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ABSTRACT

While much research has been done regarding different Nonnegative Matrix

Factorization (NMF) algorithms, less time has been spent looking at initializa-

tion techniques. In this thesis, four different initializations are considered. After

a brief discussion of NMF, the four initializations are described and each one is

independently examined, followed by a comparison of the techniques. Next, each

initialization’s performance is investigated with respect to the changes in the size

of the data set. Finally, a method by which smaller data sets may be used to

determine how to treat larger data sets is examined.

INDEX WORDS: Nonnegative matrix factorization, Initialization, Spherical K-

means, Compression ratio, Percent error, Random Acol, Ran-
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1. Introduction

With every advance in technology comes huge growth in the availability of infor-

mation. Unfortunately, those same advancements do not always allow for storage

capacity of that information. As a result, much work has been done to devise

ways of compressing information to decrease the demand on storage capacity or

to improve performance when processing the data. Techniques such as Principal

Component Analysis, Singular Value Decomposition, and QR-Factorization have

been extensively studied. Unfortunately, these techniques may cause a loss of some

subtle, underlying information in the data. Most notably, much of the data gen-

erated today is inherently nonnegative due to physical reality. The compression

techniques above often generate compressed data containing negative values which

have no real-world significance. So what is lost?

To answer that, we look at a motivating example [5]. Today, there are countless

objects orbiting the earth. It is important to not only know where these objects

are but also what they are. Sometimes, optical technology is not sufficient to

identify small objects so we must rely on spectral analysis. A sensor sensitive to a

wide range of EM radiation is pointed toward the unknown object and samples of

reflected radiation are taken over time. In this manner, we may generate a matrix,

A, whose columns correspond to different times and whose rows correspond to

different spectral wavelengths. Thus the (i, j) entry in the matrix represents the

amount of spectral energy reflected at wavelength i and time j. Assuming we take

n time samples over m wavelengths, A will be an m× n array of data.

We know that the object is composed of different substances and each substance

will contribute to the reflected spectral energy at a given wavelength. If we knew

what the object was made of and what percentage of the total object was composed

of each substance, we could determine what the spectrum would be by linearly
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combining the contributions of the substances weighted by their percentages. Let

S = [sij] be a matrix whose columns represent the individual substances and whose

rows represent different wavelengths. Let X = [xij] be a matrix whose columns

represent time and whose rows represent the percentage present of each component

substance. So we can interpret sij as the jth substance’s reflectivity at wavelength

i and xij as the percentage of substance i present at time j. Then we can write

that A = SX +N where N is a noise vector.

However, we are usually presented with data matrix A and would like to de-

termine S and X. Clearly, matrices S and X will be nonnegative. Using the fac-

torization above may reduce our storage needs but may also produce an S and/or

X that contain negative values. We would like to use a method that will preserve

the inherent nonnegativity of the data. By preserving nonnegativity, we hope to

be able to factor the spectral data into its individual parts. Recent research has

produced such a method called Nonnegative Matrix Factorization (NMF).
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2. Nonnegative Matrix Factorization

2.1 Definitions

Let Rm×n be the set of all m×n matrices with real number entries. The matrix

X ∈ Rm×n is nonnegative if xij ≥ 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n where xij

represents the element in the ith row and jth column. The NMF problem attempts

to minimize the Frobenius norm of the error matrix. The Frobenius norm of a

matrix A = [aij], 1 ≤ i ≤ m, 1 ≤ j ≤ n is given by

‖A‖F ≡

√√√√ m∑
i=1

n∑
j=1

|aij|2. (1)

Also, when discussing vectors, their lengths are often given as a type of vector norm

called the 2-norm. The 2-norm of a vector x is given by

‖x‖2 ≡

√√√√ n∑
i=1

|xi|2. (2)

When discussing large data sets, clustering is often used to partition the data into

smaller sets such that the members of each set share some similarity. With vectors,

it is often desirable to cluster by location. The centroid of a set of vectors is just

the average of all the vectors in the set. Thus, a large set of vectors may be

clustered into smaller sets where each set has a centroid, and membership in a set

is determined by a vector’s distance from the centroid.

2.2 NMF Background

The NMF problem can be summarized as follows.

[NMF Problem] Let A be our m× n data matrix and let k be a positive integer

such that k < min{m,n}. Find a nonnegative m× k matrix S and a nonnegative
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k × n matrix X that will minimize the functional

1

2
‖A− SX‖2F . (3)

A flurry of research began on this topic when Lee and Seung published their

first algorithm for performing an NMF on real data [3]. Since then many variations

of their original algorithm have been studied. A summary of much of the work

done in this area is given by Berry et al. [1]. Lee and Seung have shown that

their algorithm will produce monotonically non-increasing values in (3). Addition-

ally, repeated and varied experiments have shown that the algorithm is consistently

effective in practice. We will therefore use it as our NMF algorithm in the experi-

ments to follow. The algorithm is given as follows:

Algorithm 1: Nonnegative Matrix Factorization
Given: A ∈ Rm×n with A ≥ 0 and k > 0 such that k < min {m,n}

1. Initialize S ∈ Rm×k and X ∈ Rk×n with random nonnegative values.
2. Scale columns of S to sum to one.
3. Until a set number of iterations is reached do

3a. Xdj ← Xdj
(STA)dj

(STSX)dj+ε
, (1 ≤ d ≤ k, 1 ≤ j ≤ n)

3b. Sid ← Sid
(AXT )id

(SXXT )id+ε
, (1 ≤ i ≤ m, 1 ≤ d ≤ k)

3c. Scale columns of S to sum to one.
4. End loop.
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3. Initialization Techniques

3.1 Introduction

While there has been a very large amount of work done to refine and improve

NMF algorithms, much less work has been done on how to initialize the factor

matrices. Originally, the factor matrices were initialized with random nonnegative

entries. However, researchers have since begun to study different ways of initializing

the factors. Just as NMF can preserve some of the information inherent in the data,

perhaps there is a way to extract information from the data matrix in order to more

effectively initialize the factors. We now look at three basic techniques that have

been studied so far.

3.2 Technique Descriptions

The first two techniques, random Acol initialization and random C initialization,

were introduced by Langville et al. [2]. In random Acol initialization, each column

of S is initialized by averaging p randomly chosen columns of A. This will help

maintain any sparsity in A which would be lost with pure random initialization

with dense vectors. This method is also very computationally inexpensive and

easy to implement. Random C initialization is similar to random Acol initialization

with one significant difference. In random C initialization we first select q of the

longest (in the 2-norm sense) columns of A and then average p randomly chosen

columns from the q longest in order to initialize each column of S. Thus, we end

up using the densest vectors for initialization which are more likely to be near the

centroid centers. This method is also fairly inexpensive and easy to implement and

is summarized in Algorithm 2.
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Algorithm 2: Random C Initialization
Given: A ∈ Rm×n with A ≥ 0

1. Find q of the longest (in the 2-norm sense) columns of A.
2. For each column of S do

2a. Average p randomly chosen columns out of the q longest of A.
3. End loop.

The third technique, spherical k-means clustering, was presented by Wild [7].

We summarize the technique here using notation consistent with [7]. The goal of

this technique is to initialize the columns of S with the centroids of A. We wish to

find k centroids {cj} that represent k disjoint subsets of the columns of A. Each

subset contains all the vectors in A that are closest to their respective centroid.

The centroid itself is calculated as the average of all the vectors in the subset.

To find the centroids, we need a way to determine the distance between two

vectors. In order to assign equal weight to each vector, the column vectors of A are

normalized to be of unit length in the Euclidean norm. In this way, the direction of

each vector becomes the important characteristic. This normalization along with

the nonnegativity of the data allow us to use the Cosine Similarity measure to

compare vectors

cos(θx,y) = ‖x‖2 ‖y‖2 cos(θx,y) = xTy, (4)

where the first equality comes from the normalization of x and y, and the second

equality is the standard definition of the inner product. Using the Cosine Similarity

measure, values near one indicate vectors that are closer together. As long as we

also normalize the centroids cj, we may use this measure to find the centroids and

their associated subsets. The algorithm is summarized as follows:
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Algorithm 3: Spherical k-means Clustering
Given: X ∈ Rm×n with X ≥ 0

1. Initialize k centroids cj, 1 ≤ j ≤ k.
2. While the clusters change from t to t+ 1 do

2a. Compute d
(t)
ij = xTi c

(t)
j (1 ≤ i ≤ n, 1 ≤ j ≤ k).

2b. Define the new partition of clusters

π
(t+1)
j =

{
xi|j = argmaxl

(
d

(t)
il

)}
.

2c. Recompute each centroid

c
(t+1)
j =

∑
xi

xi∈π
(t+1)
j∥∥∥∥∥∥

∑
xi

xi∈π
(t+1)
j

∥∥∥∥∥∥
.

3. End loop.
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4. Numerical Results

4.1 Data Sets

Ultimately, we would like to examine how the size of the data set affects the

performance of each of the four initialization techniques: random, random Acol,

random C, and spherical k-means. To begin we create 5 data matrices. Each

matrix will have 70 rows and 100, 200, 400, 800, 1600 columns, respectively. As we

are not considering any specific applications, each matrix was generated by filling

each entry with a random number selected from a uniform distribution between 0

and 30. Thus, we can expect each matrix to be densely populated.

4.2 Comparison of the Four Techniques

We will first look at the performance of each technique independently by con-

sidering the effect of the parameter k. For this, we used the 70 × 100 matrix as

our data set. For each run of the NMF algorithm we let the Frobenius norm of the

error matrix, ‖A− SX‖F , be our performance criterion. We began by considering

the effect of k on the performance by running the NMF algorithm for k = 5, 25, 50.

The results are shown in Figure 1. All of the initialization techniques show similar

results in both convergence time and overall error performance. Additionally, in

all four cases, a decrease in k resulted in worse overall performance. This indicates

that the more we try to reduce the rank of the factor matrices, the greater the

data loss we will experience. Reduced rank factor matrices may not only reduce

storage requirements, but may also increase the speed of post-processing of the

data. For any application it will be necessary to consider what is an acceptable

trade off between minimizing error and storage, or between minimizing error and

data processing speed.
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Figure 1: Frobenius error for all four initialization techniques for k=5, 25, 50

Random initialization as well as spherical k-means require only the selection of

k. Random Acol and random C, however, introduce other parameters. For random

Acol, we must choose how many columns of the data matrix to average for each

initialization of a column of S. Using the same 70× 100 data matrix as before, the

NMF algorithm was run using random Acol for different values of p (the number

of columns averaged) while holding k constant. For this we chose k = 25. Results

indicated very similar performance for all values of p during the first 100 iterations

when the approximation error experiences its greatest improvement. After 400-500

iterations, when the error changes very little, there were only small differences in

performance between the three cases. Overall, it seems that the selection of p has

a minor impact on algorithm performance. The results are shown in Figure 2.
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Figure 2: Random Acol initialization for k = 25 and p = 10, 25, and 50

Random C initialization also requires the choice of more than just k. In random

C, we average columns of A to initialize S, but we only select from q of the longest

(in the 2-norm sense) columns of A. Thus, we must select both p and q. Considering

the previous results from random Acol that indicated the limited impact of p, we

let p be a constant and we varied our choice of q. Again using the same 70 × 100

data matrix as before, we ran the NMF algorithm with k = 25, p = 10, and q = 15,

25, and 50. As with p, there was very little difference in performance between the

three values of q. Very similar performance was seen at both the early iterations as

well as the later iterations. Results can be seen in Figure 3.

It is also interesting to compare the performance of the various initialization

techniques with each other. Figure 4 shows a comparison for k = 25. While all

four techniques show similar performance, we can note small differences. Spherical

k-means had the best performance initially while random Acol showed the best

reduction in error by the final iteration. Overall, it seems all four techniques, at

least with this data set, would be effective choices for an initialization technique. For

specific applications, however, different techniques could show greater differences

in performance.
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Figure 3: Random C initialization for k = 25, p = 10, and q = 15, 25, and 50

Figure 4: All four initializations with k = 25

4.3 Effect of Data Set Size

If we look at all four figures above, we see that the Frobenius norm of the error

matrix ranges between 300 and 700. All results to this point were obtained by

beginning with a 70× 100 data matrix. By increasing the size of the data matrix,

we increase the number of elements in the data matrix as well as the error matrix.

As a natural consequence of having more elements, we expect the Frobenius norm
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of the error matrix to increase. In order to examine the effect of data set size, we

introduce a new measure which we will call percent error. We define percent error

as
‖A− SX‖F
‖A‖F

, (5)

which is simply the ratio of the Frobenius norm of the error matrix to the Frobenius

norm of the data matrix. Essentially, we look at ‖·‖F as a measure of the amount

of information in each respective matrix. Thus, it makes more sense to consider

the amount of data lost relative to the amount of data present rather than strictly

the magnitude of the error.

We ran 5 simulations for each initialization technique in which k was held con-

stant at 25. For random Acol, 10 columns were averaged and for random C, 10

columns were averaged from the 15 longest. A simulation was conducted using

data matrices with 70 rows and 100, 200, 400, 800, 1600 columns, respectively. The

results, shown in Figure 5, were as expected. As the size of the data set increased,

the percent error also increased. This is consistent with the data from Figure 1,

because increasing data set size while holding k constant is very similar to holding

the data set size constant while decreasing k. In both cases we are varying the

amount of rank reduction we are attempting to accomplish. It is interesting to

note that in all 4 cases, the difference in percent error between successive data set

sizes decreased as data set size increased. The percent error change from 800 to

1600 columns was less than 1%, while it was approximately 4% from 100 to 200

columns. This may indicate an upper limit on the percent error vs. data set size.

This leads to the question of whether or not, given a set of requirements for

percent error, we can effectively choose k based on data set size so as to met those

requirements. To answer this we introduce another metric which we will call the
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Figure 5: Percent error for each of the four initialization techniques vs. data set
size.

compression ratio and define it to be

size(S) + size(X)

size(A)
, (6)

where size(Z) is the number of elements in matrix Z. If we assume that each element

in a matrix will require 1 unit of storage space (or more generally that the size of the

matrix is directly proportional to the storage space required), then (6) essentially

computes the savings in storage space gained by the NMF process.

Using random Acol initialization and a 70× 200 data matrix, we ran the NMF

algorithm for k = 29, 32, and 35. The results, Figure 6, again showed that error

increased as k decreased. More importantly, comparing Figure 6 with random Acol

in Figure 5, the percent error for k = 25 and a 70 × 100 data matrix is very close
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to the percent error for k = 32 and a 70 × 200 data matrix. Both of these cases

correspond to approximately the same compression ratio. This indicates that as

data set size grows, if we choose k so as to maintain the same compression ratio

as a smaller data set, we can maintain the same percent error seen in the smaller

data set. Thus, if we have a very large data set which will require considerable

processing time, we can experiment with different values of k for a much smaller

data set size and then use the compression ratio to translate our k to the larger

data set.

Figure 6: Percent error vs. k for a 70× 200 data matrix

4.4 Software Implementation

All simulations were run using SAGE [6] which is an open source alternative to

programs such as Matlab and Mathematica; it is based on the Python programming

language. We include in this section the source code for the implementation of the

simulations in SAGE. As the author is not a seasoned programmer, these imple-

mentations may not be the most efficient methods of accomplishing the required

tasks and do not necessarily adhere to any programming guidelines.
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Procedure Definitions

eps=0.000000001

def normal(MatToNorm, cols):
Mat=zeros((len(MatToNorm),len(MatToNorm.T)))
for t in range(cols):

Mat[:,t]=MatToNorm[:,t]/sum(MatToNorm.T[t])
return (Mat)

def nmf (y, w, h, iter, ncols):
norms=zeros((1,iter+1))
norms[0,0]=fnorm(y-dot(w,h))
for x in range(iter):

h=h*(dot(w.T,y)/(dot(dot(w.T,w),h)+eps))
w=w*(dot(y,h.T)/(dot(dot(w,h),h.T)+eps))
w=normal(w, ncols)
norms[0,x+1]=fnorm(y-dot(w,h))

return(w, h, norms)

def fnorm(a):
return ((sum(a*a)).5)

def AvgRandomCols(wcols, NumToAvg, Y):
winit=zeros((len(Y),wcols))
for s in range(wcols):

index=zeros((1,NumToAvg))-1
for p in range(NumToAvg):

q=int((random.rand()*len(Y.T)))
while q in index:

q=int((random.rand()*len(Y.T)))
index[0,p]=q

for r in range(NumToAvg):
winit[:,s]=winit[:,s]+Y[:,index[0,r]]

winit[:,s]=winit[:,s]/NumToAvg
return (winit)
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def AvgLongCols(NumLong, NumColsToAvg, Y, Compress):
ColNorms=zeros((1,len(Y.T)))
for j in range(len(Y.T)):

ColNorms[0,j]=fnorm(Y[:,j])
Sorted=argsort(ColNorms)
LongCols=zeros((len(Y),NumLong))
for j in range(NumLong):

LongCols[:,j]=Y[:,Sorted[0,len(Y.T)-j-1]]
W=AvgRandomCols(Compress, NumColsToAvg, LongCols)
return(W)

def EucNorm(B):
cols=len(B.T)
for x in range(cols):

B[:,x]=B[:,x]/fnorm(B[:,x])
return (B)

def initKmeans(wrows, k, Y):
CM=zeros((wrows,k))
temp=zeros((1,k))-1
for i in range(k):

q=int((random.rand()*len(Y.T)))
while q in temp:

q=int((random.rand()*len(Y.T)))
CM[:,i]=Y[:,q]
temp[0,i]=q

return(CM)

def NewClusters(D,tempI):
tempI[tempI¿0]=0
for i in range(len(tempI)):

q=int(where(D[i,:]==max(D[i,:]))[0])
tempI[i,q]=1

return(tempI)
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def NewCent(tempCent, Indicator, Y):
tempCent[tempCent¿0]=0
rows=len(Indicator)
cols=len(tempCent.T)
for j in range(cols):

for i in range(rows):
if Indicator[i,j]==1:

tempCent[:,j]=tempCent[:,j]+Y[:,i]
for k in range(cols):

tempCent[:,k]=tempCent[:,k]/fnorm(tempCent[:,k])
return (tempCent)

def Converge(A,B):
return (all(A==B))

def Kmeans(wrows, Y, NumClusters):
Y0=copy(Y)
Y0=EucNorm(Y0)
CentMat=initKmeans(wrows,NumClusters,Y0)
PrevIndicator=zeros((len(Y0.T),NumClusters))
CurrentIndicator=zeros((len(Y0.T),NumClusters))
D=dot(Y0.T,CentMat)
CurrentIndicator=NewClusters(D,CurrentIndicator)
while not Converge(CurrentIndicator, PrevIndicator):

CentMat=NewCent(CentMat, CurrentIndicator, Y0)
PrevIndicator=copy(CurrentIndicator)
D=dot(Y0.T,CentMat)
CurrentIndicator=NewClusters(D,CurrentIndicator)

return (CentMat)



18

Example Simulation Executions

Data matrix y, k-means initialization, 250 iterations, k = 25
w=Kmeans(70,y,25)
w=normal(w,25)
h=random.rand(25,100)
ww,hh,norm=nmf(y,w,h,250,25)

Data matrix y, Random C initialization, 250 iterations, k = 25, p = 10, q = 15
w=AvgLongCols(15,10,y,25)
w=normal(w,len(w.T))
h=random.rand(25,100)
ww,hh,norms=nmf(y,w,h,250,25)
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5. Conclusion

We have examined four initialization techniques for the NMF algorithm: ran-

dom, random Acol, random C, and spherical k-means. For our given data set

consisting of densely populated random matrices, all four initialization techniques

produced similar results in the performance. They also all demonstrated that the

more we try to reduce the rank of the factor matrices, the greater the error we

create. In random Acol, the choice of how many columns to average had only a

minor impact on the performance. Likewise, changing the number of the longest

columns, from which we select the columns that are then averaged, had a small

impact on the performance of random C. As the size of the data matrix increased

and k remained constant, the magnitude of the degradation in the performance de-

creased. We also introduced the compression ratio which allows the use of smaller

data sets to determine acceptable choices of k for large data sets.
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