for many students, 

but as a way to perpetuate class and racial inequities. 

Julia clearly viewed mathematics as a subject that both granted power and 

withheld power. Her own experiences as a student who did not want to follow the 

prescribed methods and procedures had taught her early on that teachers too often held all 

the mathematical power in a classroom. But she subverted that power by following their 

rules while secretly charting her own course as well. It had been her aim as a teacher to 

share the power with her students by guiding them to become mathematicians in their 

own right—by giving her students the tools they needed to become logical problem 

solvers and by encouraging them to explore their own solution paths. She did not want 

her students, primarily students of color, to be kept out of the privileged world of 

mathematical knower. Later, in her work with teachers, Julia advocated that they, the 
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teachers, must let go of the power in their classrooms and relinquish that power to their 

students. Julia knew it was often fear, fear of the unknown and fear of not being in 

control, that kept teachers from changing their instructional practices. Holding onto the 

knowledge, being the one who knew the mathematics, was how teachers maintained 

control. It was Julia‘s goal to get her teachers to recognize the relationship between the 

mathematics and power and to, at the very least, share that mathematical power with their 

students.  

Diane also viewed the learning of mathematics as a powerful endeavor. For Diane, 

it was more than just the struggle to grasp a difficult topic that gave mathematics its 

power. She believed that young children who could talk mathematically, who could solve 

complex problems, who could understand the predictable nature of numbers, were 

mathematically powerful. She also knew that students brought many different 

mathematical views to the classrooms, views often influenced by culture, that may be 

discounted in a traditional classroom. Diane tried hard to listen to all her students but she 

knew how difficult that could be when a student‘s culture is not shared by the teacher. 

But listening to students, mathematically and culturally, was of the utmost importance to 

Diane. For it was by listening to students that she learned best how to teach them.  

For these four teachers, learning mathematics was much more than simply 

learning rules and procedures. None of them believed that teaching was telling—standing 

in front of the classroom lecturing to the students about mathematics. In the 18 months 

that I interacted with these teachers, it was clear that they had come to see their 

relationship with mathematics and mathematics teaching and learning as a continuing 

journey, a process of change that would not end. And they each were in very different 
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places in that journey. Prior to the implementation of the new curriculum, Katie had 

prided herself on helping her students see the ―behind-the-scenes‖ (Final Reflection) 

mathematics, what Hersh (1997, p. 36) termed the back of mathematics: 

Front of mathematics is formal, precise, ordered, and abstract. It‘s broken 

into definition, theorems, and remarks. At the beginning of each chapter, a 

goal is stated. At the end of the chapter, it‘s attained. Mathematics in back 

is fragmentary, informal, intuitive, tentative. We try this or that. We say 

maybe or it looks like. 

 

Katie wanted her students to derive formulas not just memorize them. She used a 

great deal of guided practice in her class to help her students understand why things 

worked as they did. Yet Katie felt overwhelmed by the new curriculum. She was 

uncomfortable watching her students struggle; she wanted to help them find the right 

answers. What Katie had always valued in herself as a teacher—the ability to help 

students understand how mathematical procedures worked—no longer seemed relevant in 

the new mathematics classroom. Katie knew that she still had a ways to go in her journey 

and she was not sure how to get there. She remained optimistic that the future would be 

better, would be easier for her as a teacher. But Katie had seen mathematics as a subject 

where hard work paid off. Effort resulted in right answers. With the new curriculum, she 

saw students struggling with no apparent results. Their efforts did not seem to pay off and 

so they gave up. She felt her ability to help them was stymied by the need for them to be 

―discovering‖ the mathematics. She was searching for a more efficient way for her 

students to be learning mathematics than the lengthy tasks that had been provided by the 

state curriculum: ―And I‘m almost wondering too if, instead of doing the tasks per se, 

coming up with some sort of discovery learning that‘s quicker‖ (Interview 3). In some 

ways, Katie needed to redefine her ideas of mathematics to reconcile her difficulties with 
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the new curriculum. She struggled with answers that were not simply right or wrong; she 

struggled to be efficient in her grading when she had to carefully review each student‘s 

efforts at problem solving: 

And the grading is way, you know, in the past it‘s been right or wrong. 

Algebra 1 for the most part, there‘s very, very little partial credit and now 

everything is partial credit. And so grading is taking a very, very long time. 

(Interview 3) 

 

As our interview time ended, Katie was still attempting to redefine both her role 

in the new classroom and just how the mathematics was now being defined. 

Michael also struggled during the initial year of the new high school curriculum. 

Like Katie, he had always wanted his students to understand the why‘s of mathematics. 

He had begun, prior to the implementation of the new curriculum, to integrate the use of 

tasks in his mathematics classroom. But Michael was surprised to find that his biggest 

struggle was around a change to which he had looked forward—the integration of various 

tracks of students into one classroom. Whereas in the past, he had worked hard to engage 

his lower-tracked students in mathematical problem solving, he was now faced with the 

difficulty of teaching students with varying levels of mathematical knowledge in the 

same classroom. Michael was concerned that he was unable to assist students as he had in 

the past. He questioned if the new curriculum was pushing students to learn concepts 

before they were mathematically mature enough. Despite individual successes, he 

wondered whether a curriculum that was supposed to address issues of equity was not 

actually ignoring the individual needs of his students.  

The struggles for Julia and Diane were different from those of Katie and Michael 

as their work centered on teachers and not students. Both Julia and Diane had explored 

constructivist teaching in their own classrooms and felt comfortable engaging students in 
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task-based learning, getting them to talk about mathematics, and encouraging multiple 

solution paths. But helping teachers change their instructional practices presented new 

challenges. Julia‘s goal was to help teachers understand the mathematics behind the tasks 

so that fear would not stand in their way. In many ways, she sought to empower her 

teachers by exposing them to constructivist learning so that they would experience those 

ah-ha moments that had so excited her students. For Julia, this idea of engaging teachers 

in constructivist learning experiences was also tied to changing teachers‘ philosophies: 

So we have to get past that, they always want to complain, they don‘t 

know the basics. If I had five dollars for every time I heard that, I‘d buy a 

new car. So we have to go past that as well. The main thing that I try to do 

when working with them is changing their philosophy of their approach, 

and of the students, believing that they can. This is different. But we can 

do it! (Interview 2) 

 

 Although Julia identified the philosophical issues as tied to instructional practices 

and equality, by emphasizing a changed view of mathematics (not just basic 

computational skills but problem solving), Julia was also highlighting a changing 

philosophy of mathematics. Her biggest frustration was working with teachers who 

continued to teach basic skills prior to engaging students in any tasks: ―Because [the 

teachers say] they don‘t know this, they don‘t know that, so I need to teach them basic 

skills. So I had one teach ‗add and subtract fractions‘ for 3 weeks!‖ (Interview 2). And 

Julia knew that she was, in many ways, asking teachers to reject what had attracted them 

to teaching high school mathematics in the first place—the idea of mathematics as right 

or wrong, black or white: 

And I‘ve always said that maybe why people came to teach math, because 

it‘s easy, cut and dry. It‘s not now. Because I‘ve had teachers say no, you 

should be able just to check, you know, go down [and check answers]. But 

now I have to analyze. Okay? Not just quick, quick, quick, checklist. I 

have to analyze, and that‘s energy, endurance, and it‘s something that 
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some of them don‘t want to do. So it‘s easier I guess to say, they [the 

students] can‘t do it. (Interview 2) 

 

The challenge that Julia then faced was how to get her teachers to begin to view 

mathematics in a different light.  

Diane‘s challenge, in working with elementary school teachers, was to get them to 

understand the complexity of mathematics, to see mathematics as more than just 

memorizing the algorithms of addition, subtraction, multiplication, and division. Diane 

also knew that she was pushing teachers outside of their comfort levels and that 

overcoming their fear of the unknown was a factor in getting them to change their 

instructional practices. Like Julia, her goal then was to get teachers to feel the excitement 

of constructing their own mathematical knowledge and understanding, perhaps for the 

first time, how numbers worked. In her work with teachers, Diane emphasized the power 

of numerical patterns and number sense, and de-emphasized the use of algorithms, rules, 

and procedures. But Diane understood that experience alone might not be enough to 

change a teacher‘s beliefs about teaching and learning: ―I don‘t have any magic bullet. I 

mean a lot of teachers have beliefs about how kids learn and they‘re different than mine 

and short of showing them experiences, I don‘t know that there‘s a lot you can do‖ 

(Interview 3).  

In some ways, each of these educators saw a connection between changing 

instructional practices, whether it be their own or the teachers‘ with whom they worked, 

and personal philosophies of mathematics. They each had identified the need to see 

mathematics as more than computation, more than algorithms, and more than 

memorizing formulas. And in their reflective essays and our conversations, as we 

explored the summer course readings and specifically talked about their philosophies of 
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mathematics, the participants of this study examined what it meant to have a ―philosophy 

of mathematics.‖  

Katie admitted that the summer course and our study had made her think about 

ideas she would not normally have thought about: ―You know, cause you‘re not usually 

asked these types of questions‖ (Interview 3). But, for her, to be engaged in discussions 

about philosophy while in the midst of trying to implement changes in how she taught 

mathematics made sense. Because, ultimately, Katie saw the new curriculum demanding 

a changed view of mathematics not just for her, but for her students as well: 

But I think the students, overall, with the new curriculum, they are seeing 

math in a way that they would not ever really have though of math. It‘s 

just constantly showing them how math is related to the real world. And I 

think there are times where, you know, they just don‘t, they just think, 

well math is just something you do in school, out of a textbook and so I 

think it‘s been good for them too. Because I think they are definitely 

getting more opportunities to see how math relates to the real world. 

(Interview 3) 

 

Both Katie and her students were struggling to redefine mathematics and to understand 

its implications in the classroom. 

Julia found a way to connect the ideas of Ernest (1998) with her own beliefs about 

teaching mathematics:  

Paul Ernest (1998) believes that mathematical knowledge is influenced by 

human activity and contends that mathematics knowledge is situated 

within and grows out of a community of individual mathematicians. The 

implication is that since mathematical knowledge is a product of the social 

nature of the mathematical community, then the development of 

mathematical knowledge cannot occur without human activity. The 

formation of mathematical knowledge relies upon the discourse and 

dialogue that students have in and out of school. Their conversations 

include agreements or disagreements on the definitions, processes, 

assumptions, and rules of math. The function of mathematical symbols as 

tools must be socially acquired and mastered if students are to experience 

academic success. (Final Reflection paper) 
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 Just as Julia‘s goal as a classroom teacher had been to empower her students by 

providing them the tools needed to build mathematical knowledge, and facilitating their 

use of mathematical discourse and dialogue, her goals as an instructional coach were to 

pass on the same ideals to her teachers. Julia wanted both teachers and students to see 

mathematics as something growing and changing, not a static field of study, but one with 

many unanswered questions. ―As teachers, shouldn‘t we let our students know that the 

question ‗what is mathematics?‘ has yet to be answered?‖ (Final Reflection paper).  

 Diane seemed most comfortable with a constantly changing, evolving philosophy 

of mathematics. While she struggled initially to align her constructivist view of 

mathematics instructions with her stated Platonic view of mathematics, she realized later, 

even as she came to define her mathematical philosophy as humanist, that philosophy, 

like mathematics, was not fixed. Throughout our interviews, Diane was always 

questioning, revising, and adapting both her views of mathematics and her ideas about 

mathematics education. Relating her philosophical journey to that of the character in the 

children‘s book, Math Curse (Scieszka & Smith, 1995), Diane began to see questions 

about mathematics everywhere: 

In my case, everything I looked at or thought about became philosophical. 

Does math exist? If it doesn‘t then why is Fibonacci‘s sequence found in 

nature, the Golden Ratio pleasing to the eye, patterns prevalent in the 

calendar, a parabola formed by the arc of a basketball shot? (Final 

Reflection paper) 

 

Diane was not always certain about the answers to her questions, but she seemed 

comfortable discussing the dilemma of a self-identified constructivist teacher who loves 

the beauty and the predictability of mathematics. 
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The participants in this study had not thought about their personal philosophy of 

mathematics prior to the summer course but our readings and our conversations helped 

them to bring words to ideas with which they had previously toyed. None of the 

educators in this study ended with a single, easily defined philosophy of mathematics. 

But the idea of questioning—questioning what it means to teach mathematics, 

questioning just what is mathematics—was one with which they all became more 

comfortable. As Michael told me, ―I find it interesting that part of the goal of our class 

was not that we would leave with answers, but we would leave with more questions‖ 

(Interview 2). 
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CHAPTER 6 

DISCUSSION AND CONCLUDING REMARKS 

The purpose of this study was to explore four teachers‘ personal philosophies of 

mathematics and mathematics education. The study took place as each of the four 

teachers was involved in statewide mathematics curriculum reform that emphasized 

constructivist instructional practices, thus engaging students in learning mathematics 

through doing mathematical tasks. The teachers all participated in a graduate-level 

mathematics education course that focused on particular readings in the philosophy of 

mathematics. The intent of the course was to engage the teachers in an investigation of a 

humanist/fallibilist philosophy of mathematics. This study extended that investigation, 

through the use of personal reflections and interviews, as the participants and I explored 

their views of mathematics in light of the instructional changes they were implementing 

as part of the curriculum reform in mathematics. In this chapter, I will present a final 

discussion of the findings of this study and examine the implications of those findings. In 

addition, I will share the limitations of the study and offer suggestions for future research. 

Discussion of the Study 

  The four participants in this study shared, through writings and interviews, their 

struggles to, first, define mathematics and its purpose in society as well as in school, and 

second, to reconcile
10

 their views of mathematics with their instructional practices. One 

                                                 
10

 I use the term reconcile here to mean ―to bring into agreement or harmony; make compatible or 

consistent‖ (Webster’s, 2001, p. 1612); thus emphasizing a balancing or harmonizing of what may have 

been opposing or conflicting views. 



 167 

 

 

question served as a continued focus throughout this study: What is mathematics? 

Connecting to that question were issues of teaching and learning mathematics, for the 

participants of this study acknowledged the inseparable relationship between their views 

of mathematics and the teaching and learning of mathematics. That is to say, these four 

educators did not come to the mathematics classroom as newcomers (Britzman, 2007). 

They brought with them their personal mathematical and educational histories—their 

relationship with mathematics as student and as child, their beliefs about schooling and 

the place of mathematics in schools, and their ideas of what it means to teach and learn 

mathematics. 

 The teachers participating in this study acknowledged that, prior to our summer 

graduate course, they had not given much thought to their philosophy of mathematics. 

But this study presumes the necessity of a philosophy of mathematics for, as Dossey 

(1992) wrote: 

The conception of mathematics held by the teacher may have a great deal to do 

with the way in which mathematics is characterized in classroom teaching. The 

subtle messages communicated to children about mathematics and its nature may, 

in turn, affect the way they grow to view mathematics and its role in their world. 

(Dossey, 1992, p. 42) 

 

It was, therefore, the goal of this study to engage teachers in a discussion of 

philosophy and an exploration of a new view of mathematics, a humanist/fallibilist view 

that might have differed from their more traditional views of mathematics: 

The development and acceptance of a philosophy of mathematics carries with it 

challenges for mathematics and mathematics education. A philosophy should call 

for experiences that help mathematician, teacher, and student to experience the 

invention of mathematics. It should call for experiences that allow for the 

mathematization, or modeling, of ideas and events. Developing a new philosophy 

of mathematics requires discussion and communication of alternative views of 

mathematics to determine a valid and workable characterization of the discipline. 

(Dossey, 1992, p. 42) 
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 The participants in this study did begin, for the most part, with a stated view of 

mathematics that was quite traditional: a right/wrong, black/white, a priori view of 

mathematics. And they each reinforced, time and again, that their views of mathematics 

could not be separated from their views of mathematics education. Yet, as they continued 

to read and discuss philosophy, they came to see that their traditional philosophies of 

mathematics did not align with their views of mathematics in the classroom or their 

personal goals for mathematics education. For they each had embraced (to varying 

degrees) a constructivist pedagogy within their classroom instruction, that is, constructing 

one‘s own understanding, making sense of the mathematics in one‘s own way, 

empowering students through the struggles and successes of problem solving. Each 

participant saw the ―doing‖ of mathematics as the purpose of mathematics teaching and 

learning. In other words, they valued mathematics for its problem-solving nature, echoing 

Polya‘s (1945/1973) emphasis on the heuristics of mathematics. And so they began to 

redefine their philosophies of mathematics, to trouble the previously unquestioned meta-

narratives of mathematics, to demystify the mathematics. Mathematics began to loose its 

abstract perfection, its certain and ethereal nature.  

But even as they began to change their philosophies of mathematics, to view it as 

a fluid subject, a human construct, they also came to see those philosophies as fluid, ever-

changing, a process more than a product. Michael and Diane, especially, struggled to find 

the words that defined their elusive philosophies, recognizing, as Michael shared with me, 

that the philosophy was not fragmented or limited, only the words being used to describe 

it. In this way, they agreed with Deleuze and Guattari (1991/1994) on the dynamic nature 

of philosophy: 
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Philosophy is becoming, not history; it is the coexistence of planes, not the 

succession of systems. . . . Philosophy thus lives in a permanent crisis. The 

plane takes effect through shocks, concepts proceed in bursts, and 

personae by spasms. . . . Philosophy does not exist in knowing and is not 

inspired by truth. (p. 82) 

 

 What became clear in this study was that each participant‘s views of mathematics 

were a result of her or his own personal story of mathematics, her or his relationship with 

mathematics as a student, as a teacher, as a child of an educator, as a learner, and as a 

mentor. Although the participants could not identify an early philosophy of mathematics, 

they could easily remember and relay their early experiences and feelings about 

mathematics. Katie spoke of her struggles to succeed in mathematics classes and her 

feelings of pride as she overcame those struggles. Julia spoke of her love of mathematics 

early on, pursuing problems beyond her own assignments because of the sense of power 

that mathematics afforded her. Diane saw mathematics open up to her as she learned to 

understand the concepts behind the procedures she had always just memorized. And each 

of these teachers wanted to bring to their students the positive aspects that mathematics 

had brought to them. Michael viewed mathematics as his platform to reach out to 

students and show them they each had value. Julia wanted her students, and her teachers, 

to experience the power of solving complex mathematical problems in their own way. 

Diane helped her students to talk about mathematics, exploring different ideas and 

sharing those ideas with each other. Mathematics was not just a school subject for any of 

these teachers. It was, in many ways, a microcosm for life lessons they wanted their 

students to learn: hard work will reward you with success (Katie); you are important and 

don‘t let anyone convince you otherwise (Michael); don‘t let anyone stop you from doing 
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things your own way (Julia); construct your own knowledge through exploration, 

discovery, and communicating (Diane).  

The stories that each of these teachers shared with me emphasized their own 

unique views of mathematics, mathematics education, and education in general. The 

teachers often struggled to transform their views of mathematics into their day-to-day 

instructional practices. But they each defined those struggles as part of a process, a 

continuous journey toward change. In this, they agreed with researchers who have 

emphasized the importance of reflexivity in bringing about teacher change (see, e.g., 

Cooney, et al., 1998; Hart, 2002a, 2002b). The four educators in this study recognized the 

continuous cycle of experimentation, reflection, and adaptation required to bring about 

change in instructional practices: 

If we characterize reform-oriented teaching as that teaching which attends 

to context, including basing instruction on what students know, then 

teaching becomes a matter of being adaptive (Cooney, 1994) rather than a 

matter of using a particular sequence of instructional strategies. The 

development of a reform-oriented teacher so characterized, is rooted in the 

ability of the individual to doubt, to reflect, and to reconstruct. (Wilson & 

Cooney, 2002, p. 132) 

 

In addition, these teachers no longer viewed mathematics as culture-free. Whether 

viewed as a subject that perpetuated class inequities, as Michael did, or viewed as a 

subject that needed a cultural context if one‘s students were to become interested, as Julia 

and Diane did, these teachers knew that students did not enter a mathematics classroom 

as blank slates. They would agree with Brown (1994) that we bring our entire histories to 

our doing of mathematics: ―If I am presented with a new piece of mathematics I bring to 

it a whole history of myself. Any construction I make in respect of this new task cannot 

be independent of this history‖ (p. 156). What these teachers then struggled with was the 
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enormity of bringing mathematics to a heterogeneous classroom, a room of varied 

cultures, varied understandings, varied beliefs, and varied feelings about the mathematics. 

The commonality they did bring to their students was their own personal love of 

mathematics, their belief in its beauty as well as its power. In many ways, they 

encouraged their own students, and the teachers they mentored, to see mathematics 

differently, to demystify the mathematics that they taught by seeing it as a human 

construct: 

If mathematics is conceived as inseparable from human contexts and 

practices, then social implications for mathematics education follow, 

enabling notions of accessibility, equity, and social accountability to be 

applied to the discipline of mathematics. The outcome is a demystification 

of mathematics, to the benefit of the discipline and mathematicians and 

also to students, teachers, and other users of mathematics in society. 

(Ernest, 1998c, p. 26) 

 

Implications of the Study  

The teaching and learning of mathematics is a politically charged arena. Strong 

feelings exist in the debate on how ―best‖ to teach mathematics in K–12 schools, feelings 

that are linked to varying perceptions about the nature of mathematics (Dossey, 1992). Is 

mathematics ―an ideal, well-defined body of knowledge, faithfully mirroring certain 

mind-independent reality of abstract ideas‖ (Sfard, 1998, p. 491) or is it a human-

construct, fallible and ever-changing? These perceptions of mathematics then drive 

beliefs about the appropriate instructional practices in mathematics. Is mathematics a 

body of knowledge that must be memorized and unquestionably mastered, or do we 

engage the learners of mathematics in personal sense making, in constructing their own 

mathematical knowledge? That we are in the midst of ―math wars‖ is indisputable 
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(Schoenfeld, 2004). What it means to teach mathematics and the very nature of 

mathematics is at the center of these wars:  

Traditionalists or back-to-basics proponents argue that the aim of 

mathematics education should be mastery of a set body of mathematical 

knowledge and skills. The philosophical complement to this version of the 

teaching and learning of mathematics is mathematical absolutism. 

Reform-oriented mathematics educators, on the other had, tend to see 

understanding as a primary aim of school mathematics. Constructivism is 

often the philosophical foundation for those espousing this version of 

mathematics education. (Stemhagen, 2008, p. 63) 

 

I agree with Schoenfeld (2004), Greer and Mukhopadhyay (2003), and others 

(e.g., Davison & Mitchell, 2008) that the math wars are based on philosophical 

differences. It has therefore been my intent to inject philosophy into the discussion of 

mathematics educational reform and research. This study then has implication in several 

areas: teacher preparation and teacher change; educational policy, particularly relating to 

mathematics curriculum reform; and research in mathematics education. I will address 

each of these areas briefly. 

The literature review chapter of this study addressed, at length, the ongoing 

research on teachers‘ beliefs and teacher change. Much has been written regarding the 

need to engage teachers, both preservice and inservice, in constructivist learning in order 

to change their instructional practices (see, e.g., Hart, 2002a, 2002b; Mewborn, 2003; 

Thompson, 1992). Yet little has been done to engage teachers in a philosophical 

discussion of mathematics: ―Teachers, as well, should be encouraged to develop 

professionally through philosophical discourse with their peers‖ (Davison & Mitchell, 

2008, p. 151). Philosophy and mathematics have a long-standing connection, going back 

to the ancient Greeks and others (Davis & Hersh, 1981). Yet seldom are mathematics 

teachers asked to explore philosophy beyond an introductory Philosophy of Education 
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course. If one is going to teach mathematics day in and day out, should one not at some 

point ask, why? What is the purpose of teaching mathematics in our public schools? And 

what is the purpose of mathematics in society at large? And should not mathematics‘ 

purpose be tied to how we then teach it? These questions come back to teachers‘ 

perception of mathematics, and more specifically, their philosophies of mathematics.
11

 

That then has been the focus of this study—to accompany and even guide 

teachers on an exploration of the philosophy of mathematics. Through readings and 

discussions, the participants of this study were encouraged to examine philosophical 

questions of the nature of mathematics and gained the language through which to define 

their own philosophies of mathematics. And these four teachers came to see that 

exploration as a journey, one similar to their journeys as educators. I believe they would 

agree with Edwards and Usher‘s (2001) account of learning: ―In a postmodern condition, 

we (en)counter the issue that the growth of knowledge expands the field of ignorance, 

and with each step toward the horizon new unknown landscapes appear. Lifelong 

learning as travel and, no doubt, travail‖ (p. 285). This journey took place as each 

participant was engaged in the implementation of a new mathematics curriculum, a task-

based curriculum that emphasized mathematical discourse, problem solving, and multiple 

pathways and solutions. Hence, the philosophical question, what is mathematics, became 

a guide for these educators as they struggled to support that implementation. The 

participants began to reject their previously held philosophies of the certainty of 

mathematics, the other-worldliness of the subject, and began to see mathematics as a 

human construction, fallible and amenable. Britzman (2007) called on teacher education 

                                                 
11

 I draw the reader‘s attention back to the definition of philosophy employed in chapter 1: ―the critical 

study of the basic principles and concepts of a particular branch of knowledge, especially with a view to 

improving or reconstituting them‖ (Webster‘s, 2003, p. 1455). 
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to recognize and embrace the place of uncertainty in the human condition. This study 

calls for mathematics educators to embrace uncertainty not only in education but in 

mathematics as well.  

Preservice and inservice teachers should engage in an exploration of the 

philosophy of mathematics and examine how those philosophies intersect with their 

philosophy of teaching and learning. By exploring their own personal mathematical 

histories and putting words to their personal philosophies of mathematics, preservice 

teachers may well find that their perceptions of mathematics and mathematics education 

do not align with the expectations of teaching mathematics in the constructivist-based, 

reform classroom. The summer course described in this study can serve as a guide for 

mathematics teacher educators who want to engage both their preservice and inservice 

teachers in philosophical explorations of mathematics.  

Philosophy may well be at the root of the math wars (Schoenfeld, 2004), yet too 

often philosophy, particularly philosophy of mathematics, has been left out of the 

discussion. Education policy makers need to acknowledge the importance of philosophy 

in the current mathematics curriculum reform. The National Council of Teachers of 

Mathematics has avoided a direct conversation about philosophies of mathematics, yet 

this study demonstrates that teachers often cling to philosophies of mathematics that are 

at odds with the philosophical implications of the curriculum they are asked to implement. 

Philosophy, like religion and politics, is a discussion ignored. But the teachers in this 

study were not philosophy-free prior to their participation in this research. What they 

possessed, instead, were unexamined philosophies of mathematics. And when those 

(unexamined) philosophies clash with intended curriculum changes, is curriculum reform 
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possible? I do not argue that exploring philosophy in the field of mathematics and 

mathematics education offers a panacea. There is no magic bullet for mathematics 

curriculum reform. But ignoring philosophy as we seek to change how we view the 

teaching and learning of mathematics does not serve the community of teachers and 

learners of mathematics well.  

I contend that discussions of philosophy, particularly philosophy of mathematics, 

should be brought to the forefront of mathematics education reform. Teachers will 

continue to resist change, to teach the way they were taught, if they are never asked to 

explore the philosophical basis of their perceptions of mathematics. This study 

demonstrates that teachers can engage in a philosophical investigation of mathematics 

through readings and discussions of historical and current writings in the philosophy of 

mathematics. Although not all teachers may wish to participate in the reading-intensive, 

graduate-level study that was the basis of this research, teachers involved in curriculum 

reform must be made aware that mathematics is not a static subject, that its 

transcendental nature has been questioned, and that seeing mathematics as a human 

construct may allow us to integrate constructivist instruction more easily into the 

mathematics classroom. Too often, in my work with mathematics teachers, I see their 

(unexplored) philosophies of mathematics impeding their ability to change their 

instructional practices. Therefore the examination of philosophy of mathematics needs to 

become a part of the reform process, and this study supports the capacity of teachers to 

engage in such an examination.  

The growing philosophical investigations of mathematics (see, e.g., Davis & 

Hersh, 1981; Hersh, 1997; Restivo, Van Bendegen, & Fischer, 1993; Tymoczko, 1998) in 
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the past 30 years have not often been addressed in mathematics education research. This 

study sought to merge humanist/fallibilist philosophical writings in mathematics with 

research on mathematics education. Further research is needed in this area, continuing the 

bridge between the philosophical and the practical. We seem afraid to raise issues of 

philosophy as we implement curriculum reform and study teacher change. But 

philosophy too often lies hidden, an unspoken obstacle in the attempt to change 

mathematics education (Ernest, 2004). Researchers can continue to bring the hidden 

obstacle to light, to engage both policymakers and educators in a conversation about 

philosophy, not with the intent of enforcing the ―right‖ philosophy but with the 

acknowledgement that, without a continued dialogue about philosophy, the curriculum 

reform they research may continue to fall short. 

Issues of Power 

 I began this study as a co-instructor in a graduate course. The course readings 

were selected purposefully based on my own personal exploration of philosophies of 

mathematics. Both my advisor (and co-instructor) and I sought out authors who examined 

mathematics from a non-traditional stance. Whether it be Whitehead and Russell‘s 

(1910/1962) attempt at a formalist structuring of mathematics in Principia Mathematica, 

Lakatos‘ (1976) troubling of the mathematical idea of proof in Proofs and Refutations: 

The Logic of Mathematical Discovery, or Davis and Hersh‘s (1981) investigation of a 

humanistic philosophy of mathematics in The Mathematical Experience, the intent of the 

course readings was to engage teachers in a new view of mathematics. Did this role, as 

instructor and researcher, limit the views of my participants? Did they seek, in our 
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interviews, to mimic the readings, to echo what they had perhaps come to see as my 

views, the ―preferred‖ views, the ―right‖ views?  

Issues of power cannot be removed from any study. By engaging the participants 

in conversations over a sustained period of time, 18 months, I hoped to lessen the impact 

of my own views on the study. It was my intent to form a reciprocal relationship with 

each of the participants in this study, to encourage them to express their own views, not 

what they thought I wanted to hear. I worried at times that a participant was searching for 

the right words, the words that would express their views in a ―correct tone.‖ I tried to 

deflect that in our conversations, to keep them focused on what they experienced, and 

how they interpreted those experiences. But even in that, what the reader comes to know  

in this study is my own interpretation of the stories that each participant interpreted to me.  

 Issues of power arise, as well, in the nature of the relationship I have built up with 

each of the participants. In order to focus on their voices, on their views, I have spent 

months reading essays, discussing, interviewing, emailing, and sharing coffee and family 

stories with these four exceptional mathematics educators. I have come to like and 

respect each of them. At times, as we talked, I might have disagreed with ideas that they 

shared; I might have wanted to debate an instructional technique they described. My 

professional role, my day-to-day work, is that of a professional developer, one who 

guides teachers to change their instructional practices, who works within schools and 

school systems to affect changes in mathematics curriculum. Sometimes, as I talked to 

my participants, I found myself slipping from my role as researcher into my role as 

consultant, as professional developer. But I tried to keep a wall between those two selves; 

I did not want to debate practices with my participants; it was not my role to change what 
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went on in their classrooms. Did I influence my participants stories through the blurring 

of my professional and researcher roles? My own journaling, reflecting on the interviews, 

troubling where I felt I had ―crossed the line,‖ helped to keep me honest, to keep my 

focus on the researcher role, to keep me focused on the words on the participants, not the 

thoughts and judgments in my head. But I acknowledge that a blurring of roles might 

have occurred, that I am never separate people, researcher one hour and professional 

developer the next. 

 At the same time, I recognize the lack of power that teachers face in today‘s 

educational environment (Apple, 1986, 2000). The voices of teachers are often silenced 

in the debate to ―better‖ America‘s public schools. Discussions of ―good‖ teaching versus 

―bad‖ teaching dominate the media and political focus on education. I do not wish to add 

to that discourse. The teachers who participated in this study shared a commitment to 

their students and to mathematics education. My recognition of teachers‘ lack of a voice 

in today‘s educational landscape might have, at times, kept my own thoughts silenced. I 

strove to avoid criticism in my analysis of these teachers‘ stories due to my personal 

respect and admiration for my participants. Did that avoidance damage my study? I hope 

it did not but, from an ethical standpoint, I cannot add to the political climate surrounding 

education that seeks to portray some teachers as ―low quality‖ and others as ―high 

quality.‖ I believe that research on teachers‘ philosophies, beliefs, and instructional 

practices must recognize the great effort most teachers put into their work with students 

and build from there.  

I share with the reader the above concerns, not to diminish the impact of this 

study, but to be transparent regarding what I have brought to the research. I am not the 
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fly-on-the-wall, my role has been an active one. I continue the discussion of my own role 

in this study in the next section. 

Revisiting the Methodology 

The use of narrative analysis in this study served to highlight the stories of these 

four mathematics educators. Teachers and others make sense of their personal 

experiences through the use of stories or narratives (Clandinin & Connelly, 1998). Hence, 

the narratives that teachers share open a window of understanding into their educational 

practices: ―Narrative research in which teachers‘ voices are heard in their stories of 

experience offers an opportunity to present the complexity of teaching to the public‖ 

(Moen, 2006, p. 10). My use of narrative analysis sought to keep those voices intact 

while, at the same time, provided my ideas, my interpretations of the reflective journeys 

of these educators. Yet my own role in this study is not one of objective observer. I have 

brought my own perceptions and beliefs, my own ―baggage‖ (Scheurich, 1997) to the 

analysis of these teachers‘ stories: 

Although we may come to know the knowledge of others by interpreting 

their language and actions through our own conceptual constructs, we 

must acknowledge that the others have realities that are independent of 

ours. Indeed, these realities of others along with our own realities are what 

we strive to understand in qualitative research, but we may never take 

these realities as fixed. (Ernest, 1998c, p. 30) 

 

I share, therefore, through this study, my interpretations of teachers‘ search for a 

personal philosophy of mathematics, one that is in keeping with their beliefs about 

mathematics as well as the teaching and learning of mathematics. As Scheurich (1997) 

asserted, there is an openness, an ambiguity that lies in the relationship between 

interviewer and interviewee, researcher and participant, an openness I have sought to fill 

with my analysis of the participants‘ stories. But that analysis is not meant as a Truth. I 
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have shared my baggage, my biases and beliefs with the reader. Perhaps what the reader 

comes to know, after a review of this study, is my own interpretations, my own 

perceptions about what is important in mathematics and mathematics education: 

Like life, qualitative inquiry is fiction, in the sense that it is made or 

constructed, but not in the sense that it is pure invention, lies, or 

imaginings. In other words, qualitative inquiry has a grounding in ―real‖ 

events and ―real‖ lives, but learning about and representing events and 

lives is a process of constructing others‘ constructions of the constructions 

of the world. (Talburt, 2004, p. 81) 

 

I have offered the reader, then, my construction of others‘ constructions of the 

constructions of mathematics and mathematics education. But it is a journey I feel I have 

taken alongside my participants. I have struggled through my own defining of philosophy 

just as they have struggled through theirs. And I have sought to understand the processes 

that teachers go through as they explore the philosophy of mathematics and as they 

implement a changed view of mathematics education in their classrooms, with the hope 

that sharing that process with others will open new avenues for research and practice in 

mathematics education. It is my hope that future researchers continue to explore teachers‘ 

philosophies of mathematics. I see a need, in particular, for research that engages 

preservice teachers in a similar course of readings in the humanist/fallibilist philosophies 

of mathematics as this study, and investigates the process those ―becoming‖ teachers then 

go through as they transition to the mathematics classroom. In addition, a follow-up study 

is needed that continues to explore teachers‘ philosophical journeys. The teachers in my 

study were, for the most part, in the initial year of implementing a new and challenging 

curriculum; they were very much in the midst. To return to teachers, several years into a 

reform process, is necessary to better understand the processes these teachers go through. 
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Closing Remarks 

What do we truly come to know as we conclude a study? What answers can I now 

offer the reader? Can I state without question that an exploration of philosophy made 

these participants better teachers? Can I assert the importance of philosophical 

discussions for teachers attempting to change their instructional practices? Perhaps I can 

just offer the reader more ideas, more thoughts about the complexity of education, about 

the struggles good teachers go through to reach students, to connect to them day after day, 

and to get those students to connect to mathematics in a meaningful way. Perhaps as 

researchers and educators, we must come to feel comfortable with knowing what we do 

not know, that there is no magic potion in education, no silver bullet, just hard work and 

struggle, reflectivity and caring. Each study may move us closer to an understanding of 

just what it means to teach and to learn, but it also leaves us with a sense of what we still 

do not know: 

We cannot look into people‘s heads, but let us think about the conditions 

that education researchers find themselves in and ask whether knowing 

that one does not know is the sort of knowledge that is valued and 

encouraged. (Hostetler, 2005, p. 21) 

 

Like my participants, I may end this study knowing only that I have more 

questions or, as Michael pointed out, ―better questions.‖ Curiously, what I struggled with 

most, throughout this study, was formulating my research questions, maybe because 

questions imply answers. And in this, I agree with Hostetler‘s (2005) concerns about 

good research: 

Of course, in some sense, all research starts with a question, awareness that one 

does not know something. The problem is that research tends to end with an 

answer. Hello? Of course, I am not saying researchers should not try to answer 

questions. The problem is ending with answers—being unaware of or uninterested 

in the ethical questions generated or avoided. The ―answers‖ to research questions 
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do not end things but offer new circumstances for exploring the persistent 

question of what is good for people. (p. 21) 

 

 And so what my research offers may not be answers but a continued dialogue 

about education, a dialogue focused on two very important yet often unasked questions: 

What is mathematics? What does it mean to teach and to learn mathematics? ―What if 

higher education understood more of its inquiry as part of a conversation that cannot 

conclude with certainty?‖ (Talburt, 2004, p. 84). And so I conclude not with certainty but 

with the hope that I have carried on the conversation about the mathematics education in 

a meaningful way, that I have caused the reader to think about her own philosophy of 

mathematics, the educator to ponder the implications of the philosophy of mathematics in 

the classroom, and the researcher to plan a further investigation of the processes that 

occur when one asks: What is mathematics? 



  

 

 183 

References 

Ambrose, R. (2004). Initiating change in prospective elementary school teachers‘ 

orientations to mathematics teaching by building on beliefs. Journal of 

Mathematics Teacher Education, 7, 91–119. 

Amit, M., & Fried, M. (2002). Research, reform, and times of change. In L. English (Ed.), 

Handbook of international research in mathematics education. Mahwah, NJ: 

Lawrence Erlbaum Association. 

Apple, M. (1986). Teachers and texts: A political economy of class & gender relations in 

education. New York: Routledge. 

Apple, M. (2000). Mathematics reform through conservative modernization? Standards, 

markets, and inequality in education. In J. Boaler (Ed.), Multiple perspectives on 

mathematics teaching and learning (pp. 243–259). Westport, CT: Ablex. 

Barlow, A. T., & Cates, J. M. (2006). The impact of problem posing on elementary 

teachers‘ beliefs about mathematics and mathematics teaching. School Science 

and Mathematics, 106(2), 64–73. 

Barone, T. (2007). A return to the gold standard? Questioning the future of narrative 

construction as educational research. Qualitative Inquiry, 13, 454–470. 

Becker, J., Pence, B., & Pors, D. (1995). Building bridges to mathematics for all: A small 

scale evaluation study [Electronic version]. In D. T. Owens, M. K. Reed, & G. M. 

Millsaps (Eds.), Proceedings of the Seventeenth Annual Meeting of the North 

American Chapter of the International Groups for the Psychology of Mathematics 



184 

 

 

Education, Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and 

Environmental Education. 

Beswick, K. (2007). Teachers‘ beliefs that matter in secondary mathematics classrooms. 

Educational Studies in Mathematics, 65, 95–120. 

Bibby, T. (1999). Subject knowledge, personal history, and professional change. Teacher 

Development, 3, 219–232. 

Bibby, T. (2002). Primary school mathematics: An inside view. In P. Valero & O. 

Skovsmose (Eds.), Proceeding of the 3
rd

 International MES Conference (pp. 165–

174). Copenhagen: Centre for Research in Learning Mathematics. 

Bishop, A. J. (2002). Critical challenges in researching cultural issues in mathematics 

education. Journal of Intercultural Studies, 23, 119–131. 

Boaler, J. (2002). Paying the price for ―sugar and spice‖: Shifting the analytical lens in 

equity research. Mathematical Thinking and Learning, 4, 127–144. 

Bogdan, R. C., & Biklen, S. K. (2003). Qualitative research for education: An 

introduction to theories and methods. Boston: Pearson Education. 

Bracey, G. W. (2007). The first time ‗everything changed‘: The 17
th

 Bracey Report on 

the Condition of Public Education. Phi Delta Kappa, 89, 119–136.  

Britton, C., & Baxter, B. (1999). Becoming a mature self: Gendered narratives of the self. 

Gender and Education, 11(20), 179–193. 

Britzman, D. P. (2000). ―The question of belief‖: Writing poststructural ethnography. In 

E. A. St. Pierre and W. S. Pillow (Eds.) Working the ruins: Feminist 

poststructural theory and methods in education (pp. 27–40). New York: 

Routledge. 



185 

 

 

Brown, M. (1998). The paradigm of modeling by iterative conceptualization in 

mathematics education research. In A. Sierpinska & J. Kilpatrick (Eds.), 

Mathematics education as a research domain: A search for identity (pp. 263–276). 

Norwell, MA: Kluwer Academic. 

Brown, T. (1994). Describing the mathematics you are part of: A post-structuralist 

account of mathematics learning. In P. Ernest (Ed.), Mathematics, education and 

philosophy: An international perspective (pp. 154–162). London: The Falmer 

Press. 

Brown, T., Jones, L., & Bibby, T. (2004). Identifying with mathematics in initial teacher 

training. In M. Walshaw (Ed.), Mathematics education within the postmodern (pp. 

161–179). Greenwich, CT: Information Age Press. 

Burton, L. (1995). Moving towards a feminist epistemology of mathematics. In P. Rogers 

& G. Kaiser (Eds.), Equity in mathematics education (pp. 208–225). London:  

The Falmer Press.  

Carpentar, T., Dossey, J., & Koehler, J. (Eds.). (2004). Classics in mathematics education 

research. Reston, VA: National Council of Teachers of Mathematics. 

Casey, K. (1996). The new narrative research in education. Review of Research in 

Education, 21, 211–253.  

Chapman, O. (2002). Belief structure and inservice high school mathematics teacher 

growth. In G. Leder, E. Pehkonen, & G. Torner (Eds.), Beliefs: A hidden variable 

in mathematics education (pp. 177–193). Norwell, MA: Kluwer Academic. 

Clandinin, D. J., & Connelly, F. M. (2000). Narrative inquiry. San Francisco: John Wiley 

& Sons. 



186 

 

 

Clandinin, D. J., Pushor, D., & Orr, A. M. (2007). Navigating sites for narrative inquiry. 

Journal of Teacher Education, 58, 21–35. 

Confrey, J. (1990). What constructivism implies for teaching. In R. B. Davis, C. A. 

Maher, & N. Noddings (Eds.), Constructivist views on teaching and learning of 

mathematics (pp. 107–124). Reston, VA: National Council of Teachers of 

Mathematics. 

Conle, C. (2001). The rationality of narrative inquiry in research and professional 

development. European Journal of Teacher Education, 24(1), 21–33.  

Cooney, T., Shealy, B., & Arvold, B. (1998). Conceptualizing belief structures of 

preservice secondary mathematics teachers. Journal for Research in Mathematics 

Education, 29, 306–333. 

Cortazzi, M. (2001). Narrative analysis in ethnography. In P. Atkinson, A. Coffey, S. 

Delamont, J. Lofland, & L. Lofland (Eds.), Handbook of ethnography. Thousand 

Oaks, CA: Sage. 

Court, M. (2004). Using narrative and discourse analysis in researching co-principalships. 

International Journal of Qualitative Studies in Education, 17, 579–603. 

Crotty, M. (1998). The foundation of social research: Meaning and perspective in the 

research process. Thousand Oaks, CA: Sage. 

Damarin, S. (1999). Social construction and mathematics education: The relevance of 

theory. In L. Burton (Ed.), Learning mathematics: From hierarchies to networks 

(pp. 141–150). London: RoutledgeFalmer.  

Davis, P. J., & Hersh, R. (1981). The mathematical experience. Boston: Birkhauser. 



187 

 

 

Davis, R. B., Maher, C. A., & Noddings, N. (Eds.). (1990). Constructivist views on the 

teaching and learning of mathematics. Reston, VA: National Council of Teachers 

of Mathematics. 

Davison, D. M., & Mitchell, J. E. (2008). How is mathematics education philosophy 

reflected in the math wars? The Montana Mathematics Enthusiast, 5(1), 143–154. 

Deleuze, G., & Guattari, F. (1987). A thousand plateaus: Capitalism and schizophrenia 

(B. Massumi, Trans.). Minneapolis, MN: University of Minnesota Press. (Original 

work published 1980) 

Deleuze, G., & Guattari, F. (1994). What is philosophy? (H. Tomlinson & G. Burchell, 

Trans.) New York: Columbia University Press. (Original work published 1991) 

Denzin, N. K., & Lincoln, Y. S. (2003). Introduction: The discipline and practice of 

qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Collecting and 

interpreting qualitative materials. Thousand Oaks, CA: Sage. 

Derrida, J. (1985). Letter to a Japanese friend [Electronic version]. In D. Wood & R. 

Bernasconi (Eds.), Derrida and Différance. Retrieved February 10, 2008, from 

http://www.hydra.umn.edu/derrida/letter.html  

Dewey, J. (1976). Experience and education. New York: Collier Books. (Original work 

published in 1938) 

Dewey, J. (1987). Education and social change. In J. A. Boydston (Ed.), John Dewey: 

The later works, 1925–1953 (Vol. 11, pp. 408–415). Carbondale, IL: Southern 

Illinois University Press. (Original work published in 1937) 



188 

 

 

Dossey, J. (1992). The nature of mathematics: Its role and its influence. In D. A. Grouws 

(Ed.), Handbook of research in mathematics teaching and learning (pp. 39–48). 

New York: Macmillan. 

Edwards, R., & Usher, R. (2000). Lifelong learning: A postmodern condition of 

education? Adult Education Quarterly, 51, 273–287.  

Ellis, M. W., & Berry, R. Q. (2005). The paradigm shift in mathematics education: 

Explanations and implications of reforming conceptions of teaching and learning. 

The Mathematics Educator, 15(1), 7–17.  

Ernest, P. (1988). The impact of beliefs on the teaching of mathematics. [Electronic 

Version]. In A. Hirst & V. Hirst (Eds.), Proceeding of the Sixth International 

Congress of Mathematical Education. Budapest. Hungary: Janos Bolyai 

Mathematical Society. 

Ernest, P. (1991). The philosophy of mathematics education. London: The Falmer Press. 

Ernest, P. (1994). Social constructivism and the psychology of mathematics education. In 

P. Ernest (Ed.), Constructing mathematical knowledge: Epistemology and 

mathematics education (pp. 62–72). London: The Falmer Press. 

Ernest, P. (1998a). A postmodern perspective on research in mathematics education. In A. 

Sierpinska & J. Kilpatrick (Eds.), Mathematics education as a research domain: 

A search for identity (pp. 71–86). Norwell, MA: Kluwer Academic. 

Ernest, P. (1998b). Social constructivism as a philosophy of mathematics. Albany, NY: 

State University of New York Press. 

Ernest, P. (1998c). The epistemological basis of qualitative research in mathematics 

education: A postmodern perspective. In A. R. Teppo (Ed.). Qualitative research 



189 

 

 

methods in mathematics education (pp. 22–39). Reston, VA: National Council of 

Teachers of Mathematics. 

Ernest, P. (1999). Forms of knowledge in mathematics and mathematics education: 

Philosophical and rhetorical perspectives. Educational Studies in Mathematics, 38, 

67–83. 

Ernest, P. (2004). What is the philosophy of mathematics education? [Electronic Version]. 

Philosophy of Mathematics Education Journal, 18. Retrieved January 4, 2006, 

from http://www.people.ex.ac.uk/PErnest/pome18/PhoM_%20for_ICME_04.htm 

Fenema, E., & Franke, M. L. (1992). Teachers‘ knowledge and its impact. In D. A. 

Grouws (Ed.), Handbook of research in mathematics teaching and learning (pp. 

147–164). New York: Macmillan. 

Fleener, J. M. (2004). Why mathematics? Insights from poststructural topologies. In M. 

Walshaw (Ed.), Mathematics education within the postmodern (pp. 201–218). 

Greenwich, CT: Information Age. 

Forman, E. A. (2003). A sociocultural approach to mathematics reform: Speaking, 

inscribing, and doing mathematics within communities of practice. In J. 

Kilpatrick, W. G. Martin, & D. Schifter (Eds.). A research companion to 

Principles and Standards for School Mathematics (pp. 333–352). Reston, VA: 

National Council of Teachers of Mathematics.  

Foss, D. H., & Kleinsasser, R. C. (1996). Preservice elementary teachers‘ views of 

pedagogical and mathematical content knowledge. Teaching & Teacher 

Education, 12, 429–442. 



190 

 

 

Freire, P. (2000). Pedagogy of the oppressed (M. B. Ramos, Trans. 30th anniversary ed.). 

New York: Continuum. (Original work published in 1970) 

Freire, P., D‘Ambrosio, U., & Mendonca, M. D. C. (1997). A conversation with Paulo 

Freire. For the Learning of Mathematics, 17(3), 7–10. 

Frykholm, J. (2004). Teachers‘ tolerance for discomfort: Implications for curricular 

reform in mathematics. Journal of Curriculum and Supervision, 19, 125–149.  

Gates, P. (2006). Going beyond belief systems: Exploring a model for the social 

influence on mathematics teacher beliefs. Educational Studies in Mathematics, 63, 

347–369. 

Geertz, C. (1973). The interpretation of cultures. New York: Basic Books. 

Georgia Department of Education. (n.d.). Mathematics Curriculum Revision Executive 

Summary. Retrieved March 2, 2007, from 

http://public.doe.k12.ga.us/DMGetDocument.aspx/gps_ summary_math.pdf  

Georgia Department of Education. (2007, November 30). Georgia Performance 

Standards (GPS) Glossary. Retrieved March 7, 2009, from 

https://www.georgiastandards.org/Standards/Pages/BrowseStandards/BrowseGPS

.aspx  

Golafshani, N. (2004). Teachers‘ Conceptions of Mathematics and their Instructional 

Practices [Electronic Version]. Philosophy of Mathematics Education, 18. 

Retrieved February 22, 2006, from http://www.people.ex.ac.uk/PErnest/pome18/ 

teachers_conception_nahid_ golafshani.htm 

Goldstein, R. (2005). Incompleteness: The proof and paradox of Kurt Gödel. New York: 

W. W. Norton & Company. 



191 

 

 

Grbich, C. (2007). Qualitative data analysis: An introduction. Thousand Oaks, CA: Sage. 

Greer, B., & Mukhopadhyay, S. (2003). What is mathematics education for? The 

Mathematics Educator, 13(2), 2–6.  

Handel, B., & Herrington, A. (2003). Mathematics teachers‘ beliefs and curriculum 

reform. Mathematics Education Research Journal, 15(1), 59–69.  

Hart, L. (2002a). A four year follow-up study of teachers‘ beliefs after participating in a 

teacher enhancement project. In G. Leder, E. Pehkonen, & G. Torner (Eds.), 

Beliefs: A hidden variable in mathematics education (pp. 161–176). Norwell, MA: 

Kluwer Academic. 

Hart, L. (2002b). Preservice teachers‘ beliefs and practice after participating in an 

integrated content/methods course. School Science and Mathematics, 102(1), 4–

14. 

Hart, L. E. (2003). Some directions for research on equity and justice in mathematics 

education. In L. Burton (Ed.), Which way social justice in mathematics education? 

(pp. 27–49). Westport, CT: Praeger. 

Hatch, G., & Shiu, C. (1998). Practitioner research and the construction of knowledge in 

mathematics education. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics 

education as a research domain: A search for identity (pp. 297–316). Norwell, 

MA: Kluwer Academic. 

Hendry, P. M. (2007). The future of narrative. Qualitative Inquiry, 13, 487–498. 

Hersh, R. (1997). What is mathematics, really? New York: Oxford University Press. 



192 

 

 

Johnson-Bailey, J. (1999). The ties that bind and the shackles that separate: Race, gender, 

class, and color in a research process. International Journal of Qualitative Studies 

in Education, 12, 659–670. 

Johnson-Bailey, J. (2004). Enjoining positionality and power in narrative work: 

Balancing contentious and modulating forces. In K. B. DeMarrais & S. D. Lapin 

(Eds.), Foundations for research: Methods of inquiry in education and the social 

sciences (pp. 123–138). San Francisco: Jossey-Bass. 

Kilbourn, B. (2006). The qualitative doctoral dissertation proposal. Teachers College 

Record, 108, 529–576. 

Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws 

(Ed.), Handbook of research in mathematics teaching and learning (pp. 3–38). 

New York: Macmillan. 

Kincheloe, J. L., & Steinberg, S. R. (1996). A tentative description of post-formal 

thinking: The critical confrontation with cognitive theory. In P. Leistyna, A. 

Woodrum, & S. A. Sherblom (Eds.), Breaking free: The transformative power of 

critical pedagogy (pp. 167–195). Cambridge, MA: Harvard Educational Review. 

Kitcher, P. (1998). Mathematical change and scientific change. In T. Tymoczko (Ed.), 

New directions in the philosophy of mathematics (pp. 215–242). Princeton, NJ: 

Princeton University Press. (Original work published in 1983) 

Klein, M. (2001). Constructivist practice, preservice teacher education and change: The 

limitations of appealing to hearts and minds. Teachers and Teaching: Theory and 

Practice, 7(3), 257–269. 



193 

 

 

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. 

Cambridge, UK: Cambridge University Press. 

Lather, P. (1991). Getting smart: Feminist research and pedagogy with/in the 

postmodern. New York: Routledge. 

Leatham, K. R. (2006). Viewing mathematics teachers‘ beliefs as sensible systems. 

Journal of Mathematics Teacher Education, 9, 91–102. 

Leistyna, P., Woodrum, A., & Sherblom, S. (Eds.). (1999). Breaking free: The 

transformative power of critical pedagogy. Cambridge, MA: Harvard Educational 

Review.  

Lerman, S. (1990). Alternative perspective of the nature of mathematics. British 

Educational Research Journal, 16, 53–61. 

Lerman, S. (1994). Articulating theories of mathematics learning. In P. Ernest (Ed.), 

Constructing mathematical knowledge: Epistemology and mathematics education 

(pp. 41–49). London: The Falmer Press. 

Lerman, S. (1998). Research on socio-cultural perspectives of mathematics teaching and 

learning. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics education as a 

research domain: A search for identity (pp. 333–350). Norwell, MA: Kluwer 

Academic. 

Lerman, S. (1999). Culturally situated knowledge and the problem of transfer in the 

learning of mathematics. In L. Burton (Ed.), Learning mathematics: From 

hierarchies to networks (pp. 93–107). London: RoutledgeFalmer.  



194 

 

 

Lerman, S. (2000). The social turn in mathematics education research. In J. Boaler (Ed.), 

Multiple perspectives on mathematics teaching and learning (pp. 19–44). 

Westport, CT: Ablex. 

Lerman, S. (2001). Cultural, discursive psychology: A sociocultural approach to studying 

the teaching and learning of mathematics. Educational Studies in Mathematics, 46, 

87–113. 

Lester, F. K., & Lambdin, D. V. (1998). The ship of Theseus and other metaphors for 

thinking about what we value in mathematics education research. In A. Sierpinska 

& J. Kilpatrick (Eds.), Mathematics education as a research domain: A search for 

identity (pp. 415–426). Norwell, MA: Kluwer Academic. 

Lloyd, G. (2005). Beliefs about the teacher‘s role in the mathematics classroom: One 

student teacher‘s explorations in fiction and in practice. Journal of Mathematics 

Teacher Education, 8, 441–467. 

Lyotard, J. F. (1984). The postmodern condition: A report on knowledge (G. Bennington 

& B. Massumi, Trans.). Minneapolis, MN: University of Minnesota Press. 

(Original work published 1979)  

MacNab, D., & Payne, F. (2003). Beliefs, attitudes and practices in mathematics teaching: 

Perceptions of Scottish primary school student teachers. Journal of Education for 

Teaching, 29, 55–68. 

Martin, D. B. (2003). Hidden assumptions and unaddressed questions in Mathematics for 

All rhetoric. The Mathematics Educator, 13(2), 7–21.  



195 

 

 

Mertens, D. M. (2005). Research and evaluation in education and psychology: 

Integrating diversity with quantitative, qualitative, and mixed methods. Thousand 

Oaks, CA: Sage. 

Mewborn, D. (2002). Examining mathematics teachers’ beliefs through multiple lenses. 

Paper presented at the Annual Meeting of the American Educational Research 

Association, New Orleans, LA, April 1–5, 2002.  

Mewborn, D. (2003). Teaching, teachers‘ knowledge, and their professional development. 

In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.). A research companion to 

Principles and Standards for School Mathematics (pp. 45–52). Reston, VA: 

National Council of Teachers of Mathematics. 

Mewborn, D. (2005). Framing our work. In G. M. Lloyd, M. R. Wilson, J. L. M. Wilkins, 

& S. L. Behm (Eds.). Proceedings of the 27
th

 annual meeting of the North 

American Chapter of the International Group for the Psychology of Mathematics 

Education. [CD-ROM]. Eugene, OR: All Academic. 

Moen, T. (2006). Reflections on the narrative research approach. International Journal of 

Qualitative Methods, 5(4), Article 5. Retrieved December 21, 2007, from 

http://www.ualbertaca/~iiqm/backissues/5_4/pdf/moen/pdf  

Moses, R. P., & Cobb, C. E. (2001). Radical equations: math literacy and civil rights. 

Boston: Beacon Press. 

Mullholland, J., & Wallace, J. (2003). Strengths, sharing and service: Restorying and the 

legitimation of research texts. British Educational Research Journal, 29, 5–23. 



196 

 

 

National Council of Teachers of Mathematics Research Committee. (2005). Equity in 

school mathematics education: How can research contribute? Journal for 

Research in Mathematics Education, 36, 92–100. 

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation 

standards for school mathematics. Reston, VA: National Council of Teachers of 

Mathematics. 

National Council of Teachers of Mathematics. (1991). Professional standards for 

teaching mathematics. Reston, VA: National Council of Teachers of Mathematics. 

National Council of Teachers of Mathematics. (2000). Principles and standards for 

school mathematics. Reston, VA: National Council of Teachers of Mathematics. 

National Mathematics Advisory Panel. (2008). Foundations for success: The final report 

of the National Mathematics Advisory Panel. Washington, DC: U.S. Department 

of Education. 

National Research Council. (2001). Adding it up: Helping children learn mathematics. J. 

Kilpatrick, J. Swafford, & B. Findell (Eds.). Mathematics Learning Study 

Committee. Washington, DC: National Academies Press.  

National Research Council. (2005). How students learn: Mathematics in the classroom. 

Washington, DC: National Academies Press. 

Neyland, J. (2004). Toward a postmodern ethics of mathematics education. In M. 

Walshaw (Ed.), Mathematics education within the postmodern (pp. 55–73). 

Greenwich, CT: Information Age. 

Noddings, N. (1990). Constructivism in mathematics education. In R. B. Davis, C. A. 

Maher, & N. Noddings (Eds.), Constructivist views on teaching and learning of 



197 

 

 

mathematics (pp. 7–18). Reston, VA: National Council of Teachers of 

Mathematics. 

Noddings, N. (1993). Politicizing the mathematics classroom. In S. Restivo, J. P. Van 

Bendegem, & R. Fischer (Eds.), Math worlds: Philosophical and social studies of 

mathematics and mathematics education (pp. 150–161). Albany, NY: State 

University of New York Press. 

Pajares, M. F. (1992). Teachers‘ beliefs and educational research: Cleaning up a messy 

construct. Review of Educational Research, 62, 307–332.  

Pirie, S. (1998a). Towards a definition for research. In A. R. Teppo (Ed.), Qualitative 

research methods in mathematics education (pp. 17–21). Reston, VA: National 

Council of Teachers of Mathematics.  

Pirie, S. (1998b). Working toward a design for qualitative research. In A. R. Teppo (Ed.), 

Qualitative research methods in mathematics education  (pp. 79–97). Reston, VA: 

National Council of Teachers of Mathematics.  

Polkinghorne, D. E. (2007). Validity issues in narrative research. Qualitative Inquiry, 13, 

471–486. 

Polya, G. (1973). How to solve it: A new aspect of mathematical method. Princeton, NJ: 

Princeton University Press. (Original work published in 1945) 

Polya, G. (1998). From the preface of Induction and Analogy in Mathematics. In T. 

Tymoczko, (Ed.), New directions in the philosophy of mathematics (pp. 99–101). 

Princeton, NJ: Princeton University Press. (Original work published in 1954) 

Preissle, J. (2006). Envisioning qualitative inquiry: A view across four decades. 

International Journal of Qualitative Studies of Education, 19(6), 685–695. 



198 

 

 

Preston, R. & Lambdin, D. (1995). Mathematics for all students! Mathematics for all 

teachers? [Electronic version]. In D. T. Owens, M. K. Reed, & G. M. Millsaps 

(Eds.), Proceedings of the Seventeenth Annual Meeting of the North American 

Chapter of the International Groups for the Psychology of Mathematics 

Education, Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and 

Environmental Education. 

Rav, Y. (1993). Philosophical problems of mathematics in the light of evolutionary 

epistemology. In S. Restivo, J. P. Van Bendegem, & R. Fischer (Eds.), Math 

worlds: Philosophical and social studies of mathematics and mathematics 

education (pp.80–109). Albany, NY: State University of New York Press. 

Raymond, A. M. (1997). The use of concept mapping in qualitative research: A multiple 

case study in mathematics education. Focus on Learning Problems in 

Mathematics, 19(3), 1–28.  

Restivo, S. (1993). The social life of mathematics. In S. Restivo, J. P. Van Bendegem, & 

R. Fischer (Eds.), Math worlds: Philosophical and social studies of mathematics 

and mathematics education (pp. 247–278). Albany, NY: State University of New 

York Press. 

Restivo, S., & Bauchspies, W. K. (2006). The will to mathematics. Foundations of 

Science, 11, 197–215. 

Restivo, S., Van Bendegen, J. P., & Fischer, R. (Eds.). (1993). Math worlds: 

Philosophical and social studies of mathematics and mathematics education. 

Albany, NY: State University of New York Press. 

Riessman, C. K. (1993). Narrative analysis. Thousand Oaks, CA: Sage. 



199 

 

 

Riessman, C. K. (2002). Analysis of personal narratives. In J. F. Gubrium & J. A. 

Holstein (Eds.), Handbook of interview research: Context & Method (pp. 695–

710). Thousand Oaks, CA: Sage. 

Riessman, C. (2008). Narrative methods for the human sciences. Thousand Oaks, CA: 

Sage. 

Rogan, A. I., & de Kock, D. M. (2005). Chronicles from the classroom: Making sense of 

the methodology and methods of narrative analysis. Qualitative Inquiry, 11, 628–

649. 

Rosiek, J., & Atkinson, B. (2007). The inevitability and importance of genres in narrative 

research on teaching practice. Qualitative Inquiry, 13, 499–521. 

Rubin, H. J., & Rubin, I. S. (2005). Qualitative interviewing: The art of hearing data. 

Thousand Oaks, CA: Sage. 

Russell, B. (1993). Introduction to mathematical philosophy. New York: Dover. 

(Original work published 1919) 

Scheurich, J. (1997). Research method in the postmodern. London: The Falmer Press. 

Schoenfeld, A. (2004). The math wars. Educational Policy, 18, 253–286. 

Scieszka, J. (1995). Math curse. New York: Penguin Group. 

Sfard, A. (2003). Balancing the unbalanceable: The NCTM Standards in light of theories 

of learning mathematics. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.). A 

research companion to Principles and Standards for School Mathematics (pp. 

353–392). Reston, VA: National Council of Teachers of Mathematics. 



200 

 

 

Secada, W. G. (1995). Social and critical dimension for equity. In W. G. Secada, E. 

Fennema, & L. B. Adajian (Eds.), New directions for equity in mathematics 

education (pp. 146–164). Cambridge, UK: Cambridge University Press. 

Siegel, M., & Borasi, R. (1994). Demystifying mathematics education through inquiry. In 

P. Ernest (Ed.), Constructing mathematical knowledge: Epistemology and 

mathematics education (pp. 201–214). London: The Falmer Press. 

Simon, M. A., & Schifter, D. (1991). Towards a constructivist perspective: An 

intervention study of mathematics teacher development. Educational Studies in 

Mathematics, 22, 309–331. 

Simon, M. A., Tzur, R., Heinz, K., & Kinzel, M. (2000). Characterizing a perspective 

underlying the practice of mathematics teachers in transition. Journal for 

Research in Mathematics Education, 31, 579–601. 

Skott, J. (2001). The emerging practices of a novice teacher: The roles of his school 

mathematics images. Journal of Mathematics Teacher Education, 4, 3–28. 

Skovsmose, O. (2005). Travelling through education: Uncertainty, mathematics, 

responsibility. Rotterdam, Netherlands: Sense. 

Smeyers, P., & Verhesschen, P. (2001). Narrative analysis as philosophical research: 

Bridging the gap between the empirical and the conceptual. International Journal 

of Qualitative Studies in Education, 14, 71–84. 

Speer, N. M. (2005). Issues of methods and theory in the study of mathematics teachers‘ 

professed and attributed beliefs. Educational Studies in Mathematics, 58, 361–391. 

St. Pierre, E. A. (2000). Poststructural feminism in education: An overview. International 

Journal of Qualitative Studies in Education, 13, 467–515. 



201 

 

 

Steele, D. F. (2001). The interfacing of preservice and inservice experiences of reform-

based teaching: A longitudinal study. Journal of Mathematics Teacher Education, 

4, 139–172. 

Stemhagen, K. (2008). Doin‘ the math: On meaningful mathematics-ethics connections. 

The Montana Mathematics Enthusiast, 5(1), 59–66.  

Stinson, D. W. (2004). Mathematics as ―gate-keeper‖?: Three theoretical perspectives 

that aim toward empowering all children with a key to the gate. The Mathematics 

Educator, 14(1), 8–18. 

Stinson, D. W. (in press). The proliferation of theoretical paradigms quandary: How one 

novice researcher used eclecticism as a solution? The Qualitative Report, 14(3). 

Sztajn, P. (2003). Adapting reform ideas in different mathematics classrooms: Beliefs 

beyond mathematics. Journal of Mathematics Teacher Education, 6, 53–75. 

Szydlik, J. E., Szydlik, S. D., & Bensen, S. R. (2003). Exploring changes in pre-service 

elementary teachers‘ mathematical beliefs. Journal of Mathematics Teacher 

Education, 6, 253–279. 

Talburt, S. (2004). Ethnographic responsibility without the ―real.‖ Journal of Higher 

Education, 75, 80–103.  

Taylor, P. C. (1996). Mythmaking and mythbreaking in the mathematics classroom. 

Educational Studies in Mathematics, 31, 151–173. 

Teppo, A. R. (1998). Diverse ways of knowing. In A. R. Teppo (Ed.), Qualitative 

research methods in mathematics education  (pp. 1–16). Reston, VA: National 

Council of Teachers of Mathematics. 



202 

 

 

Thompson, A. G. (1984). The relationship of teachers‘ conception of mathematics and 

mathematics teaching to the instructional practice. Educational Studies in 

Mathematics, 15, 105–127.  

Thompson, A.G. (1992). Teachers‘ beliefs and conceptions: A synthesis of the research. 

In D. A. Grouws (Ed.), Handbook of research in mathematics teaching and 

learning (pp. 127–146). New York: Macmillan. 

Threlfall, J. (1996). Absolutism or not absolutism: What difference does it make? 

[Electronic Version]. Philosophy of Mathematics Education Journal, 9. Retrieved 

February 23, 2006, from http://www.people.ex.ac.uk/PErnest/pome/pome9.htm 

Toumasis, C. (1993). Ideas and processes in mathematics: A course in history and 

philosophy of mathematics. Studies in Philosophy and Education, 12, 245–256. 

Toumasis, C. (1997). The NCTM Standards and its philosophy of mathematics. Studies in 

Philosophy and Education, 16, 317–330. 

Tymoczko, T. (Ed). (1998). New directions in the philosophy of mathematics. Princeton, 

NJ: Princeton University Press.  

U. S. Office of the White House. (2002). No child left behind: Executive summary. 

Retrieved July 14, 2006, from http://www.whitehouse.gov/news/reports/no-child-

left-behind.html 

Usher, R., & Edwards, R. (1994). Postmodernism and education. New York: Routledge. 

Valero, P. (2004). Postmodernism as an attitude of critique to dominant mathematics 

education research. In M. Walshaw (Ed.), Mathematics education within the 

postmodern (pp. 35–54). Greenwich, CT: Information Age. 



203 

 

 

Vogotsky, L. S. (1978). Mind in society: The development of higher psychological 

processes. Cambridge, MA: Harvard University Press. 

Walkerdine, V. (1994). Reasoning in a post-modern age. In P. Ernest (Ed.), Mathematics, 

Education and Philosophy: An International Perspective (pp. 61–75). London: 

The Falmer Press. 

Walshaw, M. (2001). A Foucauldian gaze on gender research: what do you do when 

confronted with the tunnel at the end of the light? Journal for Research in 

Mathematics Education, 32, 471–492. 

Walshaw, M. (2002). Epistemic terrains and epistemic responsibility [Electronic Version]. 

Philosophy of mathematics education, 16. Retrieved February 25, 2006, from 

http://www.people.ex.ac.uk/PErnest/pome16/epistemic.htm 

Walshaw, M. (2004). The pedagogical relation in postmodern times: Learning with Lacan. 

In M. Walshaw (Ed.), Mathematics education within the postmodern (pp. 121–

139). Greenwich, CT: Information Age. 

Webster’s New Universal Unabridged Dictionary. (2003). New York: Barnes & Nobles. 

Weiss, R. S. (1994). Learning from strangers: The art and method of qualitative 

interview studies. New York: The Free Press. 

Wiersma, L., & Weinstein, G. L. (2001). Mathematical sophistication and educational 

philosophies among novice mathematics teachers [Electronic Version]. 

Philosophy of Mathematics Education Journal, 14. Retrieved February 23, 2006, 

from http://www.people.ex.ac.uk/PErnest/pome14/wiersma.htm 



204 

 

 

Wilkins, J. L. M., & Brand, B. R. (2004). Change in preservice teachers‘ beliefs: An 

evaluation of a mathematics methods course. School Science and Mathematics, 

104, 226–232. 

Wilson, M., & Cooney, T. (2002). Mathematics teacher change and development. In G. 

Leder, E. Pehkonen, & G. Torner (Eds.). Beliefs: A hidden variable in 

mathematics education (pp. 127–147). Norwell, MA: Kluwer Academic. 

Wood, T., Cobb, P., & Yackel, E. (1991). Change in teaching mathematics: A case study. 

American Educational Research Journal, 28, 587–616. 



 

205 

APPENDIXES 

APPENDIX A 

COURSE SYLLABUS 

The Study of Learning and Instruction in Mathematics: 

What Is Mathematics, Really?
12

 

 

EDMT 8290 – Summer 2007 

Georgia State University 

Department of Middle-Secondary Education and Instructional Technology 

 

Course Description: This READING INTENSIVE seminar will explore various 

philosophical traditions of mathematics. Are you a Platonist, formalist, intuitionist, 

constructivist, humanist, or some eclectic combination of these traditions? Students, 

through reading some of the ―classic‖ texts of Western mathematics, will explore their 

own philosophical foundations about mathematics. The seminar promises no answers, 

just a space for critical, intellectual, and open Freirian dialogue around the question: 

What is mathematics, really?  

  

Pre-requisite: None 

 

Credit: 3-hour graduate seminar 

 

Instructors:  

David W. Stinson, Ph.D.  Kimberly White-Fredette, M.A., Ed.S. 

dstinson@gsu.edu    (Ph.D. student)  

617 College of Education (COE) kwhitefredettte1@student.gsu.edu 

Office: (404) 413-8409 

 

Class Time/Location: 

Monday/Wednesday 4:00 PM–7:10 PM  

COE 657 

Office Hours:  

Wednesday 2:30 p.m.–4:30 p.m.; by appointment 

College of Education Mission: 

To provide leadership and scholarship for the betterment of education and human 

development (Strategic Plan 2002–2007). 

 

                                                 
12

 Hersh, R. (1997). What is mathematics, really? New York: Oxford University Press. 
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College of Education Purpose: 

The Professional Education Faculty is committed to planning, implementing, and 

assessing programs that prepare educational professionals focused on pupil learning and 

development. 

Programs: 

EDMT 8290 is an elective in the Doctor of Philosophy (Ph.D.) and the Education 

Specialist (Ed.S.) in Teaching and Learning with a concentration in mathematics 

education (repeatable).   

Assumptions Guiding These Programs: 

1. Learning and teaching must continually adapt to changes in society and the 

expanding knowledge base. 

2. Learning is an active process. 

3. Quality teaching takes into account individual differences, learning styles, and 

backgrounds. 

4. Learning environments are based on the mutual respect of all participants. 

5. A variety of teaching strategies and assessments are used to meet the needs of 

individual learners. 

6. An integrated knowledge base consisting of content, skills, attitudes, technologies, 

and theories is developed and demonstrated in field-based applications. 

 

Knowledge Base (Required text): 

Davis, P. J., & Hersh, R. (1995). The mathematical experience. Boston: Houghton 

Mifflin Company. (Original work published 1981) 

 

Hersh, R. (1997). What is mathematics, really? New York: Oxford University Press.  

 

Lakatos, I. (1999). Proofs and Refutations: The logic of mathematical discovery. 

Cambridge, UK: Cambridge University Press. (Original work published 1976) 

 

Russell, B. (1993). Introduction to mathematical philosophy. New York: Dover. 

(Original work published 1919) 

 

Tymoczko, T. (Ed.). (1998). New directions in the philosophy of mathematics: An 

anthology (Rev. and expanded ed.). Princeton, NJ: Princeton University Press.  

 

Georgia Department of Education. www.doe.k12.ga.us  

 

National Council of Teachers of Mathematics www.nctm.org 

 

(Recommended text): 

Ernest, P. (1998). Social constructivism as a philosophy of mathematics. Albany: State 

University of New York Press.  

 

Teaching Strategies:  

The instructor will utilizes lecture, small group discussion, whole group discussion, 

cooperative learning, jig sawing, WebCT, various technologies, and guest speakers to 

http://www.doe.k12.ga.us/
http://www.nctm.org/
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facilitate the learning experience. Students will gain greater insight of these techniques 

for use in their own classrooms. 

 

According to Freire (1970/2000) in a problem-posing pedagogy… 

the teacher is no longer merely the-one-who-teaches, but one who is himself 

taught in dialogue with the students, who in turn while being taught also teach. 

They become jointly responsible for the process in which all grow. …Here, no 

one teaches another, nor is anyone self-taught. People teach each other. (p. 80) 

 

Freire (1969/2000) explicitly defined dialogue, insisting that it must be a 

―horizontal relationship between persons…[a] relation of ‗empathy‘ between two 

‗poles‘ who are engaged in a joint search‖ (p. 45). Later, Freire (1970/2000) 

elaborated on the concept of dialogue as he provided the elements that must be 

present for dialogue to exist, without expanding on the details, they are: love, 

humility, faith, trust, hope, and critical thinking. It is this Freirian definition of 

dialogue that I anticipate will be present during our class sessions.  

 

Academic Freedom: 

According to Foucault (1984/1996)… 

The role of an intellectual is not to tell others what they must do. By what 

right would he do so?... The work of an intellectual is not to mold the 

political will of others; it is, through the analysis that he does in his own 

field, to re-examine evidence and assumptions, to shake up habitual ways 

of working and thinking, to dissipate conventional familiarities, to re-

evaluate rules and institutions and starting from this re-problematization 

(where he occupies his specific profession as an intellectual) to participate 

in the formation of a political will (where he has his role as a citizen to 

play). (pp. 462–463) 

 

Learning Objectives and Outcomes:  
Learning objectives: 

The students will  

 explore the philosophical (i.e., ontological, epistemological, and ethical) 

underpinnings of mathematics;    

 explore the main tenets of mathematics education research (i.e., problem 

statement, research question, methodology, and representation) within 

their philosophy of mathematics;  

 explore their pedagogical practices within their philosophy of mathematics; 

and 

 explore the NCTM Principles and Standards for School Mathematics 

(2000) and Georgia Performance Standards (GPS) within their philosophy 

of mathematics. 

 

Learning outcomes: 

Future mathematics teacher-educators and education researchers will be 

increasingly 
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 aware of diversity of philosophical perspectives found in mathematics and 

mathematics education, developing an appreciation for various fields of 

study, such as anthropology, sociology, and philosophy, and understand 

what these fields offer to the analysis of mathematics, mathematics 

teaching and learning, and research in mathematics education; 

 aware of cultural, economic, political, and social factors that influence 

mathematics, mathematics teaching and learning, and research in 

mathematics education; 

 aware of aspects of mathematics teaching and learning and research in 

mathematics education that reach beyond mathematics content and the 

psychologized study of mathematics teaching and learning; 

 aware of philosophical foundations and diversity of theoretical 

frameworks for research and methodological procedures available to 

mathematics education researchers;  

 aware of merits and weaknesses of various theoretical frameworks and 

methodological procedures; and 

 aware of impact that varying philosophical positions have on research 

design, implementation, and (re)production of knowledge.  

 

Expectations and Requirements: 

This is an advanced graduate level seminar and you will be expected to READ 

INTENSIVELY. There are no substitutes for, nor shortcuts to, in-depth reading. This 

preparation is essential for your own learning, for the quality of your own research, and 

for the benefit of others in class.  

 

Some Comments on Reading: 

According to Stinson (2004)… 

Each time I read and reread a book, essay, or interview by Dewey, Freire, or 

Foucault (and others) I am impelled into critical reflection—rethinking my 

rethinking. And ever since Foucault entered into the picture, I attempt to think the 

unthought. St. Pierre suggested that we get smarter as we read, and as we reread 

we will always find something different because we have changed since the last 

reading (E. A. St. Pierre, personal communication, fall 2002). But then again, as I 

read and reread text, I no longer have ―dreams of deciphering a truth or an 

origin‖; but rather, I think about how the text offers a different way of seeing, 

trying ―to pass beyond man and humanism‖ (Derrida, 1978, p. 292). (p. xx) 

 

According to St. Pierre (2003)…  

Reading in unfamiliar discourses is required, and students are encouraged to heed 

French poststructural philosopher Jacques Lacan‘s advice, ―to read does not 

obligate one to understand. First it is necessary to read…avoid understanding too 

quickly‖ (as cited in Ulmer Gregory, 1985, p. 196). One might also heed Roland 

Barthes‘s (1974) advice on rereading: 

Rereading, an operation contrary to the commercial and ideological habits 

of our society, which would have us ―throw away‖ the story once it has 

been consumed (or ―devoured‖), so that we can then move on to another 
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story, buy another book, and which is tolerated only in certain marginal 

categories of readers (children, old people and professors), rereading is 

here suggested at the outset, for it alone saves the text from repetition 

(those who fail to reread are obliged to read the same story 

everywhere)…Reading is no longer consumption, but play. (pp. 15–16)  

 

Course Requirements: 

Class participation (40 pts): 

10 pts for overall class participation in the form of Freirian defined dialogue 

20 pts for summary of readings (see example) 

10 pts for scribing (see example) 

 

Reading journal (30 pts): 

Begin an EndNote reading journal (see example). This journal should use Publication 

Manual of the American Psychological Association-5
th

 edition (APA) citation and writing 

format criteria; include a summary and/or abstract of the article, significant quotations, 

and comments regarding your struggles with the readings and/or how the readings will 

assist you in your teaching/research. (A reduction of one letter grade will result in not 

following APA format. In other words, you must become very familiar with APA format; 

the format preferred by most education journals.) 

 

Final paper (30 pts: 5 pts for initial reflections and 25 pts for final paper): 

 

Initial Reflections: Write a reflective statement (3–5 pages) regarding What is 

Mathematics, Really? In other words, as you begin the course how do you philosophical 

position mathematics, and how does this positioning impact your pedagogical 

philosophies and practices. (This paper is a statement of you beliefs, not so much a 

scholarly argument of those beliefs; that scholarly argument will be in your final paper, 

see below). Due date is June 18, 2007. 

 

Final Paper: Write a focused, reflective, academic paper that outlines your philosophy 

of mathematics and positions your pedagogical practices and research within that 

philosophy. Include a discussion of where your philosophy of mathematics was/is, and 

the changes (if any) that the course readings and discussions have motivated, and how 

your pedagogical practices and research agendas have been transformed (or not). The 

paper, 8–10 text pages in length, should follow APA format style (see note above 

regarding APA). The paper is your opportunity to illustrate your learning from the class; 

therefore, it should use citational authority, citing not only the essays read in class, but 

also other scholarly works. Due date is July 25, 2007.  

 

Assignments Points Possible Points Earned 

Class participation 40  

Reading journal 30  

Final paper 30  

Total 100  
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Schedule (planned, deviations may be necessary): 

Dates 

 

Agenda Assignment 

June 11 

Monday 

 

 Instructor and student 

introductions 

 Review of syllabus 

 

 

READ: 

1. Davis & Hersh (1981): 

Introduction; Overture; chapter 1 

2. Davis & Hersh (1981): chapter 2 

3. Davis & Hersh (1981): chapter 3 

 

June 13 

Wednesday 

 

 Student summary of 

readings 

 Freirian dialog of 

readings 

READ:  

1. Davis & Hersh (1981): chapter 4 

2. Davis & Hersh (1981): chapter 5 

3. Davis & Hersh (1981): chapter 6 

 

June 18  

Monday 

 

 

 Student summary of 

readings 

 Freirian dialog of 

readings 

 

READ:  

1. Davis & Hersh (1981): chapter 7 

2. Davis & Hersh (1981): chapter 8 

 

June 20 

Wednesday 

 

 

 Student summary of 

readings 

 Freirian dialog of 

readings 

 

READ: 

1. Russell (1919): v–28 

2. Russell (1919): 29–116 

June 25  

Monday 

 

 

 Student summary of 

readings 

 Freirian dialog of 

readings 

 

READ: 

1. Russell (1919): 117–166 

2. Russell (1919): 167–206 

 

June 27 

Wednesday 

 

 

 Student summary of 

readings 

 Freirian dialog of 

readings 

 

READ: 

1. Lakatos (1976): ix– 42 

2. Lakatos (1976): 42–106 

 

 

 

 

July 2 

Monday 

 

 Student summary of 

readings 

 Freirian dialog of 

readings 

 

READ: 

1. Lakatos (1976): 106–126 

2. Lakatos (1976): 127–154 

July 4 

Wednesday 
 

  

NO CLASS 

 

July 9 

Monday 
 Student summary of 

readings 

READ 

1. Tymoczko: Polya 99–124 
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Freirian dialog of 

readings 

2. Tymoczko: Grabiner: 201–214 

3. Tymoczko: Kitcher: 215–242 

July 11 

Wednesday 
 

 

 Student summary of 

readings 

 Freirian dialog of 

readings 

 

READ: 

1. Tymoczko: Tymoczo: 243–266 

2. Tymoczko: Chaitin: 287–311 

3. Tymoczko: Thom: 67–78 

July 16 

Monday 

 

 

 Student summary of 

readings 

 Freirian dialog of 

readings 

READ: 

1. Hersh (1997): xi–xxiv; chapters 1, 2 

2. Hersh (1997): chapters 3, 4, 5 

3. Hersh (1997): chapters 6, 7, 8 

 

July 18 

Wednesday 
 Student summary of 

readings 

 Freirian dialog of 

readings 

 

READ: 

1. Hersh (1997): chapters 9, 10, 11 

2. Hersh (1997): chapters 12, 13 

 

Reading Journal due! 

 

July 23  

Monday 
 Student summary of 

readings 

 Freirian dialog of 

readings 

 

 

July 25 

Wednesday 

Final Exam  

 

NO CLASS 

Social at Stinson‘s 

home? 

 

Philosophy of Mathematics Due! 

Hardcopy due in my mailbox by 5:00 

PM! 

 

  

Policies: 

1. Students are expected to read, reflect, and participate in each class.  If a student 

must miss a class or portion of one, she or he is expected to check with classmates 

first before instructor to determine what was missed. 

2. Students are expected to read and observe the GSU policy on academic honesty, 

cheating, and plagiarism; attendance; and conduct (see current Graduate Catalog). 

3. The syllabus provides a general plan for the course; deviations may be necessary. 

4. Tentative rubrics for evaluating assignments are given. Students are invited to 

comment and discuss rubrics to assure equitable and fair grading. 

5. Assignments will not be accepted late.  Assignments are due regardless of 

attendance to class. 

6. E-Mail Protocol: 

a. Give informative subject headings. 

b. Change subject heading as discussion changes in a series of 

communications. 

c. If attaching assignments, include your name, assignment title, and page 

numbers on each attachment. 
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d. When responding to a message, include the message in your response. 

e. Emails will be responded to with 72 hours. 

 

Reference: 
Foucault, M. (1996). The concern for truth. In S. Lotringer (Ed.), Foucault live: 

Interviews, 1961–1984 (pp. 455–464). New York: Semiotext(e). (Original work 

published 1984) 

 

Freire, P. (2000). Education for critical consciousness (Continuum ed.). New York: 

Continuum. (Original work published 1969) 

 

Freire, P. (2000). Pedagogy of the oppressed (M. B. Ramos, Trans., 30th anniversary ed.). 

New York: Continuum. (Original work published 1970) 

 

St. Pierre, E. A. (2003). ELAN 8045 The postmodern turn: Theories and methods. Course 

syllabus, The University of Georgia, Athens. 

 

Stinson, D. W. (2004). African American male students and achievement in school 

mathematics: A critical postmodern analysis of agency. Dissertations Abstracts 

International, 66 (12). (UMI No. 3194548) 

 

Grading Scale (will be exactingly followed): 

A (100–94) A- (93–90) B+ (89–88) B (87–84) B- (83–80) C+ (79–78) C (77–74) 

C- (73–70) D (69–60) F (60 and below) 
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APPENDIX B 

INFORMED CONSENT 

Georgia State University 

College of Education 

Department of Middle and Secondary Education, and Informational Technology 

 

Informed Consent 

Title:  Examining Philosophy in a Time of Reform:  A Study of Teachers‘ Philosophies 

of Mathematics and Mathematics Education 

 

 

Investigators:   David Stinson, Principal Investigator 

Kimberly White-Fredette, Co-Principal Investigator 

 

I. Purpose:   

You are invited to participate in a research study.  The purpose of the study is to 

investigate  teachers‘ philosophies of mathematics and mathematics education. You are 

invited to participate because you are a secondary school mathematics teacher and a 

graduate student in mathematics education.  A total of three participants will be recruited 

for this study.  Participation will require approximately three hours of your time over 

seven months (June through December, 2007). 

II. Procedures:  

 

Although all students enrolled in the summer course EDMT 8290 are being asked to 

sign this Informed Consent, only three will be chosen to participate in the study, 

based on current teaching position and the initial course assignment.  The Principle 

Investigator and Co-Principle Investigator will invite three participants to take part 

in the study.  If you decide to participate, you will take part in three one-to-one 

interviews with the research investigator.  The interviews will be audio-taped and 

transcribed.  Each interview will last about 60 minutes.  Interviews will take place 

on the campus of Georgia State University.  In addition, your written coursework, 

including your reading journals and final paper, will be used as data for this study.  

 

III. Risks:  

  

In this study, you will not have any more risks than you would in a normal day of 
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life.  

   

IV. Benefits:  

 

Participation in this study may or may not benefit you personally.  You will be given the 

opportunity to talk freely about your educational experiences and philosophies. Overall, 

we expect to gain information about teachers‘ philosophies of mathematics and 

mathematics education to benefit the mathematics educational community as curricular 

reforms are implemented. 

V. Voluntary Participation and Withdrawal:  

 

Participation in research is voluntary.  You have the right not to be in this study.  If you 

decide to be in the study and change your mind, you have the right to drop out at any 

time.  You may skip questions or stop participating at any time.  Whatever you decide, 

you will not lose any benefits to which you are otherwise entitled. 

 

 

VI. Confidentiality:  

 

We will keep your records private to the extent allowed by law. We will use pseudonyms 

rather than your name on study records.   Only the Principal Investigator and Co-

Investigator will have access to the information you provide. Interviews will be digitally 

recorded and transcribed.  Copies of written coursework will be stored in a locked file 

cabinet; digital recordings and transcriptions will be located on a password and firewall 

protected computer.  Your name and other facts that might point to you will not appear 

when we present this study or publish its results. The findings will be summarized and 

reported in group form. You will not be identified personally. 

 

 

VII.    Contact Persons:  

 

Contact David Stinson (mstdws@langate.gsu.edu) and/or Kimberly White-Fredette 

(kimwf@bellsouth.net / 770-507-4537) if you have questions about this study.  If you have 

questions or concerns about your rights as a participant in this research study, you may 

contact Susan Vogtner in the Office of Research Integrity at 404-463-0674 or 

svogtner1@gsu.edu. 

 

VIII. Copy of Consent Form to Subject:  

 

We will give you a copy of this consent form to keep. 

If you agree to be in this research study and be audio-taped, please sign below. 

 

 

  

mailto:kimwf@bellsouth.net
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 __________________________________________  _________________        

Participant        Date  

           _________________________________________  _________________               

Principal Investigator or Researcher Obtaining Consent  Date  
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APPENDIX C 

INITIAL INTERVIEW PROTOCOL 

Interview Questions for Initial Interview (follow-up interview questions will be 

developed based on responses during initial interview): 

Why did you become a teacher?   

Why did you become a mathematics teachers? 

Tell me about your experiences as a mathematics student. 

How do those experiences influence your role as a teacher of mathematics? 

Tell me about your views of the new Georgia Performance Standards in mathematics. 

How do you think the new curriculum will change the way you teach mathematics? 

Describe a typical class period. 

Describe your ideal teaching environment. 

How do you think the way we teach mathematics affects our students‘ ability to learn 

mathematics? 

How is mathematics changing as new methods and information and technologies emerge? 

What are the aims of mathematics instruction? 

How does mathematics instruction contribute to the overall goals of society and 

education? 

How is mathematics viewed and perceived in society? 

Does learning mathematics impact on the whole person in a positive or negative manner? 
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What means are adopted to achieve the aims of mathematics education?  Are the ends 

and the means consistent? 
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