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WEAK PRIMARY DECOMPOSITION OF MODULES OVER A COMMUTATIVE RING

by

HARRISON E. STALVEY

Under the Direction of Dr. Yongwei Yao

ABSTRACT

This paper presents the theory of weak primary decomposition of modules over a commutative

ring. A generalization of the classic well-known theory of primary decomposition, weak primary

decomposition is a consequence of the notions of weakly associated prime ideals and nearly nilpo-

tent elements, which were introduced by N. Bourbaki. We begin by discussing basic facts about

classic primary decomposition. Then we prove the results on weak primary decomposition, which

are parallel to the classic case. Lastly, we define and generalize the Compatibility property of

primary decomposition.

INDEX WORDS: Primary decomposition, Weak primary decomposition, Associated primes,
Weakly associated primes, Nilpotent, Nearly nilpotent, Weak primary sub-
modules, Compatibility property
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Chapter 1

INTRODUCTION

The subject of primary decomposition is an essential topic in any graduate text on commutative

algebra. Although it is commonly first introduced in the context of ideals, the theory of primary

decomposition is also seen in modules. Primary decomposition is rooted in the notions of associated

prime ideals and nilpotency. In the classic sense, if a prime ideal is equal to the annihilator of a

nonzero element from a given module, then the prime ideal is said to be “associated” with the

module. In [2], N. Bourbaki, however, introduces a more general associated prime ideal − if a

prime ideal is minimal over the annihilator of an element from a given module, then the prime ideal

is said to be “weakly associated” with the module. Moreover, Bourbaki generalizes the notion of

nilpotency to “nearly” nilpotency. As a result, the primary decompositions are called “weak.” In

this paper, we will explore the consequences of such generalizations.

In Chapter 1, we begin with a review of familiar facts and terminology relating to classic ring

theory, with a focus on results regarding minimal ideals, as they will be necessary to proceed to

Chapter 2. Also, in Chapter 1, we will define terms relating to classic primary decomposition, so

that we may distinguish it from weak primary decomposition. The purpose of Chapter 2 is to form

the foundation of the theory of weak primary decomposition by defining precisely what we mean

by a “weakly associated prime ideal” and a “nearly nilpotent element”. Then we will show how

these definitions alter the classic theory of primary decomposition. Indeed, there are assumptions

on the characteristics of the ring and modules that would make the notions of weak and classic

primary decomposition equivalent. Thus we will show which assumptions must be disregarded in

order to make the theory surrounding weak primary decomposition truly more general. Finally,

in Chapter 3, we will generalize Y. Yao’s result on the Compatibility property seen in [5].
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1.1 Preliminary Facts

The results in this section are standard in any text on commutative algebra, such as [2], [3], and

[4]. We will omit the definitions of a ring, ideal, and module, and begin with the definition of a

prime ideal.

Note: All rings throughout this paper are commutative with unity. It is to be understood that

anything denoted by R is such a ring.

Definition 1.1.1. An ideal P of R is said to be a prime ideal of R if P ( R and one of the

following equivalent statements hold:

(i) If a, b ∈ R such that ab ∈ P , then a ∈ P or b ∈ P .

(ii) If a, b ∈ R such that ab ∈ P with b /∈ P , then a ∈ P .

(iii) If a, b ∈ R such that a /∈ P and b /∈ P , then ab /∈ P .

Notation 1.1.2. In some cases, we will refer to the set of all prime ideals of R as Spec(R).

It is important to note that if P is an ideal of R and P /∈ Spec(R), then P = R or there exists

a, b ∈ R such that ab ∈ P with a /∈ P and b /∈ P .

Fact 1.1.3. Let P ∈ Spec(R). If a1, a2, . . . , an ∈ R such that a1a2 · · · an ∈ P , then ai ∈ P for

some 1 ≤ i ≤ n. Therefore, if an ∈ P for some n ∈ N, then a ∈ P .

Definition 1.1.4. A subset S of R is said to be multiplicatively closed, or multiplicative, if the

following hold:

(i) 1 ∈ S; and

(ii) if s1, s2 ∈ S, then s1s2 ∈ S.

Definition 1.1.5. Let V be a non-empty set.

(i) A relation � on V is said to be a partial order on V if the following properties hold:

• reflexive: u � u for all u ∈ V ;
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• transitive: if u � v and v � w for some u, v, w ∈ V , then u � w; and

• antisymmetric: if u � v and v � u for some u, v ∈ V , then u = v.

It is in this case that we say (V,�) is a partially ordered set.

(ii) The partially ordered set (V,�) is said to be totally ordered if for all u, v ∈ V , at least one

of u � v, v � u holds.

(iii) For a non-empty subset W of the partially ordered set (V,�), an element u ∈ V is said to

be an upper bound of W if w � u for all w ∈ W .

(iv) For a partially ordered set (V,�), an element u ∈ V is said to be maximal in V if there does

not exist v ∈ V such that u � v and u 6= v.

Lemma 1.1.6 (Zorn’s Lemma). Let (V,�) be a non-empty partially ordered set such that every

non-empty totally ordered subset of V has an upper bound in V . Then V has at least one maximal

element.

Theorem 1.1.7 ([4], page 50, Theorem 3.44). Let S be a multiplicative subset of R and let I be

an ideal of R. If I ∩ S = ∅, then there exists P ∈ Spec(R) such that P ∩ S = ∅ and I ⊆ P .

Proof. Let I ∩ S = ∅, and define

Ω := {J | J is an ideal of R such that J ⊇ I and J ∩ S = ∅},

which is clearly non-empty since I ∈ Ω. Moreover, Ω is partially ordered by ⊆. Let Θ be a

non-empty totally ordered subset of Ω. Then Q :=
⋃
J∈Θ

J is an ideal of R such that Q ⊇ I and

Q∩S = ∅. Thus Q is an upper bound for Θ in Ω. By applying Zorn’s Lemma 1.1.6, we have that

Ω contains at least one maximal element.

Let P be a maximal element of Ω. Since P ∈ Ω, P ∩ S = ∅. We claim P ∈ Spec(R). Let

a, a′ ∈ R such that a /∈ P and a′ /∈ P . We aim to show that aa′ /∈ P . It is true that

I ⊆ P ( P +Ra and I ⊆ P ( P +Ra′.

By the maximality of P ∈ Ω, we have that

(P +Ra) ∩ S 6= ∅ and (P +Ra′) ∩ S 6= ∅.
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Then there exist s, s′ ∈ S, r, r′ ∈ R, and u, u′ ∈ P such that

s = u+ ra and s′ = u′ + r′a′.

Since S is multiplicative, we have ss′ ∈ S. But

ss′ = (u+ ra)(u′ + r′a′) = (uu′ + rau′ + r′a′u) + rr′aa′,

where uu′ + rau′ + r′a′u ∈ P . If aa′ ∈ P , then rr′aa′ ∈ P , forcing ss′ ∈ P , which is false, since

P ∩ S = ∅. Thus aa′ /∈ P , proving P ∈ Spec(R).

As we will see in Chapter 2, the study of weak primary decomposition depends on the notion

of minimal prime ideals. Thus it is important that we now establish the definitions and results on

this concept that will be valuable for the purpose of this paper.

Definition 1.1.8. Let Ω be a collection of subsets of R. An element (set) S of Ω is said to be

minimal in Ω if there exists no S ′ ∈ Ω such that S ) S ′.

Proposition 1.1.9 ([2], page 73, II.2.6, Proposition 12). Let P be minimal in Spec(R). Then for

all a ∈ P , there exists s ∈ R \ P such that ans = 0 for some n ∈ N.

Proof. Let a ∈ P . The set

S := {ams | s ∈ R \ P and m ≥ 0}

is a multiplicative subset of R. Clearly a ∈ S so that P ∩S 6= ∅. We aim to prove 0 ∈ S. Suppose

0 /∈ S. Then {0} ∩ S = ∅. By 1.1.7, there exists P ′ ∈ Spec(R) such that P ′ ∩ S = ∅. This and

the fact that R \ P ⊆ S imply P ′ ∩ (R \ P ) = ∅, implying P ′ ⊆ P . In fact, P ′ ( P , since a ∈ P

and a /∈ P ′, because a ∈ S and P ′ ∩ S = ∅. Thus we have a contradiction of the minimality of P

in Spec(R). Therefore 0 ∈ S, completing our proof.

Definition 1.1.10. Let I be an ideal of R. A prime ideal P of R is said to be minimal over I if

the following hold:

(i) P ⊇ I; and

(ii) there exists no prime ideal P ′ of R such that P ) P ′ ⊇ I.
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Notation 1.1.11. In some cases, we will refer to the set of all minimal primes over I as Min(I).

Fact 1.1.12 ([4], page 53, Theorem 3.52). Let I be a proper ideal of R. Then there exists P ∈

Spec(R) such that P is minimal over I. That is, Min(I) 6= ∅.

Definition 1.1.13. Let I be an ideal of R. The radical of I, denoted
√
I, is the set

{a ∈ R | there exists n ∈ N such that an ∈ I}.

Fact 1.1.14. Let I be an ideal of R.

(i)
√
I is an ideal of R.

(ii) I ⊆
√
I =

√√
I.

Fact 1.1.15 ([4], pages 52 and 54, Lemma 3.48 and Corollary 3.54). Let I be an ideal of R. Then

√
I =

⋂
P∈Min(I)

P =
⋂
P⊇I

P,

where P runs through the prime ideals of R containing I.

Fact 1.1.16. Let I be an ideal of R. If
√
I is a prime ideal, then

Min(I) = {
√
I}.

Now we introduce definitions and facts pertaining to modules and their annihilators. It is

important to note that ideals are a special type of module, that is, a module is a more general

structure. Therefore all results on modules apply to ideals. When important, we will emphasize

results in the context of ideals.

Definition 1.1.17. Let M be an R-module. An element a ∈ R is said to be a zerodivisor of M

if there exists 0 6= x ∈M such that ax = 0.

Notation 1.1.18. We denote the set of all zerodivisors of M by ZdvR(M).
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Definition 1.1.19. Let M be an R-module and let x ∈M . An element a ∈ R is said to annihilate

x if ax = 0. In this case, a is called an annihilator of x. Moreover, if ax = 0 for all x ∈ M , i.e.,

aM = 0, then a is called an annihilator of M .

Notation 1.1.20. We denote the set of all annihilators of x and M by Ann(x) and Ann(M),

respectively.

Fact 1.1.21. Let M be an R-module. Then

ZdvR(M) =
⋃

06=x∈M

Ann(x).

Fact 1.1.22. Let M be an R-module and let x ∈ M . Then Ann(x),
√

Ann(x), Ann(M), and√
Ann(M) are ideals of R.

Lemma 1.1.23. Let P ∈ Spec(R). If P is minimal over Ann(x) for some 0 6= x ∈M , then P is

minimal over Ann(rx) for all r ∈ R \ P .

Proof. Let P be minimal over Ann(x) for some 0 6= x ∈ M . First, we show Ann(rx) ⊆ P for all

r ∈ R \ P . Let r be an arbitrary element of R \ P , and let a ∈ Ann(rx). Then arx = 0, implying

ar ∈ Ann(x). Since Ann(x) ⊆ P and r /∈ P , we have a ∈ P . Thus Ann(rx) ⊆ P for all r ∈ R \P .

Now, we show P is minimal over Ann(rx) for all r ∈ R \ P . Suppose P is not minimal over

Ann(rx) for some r ∈ R \ P . Then there exists P ′ ∈ Spec(R) such that

Ann(x) ⊆ Ann(rx) ⊆ P ′ ( P,

contradicting the minimality of P over Ann(x). Therefore P is minimal over Ann(rx) for all

r ∈ R \ P .

Definition 1.1.24. Let N be a submodule of the R-module M , let x ∈M , and let a ∈ R. Then

we have the following definitions:

(i) (N :
M
a) := {y ∈M | ay ∈ N}.

(ii) (N :
R
x) := {r ∈ R | rx ∈ N}.
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Obviously, (N :
M
a) ⊆M and (N :

R
x) ⊆ R.

Fact 1.1.25 (The Submodule Criterion). Let N be a subset of the R-module M . Then N is a

submodule of M if and only if the following hold:

(i) N 6= ∅; and

(ii) if x, y ∈ N and a, b ∈ R, then ax+ by ∈ N .

Lemma 1.1.26. Let N be a submodule of the R-module M , and let a ∈ R.

(i) N ⊆ (N :
M
a) and (N :

M
a) is a submodule of M .

(ii) a ∈ Ann(M/N) if and only if (N :
M
a) = M .

Proof. (i) Since aN ⊆ N , we have N ⊆ (N :
M
a). By definition, (N :

M
a) ⊆ M , and (N :

M
a) 6= ∅,

since 0M ∈ (N :
M
a). Let x, y ∈ (N :

M
a) and b, c ∈ R. Then ax ∈ N and ay ∈ N . Hence bax ∈ N

and cay ∈ N , implying bax+ cay ∈ N . But N ⊆ (N :
M
a). Thus bax+ cay ∈ (N :

M
a). Therefore,

by 1.1.25, (N :
M
a) is a submodule of M .

(ii)(⇒) Let a ∈ Ann(M/N). Then aM = 0M/N , i.e., aM ⊆ N , implying M ⊆ (N :
M
a).

Therefore (N :
M
a) = M .

(⇐) Let (N :
M
a) = M . Then aM ⊆ N , implying a ∈ Ann(M/N).

Proposition 1.1.27. Let N be a submodule of the R-module M , and let x ∈M .

(i) (N :
R
x) is an ideal of R and Ann(x) ⊆ (N :

R
x) = Ann(x+N), where x+N ∈M/N .

(ii) x ∈ N if and only if (N :
R
x) = R.

Proof. (i) By definition, (N :
R
x) ⊆ R, and (N :

R
x) 6= ∅, since 0R ∈ (N :

R
x). Let a, b ∈ (N :

R
x)

and let c ∈ R. Then ax ∈ N and bx ∈ N , implying ax + bx ∈ N , i.e., (a + b)x ∈ N . Moreover,

cax ∈ N . Thus a+ b ∈ (N :
R
x) and ca ∈ (N :

R
x). Therefore (N :

R
x) is an ideal of R.

Let a ∈ Ann(x). Then ax = 0 ∈ N . Thus a ∈ (N :
R
x) and Ann(x) ⊆ (N :

R
x).

Now, a ∈ (N :
R
x) ⇔ ax ∈ N ⇔ 0 +N = ax+N = a(x+N) ⇔ a ∈ Ann(x+N). Therefore

(N :
R
x) = Ann(x+N).

(ii)(⇒) Let x ∈ N . Then Rx ⊆ N , implying R ⊆ (N :
R
x). Therefore (N :

R
x) = R.
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(⇐) Let (N :
R
x) = R. Then Rx ⊆ N , implying ax ∈ N for all a ∈ R. In particular, 1 ·x ∈ N ,

as desired.

Fact 1.1.28 ([4], pages 30 and 107, Exercises 2.33 and 6.18). Let (Nλ)λ∈Λ be a family of submodules

of the R-module M , and let a ∈ R and x ∈M .

(i)

( ⋂
λ∈Λ

Nλ :
M
a

)
=
⋂
λ∈Λ

(Nλ :
M
a).

(ii)

( ⋂
λ∈Λ

Nλ :
R
x

)
=
⋂
λ∈Λ

(Nλ :
R
x).

Fact 1.1.29 (The First Isomorphism Theorem). Let M and N be R-modules and let ϕ : M → N

be an R-linear mapping. Then M/Ker ϕ is isomorphic to Im ϕ, denoted M/Ker ϕ ∼= Im ϕ.

Proposition 1.1.30. If M =
⊕
λ∈Λ

Mλ is a direct sum of R-modules, then for each λ ∈ Λ, Mλ is

isomorphic to a submodule of M .

Proof. For each λ ∈ Λ, define

ϕ : Mλ −→M

by ϕ(x) = (xλ)λ∈Λ such that xλ′ = 0Mλ′ when λ′ 6= λ for all xλ ∈Mλ. It is clear that ϕ is R-linear

and Ker ϕ = {0Mλ
}. Thus Mλ

∼= Im ϕ ⊆M for each λ ∈ Λ, as desired.

Fact 1.1.31 ([1], page 260, Chapter 14, Section 3, Problem 2). Let N and L be submodules of the

R-module M . Then

N

N ∩ L
∼=
N + L

L
.

1.2 Associated Prime Ideals, Nilpotent Elements, Primary Submodules, and Pri-

mary Decomposition

In this section, we state the definitions and results regarding the classic theory of primary

decomposition of modules. These definitions and results are consistent with the definitions and

results found in [3] and [4].

Definition 1.2.1. Let M be an R-module. A prime ideal P of R is said to be associated with M

if there exists 0 6= x ∈M such that Ann(x) = P .
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Notation 1.2.2. We denote the set of all prime ideals associated with M by Ass(M).

Definition 1.2.3. Let M be an R-module. An element a ∈ R is said to be nilpotent on M if

there exists n ∈ N such that anM = 0, that is, anx = 0 for all x ∈M .

Notation 1.2.4. We denote the set of all elements nilpotent on M by Nil(M).

Fact 1.2.5. Let M be an R-module. Then

Nil(M) =
√

Ann(M).

Proof. Let a ∈ R. Then a ∈ Nil(M)⇔ anM = 0 for some n ∈ N⇔ an ∈ Ann(M) for some n ∈ N

⇔ a ∈
√

Ann(M).

Proposition 1.2.6. Let M 6= 0 be an R-module. Then

Nil(M) ⊆ ZdvR(M).

Proof. Let a ∈ Nil(M). Then there exists a minimal n ∈ N such that 0 = anM = a · an−1M and

an−1M 6= 0. Thus a ∈ ZdvR(M).

Definition 1.2.7. A submodule Q of the R-module M is said to be a primary submodule of M

(or primary in M) if the following hold:

(i) Q ( M , i.e., M/Q 6= 0; and

(ii) ZdvR(M/Q) = Nil(M/Q), or equivalently, ZdvR(M/Q) ⊆ Nil(M/Q), in light of 1.2.6.

Fact 1.2.8. Let Q be a primary submodule of the R-module M . Then Nil(M/Q) is a prime ideal.

Definition 1.2.9. Let Q be a primary submodule of the R-module M . By 1.2.8, Nil(M/Q) is

a prime ideal. If we denote Nil(M/Q) by P , then we say Q is a P -primary submodule of M , or

P -primary in M . If M = R and the previous conditions hold, then Q is a P -primary ideal of R.

Fact 1.2.10. Let Q be a P -primary submodule of the R-module M .

(i)
√

Ann(M/Q) = P .
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(ii) If M = R so that Q is a P -primary ideal of R, then
√
Q = P .

Proof. (i) By definition, Nil(M/Q) = P , and by 1.2.5, Nil(M/Q) =
√

Ann(M/Q). Therefore√
Ann(M/Q) = P .

(ii) Let M = R. Then Ann(M/Q) = Q, implying
√

Ann(M/Q) =
√
Q. But

√
Ann(M/Q) =

P , by (i). Therefore
√
Q = P .

Definition 1.2.11. Let N ( M be R-modules. We say N is a decomposable submodule of M if it

can be written as an intersection of finitely many primary submodules of M . Such an intersection

N = Q1 ∩ · · · ∩Qn with Qi Pi-primary in M (i = 1, 2, . . . , n)

is called a primary decomposition of N in M .
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Chapter 2

WEAK PRIMARY DECOMPOSITION OF MODULES

In this chapter, we will define the terminology and develop the theory surrounding weak primary

decomposition. Any reader familiar with primary decomposition will notice that most of these

results are parallel to the theory in classic primary decomposition. The proofs, however, are more

intricate because of the terminology’s underlying definitions. In Section 2.1, we will define the

notions of weakly associated prime ideals and nearly nilpotent elements, which were introduced by

N. Bourbaki ([2], 289, IV.2, Exercise 17.) Then we will develop the theory that characterizes and

relates these two notions. In Section 2.2, we will demonstrate how altering the definitions of asso-

ciated prime ideals and nilpotent elements to weakly associated prime ideals and nearly nilpotent

elements, respectively, creates a new kind of primary submodule, namely, a weak primary sub-

module. In Section 2.3, we will develop the definitions and theory of weak primary decomposition,

including the first and second uniqueness theorems.

2.1 Weakly Associated Prime Ideals and Nearly Nilpotent Elements

Definition 2.1.1. Let M be an R-module. A prime ideal P of R is said to be weakly associated

with M if there exists 0 6= x ∈M such that P is minimal over Ann(x).

Notation 2.1.2. We denote the set of all prime ideals weakly associated with M by Assf(M).

Lemma 2.1.3. Let M be an R-module. Then Ass(M) ⊆ Assf(M).

Proof. Let P ∈ Ass(M). Then there exists 0 6= x ∈ M such that Ann(x) = P . Clearly P is

minimal over Ann(x). Thus P ∈ Assf(M). Therefore Ass(M) ⊆ Assf(M).
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Before continuing with the study of weakly associated prime ideals of M and their conse-

quences, it is natural to ask when Ass(M) = Assf(M). This equality is achieved when R is

Noetherian. (Recall that R is said to be Noetherian if every non-empty set of ideals of R contains

a maximal element.)

Theorem 2.1.4. Let M be an R-module. If R is Noetherian, then Ass(M) = Assf(M).

Proof. We have already shown in 2.1.3 that Ass(M) ⊆ Assf(M), and it does not rely on R being

Noetherian. Now, let R be Noetherian, and let P ∈ Assf(M). Then P is minimal over Ann(x) for

some 0 6= x ∈M . Define

Θ := {Ann(rx) | r ∈ R such that Ann(rx) ⊆ P}.

Since R is Noetherian, Θ contains a maximal element, say Ann(sx), where s ∈ R such that

Ann(sx) ⊆ P . We claim Ann(sx) is a prime ideal. Suppose Ann(sx) is not a prime ideal. Then

there exists a, b ∈ R such that ab ∈ Ann(sx) with a /∈ Ann(sx) and b /∈ Ann(sx). Then absx = 0,

i.e., b ∈ Ann(asx). It is clear that Ann(sx) ⊆ Ann(asx). In fact, since b ∈ Ann(asx) and

b /∈ Ann(sx), we have Ann(sx) ( Ann(asx). By the maximality of Ann(sx) in Θ, Ann(asx) /∈ Θ.

Thus Ann(asx) * P , implying there exists t ∈ Ann(asx) such that t /∈ P . Thus tasx = 0, i.e.,

a ∈ Ann(tsx). Since a /∈ Ann(sx), we have Ann(sx) ( Ann(tsx), and by the maximality of

Ann(sx) in Θ, Ann(txs) /∈ Θ. Thus Ann(txs) * P , implying there exists u ∈ Ann(tsx) such that

u /∈ P . Then utsx = 0, i.e., ut ∈ Ann(sx) ⊆ P , forcing u ∈ P or t ∈ P , which is a contradiction.

Thus our original supposition that Ann(sx) is not a prime ideal is false.

Now, we have

Ann(x) ⊆ Ann(sx) ⊆ P

with Ann(sx) a prime ideal. Since P is a minimal prime ideal over Ann(x), it is forced that

Ann(sx) = P . Therefore, P ∈ Ass(M).

Remark 2.1.5. For the purpose of this paper, the reader may assume that all rings are not nec-

essarily Noetherian, unless explicitly stated otherwise. Therefore this thesis deals with a more

general case than the classic theory.

Lemma 2.1.6. Let M be an R-module. Then Assf(M) = ∅ if and only if M = 0.
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Proof. (⇐) Suppose M = 0. Then clearly Assf(M) = ∅.

(⇒) Suppose M 6= 0. Then there exists x ∈ M such that x 6= 0. By 1.1.22, Ann(x) is an

ideal of R, and by 1.1.27, Ann(x) 6= R. Thus, by 1.1.12, there exists P ∈ Spec(R) such that P is

minimal over Ann(x), i.e., Assf(M) 6= ∅.

Lemma 2.1.7. Let M1 and M2 be R-modules. If M1
∼= M2, then Assf(M1) = Assf(M2).

Proof. Let M1
∼= M2 and let P ∈ Assf(M1). There exists an R-linear bijection

M1 −→ M2

x 7−→ ϕ(x)

for all x ∈M1. Since P ∈ Assf(M1), there exists 0 6= x ∈M1 such that P is minimal over Ann(x).

We claim Ann(x) = Ann(ϕ(x)).

Let a ∈ Ann(x). Then ax = 0M1 , and ϕ(ax) = 0M2 . But ϕ(ax) = aϕ(x). Thus aϕ(x) = 0M2 ,

and a ∈ Ann(ϕ(x)). Hence Ann(x) ⊆ Ann(ϕ(x)).

Let a ∈ Ann(ϕ(x)). Then 0M2 = aϕ(x) = ϕ(ax). But ϕ(0M1) = 0M2 . Thus ϕ(ax) = ϕ(0M1).

By the injectivity of ϕ, ax = 0M1 . Hence a ∈ Ann(x), and Ann(ϕ(x)) ⊆ Ann(x).

Therefore Ann(x) = Ann(ϕ(x)). Since P is minimal over Ann(x), we have that P is minimal

over Ann(ϕ(x)). Thus P ∈ Assf(M2), and Assf(M1) ⊆ Assf(M2).

In the same manner as above, we can show that Assf(M2) ⊆ Assf(M1). Therefore, if M1
∼= M2,

then Assf(M1) = Assf(M2).

Lemma 2.1.8. (i) Let N ⊆M be R-modules. Then

Assf(N) ⊆ Assf(M) ⊆ Assf(N) ∪ Assf(M/N).

(ii) Consider the short exact sequence

0 −→M1
ϕ−→M2

ψ−→M3 −→ 0,

where M1, M2, and M3 are R-modules. Then

Assf(M1) ⊆ Assf(M2) ⊆ Assf(M1) ∪ Assf(M3).



14

(iii) Consider the exact sequence

0 −→M1
ϕ−→M2

ψ−→M3,

where M1, M2, and M3 are R-modules. Then

Assf(M1) ⊆ Assf(M2) ⊆ Assf(M1) ∪ Assf(M3).

Proof. (i) It is clear that Assf(N) ⊆ Assf(M). Let P ∈ Assf(M). Then P is minimal over Ann(x)

for some 0 6= x ∈M . Let

X = {rx | r ∈ R \ P}.

If X ∩N 6= ∅, then there exists y ∈ X ∩N , and, by 1.1.23, P is minimal over Ann(y). Therefore

P ∈ Assf(N). Consider the case where X ∩ N = ∅. We claim Ann(x) ⊆ Ann(x + N) ⊆ P .

Indeed, by 1.1.27(i), Ann(x) ⊆ Ann(x + N). Now let b ∈ Ann(x + N), and suppose b /∈ P .

Then bx ∈ X ∩ N . But X ∩ N = ∅. Hence we have a contradiction, and b ∈ P . Thus we have

shown Ann(x) ⊆ Ann(x + N) ⊆ P , which proves that P is minimal over Ann(x + N). Therefore

P ∈ Assf(M/N). This completes the proof of (i).

(ii) Because M1
∼= Im ϕ and M3

∼= M2/Im ϕ, it suffices to prove Assf(Im ϕ) ⊆ Assf(M2) ⊆

Assf(Im ϕ) ∪ Assf(M2/Im ϕ), which follows directly from (i).

(iii) Consider 0 −→ M1
ϕ−→ M2

ψ′
−→ Im ψ −→ 0, which is exact at M1 and M2. Moreover,

since Im ψ′ = Im ψ, the sequence is exact at Im ψ. From (ii), Assf(M1) ⊆ Assf(M2) ⊆ Assf(M1) ∪

Assf(Im ψ) ⊆ Assf(M1) ∪ Assf(M3), because Im ψ ⊆M3, as modules. This completes the proof of

(iii) and Lemma 2.1.8.

Lemma 2.1.9. If M =
n⊕
i=1

Mi is a direct sum of R-modules, then

Assf(M) =
n⋃
i=1

Assf(Mi).

Proof. (⊇) By 1.1.30, for each i with 1 ≤ i ≤ n, Mi is isomorphic to a submodule of M . Hence
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Assf(Mi) ⊆ Assf(M) for each 1 ≤ i ≤ n. Thus
n⋃
i=1

Assf(Mi) ⊆ Assf(M).

(⊆) Consider the exact sequence

0 −→M1 −→M1 ⊕M2 −→M2.

By 2.1.8(iii),

Assf(M1 ⊕M2) ⊆ Assf(M1) ∪ Assf(M2).

Proceeding by induction,

Assf(M) ⊆
n⋃
i=1

Assf(Mi),

completing our proof.

Theorem 2.1.10. If M =
⊕
λ∈Λ

Mλ is a direct sum of R-modules, then

Assf(M) =
⋃
λ∈Λ

Assf(Mλ).

Proof. (⊇) This is by the same reasoning as (⊇) in 2.1.9.

(⊆) Let P ∈ Assf(M). Then P is minimal over Ann(x) for some 0 6= x ∈ M . We may write

x = (xλ)λ∈Λ, where xλ ∈ Mλ for each λ ∈ Λ and only finitely many xλ’s are nonzero. Let the

nonzero xλ’s be xλ1 , . . . , xλn and let x′ = (xλi)
n
i=1 ∈

n⊕
i=1

Mλi . Then Ann(x) = Ann(x′). Thus P is

minimal over Ann(x′), implying

P ∈ Assf

( n⊕
i=1

Mλi

)
2.1.9
=

n⋃
i=1

Assf(Mλi) ⊆
⋃
λ∈Λ

Assf(Mλ).

That is,

P ∈
⋃
λ∈Λ

Assf(Mλ).

Therefore

Assf(M) ⊆
⋃
λ∈Λ

Assf(Mλ),

completing our proof.
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Lemma 2.1.11. Let M be an R-module. Then

ZdvR(M) =
⋃

P∈Assf(M)

P .

Proof. (⊆) Let a ∈ ZdvR(M). Then a ∈ Ann(x) for some 0 6= x ∈ M . Since x 6= 0, it follows

that Ann(x) 6= R. Thus by 1.1.12, there exists a prime ideal P of R such that P is minimal over

Ann(x). Hence we have a ∈ Ann(x) ⊆ P ∈ Assf(M), implying a ∈
⋃

P∈Assf(M)

P , which proves the

first inclusion.

(⊇) Let a ∈ P for some P ∈ Assf(M), and say P is minimal over Ann(x) for some 0 6= x ∈M .

Denote I := Ann(x) and consider the ring R/I. Noticing that P/I ∈ Spec(R/I), it is clear that

P/I is minimal in Spec(R/I). Thus by 1.1.9, there exists b + I ∈ (R/I) \ (P/I) such that

anb + I = 0 + I for some minimal n ∈ N. Hence anb ∈ I and an−1b /∈ I. That is, anbx = 0 and

an−1bx 6= 0, implying a ∈ ZdvR(M), which proves the reverse inclusion.

Now, we define the notion of nearly nilpotency and establish the notable results regarding

nearly nilpotent elements.

Definition 2.1.12. An element a ∈ R is said to be nearly nilpotent on the R-module M if for

every x ∈M , there exists n(x) ∈ N such that an(x)x = 0.

Notation 2.1.13. We denote the set of all elements nearly nilpotent on M by Nilf(M).

Theorem 2.1.14. Let M be an R-module.

(i) Nil(M) ⊆ Nilf(M).

(ii) If M is finitely generated, then Nil(M) = Nilf(M).

Proof. (i) This is trivially true.

(ii) Let M be finitely generated by J = {x1, . . . , xk} ⊆ M and let a ∈ Nilf(M). Then

for every xi ∈ J where i = 1, . . . , k, there exists n(xi) ∈ N such that an(xi)xi = 0. Let n =

max{n(x1), . . . , n(xk)}, and let x be an arbitrary element in M . Then x = r1x1 + · · ·+ rkxk where
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ri ∈ R for each i = 1, · · · , k, and

anx = anr1x1 + · · ·+ anrkxk

= r1(anx1) + · · ·+ rk(a
nxk)

= 0 .

Hence a ∈ Nil(M), and Nilf(M) ⊆ Nil(M). Therefore, if M is finitely generated, then Nil(M) =

Nilf(M).

Remark 2.1.15. For the purpose of this paper, the reader may assume that all modules are not

necessarily finitely generated, unless explicitly stated otherwise.

Lemma 2.1.16. Let M be an R-module. Then

Nilf(M) =
⋂
x∈M

√
Ann(x).

Proof. (⊆) Let a ∈ Nilf(M). Then for each x ∈ M , there exists n(x) ∈ N such that an(x)x = 0,

implying an(x) ∈ Ann(x). Then a ∈
√

Ann(x) for all x ∈M . Thus a ∈
⋂
x∈M

√
Ann(x).

(⊇) Let a ∈
⋂
x∈M

√
Ann(x). Then a ∈

√
Ann(x) for all x ∈ M . Thus for each x ∈ M , there

exists n(x) ∈ N such that an(x)x = 0, i.e., a ∈ Nilf(M).

Remark 2.1.17. If M 6= 0, then Nilf(M) =
⋂

06=x∈M

√
Ann(x).

Lemma 2.1.18. Let M 6= 0 be an R-module. Then

Nilf(M) ⊆ ZdvR(M).

Proof. Let a ∈ Nilf(M), and let 0 6= x ∈ M . Then there exists a minimal n(x) ∈ N such that

0 = an(x)x = a · an(x)−1x and an(x)−1x 6= 0. Thus a ∈ ZdvR(M).
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2.2 Weak Primary Submodules

Definition 2.2.1. A submodule Q of the R-module M is said to be a weak primary submodule of

M (or weakly primary in M) if the following hold:

(i) Q ( M , i.e., M/Q 6= 0; and

(ii) ZdvR(M/Q) = Nilf(M/Q), or equivalently, ZdvR(M/Q) ⊆ Nilf(M/Q), in light of 2.1.18.

When M happens to be finitely generated, the weak primary submodules of M agree with

the primary submodules of M , in light of 2.1.14(ii) and 1.2.7. So that we can study primary

submodules in a more general form, namely weak primary submodules, the reader should continue

to assume that all modules are not necessarily finitely generated, unless explicitly stated otherwise.

Lemma 2.2.2. Let Q be a weak primary submodule of the R-module M . Then
√

Ann(x) =√
Ann(y) for all nonzero x, y ∈M/Q.

Proof. Let x and y be nonzero in M/Q, and let a ∈
√

Ann(x). Then anx = 0 for some minimal

n ∈ N, that is, a · an−1x = 0 with an−1x 6= 0. Thus a ∈ ZdvR(M/Q). Since Q is weakly

primary in M , ZdvR(M/Q) = Nilf(M/Q). Hence a ∈ Nilf(M/Q), implying an(y)y = 0 for some

n(y) ∈ N. Thus a ∈
√

Ann(y), and
√

Ann(x) ⊆
√

Ann(y) for all nonzero x, y ∈ M/Q. Similarly,√
Ann(y) ⊆

√
Ann(x). Therefore

√
Ann(x) =

√
Ann(y) for all nonzero x, y ∈M/Q.

Theorem 2.2.3. Let Q be a submodule of the R-module M . Then the following statements are

equivalent:

(i) Assf(M/Q) is a singleton set;

(ii) Q is weakly primary in M ;

(iii) Nilf(M/Q) is a prime ideal of R, and Assf(M/Q) = {Nilf(M/Q)}.

Proof. (i)⇒(ii) Let Assf(M/Q) be a singleton set; say Assf(M/Q) = {P}, that is, P is the only

prime ideal minimal over Ann(x) for all 0 6= x ∈M/Q. Then by 2.1.11 and 1.1.15, ZdvR(M/Q) =

P =
√

Ann(x) for all 0 6= x ∈ M/Q. Thus for every a ∈ ZdvR(M/Q) and every x ∈ M/Q, there
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exists n(x) ∈ N such that an(x)x = 0. Hence ZdvR(M/Q) ⊆ Nilf(M/Q). Moreover, notice that

since x is nonzero in M/Q, we have M/Q 6= 0. Therefore Q is weakly primary in M .

(ii)⇒(iii) Let Q be weakly primary in M . Then ZdvR(M/Q) = Nilf(M/Q). First we show

Nilf(M/Q) is a prime ideal. To do this, it suffices to show ZdvR(M/Q) is a prime ideal. Let

a, b ∈ R such that ab ∈ ZdvR(M/Q) and b /∈ ZdvR(M/Q). Then there exists 0 6= x ∈ M/Q such

that abx = 0. Moreover, 0 6= bx ∈ M/Q. Hence a ∈ ZdvR(M/Q), and ZdvR(M/Q) is a prime

ideal, i.e., Nilf(M/Q) is a prime ideal.

Now, we show Assf(M/Q) = {Nilf(M/Q)}. By 2.2.2,
√

Ann(x) =
√

Ann(y) for all nonzero

x, y ∈ M/Q. Thus we have by 2.1.17 that Nilf(M/Q) =
√

Ann(x) for all 0 6= x ∈ M/Q,

implying
√

Ann(x) is a prime ideal. Then by 1.1.16,
√

Ann(x) is the only prime ideal minimal

over Ann(x) for all 0 6= x ∈ M/Q, i.e., Nilf(M/Q) is the only prime ideal minimal over Ann(x)

for all 0 6= x ∈M/Q. This proves Assf(M/Q) = {Nilf(M/Q)}.

(iii)⇒(i) Clear.

Definition 2.2.4. Let Q be a weak primary submodule of the R-module M . By Theorem 2.2.3,

Nilf(M/Q) is a prime ideal of R. If we denote Nilf(M/Q) by P so that Assf(M/Q) = {P}, then

we say Q is a weak P -primary submodule of M , or weakly P -primary in M .

Observation 2.2.5. Let Q be a weak P -primary submodule of the R-module M .

(i) If M is finitely generated, then Q is a P -primary submodule of M .

(ii) Specifically, if M = R, then Q is a P -primary ideal of R. Thus, if Q is a weak P -primary

ideal of R, then it is in fact P -primary.

Proof. This is clear, in light of 2.1.14(ii) and 1.2.9.

Lemma 2.2.6. Let Q1, Q2, . . . , Qn (n ∈ N) be weak P -primary submodules of the R-module M .

Then Q :=
n⋂
i=1

Qi is weakly P -primary in M .

Proof. Define

ϕ : M −→
n⊕
i=1

M

Qi
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by ϕ(x) = (x + Q1, . . . , x + Qn) for all x ∈ M . It is clear that ϕ is R-linear and Ker ϕ =
n⋂
i=1

Qi,

i.e., Ker ϕ = Q. Thus

M

Q
∼= Im ϕ ⊆ M

Q1

⊕ · · · ⊕ M

Qn

,

implying

Assf

(
M

Q

)
⊆ Assf

( n⊕
i=1

M

Qi

)
=

n⋃
i=1

Assf

(
M

Qi

)
= {P}.

Since Q 6= M , we have M/Q 6= 0, implying Assf(M/Q) 6= ∅. Therefore Assf(M/Q) = {P}, and Q

is weakly P -primary in M .

Lemma 2.2.7. Let Q be a weak P -primary submodule of the R-module M (i.e., Assf(M/Q) =

{P}), and let a ∈ R.

(i) If a /∈ Ann(M/Q), then (Q :
M
a) is a weak P -primary submodule of M .

(ii) If a /∈ P , then (Q :
M
a) = Q.

(iii) If a ∈ P , then
∞⋃
t=1

(Q :
M
at) = M .

Proof. (i) Suppose a /∈ Ann(M/Q). By 1.1.26, (Q :
M
a) is a submodule of M . Let us denote

N := (Q :
M
a). It remains to show that N is weakly P -primary.

Consider the R-linear mapping

M
ϕ−→ M/Q

x 7−→ ax+Q .

It is clear that Ker ϕ = N . Thus M/N ∼= Im ϕ ⊆ M/Q, implying Assf(M/N) ⊆ Assf(M/Q) =

{P}. But Assf(M/N) 6= ∅, because M 6= N ; otherwise M = N and, by Fact 1.1.26, a ∈

Ann(M/Q), which is false. Thus Assf(M/N) = {P}, which means N is weakly P -primary, i.e.,

(Q :
M
a) is weakly P -primary.

(ii) Clearly Q ⊆ (Q :
M
a). Suppose a /∈ P . Then a /∈ Nilf(M/Q) and a /∈ ZdvR(M/Q). Let

x ∈ (Q :
M
a). Then ax ∈ Q, forcing x ∈ Q, since a /∈ ZdvR(M/Q). Therefore (Q :

M
a) = Q.

(iii) Clearly
∞⋃
t=1

(Q :
M
at) ⊆ M . Let a ∈ P , and let x ∈ M . Since a ∈ P , a is nearly nilpotent

on M/Q. Thus for some n(x) ∈ N, an(x)x = 0M/Q, implying an(x)x ∈ Q, i.e., x ∈ (Q :
M
an(x)).

Hence x ∈
∞⋃
t=1

(Q :
M
at). Therefore

∞⋃
t=1

(Q :
M
at) = M .
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Lemma 2.2.8. Let Q be a weak P -primary submodule of the R-module M , and let x ∈ M . If

x /∈ Q, then (Q :
R
x) is a P -primary ideal of R.

Proof. Suppose x /∈ Q. By 1.1.27, (Q :
R
x) is an ideal of R. Denote I := (Q :

R
x). It remains to

show that I is weakly P -primary.

Consider the R-linear mapping

R
ϕ−→ M/Q

a 7−→ ax+Q .

It is clear that Ker ϕ = I. Thus R/I ∼= Im ϕ ⊆ M/Q, implying Assf(R/I) ⊆ Assf(M/Q) = {P}.

But Assf(R/I) 6= ∅, because R 6= I; otherwise R = I and, by Fact 1.1.27, x ∈ Q, which is false.

Thus Assf(R/I) = {P}, which means I is weakly P -primary, i.e., (Q :
R
x) is weakly P -primary.

Then, by 2.2.5, (Q :
R
x) is a P -primary ideal of R.

2.3 Weak Primary Decomposition

In this section, we establish the results on weak primary decomposition, which are parallel to

the results on the classic theory of primary decomposition.

Definition 2.3.1. Let N ( M be R-modules. We say N is a weakly decomposable submodule of

M if it can be written as an intersection of finitely many weak primary submodules of M . Such

an intersection

N = Q1 ∩ · · · ∩Qn with Qi weakly Pi-primary in M (i = 1, 2, . . . , n)

is called a weak primary decomposition of N in M .

Definition 2.3.2. Let N be a weakly decomposable submodule of the R-module M . In particular,

let

N = Q1 ∩ · · · ∩Qn with Qi weakly Pi-primary in M (i = 1, 2, . . . , n).

We say this weak primary decomposition is minimal if

(i) P1, . . . , Pn are all distinct; and
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(ii) for all j = 1, 2, . . . , n, Qj +
⋂
i 6=j

Qi.

Definition 2.3.3. Let N be a weakly decomposable submodule of the R-module M . A weak

primary submodule Q of M is said to be a weak primary component of N in M if it appears in

some minimal weak primary decomposition of N in M . In particular, if Q is weakly P -primary

and it appears in some minimal weak primary decomposition of N in M , then Q is said to be a

weak P -primary component of N in M .

Lemma 2.3.4. Let N ( M be R-modules such that N is weakly decomposable in M . Then N has

a minimal weak primary decomposition.

Proof. Since N is weakly decomposable in M , we may write N as

N = Q1 ∩ · · · ∩Qn with Qi weakly Pi-primary in M (i = 1, 2, . . . , n).

If this expression is not minimal, then at least one of the following is true:

(i) Pj = Pk for some j 6= k with 1 ≤ j ≤ n and 1 ≤ k ≤ n; or

(ii) Qj ⊇
⋂
i 6=j

Qi for some j with 1 ≤ j ≤ n.

Case(i) If Pj = Pk for some j 6= k with 1 ≤ j ≤ n and 1 ≤ k ≤ n, then reorder the Qi’s

so that P1 = P2; denote P1 = P2 = P . By 2.2.6, Q1 ∩ Q2 is weakly P -primary. By denoting

Q = Q1∩Q2, we obtain another weak primary decomposition of N with n−1 terms. If necessary,

we may repeat this process until each submodule in the decomposition is weakly primary to a

distinct prime ideal.

Case(ii) If Qj ⊇
⋂
i 6=j

Qi for some j with 1 ≤ j ≤ n, then reorder the Qi’s so that Qj = Qn.

Then Qn ⊇
n−1⋂
i=1

Qi. It is easy to verify that
n−1⋂
i=1

Qi =
n⋂
i=1

Qi. Thus we may discard Qn. If necessary,

we may repeat this process until no submodule can be removed without changing the weak primary

decomposition.

Therefore N has a minimal primary decomposition.

Remark 2.3.5. Throughout this paper, the reader may assume all weak primary decompositions

to be minimal, unless stated otherwise.



23

Lemma 2.3.6. Let a ∈ R and let N be a weakly decomposable submodule of the R-module M . In

particular, let

N = Q1 ∩ · · · ∩Qn with Qi weakly Pi-primary in M (i = 1, 2, . . . , n)

be a minimal weak primary decomposition of N in M . Then
∞⋃
t=1

(N :
M
at) =

⋂
a/∈Pi

Qi.

Proof. We have that

∞⋃
t=1

(N :
M
at) =

∞⋃
t=1

( n⋂
i=1

Qi :M a
t

)
1.1.28
=

∞⋃
t=1

[ n⋂
i=1

(Qi :M a
t)

]
.

We claim
∞⋃
t=1

[ n⋂
i=1

(Qi :M a
t)

]
=

n⋂
i=1

[ ∞⋃
t=1

(Qi :M a
t)

]
.

Let x ∈
∞⋃
t=1

[ n⋂
i=1

(Qi :
M
at)

]
. Then x ∈

n⋂
i=1

(Qi :
M
at0) for some t0 ≥ 1 =⇒ x ∈ (Qi :

M
at0) for all

1 ≤ i ≤ n =⇒ x ∈
∞⋃
t=1

(Qi :M a
t) for all 1 ≤ i ≤ n =⇒ x ∈

n⋂
i=1

[ ∞⋃
t=1

(Qi :M a
t)

]
. Thus

∞⋃
t=1

[ n⋂
i=1

(Qi :M a
t)

]
⊆

n⋂
i=1

[ ∞⋃
t=1

(Qi :M a
t)

]
.

Let x ∈
n⋂
i=1

[ ∞⋃
t=1

(Qi :
M
at)

]
. Then x ∈

∞⋃
t=1

(Qi :
M
at) for all 1 ≤ i ≤ n =⇒ x ∈ (Qi :

M
at(i)) for

all 1 ≤ i ≤ n and for some t(i) ≥ 1. Let t = max{t(1), . . . , t(n)}. Then x ∈ (Qi :
M
at) for all

1 ≤ i ≤ n =⇒ x ∈
n⋂
i=1

(Qi :M a
t) =⇒ x ∈

∞⋃
t=1

[ n⋂
i=1

(Qi :M a
t)

]
. Thus

n⋂
i=1

[ ∞⋃
t=1

(Qi :M a
t)

]
⊆
∞⋃
t=1

[ n⋂
i=1

(Qi :M a
t)

]
.

Therefore
∞⋃
t=1

[ n⋂
i=1

(Qi :M a
t)

]
=

n⋂
i=1

[ ∞⋃
t=1

(Qi :M a
t)

]
.

Now,
∞⋃
t=1

(N :
M
at) =

n⋂
i=1

[ ∞⋃
t=1

(Qi :M a
t)

]
.
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If a /∈ Pi, then at /∈ Pi. Thus, by 2.2.7(ii), (Qi :M a
t) = Qi for all t ≥ 1 and all i such that a /∈ Pi.

By 2.2.7(iii),
∞⋃
t=1

(Qi :M a
t) = M for all t ≥ 1 and all i such that a ∈ Pi. Let a /∈ Pi for 1 ≤ i ≤ r

and a ∈ Pi for r + 1 ≤ i ≤ n, then

n⋂
i=1

[ ∞⋃
t=1

(Qi :M a
t)

]
= Q1 ∩ · · · ∩Qr ∩M ∩ · · · ∩M =

r⋂
i=1

Qi =
⋂
a/∈Pi

Qi.

That is,
∞⋃
t=1

(N :
M
at) =

⋂
a/∈Pi

Qi, completing our proof.

Next, we present the uniqueness theorems in the context of weak primary decomposition. We

begin with an important lemma that is necessary to prove the first uniqueness theorem.

Lemma 2.3.7. Let N be a weakly decomposable submodule of the R-module M . In particular, let

N = Q1 ∩ · · · ∩Qn with Qi weakly Pi-primary in M (i = 1, 2, . . . , n)

be a minimal weak primary decomposition of N in M , and let P ∈ Spec(R). Then the following

statements are equivalent:

(i) P = Pi for some i with 1 ≤ i ≤ n;

(ii) for some x ∈M , (N :
R
x) is a P -primary ideal of R;

(iii) for some x ∈M ,
√

(N :
R
x) = P ;

(iv) P ∈ Assf(M/N).

Thus Assf(M/N) = {P1, . . . , Pn}.

Proof. (i) ⇒ (ii) Let P = Pi for some i with 1 ≤ i ≤ n; without loss of generality, say P = P1.

Because N 6= Q2 ∩ · · · ∩Qn, we have

0 6= Q2 ∩ · · · ∩Qn

N
=

Q2 ∩ · · · ∩Qn

Q1 ∩ (Q2 ∩ · · · ∩Qn)

1.1.31∼=
Q1 + (Q2 ∩ · · · ∩Qn)

Q1

⊆M/Q1,

implying

Assf

(
Q2 ∩ · · · ∩Qn

N

)
⊆ Assf(M/Q1) = {P}.
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This forces

Assf

(
Q2 ∩ · · · ∩Qn

N

)
= {P},

because Assf

(
Q2 ∩ · · · ∩Qn

N

)
6= ∅, since

Q2 ∩ · · · ∩Qn

N
6= 0.

Let x ∈ Q2 ∩ · · · ∩Qn such that x /∈ N , and consider the R-linear mapping

R
ϕ−→ Q2 ∩ · · · ∩Qn

N
a 7−→ ax+N .

It is clear that Ker ϕ = (N :
R
x). Thus, denoting I := (N :

R
x), we have

R/I ∼= Im ϕ ⊆ Q2 ∩ · · · ∩Qn

N
,

implying

Assf(R/I) ⊆ Assf

(
Q2 ∩ · · · ∩Qn

N

)
= {P}.

Since x /∈ N , we have R 6= I, by the contrapositive of 1.1.27(ii). Thus Assf(R/I) 6= ∅, implying

Assf(R/I) = {P}. Hence I is a weak P -primary ideal. Then, by 2.2.5, I is a P -primary ideal, i.e.,

(N :
R
x) is a P -primary ideal.

(ii) ⇒ (iii) Clear, from 1.2.10.

(iii) ⇒ (iv) By 1.1.27, (N :
R
x) = Ann(x + n). Thus

√
(N :

R
x) =

√
Ann(x+N), i.e.,

P =
√

Ann(x+N). Thus
√

Ann(x+N) is a prime ideal, and, by 1.1.16,
√

Ann(x+N) is

minimal over Ann(x+N), i.e., P is minimal over Ann(x+N). Therefore P ∈ Assf(M/N).

(iv) ⇒ (i) Consider the R-linear mapping

M
ψ−→ M/Q1 ⊕ · · · ⊕M/Qn

x 7−→ (x+Q1, . . . , x+Qn) .

Since Ker ψ = Q1 ∩ · · · ∩Qn = N , we have

M/N ∼= Im ψ ⊆M/Q1 ⊕ · · · ⊕M/Qn.

Thus

Assf(M/N) ⊆ Assf(M/Q1) ∪ · · · ∪ Assf(M/Qn) = {P1, . . . , Pn}.
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Therefore, if P ∈ Assf(M/N), then P = Pi for some i with 1 ≤ i ≤ n.

Theorem 2.3.8 (The First Uniqueness Theorem). Let N be a weakly decomposable submodule of

the R-module M . In particular, let

N = Q1 ∩ · · · ∩Qn with Qi weakly Pi-primary in M (i = 1, 2, . . . , n)

and

N = Q′1 ∩ · · · ∩Q′n′ with Q′i weakly P ′i -primary in M (i = 1, 2, . . . , n′)

be two minimal weak primary decompositions of N in M . Then n = n′ and {P1, P2, . . . , Pn} =

{P ′1, P ′2, . . . , P ′n} = Assf(M/N).

Proof. This follows directly from 2.3.7.

Theorem 2.3.9 (The Second Uniqueness Theorem). Let N be a weakly decomposable submodule

of the R-module M . In particular, let

N = Q1 ∩ · · · ∩Qn with Qi weakly Pi-primary in M (i = 1, . . . , n)

and

N = Q′1 ∩ · · · ∩Q′n with Q′i weakly Pi-primary in M (i = 1, . . . , n)

be two minimal weak primary decompositions of N in M . (Here we have made use of the First

Uniqueness Theorem 2.3.8.) If Pj is a minimal member of {P1, P2, . . . , Pn}, then Qj = Q′j.

Proof. Without loss of generality, let P1 be a minimal member of {P1, ..., Pn}. Then for all k with

2 ≤ k ≤ n, P1 + Pk. Thus there exists ak ∈ Pk \ P1 for all 2 ≤ k ≤ n. Let a = a2a3 · · · an. Clearly

a ∈ Pk for all 2 ≤ k ≤ n and a /∈ P1. Then by 2.3.6,
∞⋃
t=1

(N :
M
at) = Q1 and

∞⋃
t=1

(N :
M
at) = Q′1.

Therefore Q1 = Q′1, as desired.
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It is a well-known fact from the study of the classic theory of primary decomposition that if

a module M is finitely generated over a Noetherian ring R, then every proper submodule N of M

has a primary decomposition ([3] and [4].) (Here, we omit the term “weak” as it is not necessary

in the context of a Noetherian ring and a finitely generated module.) For the more general case

in which R is not necessarily Noetherian or M is not necessarily finitely generated, the existence

of a weak primary decomposition of N in M is not guaranteed, which is seen in the following

examples.

Example 2.3.10. Let R be the ring of all continuous functions defined on R, which is not

Noetherian. If we let M = R, then {0M} is not a weakly decomposable submodule of M .

Proof. First, we claim (0 :
R
f) =

√
(0 :

R
f). Let g ∈

√
(0 :

R
f). Then there exists n ∈ N such that

gn(x)f(x) = 0 for all x ∈ R. Thus gn(x) = 0 for all x ∈ R such that f(x) 6= 0, implying g(x) = 0

for all x ∈ R such that f(x) 6= 0. Hence g(x)f(x) = 0 for all x ∈ R, i.e., g ∈ (0 :
R
f). Therefore

(0 :
R
f) =

√
(0 :

R
f).

Now suppose {0M} is weakly decomposable, and let P ∈ Assf(M) (the existence of P is

guaranteed because M 6= 0.) Then by 2.3.7,
√

(0 :
R
f) = P for some f ∈M , and this implies that

f(x) 6= 0 for some x ∈ R. Hence there exists a ∈ R such that f(a) 6= 0 and there exists δ > 0 such

that f(x) 6= 0 for all x ∈ (a− δ, a+ δ).

We have just shown that (0 :
R
f) =

√
(0 :

R
f). Thus (0 :

R
f) = P so that (0 :

R
f) is a prime

ideal. But we can define two functions g1, g2 ∈ M such that g1 · g2 ∈ (0 :
R
f), with g1 /∈ (0 :

R
f)

and g2 /∈ (0 :
R
f). Let

g1(x) = max

{
δ

2
−
∣∣∣∣x− (2a− δ

2

)∣∣∣∣ , 0

}
and g2(x) = max

{
δ

2
−
∣∣∣∣x− (2a+ δ

2

)∣∣∣∣ , 0

}
.

It is easy to verify that g1(x)·g2(x)·f(x) = 0 for all x ∈ R, while g1(x)·f(x) 6= 0 for all x ∈ (a−δ, a)

and g2(x) · f(x) 6= 0 for all x ∈ (a, a+ δ), which contradicts (0 :
R
f) being prime. Therefore {0M}

is not weakly decomposable.

Example 2.3.11. Let R = Z. Let M = Z/(2) ⊕ Z/(3) ⊕ Z/(5) ⊕ · · · , which is not finitely

generated. Then {0M} is not a weakly decomposable submodule of M .

Proof. Suppose {0M} is weakly decomposable. Then Assf(M/{0M}) = Assf(M) is finite, by 2.3.7.

But
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M =
⊕
p prime

Z/(p),

which implies

Assf(M) = Assf

( ⊕
p prime

Z/(p)
)

2.1.10
=

⋃
p prime

Assf

(
Z/(p)

)
= {(p) | p is prime in Z}.

Since there are infinitely many prime numbers, we have |Assf(M)| =∞, a contradiction. Therefore

{0M} is not weakly decomposable.
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Chapter 3

COMPATIBILITY

3.1 Background and Terminology

If N is a decomposable submodule of the R-module M and Qi is a weak primary component of

N in M for each 1 ≤ i ≤ n, then up to this point we could not assume that N = Q1 ∩ · · · ∩ Qn.

In fact, Qi and Qj being weak primary components of N in M simply means that they appear

in some weak primary decomposition of N in M , but not necessarily in the same weak primary

decomposition of N in M , which is known as the Compatibility property of primary decomposition.

If we assume that N ( M are finitely generated modules over a Noetherian ring R, it is

guaranteed that there exists a primary decomposition of N in M . It is in this context that Y. Yao,

in [5], proved the Compatibility property, which formally says that if Ass(M/N) = {P1, . . . , Pn}

and Qi is a Pi-primary component of N in M for each 1 ≤ i ≤ n, then N = Q1 ∩ · · · ∩Qn, which

is a minimal primary decomposition.

The purpose of this chapter is to generalize the Compatibility property in the context of

weak primary decomposition, by first assuming the existence of a weak primary decomposition of

N in M where N ( M are R-modules that are not necessarily finitely generated and R is not

necessarily Noetherian.

Notation 3.1.1. Let N be a weakly decomposable submodule of the R-module M . We denote the

set of all weakly P -primary components of N in M by ΛP .

Definition 3.1.2. Let N be a weakly decomposable submodule of the R-module M . In particular,

let N = Q1∩ · · · ∩Qn and N = Q′1∩ · · · ∩Q′n be any two weak primary decompositions of N in M

with Qi, Q
′
i ∈ ΛPi . Then Assf(M/N) = {P1, . . . , Pr, Pr+1, . . . , Pn}. If Q1∩· · ·∩Qr = Q′1∩· · ·∩Q′r,

then we say the weak primary decompositions of N in M are independent over {P1, . . . , Pr}.
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3.2 The Compatibility Property of Weak Primary Decomposition

Lemma 3.2.1. Let N be a weakly decomposable submodule of the R-module M and let a ∈ R.

Then the weak primary decompositions of N in M are independent over {P ∈ Assf(M/N) | a /∈ P}.

Proof. Let N = Q1∩· · ·∩Qn and N = Q′1∩· · ·∩Q′n be two arbitrary weak primary decompositions

of N in M with Qi, Q
′
i ∈ ΛPi for all 1 ≤ i ≤ n. Then, by 2.3.6,
∞⋃
t=1

(N :
M
at) =

⋂
a/∈Pi

Qi and
∞⋃
t=1

(N :
M
at) =

⋂
a/∈Pi

Q′i.

Thus
⋂
a/∈Pi

Qi =
⋂
a/∈Pi

Q′i. Therefore the primary decompositions of N in M are independent over

{P ∈ Assf(M/N) | a /∈ P}.

Theorem 3.2.2 (Compatibility Property of Weak Primary Decomposition). Let N be a weakly

decomposable submodule of the R-module M . If Assf(M/N) = {P1, . . . , Pn} and Qi ∈ ΛPi, then

N = Q1 ∩ · · · ∩Qn, which is a minimal weak primary decomposition.

Proof. We induce on |Assf(M/N)|. If |Assf(M/N)| = 1, the claim is trivially true.

Now, let |Assf(M/N)| = n so that Assf(M/N) = {P1, . . . , Pn}, and assume the claim is true

if |Assf(M/N)| = n − 1. By reordering the Pi’s, we may assume Pn is a maximal prime ideal

in Assf(M/N). We are given that Qi ∈ ΛPi for all 1 ≤ i ≤ n. Thus for each i, there exists

a weak primary decomposition of N in M with Qi as a component. Let these weak primary

decompositions be as follows:

N = Q(1,1) ∩Q(1,2) ∩ · · · ∩Q(1,n)

N = Q(2,1) ∩Q(2,2) ∩ · · · ∩Q(2,n)

...

N = Q(n,1) ∩Q(n,2) ∩ · · · ∩Q(n,n),

where Q(i,i) = Qi and Q(i,j) ∈ ΛPj for all 1 ≤ i ≤ n and 1 ≤ j ≤ n such that i 6= j. Since

Pn is a maximal ideal in Assf(M/N), there exists a ∈ Pn \
n−1⋃
i=1

Pi. By 3.2.1, the weak primary
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decompositions of N in M are independent over {P1, . . . , Pn−1}. Thus

L := Q(1,1) ∩ · · · ∩Q(1,n−1)

= Q(2,1) ∩ · · · ∩Q(2,n−1)

...

= Q(n−1,1) ∩ · · · ∩Q(n−1,n−1).

Now, L is a decomposable submodule of M and |Assf(M/L)| = n − 1. Applying the induction

hypothesis, we have

L = Q(1,1) ∩Q(2,2) ∩ · · · ∩Q(n−1,n−1)

= Q1 ∩Q2 ∩ · · · ∩Qn−1.

Clearly, N = L ∩Qn. Therefore N = Q1 ∩Q2 ∩ · · · ∩Qn−1 ∩Qn, completing our proof.
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