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MINIMUM DEGREE CONDITIONS FOR TILINGS IN GRAPHS AND HYPERGRAPHS

by

ANDREW LIGHTCAP

Under the Direction of Dr. Yi Zhao

ABSTRACT

We consider tiling problems for graphs and hypergraphs. For two graphs G and F , an F -tiling

of F is a subgraph of G consisting of only vertex disjoint copies of F . By using the absorbing

method we give a short proof that in a balanced tripartite graph G, if every vertex is adjacent to

(2/3 + γ) of the vertices in each of the other vertex partitions, the G has a K3 tiling. Previously

Magyar and Martin [14] proved the same result (without γ) by using the Regularity Lemma.

In a 3-uniform hypergraph H, let δ2(H) denote the minimum number of edges that contain {u, v}

for all pairs {u, v} of vertices. We show that if δ2(H) ≥
(

1− 2
k(k−2)

)
n there exists a K3

k -tiling of

H that misses at most k2 vertices of H. On the other hand, we show that there exist hypergraphs

H such that δ2(H) =
(
1− 1

k

)
n − 2 and H does not have a perfect K3

k -tiling. These extend the

results of Pikhurko [17] on K3
4 -tilings.

INDEX WORDS: Graph tiling, Graph packing, Absorbing method, Hypergraph Codegree
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Chapter 1

INTRODUCTION

For two graphs G and F , an F -tiling (or F -packing) of G is a subgraph of G consisting of

vertex disjoint copies of F . When F is a single (hyper)edge we call an F -tiling a matching. If the

F -tiling covers all of the vertices of G we say that the tiling is perfect or refer to the tiling as an

F -factor. For a perfect tiling to exist the order of F must divide the order of G.

The purpose of this paper is to determine bounds on the minimum degree necessary to

ensure a perfect or near perfect F -tiling. An early result by Dirac [6] proves that any graph on

n vertices with minimum degree at least n/2 is Hamiltonian. This result allows us to obtain a

perfect matching in G by deleting every other edge from the Hamiltonian cycle. For F = Kh,

the complete graph on h vertices, Hajnal and Szemerédi [8] provide the following result: If G is

a graph with hk vertices and minimum degree at least (h− 1)k, then G contains k vertex disjoint

copies of Kh. Later, using Szemerédi’s Regularity Lemma [22], Alon and Yuster [2, 3] were able to

provide minimum degree conditions that guarantee an F -factor for arbitrary F . Kühn and Osthus

[12] were able to find the best possible minimum degree conditions for finding an F -factor.

Tiling in multipartite graphs has a shorter history. A graph G is called r-partite if the vertex

set V (G) can be partitioned in r sets V1, . . . , Vr such any that two vertices u, v ∈ Vi are not

adjacent. The Marriage Theorem by König and Hall (see e.g. [4]) implies that a bipartite graph

(r = 2) G with partition sets of size n contains a 1-factor if δ(G) ≥ n/2. In an r-partite graph

G with r ≥ 2, let δ̄(G) be the minimum degree from a vertex in one partition set to each other

partition set (so δ̄(G) = δ(G) when r = 2). An r-partite graph is balanced if all partition sets

have the same order.

Fischer [7] conjectured the following r-partite version of the Hajnal-Szemerédi Theorem and
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Figure 1.1. Representation of Γ3 with dotted lines corresponding to non-edges

proved it asymptotically for r = 3, 4: if G is an r-partite graph with n vertices in each partition

set and δ̄(G) ≥ r−1
r
n, then G contains a Kr-factor. Magyar and Martin [14] used the following

theorem to show that Fischer’s conjecture is slightly wrong for r = 3 (off by only 1): For G

a balanced tripartite graph on 3N vertices with δ̄(G) ≥ (2/3)N + 1 then G contains a perfect

K3-tiling. As written, this is a weaker form of the actual theorem, as they prove that G can be

perfectly tiled with triangles when δ̄(G) ≥ (2/3)N as long as it is not the graph Γ3(N/3). The

case when G is Γ3(N/3) is what disproves Fischer’s conjecture and necessitates the extra edge to

complete the tiling. Notice in Figure 1 that there can be no K3-tiling of Γ3. To form Γ3(N/3),

replace each vertex with a cluster of N/3 vertices and each edge with the complete bipartite graph

KN/3,N/3. Since Γ3 cannot be perfectly tiled by triangles, neither can the blown up version Γ3(N/3)

unless you add a single edge. Martin and Szemerédi [15] showed that Fischer’s conjecture is true

for r = 4. Note that in general, a tiling result for multipartite graphs does not follow from a

corresponding result for arbitrary graphs. On the other hand, given a graph G of order nr, we

can easily obtain (by taking a random partition) an r-partite balanced spanning subgraph G′ such

that δ̄(G′) ≥ δ(G)/r − o(n). Therefore a tiling result for multipartite graphs immediately gives a

slightly weaker tiling result for arbitrary graphs.

The next chapter will focus on a tripartite graph and will provide a lower bound on δ̄(G),

for balanced G, in order to obtain a perfect K3-tiling, often referring to K3 as a triangle. Here

we use the absorbing lemma, though previously Magyar and Martin [14], by using Szemerédi’s

Regularity Lemma, were able to avoid γ. The advantage in using the absorbing method is that

we will achieve a much smaller order graph than is necessary with the Regularity Lemma.
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Theorem 1.1. For any γ > 0, there exists n0 such that for all n > n0 the following holds: Let

G be a balanced tripartite graph on n = 3N vertices with δ̄(G) ≥ (2/3 + γ)N , then G contains a

K3-factor.

The last chapter focuses on tiling problems in hypergraphs. We say that a hypergraph H is

k-uniform, also called a k-graph, if every edge in E(H) contains exactly k vertices. We denote the

complete k-graph on n vertices by Kk
n. For a set T of size l < k in H, we define deg(T ) to be the

number of edges in H that contain T and δl(H) be the minimum l-degree of H. For l = k− 1, we

say that δk−1(H) is the minimum vertex codegree of H. All hypergraphs in this chapter will be

3-graphs.

Definition 1.2. Let tkl (n, F ), for all integers k > l ≥ 1 and n ∈ kZ, denote the minimum t such

that every k-uniform hypergraph H on n vertices satisfying δl(H) ≥ t contains a perfect F -tiling.

In their survey on the subject, Rödl and Ruciński [18] point out this result from Kühn and

Osthus [10]:

t32(n,C
(3,1)
4 ) ∼ n/4,

where the graph C
(3,1)
4 is the (3, 1)-cycle graph on 4 vertices.

When k = 2 this is exactly the graph case and has been discussed above. For k ≥ 3, l = k− 1

Kühn and Osthus [11], as well as Rödl et. al. [19–21], investigated the number tkk−1(n, F ). Notably,

Rödl, Ruciński and Szemerédi [20] determined tkk−1(n, F ) for arbitrary k ≥ 3 and sufficiently large

n, showing tkk−1(n, F ) = n/2− k + ck,n where ck,n ∈ {3/2, 3, 5/2, 3} based on the parities of k and

n. Continuing this work, Pikhurko [17] provided the bounds

3

4
n− 2 ≤ tkl (n,K3

4) ≤ 2 +
√

10

6
n+O(

√
n logN),

where the upper bound was also proved, independently by Keevash and Zhao (unpublished).

For the upper bound on t for K3
k -tilings we extend an argument from Fischer [7] by introducing

a weight function to handle the added complexity of the hypergraph.

Theorem 1.3. Let H be a 3-graph of order n with δ2(H) ≥
(

1− 2
k(k−2)

)
n and k|n. Then there

exists a tiling of vertex disjoint copies of K3
k in H covering all but at most k2 vertices.
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Lo and Markström [13] have a proof that extends this proof to all Kt
k-tilings, obtaining the

same bound.

To show the lower bound on t we we extend a construction from Pikhurko [17] to show that

H may not contain a K3
k -factor.

Proposition 1.4. Let H be 3-graph on n = 2kq + r for integers k, q ≥ 0 and r ∈ {0, k}, we have

δ2(H) ≥ 2(k − 1)q + r − 2 ≥
(

1− 1

k

)
n− 2.

Lo and Markström [13] also extended this construction to all Kt
k and achieved an improved

bound.
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Chapter 2

PROOF OF THEOREM 1.1

Let γ > 0 and n0(γ) be the minimum positive integer satisfying the following two conditions:

(i) 2γ2n2
0 + 5

3
γn2

0 + 1 ≥ 3γn0 + n0

(ii) 6γ2n2
0 + 2 ≥ 7γn0 + 2

3
n0

Also let G = (V1, V2, V3, E) be a balanced tripartite graph of order n = 3N with δ̄ ≥

(2/3 + γ)N . We prove Theorem 1.1 in three steps. First we show that for an arbitrary

T = {v1, v2, v3}, vi ∈ Vi, there are many absorbing 6-sets. Next we show that G will have a

near perfect tiling that misses only six vertices. Last, we will show that the final six vertices can

be absorbed into the tiling.

2.1 Absorbing Sets

We use Proposition 2.1 to establish an absorbing structure in G and prove that the edge

density provides enough absorbing 6-sets for an arbitrary T to be added to a partial tiling. The

proof follows from Lemma 10 (Absorbing Lemma) by Hán et. al. [9].

Proposition 2.1. For G, as in the theorem, there exists a tiling M in G of size |M | ≤ 1
2
γ2N

such that for every set W ⊂ V \ V (M) of size at most 1
2
γ6N there exists a tiling covering exactly

the vertices in V (M) ∪W .

Proof. In G we say that a set A = A1 ∪ A2 ∪ A3, Ai ∈
(
Vi

2

)
, is an absorbing 6-set for T if A spans

a tiling of size 2 and A∪T spans a tiling of size 3. Lemma 2.2 determines how many such A exist

for arbitrary T .
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Figure 2.1. An Absorbing Structure

Lemma 2.2. For every T in G, there are at least 2
9
γ2N6 absorbing 6-sets for T .

Proof. Fix a set T . We wish to build the structure in Figure 2.1, so we begin by finding a triangle

containing v1 but not v2 or v3. By the degree condition, v1 has at least (2/3 + γ)N − 1 vertices in

V2 that are not v2. Let u2 6= v2 be a neighbor of v1 and consider NV3(v1) ∩ NV3(u2). The shared

neighborhood of v1 and u2 that avoids v3 must be at least

(2/3 + γ)N + (2/3 + γ)N −N − 1 = (1/3 + 2γ)N − 1

vertices u3 6= v3. Thus, we have in total

((2/3 + γ)N − 1)((1/3 + 2γ)N − 1) ≥ 2

9
N2 (2.1)

triangles that contain v1 and not v2 or v3, as N →∞.

Fix one such triangle {v1, u2, u3} and let U1 = {u2, u3}. Now suppose we are able to choose

a set U2 such that it is disjoint to U1 ∪ T and both U2 ∪ {u2} and U2 ∪ {v2} are triangles in G.

Suppose further that we are able to choose a set U3 such that it is disjoint to U1 ∪ U2 ∪ T and

both U3 ∪ {u3} and U3 ∪ {v3} are triangles in G. Then we call such a choice for U2 and U3 good,

motivated by U1 ∪U2 ∪U3 being an absorbing 6-set for T , which describes the structure shown in

Figure 2.1.

Focus on the number of good sets for U2. The shared neighborhood of u2 and v2 in V1 is

at least (1/3 + 2γ)N − 1 vertices avoiding v1. Fix a vertex x1 6= v1 and count how many of its

neighbors in V3 are also adjacent to both v2 and u2, while avoiding v3. The vertices x1, v2 and u2
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will have at least (1/3 + 2γ)N + (2/3 + γ)N − N − 2 = 3γN − 2 common neighbors in V3 that

avoid v3 and u3. We have in all at least

((1/3 + 2γ)N − 1)(3γN − 2) ≥ γN2 (2.2)

good choices for U2. The same analysis hold for the number of choices for U3.

Using equations (2.1) and (2.2), we see that the total number of absorbing 6-sets for T is

2

9
N2 × (γN2)2 =

2

9
γ2N6.

To continue the proof of Proposition 2.1, we let L(T ) denote the family of all the 6-sets

that can absorb the T fixed in Lemma 2.2. We know that |L(T )| ≥ 2
9
γ2N6, again from Lemma

2.2. Choose a family F of 6-sets by selecting each of the
(
N
2

)3
possible 6-sets independently with

probability

p =
γ3

N5
.

Then we can use the following result by Chernoff (see [1]) to determine how big F is likely to be.

Proposition 2.3. If Xi, 1 ≤ i ≤ n, be mutually independent random variables with

Pr[Xi = +1] = Pr[Xi = −1] =
1

2

and set

Sn = X1 + · · ·+Xn.

Let a > 0. Then

Pr[Sn > a] < e−a
2/2n.

Therefore, with probability 1− o(1), as N →∞ the family F fulfills the following properties:

|F| ≤ 2E(|F|) ≤ 2
γ3

N5

(
N

2

)3

≤ 1

4
γ3N (2.3)
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and

|L(T ) ∩ F| ≥ 1

2
E(|L(T ) ∩ F|) ≥ 1

2

(
γ3

N5

)
× 2

9
γ2N6 ≥ 1

9
γ5N (2.4)

Moreover we can bound the expected number of intersecting 6-sets by choosing a 6-set, a

vertex in the 6-set, a second vertex in same partition and a pair of vertices from each of the other

two partitions: (
N

2

)3

× 6(N − 1)

(
N

2

)2

.

Then, the probability of choosing both sets is

p2
(
N

2

)3

× 6(N − 1)

(
N

2

)2

≤ 1

4
γ6N (2.5)

Now, in order to upper bound the number of intersecting sets we use Markov’s bound (also

in [1]).

Proposition 2.4. Suppose that Y is an arbitrary nonnegative random variable, α > 0. Then

Pr[Y > αE[Y ]] < 1/α.

Therefore, with probability at least 1/2

F contains at most
1

2
γ6N intersecting pairs.

Therefore, with positive probability the family F has the properties stated in (2.3), (2.4) and

(2.5). Since some of the 6-sets will not absorb any T and some will intersect each other, we delete

all of these undesired 6-sets in the family F to get a subfamily F ′ consisting of pairwise disjoint

absorbing 6-sets which satisfies

|L(T ) ∩ F ′| ≥ 1

9
γ5N − 1

2
γ6N ≥ 1

2
γ6N.

Finally, the thinned out family F ′ consists of pairwise disjoint absorbing 6-sets and G[V (F ′)]

contains a perfect tiling M of size at most 1
2
γ3N . Also, for any subset W ⊂ V \V (M) of size 1

2
γ6N
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we can partition W into sets of size 3 and successively absorb them using a different absorbing

6-set each time. This gives us a tiling that covers exactly the vertices in V (F ′) ∪W .

2.2 Complete Tiling

To complete the proof of the theorem, we find in G an absorbing family M guaranteed by

Proposition 2.1. We let G′ = G− V (M) and observe that

δ̄(G′) ≥ (2/3 + γ)N − 3

2
γ3N ≥ 2

3
N ≥ 2

3
N ′

where N ′ is the number of vertices in each partition set of G′. Notice further that G′ is still

balanced and we can apply Proposition 3.2 in Fischer [7] to find an incomplete tiling in G′.

Proposition 2.5. If G is a tripartite graph with vertex partitions V1, V2 and V3 of size N , such

that each vertex in any partition has at least 2
3
N neighbors in each of the other partitions, then G

contains N − 2 disjoint triangles.

This proposition gives us an almost perfect tiling of G′, leaving only a set W containing 6

vertices uncovered. By Proposition 2.1 we can divide W into sets of 3 and use M to absorb each

triple and complete the perfect tiling on G.
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Chapter 3

PROOFS ON 3-GRAPHS

In this chapter we provide a minimum degree condition that guarantees an almost perfect

tiling of a 3-graph H that misses at most k2 vertices. Next we will provide a construction that

shows that if the minimum degree condition is too small, we cannot guarantee a perfect tiling of

H.

3.1 Proof of Theorem 1.3

This proof is adapted from the proof of Lemma 6.1 by Pikhurko [17] which adapts the proof

of Theorem 2.1 by Fischer [7].

Proof. Let H be a 3-graph on n vertices with δ2(H) ≥
(

1− 2
k(k−2)

)
n and k|n. Begin with a

partition P of the vertex set V (H) into sets of size k, V1, . . . , Vn−k. Let Gi be the largest complete

graph in Vi. If Vi is an independent set, we define |Gi| = 2. Denote by w : {2, . . . , k} → R the

function defined by w(2) = 0 and w(j + 1)−w(j) = 1− 1
kj

for 2 ≤ j ≤ k − 1. We say that w(P),

the weighting of P , is
∑

1≤j≤n/k w(|Gj|). Assume that P is chosen such that w(P) is maximal.

We will now show that for each weight class 2 ≤ i ≤ k − 1 there are at most k − 1 sets Vj in P

with |Gj| = i. Suppose, for a contradiction, that |G1| = · · · = |Gk| = i < k. Since |Gj| < k for

1 ≤ j ≤ k we can find at least one vj ∈ Vj \Gj. Now, for 1 ≤ j ≤ k and vertex v /∈ Vj, we say the

pair (v, j) is a connection if and only if {v} ∪ Gj spans a complete hypergraph. If there are any

connections (v, j) with v ∈ V1 ∪ · · · ∪ Vk then switching v with any vertex vj will result in a new

partition P ′. Note that since

1− 1

ki
≥ 1− 1

ki−1
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we have

w(i+ 1)− w(i) ≥ w(i)− w(i− 1)

which is

w(i+ 1) + w(i− 1) ≥ 2w(i)

and we immediately provide a contradiction to w(P) being maximal. Thus, we can assume there

are no connections with v ∈ V1 ∪ · · · ∪ Vk and 1 ≤ j ≤ k.

Using the condition on δ2(H), for 1 ≤ j ≤ k we can determine a lower bound on the number of

connections there are by double counting the number of adjacencies among the Gj’s. An arbitrary

pair of vertices in Gj is adjacent to at least δ2(H) vertices. If we let c be the number of connections

to Gj then (
i

2

)
δ2(H) ≤

(
i

2

)
c+

((
i

2

)
− 1

)
(n− c)

and

c ≥
(
i

2

)
δ2(H)−

((
i

2

)
− 1

)
n ≥ (k − i)n

k

where the last inequality is true since i < k.

Now there are at at least (k−i)n connections (v, j) with v /∈ V1∪· · ·∪Vk and 1 ≤ j ≤ k. Since

n > k we can choose V ′j such that there are more than k(k− i) connections (v′, j) for v′ ∈ V ′j and

1 ≤ j ≤ k. Consider the bipartite graph B with parts {G1, . . . , Gk} and V ′j whose edge set consists

of those pairs that make a connection. Since B has at least k(k − i) edges, the König-Egerváry

Theorem (see [4] Theorem 8.32) shows that B contains a matching of size at least k− i+ 1. Now

by moving v′j to Vj for 1 ≤ j ≤ k− i+ 1 and {v1, . . . , vk−i+1} to V ′j , see Figure 3.1, w(P) increases

by

(k − i+ 1)(w(i+ 1)− w(i))− (w(|G′j|)− w(max{2, |G′j| − k + 1 + i}))

≥ (k − i+ 1)

(
1− 1

ki

)
−
(
k + 1− i− k − i+ 1

k

)
=

(ki − 1)(k − i+ 1)

ki+1
> 0

a contradiction.
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𝑉1 𝑉2 𝑉𝑘−𝑖+1 𝑉𝑘

𝑉𝑗′

𝐺1 𝐺2 𝐺𝑘−𝑖+1 𝐺𝑘

Figure 3.1. Vertices making a connection from V ′j

3.2 Proof of Proposition 1.4

We now provide a construction that proves that the codegree of H must be larger than

(1− 1/k)n− 2 if we are to be guaranteed a perfect tiling.

Proof. For n = 2kq + r, if r = k let a0 = 2q + 1. Otherwise we let a0 be either 2q + 1 or 2q − 1,

with both choices giving the same bound. Partition V (H) = A0 ∪ A1 ∪ · · · ∪ Ak−1 into parts

of sizes a0 + a1 + · · · + ak−1 = n, where a1, . . . , ak−1 are nearly equal, that is |ai − aj| ≤ 1 for

1 ≤ i < j ≤ k − 1. Let H be the 3-graph on n vertices whose edge set consists of all triple

excluding any that satisfy one of the following (mutually exclusive) properties:

(i) have exactly three vertices in A0

(ii) have one vertex in A0 and two vertices in Ai for some 1 ≤ i ≤ k − 1

(iii) intersect each of A1, A2 and A3.

Figure 3.2 shows examples of edges that are excluded from H. To see why there can be no

K3
k -tiling, consider any K3

k -subgraph K of H. By Property (i), K cannot intersect A0 in more than

two vertices. Suppose that K intersects A0 in exactly one vertex and avoids at least one partition.

Then by the pigeon hole principle there is a partition Ai for 1 ≤ i ≤ k − 1 that contains at least
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𝐴0 𝐴1 𝐴2 𝐴3 𝐴𝑘−1

Figure 3.2. Examples of Edges Not Allowed

two vertices of K. Property (ii) forbids the edge spanning the vertex in A0 along with any pair in

Ai. So if K is to intersect A0 in exactly one vertex, K must also intersect every other partition in

exactly one vertex. By property (iii), the edge with a vertex in A1, A2 and A3 is forbidden, so K

cannot intersect A0 in one vertex in this manner either.

Therefore every K3
k -subgraph of H has an even number of vertices in A0. This makes a perfect

tiling impossible, since |A0| = 2q ± 1, which is odd.

A case by case analysis gives the desired bound.

Case 1 Two vertices in A0 are in an edge with every vertex in Ai for 1 ≤ i ≤ k − 1, so the

codegree is k−1
k
n;

Case 2 One vertex in A0 and one vertex in Ai for 1 ≤ i ≤ k − 1 are in an edge with every other

vertex in A0 and every vertex in Aj for j 6= i and 1 ≤ j ≤ k− 1, so the codegree is k−1
k
n− 1;

Case 3 Two vertices in Ai for 1 ≤ i ≤ k − 1 are in an edge with every other vertex in Ai and

every vertex in Aj for j 6= i and 1 ≤ j ≤ k − 1, so the codegree is k−1
k
n− 2;

Case 4 One vertex in Ai and one vertex in Aj for i, j ∈ [3] and i 6= j are in an edge with every

vertex in A0, every other vertex in Ai and Aj and every vertex in A` for 4 ≤ ` ≤ k − 1, so

the codegree is k−1
k
n− 2;
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Case 5 One vertex in Ai for i ∈ [3] and one vertex in Aj for 4 ≤ j ≤ k − 1 are in an edge with

every other vertex of H, so the codegree is n− 2;

Case 6 Two vertices in Ai for 4 ≤ i ≤ k− 1 are in an edge withe every other vertex of H, so the

codegree is n− 2.

We take the minimum of these codegrees, which is k−1
k
n− 2.
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