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ABSTRACT 

 

In this thesis we discuss how to find equivalent representations of polynomial functions 

over the ring of integers modulo a power of a prime. Specifically, we look for lower degree 

representations and representations with fewer variables for which important applications in 

electrical and computer engineering exist. We present several algorithms for finding these 

compact formulations.  
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1. INTRODUCTION

The high technology fields rely on the continued shrinking of electri-

cal circuits for the increase of computing power in an increasingly confined

space. Certain among these electrical circuits share a relationship with the

polynomials over the ring of integers modulo a power of a prime, that is, Zpα

[13]. Therefore, methods for “shrinking” polynomials over this ring provide

equivalent, but more compact, electrical circuits. “Shrinking” a polynomial

can take on the form of finding a lower degree polynomial whose associ-

ated polynomial function is equal to the polynomial function of the original

polynomial, or it can take the form of decreasing the number of variables of

a polynomial by means of linear substitutions, among other forms.

Section 2 deals with equating polynomial functions, and Sections 3

and 4 provides a numerical palliative for the problem of reducing the num-

ber of variables of a polynomial.

It should be noted that we will use some age-old notation. Specifically,

we will use Z to mean the set of integers, Zn is the set of integers modulo a

number n, and Z[x] is the ring of univariate polynomials over the integers,

or more generally if R is some commutative ring then R[x1, . . . ,xn] is the

ring of n-variable polynomials with coefficients in R.

1.1. Polynomials v. Polynomial Functions. One of the first steps of this

work must be to call up the difference between a polynomial and the func-

tion that it represents. This may sound needlessly nuanced, but the disparity

between the two ideas becomes annoyingly salient when one starts to work

over domains and ranges that are not necessarily the full set of integers.

In fact, much work (though not enough!) has been done explaining exactly
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what properties these polynomial functions have. For instance, see the work

of Chen [4, 5], Hungerbueler and Specker [9], Barghava [1], Frisch [6],

Wood [15], and Singmaster [14]. As the distinction will bear quite a bit of

weight in a good part of this work, we begin here:

You will remember that a single variable polynomial is an expression

of the type anxn + an−1xn−1 + · · ·+ a1x + a0 where the ai come from some

ring R. A multivariate polynomial can be seen in the same way, if we con-

sider R to be a polynomial ring itself. The important thing to remember is

that when we write about polynomials, we are writing about expressions,

the actual object with coefficients and variables, not the function it can rep-

resent.

Having recalled polynomials, we now define polynomial functions for

the cases that are pertinent to this work:

Definition 1.1. A function f : Z→ Zm is a polynomial function if there

exists a polynomial F ∈ Z[x] such that f (a) = F(a)+mZ for all a ∈ Z.

Notice that in this definition, we used the notation F(a)+ mZ which

denotes the coset of Z in which the integer F(a) is a member. One should

keep in mind that f , in the above definition, is actually mapping integers to

cosets, not integers to integers. We use this notation as opposed to hats and

such to clear up meaning, especially in the multi-variate case.

Definition 1.2. A function f : Zn→ Zm is also defined to be a polynomial

function if there exists a polynomial function f ′ : Z→ Zm such that f =

f ′ ◦ π where πn : Zn → Z is defined as πn(x + nZ) = a for all x ∈ Z and

a ∈ {0, . . . ,n−1} where x≡ a(mod n).
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Note that this definition involves functions that map cosets of Z to

cosets of Z. Note also that whereas every polynomial provides a polynomial

function, not every function is a polynomial function.

We can extend this definition to the case where the domain is more

complicated. First we will define the multi-variate function πn. Define

πn = π(n1,n2,...,nr) : Zn1×·· ·×Znr → Zr to be πn(x) = πn(x1 +n1Z, . . . ,xr +

nrZ) = (a1, . . . ,ar) for all x ∈ Zr and ai ∈ {0, . . . ,ni} and xi ≡ ai(mod ni)

for i = 1, . . . ,r.

Definition 1.3. A function f : Zr → Zm is a polynomial function if there

exists a polynomial F ∈ Z[x1, . . . ,xr] such that f (a) = F(a) + mZ for all

a ∈ Zr.

Definition 1.4. Finally, we would like to define a function f : Zn1 × ·· ·×

Znr → Zm to be a polynomial function if there exists a polynomial function

f ′ : Zr→ Zm such that f = f ′ ◦πn.

There are several different versions of the definition of polynomial

functions in papers by, for example, Chen [4, 5], Singmaster [14], and Bhar-

gava [1]. We will now provide the definition given by Chen in [4] and prove

the equivalence of notions.

Please note that we have altered the definition some to be precisely

correct, though the meaning has not changed.

Definition 1.5. A function f : Zn→ Zm is said to be a polynomial function,

if it is representable by a polynomial F ∈ Z[x], i.e.,

f (a+nZ) = F(a)+mZ for all a ∈ {0,1, . . . ,n−1}.

3



Theorem 1.6. The definition of a polynomial function by Chen is equivalent

to the definition given here.

Proof. Let f : Zn→ Zm, and let F ∈ Z[x] such that

f (a+nZ) = F(a)+mZ for all a ∈ {0,1, . . . ,n−1}.

Then let f ′ : Z→ Zm where f ′(a) = F(a) + mZ for all a ∈ Z. So for all

b ∈ Z we have:

f ′ ◦πn(b+nZ) = f ′ ◦πn(a+nZ) where b≡ a(mod n) and

a ∈ {0,1, . . . ,n−1}

= f ′(a) by definition of πn

= F(a)+mZ by definition of f ′

= f (a+nZ) by our assumption about f

= f (b+nZ) since a+nZ = b+nZ

Hence f = f ′ ◦πn.

Conversely, let f : Zn→Zm, and let F ∈Z[x] and f ′ : Z→Zm such that

f ′(b) = F(b)+mZ for all b∈Z and such that f = f ′◦πn. Then f (a+nZ) =

f ′ ◦π(a+nZ) = f ′(a) = F(a)+mZ for all a ∈ {0,1, . . . ,n−1}. �

In [5], Chen has a corresponding multi-variate definition of polyno-

mial functions. In order to prove the equivalence between our definitions,

one must make minor changes to the proof above.

We will deliver now one final definition before continuing to the next

section. This definition associates a set of polynomials to a polynomial

function.

Definition 1.7. Let F ∈ Z[x1, . . . ,xr], f : Zn1 × ·· · ×Znr → Zm, and f ′ :

Zr→Zm such that f and f ′ are polynomial functions with f = f ′◦πn where

4



n = (n1, . . . ,nr) and f ′(a) = F(a)+mZ for all a ∈ Zr. Then f is called the

polynomial function associated to F (from Zn1×·· ·×Znr to Zm). Likewise,

F is called a polynomial associated to f .

Example 1.8. Let F = x. Then the polynomial function associated to F

from Z2 to Z3 is defined by f (0 + 2Z) = F(0)+ 3Z = 0 + 3Z, and f (1 +

2Z) = F(1) + 3Z = 1 + 3Z. Alternatively, if we define f : Z2 → Z3 by

f (0) = 0 and f (1) = 1, then f is a polynomial function where F(x) = x is

one of its associated polynomials. Notice that G(x) = x2 is also one of its

associated polynomials.

1.2. Congruent v. Equivalent Polynomials. The reader may come upon

some trouble in the subsequent sections if they fail to remark upon the dif-

ferences between congruent polynomials and polynomials whose associated

polynomial functions are equal.

Borevich and Shafarevich [2] gave a very concise explanation of the

difference in question. We would be remiss if we paraphrased (aside from

some minor index changes to retain consistency):

“We write F(x1, . . . ,xr) ≡ G(x1, . . . ,xr)(mod p) and call the polyno-

mials F and G congruent, if the coefficient of corresponding terms on the

right and left sides are congruent modulo p. If for any set of values c1, . . . ,cr

we have F(c1, . . . ,cr)≡ G(c1, . . . ,cr)(mod p) then we write F ∼ G and call

F and G [functionally] equivalent. It is clear that if F ≡ G, then F ∼ G,

but...the converse is false.”

The following is an example of the ”converse is false” statement (i.e.

we now present a counter-example).
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Example 1.9. Let F = x(x + 1), and let us consider Z2. Well, it is clear

that F = x2 + x 6≡ 0 (mod 2), but we claim that F ∼ 0. Since F is equal to

a number times one plus that number, F(a) is even for all a ∈ Z. That is,

F(a)≡ 0 (mod 2) for all a ∈ Z. Hence F ∼ 0, but F 6≡ 0.

Notice that “∼” in the above quote actually is an equivalence relation

among polynomials. Let us prove this explicitly.

Definition 1.10. Let R[x1, . . . ,xr] be a polynomial ring in n variables. Then

we define (R[x1, . . . ,xr],∼,m,n) to be the following relation: Let F,G ∈

R[x1, . . . ,xn] and let f ,g : Zn→ Zm be polynomial functions associated to F

and G respectively. Then

F ∼ G ⇐⇒ f = g.

Theorem 1.11. The relation (R[x1, . . . ,xr],∼,m,n) is an equivalence rela-

tion.

Proof. In this proof we will use the notation S = R[x1, . . . ,xr] to save space.

Reflexivity: Let F ∈ S. Then there exists a polynomial function f :

Zn→ Zm associated to F . Now f = f =⇒ F ∼ F . So F ∼ F for all F ∈ S.

Symmetry: Let F,G ∈ S. Let f ,g : Zn→ Zm be two polynomial func-

tions associated to F and G respectively. Then F ∼G =⇒ f = g =⇒ g =

f =⇒ G∼ F .

Transitivity: Let F,G,H ∈ S. Let f ,g,h : Zn→ Zm be their respective

polynomial functions. Then F ∼ G and G∼ H =⇒ f = g and g = h =⇒

f = h =⇒ F ∼ H.

�

6



2. THE DELTA ALGORITHM

2.1. Introduction. In this section, we will describe an algorithm for check-

ing if a single-variate polynomial function vanishes. The algorithm works

by calculating the coefficients of the polynomial over a convenient basis,

that is, the basis of falling factorials ([12], pgs. 85-87). This method is

motivated by comments Singmaster made at the end of his paper [14] and

by the work of Chen [4]. First, we will describe Newton’s interpolation

polynomial and explain its utility in our program. We will then discuss the

work of Chen, which is used in the proofs. We will then present the main

result, which is a characterization of vanishing polynomials that uses the

aforementioned interpolation. We will end with an algorithm, based on this

result, that will test whether a polynomial vanishes.

It should be noted here that the work on the Delta Algorithm was de-

veloped during an intensive time of discussion and intellectual exchanges

between the author and his advisor and the several members of the Electrical

and Computer Engineering department at the University of Utah, including

Dr. Priyank Kalla and his graduate student assistants Namrata Shekhar and

Sivaram Gopalakrishnan.

We refer to the positive integers m and n throughout this section. They

are only used in the context of describing a polynomial function f : Zn→

Zm.

A polynomial F ∈ Z[x] is said to vanish from Zn to Zm (or simply to

vanish) when its associated polynomial function f : Zn → Zm is the zero

function.
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2.2. Newton’s Interpolation Polynomial. Given a polynomial F ∈ Z[x]

and its associated polynomial function f : Zn→ Zm we would like to rein-

terpret F in a way that would be more fitting for our purposes. Newton gave

us this reinterpretation in the form of a polynomial equivalent to our own

(found in many numerical methods books and mentioned in the last page of

[14]). In order to understand the formula for the interpolation we will first

need to discuss the forward difference.

2.3. Forward Difference. The forward difference is a discrete analog to

the derivative and is defined here by (∆F)(x) = F(x+1)−F(x). By iterat-

ing this operation we can derive higher orders of ∆. For instance (∆2F)(x) =

(∆F)(x + 1)− (∆F)(x). One immediately wonders about the general form

of the kth order of the forward difference. So we present here a well-known

formula with proof:

Proposition 2.1. The kth iteration of the forward difference can be ex-

pressed as

(2.1.1) (∆kF)(x) =
k

∑
i=0

(−1)i
(

k
i

)
F(k− i+ x).

Proof. This proof is by induction over k:

1. This works trivially for the zeroth order of the forward difference, i.e.

F0(x) = F(x).

2. Induction hypothesis: Assume the formula is true for all orders less than

or equal to k.

3. Prove true for k +1:

(∆k+1F)(x) = ∆
k(∆F)(x) = ∆

k(F(x+1)−F(x))

8



=
k

∑
i=0

(−1)i
(

k
i

)
(F(k− i+ x+1)−F(k− i+ x))

=
k

∑
i=0

(−1)i
(

k
i

)
F(k− i+ x+1)−

k

∑
i=0

(−1)i
(

k
i

)
F(k− i+ x)

=
k

∑
i=0

(−1)i
(

k
i

)
F(k− i+ x+1)−

k

∑
i=1

(−1)i−1
(

k
i−1

)
F(k− i+ x+1)

=
k

∑
i=0

(−1)i
(

k
i

)
F(k− i+ x+1)+

k

∑
i=1

(−1)i
(

k
i−1

)
F(k− i+ x+1)

= F(k + x+1)+
k

∑
i=1

(−1)i(
(

k
i

)
+

(
k

i−1

)
)F(k− i+ x+1)

=
k+1

∑
i=0

(−1)i
(

k +1
i

)
F(k− i+ x+1) since

(
a
b

)
+

(
a

b+1

)
=

(
a+1
b+1

)
.

Therefore we have our result.

�

Now, we can state the form of Newton’s interpolation polynomial.

Proposition 2.2. Newton’s Interpolation Formula: If F ∈ Z[x] and d is the

degree of F then F can be expressed as

F(x) =
d

∑
k=0

(∆kF)(0)
(

x
k

)
where

(
x
k

)
=

x(x−1) · · ·(x− k +1)
k!

.

This proof can be found in [8]. Note that it is well-known that k!

divides x(x−1) · · ·(x− k +1) when x is an integer.

9



2.4. A Unique Polynomial Representation. This is as good a time as any

to bring up the work of Zhibo Chen [4] in his article “On polynomial func-

tions from Zn to Zm.” It is in this paper that Chen discusses how to use the

falling factorial (x)k to find convenient ways to transition between polyno-

mials and polynomial functions. He also delivers a canonical representation

for univariate polynomial functions from Zn to Zm where n,m ∈ N, but it

is the lemmata leading up to this representation that will be useful to us.

Before getting to these lemmas, we need a little bit of notation, which Chen

also provides in his paper. The following function λ(m) has been used in

many works over a long period of time. Indeed, Kempner used this function

in his paper [10] from 1921.

λ(m) = the least positive integer λ such that m|λ!.

µ(n,m) = min{n,λ(m)}.

And when there is no confusion, we will write these as λ and µ respec-

tively.

Furthermore, there is a basis for Z[x], the elements of which are falling

factorials, denoted by (x)k, where (x)0 = 1 and

(x)k = x(x−1) · · ·(x− k +1) for all k = 1,2, . . . .

It should be noted that the binomial term in Newton’s Interpolation

Formula can be expressed using our chosen basis; that is:(
x
k

)
=

x(x−1) · · ·(x− k +1)
k!

=
(x)k

k!
.

In this case the interpolation formula would look like this:

(2.2.1) F(x) =
d

∑
k=0

(∆kF)(0)
k!

(x)k.

10



Assertion (5) in Hungerbuehler-Specker [9] implies that if F has inte-

ger coefficients, then (∆kF)(0)
k! is an integer for 0≤ k ≤ deg(F).

One last bit of notation: The set of polynomials in Z[x] that have the

same associated polynomial function is in fact an equivalence class, and we

say that two polynomials in this set are equivalent and denote the equiva-

lence with the symbol “∼”.

Chen’s main theorem is as follows:

Theorem 2.3. Let f be a polynomial function from Zn to Zm. Then f can

be uniquely represented by a polynomial

F =
µ−1

∑
k=0

ck(x)k with 0≤ ck <
m

(m,k!)
.

This is a very nice theorem that gives us that if we have a polynomial

F in the above form, then it has an associated polynomial function that no

other polynomial of the same form has. This theorem is quite nice and it is

a reformulation of this that gives us our main result and, indeed, the Delta

Algorithm. This last theorem was also the motivation for the following

lemmata, which will prove to be very useful.

In [4], Chen provides the following lemmas which we will use in our

main result:

Let bk ∈ Z for all k = 0,1,2, . . .

Lemma 2.4. k! divides (x)k for all integers x and k ≥ 0.

Lemma 2.5. If k ≥ µ then (x)k ∼ 0.

Lemma 2.6.
µ−1
∑

k=0
bk(x)k ∼ 0 if and only if bk(x)k ∼ 0 ∀ k = 0,1, . . . ,µ−1.

Lemma 2.7. Let 0≤ k ≤ n−1. Then bk(x)k ∼ 0 if and only if ( m
(m,k!))|bk.

11



2.5. Main Result. Let F ∈ Z[x]. Since (x)k is a monic polynomial for all

k ∈ N, we can apply the Division-Remainder Theorem to give us:

F(x) = Q(x)(x)µ +R(x)

where m ∈ N, deg(R)≤ µ−1, and Q,R ∈ Z[x] are unique.

As Chen points out in Lemma 2.5, (x)µ vanishes mod m (i.e. (x)µ ∼ 0,

which indeed provides the motivation behind our use of this basis). We are

now only left with the remainder R(x) to worry about. All this combined

leads us to the following lemma:

Lemma 2.8. Let F ∈ Z[x], then F can be expressed as

F(x) = Q(x)(x)µ +
deg(R)

∑
k=0

(∆kR)(0)
k!

(x)k

where deg(R)≤ µ−1 and R(x),Q(x) ∈ Z[x] are uniquely determined.

Proof. As stated above

F(x) = Q(x)(x)λ +R(x),R ∈ Z[x]

and deg(R) < λ. Using Newton’s interpolation formula on the remainder

R(x) we get:

R(x) =
deg(R)

∑
k=0

(∆kR)(0)
k!

(x)k

�

We can now state our main result:

Theorem 2.9. Let F ∈ Z[x]. Then its associated polynomial function f :

Zn→ Zm is the zero function if and only if for all 0≤ k ≤ µ−1

bk =
(∆kR)(0)

k!
=

1
k!

k

∑
i=0

(−1)i
(

k
i

)
R(k− i)≡ 0 mod

m
(k!,m)

.

12



Proof. The fact that (∆kR)(0)
k! = 1

k!

k
∑

i=0
(−1)i(k

i

)
R(k−i) is a direct consequence

of Proposition (2.1). The rest of the proof is carried out in the following

way:

⇐=: If for all 0≤ k ≤ µ−1

1
k!

k

∑
i=0

(−1)i
(

k
i

)
R(k− i)≡ 0 mod

m
(k!,m)

.

Then by Proposition 2.1

(∆kR)(0)
k!

≡ 0 mod
m

(k!,m)
for all 0≤ k ≤ µ−1.

But now, by Lemma 2.8 we have that

F(x) = Q(x)(x)λ +
deg(R)

∑
k=0

(∆kR)(0)
k!

(x)k.

Since by Lemma 2.5 (x)µ ≡ 0 mod m we have then that

F(x)≡ 0 mod m for all x ∈ Z.

Hence F vanishes, and thus its associated polynomial function f : Zn→ Zm

is the zero function.

=⇒:Lemma 2.8 gives that there exist a unique Q and a unique R in

Z[x] with deg(R) < µ such that

F(x) = Q(x)(x)µ +
deg(R)

∑
k=0

(∆kR)(0)
k!

(x)k.

Let the associated polynomial function f : Zn→ Zm be the zero function.

(By definition this means that there exists a polynomial function f ′ : Z→

Zm such that f = f ′ ◦ πn and f ′(a) = F(a) + mZ for all a ∈ Z (Recall

that πn : Zn→ Z is defined as πn(x + nZ) = a for all x ∈ Z and where a ∈

{0,1, . . . ,n−1} and a ≡ x(mod n)). Now, f ′ ◦πn is also the zero function,
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which implies that f ′(a) = 0 = F(a)+mZ for all a∈ {0,1, . . . ,n−1}.) This

implies that

F ∼ 0.

Now since (x)µ ∼ 0 we get that

F ∼ R∼ 0.

Now this implies that R(x) =
µ−1
∑

k=0
bk(x)k ∼ 0. And by Lemma 2.6 we

get that bk(x)k ∼ 0 for all k = 0,1, . . . ,µ−1. Then by Lemma 2.7 we have

that m
(m,k!) |bk for all k = 0,1, . . . ,µ−1. This implies that bk ≡ 0 mod m

(m,k!)

for all k = 0,1, . . . ,µ−1. �

This theorem lends itself nicely to the creation of an algorithm for

testing whether a polynomial vanishes. This algorithm is culled from the

various sources that have already been cited including especially Chen [4]

and Singmaster [14], and it has been used in an article co-written by the

author [13].

Algorithm 1. The Delta Algorithm

1. Compute µ = min{n,λ(m)}.

2. Divide the polynomial by (x)µ. If the remainder R(x) is congruent to 0

mod m, the polynomial vanishes.

3. Otherwise, in the basis of falling factorials, compute the coefficients for

the remainder using the following formula: bk = 1
k!

k
∑

i=0
(−1)i(k

i

)
R(k− i)

mod m
(k!,m) where k = 0,1, . . . ,µ−1.

4. The polynomial vanishes if and only if all of the bk are congruent to 0.
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One last comment before moving on. This algorithm tells us that in

some special cases (specifically the cases that most readily apply to electri-

cal circuits) we must check only a vast minority of the integers less than m

to decide whether a polynomial vanishes. In the case where m is a power

of a prime, say pi, we have that λ(pi) is quite small relative to pi. In fact

λ(pi) ≤ ip provides a useful upper bound for λ. Based on some numer-

ical evidence, though, as the power increases this upper bound becomes

very rough. That is, as i gets larger, the difference between λ(pi) and ip

increases.

2.6. The Multivariate Delta Algorithm. In this section we present a sketch

of the multivariate case of the Delta algorithm from the last section. We use

in the section the multivariate notation used by Hungerbuehler and Specker

([9], pgs. 2, 3) and by Chen ([5], pg. 72).

For k = (k1, . . . ,kd) ∈ Nd and x := (x1, . . . ,xd), let

xk :=
d

∏
i=1

xki
i

and

k! :=
d

∏
i=1

ki!.

Furthermore, we write

|k| :=
d

∑
i=1

ki

and (
x
k

)
:=

d

∏
i=1

(
xi

ki

)
.

Let ei := (0, . . . ,0,1,0, . . . ,0) ∈ Zd
n , with the 1 at place i. Then, we define

the (forward) partial difference operator ∆ by

∆ig(x) := g(x+ ei)−g(x)
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∆
0
i := identity

∆
k
i := ∆i ◦∆

k−1
i .

For a multi-index k, let

∆
k := ∆

k1
1 ◦ · · · ◦∆

kd
d .

Notice that the ∆ operators commute and that ∆k1 ◦∆k2 = ∆k1+k2 .

2.6.1. Newton’s Interpolation Formula for Several Variables. According

to assertion (3) of Hungerbuehler and Specker in [9], a polynomial F(x)

equals its ”discrete Taylor expansion” or, as we will call it here, its Newton’s

Interpolation Polynomial:

F(x) = ∑
|k|≤degF

(∆kF)(0)
(

x
k

)

= ∑
|k|≤degF

(∆kF)(0)
k1! . . .kd!

d

∏
i=1

(xi)ki

= ∑
|k|≤degF

(∆kF)(0)
k!

(x)k

A proof of this can be found in [8].

If we set bk equal to the coefficients (∆kF)(0)
k! in the above summation,

we can determine, based solely on these bk, if F vanishes. The following

algorithm details how to do this. The formulation of this algorithm repre-

sents an extension of the Delta algorithm presented earlier for the univari-

ate case and is a consequence of the work of Hungerbuehler-Specker and

Chen [9, 5].
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Algorithm 2. The Multivariate Delta Algorithm

1. Choose only the k = (k1, . . . ,kd) where ki < λ(n). (The fact that these

k’s are sufficient is given by Lemma 6 of [5].

2. Compute bk for each k chosen in the last step.

3. Check whether bk ≡ 0 mod m
(m,k!) for all bk from the first step. If one

of these bk is not congruent to zero, then the function F fails to vanish.

(Given by Lemma 5 of [5].)

2.6.2. Computing bk. By assertion (2) of [9] we have that

(∆kF)(0) = ∑
r≤k

F(k− r)(−1)|r|
(

k
r

)
And so

bk =
(∆kF)(0)

k!
=

∑r≤k F(k− r)(−1)|r|
(k

r
)

k!
.

3. SIMPLIFICATION

In this section, we tackle the problem of whether one can decrease the

number of variables of a polynomial by applying linear substitutions.

It turns out that this question has been answered completely in the

case of fields of characteristic zero by Enrico Carlini in his chapter entitled

Reducing the number of variables of a polynomial in [3]. Carlini claims

also that his methods work over fields of positive characteristic, but little

justification is given for this.

Due to the lack of previous work on this subject, the following two

sections are an original attempt by the author to solve this problem over

the ring Zq where q is a power of a prime, which is not a field (unless q is
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prime) but rather a local commutative ring with zero divisors. These special

circumstances provide challenges as well as unique opportunities.

Now, this idea of decreasing the number of variables in a polynomial

hearkens back to the theme of this thesis, which is the simplification of

polynomials. With this in mind we create a natural definition: that of a

“simplifiable” polynomial.

If a polynomial expression has exactly n variables, then the polynomial

is simplifiable if, by a linear change of variable, the polynomial may be

expressed with fewer variables.

We will now make this definition more precise in the case where n = 2,

i.e. when f is a bivariate polynomial. We will extend my results to the

multi-variate case later on.

Definition 3.1. Let f be a bivariate polynomial, then f is simplifiable (or

simp) if there exists a linear bivariate polynomial u and a univariate poly-

nomial g such that

f = g(u) = g◦u.

Furthermore, when u is known, f is called u-simplifiable (or u-simp). Also

u will sometimes be called a simplifying element for f .

In the definition above you can see that we are simplifying the two-

variable polynomial f to a one-variable polynomial g.

Example 3.2. Let f = 4 + 4x + x2 + 4xy + 4y2 in Z8. Then if we set u =

2+ x+2y we get

f = u2 = (2+ x+2y)2 = 4+4x+ x2 +4xy+4y2.

And hence f is u-simplifiable.
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Often it is preferable to work exclusively with polynomials that do

not have constant terms. That is, it can be much nicer to work with the

polynomial f = anxn + · · ·+a1x rather than g = bnxn + · · ·+b1x+b0. With

this in mind, note the following:

Proposition 3.3. If f is simplifiable, then f is u-simp where u is a linear

form, i.e. u = ax+by with a,b ∈ R.

Proof. Let f be simplifiable. Then there exists

h = b0 +b1x+b2y where b0,b1,b2 ∈ R

such that

f = g◦h for some g ∈ R[x]

that is

f = a0 +a1h+ · · ·+ xnhn where a0, . . . ,an ∈ R.

Let u = b1x+b2y. Then h = b0 +u. This implies

f = a0 +a1(b0 +u)+ · · ·+an(b0 +u)n.

If we define the polynomial i ∈ R[x] as

i = a0 +a1(b0 + x)+ · · ·+an(b0 + x)n

we clearly have that

f = i◦u.

And hence f is u-simp. �

Given the above property, we will from this point on choose the sim-

plifying element u to be a linear form.
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As a point of notation, when we refer to an “n-variable polynomial”

or something similar, we am referring to a polynomial that has at least n

distinct variables in one or more monomials that do not have zero coeffi-

cients. For example, a bivariate polynomial would have exactly two visible

variables such as x+3xy but not 7x+0y.

Next, we would like to present one of the featured characters of this

work, the reduced linear form. Before this we point out that when we refer

to the “linear part” of a polynomial f , we are referring to the sum of degree

one terms in f , and we do consider the zero polynomial to be the linear part

of a polynomial with no degree one terms.

Definition 3.4. Let f be a bivariate polynomial. Then a reduced linear form

(or RLF) of f is a monic linear form that divides the linear part of f .

In particular, if f = a00 + a10x + a01y + a20x2 + · · ·+ amnxmyn where

ai j ∈ R, and if b1,b2 ∈ R and u = b1x+b2y is an RLF of f , then b1 6= 1 =⇒

b2 = 1, and u|a10x+a01y.

Notation: we will use the notation l p( f ) to stand for the linear part of

f . In other words, if f is as in the above definition, then l p( f ) = a10x+a01y.

Furthermore, for the rest of this section, we will refer to the the rings

in which we will be working as R = Zpα where p is a prime number and

α ∈N. The electrical engineering application for this work requires us only

to work over the rings Z2α , but the results extend so readily to where p is

any prime number, that we have written this work in that more general case.

Example 3.5. Let f = 3 + 2x + 3y + 2x2 in Z4[x]. The linear part of f is

l p( f ) = 2x+3y. Now 2x+y is monic and divides 2x+3y, since 3(2x+y) =

6x+3y≡ 2x+3y mod 4. Hence 2x+ y is an RLF of f .
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Example 3.6. Let f = 2x + 4y2 + 3xy in Z4[x]. Then l p( f ) = 2x. Now

notice that both x and x+2y are RLFs of f .

Now, two important questions arise:

1) Can we determine when f is simplifiable?

2) Can we determine the simplifying element for f ?

We will present an algorithm that answers both of these questions. The

notion of an RLF becomes important in the algorithm, and the following

propositions explains why:

Proposition 3.7. The polynomial f ∈ R[x,y] is simplifiable if and only if

there is an RLF of f that is a simplifying element for f .

Proof. Let R = Zpα where p is prime and α is an integer greater than 0. Let

f = a00 +a10x+a01y+a20x2 + · · ·+amnxmyn where ai j ∈ R be simplifiable.

Then by Proposition 3.3 there exists a linear form u such that f is u-simp,

i.e. f = b0 + b1u + · · ·+ brur. Let u = ax + by where a,b ∈ R. Then if we

set d = (a,b), the greatest common divisor of a and b (this exists because R

is a principal ideal ring), we get

u
d

=
a
d

x+
b
d

y.

Since a
d , b

d , or both must not be divisible by p, by symmetry we may as-

sume without loss of generality that e := a
d is not divisible by p (and hence

invertible in R). Then define the monic linear form

v := e−1 u
d

= x+ e−1 b
d

y.

Now since edv = u we get that f = b0 +b1edv+ · · ·+br(edv)r, which im-

plies that f is v-simp. Furthermore, since l p( f ) = b1edv, we have that v
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divides the linear part of f . Hence v is an RLF of f and v is a simplifying

element for f . �

This proposition leads us to an algorithm that can determine if a poly-

nomial is simplifiable and what the simplifying element is. Basically, the

above proposition has narrowed our search for a simplifying element to the

set of reduced linear forms of a polynomial. If we check each of these RLFs

and none simplify the polynomial, then the polynomial is not simplifiable.

Alternatively, if an RLF does simplify the polynomial, then obviously the

polynomial is simplifiable. So now we need a method for testing whether a

given linear form simplifies a polynomial.

Let f ∈ R[x,y] be a u-simplifiable polynomial. Then we can express f

as f = a0 + a1u + · · ·+ anun. Now, there is an alternative way to express a

single-variable polynomial that will be useful to us. We can express f as:

f = a0 +(a1 +(a2 + · · ·+(an−1 +anu)u) · · ·)u.

Notice that this gives us that if f is u-simp, then f − a0 is divisible by u.

We also have that f−a0
u −a1 is also divisible by u. We can carry on like this

until the powers of u have been used up. That is f is u-simp if and only if

f−a0
u −a1

u −a2
···
u

−an−1 makes sense and is divisible by u.

This is summed up in the following proposition (for this specific propo-

sition, R may be any commutative ring):

Proposition 3.8. Let f ∈ R[x,y] and let u be a linear form. Then f is u-simp

if and only if there exists a ∈ R such that u| f −a and f−a
u is u-simp.
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These last two proposition gives us an iterative process for testing

which (if any) linear form is a simplifying element for a polynomial.

We now state the algorithm. Remember here that R = Zpα where p is

a prime number and α ∈ N.

Algorithm 3. Let f ∈ R[x1,x2] of degree n≥ 1, and let S be the set of RLFs

of f . Then:

1. If S = /0

Return “ f is not simplifiable.”

2. Let u ∈ S where u is monic for the variable xi.

3. Let j = 0.

4. If j = n

Return “ f is simplifiable”.

5. Divide f by u to get f = q j+1u+q j where q j ∈ R[xk] and k 6= i.

6. If q j is a constant then

Let j = j +1.

Let f = f−q j
u = q j+1.

Go to line 4.

7. Else

Let S = S−{u}.

Go to line 1.

This algorithm gives us all of the information for which we have been

looking. Namely:

Proposition 3.9. Algorithm 1 will output whether f is simplifiable, and if

f is simplifiable, it will output a simplifying element u of f as well as the

coefficients q0, . . . ,qn such that f = q0 +q1u+ · · ·qnun.
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Proof. That the desired information will be found via this algorithm is given

by Propositions 3.7 and 3.8. It remains to show that this algorithm ends.

Since there are only ever a finite number of RLFs of a polynomial, we may

assume there are m ∈ N such elements. So in a worst case scenario, the

algorithm will check all m RLFs, and for each RLF the algorithm will move

on after a maximum of n divisions (where n = deg( f )). So this algorithm

will end after a maximum of m ·n divisions. �

4. MULTIVARIATE SIMPLIFICATION

In this section, we generalize to the multivariate case the results of the

previous section. First, we will generalize the definitions, then we will build

carefully the elements needed to generalize the main theorem.

Let R be a commutative ring.

Definition 4.1. Let f ∈ R[x1, . . . ,xn]. A reduced linear form (RLF) of f is

a monic linear form in R[x1, . . . ,xn] that divides the linear part of f .

Recall from Section 3 that when we refer to an n-variable polynomial,

we mean that exactly n variables appear in nonzero monomials of the poly-

nomial.

Definition 4.2. Let f is an n-variable polynomial. Then f is simplifiable

if there exist an m-variable polynomial g where m < n and a set of linear

polynomials U = {u1, . . . ,um} such that

f = g(u1, . . . ,um).

Furthermore when U is known, f is called U-simplifiable (or U-simp).

Also, U will sometimes be referred to as the simplifying set for f .
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Notation: when we refer to an n-variable set of polynomials F , we

mean that there are exactly n different variables such that each appears in

at least one nonzero monomial of an element of F . That is, n is the number

of all “visible” variables in the entire set of polynomials, regardless of the

(potentially larger) polynomial ring in which the set lies.

Definition 4.3. Let F = { f1, . . . , fr} be an n-variable set of polynomials.

Then F is a simplifiable set if there exists a set U = {u1, . . . ,um} of linear

polynomials with m < n such that F ⊆ R[U ]. When it is clear, we may say

simply that F is simplifiable (simp) or U-simplifiable (U-simp). Also, U

may be referred to as the simplifying set for F .

The following theorem tells us, similar to Proposition 3.3, that we can

always assume that our simplifying set is made up of linear forms, that is,

linear polynomials without constant terms.

Theorem 4.4. A finite polynomial set F is simplifiable if and only if F is

U-simp for some set of linear forms U.

Proof. ⇐=: If F is U-simp then it obviously simplifiable.

=⇒: Let F be an n-variable polynomial set. If F is simplifiable, then

there exists a set H = {h1, . . . ,hm} of linear polynomials such that m < n and

F is H-simplifiable. Let ai be the constant term for hi for all i ∈ {1, . . . ,m}.

Then set ui = hi−ai for all i ∈ {1, . . . ,m}. Since F is H-simp, we have that

F ⊆ R[H] = R[h1, . . . ,hm] = R[a1 +u1, . . . ,am +um]⊆ R[u1, . . . ,um].

Hence F is U-simp for the set U = {u1, . . . ,um}. �
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NOTE: From here on, we will denote by R the ring of integers mod pα

where p prime and α a positive integer. That is,

R = Zpα .

Also, for the rest of this write-up, we will refer to the set of non-zero linear

forms in R[x1, . . . ,xn] as X . That is,

X = {u ∈ R[x1, . . . ,xn] : u 6= 0 is a linear form}.

Definition 4.5. Let U ⊆ X have m elements. Let u ∈U . We say that xi is a

distinct variable for u in U if u is the only element of U that has a term with

xi, i.e. if U −{u} ⊆ R[x1, . . . ,xi−1,xi+1, . . . ,xn]. When it is unambiguous to

do so, we will refer to xi as a distinct variable.

First we start with a few properties of R[U ] where U is a set of nonzero

linear forms.

In the following, the operator | · | is the operator that gives the number

of elements in a set.

Proposition 4.6. Let U ⊆ X have m elements.

(1) For each u ∈ U there exists a v ∈ R[x1, . . . ,xn] monic such that v

divides u. We then have that R[U ]⊆ R[(U−{u})∪{v}].

(2) Let U have an element ui monic for x j. Then there exists U ′ ⊆

R[x1, . . . ,xn] such that R[U ] ⊆ R[U ′] where |U ′| ≤ |U |, ui ∈U ′, and

x j is a distinct variable for ui in U ′.

(3) If W ⊆U, then if there is a W ′ such that R[W ] ⊆ R[W ′], for U ′ =

(U−W )∪W ′ we have R[U ]⊆ R[U ′].

(4) R[U ] = R[U ′] where U ′=(U−{ui})∪{u′i}where u′i = a1u1+a2u2+

...+amum, a1,a2, ...,am ∈ R, and ai is invertible in R.

26



Proof. (1) Let u ∈ R[x1, . . . ,xn] where R = Zpn be a linear form. One

can factor out the greatest common divisor a of the coefficients of

u = a1x1 + · · ·+anxn giving u = a(b1x1 + · · ·+bnxn). Now, if one of

the bi is 1 we are done. Otherwise, if none of the bi are 1, then one of

the bi is not divisible by p since if they all were divisible by p then

that factor would have been part of the greatest common divisor. Say

b j is the coefficient not divisible by p, then in our ring it is invertible.

So u′= b1x1 + · · ·+bnxn = b j(b j
−1b1x1 + · · ·+x j + · · ·+b j

−1bnxn).

Setting v = b j
−1b1x1 + · · ·+ x j + · · ·+ b j

−1bnxn, we now have u =

au′ = ab jv and hence v is a monic divisor of u.

If f ∈R[u1, . . . ,ui, . . . ,um] and if ui = av, then f (u1, . . . ,ui, . . . ,um)

= f (u1, . . . ,av, . . . ,um) ∈ R[u1, . . . ,v, . . . ,um] = R[(U−{ui})∪ v].

(2) For all k 6= i divide uk by ui in terms of x j to get by the division-

remainder theorem uk = qkui + rk where qk is a constant and rk ∈

R[U ] is a polynomial without a ui term. Now it is clear that in

this case R[u1, . . . ,ui, . . . ,um] = R[q1ui + r1, . . . ,ui, . . . ,qmui + rm]⊆

R[r1, . . . ,u′j, . . . ,rm] for any ring R.

(3) Let S be the set of elements in U that are not in W . One can view

R[U ] as R[W ][S]. That is, as polynomials in S with coefficients

in R[W ]. Now R[W ] ⊆ R[W ′]. So clearly R[W ][S] ⊆ R[W ′][S] =

R[W ′,S] = R[U ′] since all the polynomials in S with coefficients in

R[W ] are also polynomials with coefficients in R[W ′].

(4) Note that that the following only shows that R[U ]⊆ R[U ′] the oppo-

site inclusion comes from the fact that the replacement given in (5)

can be reversed. Claims: R[U ] = R[U ′] where U ′ is the same as U

except that one element of U , say ui is replaced by:
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i) by aiui, where ai ∈ R is a unit.

This is easily seen after noticing ui = a−1
i u′i.

ii) by ui + a ju j where j 6= i and a j ∈ R. Let f ∈ R[U ]. Rearrange

f to get f =
d
∑

k=0
fk ∗ (ui +a ju j)k where d = degui( f ) and where

each fi is a polynomial in W = U −{u1}. Viewing f in this

way makes it clear that f is also in R[U ′].

iii) by aiui + a ju j where j 6= i ai,b j ∈ R and ai is invertible in R.

This is a corollary of i) and ii).

iv) Finally, the statement of (5) gotten by induction on iii).

�

The following lemma provides us with the interesting fact that if a set

F of polynomial functions is simplifiable, then it is simplifiable by a set

where each element has a distinct variable for which that element is monic.

Lemma 4.7. Let U ⊆ X be a finite set. Then there exists a set V ⊆ X where

each v ∈ V has a distinct variable for which it is monic, |U | ≥ |V |, and

R[U ]⊆ R[V ].

Proof. Do this by induction on the number of terms in U .

i) The trivial case: Let U = {u} have only one element. By property 1 of

Proposition 4.6 there is a linear form v that divides u and that is monic.

Say that u = av where a ∈ R. If f ∈ R[U ] then f (u) = f (av) ∈ R[v]; so

R[U ]⊆ R[v]. It is clear that |U | ≥ |{v}|.

ii) Induction Hypothesis: Let U have k−1 elements. Assume there exists

a V where V is as stated.

iii) Prove true for U having k elements:
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By property 1 of Proposition 4.6 there exists a U ′ ⊆ X with |U ′| ≤

|U | and at least one monic element such that R[U ] ⊆ R[U ′]. Say that

monic element is u′i and that it is monic for x j. Then by property 2 of

Proposition 4.6 there exists U ′′ ⊆ X with |U ′′| ≤ |U ′| and u′i ∈U ′′ as

the only element with an x j term such that R[U ′] ⊆ R[U ′′]. Consider

W = U ′′−{u′i}. Now W has k−1 or fewer elements. So by the induc-

tion hypothesis, there exists W ′ of the desired form with the same or

fewer number of elements as W where R[W ]⊆ R[W ′]. By property 3 of

Proposition 4.6, if V = {u′i}∪W ′, then R[U ′′]⊆ R[V ]. Say that W ′ has

l elements, then since each one is monic for a distinct variable (distinct

even from the x j of u′i), applying property 2 of Proposition 4.6 a total

of l times to V (once for each distinct variable in W ′) we will arrive at

a V ′ with the desired properties such that R[U ]⊆ R[V ′].

�

Definition 4.8. Let v ∈ X and let U = {u1, . . . ,um} ⊆ X . Then v is called

a replacer for ui in R[U ] (or simply a replacer in R[U ]) if v = a1u1 + · · ·+

amum where {a1, . . . ,am} ∈ R and ai = 1 for some i ∈ {1, . . . ,n}.

Theorem 4.9. Let v ∈ X and let U = {u1, . . . ,um} ⊆ X. If v is a replacer

for ui in R[U ], then

R[U ] = R[u1, . . . ,ui−1,v,ui+1, . . . ,um}.

Proof. This theorem is a direct consequence of property (4)of Proposition

4.6 and the above definition. �
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Lemma 4.10. Let U ∈ X be a finite set where each u ∈ U has a distinct

variable for which u is monic. Let f ∈ R[U ]. Let S be the set of all reduced

linear forms of f . Then there exists v ∈ S such that v is a replacer in R[U ].

Proof. We will denote from here on out the linear part of f as LP( f ). Let

U = {u1, . . . ,um}.

Case I: LP( f ) 6= 0.

We have that LP( f ) = a1u1 + ... + anum for ai ∈ R and ui ∈ U for

all i = 1, . . . ,m. Then LP( f ) = a(a′1u1 + ... + uk + ... + a′mum) for some

a,a′1, . . . ,a
′
m ∈ R. Let v = LP( f )

a = a′1u1 + ...+ uk + ...+ a′mum. Notice that

the term containing uk in v has the coefficient 1 in front of it.

Now from our hypothesis we know that uk is monic for, say, xl . Then

v expands to v = b1x1 + ...+ xl + ...+ bnxn for some b1, . . . ,bn ∈ R. So v,

seen as a polynomial in the variables x1, . . . ,xn is a monic linear form that

divides LP( f ) and hence is an RLF of f , i.e. v ∈ S. Now v is also a linear

combination of the elements of U with a coefficient of 1 in front of the uk

term. Hence v ∈ S is a replacer for uk in R[U ].

Case II: LP( f ) = 0.

In this case, the first element of U divides LP( f ) since everything di-

vides zero. So that element is an RLF of f and is a linear combination

of elements in U with a coefficient of 1 in front of the first element of U .

Hence this element is in S and is a replacer in R[U ]. �

The next two lemmas come straight from Serge Lang’s book [11], but

they are well known results. They are respectively univariate and multivari-

ate Division Remainder Theorems. These division theorems, along with

their uniqueness properties, will be useful in creating (and proving the ef-

fectiveness of) a multivariate simplification algorithm.
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Lemma 4.11. (Division Remainder Theorem) Let R be a ring with iden-

tity and R [x] a polynomial ring over R . Let F(x), G(x) ∈ R [x] and G(x)

be monic. Then there exist polynomials Q(x) and R(x) such that F(x) =

Q(x)G(x)+R(x) with degR(x) < degG(x) and such that Q(x) and R(x) are

uniquely determined. (Note that the degree of the zero polynomial is as-

signed to be minus infinity).

Lemma 4.12. Let R be a ring with identity. Given two polynomials F and

G in R [x1, . . . ,xn] where G is a polynomial that is monic for a variable xi

then

F =
d

∑
j=0

Fj(x1, . . . ,xi−1,xi+1, . . . ,xn)[G(x1, . . . ,xn)] j

where d is the degree of F in xi, and Fj(x1, . . . , xi−1, xi+1, . . . ,xn) ∈ R [x1,

. . . , xi−1, xi+1, . . . ,xn] for all j.

The following proposition and two lemmas provide one of the more

nuanced parts of this section. It gives that if f is U-simp and if u ∈U has a

distinct variable xi for which u is monic, then the polynomial coefficients of

f in R[U −{u}][u] are unique, and one can find these coefficients by divid-

ing f by u in terms of xi according to the multivariate Division Remainder

Theorem.

Proposition 4.13. Let F ⊆ R[x1, . . . ,xn] be a finite, n-variable polynomial

set, and let U ⊆ X such that |U | < n and such that U contains an element

u with a distinct variable for which u is monic. If F is U-simp and if we

divide f ∈ F by u to get f = q1 · u + q0 where q1 ∈ R[x1, . . . ,xn] and q0 ∈

R[x1, . . . ,xk−1,xk+1, . . . ,xn] then q1 ∈ R[U ] and q0 ∈ R[U −{u}] (that is,

(F−{ f})∪{q1,q0} is U-simp).
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Proof. Let u be monic for the distinct variable xk. Let f ∈ F have xk as

a visible variable. Then as in the previous proof, R[U ] = R[U −{u}][u]

and hence f can be expressed as f = h1 ·u + h0 where h1 ∈ R[U ] and h0 ∈

R[U −{u}]. Now since u has a distinct variable, h0 ∈ R[U −{u}] implies

that h0 ∈ R[x1, . . . ,xk−1,xk+1, . . . ,xn]. By the uniqueness of the division-

remainder theorem, we have that q1 = h1 and q0 = h0 ∈ R[U−{u}]. �

Lemma 4.14. Let f ∈ R[x1, . . . ,xn] be an n-variable polynomial, and let f

be U-simp for some U ⊆ X such that |U | < n and such that U contains an

element u with a distinct variable xk for which u is monic. Let f =
d
∑
j=0

q ju j,

where d = degxk( f ) and each q j is in R[x1, . . . ,xk−1,xk+1, . . . ,xn]. If Q =

{q0,q1, . . . ,qd} then Q is (U−{u})-simp.

Proof. This proof is done by induction on the degree of f in terms of xk.

Trivial case: Prove the lemma true in the case where degxk( f ) = 1.

In this case, we have that f = q1 ·u+q0 where q1, q0 ∈ R[x1, . . . ,xk−1,

xk+1, . . . ,xn] as in the hypothesis. By the previous proposition, we have

also that q1 ∈ R[U ] and q0 ∈ R[U −{u}]. This case will be proved if we

can show that q1 ∈ R[U −{u}]. Assume that this is not the case, but that

q1 ∈ R[U ] and q1 /∈ R[U −{u}]. Then q1 can be written as a polynomial

in u with coefficient from R[U −{u}] (i.e. q1 ∈ R[U −{u}][u]). So we can

write q1 = arur + · · ·+ a1u + a0 where r ∈ Z, ar 6= 0, and ai ∈ R[U −{u}]

for i = 0,1, . . . ,r. Now, since u is monic for xk then arxk is a term of q1,

and since ar 6= 0 and since xk is a distinct variable for u, the term arxk does

not cancel out with any other term. But this contradicts the fact that q1 ∈

R[x1, . . . ,xk−1, xk+1, . . . ,xn]. Hence our assumption that q1 /∈ R[U −{u}] is

false. So q1 ∈ R[U−{u}].

32



Induction Hypothesis: Assume the lemma is true in the case where

deg( f ) < k. Assume that for any polynomial f that is U-simp and such that

d = degxk( f ) < k and where f =
d
∑
j=0

q ju j and each q j is in R[x1, . . . ,xk−1,

xk+1, . . . ,xn] has the property that {g1, . . . ,gd} ∈ R[U−{u}].

Inductive Step: Prove the lemma in the case where deg( f ) = k.

In this case we have that f =
k
∑
j=0

q ju j where each q j is in R[x1, . . . ,

xk−1, xk+1, . . . ,xn]. This implies that f =
k
∑
j=0

q ju j = (
k
∑
j=1

q ju j−1)u+q0. By

the previous proposition we have that
k
∑
j=1

q ju j−1 ∈ R[U ] and q0 ∈ R[U −

{u}]. Since
k
∑
j=1

q ju j−1 has degree k− 1 in terms of xk, by the induction

hypothesis {q1, . . . ,qk} ∈ R[U−{u}]. And hence we have our proof.

�

Lemma 4.15. Let F ⊆ R[x1, . . . ,xn] be a finite, n-variable polynomial set,

and let F be U-simp for some U ⊆ X such that |U | < n and such that U

contains an element u with a distinct variable xk for which u is monic.

Let f =
d f

∑
j=1

g f ju j for all f ∈ F, where d f = degxk( f ) and each g f j is in

R[x1, . . . ,xk−1,xk+1, . . . ,xn] (by the division-remainder theorem, each g f j is

uniquely determined). If G = {g f j : f ∈ F, j = 1, . . . ,d f } then G is (U-{u})-

simp.

Proof. If we apply the previous lemma to each element of F , we have the

desired result. �

4.1. Multivariate Simplification Algorithm. We present now the Multi-

variate Simplification Algorithm.
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Algorithm 4. Multivariate Simplification Algorithm

Let F ⊆ R[x1, . . . ,xn] be a finite, n-variable set of polynomials where

each polynomial has at least 2 variables (and hence n must be greater than

or equal to 2). Let U = /0. Let t = 0. Let F0 = { f1, . . . , fr}. Then:

1. Let S f = RLFset( f ) for all f ∈ Ft .

2. Let Tt = S f where |S f | is minimal for all f ∈ F.

3. While Tt 6= /0, do the following:

a. Let ut ∈ Tt where ut is monic for the variable xk.

b. By Lemma 4.12 we can compute: f =
d f

∑
j=1

g f ju
j
t for all f ∈ Ft , where

d f = degxk( f ) and each g f j is in R[x1, . . . ,xk−1,xk+1, . . . ,xn].

c. Let Ft+1 = {g f j : f ∈ Ft and j = 1, . . . ,d f }.

d. If Ft+1 is an (n− t−2)-variable set, then

U = U ∪{ut}∪{set of “visible” variables in Ft+1}.

Return “F is simplifiable.”

e. If |U |= n−1

Let Tt = Tt−{ut}.

Go to Step 3.

f. If |U |< n−1

Let t = t +1.

Let U = U ∪{u}.

Go to Step 1.

4. If t = 0 then

Return “F is not simplifiable.”

5. Else (if t > 0)

Let Ut = Ut−{ut}.

Go to Step 3.
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In the preceding algorithm, we input a set of polynomials F ⊂ R[x1,

. . . , xn], and a set U of monic linear forms is output, where every polynomial

in F can be expressed as an element of R[U ]. In practice, when using this

algorithm, we will usually input just one polynomial at the beginning. The

algorithm will work just fine in this case. We chose to generalize to a set of

polynomials because the algorithm can be written out more succinctly in its

present form.

What the above algorithm accomplishes can be summed up in the fol-

lowing way: if a polynomial set is simplifiable, then there are a handful of

sets that can simplify the polynomial set. At least one of these sets can be

found by checking possible combinations of RLFs of polynomials found in

an iterative fashion. This algorithm checks all of the relevant possible com-

binations of RLFs to see if they provide a simplifying set. If none of the

combinations is a simplifying set for F , then, in fact, F is not simplifiable.

In particular, let F be simplifiable. Then Lemma 4.7 gives that F is

V -simp for some set V ∈ X where each element has a distinct variable and

is monic for that variable. Now, unfortunately, though we know that this

simplifying set V exists, we do not yet know explicitly a single element in

V . We arrange in the following to find linear forms, explicitly, that will be

replacers in R[V ] for each of the elements in V . That is, we will derive a set

U made up of RLFs of polynomials found in an iterative fashion such that

R[V ] = R[U ], which implies moreover that F is U-simp.

Let V = {v1, . . . ,vm} where m < n. Then we restate that

F is {v1, . . . ,vm}-simplifiable.
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Now, Lemma 4.10 gives that if f ∈F , then an RLF u1 of f is a replacer

for an element, say v1 in V . This gives that R[V ] = R[u1,v2, . . . ,vm] giving

also that

F is {u1,v2 . . . ,vm}-simplifiable.

Now Lemma 4.15 provides a set Q that is (V−{v1})-simp from whence

the rest of the replacement elements can be found. That is, plugging Q in

for F and V −{v1} for V in the last paragraph provides us with: Lemma

4.10 gives that if q ∈ Q, then an RLF u2 of q is a replacer for an element,

say v2 in V −{v1}. This gives that R[V −{v1}] = R[u2,v3, . . . ,vm], which in

turn implies that R[V ] = R[u1,u2,v3, . . . ,vm]. That is,

F is {u1,u2,v3, . . . ,vm}-simplifiable.

Now Lemma 4.15 provides a set Q′ that is (V −{v1,v2})-simp from

whence the rest of the replacement elements can be found. One should

note that the cardinality of Q can be larger than that of F : when we pass

from f ∈ F to a collection of q ∈ Q we do this by adding at most N + 1

polynomials (as in Lemma 4.15), where N is the total degree of f . However,

these new polynomials are in a fewer number of variables than f . This is

what guarantees that the algorithm will stop in a finite number of steps.

We can continue in this way until we have replaced each of the un-

known elements in V with a list of known elements. We will call this new

set of known elements U , and knowing that R[V ] = R[U ], we will conclude

that

F is {u1,u2,u3, . . . ,um}-simplifiable.
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Theorem 4.16. Let F = { f1, . . . , fr}⊆R[x1, . . . ,xn]. Algorithm 4 will output

whether F is simplifiable, and, if so, it will output the polynomials g1, . . . ,gr

and the simplifying set U = {u1, . . . ,um} such that fi = gi(u1, . . . ,um).

Proof. All of the previous lemmas assure us that the output will be as stated.

We have only now to prove that the algorithm stops. In the worst case sce-

nario for this algorithm, the polynomial set which is input into the algo-

rithm will not be simplifiable. In this case, each possible simplifying set

(constrained to the RLFs of the polynomials) must be tested. In order to

count how many calculations this will take, we notice that t will increase

one-by-one to n− 2. Then there will be |Tn−2| RLFs to check. After all

of these are checked, t will decrease to n− 3, one element of Tn−3 will be

discarded, and we will check a new element of Tn−3. This will increase t

to n− 2 again, and we will need to check a new set Tn−2 for simplifying

elements. We will carry on in this way until all of the elements of Tn−3 are

used up. Then we will decrease the number of elements in Tn−4 by one and

follow the algorithm again.

Now, an upper bound for the number of RLFs for an i-variable polyno-

mial is qi = |{the set of linear forms with at most i variables over R}|. But

note that by Lemma 4.15 the set Ft will be an (n− t)-variable polynomial

set (notice that this is why t cannot progress beyond n− 2 as in Step 3e).

So when t = n− 2 there are fewer than q2 possible RLFs to check (i.e.

|Tn−2| < q2). When we have exhausted these, there are fewer than q3 pos-

sible RLFs when t = n− 3 to check, each having fewer than a possible q2

RLFs to check after each RLF at the n− 3 level is discarded. That total is

q3 ·q2.

37



Continuing in this way we get q2q3q4 . . .qn = q

n
∑

i=2
i
= q

n(n+1)
2 −1. This is

an upper bound for the total number of possible simplifying sets the algo-

rithm will have to check.

Hence the algorithm ends. �

This first example is that of a single polynomial that is input into the

algorithm and found to be simplifiable.

Example 4.17. Let us work over R = Z4, and let f = x+ y+2z+ x2 + y2.

Now, the only RLF of f is u = x+y+2z. Divide f once by u in terms

of x to get f = (x+3y+2z+1)u+2y2. Now, divide x+3y+2z+1 by u so

that we get f = (u+2y+1)u+2y2 = u2 +(2y+1)u+2y2 = g2u2 +g1u+g0

where g2 = 1, g1 = 2y + 1, and g0 = 2y2. So f is now in the form of the

multivariate Division Remainder Theorem. Let F1 = {g0,g1,g2}.

At this point we need to take a step back and look at what we have.

Notice that F1 is a 1-variable polynomial set. That is, the only “visible”

variable in F1 is y. So f can be expressed as a polynomial in u and y. And

hence f is simplifiable by U = {u,y}, and f = u2 +(2y + 1)u + 2y2 is the

polynomial in u and y for which we were searching.

The next example is that of a single polynomial that is input into the

algorithm and found to not be simplifiable.

Example 4.18. Let us work again in R = Z4. Let f = x + y + y2 + z2. Let

us assume that f is simplifiable (we will eventually disprove this). Then by

Lemma 4.7 f is V -simp for some V ⊆ X such that each element of V has a

distinct variable for which that element is monic. Let us examine the size of
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V . For f to be V -simp, |V | must be less than n = 3, the number of variables

in f . So |V |= 1 or 2.

Now, the only RLF of f is u1 = x + y. By Lemma 4.10 we know

that u is a replacer for, say, v in R[V ]. So f is (V −{v})∪ {u1} = V ′-

simp. That is, if f is indeed simplifiable, we have just found an element

that is in a simplifying set for f . Divide f once by u1 in terms of x to

get f = u1 + y2 + z2 = g1u1 + g0 where g1 = 1 and g0 = y2 + z2. So f

is now in the form of the multivariate Division Remainder Theorem. Let

F1 = {g0,g1}.

Let us take a step back, now. Unfortunately, since F1 is a 2-variable

polynomial set, we can not claim the “visible” variables as the rest of the

simplifying set, since this would leave us with a simplifying set of 3 vari-

ables (u, y, and z), which would be no better than the three original variables

x, y, and z.

So it remains to find a replacer for the other element in V . By Lemma

4.15 we know that F1 is (V ′−{u1})− simp (note that there is only one

element in V ′−{u1}). And so, again, by Lemma 4.10 we know that an

RLF of one of the elements of F1 is a replacer for the element in V ′−{u1}.

That is F1 is simplifiable by one RLF of an element of F1. Well, both of the

elements of F1 have a complete set of RLFs; so we must check the entire set

{y,z,y + z,y + 2z,y + 3z,2y + z,3y + z,}. We can discount y and z, though,

since using one of these elements in the simplifying set would imply that

the other must also be in the simplifying set, making the simplifying set too

large.

Now divide g0 by y + z to get g0 = (y + 3z)(y + z) + 2z2. Divide g0

by y + 2z to get g0 = (y + 3z)(y + 2z) + z2. Divide g0 by y + 3z to get
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g0 = (y + z)(y + 3z) + 2z2. The remainders in each of these divisions are

non-constant. By symmetry, dividing similarly by the rest of the RLFs will

leave remainders that are non-constant. But this contradicts the fact that F1

is simplifiable by one of its RLFs. Hence f is not simplifiable.
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