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SIGN PATTERN MATRICES THAT REQUIRE ALMOST UNIQUE RANK

by

ASSEFA D. MERID

Under the Direction of Drs. Frank J. Hall and Zhongshan Li

Abstract

A sign pattern matrix is a matrix whose entries are from the set {+,−, 0}. For

a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each

positive (respectively, negative, zero) entry of B by + (respectively, −, 0). For a

sign pattern matrix A, the sign pattern class of A, denoted Q(A), is defined as

{B : sgn(B) = A }. The minimum rank mr(A) (maximum rank MR(A)) of a sign

pattern matrix A is the minimum (maximum) of the ranks of the real matrices in

Q(A). Several results concerning sign patterns A that require almost unique rank,

that is to say, the sign patterns A such that MR(A) = mr(A)+1 are established. In

particular, a complete characterization of these sign patterns is obtained. Further,

the results on sign patterns that require almost unique rank are extended to sign

patterns A for which the spread is d = MR(A)−mr(A) ≥ 2.

Keywords: Sign pattern matrix; Minimum rank; Maximum rank; L-matrix; Re-

quires unique rank; Requires almost unique rank; Spread
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1. Introduction

In qualitative and combinatorial matrix theory, we study properties of a matrix

based on combinatorial information, such as the signs of entries in the matrix.

Such approach originated from the work in the 1940’s of the Nobel Economics

Prize winner P.A. Samuelson, as described in his seminal book Foundations of

Economic Analysis [12] in 1947. Due to its theoretical importance and applications

in economics, biology, chemistry, sociology and computer science, qualitative and

combinatorial matrix analysis flourished in the past few decades. R. Brualdi and

B. Shader summarized and organized some of the research in this area in their 1995

book Matrices of Sign-solvable Linear Systems [3].

A matrix whose entries come from the set {+,−, 0} is called a sign pattern

matrix. We denote the set of all n × n sign pattern matrices by Qn, and more

generally, the set of all m× n sign pattern matrices by Qm,n. For a real matrix B,

sgn(B) is the sign pattern matrix obtained by replacing each positive (respectively,

negative, zero) entry of B by + (respectively, −, 0). If A ∈ Qm,n, then the sign

pattern class of A is defined by

Q(A) = {B : sgn(B) = A}.

For A ∈ Qm,n , the minimum rank of A, denoted as mr(A), is defined by

mr(A) = min {rank B : B ∈ Q(A)}.

The maximum rank of A, MR(A), is given by

MR(A) = max {rank B : B ∈ Q(A)}.

The minimum rank of a sign pattern is not only of interest theoretically, it is

also of practical value. For instance [5] is devoted to the question of constructing
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real m×n matrices of low rank under the constraint that each entry is nonzero and

has a given sign. This problem arises from an interesting topic in neural networks

or, more specifically, multilayer perceptrons. In this application, the rank of a

realization matrix can be interpreted as the number of elements in a hidden layer,

which motivates a search for low rank solutions.

The characterization of the mr(A) (or finding mr(A)) for a general m× n sign

pattern matrix A is difficult and is a long outstanding problem. However, the

MR(A) is easily described (see Chapter 2).

A sign pattern matrix S is called a permutation pattern if exactly one entry in

each row and column is equal to +, and all the other entries are 0. A product of the

form STAS, where S is a permutation pattern, is called a permutational similarity.

We say that A and ST AS are permutationally similar. Two sign pattern matrices A1

and A2 are said to be permutationally equivalent if there are permutation patterns

S1 and S2 such that A1 = S1A2S2.

A diagonal sign pattern D is called a signature sign pattern if each of its diagonal

entries is either + or −. For a signature sign pattern D and a sign pattern A of

the same order, we say that DAD and A are signature similar. Two sign patterns

A1 and A2 are said to be signature equivalent if A1 = D1A2D2 for some signature

sign patterns matrices D1 and D2.

If A = [aij] is an n × n sign pattern matrix, then a formal product of the

form γ = ai1i2ai2i3 . . . aiki1 , where each of the elements is nonzero and the index

set {i1, i2, . . . , ik} consists of distinct indices, is called a simple cycle of length k,

or a k-cycle, in A. A composite cycle γ in A is a product of simple cycles, say

γ = γ1γ2 . . . γm, where the index sets of the γi’s are mutually disjoint. If the length

of γi is li, then the length of γ is
∑m

i=1 li. If we say a cycle γ is an odd (respectively

even) cycle, we mean that the length of the simple or composite cycle γ is odd

(even). In this thesis, the term cycle always refers to a composite cycle (which as
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a special case could be a simple cycle).

Let A = (aij) be an n×n sign pattern matrix. The digraph of A, denoted D(A),

is the directed graph with vertex set {1, 2, . . . , n} such that (i, j) is an arc of D(A)

iff aij 6= 0. The (undirected) graph of A, denoted G(A), is the graph with vertex

set {1, 2, . . . , n} such that {i, j} is an edge of G(A) iff at least one of the entries aij

and aji is nonzero.

An undirected graph G is a tree if it is connected and has no cycles (thus G is

minimally connected). For a symmetric n×n sign pattern A, by G(A) we mean the

undirected graph of A, with vertex set {1, . . . , n} and {i, j} is an edge iff aij 6= 0.

A sign pattern A is a symmetric tree sign pattern if A is symmetric and G(A) is a

tree, possibly with loops.

Suppose P is a property referring to a real matrix. A sign pattern A is said

to require P if every matrix in Q(A) has property P ; A is said to allow P if

some real matrix in Q(A) has property P. A sign pattern A ∈ Qn is said to be sign

nonsingular (SNS for short) if every matrix B ∈ Q(A) is nonsingular. It is well

known that, A is sign nonsingular if and only if det A = + or detA = −, that is, in

the standard expansion of det A into n! terms, there is at least one nonzero term,

and all the nonzero terms have the same sign. Note that a nonzero term in such

expansion of det A corresponds to a cycle of length n in A. It is also known that

if all the diagonal entries of A are negative, then A is sign nonsingular iff every

simple cycle in A has negative weight (namely, the product of the entries in the

simple cycles is negative).

An m × n, where m ≤ n, sign pattern matrix A is said to be an L-matrix if

every real matrix B ∈ Q(A) has linearly independent rows (see [3]). It is known

(see Theorem 3.5 (i)) that A is an L-matrix iff for every nonzero diagonal pattern

D, DA has a unisigned column (that is, a nonzero column that is nonnegative or

nonpositive).



4

In this thesis, we establish several results concerning sign patterns A that require

almost unique rank, that is to say, the sign patterns A such that MR(A) = mr(A)+1.

In particular, we obtain a complete characterization of these sign patterns. Further,

we extend the results on sign patterns that require almost unique rank to sign

patterns A for which the spread is d = MR(A)−mr(A) ≥ 2.
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2. Some Basic Results

Let H and K be m× n matrices, with rank K = 1. Then

rank (H + K) ≤ rank H + rank K = rank H + 1,

so that

rank (H + K) ≤ rank H + 1.

Next, since H = (H + K)−K, we have that

rank H = rank [(H+K)−K] ≤ rank (H+K) + rank (−K) = rank (H+K) + 1.

So, rank H − 1 ≤ rank(H + K). Thus,

rank H − 1 ≤ rank (H + K) ≤ rank H + 1.

that is to say, a rank 1 perturbation of a matrix H does not change the rank of H

by more than 1.

Now, let A be an m × n sign pattern, with B, C ∈ Q(A), where rank B =

mr(A), rank C = MR(A). By successively replacing only one column of B by the

corresponding column of C, we obtain a sequence of matrices

B0 = B, B1, B2, . . . , Bn = C

in Q(A), where

rank (Bj−1) − 1 ≤ rank Bj ≤ rank Bj−1 + 1.

Hence, the set of ranks

{rank B1, rank B2, . . . , rank Bt}

covers all the ranks between rank B1 and rank Bt. Thus, we have the following

result, which was proved first by C.R. Johnson.
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Proposition 2.1. Let A be an m × n sign pattern matrix. Then all of the inter-

mediate ranks between mr(A) and MR(A) can be achieved by suitable matrices in

Q(A).

Unlike the minimum rank of a sign pattern matrix, the maximum rank is con-

ceptually clear. We next give some characterizations of the maximum rank.

Proposition 2.2. Let A be an m × n sign pattern matrix. Then MR(A) is the

maximum number of nonzero entries of A with no two of the nonzero entries in the

same row or in the same column.

Proof. Let s be the maximum number of nonzero entries of A with no two of

the nonzero entries in the same row or in the same column, t = MR(A) and

q = min{m, n}. By assigning values of q or −q to entries on some generalized

diagonal of length s, while assigning values of 1 or −1 to the other nonzero entries

of A, we obtain a matrix B ∈ Q(A) with an s × s submatrix that has a strictly

dominant generalized diagonal. (A generalized diagonal yields a composite cycle

length s.) Since this matrix must be nonsingular, we have

s ≤ rank B ≤ MR(A) = t,

so that s ≤ t.

Next, let C ∈ Q(A) with t = MR(A) = rank C. Then C has a nonsingular t× t

submatrix and hence a generalized diagonal of length t. This means that C (and

hence A) has t nonzero entries with no two of the nonzero entries in the same row

or in the same column. Hence, t ≤ s. Combined with s ≤ t, we get s = t.

The maximum number of nonzero entries of A with no two of the nonzero entries

in the same row or column is also known as the term rank of A. This leads to the

famous fundamental minimax theorem of Konig (1936). This theorem has a long

history and many ramifications. The theorem deals exclusively with properties of
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a (0, 1)-matrix that remain invariant under arbitrary permutations of the lines of

the matrix. The following statement of Konig’s theorem and its proof are adapted

from [2]. Note that the maximum number of nonzero entries of A with no two of

the nonzero entries in the same row or column is the same as the maximal number

of 1’s in A with no two of the 1’s on a line.

Theorem 2.3. Let A be a (0, 1)-matrix of size m × n. The minimal number of

lines in A that cover all of the 1’s in A is equal to the maximal number of 1’s in A

with no two of the 1’s on a line.

Proof. We use induction on the number of lines in A. The theorem is valid for

m = 1 or n = 1. Hence we take m > 1 and n > 1. We let p′ equal the minimal

number of lines in A that cover all of the 1’s in A, and let p equal the the maximal

number of 1’s in A with no two of the 1’s on a line. We may conclude at once from

the definitions of p and p′ that p ≤ p′. Thus it suffices to prove that p ≥ p′. A

minimal covering of the 1’s of A is called proper provided that it does not consist

of all m rows of A or of all n columns of A. The proof the theorem splits in to two

cases.

In the first case we assume that A does not have a proper covering. It follows

that we must have p′ = min{m, n}. We permute the lines of A so that the matrix

has a 1 in the (1, 1) position. We delete row 1 and column 1 of the permuted matrix

and denote the resulting matrix of size (m − 1) × (n − 1) by A′. The matrix A′

cannot have a covering composed of fewer than p′ − 1 = min{m − 1, n − 1} lines

because such a covering composed of A′ plus the deleted lines would yield a proper

covering for A. We now apply the induction hypothesis to A′ and this allows us to

conclude that A′ has p′ -1 1’s with no two of the 1’s on aline. But then A has p′ 1’s

with no two of the 1’s on a line and it follows that p ≥ p′.

In the second case we assume that A has a proper covering composed of e rows

and f columns where p′ = e + f . We permute lines of A so that these e rows and
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f columns occupy the initial positions. Then our permuted matrix assumes the

following form [
∗ A1

A2 0

]
.

In this decomposition 0 is a zero matrix of size m − e × n − f. The matrix A1

has e rows and cannot be covered by fewer than e lines and the matrix A2 has

columns and cannot covered fewer than f lines. This is the case because otherwise

we contradict the fact that p′ = e + f is the minimal number of lines in A that

cover all of the 1’s on A. We may apply the induction hypothesis to both A1 and

A2 and this allows us to conclude that p ≥ p′.

Theorem 2.4. Let A be a sign pattern with r = MR(A). Then there exist permu-

tation patterns P1 and P2 such that

P1AP2 =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r. Furthermore, MR(Y ) = k,

MR(Z) = r − k, MR([X Y ]) = k, and MR

([
X
Z

])
= r − k.

Proof. Since r = MR(A), by Theorem 2.3 we know that there are r lines that

cover all nonzero entries of A. So, we can say that there are k rows and r − k

columns that cover all of the nonzero entries of A, for some k with 0 ≤ k ≤ r. We

can then permute these k rows up and the r − k columns to the left. Thus, there

exist permutation patterns P1 and P2 such that

P1AP2 =

[
X Y
Z 0

]
,

where X is k×(r−k), for some k with 0 ≤ k ≤ r. Since Y has k rows, MR(Y ) ≤ k.

Assume that MR(Y ) < k Then rank(B2) < k for any matrix B2 ∈ Q(Y ). Hence,

any matrix [
B1 B2

B3 0

]
∈ Q(P1AP2)
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has rank < (r − k) + k = r. But, r = MR(A) = MR(P1AP2). We then have a

contradiction. Thus, MR(Y ) = k.

The proofs of the other three parts are similar.
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3. L-matrices

Let A be an m×n sign pattern matrix. Recall that A is an L- matrix if and only

if every matrix in the qualitative class Q(A) has linearly independent rows. If A is

an L-matrix, then every matrix obtained from A by appending column vectors is

also an L-matrix. If A is an L-matrix and each of the m by n−1 matrices obtained

from A by deleting a column is not an L-matrix, then A is called a barely L-matrix.

Thus a barely L-matrix is an L-matrix in which every column is essential. If A is

an L-matrix, then we can obtain a barely L-matrix by deleting certain columns of

A. An SNS-matrix, that is, a square L-matrix, is a barely L-matrix. But there are

barely L-matrices which are not square.

As we shall see throughout this thesis research, L-matrices form a rich and dif-

ficult class of matrices. The subclass of L-matrices for which one can assert the

linear independence of rows solely on the basis of the zero pattern has a simple

characterization. Clearly, an m × n matrix which has an invertible (namely SNS)

triangular submatrix of order m is an L-matrix. These matrices and their permu-

tations are the only matrices A for which one can conclude that A is an L-matrix

knowing only the zero pattern of A.

Example 3.1 Let

A =




+ + + −
+ + − +
+ − + +


 .

Then A is an L-matrix. Let B be a matrix in Q(A). The sign pattern A implies

that no row of B is a multiple of another row. Every 3 × 1 (+,−) sign pattern is

the sign pattern of some column of A or its negative. It follows that no nontrivial
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linear combination of the rows of B equals zero, hence the rows of B are linearly

independent.

More generally, it is shown in [3] that an m × n (+,−) sign pattern A is an

L-matrix iff for every m× 1 (+, −) sign pattern vector x, at least one of x and −x

is a column in A (and thus n ≥ 2m−1).

If A is an L-matrix, then AT is an L-matrix if and only if A is square. A signing

of order k is a nonzero diagonal sign pattern matrix of order k. A strict signing

is a signing that is invertible (namely, SNS). Let D = diag(d1, d2, . . . , dk) be a

signing of order k with diagonal entries d1, d2, . . . , dk. If k = m, then the matrix

DA is a row signing of the matrix A, and if D is a strict signing , then DA is a

strict row signing of A. If k = n then the matrix AD is a column signing of the

matrix A, and if D is a strict signing, then AD is a strict column signing of A.

A signing D̃ = diag(d′
1, d

′
2, . . . , d

′
k) is an extension of the signing D provided that

di 6= 0 ⇒ d′
i = di. A vector is said to be balanced provided either it is a zero

vector or it has both a positive entry and a negative entry. A vector v is said to be

unisigned provided that it is not balanced. Thus v is unisigned iff v 6= 0 and the

nonzero entries of v have the same sign. A balanced row signing of the matrix A is

a row signing of A in which all columns are balanced. A balanced column signing

of A is a column signing of A in which all rows are balanced.

Let v1, v2, . . . , vk be n× 1 (or 1×n) sign pattern matrices (which may be called

sign pattern vectors). Let S = {v1, v2, . . . , vk}. We say that S is weakly dependent

if

c1v1 + c2v2 + · · ·+ ckvk
c←→ 0,

where ci ∈ {+,−, 0}, (1 ≤ i ≤ k) and at least one of the ci is nonzero, and
c↔ de-

notes compatibility of two generalized sign patterns, see [6]. The set S of (+,−, 0)

vectors is said to be strongly independent if it is not weakly dependent.
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Theorem 3.2. An m×n sign pattern has m strongly independent rows if and only

if A is an L-matrix.

Proof. (=⇒) Assume that A is not an L-matrix. Then there exists B ∈ Q(A)

whose rows are linearly dependent. Permuting the rows of B (denoted B1, . . . , Bm)

if necessary, we may assume that the rows have a dependence relation of the form

d1B1 + d2B2 + · · ·+ dmBm = 0,

where d1 > 0. Setting ci = sgn(di) and Ai = sgn(Bi) for all 1 ≤ i ≤ m, we then

have

c1A1 + c2A2 + · · ·+ cmAm
c←→ 0,

namely, the m rows of A are weakly dependent.

(⇐=) Assume that the rows of A are weakly dependent. Then

c1A1 + c2A2 + · · ·+ cmAm
c←→ 0,

where ci ∈ {+,−, 0}. By permuting the rows of A if necessary, we may assume

that c1 = c2 = · · · = cp = +, cp+1 = · · · = cp+q = −, and cp+q+1 = · · · = cm = 0,

where 1 ≤ p ≤ m and 0 ≤ q ≤ m− p. Thus we have

(c1A1 + c2A2 + · · ·+ cpAp) + (cp+1Ap+1 + · · ·+ cp+qAp+q)
c←→ 0.

By concentrating on each component individually, we can find Bi ∈ Q(Ai) for

1 ≤ i ≤ p + q such that

(B1 + B2 + · · ·+ Bp)− (Bp+1 + · · ·+ Bp+q) = 0.

Thus every matrix B ∈ Q(A) with the first p+q rows satisfying the above equation

have linearly dependent rows. Therefore, A is not an L-matrix.
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Corollary 3.3. Let A be a sign pattern matrix. Let M be any submatrix of A of

size m1×n1 such that the rows of M are strongly independent. Then m1 ≤ mr(A).

In particular, the maximum number of strongly independent rows of A, denoted

mR(A), satisfies mR(A) ≤ mr(A). Similarly, the maximum number of strongly

independent columns of A, denoted mC(A), satisfies mC(A) ≤ mr(A).

Corollary 3.4. Let A be a square sign pattern. Then the rows of A are strongly

independent ⇐⇒ the columns of A are strongly independent ⇐⇒ A is sign nonsin-

gular (SNS).

Theorem 3.5. Let A be an m× n sign pattern matrix. Then

(i). A is an L-matrix if and only if every row signing of A contains a unisigned

column.

(ii). A is a barely L-matrix if and only if A is an L-matrix and for each i =

1, 2, . . . , n, there is a row signing of A for which column i is the only unisigned

column.

Proof. First assume that there is a signing D such that every column of DA is

balanced. This implies that there exists a matrix B in Q(A) such that each of the

column sums of DB equals zero. Hence the rows of B are linearly dependent and

A is not an L-matrix. Now assume that A is not an L-matrix. Then there is a

matrix B ∈ Q(A) whose rows are linearly dependent. Hence there exists a nonzero

diagonal matrix E = diag(e1, e2, . . . , em) such that (e1, e2, . . . , em)B = 0. Let E ′ be

the signing obtained from E by replacing ei by their signs. Then each column of

E ′A is balanced. Therefore (i) holds.

We now prove that (ii) holds. Assume that A is barely L-matrix. Then A is an

L-matrix and by (i) every row signing of A contains a unisigned column. Let i be an
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integer with 1 ≤ i ≤ n. The matrix Ai obtained from A by deleting column i is not

an L-matrix and hence by (i) there is a balanced row signing DAi of Ai. It follows

that the column i is the only unisigned column of DA. Conversely, assume that A

is an L-matrix and for each i = 1, 2, . . . , n, there is a row signing of A for which

column i is the only unisigned column. Then for each i, the matrix Ai obtained

from A by deleting column i has a balanced row signing, and it follows from (i)

that Ai is not an L-matrix. Thus A is a barely L-matrix.

Let

A =

[
B1 0
B3 B2

]
.

be an m × n matrix. If B1 and B2 are L-matrices, then A is also an L-matrix.

Conversely, if A is an L-matrix, then B1 is an L-matrix but B2 is not necessarily

an L-matrix. If A is a barely L-matrix and B1 and B2 are L-matrices, then B1 and

B2 are barely L-matrices.

For example,

A =




+ + + 0 0
− + + + +
0 − + + +




is an L-matrix (it has an SNS submatrix of order 3) but A[{2, 3}, {4, 5}] is not an

L-matrix.
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4. Sign Patterns That Require a Fixed Rank

In this section we investigate the sign patterns A such that the minimum rank

and the maximum rank are equal, that is to say, mr(A) = MR(A). In this case,

we say that A requires a fixed rank. More specifically, if mr(A) = MR(A) = k, we

say that A requires the fixed rank k. Obviously, if A or AT is an L-matrix, then A

requires a fixed rank.

Example 4.1. Let A be an m× n L-matrix with m < n. Then the sign pattern

Ã =

[
AT 0
0 A

]

requires the fixed rank 2m. However, neither Ã nor ÃT is an L-matrix.

The symmetric tree sign patterns which require unique inertia are characterized

in [8]. These are precisely the symmetric tree sign patterns A which require fixed

rank. In particular, when a symmetric tree sign pattern A has zero diagonal (G(A)

has no loops), we have the following result which may be found in [4].

Theorem 4.2. A symmetric tree sign pattern A with zero diagonal requires the

unique rank 2t, where t is the maximum number of independent edges in the tree

G(A).

Thus, corresponding to every tree T , there exist tree sign patterns A such that

A requires a fixed rank and G(A) = T .

The above examples of sign patterns that require a fixed rank indicate that the

structure of sign patterns that require a fixed rank can be very diverse. However,

a beautiful and unifying characterization of sign patterns that require a fixed rank

is the following result by Hershkowitz and Schneider [9].
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Theorem 4.3. Let A be an m × n sign pattern matrix. Then A requires the

fixed rank r [namely, mr(A) = MR(A) = r] if and only if there exist nonnegative

integers e and f with e + f = r and permutation sign patterns P and Q such that

PAQ has the form [
X 0
Z Y

]
, (*)

where Z is an e× f matrix and XT and Y are L-matrices.

Proof. First assume that A requires the fixed rank r. Then r is the term rank of

A, and by Konig’s theorem (see Theorem 2.3) we may assume that A has the form

(*) where X is an (m− e)× f matrix with term rank f , Y is an e× (n− f) matrix

with term rank e, and r = e + f . Since Y is e × (n − f), each matrix in Q(Y )

has at most e linearly independent columns, and since each matrix in Q(A) has

exactly r linearly independent columns, each matrix in Q(Y ) has exactly e linearly

independent columns. It follows that the rows of each matrix in Q(Y ) are linearly

independent and hence that Y is an L-matrix. It can be shown similarly that XT

is an L-matrix.

Conversely, assume that A has the form (*) where Z is an e × f matrix with

e + f = r, and XT and Y are L-matrices. Then

MR(A) ≤ MR

([
X
Z

])
+ MR(Y ) ≤ f + e = r.

On the other hand, it can be seen that

mr(A) ≥ mr(X) + mr(Y ) = f + e = r.

Therefore, mr(A) = MR(A) = r.
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5. Sign Patterns That Require

Almost Unique Rank

We now investigate sign patterns A that require almost unique rank, namely,

MR(A) = mr(A) + 1. Let r = MR(A). In view of Theorem 2.4, without loss of

generality, we may assume that A has the block form

A =

[
X Y
Z 0

]
,

where X is k × (r − k) for some k, 0 ≤ k ≤ r. Therefore, in the remainder of this

thesis, we will assume that A has the above block form.

Theorem 5.1. Suppose that A is a sign pattern with r = MR(A) and

A =

[
X Y
Z 0

]
,

where X is k × (r − k) for some k, 0 ≤ k ≤ r. Then

(a). If ZT is an L-matrix and MR(Y ) = mr(Y ) + 1, then MR(A) = mr(A) + 1.

(b). If Y is an L-matrix and MR(Z) = mr(Z) + 1, then MR(A) = mr(A) + 1.

Proof. We prove only (a); the proof of (b) is similar and is omitted. It is clear

from r = MR(A) and X is k× (r− k) that MR(Y ) = k, (see Theorem 2.4), so that

mr(Y ) = k − 1. Since ZT is an L-matrix, mr(Z) = r − k. Hence,

mr(A) ≥ mr(Z) + mr(Y ) = r − 1.

By taking a real matrix B2 ∈ Q(Y ) with rank(B2) = k − 1, combined with any

B1 ∈ Q(X) and B3 ∈ Q(Z), we obtain a matrix

B =

[
B1 B2

B3 0

]
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in Q(A) with rank(B) ≤ (r − k) + (k − 1) = r − 1. Since mr(A) ≥ r − 1, we must

have rank(B) = r − 1 and hence, mr(A) = r − 1.

A natural question arises. Suppose that A is a sign pattern with MR(A) =

mr(A) + 1 = r, and

A =

[
X Y
Z 0

]
,

where X is k × (r − k) for some k with 0 ≤ k ≤ r. Does it follow that either Y

or ZT is an L-matrix? Examples show that the answer to this question is no. For

instance,

A =




+ 0 + +
0 + + +
+ + 0 0
+ + 0 0


 =

[
X Y
Z 0

]

satisfies MR(A) = mr(A) + 1 = 4, yet neither Y nor ZT is an L-matrix.

Theorem 5.2. Let A be a sign pattern with r = MR(A) = mr(A) + 1 and

A =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r. Then

MR(Y ) ≤ mr(Y ) + 1, (1)

and

MR(Z) ≤ mr(Z) + 1. (2)

Proof. Assume that MR(Y ) > mr(Y ) + 1. Note that MR(Y ) = k holds since

MR(A) = r. Then there exists a real matrix B2 in Q(Y ) with rank(B2) ≤ k − 2.

For any B1 ∈ Q(X) and B3 ∈ Q(Z), we get

rank

([
B1 B2

B3 0

])
≤ (r − k) + (k − 2) = r − 2.

This contradicts mr(A) = r − 1. Thus, MR(Y ) ≤ mr(Y ) + 1. Similarly, we have

MR(Z) ≤ mr(Z) + 1.
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In other words, if A requires almost unique rank, then each of the two blocks

Y and Z requires unique rank or requires almost unique rank. The converse of

Theorem 5.2 is not true. For example, with

A =




+ + + +
+ + + +
+ + 0 0
+ + 0 0


 =

[
X Y
Z 0

]
,

we have MR(Y ) ≤ mr(Y ) + 1, MR(Z) ≤ mr(Z) + 1, and yet MR(A) 6= mr(A) + 1

(4 6= 2 + 1). As a result of the above, we raise a question as to what further

conditions beyond (1) and (2) do we need to guarantee that MR(A) = mr(A) + 1?

We next strengthen the necessary conditions given in Theorem 5.2.

Theorem 5.3. Let A be a sign pattern with r = MR(A) and

A =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r. If A requires almost unique

rank, then Y or Z requires almost unique rank.

Proof. Suppose A is a sign pattern matrix with MR(A) = mr(A) + 1 and

A =

[
X Y
Z 0

]
,

where X is k× (r− k), for some k with 0 ≤ k ≤ r. Then by Theorem 5.2, we have

MR(Y ) ≤ mr(Y ) + 1

and

MR(Z) ≤ mr(Z) + 1.

If we have both

MR(Y ) = mr(Y )
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and

MR(Z) = mr(Z),

then MR(A) = mr(A) by Theorem 4.3, which contradicts MR(A) = mr(A)+1. So,

either MR(Y ) = mr(Y ) + 1 or MR(Z) = mr(Z) + 1.

Theorem 5.4. Let A be sign pattern with r = MR(A) = mr(A) + 1, and

A =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r. Then

(a). If MR(Y ) = mr(Y ) + 1, then MR

([
X
Z

])
= mr

([
X
Z

])
.

(b). If MR(Z) = mr(Z) + 1, then MR
([

X Y
])

= mr
([

X Y
])

.

Proof. To prove (a), observe that clearly, MR

([
X
Z

])
≥ MR(Z) = r − k. Then

MR

([
X
Z

])
= r − k (as seen in Theorem 2.4 ).

Suppose that mr

([
X
Z

])
< r−k. Then, there exists a matrix

[
B1

B3

]
∈ Q

([
X
Z

])

with rank

([
B1

B3

])
≤ r − k − 1.

Since mr(Y ) = k− 1, there is a matrix

[
B2

0

]
∈ Q

([
Y
0

])
with rank

([
B2

0

])
=

k − 1. Then, [
B1 B2

B3 0

]
∈ Q(A)

satisfies

rank

([
B1 B2

B3 0

])
≤ (r − k − 1) + (k − 1) = r − 2,

which contradicts mr(A) = r − 1. The proof of (b) is similar.

Theorems 5.3 and 5.4 yield the following result.

Theorem 5.5. Let A be sign pattern with r = MR(A) = mr(A) + 1, and

A =

[
X Y
Z 0

]
,
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where X is k × (r − k), for some k with 0 ≤ k ≤ r. Then either

(a). MR(Y ) = mr(Y ) + 1 and MR

([
X
Z

])
= mr

([
X
Z

])
, or

(b). MR(Z) = mr(Z) + 1 and MR
([

X Y
])

= mr
([

X Y
])

.

We now establish further sufficient conditions for a sign pattern to require almost

unique rank.

Theorem 5.6. Let A be a sign pattern with r = MR(A) and

A =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r. Suppose

(a). MR(Y ) = mr(Y ) + 1,

[
X
Z

]T

is an L-matrix, and

col(B)
⋂

col(C) = {0}, for all B ∈ Q

([
X
Z

])
and C ∈ Q

([
Y
0

])
,

or

(b). MR(Z) = mr(Z) + 1, [X Y ] is an L-matrix, and

row(B)
⋂

row(C) = {0}, for all B ∈ Q
([

X Y
])

and C ∈ Q
([

X 0
])

.

Then MR(A) = mr(A) + 1.

Proof. Assume that (a) holds. Every matrix B ∈ Q

([
X
Z

])
has r − k linearly

independent columns. Also, every matrix C ∈ Q

([
Y
0

])
has at least k− 1 linearly

independent columns, since k = MR(Y ) = mr(Y ) + 1. Then for every matrix

[B C] ∈ Q(A), we have

dim(col
([

B C
])

= dim(col(B) + col(C))
= dim(col(B)) + dim(col(C))− dim(col(B) ∩ col(C))
≥ (r − k) + (k − 1)− 0
= r − 1.
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Therefore, mr(A) ≥ r − 1.

Choose a specific C ∈ Q

([
Y
0

])
with rank(C) = k− 1 and let B ∈ Q

([
X
Z

])
.

Then, similarly as above, it can be shown that rank ([B C]) = r − 1. Hence,

mr(A) = r − 1 = MR(A)− 1.

By a parallel argument, it can be shown that if (b) holds, then we also have

mr(A) = r − 1 = MR(A)− 1.

Theorems 5.1 through 5.6 have generalizations (as done in Section 6) from sign

patterns that require almost unique rank to sign patterns A for which MR(A) −

mr(A) = d ≥ 2. The column (row) space conditions in Theorem 5.6 need to

be weakened appropriately to obtain necessary and sufficient conditions for a sign

pattern A to require almost unique rank.

Theorem 5.7. Let A be sign pattern with r = MR(A), and

A =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r. Then MR(A) = mr(A) + 1 iff

(a′). MR(Y ) = mr(Y ) + 1, MR

([
X
Z

])
= mr

([
X
Z

])
, mr(Z) ≥ MR(Z) − 1,

and col(B)
⋂

col(C) = {0}, for all B ∈ Q

([
X
Z

])
and C ∈ Q

([
Y
0

])
with

rank(C) = k − 1, or

(b′). MR(Z) = mr(Z) + 1, MR
([

X Y
])

= mr
([

X Y
])

, mr(Y ) ≥ MR(Y ) − 1,

and row(B)
⋂

row(C) = {0}, for all B ∈ Q
([

X Y
])

and C ∈ Q
([

X 0
])

with

rank(C) = k − 1.

Proof. (=⇒). From theorem 5.2, we have both mr(Z) ≥ MR(Z)−1 and mr(Y ) ≥

MR(Y )−1. By Theorem 5.5, we have (a) or (b) of Theorem 5.5. Suppose (a) holds

and the column condition of (a′) does not hold. Then we have col(B)
⋂

col(C) 6=
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{0}, for some B ∈ Q

([
X
Z

])
and C ∈ Q

([
Y
0

])
with rank(C) = k − 1. Hence,

dim(col
([

B C
])

= dim(col(B) + col(C))
= dim(col(B)) + dim(col(C))− dim(col(B) ∩ col(C))
≤ (r − k) + (k − 1)− 1
= r − 2.

Since
[
B C

]
∈ Q(A), mr(A) ≤ r − 2, contradicting mr(A) = r − 1. Thus, the

column condition in (a′) holds. Similarly, if Theorem 5.5 (b) holds, then we have

(b′).

(⇐=). Assume (a′). Let [B C] ∈ Q(A) and B =

[
B1

B2

]
.

If rank(C) = k−1, then by the intersection condition of (a′), we get rank([B C])=

rank (B)+ rank(C) = (r − k) + (k − 1) = r − 1.

If rank(C) = k and mr(Z) = r − k − 1, then for any v ∈ col(B), v is a

linear combination of the columns of B =

[
B1

B2

]
. If, in addition, v ∈ col (C),

then since the null space of B2 is of dimension at most 1, the coefficients in

the linear combination of the columns of B are all multiples of one fixed vec-

tor. Thus, dim(col(B)
⋂

col(C)) ≤ 1. Hence, rank([B C])= rank (B)+ rank(C)−

dim(col(B)
⋂

col(C)) ≥ rank(B) + rank(C)− 1 ≥ (r − k) + k − 1 = r − 1.

If rank(C) = k and mr(Z) = r − k, then since the null space of B2 has a

dimension 0, we see that col(B)
⋂

col(C) = {0}. Thus, rank([B C])= rank (B)+

rank(C) = (r − k) + k = r ≥ r − 1.

Combining the above cases, we see that mr(A) = r − 1 = MR(A)− 1.

Similarly, we can show that (b′) implies mr(A) = r − 1 = MR(A)− 1.

In [1], it was conjectured that the minimum rank of any sign pattern matrix A

can be achieved by a rational matrix B ∈ Q(A), and several classes of sign patterns

that do have this property were exhibited. Even though this conjecture does not

hold in general (see [11]), we now give another instance where rational realization

of the minimum rank does occur.
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Theorem 5.8. Let A be sign pattern with r = MR(A), and

A =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r. If MR(A) ≤ mr(A) + 1, then

there is a rational matrix B ∈ Q(A) attaining the minimum rank of A.

Proof. If A requires unique rank, then certainly every rational matrix B ∈ Q(A)

attains the minimum rank of A. Suppose that A does not require unique rank, so

that mr(A) = r − 1. Then Y or ZT is not an L-matrix by Theorem 4.3. Assume

that Y is not an L-matrix. Then it is well known (see Proposition 2.2 of [1]) that

there is a rational matrix Y ′ ∈ Q(Y ) such that rank(Y ′) ≤ k− 1. Let

[
X ′

Z ′

]
be any

rational matrix in Q

([
X
Z

])
. Then

rank

([
X ′ Y ′

Z ′ 0

])
≤ rank

([
X ′

Z ′

])
+ rank

([
Y ′

0

])
≤ (r − k) + (k − 1) = r − 1.

However, since mr(A) ≥ MR(A)− 1 = r − 1, we have

rank

([
X ′ Y ′

Z ′ 0

])
= r − 1.

Thus, we have a rational matrix in Q(A) attaining the minimum rank of A.

Similarly, if ZT is not an L-matrix, we can show that rational realization of the

minimum rank is achieved.

An open problem is the following: for any sign pattern matrix A, does the

condition MR(A) = mr(A) + 2 imply that there is a rational matrix B ∈ Q(A)

attaining the minimum rank of A?
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6. Sign Patterns with Spread d > 1

For sign pattern matrix A, the spread of A is defined as MR(A) − mr(A). In

this section, we present Theorems 6.1–6.6, which generalize Theorems 5.1–5.6, re-

spectively.

By replacing 1 with d in the proofs of Theorems 5.1 and 5.2, we obtain the

following two results.

Theorem 6.1. Suppose that A is a sign pattern with r = MR(A) and

A =

[
X Y
Z 0

]
,

where X is k × (r − k) for some k, 0 ≤ k ≤ r. Then

(a). If ZT is an L-matrix and MR(Y ) = mr(Y ) + d, then MR(A) = mr(A) + d.

(b). If Y is an L-matrix and MR(Z) = mr(Z) + d, then MR(A) = mr(A) + d.

Theorem 6.2. Let A be a sign pattern with r = MR(A) = mr(A) + d and

A =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r. Then,

MR(Y ) ≤ mr(Y ) + d, and

MR(Z) ≤ mr(Z) + d.

A generalization of Theorem 5.3 is more involved.

Theorem 6.3. Let A be a sign pattern with r = MR(A) = mr(A) + d and

A =

[
X Y
Z 0

]
,
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where X is k× (r− k), for some k with 0 ≤ k ≤ r. Let d1 = MR(Y )−mr(Y ) and

d2 = MR(Z)−mr(Z). Then d1 + d2 ≥ d.

Proof. If d > d1 + d2, then for every matrix B =

[
B1 B2

B3 0

]
∈ Q(A), we have

rank

([
B1 B2

B3 0

])
≥ rank(B2)+rank(B3) ≥ (k−d1)+(r−k−d2) = r−(d1+d2) >

r − d, contradicting mr(A) = r − d.

Remark: By Theorem 6.2, d1 ≤ d and d2 ≤ d.

Theorem 6.4. Let A be sign pattern with r = MR(A) = mr(A) + d, and

A =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r.

(a). If MR(Y ) = mr(Y ) + d, then MR

([
X
Z

])
= mr

([
X
Z

])
.

(b). If MR(Z) = mr(Z) + d, then MR
([

X Y
])

= mr
([

X Y
])

.

Proof. The proof is similar to the proof of Theorem 5.4.

The following generalization of Theorem 6.4 can also be viewed as a generaliza-

tion of Theorem 5.5. The proof is straightforward and hence is omitted.

Theorem 6.5. Let A be sign pattern with r = MR(A) = mr(A) + d, and

A =

[
X Y
Z 0

]
,

where X is k× (r− k), for some k with 0 ≤ k ≤ r. Let d1 = MR(Y )−mr(Y ) and

d2 = MR(Z)−mr(Z). Then

(a). MR

([
X
Z

])
≤ mr

([
X
Z

])
+ (d− d1), and

(b). MR
([

X Y
])
≤ mr

([
X Y

])
+ (d− d2).
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Note that when d = 1, then d = d1 = 1 or d = d2 = 1, so that Theorem 5.5 is a

special case of Theorem 6.5.

Theorem 6.6. Let A be sign pattern with r = MR(A) and

A =

[
X Y
Z 0

]
,

where X is k × (r − k), for some k with 0 ≤ k ≤ r. Suppose

(a). MR(Y ) = mr(Y ) + d,

[
X
Z

]T

is an L-matrix, and

col(B)
⋂

col(C) = {0}, for all B ∈ Q

([
X
Z

])
and C ∈ Q

([
Y
0

])
,

or

(b). MR(Z) = mr(Z) + d, [X Y ] is an L-matrix, and

row(B)
⋂

row(C) = {0}, for all B ∈ Q
([

X Y
])

and C ∈ Q
([

X 0
])

.

Then MR(A) = mr(A) + d.

Proof. The proof is similar to the proof of Theorem 5.6.

If d ≥ 2, then there are (d + 1)(d + 2)/2 choices for (d1, d2). Hence, there are

no straightforward generalizations of Theorem 5.7.
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