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INTERSECTIONS OF LONGEST PATHS AND CYCLES

by

Thomas Hippchen

Under the Direction of Guantao Chen

ABSTRACT

It is a well known fact in graph theory that in a connected graph any two longest

paths must have a vertex in common. In this paper we will explore what happens when

we look at k− connected graphs, leading us to make a conjecture about the intersection

of any two longest paths. We then look at cycles and look at what would be needed to

improve on a result by Chen, Faudree and Gould about the intersection of two longest

cycles.

INDEX WORDS: Longest path, longest cycle, k − connected graphs
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Chapter 1

Introduction and Notation

1.1 Notation and Original Problem

In this thesis we will generally follow Bollabas for notation and terminology. All

graphs that are considered will be simple graphs, that is, graphs with a �nite number of

vertices, no loops and no parallel edges. Let G = (V, E) be a graph with vertex set V and

edge set E. Let P be a path from u to v with u, v ∈ V . We will de�ne vertices u and v to

be end vertices of the path P . We will let Kn denote the complete graph on n vertices,

and let Kn,m denote the complete bipartite graph with n vertices in one partition set and

m vertices in the other. Let `(P ) or `(C) denote the number of edges in a given path

or cycle, respectively. The orientation of a cycle or path will also be important in this

thesis, so we will say that a cycle or path starts at v1 and ends with vn where vi comes

before vj if and only if i < j. Let P1 = v1v2 · · · vn and P2 = u1u2 · · · un be longest paths

such that V (P1) ∩ V (P2) = {vi = uk}. Without loss of generality we will use P1 and say

the �rst common vertex is the smallest i such that vi ∈ V (P1) ∩ V (P2). We can de�ne

similar notation for cycles. Also in this thesis we will highly scrutinize the connectivity

of many graphs, so let k be a positive integer. We de�ne the connectivity, κ(G), to be k

1
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if G = Kk+1 or if we need to delete at least k vertices to make the graph disconnected.

G is k − connected if κ(G) ≥ k. Here we note the Menger Theorem.

(1.1.1) Theorem. (Menger) Let G = (V,E) be a graph. Then G is k − connected if

and only if there are k internally vertex-disjoint paths from u to v for all u, v ∈ V .

Another topic that will be used often throughout this paper is the Pigeonhole Prin-

ciple. Brie�y stated, if we have more pigeons then pigeonholes, we must have at least

one hole with more then one pigeon. In this paper we will use a stronger version of the

Pigeonhole Principle. Assume we have n pigeons and m pigeonholes. If n ≥ (k−1)m+1

then at least one pigeonhole must have at least k pigeons in it.

The inspiration for this paper came from a conjecture that was proposed by Scott

Smith [2,3]. He conjectured that if G is a k−connected graph with k ≥ 2, then every two

longest cycles in G must have at least k vertices in common. Although there has been

some progress toward this conjecture, it is still open. According to Grötchel [3], Smith's

conjecture has been veri�ed for all k up to 10. Burr and Zam�rescu later mentioned

the that if a graph G is k − connected then every two longest cycles must have at least
√

k − 1 vertices in common. Finally in 1998 Chen, Faudree and Gould [1] proved that if

G is k − connected, then every two longest cycles in G must have at least ck3/5 vertices

in common where c = 1/( 3
√

256 + 3)3/5 ≈ 0.2615. Our goal in this paper is to show how

this bound could be improved in order to get it closer to the conjecture stated by Smith.

To begin this thesis though, we want to take a look at a related problem. Instead

of looking at longest cycles, we will look at longest paths. To do this we �rst will state

some properties of longest paths and then these properties will help us to determine how

many vertices two longest paths must have in common. We also take a look at a problem

proposed by Alen Schwenk, which asks if there is a graph where the intersection of all

longest paths is empty.



Chapter 2

Paths

2.1 Classical results

In chapter 2 we look a little deeper into paths, speci�cally longest paths. We start

with some classical results which will be important to understand before moving on to

the rest of this chapter. First, we make a claim about the intersection of two longest

paths.

(2.1.1) Lemma. Let G be a graph. If G is connected, then any two longest paths must

share at least one vertex.

Proof. Let these two paths be labeled P1 = [v1, vn] and P2 = [u1, un], and furthermore as-

sume for a moment that they don't share a common vertex. Since this graph is connected,

we know there must be a shortest path, Q = [vi, uj], from the set of vertices in P1 to the

set of vertices in P2 (See �gure 2.1).

If we create two new paths P ∗
1 and P ∗

2 , we see that by the Pigeonhole Principle one

of these paths (or both), must be longer then P1 and P2, contradicting the fact that P1

and P2 are longest paths.

3
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Figure 2.1:

P ∗
1 = P1[v1, vi]Q[vi, uj]P2[uj, un]

P ∗
2 = P2[u1, uj]Q[uj, vi]P1[vi, vn]

`(p∗1) + `(p∗2) ≥ `(p1) + `(p2) + 2`(Q)

So, from this we see that the assumption is false and so they must share at least one

common vertex. 2

We now know that any two longest cycles must have at least one common vertex,

so can it have exactly one common vertex? In fact we can have exactly one vertex in

common and in doing so we can learn more about the graphs structure. This leads us to

our next statement.

(2.1.2) Lemma. Let G be a graph. If G is connected and two longest paths meet in

exactly one common vertex, then the distance to the common vertex must be the same

from all 4 end vertices of the two paths.

Proof. Suppose Q1[v1, vm] and Q2[u1, um] are two longest paths in G such that V (Q1) ∩
V (Q2) = {c} and let P1 be the path from v1 to c, P2 be the path from c to vm, P3 be

the path from u1 to c and P4 be the path from c to um. Assume `(Pi) 6= `(Pj) for some

i 6= j. Without loss of generality assume that P1 is the longest. Since

`(P1) + `(P2) = m

and

`(P3) + `(P4) = m,
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then P2 must be the shortest. By the Pigeonhole Principle we know that `(P3) and

`(P4) cannot both equal `(P2), and that neither can be less then `(P2) since this would

contradict that P1 was the longest. Take the paths P1[v1, c]P3[c, u1] and P1[v1, c]P4[c, um].

Again, by the Pigeonhole Principle, one of these paths must be longer then m. So our

assumption is false and hence `(Pi) = `(Pj) for all i and j. 2

This result leads us to two interesting corollaries that will now be stated.

(2.1.3) Corollary. If G is connected and has two longest paths that meet at exactly

one vertex, then the length of the longest path must be even.

Proof. Let n be the length from the common vertex to an end vertex (which must all

be the same length from above). So the length of the longest path must be 2n, which is

even. 2

(2.1.4) Corollary. If G is a connected graph and has two longest paths that meet at

exactly one vertex, then that vertex must be exactly in the middle of the path.

Proof. Let n be the length from the common vertex to an end vertex. Again the longest

path must have n vertices on each side of the common vertex. So it is in the exact middle.

2

So far in this chapter we have talked about the minimum number of vertices that two

longest cycles must have in common, so one's next thought might be whether there is an

upper bound on the number of vertices in common. Well, this gives a not so interesting

result, but one that is worthy mentioning.

(2.1.5) Proposition. Two longest paths in a connected graph can share up to every

vertex in the graph.
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This can be seen by any graph that has at least two Hamiltonian paths. This will

illustrated with C5, K3,3 and K4.(See �gure 2.2)

Figure 2.2:

We will state one more classical result that will be used in this paper, the proof of

which is omitted.

(2.1.6) Lemma. The end vertices in a longest path are only adjacent to other vertices

in the path.

2.2 Conjecture about k − connected graphs

Everything that we have done so far has been in 1 − connected graphs, but what

happens when we look at a k− connected graph with k>1. Since a k− connected graph

is also a (k − 1) − connected graph, the results clearly still hold, but can we improve

them? In the this section we will look at some k − connected graphs and show what

results we have found as well as pose some interesting questions.

Since we have already looked at 1 − connected graphs, it is only logical to start at

2− connected graphs. By doing so we get the following result.
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(2.2.1) Lemma. If G is 2 − connected, then any two longest paths in G must meet in

at least two vertices.

Proof. Let G be a 2 − connected graph and assume that they only have one vertex in

common. Since G is connected, we know that if G has two longest paths, denoted by

P1[u1, u2n+1] and P2[v1, v2n+1], then they must meet in at least one vertex. Denote the

common vertex c = vn+1 = un+1. We know from Corollary 2.1.4 that the common vertex

must be in the middle and the length on each side must be the same, vn+1. Since the graph

is 2− connected, there must be another path between our two longest paths, denoted Q,

meeting P1 at say x and meeting P2 at say y. Now look at the two paths, (See �gure 2.3)

L1 = P1[v1, x]Q[x, y]P2[y, u2n+1]

L2 = P2[u1, y]Q[y, x]P2[x, v2n+1]

Figure 2.3:

`(L1) + `(L2) = `(P1) + `(P2) + 2`(Q)

So by the Pigeonhole Principle one of the paths, L1 or L2, must be longer than P1

and P2. 2

Knowing that two longest paths intersect at exactly two vertices tells us something

about the length of each piece.

(2.2.2) Lemma. The distance from the start of either path to the �rst common vertex

must be the same, the distance between the common vertices on either path must be the

same, and the distance from the second common vertex to the other end vertex must be

the same.
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Proof. Assume without loss of generality that one of the pieces of P1 is longer than the

corresponding piece along P2. Let L be a new path using P2 except using P1 where P1

is longer. Since P1 is longer than P2 in at least one section, `(L) > `(P2). This is a

contradiction to the fact that P2 is a longest path. 2

Next we will look at 3− connected graphs and see that we get a similar result.

(2.2.3) Lemma. If G is 3 − connected, then any two longest paths in G must meet in

at least three vertices.

Proof. Again, clearly G is 2 − connected, so as above the paths must have at least two

vertices in common, namely c1 = vi = ui and c2 = vj = uj where i < j. Once again let

P1 and P2 be the longest paths, where P1 goes from v1 to vn and P2 goes from u1 to un.

Assume that i≤ j − 2. By removing c1 and c2 from the graph we see that we get six

disjoint pieces, and since this graph is 3-connected, there must be a path in G connecting

them, particularly connecting the path [vi+1, vj−1] to [v1, vi−1] or [vj + 1, nn] or [u1, ui−1]

or [uj+1,un ]. Let this path be Q and let it connect at vertex b in [vi+1, vj−1] and vertex

a in [v1, vi−1] or [vj + 1, nn] or [u1, ui−1] or [uj+1,un ]. Without loss of generality assume

that a is on the path from v1 to c1 and b is on P1 between c1 and c2. If not, change the

labeling as needed. Now look at the two paths,(see �gure 2.4)

L1 = P1[v1, a]Q[a, b]P1[b, c1]P2[c1, un]

L2 = P2[u1, c1]P1[c1, a]Q[a, b]P1[b, vn]

Figure 2.4:

Then the length of L1 plus the length of L2 is,

`(L1) + `(L2) = `(P1[v1, a]Q[a, b]P1[b, c1]P2[c1, un]) + `(P2[u1, c1]P1[c1, a]Q[a, b]P1[b, vn])
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= `(P1[v1, a]P1[c1, a]P1[b, c1]P1[b, vn]) + `(P2[u1, c1]P2[c1, un] + 2Q[a, b])

= `(P1) + `(P2) + 2`(Q)

So again, by the Pigeonhole Principle, one of the paths, L1 or L2, must be longer.

We make a �nal note on this proof that if i + 1 = j, then we can replace c1 and c2

with x such that N(x) = {vi−1, vj+1, ui−1, uj+1}. Then this is the same as the proof of

lemma 2.2.1. 2

This leads us to our �rst conjecture of the paper.

(2.2.4) Conjecture. If G is k − connected, then any two paths in G must meet in at

least k vertices.

It is quick and easy to prove that the result stated in this conjecture is tight; just

look at the example Kk,2k+2 as seen in �gure 2.5.

Figure 2.5:
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2.3 Schwenk's Question

There are many other open problems that easily relate to longest paths. Of par-

ticular interest in this paper is a question stated be Allen Schwenk [5]. Can we �nd a

graph where the intersection of all possible longest paths is empty? We know from the

previous sections in this chapter that clearly any two longest paths cannot have an empty

intersection, but using what we have learned thus far can we get a bound?

First, we would like to show that it is possible to have a graph where the intersection

of all possible longest paths is empty. The example we give uses 9 longest paths.

Figure 2.6:

Use the blue path 6 times rotating accordingly to not use each of the blue vertices

once, then use the red path 3 times rotating accordingly to not use each of the red vertices

once; after doing so, each of the 3 remaining vertices will have been left o� at least once

since each of them cannot be used when its only neighbor is not used.

So, how many longest cycles must a graph have in order to possibly satisfy Schwenk's

question? Let's consider what vertices are not in the intersection of all longest paths. To

not be in all of the longest paths, a vertex must be left out of at least one longest path.

This idea gives us a lower bound for how many longest paths there must be.

(2.3.1) Lemma. Let G be a graph with n vertices such that G does not contain a

Hamiltonian path. Let m be the length of the longest path. If the intersection of all



11

possible longest paths is empty, then there must be at least n/(n − m) ≥ 3 distinct

longest paths.

Proof. Since m is the length of the longest path, n−m must be the number of vertices

not in a particular longest path. In order for the intersection to be empty, every vertex

must be excluded from at least one longest path. So, since each longest path excludes

n−m vertices and there are m vertices, clearly we need at least n/(n−m) paths. Note

that since G does not contain a Hamiltonian path, n 6= m.

Since we have shown that any two longest paths must intersect in at least 1 vertex,

then if there are only two longest paths, they must intersect, and so their intersection is

non-empty. Hence, n/(n−m) ≥ 3. 2



Chapter 3

Cycles

3.1 Conjecture

In Chapter 2, we concentrated on paths, and so in Chapter 3 we will add the re-

striction that our path must begin and end at the same vertex, making it a cycle. The

�rst thing to ask ourselves is whether all the results we found in Chapter 2 are still true?

Unfortunately, it doesn't all hold, for example, here is a connected graph where the two

longest cycles do not meet.

Figure 3.1:

Fortunately, many of the same ideas still work, many of the proofs are along the

same lines, and many of the results are similar. With this in mind, we will state the

Conjecture by Scott Smith, which is similar to Conjecture 2.2.4.

12
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(3.1.1) Conjecture. In a k − connected graph (k ≥ 2), two longest cycles meet in at

least k vertices.

Before we can move on to proving some lower bounds concerning this Conjecture, we

must �rst state some lemmas that are going to be used.

(3.1.2) Lemma. (Hylton-Cavallius). Let G ⊆ Kn,n be a bipartite graph. Then G

contains Ks,t, as a subgraph if

e(G) ≥ (s− 1)1/t(n− t + 1)n1−1/t + (t− 1)n

where e(G) is the number of edges in G.

(3.1.3) Corollary. Let G ⊆ Kn,n. Then G contains K3,257 if

e(G) ≥ 3
√

256(n− 2)n2/3 + 2n.

(3.1.4) Lemma. (Erd®s and Szekeres). Every sequence of n2 +1 real numbers contains

a monotone subsequence of length n+1.

In this thesis, we will use a slightly more general form of Lemma 3.1.4, stated here.

(3.1.5) Lemma. (Chen, Faudree and Gould [1]). Let Σ be a set of n permutations of a

sequence S of 22n
+ 1 elements. Then there is a subsequence (a,b,c) of S on which each

permutation σ ∈ Σ is monotonic. (that is, either σ(a) < σ(b) < σ(c) or σ(a) > σ(b) >

σ(c)).

(3.1.6) Lemma. (Dirac). Let G be a 2 − connected graph of minimum degree δ on

n vertices, where n ≥ 3. Then G contains either a cycle of length at least 2δ or a

Hamiltonian cycle.
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3.2
√

k − 1 Result

Through private communication, S.Burr and T.Zam�rescu showed that a weaker

version of Smith's conjecture must hold. What they showed was the following.

(3.2.1) Theorem. (Burr and Zam�rescu). If G is a k − connected graph with k ≥ 2,

then every pair of di�erent longest cycles meet in at least
√

k vertices.

Proof. We will prove this theorem by contradiction. Let G be a k−connected graph with

two longest cycles, C and D, such that |V (C)
⋂

V (D)| <
√

k. Let V (C) ∩ V (D) = A =

{a1, a2, . . . , am}. Note that m <
√

k. Let X1, X2, . . . , Xm be the remaining segments of

C − A, and let Y1, Y2, . . . , Ym be the remaining segments of D − A.

What we have so far are two longest cycles with at most
√

k vertices in common.

We have labeled the vertices in common a1, a2, . . . , am and the sections between these

vertices along C we labeled X1, X2, . . . , Xm and along D we labeled Y1, Y2, . . . , Ym. Note

that any of these sections may be empty. Below is an example with m = 4.

Figure 3.2:

By our assumption we know that |A| <
√

k < k and so since k is always less then

|V (G)|, we know that |A| < |V (G)| hence, G is not Hamiltonian, and we also know that

the minimum degree, δ, in G is at least k. So, by lemma 3.1.6, since G is not Hamiltonian,

it must have a cycle of length 2δ ≥ 2k. Hence |V (C)| = |V (D)| ≥ 2k, and since G is not
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Hamiltonian, |V (G)| > 2k. Since |V (C)| = |V (D)| ≥ 2k and |A| <
√

k we know that

|C − A| = |X1 ∪X2 ∪ . . . ∪Xm| = |D − A| = |Y1 ∪ Y2 ∪ . . . ∪ Ym| ≥ k.

Knowing that m ≤ k, we have that G− A must still be (k −m)− connected. Thus

there must be at least k − m internally disjoint paths between any two distinct parts

of G, namely C − A and D − A. We will call these paths P1, P2, . . . , Pk−m and let

℘ = {P1, P2, . . . , Pk−m}.

Here we must note that no two paths in P may start with the same Xi and end with

the same Yj. If they did, then by the same argument we used repeatedly in Chapter 2,

we would have a longer cycle.

Figure 3.3:

Now we can construct an auxiliary graph H with vertex

set{X1, X2, . . . , Xm, Y1, Y2, . . . , Ym} and for each Ph ∈ P we insert and edge from

the corresponding Xi to Yj. From above we see that H must be a simple bipartite graph

with each partite having m vertices.

Finally, since this is a bipartite graph with m vertices in each partite, clearly there

must be at most m2 edges. This implies that k−m ≤ m2 which implies that m ≥
√

k−1.

2
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3.3 Improvement to ck3/5

The result that we saw in the previous section can be improved upon with a re�nement

of our seemingly golden idea to show that there must be a longer cycle(or longer path in

Chapter 2). We will begin this section where we left o� excluding only the �nal paragraph

of the previous proof.

Proof. So, we now have a simple bipartite graph with m vertices on each side. Also

note that H contains at least ( 3
√

256 + 2)m5/3 edges, so by Corollary 3.1.3, K3,257 ⊆ H.

We will now label the vertices in H so that X1, X2, X3, Y1, Y2, · · · , Y257 are the vertices

that make up the K3,257. We will also denote the path from Xi to Yj as Pi,j starting at

ui,j ∈ C and ending at vi,j ∈ D. We will also pick an arbitrary vertex a1 to start the

orientation of our cycle and will say that for any two vertices on our cycle, x1 ≺ x2 if and

only if x1 is between a1 and x2 along the orientation of C. Note that the same can be

said for two disjoint subsets of C. Also de�ne the same notation for D using b1 to start

the orientation.

We can now say that X1 ≺ X2 ≺ X3 and Y1 ≺ Y2 ≺ · · · ≺ Y257. Next if we look at

the order that the Yi's are connected to X1 along the orientation of C, we see that we get

a permutation of the 223
+1 = 257 elements Y1, · · · , Y257. Since we can repeat this for X2

and X3, we see that we have 3 permutations of the set Y1, · · · , Y257. By Lemma 3.1.5 we

know that there must be 3 elements of Y1, · · · , Y257 that are in increasing or decreasing

order; let those 3 elements be relabeled as Ya, Yb and Yc also, by the Pigeonhole Principle,

we loose no generality by saying that Ya ≺ Yb ≺ Yc and

u1,a ≺ u1,b ≺ u1,c

and

u2,a ≺ u2,b ≺ u2,c
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and either

u3,a ≺ u3,b ≺ u3,c or u3,c ≺ u3,b ≺ u3,a.

What is left to be shown is that for Ya ¹ Yi ¹ Yj ¹ Yc, either

v1,i ≺ v2,i and v1,j ≺ v2,j

or

v2,i ≺ v1,i and v2,j ≺ v1,j.

If we can show this then the following structure must exist:

Figure 3.4:

To show this we �rst note that we can say v1,a ≺ v2,a, for if this is not the case,

reverse the labeling of X1 and X2. If v1,b ≺ v2,b or v1,c ≺ v2,c then the �rst line above

would be satis�ed. So assume that v2,b ≺ v1,b and v2,c ≺ v1,c; but we now see that these

two satisfy the second line from above, and so one of these structures must exist.

Now that we have this structure, it is easy to see that we must have a longer cycle,

just look at the cycles C∗ and D∗:

C∗ = a1 − u1,i − v1,i − v2,i − u2,i − u1,j − v1,j − v2,j − u2,j − a1

D∗ = b1 − v1,i − u1,i − u1,j − v1,j − v2,i − u2,i − u2,j − v2,j − b1

2
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Figure 3.5:

3.4 Improvement to ck2/3

In the last section we used a K3,257; we note here that the use of a K2,m for some large

m would not be enough to give us the structure that we needed. In order to improve

this result to ck2/3 we do need to use a special K2,m for some large m, and so we need to

change the structure that we use. Again, we start with the proof given over the last two

sections, noting some changes.

The �rst change to note is that since we only have an X1 and X2, we can only state

that

u1,a ≺ u1,b

and either

u2,a ≺ u2,b

or

u2,b ≺ u2,a.

So, instead of being able to force Figure 3.4, we can only force one of these 3 structures

to be present:

Now clearly if the �rst structure is present then we are done by the C∗ and D∗ used

in Section 3.3. So what if the �rst structure is not present. Unfortunately, there is not

an easy C∗ and D∗ that we can create to force a longer path. We can however �nd a C∗,
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Figure 3.6:

D∗, and E∗ that by the pigeonhole principle would force a longer cycle if we can force

the two remaining structures to be interlaced.

Figure 3.7:

It is the author's feeling that since H ⊆ Km,m and we only used 2 vertices from one

side of the bipartite graph, we should be able to show that there are enough edges to force

another one of these structures to be present. This is how the result could be improved

to ck2/3 for some c.
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