
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Theses Department of Mathematics and Statistics

12-2009

Theoretical and Numerical Study of Tikhonov's
Regularization and Morozov's Discrepancy
Principle
MaryGeorge L. Whitney
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/math_theses

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Mathematics Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more
information, please contact scholarworks@gsu.edu.

Recommended Citation
Whitney, MaryGeorge L., "Theoretical and Numerical Study of Tikhonov's Regularization and Morozov's Discrepancy Principle."
Thesis, Georgia State University, 2009.
https://scholarworks.gsu.edu/math_theses/77

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71422623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


THEORETICAL AND NUMERICAL STUDY OF TIKHONOV’S

REGULARIZATION AND MOROZOV’S DISCREPANCY PRINCIPLE

by

MARYGEORGE L. WHITNEY

Under the Direction of Dr. Alexandra Smirnova

ABSTRACT

A concept of a well-posed problem was initially introduced by J. Hadamard in 1923,

who expressed the idea that every mathematical model should have a unique solution,

stable with respect to noise in the input data. If at least one of those properties is

violated, the problem is ill-posed (and unstable). There are numerous examples of ill-

posed problems in computational mathematics and applications. Classical numerical

algorithms, when used for an ill-posed model, turn out to be divergent. Hence one has to

develop special regularization techniques, which take advantage of an a priori information

(normally available), in order to solve an ill-posed problem in a stable fashion. In this

thesis, theoretical and numerical investigation of Tikhonov’s (variational) regularization

is presented. The regularization parameter is computed by the discrepancy principle of

Morozov, and a first-kind integral equation is used for numerical simulations.

INDEX WORDS: Tikhonov regularization, Morozov discrepancy principle, Ill-
posed problems, Newton’s method, Georgia State University
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Chapter 1

INTRODUCTION

The definition of a well-posed problem was originally introduced by J. Hadamard

[6] in 1923 in order to figure out what types of boundary conditions are to be used for

various types of differential equations. Hadamard’s concept reflected the idea that any

mathematical model of a physical problem must have the properties of uniqueness, exis-

tence, and stability of the solution. If at least one of these properties is not satisfied, the

problem is ill-posed. Among classical ill-posed problems are stable numerical differenti-

ation of noisy data, stable inversion of ill-conditioned matrices, parameter identification

in partial differential equations, stable solution of first-kind integral equations, and many

other examples.

Let X and Y be normed spaces and the problem

Kx = f, K : X → Y (1.1)

be ill-posed. Suppose the right-hand side f is given by its δ-approximation, fδ, such that

‖f − fδ‖ ≤ δ. It would be natural to seek an approximate solution to (1.1) in the set

Qδ := {x ∈ X : ‖Kx − fδ‖ ≤ δ}. However, in the ill-posed case an arbitrary element

xδ ∈ Qδ can not be used as an approximate solution to (1.1). Since xδ does not depend

continuously on fδ, the fact that ‖Kx − fδ‖ ≤ δ does not guarantee that xδ is close to
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the solution we are looking for.

Thus, if problem (1.1) is ill-posed, one has to use a priori information (normally

available) in order to solve the problem in a stable manner, i.e., to construct a regular-

ized solution to (1.1). Such a priori information as smoothness of the solution generates

the technique, which is called Tikhonov (variational) regularization [15] [14]. This

regularization allows one to obtain stable approximate solutions to ill-posed problems

by means of a stabilizing functional. Initially proposed by A. Tikhonov, the variational

methods have been further developed in [13], [5], [3], [8], [16].

One can also find approximate solutions to (1.1) by iterations (see [1], [17], [18],

[7]), taking xn = F (fδ, xn−1, ..., xn−k), where k ≤ n. For these solutions to be stable

under small changes in the initial data, the iteration number n = n(δ) yielding xn must

be compatible with the size of the error in the initial data.

Another important approach to the theory of ill-posed problems is based on the

singular value decomposition (SVD) of a compact operator in a Hilbert space. Using

SVD, one obtains an admissible regularization strategy by proper filtering of the singular

system.

This thesis is organized as follows:

• Chapter 2. Examples of ill-posed problems and the regularization overview.

• Chapter 3. The Tikhonov regularization theory.

• Chapter 4. Numerical simulations.

• Chapter 5. Conclusions
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Chapter 2

UNSTABLE MODELS

2.1 Examples of Ill-posed Problems

In this section, we give some fundamental results and definitions related to the theory

of ill-posed problems. We also present and discuss some important examples of unstable

mathematical models.

We start with the definition of a norm. The norm will be used to measure distance

between two functions. In what follows, it will be the distance between exact and noisy

data, and between exact and approximate solutions.

Definition 2.1.1. [2] Let X be a vector space over the field R (C). X is normed, if there

is a function || · ||: X→ R (C), which we call a norm, satisfying all of the following:

1. ||f || ≥ 0, and ||f || = 0 if and only if f = 0 (positive definiteness),

2. ||αf || = |α| ||f || for any real (or complex) scalar α (homogeneity),

3. ||f + g|| ≤ ||f ||+ ||g|| (the triangle inequality).

Definition 2.1.2. [9] Let X and Y be normed spaces, and K : X → Y (not necessarily

onto). The problem of finding a solution x ∈ X from the data f ∈ Y , Kx = f , is called

well-posed, or properly posed if the following are all true:
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1. Existence: For every f ∈ Y there is (at least one) x ∈ X such that Kx = f (K is

onto).

2. Uniqueness: For every f ∈ Y there is at most one x ∈ X with Kx = f (K is

one-to-one).

3. Stability: The solution x depends continuously on f ∈ Y , i.e., for every {xn} ⊂ X

with Kxn → Kx, (n→∞), it follows that xn → x, (n→∞).

If at least one condition is violated then the problem is ill-posed or unstable.

The first example is one in partial differential equations involving an initial value

problem for the Laplace equation. In fact, this is Cauchy’s problem for the Laplace

equation, a classic example that was done by Hadamard [6].

Example 2.1.3. The noisy data is denoted by fδ and gδ and the exact data is denoted

by fe and ge. Consider the Laplace equation:

∆u(x, t) =
∂2u

∂x2
+
∂2u

∂t2
= 0, x ∈ R, t ∈ [0,∞) ,

with the initial conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x), x ∈ R.

Suppose

fe(x) = ge(x) = 0 and fδ(x) = 0, gδ(x) = δ sin
(x
δ

)
, δ > 0

We now introduce the norm in the data space as ‖(f, g)‖ := supx∈R{|f | + |g|}, and the

norm in the solution space as ‖u‖ := supx∈R |u(x, t)|. One has

‖(fδ − fe, gδ − ge)‖ = sup
x∈R
{|fδ − fe|+ |gδ − ge|} = sup

x∈R
{|fδ|+ |gδ|}
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= sup
x∈R

{
|0|+

∣∣∣δ sin
(x
δ

)∣∣∣} = sup
x∈R

{∣∣∣δ sin
(x
δ

)∣∣∣} = δ.

For the noisy data, one can show that the corresponding solution

uδ(x, t) = δ2 sin
(x
δ

)
sinh

( t
δ

)
x ∈ R, t ≥ 0.

Indeed, the partial derivatives are as follows:

(uδ)x = δ cos
(x
δ

)
sinh

( t
δ

)
, and (uδ)t = δ sin

(x
δ

)
cosh

( t
δ

)
.

The second partial derivatives are

(uδ)xx = − sin
(x
δ

)
sinh

( t
δ

)
, and (uδ)tt = sin

(x
δ

)
sinh

( t
δ

)
.

These derivatives will then give us (uδ)xx + (uδ)tt = ∆uδ(x, t) = 0. For the exact data,

ue(x, t) = 0, x ∈ R, t ≥ 0. Therefore

‖(uδ − ue)‖ = sup
x∈R

∣∣∣uδ(x, t)− ue(x, t)∣∣∣ = sup
x∈R

∣∣∣δ2 sin
(x
δ

)
sinh

( t
δ

)∣∣∣ = δ2
∣∣∣sinh

( t
δ

)∣∣∣
= δ2 e

t
δ − e−tδ

2

Let δ = 1
n
, then for any t > 0, limn→∞

ent−e−nt
2n2 = (∞∞), since by repeated use of L’Hôpital’s

rule we end up with t2

4
limn→∞ e

nt−e−nt =∞. So, ‖(fδ−fe, gδ−ge)‖ = δ → 0, as δ → 0,

while ‖uδ − ue‖ does not approach 0 as δ goes to 0. This means the problem is ill-posed.

In the following example we look at a differentiation problem to show how the slight

change in the data can cause a considerable change in the solution. The noisy data is

denoted by fδ. The exact data is denoted by fe.
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Example 2.1.4. Let fe(x) = 0 and fδ(x) = δ sin( x
δ2

). Using the infinity norm we get

‖fe − fδ‖∞ = sup
x∈R

∣∣∣0− δ sin
( x
δ2

)∣∣∣ = sup
x∈R
|δ|
∣∣∣sin( x

δ2

)∣∣∣ = δ.

Now if we take the derivatives of f(x) we get f ′e(x) = 0 and f ′δ(x) = 1
δ

cos( x
δ2

). Using the

infinity norm in the solution space we then get ‖f ′δ − f ′e‖∞ = supx∈R |1δ cos( x
δ2

)− 0| = 1
δ
,

and as δ goes to 0 the supremum goes to infinity. This means that the differentiation

problem is unstable or ill-posed.

In the next example we use a matrix norm and a vector norm to analyze an ill-

conditioned liner system Ax = f . Assume that A is a nonsingular matrix, fδ is a

perturbed (or noisy) right-hand side, and fe is the exact right-hand side.

Example 2.1.5. Solving for x we get xe − xδ = A−1(fe − fδ), and solving for fe we get

‖fe‖ = ‖Axe‖ ≤ ‖A‖ ‖xe‖ . . .⇒ 1
‖xe‖ ≤

‖A‖
‖fe‖ . We will use these facts while solving for the

relative error as follows:

‖xe − xδ‖
‖xe‖

≤ ‖A−1‖ ‖fe − fδ‖
‖xe‖

= ‖A−1‖ ‖fe − fδ‖
‖fe‖

‖A‖

≤ ‖A‖ ‖A−1‖︸ ︷︷ ︸
cond(A)

‖fe − fδ‖
‖fe‖

.

One can see from above that a large condition number can result in a considerable

change in the solution even if the relative change in the right-hand side is small (unstable

problem). In fact, cond(A) measures how close A is to a singular matrix. The following

theorem helps to explain.

Theorem 2.1.6. [4] Let A ∈ Rn×n be nonsingular. Then for any singular matrix B ∈

Rn×n, 1

cond(A)
≤ ‖A−B‖

‖A‖ .
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Figure 2.1. Ill-posed and Well-posed linear systems

So, as A gets close to singular, cond(A) approaches infinity. In the two dimensional

case represented by a two-by-two system,

[
~a1 ~a2

]x1

x2

 = ~b

⇔ ~a1x1 + ~a2x2 = ~b⇔ ~a1x1 = ~b− ~a2x2

i.e., the solution is equivalent to finding the intersection of the one dimensional subspace

{x~a1 : x ∈ R} with the affine subspace {~b− ~a2x : x ∈ R}. Such intersections are shown in

Figure 2.1. If the subspaces are nearly parallel to the solution then the condition number

is large since the matrix is almost singular, and a slight perturbation in the system may

result in a considerable change of the solution. On the other hand, if the subspaces are

almost perpendicular to the solution, a small perturbation or slight shift means you will

still get a good solution.

Next we go to linear equations with compact operators Kx = f using the following
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definition:

Definition 2.1.7. K is a compact operator if it is a linear operator from a Banach space

X to a Banach space Y such that the image under K for any bounded subset of X is a

relatively compact set (its closure is compact).

Theorem 2.1.8. [9] Linear equations Kx = f with compact operators K : X → Y ,

where X and Y are normed spaces and dimX =∞ are always ill-posed.

Proof :

To show that Kx = f is ill-posed, we will prove that K−1 is unbounded. Assume

the converse: K−1 exists and is bounded, then K−1K = I should be compact since a

superposition of a bounded and compact operators is a compact operator. Contradiction,

since a unit ball in infinite dimensional space is not a compact set.�

The following is an example of an ill-posed equation with a compact operator:

Kx :=

b∫
a

k(t, s)x(s)ds = f(t), K : X → Y, t ∈ (c, d).

This comes from the following theorem:

Theorem 2.1.9. [9]

(a) Let k(t, s) ∈ L2
(

(c, d)× (a, b)
)

. The operator K : L2(a, b)→ L2(c, d), defined by

Kx :=

b∫
a

k(t, s)x(s)ds, t ∈ (c, d), x ∈ L2(a, b),

is compact from L2(a, b) into L2(c, d).

(b) Let k(t, s) be continuous on [c, d] × [a, b]. Then K defined by the integral above is

also compact as an operator from C[a, b] into C[c, d].
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2.2 Numerical Aspects

The following example was initially done by Kirsch, [9], but is done here in a different

way. While the conclusions are the same, the outcomes and methods used are different.

In both cases, the results lead to the conclusion that the problem is ill-posed, but the

numerical outcomes and the way in which they were obtained are different. The Matlab

code used and the results can be seen in Appendix A and B respectively.

Example 2.2.1. [9] Consider the integral equation

Kx :=

1∫
0

etsx(s)ds = f(t), K : C[0, 1]→ C[0, 1],

where 0 ≤ t ≤ 1. Let f(t) = et+1−1
t+1

. The unique solution is x(t) = et. We are to

approximate the integral using the trapezoidal rule as follows:

1∫
0

etsx(s)ds ≈ h

[
1

2
x(0) +

1

2
etx(1) +

n−1∑
j=1

ejhtx(jh)

]
≈ f(t),

where h = 1
n

and t = ih. The vector [x0 x1 . . . xn]T represents the numerical solution

given the right-hand side [f0 f1 . . . fn]T . For the experiment we take n = 4, 8, 16, 32 as

the number of partitions and t = 0, 0.25, 0.5, 1 to compare the solutions corresponding to

different values of n. Using a table for n vs. t we are to compute x(ti) − xi in Matlab.

See Appendix A for Matlab code and Appendix B for the results for n = 16, and n = 32.

The Figure 2.2 illustrates the numerical results for n = 4 and n = 8 as compared to the

exact solution. Please note that in the Matlab code, the statement x = K\f means that

x is determined by the division of K into f , which is roughly the same as inv(K) ∗ f

except that it is calculated by Gaussian elimination and forward/backward substitution,

with no explicit computation of the inverse.
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Table 2.1. Comparative Results

x(ti)− xi
t n = 4 n = 8 n = 16 n = 32 x(ti) = exp(ti)
0 0.56 0.53 -3.20 -31.14 1.00

0.25 1.95 -0.74 45.30 13.40 1.28
0.50 0.69 -3.11 24.17 -12.32 1.65
0.75 3.13 -0.95 66.94 33.04 2.12
1.0 1.63 1.49 -0.72 -9.83 2.72

The table given in Kirsch [9] was done by calculating the inv(K) and then multiplying by

f instead of using the Gaussian elimination. This is known to be numerically unstable.

Since Matlab does not calculate the inv(K) our solutions are more accurate than those

given by Kirsch. They agree with those computed by Kirsch for n = 4 only. Still, as

n gets larger the approximation gets worse, to the point that matrix K becomes nearly

singular at n = 16, causing a very bad approximation that gets even worse at n = 32.

See Table 2.1 and Appendix B for results of the exercise.

Since K−1 is unbounded for the original infinite-dimensional problem, the matrix

becomes closer to singular as the number of partitions increases. The finer the discretiza-

tion, the worse the approximation, i.e., the problem is ill-posed.

2.3 A General Regularization Strategy

To present the general concept of a regularization strategy, we begin with the defi-

nition:

Definition 2.3.1. [9] A regularizing strategy is a family of linear and bounded operators

Rα : Y → X, α > 0 such that limα→0 ‖RαKx− x‖ = 0 for all x ∈ X, i.e., the operators

RαK converge pointwise to the identity.
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Figure 2.2. Exact and Approximate Solutions

Lemma 2.3.2. [9] Let Rα be a regularizing strategy for a compact operator K : X →

Y , and dimX = ∞, then the family Rα is not uniformly bounded, i.e., there exists

{αj}, limj→∞ αj = 0, with ‖Rαj‖ → ∞ for j →∞.

Proof:

Assume the converse: there exists c such that for all α, ‖Rα‖ ≤ c. Then for any

f ∈ K(X) ⊂ Y , one has

‖K−1f‖ = ‖Rαf −Rαf +K−1f‖ ≤ ‖K−1f −Rαf‖+ ‖Rαf‖ ≤ ‖x−RαKx‖

+‖Rα‖‖f‖ ≤ ‖x−RαKx‖+ c‖f‖.

Pass to the limit as α → 0 and conclude that ‖K−1f‖ ≤ c‖f‖ since by definition

limα→0 ‖RαKx − x‖ = 0. This implies ‖K−1‖ ≤ c, that is K−1 is bounded which is a

contradiction. �
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Figure 2.3. Error Estimation for the Central Difference Formula

Let xα,δ := Rαfδ. Then E(α) := ‖xα,δ − xe‖ estimates how good the approximation

is for fδ. Suppose ‖fδ − fe‖ ≤ δ. Then

E(α) = ‖xα,δ − xe‖ = ‖Rαfδ −Rαfe +Rαfe − xe‖ ≤ ‖Rαfδ −Rαfe‖+ ‖Rαfe − xe‖

≤ ‖Rα(fδ − fe)‖+ ‖Rαfe − xe‖ ≤ ‖Rα‖‖fδ − fe‖+ ‖Rαfe − xe‖

≤ ‖Rα‖δ + ‖RαKxe − xe‖. (2.3.2.1)

Note as α approaches 0, ‖Rα‖δ approaches infinity and ‖RαKxe − xe‖ approaches

0. This is the fundamental estimate for a regularization strategy.

We illustrate this estimate by constructing a regularization strategy for the numerical

differentiation problem using the central difference formula and the step size h as a

regularization parameter.
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Example 2.3.3. Let the derivative be approximated at t0 ∈ (a, b), and h be the step size.

Suppose ‖fδ − fe‖ = supt∈[t0−h,t0+h] ‖fδ(t)− fe(t)‖ = δ and Rhfδ(t0) = fδ(t0+h)−fδ(t0−h)
2h

.

By using the central difference formula one gets

E(h) :=
∣∣f ′e(t0)−Rhfδ(t0)

∣∣ =

∣∣∣∣f ′e(t0)− fδ(t0 + h)− fδ(t0 − h)

2h

∣∣∣∣
=

∣∣∣∣f ′e(t0)− fδ(t0 + h)− fδ(t0 − h)

2h
+
fe(t0 + h)− fe(t0 + h)− fe(t0 − h) + fe(t0 − h)

2h

∣∣∣∣
≤
∣∣∣∣f ′e(t0)− fe(t0 + h)− fe(t0 − h)

2h

∣∣∣∣+ |fδ(t0 + h)− fe(t0 + h)|
2h

+
|fδ(t0 − h)− fe(t0 − h)|

2h
.

Let us estimate the first term that measures the accuracy of the central difference formula.

One has

fe(t0 + h) = fe(t0) + f ′e(t0)h+
f ′′e (t0)h

2

2
+
f ′′′e (ξ)h3

3!
, ξ ∈ [t0, t0 + h],

and fe(t0 − h) = fe(t0)− f ′e(t0)h+
f ′′e (t0)h

2

2
− f ′′′e (µ)h3

3!
, µ ∈ [t0 − h, t0].

By subtracting the two and using the mean value theorem one derives

fe(t0 + h)− fe(t0 − h) = 2f ′e(t0)h+
f ′′′e (η)h3

3
, η ∈ [t0 − h, t0 + h].

Solving for the f ′′′e (η)h2

6
we get the following:

f ′′′e (η)h2

6
=
fe(t0 + h)− fe(t0 − h)

2h
− f ′e(t0).

Thus, ∣∣∣∣f ′e(t0)− fe(t0 + h)− fe(t0 − h)

2h

∣∣∣∣ ≤ M3h
2

6
,

if supt∈[t0−h,t0+h] |f ′′′(t)| = M3. The second and third terms in the estimate for E(h) are
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bounded by δ
2h

. Hence

E(h) ≤ M3h
2

6
+
δ

h
, ‖Rhfe − f ′e‖ ≤

M3h
2

6
→ 0 and ‖Rα(fδ − fe)‖ ≤

δ

h
→∞.

Now if we take the derivative of E(h) = M3h2

6
+ δ

h
with respect to h and equate it to zero,

we will get the optimal value of the regularization parameter

E ′(h) =
M3h

3
− δ

h2
=
M3h

3 − 3δ

3h2
= 0.

Solving for h we then have M3h
3−3δ = 0, finally getting hopt =

(
3δ
M3

)1/3
as can be seen in

Figure 2.3. Note that hopt, which plays the role of α in this example, is the point where

the minimum of E(h) is attained. Therefore E(hopt) =
(

9
8
M3δ

2
)1/3

.
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Chapter 3

THE REGULARIZATION THEORY

3.1 The Tikhonov (Variational) Regularization

We begin with some important definitions:

Definition 3.1.1. [9] Let X be a vector space over the field K = R or K = C. A

scalar product or inner product is a mapping

〈·, ·〉 : X ×X → K

with the following properties:

(i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ X,

(ii) 〈αx, y〉 = α 〈x, y〉 for all x, y ∈ X and α ∈ K,

(iii) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X,

(iv) 〈x, x〉 ∈ R and 〈x, x〉 ≥ 0, for all x ∈ X,

(v) 〈x, x〉 > 0 if x 6= 0.

The following properties are easily derived from the definition:
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(vi) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 for all x, y, z ∈ X,

(vii) 〈x, αy〉 = ᾱ 〈x, y〉 for all x, y ∈ X and α ∈ K.

Definition 3.1.2. [9] A vector space X over K with inner product 〈·, ·〉 is called a

pre-Hilbert space over K.

Definition 3.1.3. [9] A normed space X over K is called complete or a Banach space

if every Cauchy sequence converges in X. A complete pre-Hilbert space is called a

Hilbert space.

Definition 3.1.4. [9] Let : K : X → Y be a linear bounded operator between Hilbert

spaces. Then there exists a unique linear bounded operator K∗ : Y → X with the

property 〈Kx, y〉 = 〈x,K∗y〉 for all x ∈ X, y ∈ Y . The operator K∗ : Y → X is called

the adjoint operator to K. For X = Y , the operator K is called self-adjoint if K∗ = K.

A common approach to overdetermined linear systems of the form Kx = f is to solve

them in the sense of least squares, i.e., to minimize ‖Kx− f‖ with respect to x ∈ X. If

X is infinite-dimensional and K is a compact operator, the above minimization problem

is also ill-posed by the following lemma.

Lemma 3.1.5. [9] Let X, Y be Hilbert spaces such that K : X → Y , is linear and

bounded. Then there exists x̂ ∈ X such that x̂ = arg minx∈X ‖Kx − f‖, where arg min

is the element that minimizes ‖Kx − f‖, if and only if x̂ solves the normal equation

K∗Kx̂ = K∗f . K∗ : Y → X.
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Proof:

‖Kx− f‖2 − ‖Kx̂− f‖2 = 〈Kx− f,Kx− f〉 − ‖Kx̂− f‖2

= 〈K(x− x̂) +Kx̂− f,K(x− x̂) +Kx̂− f〉 − ‖Kx̂− f‖2

= ‖K(x− x̂)‖2 + 〈K(x− x̂), Kx̂− f〉+

+ 〈Kx̂− f,K(x− x̂)〉+ ‖Kx̂− f‖2 − ‖Kx̂− f‖2

= ‖K(x− x̂)‖2 + 〈K(x− x̂), Kx̂− f〉+ 〈Kx̂− f,K(x− x̂)〉

= ‖K(x− x̂)‖2 + 〈Kx̂− f,K(x− x̂)〉+ 〈Kx̂− f,K(x− x̂)〉

= ‖K(x− x̂)‖2 + 2<e 〈Kx̂− f,K(x− x̂)〉

= ‖K(x− x̂)‖2 + 2<e 〈K∗(Kx̂− f), x− x̂〉 .

1. If K∗Kx̂ = K∗f , then 2<e 〈K∗(Kx̂− f), x− x̂〉 = 0 and

‖Kx− f‖2 − ‖Kx̂− f‖2 = ‖K(x− x̂)‖2 ≥ 0, that is x̂ minimizes ‖Kx− f‖.

2. Now let x̂ be a minimizer of ‖Kx− f‖. Substitute x = x̂+ tz, z ∈ X, t > 0, then

0 ≤ ‖K(x− x̂)‖2 + 2<e 〈Kx̂− f,K(x− x̂)〉

= ‖K(tz)‖2 + 2<e 〈Kx̂− f,K(tz)〉

= t2‖Kz‖2 + 2t<e 〈Kx̂− f,Kz〉 .

Divide by t and pass to the limit as t approaches 0 to get:

0 ≤ t‖Kz‖2 + 2<e 〈Kx̂− f,Kz〉 ,

0 ≤ lim
t→0
{t‖Kz‖2 + 2<e 〈Kx̂− f,Kz〉} = 2<e 〈Kx̂− f,Kz〉 .
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Hence for all z ∈ X

0 ≤ 2<e 〈Kx̂− f,Kz〉 = 2<e 〈K∗(Kx̂− f), z〉 .

Take, z = −K∗(Kx̂− f). Then

0 ≤ −<e 〈K∗(Kx̂− f), K∗(Kx̂− f)〉 = −‖K∗(Kx̂− f)‖2,

which means x̂ solves the normal equation K∗(Kx̂− f) = 0 �

As the consequence of this lemma we should either modify the functional ‖Kx− f‖

or rewrite the equation K∗Kx̂ = K∗f in such a way that the operator is no longer

compact. Both ideas lead to the following (regularized) minimization problem:

Jα(x) := ‖Kx− f‖2 + α‖x‖2 for x ∈ X.

Jα is called the Tikhonov functional.

Theorem 3.1.6. [9] Let K : X → Y be a linear bounded operator between Hilbert spaces

and α > 0. Then Jα has a unique minimum xα ∈ X. This minimum is the unique

solution of the normal equation αxα +K∗Kxα = K∗f .

From the above identity it follows that xα = (αI +K∗K)−1K∗f := Rαf, Rα : Y →

X, where Rα := (αI+K∗K)−1K∗. Suppose now that f is given by its δ−approximation,

i.e., ‖fδ − fe‖ ≤ δ and one solves the equation Kx = fδ. Then one gets

xα,δ = (αI +K∗K)−1K∗fδ := Rαfδ.

By our fundamental estimate ‖xα,δ−xe‖ ≤ δ‖Rα‖+‖RαKxe−xe‖ (see 2.3.2.1), where xe

solves the exact equation Kx = fe. For ‖Rα‖, one obtains, ‖Rα‖ = ‖(αI +K∗K)−1K∗‖.
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By polar decomposition K = U(K∗K)1/2, where U is a partial isometry:

‖Uq‖ = ‖q‖ for all q ∈ N(U)⊥ and N(U) = {q : Uq = 0}.

Therefore,

‖Rα‖ = ‖(αI +K∗K)−1(K∗K)1/2U‖ ≤ ‖(αI +K∗K)−1(K∗K)1/2‖ := ‖ϕ(A)‖

with A := K∗K. Since A is self-adjoint, by spectral theorem one derives

‖ϕ(A)‖ = sup
λ∈σ(A)

|f(λ)| = sup
λ∈σ(A)

√
λ

λ+ α
=

1

2
√
α
.

Here σ(A) = [0, ‖K‖2]. Thus, δ‖Rα‖ ≤ δ
2
√
α

.

In order to analyze ‖RαKxe − xe‖, we make an additional assumption: xe = K∗z ∈

K∗(Y ), z ∈ Y . Then

‖RαKxe − xe‖ = ‖[K∗K + αI]−1K∗Kxe − xe‖

= ‖[K∗K + αI]−1K∗Kxe − [K∗K + αI]−1[K∗K + αI]xe‖

= ‖[K∗K + αI]−1(K∗Kxe −K∗Kxe − αIxe)‖

= ‖[K∗K + αI]−1(−αIxe)‖ = ‖[K∗K + αI]−1(−αxe)‖

= α‖[K∗K + αI]−1K∗z‖ ≤ α‖[K∗K + αI]−1K∗‖ ‖z‖

≤ α‖z‖
2
√
α

=
‖z‖
√
α

2
.

This inequality proves that the operators Rα : Y → X, Rα = (αI + K∗K)−1K∗ form a

regularization strategy with limα→0 ‖RαKxe − xe‖ ≤ limα→0
‖z‖
√
α

2
= 0. It is called the

Tikhonov regularization method. Combining the estimates for δ‖Rα‖ and ‖RαKxe−



20

xe‖, one concludes

‖xα,δ − xe‖ ≤
δ

2
√
α

+
‖z‖
√
α

2
:= E(α).

Formally, one can now minimize E(α) in order to find the optimal value of the regular-

ization parameter. However, ‖z‖ is unknown. In the next section we discuss a posteriori

choice of α by the so called discrepancy principle, which does not use ‖z‖.

3.2 The Discrepancy Principle of Morozov

In this section, we consider the determination of α(δ) from the discrepancy principle

(DP) [10], [11], [12] of Morozov. The DP suggests computing α = α(δ) > 0 in such a

way that the corresponding Tikhonov solution:

αxα,δ +K∗Kx = K∗fδ

that is, the minimum of the functional

Jα,δ(x) := ‖Kx− fδ‖2 + α‖x‖2,

satisfies the equation

‖Kxα,δ − fδ‖ = δ.

This choice of α guarantees that, on one hand, the discrepancy is equal to δ and, on the

other hand, α is not too small. Uniqueness and existence of the solution to ‖Kxα,δ−fδ‖ =

δ is justified by the following theorem.

Theorem 3.2.1. Let X and Y be Hilbert spaces and K : X → Y be linear, compact, and

one-to-one with a dense range in Y . Also, let xe = K∗z ∈ K∗(Y ) be the exact solution

to Kxe = fe and ‖fe− fδ‖ ≤ δ < ‖fδ‖. If ‖Kxα,δ − fδ‖ = δ, then ‖xα,δ − xe‖ ≤ 2
√
δ‖z‖.
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Proof: Since xα,δ minimizes the Tikhonov functional Jα,δ = ‖Kxe − fδ‖2 + α‖xe‖2, we

can conclude that

α‖xα,δ‖2 + δ2 = Jα,δ(xα,δ) ≤ Jα,δ(xe) = α‖xe‖2 + ‖fe − fδ‖2 ≤ α‖xe‖2 + δ2,

and hence ‖xα,δ‖ ≤ ‖xe‖ for all δ > 0. This gives us the following important estimate:

‖xα,δ − xe‖2 = ‖xα,δ‖2 − 2<e 〈xα,δ, xe〉+ ‖xe‖2

≤ 2[‖xe‖2 −<e 〈xα,δ, xe〉] = 2<e 〈xe − xα,δ, xe〉 .

Let xe = K∗z, z ∈ Y . Then

‖xα,δ − xe‖2 ≤ 2<e 〈xe − xα,δ, K∗z〉 = 2<e 〈fe −Kxα,δ, z〉

≤ 2<e 〈fe − fδ, z〉+ 2<e 〈fδ −Kxα,δ, z〉

≤ 2δ‖z‖+ 2δ‖z‖ = 4δ‖z‖.

Therefore, ‖xα,δ − xe‖ ≤ 2
√
δ‖z‖, as was to be shown.

The condition ‖fδ‖ > δ is reasonable, since otherwise the right-hand side is less than

δ, and one can take xδ = 0. This also shows that the determination of α does not have

to satisfy the equation ‖Kxα,δ − fδ‖ = δ exactly. We can use the following bounds that

will then guarantee the same level of accuracy.

c1δ ≤ ‖Kxα,δ − fδ‖ ≤ c2δ.

How to solve the equation ‖Kxα,δ − fδ‖ = δ? We introduce

ϕ(α) := ‖Kxα,δ − fδ‖2 − δ2.
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Then the equation ϕ(α) = 0 is equivalent to ‖Kxα,δ − fδ‖ = δ, and it can be solved

numerically for example, by Newton’s method:

αj+1 = αj −
ϕ(αj)

ϕ′(αj)
, j = 0, 1, 2, ....

The derivative ϕ′(α) can be calculated as follows:

ϕ′(α) =

[
〈Kxα,δ − fδ, Kxα,δ − fδ〉 − δ2

]′
α

=

〈
K
dxα,δ
dα

,Kxα,δ − fδ
〉

+

〈
Kxα,δ − fδ, K

dxα,δ
dα

〉
= 2<e

〈
K
dxα,δ
dα

,Kxα,δ − fδ
〉
.

We now compute
dxα,δ
dα

by differentiating the identity

αxα,δ +K∗Kxα,δ = K∗fδ

implicitly. Since the right-hand side does not depend on α, one has

xα,δ + α
dxα,δ
dα

+K∗K
dxα,δ
dα

= 0.

Solving for
dxα,δ
dα

, we get

dxα,δ
dα

= −[αI +K∗K]−1xα,δ = −[αI +K∗K]−1[αI +K∗K]−1K∗fδ.
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Substituting this into ϕ′(α), one derives

ϕ′(α) = 2<e
〈
−K[αI +K∗K]−1xα,δ, Kxα,δ − fδ

〉
= 2<e

〈
−K[αI +K∗K]−1[αI +K∗K]−1K∗fδ, K[αI +K∗K]−1K∗fδ − fδ

〉
.
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Chapter 4

NUMERICAL SIMULATIONS

4.1 Statement of the Problem

In this chapter, we will show that as opposed to the ’naive’ discretization used in

section 2.1, the Tikhonov regularization combined with Morozov’s discrepancy principle,

results in a stable numerical solution to an ill-posed integral equation.

To illustrate the efficiency of Tikhonov-Morozov algorithm we consider the same

equation as in Section 2.1:

Kx :=

b∫
a

k(t, s)x(s)ds = f(t), [a, b] = [c, d] = [0, 1],

with k(t, s) = ets, K : L2[a, b]→ L2[c, d] and fe(t) =
et+1 − 1

t+ 1
.

Note that in L2[a, b] the norm is generated by the following inner product:

〈[f ], [g]〉L2 :=

b∫
a

f(t)ḡ(t)dt, f ∈ [f ], g ∈ [g],

where [f ], [g] are equivalence classes of functions, i.e., two functions are in the same class

if they only differ on a set of Lebesgue’s measure zero. Also, the number of partitions
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we will use are n = 4, 8, 16, 32 while varying t ∈ [0, 1] for our tables. Note that K is

self-adjoint, that is K∗ = K. Indeed, since k(t, s) = ets, K∗ would lead to the following,

K∗x :=

d∫
c

k(s, t)x(t)dt, where [c, d] = [a, b] = [0, 1].

Then k(s, t) = est. Since t and s are real valued, est = ets. Therefore, K∗ = K.

Table 4.1. Comparison of Errors

‖xe − xα,δ‖, δn = e2h2

3
+ σ

n\σ 0.0001 0.05 0.1
4 0.0876 0.1177 0.1436
8 0.0298 0.0376 0.0406
16 0.0052 0.0273 0.0373
32 0.0005 0.0196 0.0338

Table 4.2. Values of α by Discrepancy Principle

σ n = 4 n = 8 n = 16 n = 32
0.1 0.173360 0.068038 0.032997 0.018896
0.05 0.144455 0.050745 0.022335 0.011284

0.0001 0.109950 0.025159 0.005009 0.001159

We discretize the operator K by again using the trapezoidal rule to approximate the

integral

(Knx)i := h

[
1

2
x0 +

1

2
eihxn +

n−1∑
j=1

eijh
2

xj

]
= (fδ)i,

where xj is an approximate value for x(jh), j = 0, ..., n, and (fδ)i = f(ih), i = 0, ..., n,

is a noisy right-hand side. Then for the discrete analog of the Tikhonov solution, one
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gets

xα,δ = (αIn +K∗nKn)−1K∗nfδ, K∗n = Kn.

In order to implement the discrepancy principle, one has to solve the following nonlinear

equation:

ϕ(α) := ‖Knxα,δ − fδ‖2 − δ2 = 0.

Introduce the notation of

Gn := (αIn +K∗nKn)−1.

Substituting xα,δ = GnK
∗
nfδ in the expression for ϕ(α), one concludes

ϕ(α) := ‖KnGnK
∗
nfδ − fδ‖2 − δ2 := ‖(KnGnK

∗
n − In)fδ‖2 − δ2 = 0.

Table 4.3. Comparative Results for σ = 0.0001

xe − xα,δ
t n = 4 n = 8 n = 16 n = 32 xe = exp(t)
0 -0.1852 -0.1845 -0.0803 -0.0134 1.00

0.25 -0.0912 -0.1220 -0.0616 -0.0193 1.28
0.50 0.0444 -0.0262 -0.0235 -0.0138 1.65
0.75 0.2355 0.1148 0.0424 0.0094 2.12
1.00 0.5003 0.3169 0.1476 0.0589 2.72

We solve ϕ(α) = 0 by Newton’s method:

αj+1 = αj −
ϕ(αj)

ϕ′(αj)
, j = 0, 1, ... .
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Figure 4.1. Exact and Approximate Solutions for σ = 0.0001

As it has been shown in the previous section,

ϕ′(α) = 2

〈
Kn

dxα,δ
dα

, Knxα,δ − fδ
〉
.

Recall, that the operator in our example is real-valued. Besides,

dxα,δ
dα

= −Gnxα,δ = −G2
nK
∗
nfδ.

Hence,

ϕ′(α) = −2
〈
KnG

2
nK
∗
nfδ, KnGnK

∗
nfδ − fδ

〉
= −2

〈
KnG

2
nKnfδ, (KnGnKn − In)fδ

〉
,
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since K∗n = Kn. We terminate Newton’s method when

|αj+1 − αj| < 10−6 and |ϕ(αj)| < 10−6,

which is comparable to the Matlab solver ’fsolve’.

Table 4.4. Comparative Results for σ = 0.05

xe − xα,δ
t n = 4 n = 8 n = 16 n = 32 xe = exp(t)
0 -0.1980 -0.1868 -0.2004 -0.1838 1.00

0.25 -0.0880 -0.1153 -0.1344 -0.1274 1.28
0.50 0.0678 -0.0080 -0.0338 -0.0396 1.65
0.75 0.2845 0.1479 0.1139 0.0917 2.12
1.00 0.5816 0.3691 0.3254 0.2826 2.72

4.2 Sources of Noise

Table 4.5. Comparative Results for σ = 0.1

xe − xα,δ
t n = 4 n = 8 n = 16 n = 32 xe = exp(t)
0 -0.2027 -0.1776 -0.2302 -0.2429 1.00

0.25 -0.0815 -0.1040 -0.1502 -0.1634 1.28
0.50 0.0888 0.0061 -0.0312 -0.0449 1.65
0.75 0.3236 0.1653 0.1407 0.1266 2.12
1.00 0.6435 0.3906 0.3835 0.3698 2.72

To generate fδ, we add a noise term to the exact function fe. That noise term
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Figure 4.2. Exact and Approximate Solutions for σ = 0.05

Figure 4.3. Exact and Approximate Solutions for σ = 0.1
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includes an input value of σ, and is equal to σ
√

2 sin(10πt). Therefore, fδ is:

fδ = fe + σ
√

2 sin(10πt),

where fe = et+1−1
t+1

, see Figure 4.5. In our numerical simulations, the error in the right-

hand side comes from two sources. First, it is the error due to inaccurate measurements,

which we assume to be σ
√

2 sin(10πt). Second, it is the discretization error that is

generated when the integral is replaced with a trapezoidal formula.

For large values of n, the discretization error can be ignored. However, we want to

compare our results to those obtained by ’naive’ numerical method used in section 2.1.

There we used n = 4, 8, 16, and 32, since for larger values of n, the matrix Kn becomes

singular to the MatLab precision. Hence, in this experiment, we take the same values of n

(4, 8, 16, and 32), and therefore the discretization error must be thoroughly investigated.

Denote the exact right-hand side for each n by fen . One has

‖fen − fδ‖ ≤ ‖fen − fe‖+ ‖fe − fδ‖.

The error for the composite trapezoidal rule

fen − fe =
g′′(ξ)(b− a)

12
h2,

where ξ ∈ [a, b]. In our case,

g(s) ≈ etses = es(t+1) and [a, b] = [0, 1].
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Thus,

‖fen − fe‖ =

( 1∫
0

(t+ 1)4e2(t+1)h4

122
dt

) 1
2

≤ h2

12

( 1∫
0

24e4dt

) 1
2

=
e2h2

3
, since t ∈ [0, 1].

One can also see that

‖fe − fδ‖2 = 2

1∫
0

σ2 sin2(10πt)dt = 2σ2

1∫
0

1− cos(20πt)

2
dt = 2σ2 1

2
= σ2.

Hence, ‖fen − fδ‖ ≤ e2h2

3
+ σ := δn. Note that δn changes as n changes since h, the step

size, is dependent on n, the number of partitions. We use the L2-norm instead of the

infinity-norm since the discrepancy principle of Morozov is justified for Hilbert spaces.

The discrete analog of this norm is used to compute ϕ(α) in the Newton method for the

same reason.

4.3 Simulation

For the experiment, we apply the discrepancy principle with σ = 0.1, σ = 0.05, and

σ = 0.0001. As α0, the initial approximation, we take 1
4
, because ϕ(0) < 0 and ϕ(1

2
) > 0.

The first Table 4.1 shows a comparison of the norms and confirms that as n gets larger

we have convergence to the exact solution for xe.

The second Table 4.2, shows α versus σ for different values of n. Note that σ = 0

is not included in the table since we would only have the discretization error of the

trapezoidal rule (as done in Table 2.1). One can see in the Table 4.2, as the noise

gets smaller, α also gets smaller, as to be expected. After evaluating α by Morozov’s

discrepancy principle, we can now find xα,δ and compare it to our exact value of xe = et

for σ = 0.1, 0.05, 0.0001, and n = 4, 8, 16, 32. Table 4.3 shows how xα,δ differs from
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Figure 4.4. Exact and Approximate Solutions for n = 32

Figure 4.5. Exact and Approximate Values of Right-hand Side
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xe for σ = 0.0001, our smallest value for σ, Figure 4.1 is the corresponding picture. As

you can see, as n gets larger, the approximation converges towards the exact solution as

guaranteed by the convergence theorem. Table 4.4 and Figure 4.2 show a similar result

for σ = 0.05, as does Table 4.5 and Figure 4.3 for σ = 0.1, our largest σ. One can see

that when σ is small we get a much better approximation of our exact solution. The

final Figure 4.4 compares the exact and approximate solutions for various σ and n = 32.

Again when n = 32 and σ = 0.0001 the approximation is the best.

In conclusion, this part of the experiment worked as the general theory said. We did

have to use careful consideration of the error term since our n was so small. The general

theory tends toward a larger n and therefore does not consider what an important role

this term can play for a very small number of partitions such as we used. The next

chapter will compare our regularized version of the integral to our naive discretization

used in chapter 2.
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Chapter 5

DISCUSSION

5.1 Summary

For our summary we are using σ = 0.05 as part of the noise in the Tikhonov regular-

ization with Morozov’s discrepancy since it is the middle of the three that we choose to

work with. We start by comparing the two tables, Table 5.1 for our ’naive’ discretization

and Table 5.2 for the Tikhonov-Morozov algorithm. Note that for the ’naive’ discretiza-

tion, σ = 0, and the only noise is due to finite-dimensional approximatation for the

integral. As one can see, the numerical solutions obtained by the Tikhonov-Morozov

algorithm are much better than those done by the ’naive’ discretization. The errors for

each n show that while the ’naive’ discretization oscillates wildly and gets worse as n

increases, the Tikhonov-Morozov algorithm actually gets better as n gets larger. This is

confirmed by the general theory.

We now move to the figures. Again Figure 5.1 refers to the ’naive’ discretization

while Figure 5.2 refers to the Tikhonov-Morozov algorithm. As foretold in the tables,

the ’naive’ discretization varies wildly while the Tikhonov-Morozov algorithm generates

a smooth line that converges toward the exact value as n gets larger. All of the values

of n could not even be shown in the ’naive’ discretization due to the fact that at n = 16

and n = 32 the matrix is nearly singular and does not return a better result but a much
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Table 5.1. Results for the ’Naive’ Discretization

x(ti)− xi
t n = 4 n = 8 n = 16 n = 32 x(ti) = exp(ti)
0 0.56 0.53 -3.20 -31.14 1.00

0.25 1.95 -0.74 45.30 13.40 1.28
0.50 0.69 -3.11 24.17 -12.32 1.65
0.75 3.13 -0.95 66.94 33.04 2.12
1.0 1.63 1.49 -0.72 -9.83 2.72

Table 5.2. Comparative Results for σ = 0.05

xe − xα,δ
t n = 4 n = 8 n = 16 n = 32 xe = exp(t)
0 -0.1980 -0.1868 -0.2004 -0.1838 1.00

0.25 -0.0880 -0.1153 -0.1344 -0.1274 1.28
0.50 0.0678 -0.0080 -0.0338 -0.0396 1.65
0.75 0.2845 0.1479 0.1139 0.0917 2.12
1.00 0.5816 0.3691 0.3254 0.2826 2.72

worse one. Note that even thought we are showing σ = 0.05 as our representative for

Tikhonov-Morozov algorithm, the one with σ = 0.1, our largest value for σ, is still much

better approximation than the naive discretization, which uses σ = 0.

5.2 Advantages

There are definite advantages to using the Tikhonov regularization with Morozov’s

discrepancy principle. The first and most obvious is that it returns a much better approx-

imate solution than the ’naive’ discretization does. While using the same trapezoidal rule

for the approximation of the integral, the relatively simple regularization by the Tikhonov

method along with Morozov’s discrepancy principle produces little to no discernible error



36

Figure 5.1. Exact and Approximate Solutions

Figure 5.2. Exact and Approximate Solution for σ = 0.05
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as the partitions get sufficiently large, meaning you get a much closer approximation as

the number of partitions gets larger for any amount of noise. In other words, the accuracy

of the regularized solutions gets better as n approaches infinity, which is not the case for

the ’naive’ discretization.

5.3 Disadvantages

The biggest disadvantage of Tikhonov regularization with Morozov’s discrepancy

principle is the repeated matrix manipulation done to compute the solution. Since the

approximate solution uses the inverse of (αjI + K∗K) one has to make sure that it

exists for every j and to start Newton’s iterations with an overestimate of α rather than

underestimate.

Another disadvantage of Tikhonov regularization is the over-smoothing effect. In

order to reconstruct nonsmooth or discontinuous solutions, one has to use a different

penalty term.
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APPENDIX A

% This program is written by MaryGeorge Whitney

%

% This program solves a linear system for an inverse problem

% by using the trapizoidal rule to approximate the integral

%

% The integral is e^ts x(s) ds = f(t)

% Where f(t) = (e^(t+1) - 1)/(t+1)

% The exact value of x = exp(t)

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Variable List

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% K - matrix for the integral answers

% B - array matrix for the approximation for chart

% check - while loop variable

% ck - while loop variable

% E - array matrix for the exact values

% m - inline function for the right hand side of equation

% g - inline finction for the exact value of x

% h - subinterval = 1/n

% i - looping variable for the t partition

% j - looping variable for the s partition

% n - number of subintervals - input by user

% N - the number of subintervals plus 1 for matrix reference

% R - array matrix for error

% s - partition variable = j*h

% t - partition variable = i*h

% w - input variable for repeating program

% x - array matrix for the approximated answer of K\f

% f - array matrix for the solution answers

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



41

%

% Main Program

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc;

check = 0;

while check == 0

% Introduction and input of number of intervals

fprintf(’This program solves a liner system for an inverse problem.\n’);

fprintf(’It uses the trapizoidal rule to approximate the integral:\n’);

fprintf(’e^ts x(s) ds = f(t) the integral goes from 0 to 1\n’);

fprintf(’Please enter the number of partitions desired:\n’);

n = input(’ ’);

% Initalize variables

ck = 0;

h = 1/n;

N = n + 1;

K = zeros(N,N);

f = zeros(N,1);

E = zeros(N,1);

x = zeros(N,1);

B = zeros(N,1);

R = zeros(N,1);

m = inline (’(exp(t+1) - 1)/(t+1)’);

g = inline (’exp (t)’);

% Build matrices

for i=1:N

t = (i-1)*h;

f(i) = m(t);

E(i) = g(t);

for j=1:N

s = (j-1)*h;

K(i,j) = exp(t*s);

end % ends j loop

end % ends i loop

%Finish off the K matrix
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K(:,1) = K(:,1)/2;

K(:,N) = K(:,N)/2;

K = h*K;

% Build solution

x = K\f;

% Build matrix for print chart

for i=1:N

t = (i-1)*h;

switch t

case 0

B(i) = x(i);

R(i) = E(i) - x(i);

case .25

B(i) = x(i);

R(i) = E(i) - x(i);

case .5

B(i) = x(i);

R(i) = E(i) - x(i);

case .75

B(i) = x(i);

R(i) = E(i) - x(i);

case 1

B(i) = x(i);

R(i) = E(i) - x(i);

otherwise

B(i) = 0;

R(i) = 0;

end % ends switch

end % ends for i

%Print selected solutions

fprintf(’Remember that the number of partitions is: %3.0f \n’, n);

for i=1:N

if B(i) ~= 0

t = (i-1)*h;

fprintf(’t = %3.2f\n’, t);

fprintf(’Our approximation is %5.2f\n’, B(i));

fprintf(’Our exact value is %5.2f\n’, E(i));

fprintf(’With an error of %5.2f.\n\n’,R(i));
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end % ends if

end % ends for

%Plotting the compairison

i=1:N;

q=(i-1)/n;

plot(q,g(q),’ro-’,q,x(i),’bd:’);

axis auto;

title(’Exact and approximate functions’);

xlabel(’step size’);

legend(’Exact’,’Approximation’,’Location’,’NorthWest’);

while ck == 0

fprintf(’Would you like to run again?\n’);

fprintf(’Please type ’’y’’ or ’’n’’.\n’);

w = input(’ ’,’s’);

fprintf(’\n\n\n’);

switch lower(w)

case ’y’

check = 0;

ck = 1;

case ’n’

check = 1;

ck = 1;

otherwise

fprintf(’Please try again’);

check = 0;

ck = 0;

end % ends switch

end % ends while ck loop

end % ends while check loop
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APPENDIX B

Exercise1

This program solves a liner system for an inverse problem.

It uses the trapizoidal rule to approximate the integral:

e^ts x(s) ds = f(t) the integral goes from 0 to 1

Please enter the number of partitions desired:

4

Remember that the number of partitions is: 4

t = 0.00

Our approximation is 0.56

Our exact value is 1.00

With an error of 0.44.

t = 0.25

Our approximation is 1.95

Our exact value is 1.28

With an error of -0.67.

t = 0.50

Our approximation is 0.69

Our exact value is 1.65

With an error of 0.95.

t = 0.75

Our approximation is 3.13

Our exact value is 2.12

With an error of -1.02.

t = 1.00

Our approximation is 1.63

Our exact value is 2.72

With an error of 1.09.

Would you like to run again?

Please type ’y’ or ’n’.

y



45

This program solves a liner system for an inverse problem.

It uses the trapizoidal rule to approximate the integral:

e^ts x(s) ds = f(t) the integral goes from 0 to 1

Please enter the number of partitions desired:

8

Remember that the number of partitions is: 8

t = 0.00

Our approximation is 0.53

Our exact value is 1.00

With an error of 0.47.

t = 0.25

Our approximation is -0.74

Our exact value is 1.28

With an error of 2.02.

t = 0.50

Our approximation is -3.11

Our exact value is 1.65

With an error of 4.76.

t = 0.75

Our approximation is -0.95

Our exact value is 2.12

With an error of 3.07.

t = 1.00

Our approximation is 1.49

Our exact value is 2.72

With an error of 1.23.

Would you like to run again?

Please type ’y’ or ’n’.

y
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This program solves a liner system for an inverse problem.

It uses the trapizoidal rule to approximate the integral:

e^ts x(s) ds = f(t) the integral goes from 0 to 1

Please enter the number of partitions desired:

16

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 6.750684e-019.

> In <a href="error:G:\Mathematics\Dr. Smirnova\MyThesis\

Exercise1.m,82,1">Exercise1 at 82</a>

Remember that the number of partitions is: 16

t = 0.00

Our approximation is -3.20

Our exact value is 1.00

With an error of 4.20.

t = 0.25

Our approximation is 45.30

Our exact value is 1.28

With an error of -44.01.

t = 0.50

Our approximation is 24.17

Our exact value is 1.65

With an error of -22.52.

t = 0.75

Our approximation is 66.94

Our exact value is 2.12

With an error of -64.82.

t = 1.00

Our approximation is -0.72

Our exact value is 2.72

With an error of 3.44.

Would you like to run again?

Please type ’y’ or ’n’.

y
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This program solves a liner system for an inverse problem.

It uses the trapizoidal rule to approximate the integral:

e^ts x(s) ds = f(t) the integral goes from 0 to 1

Please enter the number of partitions desired:

32

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.697308e-019.

> In <a href="error:G:\Mathematics\Dr. Smirnova\MyThesis

\Exercise1.m,82,1">Exercise1 at 82</a>

Remember that the number of partitions is: 32

t = 0.00

Our approximation is -31.14

Our exact value is 1.00

With an error of 32.14.

t = 0.25

Our approximation is 13.04

Our exact value is 1.28

With an error of -11.76.

t = 0.50

Our approximation is -12.32

Our exact value is 1.65

With an error of 13.97.

t = 0.75

Our approximation is 33.04

Our exact value is 2.12

With an error of -30.92.

t = 1.00

Our approximation is -9.83

Our exact value is 2.72

With an error of 12.55.

Would you like to run again?

Please type ’y’ or ’n’.

n
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APPENDIX C

% This program was written by MaryGeorge L. Whitney

% It is part of a master thesis project under the direction of

% Dr. Alexandria Smirnova

%

% This program uses Newton’s method to produce a regularization

% strategy for an ill-posed integral problem

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Variable List

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% alpha0 - inital value (approximation) for alpha used in regularization

% alpha1 - scalar for regularization

% alphaTol - tolerance used for alpha

% cek - while loop variable

% check - while loop variable

% choice - input variable for continuation

% ck - while loop variable

% sigma - input variable, noise, noted as sigma in the text

% fe - array variable, right-hand side exact

% fdelta - array variable, noisy right-hand side

% g - inline function, calculates exact x

% h - step size

% i - loop variable

% I - matrix variable, identity matrix

% j - loop variable

% K - matrix variable, integral from our equation

% Kstar - matrix variable, Hermitian matrix of K

% m - inline function, calculates right-hand side (fe)

% n - input variable, number of partitions

% N - number of partitions plus one for matrices

% phi - regularization equation based on alpha, return value from Newton’s
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% phiprime - derivative of phi, return value from Newton’s

% phiTol - used to check tolerance of phi

% q - plot variable

% R - array variable, error difference for xe and xalphadelta

% s - partition variable j*h

% t - partition variable i*h

% tol - tolerance allowed

% w - inline function for noisy right-hand side (fdelta)

% xalphadelta - array variable, regualized noisy answer to Kx=f

% xexact - array variable, exact answer to Kx=f

% G - matrix variable, used for alpha calculation (alpha*I+K*K)^-1

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Main Program

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc;

check = 0;

while check == 0 %loop for the program

cek = 0;

% Input noise: sigma and number of partitions: n

while cek == 0

fprintf(’Please enter the amount of noise.\n’);

fprintf(’This is sigma in our problem.\n’);

fprintf(’Sigma must be > 0 and < 1.\n’);

sigma = input(’ ’);

fprintf(’\n’);

if (sigma < 0) | (sigma > 1)

fprintf(’Please try again. Sigma is out of range.\n’);

else

cek = 1;

end % Ends sigma range check

end % ends while loop for delta

fprintf(’Please enter the number of partitions.\n’);

n = input(’ ’);

fprintf(’\n \n \n’);
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% Initialize variables and inline functions

N = n+1;

h = 1/n;

I = eye(N);

t = 0;

fe = zeros(N,1);

fdelta = zeros(N,1);

xexact = zeros(N,1);

s = 0;

K = zeros(N,N);

Kstar = zeros(N,N);

alpha0 = .25; %inital approximation for alpha

alphaTol = 1; %inital tolerance for alpha

phiTol = 1; %inital tolerance for phi

tol = 10^(-6); % tolerance level

G = zeros(N,N);

phi = 0;

phiprime = 0;

alpha1 = 0;

xalphadelta = zeros(N,1);

R = zeros(N,1);

q = 0;

m = inline(’(exp(t+1)-1)/(t+1)’); %inline function for f-exact

g = inline(’exp(t)’); %inline function for exact x

w = inline(’(exp(t+1)-1)/(t+1) + sigma *sqrt(2)* sin(10*pi*t)’, ’sigma’, ’t’); %function for f-delta

% Build matrix K

%Trapezoidal rule for integral

for i = 1:N

t = (i-1)*h;

fe(i) = m(t);

fdelta(i) = w(sigma,t);

xexact(i) = g(t);

for j = 1:N

s = (j-1)*h;

K(i,j) = exp(t*s);

end %end for j loop

end %end for i loop

K(:,1) = K(:,1)/2;

K(:,N) = K(:,N)/2;
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K = h*K;

Kstar = K; %used strictly for notation

%Build alpha using Newton’s method

count = 0;

while (alphaTol > tol | phiTol > tol) & count < 500

G = inv(alpha0*I + Kstar*K);

[phi, phiprime] = gnew(K,G,Kstar,fdelta,sigma,h);

alpha1 = alpha0 - phi/phiprime;

alphaTol = abs(alpha1 - alpha0);

phiTol = abs(phi);

alpha0 = alpha1;

count = count + 1;

end %end while loop for Newton’s alpha

fprintf(’Iteration count = %4d \n’, count);

fprintf(’Alpha tolerance = %12.3e \n’, alphaTol);

fprintf(’Phi tolerance = %12.3e \n’, phiTol);

%Build x(alpha, delta)

xalphadelta = G*Kstar*fdelta;

%Build error matrix for tables

for i=1:N

t = (i-1)*h;

switch t

case 0

R(i) = xexact(i) - xalphadelta(i);

case .25

R(i) = xexact(i) - xalphadelta(i);

case .5

R(i) = xexact(i) - xalphadelta(i);

case .75

R(i) = xexact(i) - xalphadelta(i);

case 1

R(i) = xexact(i) - xalphadelta(i);

otherwise

R(i) = 0;

end % ends switch

end % ends for i
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%Print selected solutions

fprintf(’Our sigma is: %5.4f \n’, sigma);

fprintf(’The number of partitions is: %3.0f \n’, n);

for i=1:N

if R(i) ~= 0

t = (i-1)*h;

fprintf(’t = %3.2f \n’, t);

fprintf(’alpha = %7.6f \n’, alpha0);

fprintf(’Our approximation is %5.4f\n’, xalphadelta(i));

fprintf(’Our exact value is %5.4f\n’, xexact(i));

fprintf(’With an error of %5.4f.\n\n’,R(i));

end % ends if

end % ends for

%Plotting the compairison

i=1:N;

q=(i-1)*h;

plot(q,xexact(i),’ro-’,q,xalphadelta(i),’bd:’);

axis auto;

title(’Exact and approximate functions’);

xlabel(’step size’);

legend(’Exact solution xexact(i)’,’Approximate solution xalphadelta(i)’,’Location’,’NorthWest’);

ck = 0;

while ck == 0

fprintf(’Would you like to run again?\n’);

fprintf(’Please type ’’y’’ or ’’n’’.\n’);

choice = input(’ ’,’s’);

fprintf(’\n\n\n’);

switch lower(choice)

case ’y’

check = 0;

ck = 1;

case ’n’

check = 1;

ck = 1;

otherwise

fprintf(’Please try again’);

check = 0;

ck = 0;

end % ends switch
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end % ends while loop for another run

end % ends while for program loop
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APPENDIX D

function [y1, y2] = gnew(K,G,Kstar,fdelta,sigma,h);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This program is written by MaryGeorge Whitney

% It is the Newton method for Phi and Phiprime

% It uses a special norm for compact Hilbert spaces

%

% Inputs: K - integral matrix

% Kstar - equal to K - used as notation

% G - inverse matrix for (alpha * I + Kstar * K)

% fdelta - noisy right-hand side

% sigma - input noise

% h - tep size

%

%Outputs: Phi at alpha

% Phiprime at alpha

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate y1 that is phi

z = K*G*Kstar*fdelta - fdelta;

y1 = (z’*z)*h - (sigma00 + exp(2) * (h^2)/3)^2;

%Calculate y2 that is phiprime

a=-K*G*G*Kstar*fdelta;

b=K*G*Kstar*fdelta-fdelta;

y2 = 2*a’*b;
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APPENDIX E

Exer2

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.1

Please enter the number of partitions.

4

Iteration count = 39

Alpha tolerance = 4.062e-007

Phi tolerance = 9.396e-007

Our sigma is: 0.1000

The number of partitions is: 4

t = 0.00

alpha = 0.173860

Our approximation is 1.2027

Our exact value is 1.0000

With an error of -0.2027.

t = 0.25

alpha = 0.173860

Our approximation is 1.3655

Our exact value is 1.2840

With an error of -0.0815.

t = 0.50

alpha = 0.173860

Our approximation is 1.5600

Our exact value is 1.6487

With an error of 0.0888.

t = 0.75

alpha = 0.173860
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Our approximation is 1.7934

Our exact value is 2.1170

With an error of 0.3236.

t = 1.00

alpha = 0.173860

Our approximation is 2.0748

Our exact value is 2.7183

With an error of 0.6435.

Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.1

Please enter the number of partitions.

8

Iteration count = 87

Alpha tolerance = 4.903e-007

Phi tolerance = 9.619e-007

Our sigma is: 0.1000

The number of partitions is: 8

t = 0.00

alpha = 0.068038

Our approximation is 1.1776

Our exact value is 1.0000

With an error of -0.1776.

t = 0.25

alpha = 0.068038

Our approximation is 1.3880

Our exact value is 1.2840

With an error of -0.1040.
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t = 0.50

alpha = 0.068038

Our approximation is 1.6426

Our exact value is 1.6487

With an error of 0.0061.

t = 0.75

alpha = 0.068038

Our approximation is 1.9517

Our exact value is 2.1170

With an error of 0.1653.

t = 1.00

alpha = 0.068038

Our approximation is 2.3277

Our exact value is 2.7183

With an error of 0.3906.

Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.1

Please enter the number of partitions.

16

Iteration count = 179

Alpha tolerance = 4.998e-007

Phi tolerance = 9.491e-007

Our sigma is: 0.1000

The number of partitions is: 16

t = 0.00

alpha = 0.032997

Our approximation is 1.2302

Our exact value is 1.0000
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With an error of -0.2302.

t = 0.25

alpha = 0.032997

Our approximation is 1.4342

Our exact value is 1.2840

With an error of -0.1502.

t = 0.50

alpha = 0.032997

Our approximation is 1.6799

Our exact value is 1.6487

With an error of -0.0312.

t = 0.75

alpha = 0.032997

Our approximation is 1.9763

Our exact value is 2.1170

With an error of 0.1407.

t = 1.00

alpha = 0.032997

Our approximation is 2.3348

Our exact value is 2.7183

With an error of 0.3835.

Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.1

Please enter the number of partitions.

32

Iteration count = 360
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Alpha tolerance = 4.622e-007

Phi tolerance = 9.974e-007

Our sigma is: 0.1000

The number of partitions is: 32

t = 0.00

alpha = 0.018896

Our approximation is 1.2429

Our exact value is 1.0000

With an error of -0.2429.

t = 0.25

alpha = 0.018896

Our approximation is 1.4474

Our exact value is 1.2840

With an error of -0.1634.

t = 0.50

alpha = 0.018896

Our approximation is 1.6936

Our exact value is 1.6487

With an error of -0.0449.

t = 0.75

alpha = 0.018896

Our approximation is 1.9904

Our exact value is 2.1170

With an error of 0.1266.

t = 1.00

alpha = 0.018896

Our approximation is 2.3485

Our exact value is 2.7183

With an error of 0.3698.

Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.
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This is sigma in our problem.

Sigma must be > 0 and < 1.

.05

Please enter the number of partitions.

4

Iteration count = 40

Alpha tolerance = 4.719e-007

Phi tolerance = 9.466e-007

Our sigma is: 0.0500

The number of partitions is: 4

t = 0.00

alpha = 0.144455

Our approximation is 1.1980

Our exact value is 1.0000

With an error of -0.1980.

t = 0.25

alpha = 0.144455

Our approximation is 1.3721

Our exact value is 1.2840

With an error of -0.0880.

t = 0.50

alpha = 0.144455

Our approximation is 1.5809

Our exact value is 1.6487

With an error of 0.0678.

t = 0.75

alpha = 0.144455

Our approximation is 1.8325

Our exact value is 2.1170

With an error of 0.2845.

t = 1.00

alpha = 0.144455

Our approximation is 2.1367

Our exact value is 2.7183

With an error of 0.5816.
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Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.05

Please enter the number of partitions.

8

Iteration count = 88

Alpha tolerance = 5.879e-007

Phi tolerance = 8.928e-007

Our sigma is: 0.0500

The number of partitions is: 8

t = 0.00

alpha = 0.050745

Our approximation is 1.1868

Our exact value is 1.0000

With an error of -0.1868.

t = 0.25

alpha = 0.050745

Our approximation is 1.3993

Our exact value is 1.2840

With an error of -0.1153.

t = 0.50

alpha = 0.050745

Our approximation is 1.6567

Our exact value is 1.6487

With an error of -0.0080.

t = 0.75

alpha = 0.050745

Our approximation is 1.9691
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Our exact value is 2.1170

With an error of 0.1479.

t = 1.00

alpha = 0.050745

Our approximation is 2.3492

Our exact value is 2.7183

With an error of 0.3691.

Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.05

Please enter the number of partitions.

16

Iteration count = 179

Alpha tolerance = 7.119e-007

Phi tolerance = 9.724e-007

Our sigma is: 0.0500

The number of partitions is: 16

t = 0.00

alpha = 0.022335

Our approximation is 1.2004

Our exact value is 1.0000

With an error of -0.2004.

t = 0.25

alpha = 0.022335

Our approximation is 1.4184

Our exact value is 1.2840

With an error of -0.1344.
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t = 0.50

alpha = 0.022335

Our approximation is 1.6825

Our exact value is 1.6487

With an error of -0.0338.

t = 0.75

alpha = 0.022335

Our approximation is 2.0031

Our exact value is 2.1170

With an error of 0.1139.

t = 1.00

alpha = 0.022335

Our approximation is 2.3928

Our exact value is 2.7183

With an error of 0.3254.

Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.05

Please enter the number of partitions.

32

Iteration count = 361

Alpha tolerance = 6.733e-007

Phi tolerance = 9.790e-007

Our sigma is: 0.0500

The number of partitions is: 32

t = 0.00

alpha = 0.011284

Our approximation is 1.1838

Our exact value is 1.0000
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With an error of -0.1838.

t = 0.25

alpha = 0.011284

Our approximation is 1.4115

Our exact value is 1.2840

With an error of -0.1274.

t = 0.50

alpha = 0.011284

Our approximation is 1.6884

Our exact value is 1.6487

With an error of -0.0396.

t = 0.75

alpha = 0.011284

Our approximation is 2.0253

Our exact value is 2.1170

With an error of 0.0917.

t = 1.00

alpha = 0.011284

Our approximation is 2.4357

Our exact value is 2.7183

With an error of 0.2826.

Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.0001

Please enter the number of partitions.

4

Iteration count = 41
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Alpha tolerance = 5.643e-007

Phi tolerance = 9.081e-007

Our sigma is: 0.0001

The number of partitions is: 4

t = 0.00

alpha = 0.109950

Our approximation is 1.1852

Our exact value is 1.0000

With an error of -0.1852.

t = 0.25

alpha = 0.109950

Our approximation is 1.3752

Our exact value is 1.2840

With an error of -0.0912.

t = 0.50

alpha = 0.109950

Our approximation is 1.6043

Our exact value is 1.6487

With an error of 0.0444.

t = 0.75

alpha = 0.109950

Our approximation is 1.8815

Our exact value is 2.1170

With an error of 0.2355.

t = 1.00

alpha = 0.109950

Our approximation is 2.2179

Our exact value is 2.7183

With an error of 0.5003.

Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.
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This is sigma in our problem.

Sigma must be > 0 and < 1.

.0001

Please enter the number of partitions.

8

Iteration count = 90

Alpha tolerance = 8.963e-007

Phi tolerance = 7.416e-007

Our sigma is: 0.0001

The number of partitions is: 8

t = 0.00

alpha = 0.025159

Our approximation is 1.1845

Our exact value is 1.0000

With an error of -0.1845.

t = 0.25

alpha = 0.025159

Our approximation is 1.4060

Our exact value is 1.2840

With an error of -0.1220.

t = 0.50

alpha = 0.025159

Our approximation is 1.6749

Our exact value is 1.6487

With an error of -0.0262.

t = 0.75

alpha = 0.025159

Our approximation is 2.0022

Our exact value is 2.1170

With an error of 0.1148.

t = 1.00

alpha = 0.025159

Our approximation is 2.4014

Our exact value is 2.7183

With an error of 0.3169.
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Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.0001

Please enter the number of partitions.

16

Iteration count = 190

Alpha tolerance = 9.737e-007

Phi tolerance = 5.002e-007

Our sigma is: 0.0001

The number of partitions is: 16

t = 0.00

alpha = 0.005009

Our approximation is 1.0803

Our exact value is 1.0000

With an error of -0.0803.

t = 0.25

alpha = 0.005009

Our approximation is 1.3457

Our exact value is 1.2840

With an error of -0.0616.

t = 0.50

alpha = 0.005009

Our approximation is 1.6722

Our exact value is 1.6487

With an error of -0.0235.

t = 0.75

alpha = 0.005009

Our approximation is 2.0746
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Our exact value is 2.1170

With an error of 0.0424.

t = 1.00

alpha = 0.005009

Our approximation is 2.5707

Our exact value is 2.7183

With an error of 0.1476.

Would you like to run again?

Please type ’y’ or ’n’.

y

Please enter the amount of noise.

This is sigma in our problem.

Sigma must be > 0 and < 1.

.0001

Please enter the number of partitions.

32

Iteration count = 395

Alpha tolerance = 9.989e-007

Phi tolerance = 3.427e-007

Our sigma is: 0.0001

The number of partitions is: 32

t = 0.00

alpha = 0.001159

Our approximation is 1.0134

Our exact value is 1.0000

With an error of -0.0134.

t = 0.25

alpha = 0.001159

Our approximation is 1.3033

Our exact value is 1.2840

With an error of -0.0193.

t = 0.50
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alpha = 0.001159

Our approximation is 1.6625

Our exact value is 1.6487

With an error of -0.0138.

t = 0.75

alpha = 0.001159

Our approximation is 2.1076

Our exact value is 2.1170

With an error of 0.0094.

t = 1.00

alpha = 0.001159

Our approximation is 2.6593

Our exact value is 2.7183

With an error of 0.0589.

Would you like to run again?

Please type ’y’ or ’n’.

n
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