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Analyzing The Combination of Polymorphisms Associating With 

Antidepressant Response By Exact Conditional Test 

by 

Baofu Ma 

Under the Direction of  Susmita Datta 

Abstract 

Genetic factors have been shown to be involved in etiology of a poor response to 

the antidepressant treatment with sufficient dosage and duration. Our goal was to identify 

the role of polymorphisms in the poor response to the treatment. To this end, 5 functional 

polymorphisms in 109 patients diagnosed with unipolar, major depressive disorder are 

analyzed. Due to the small sample size, exact conditional tests are utilized to analyze the 

contingency table. The data analysis involves: (1) Exact test for conditional independence 

in a high dimensional contingency table; (2) Marginal independence test; (3) Exact test 

for three-way interactions. The efficiency of program always limits the application of 

exact test. The appropriate methods for enumerating exact tables are the key to improve 

the efficiency of programs. The algorithm of enumerating the exact tables is also 

introduced. 
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CHAPTER I  

Introduction 

A large proportion of depressed patients fail to respond to antidepressant 

treatments with sufficient dosage and duration, although antidepressants are effective in 

treating major depression. Previous research showed that the situation of depression 

patients would become worse if the poor response to the treatment occurred. For instance, 

Schatzberg (1983) showed that the depressed patients who had failed to respond to the 

treatment attempted suicide more frequently.  

Previous researches have shown that genetic factors contribute to the poor 

response to the treatment. References include Franchini (1998) and O’Reilly (1994). Our 

goal was to identify the role of polymorphisms in the poor response. To this end, the 

following functional polymorphisms are selected as candidates: (1) a 17 bpVNTR within 

intron 2 of the 5-HTT gene; (2) a 44 bp insertion/deletion polymorphism in the 5-HTT 

promoter region (5-HTTLPR); (3) an A to G SNP in intron 13 of MAO-B; (4) a 30 bp 

VNTR within the MAO-A promoter; (5) a C to G SNP in the serotonin receptor 5-HT1A 

promoter region. Each polymorphism has two type alleles denoted by 5-HTTLPR l/s, 

VNTR 10/12, MAO-B A/G, 5-HT1A C/G, and MAO-A 3/4. 

109 patients with unipolar, major depressive disorder were recruited from 

Lookout Mountain Community Services Psychiatric Outpatient Clinics Georgia, US. All 

patients received separate trials of one or more antidepressants with adequate dosages and 

duration. The severity of depression and acute treatment response were prospectively 

assessed based on extensive psychiatric interviews and retrospectively assessed based on 
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an extensive review of all existing medical records. The patients were classified as non-

responders if they failed to respond to all antidepressants treatment, as responders if they 

experienced a full remission under all antidepressants, or as partial responders if they 

experienced a partial remission under one or more of the antidepressants or experienced a 

partial or full remission under some of the antidepressants, but fail to others. If the 

patients initially responded but did not experience a full remission at the end of the study, 

they were classified as either responder or partial responders based on the degree of their 

initial response. 

The usual hypothesis test in multidimensional contingency tables is based on 

asymptotic methods. However, the asymptotic methods may be misleading in analyzing 

contingency tables with the small sample size or a large number of cells with small 

frequencies. The alternative methods are exact tests that are conditional on a subset of 

marginal totals. There are many papers referring exact test. Agresti (1992) made a great 

survey in the exact methods for contingency table. Kreiner (1992) did the further work on 

exact inference in multidimensional tables. Morgan and Blumenstein (1992) provide a 

more general method in exact tests for multidimensional contingency tables based on the 

marginal sum of the reduced model and full model. 

In our problem, the 25×3 contingency table with sample size 109 has a large 

number of cells with zero frequencies or frequencies which are less than 5. The exact 

conditional test is preferable to analyze this table. However, the running time of programs 

always limits the applications of the exact tests. The appropriate algorithms in 

enumerating exact tables can dramatically improve the efficiency of programs. Many 
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great algorithms have been introduced, such as Cox and Plackett (1980), Morgan and 

Blumenstein (1991), Vollset et al. (1991), and Agresti (1992). The algorithms will be 

introduced in the C hapter VI. 
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CHAPTER II 

Summary of The Result 

Among 109 patients, we categorized 49 as responder, 46 as partial responder, and 

14 as non-responders based on the criteria above. The data set is summarized in appendix 

table A. As shown in Table A, we categorize 5-HTTLPR l  as containing one or more 

copies of l  alleles, so it contains genotypes ll /  and sl / . Similarly, frequency of MAO-

B A allele contain genotypes A/A and A/G, frequency of MAO-A 4 allele contain 

genotypes 4/4 and 3/4, frequency of VNTR 10 allele contain genotypes 10/10 and 12/10, 

and frequency of 5-HT1A C allele contain genotypes C/C and G/C. 

First, we are interested in whether one particular polymorphism is independent of 

the response of antidepressant treatment conditioned on other polymorphisms. Kreiner 

(1992) referred that the conditional independence tests in multidimensional tables could 

be converted to the tests of three-way contingency tables.  By this idea, the 25×3 

contingency table is changed to a 2 × 3 × 16 table. For example, the conditional 

independence between 5-HTTLPR and Response can be tested by the three-way table 

LPR*Response*Y where Y is the combination of other four polymorphisms. The test 

results show that all the polymorphisms are conditional independent of the response to 

the treatment (all P-values are greater than 0.1). However, some information may be lost 

due to the large number of zero cells in this 25 × 3 table. We go to test the independence 

between polymorphisms and the response conditioned on just one polymorphism. We 

found that the response to treatment is dependent on the polymorphism 5-HTTLPR 

conditioned on MAO-B (P-value=0.015) and dependent on the polymorphism MAO-B 



 5 

conditioned on 5-HTTLPR (P-value=0.005). The P-value (=0.056) for testing the 

independence between MAO-B and response conditioned on MAO-A is also not too 

large. This result indicates that the response to treatment is correlated to MAO-B and 5-

HTTLPR, but it is not clear whether the interaction between the polymorphisms will 

affect the response to treatment.  

Further study on detecting the relationship among the response to the treatment, 

MAO-B, 5-HTTLPR, and MAO-A is made. The three-way interaction among the 

response to the treatment, MAO-B, and 5-HTTLPR is found to be significant with p-

value = 0.0255 indicating that the response to treatment associates with the interaction 

between MAO-B and 5-HTTLPR. Then, all possible combinations of 5-HTTLPR l, 5-

HTTLPR s, MAO-B A, and MAO-B G are ranked. Table 1 shows that the combination of 

l, and A has the highest percentage of poor response. It confirms the previous research of 

Dr. Datta et al. that the simultaneous presence of 5-HTTLPR l and MAO-B A alleles 

affords a high level of poor response to antidepressant treatments. If we use Poisson 

regression to test the three-way interaction MAO-B*5-HTTLPR*Response, it is hard to 

say whether the three-way interaction is significant or not with P-value=0.053. In testing 

the three-way interaction of MAO-A, MAO-B, and response to the treatment, the three-

way interaction is not statistically significant (P-value=0.279) indicating the effects of 

MAO-B on the treatment are the same given MAO-A 3 allele presenting or MAO-A 4 

allele presenting. 

Next, we go to test the effect of individual polymorphism on the response in terms 

of the marginal independence test between polymorphism and the response to the 
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treatment. The response is found to be dependent of the MAO-B A/G (P-value=0.0478), 

and the p-value in testing 5-HTTLPR l/s is 0.0515. Both P-values are around borderline 

p=0.05. 

In summary, the data shows that the poor response to the treatment is associated 

with the polymorphisms MAO-B and 5-HTTLPR. The individual tests for the two 

polymorphisms show a borderline value p=0.05. However, when alleles MAO-B A and 

5-HTTLPR l simultaneously present in the depressed patients, the patients show a high 

percentage of poor response. The P-value 0.025 for this interaction effect is quite small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R: response         P: partial response         N: non-response 

    l, A          20 32 13 30.8%  69.2% 
    s, G          3  4 0 42.9%  57.1% 
    s, A         11 5 0 68.8%  31.2% 
    l, G          15  5 1 71.4%  28.6%  

    Allele                Frequency                       Percentage 
combination                      
                       R              P          N          R                    P+N 

Table1. The percentage of poor response for the different 
              combination of l, s, A, and G 
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CHAPTER III  

Exact Test for Conditional Independence In High Dimensional Contingency Tables 

At the first glance, the exact test for 25 × 3 is almost impossible. However, 

Kreiner (1992) shows that a conditional independence test in a multidimensional table 

can be converted to a conditional independence test in a three-way contingency table.  In 

our problem, all the five polymorphisms, denoted by A, B, C, D, and E, have 2 levels. 

The response, denoted by R, has 3 levels. The hypothesis test of A ⊥ R | BCDE is 

equivalent to the test of the loglinear model (ABCDE, RBCDE) against the saturated 

model (ABCDER). Defined Y=BCDE, our problem goes to test the loglinear model (AY, 

RY) against (ARY) where Y has 16 levels. 

 Agresti (1992) shows that an efficient score statistic for the test of conditional 

independence is Pearson statistic, �=
k

kX 22 χ . 2
kχ  is the Pearson statistic which test the 

independence between A and R in the kth partial table given the row total and column 

total are fixed . 2
kχ  turns out to be 

ijk
i j

ijkijkk mmn ˆ/)ˆ(
22

�� −=χ  

where kjkkiijk nnnm ++++= /ˆ . In exact test, one can systematically generate all the tables 

that satisfy the fixed row totals and column totals in each partial table. For each pseudo 

table, we calculate a Pearson statistic X2. The exact distribution of X2 can be got based on 

the set of the pseudo tables. The P-value is the probability that the X2 value of pseudo 
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tables is greater than or equal to the X2 value of the observed table from the exact 

distribution of X2. 

Because there is no the interaction term AR in the reduced model (AY, RY), we 

can treat the k partial tables as independent of each other under null hypothesis. The 

probability of a pseudo table is ∏=
k

kPP , where Pk is the probability of the kth partial 

table. Agresti (1992) showed that in a I × J table, the distribution of {nij} turned out to be 

multiple hypergeometric given the row total and column total. Hence, Pk can be 

calculated by the following equation: 

∏∏
∏ ∏

++

++

=

i j
ijkk

i j
jkki

k nn

nn

P
!!

)!)(!(

 

The P-value for conditional independence test is the summation of probabilities for the 

tables whose Pearson statistics are greater than or equal to the observed table denoted by: 

�
≥

=−
22
obsXX

PvalueP , 

where 2
obsX  is the observed Pearson statistic and ∏=

k
kPP denotes the probability of the 

three-way pseudo tables. Because there are too many exact tables of {nijk}, the 

probability of each table is very small. To ensure the accuracy in calculating the 

probability and avoid the computer overflow, kP  is replaced by *
kP , where kk PP 10* = . 

The P-value is calculated by k

XX obs

P 10/)(
*

22
�
≥

, where ∏=
k

kPP ** . 
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For large sample size, each partial table follows asymptotic Chi-square 

distribution with (I-1)×(J-1) degree of freedom. Considering the independence of the K 

partial tables, the Pearson statistic �=
k

kX 22 χ  follows asymptotic Chi-square 

distribution with (I-1)×(J-1) ×K degree of freedom. Base on the asymptotic Chi-square 

distribution, the P-value for testing conditional independent is Pr(X2≥ 2
obsX ). 

The test result is shown in Table 2. The comparison between the exact test and 

asymptotic test is also shown. The asymptotic test shows that each of the polymorphisms 

are independent of the response to the treatment conditioned on the other polymorphisms. 

The exact test also fails to find out any dependence between polymorphisms and response 

(all P-values are greater than 0.1). However, some information may be lost due to the 

large number of zero cells in this 25 × 3 table. We can also see that the P-values are quite 

different between the exact test and asymptotic test. It convinces that the asymptotic test 

is not appropriate in this data set. 

Since some dependence relationships may fail to be detected due to the extremely 

small frequencies in the 2 × 3 × 16 table, we go to test the independence between 

polymorphisms and response conditioned on just one polymorphism. The result is shown 

in Table 3. Table 3 shows that the response to treatment is dependent of the 

polymorphism 5-HTTLPR conditioned on MAO-B (P-value=0.015) and dependent of the 

polymorphism MAO-B conditioned on 5-HTTLPR (P-value=0.005). The P-value 

(=0.056) for testing the independence between response and MAO-B conditioned on 

MAO-A is close to the borderline 0.05. Hence, the further study is necessary on the 
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relationship among the polymorphisms MAO-B, 5-HTTLPR, and the response to 

treatment and the relationship among the polymorphisms MAO-B, MAO-A, and the 

response to treatment. Compare the P-values of exact test to asymptotic test in table 3, we 

can see that the exact distribution of Pearson statistic is close to Chi-square distribution 

with 4 degree of freedom. 

This result indicates that the response to treatment is correlated to MAO-B and 5-

HTTLPR, but it is not clear whether the interaction between the polymorphisms will 

affect the response to treatment. A test of three-way interaction among response, MAO-B, 

and 5-HTTLPR will make more sense. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.    Independence test between polymorphisms and response 
conditioned on all other polymorphisms 

Polymorphism            2
obsX                 p-value 

                Exact        Asymptotic  
 

VNTR                       14.613               0.744         0.996 
 
5-HTTLPR         18.1412               0.171         0.977 
 
MAO-B                   20.6343             0.202         0.939 
 
MAO-A                   9.339                  0.957         0.99997 
 
5-HT1A                   11.571                0.697         0.9997 

VNTR: a 17 bpVNTR within intron 2 of the 5-HTT gene;   

5-HTTLPR: a 44 bp insertion/deletion polymorphism in the 5-HTT promoter region;       

MAO-B: an A to G SNP in intron 13 of MAO-B;  

MAO-A: a 30 bp VNTR within the MAO-A promoter;  

5-HT1A: a C to G SNP in the serotonin receptor 5-HT1A promoter region 
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 Condition on             
                                 VNTR          5-HTTLPR       MAO-B        MAO-A           5-HT1A      
Polymorphism       
 

Table 3.    Independence test between polymorphisms and response conditioned on 
one polymorphism 

          2
obsX                 NA               0.500                2.736            0.900                1.601 

          P-Exact           NA               0.967                0.662             0.923               0.835 
          P-Asy              NA               0.974                0.603             0.925               0.809 
 
          2

obsX               5.536               NA                 11.763           7.060                4.714 
          P-Exact         0.255               NA                  0.015            0.147                0.332 
          P-Asy            0.237               NA                  0.019            0.133                0.318 
  
          2

obsX               8.250            12.466                NA               9.669                8.019 
          P-Exact         0.083             0.005                 NA               0.056                0.091 
          P-Asy            0.083             0.014                 NA               0.046                0.091     
                    
          2

obsX              0.431             1.770                3.494              NA                   2.791 
          P-Exact        0.988             0.634                0.480              NA                   0.647                
          P-Asy           0.980             0.778                0.479              NA                   0.593 
 
          2

obsX               3.166            1.919                3.613             4.561                 NA 
          P-Exact         0.548             0.605               0.482             0.371                 NA 
          P-Asy            0.530             0.751               0.461             0.335                 NA 

VNTR: a 17 bpVNTR within intron 2 of the 5-HTT gene;   

5-HTTLPR: a 44 bp insertion/deletion polymorphism in the 5-HTT promoter region;       

MAO-B: an A to G SNP in intron 13 of MAO-B;  

MAO-A: a 30 bp VNTR within the MAO-A promoter;  

5-HT1A: a C to G SNP in the serotonin receptor 5-HT1A promoter region 

P-Exact: the P-value by exact test                      P-Asy: the P-value by asymptotic Chi-square test 

V
N
T
R 

5-
HTT
LPR 

MA
O-B 

MA
O-A 

5-
HT
1A 
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CHAPTER IV  

Marginal Independence Test 

In many cases, the conditional independence does not indicate the marginal 

independence. To avoid losing some dependence information between response and 

polymorphisms, it is necessary to test the marginal independence. Since our marginal 

table still contains some small frequency cells, Fisher’s exact test is utilized in this 

problem. The test result shown in Table 4 indicates that the response to the treatment is 

dependent of the MAO-B A/G (P-value=0.0478), and the p-value in testing 5-HTTLPR 

l/s is also not too large (p-value=0.0515). The more general exact test method introduced 

in next chapter also gets the same result to Fisher’s exact test. Comparing the test result 

between Fisher’s test and asymptotic Chi-square test, we notice that the P-value of 

Fisher’s test in testing 5-HTTLPR does not agree with the asymptotic test. 

 

 

 

 

 

 

 

 

 

 

Table 4.    Marginal independence test between response to treatment 
and polymorphisms 

Polymorphism                             p-value 
                  
                                       Fisher                Asymptotic 

VNTR                             0.7731                   0.787 
 
5-HTTLPR              0.0515                    0.085 
 
MAO-B                          0.0478                   0.032  
 
MAO-A                          1.00                       0.904 
 
5-HT1A                          0.3228                   0.342 

VNTR: a 17 bpVNTR within intron 2 of the 5-HTT gene;   

5-HTTLPR: a 44 bp insertion/deletion polymorphism in the 5-HTT promoter region;       

MAO-B: an A to G SNP in intron 13 of MAO-B;  

MAO-A: a 30 bp VNTR within the MAO-A promoter;  

5-HT1A: a C to G SNP in the serotonin receptor 5-HT1A promoter region 
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CHAPTER V  

Three-Way Interaction Test 

Morgan and Blumenstein (1992) provide a more general method in exact tests for 

multidimensional contingency tables. This method is conditioned on the marginal sum of 

the reduced model. Given contingency table x, denote M(x, F)  as the set of marginal 

sums of full model, M(x, R) as the set of marginal sums of reduced model, and 

M(x, H)w = as the set of marginal sums that are in the full model but not in the reduced 

model. The set of marginal sums based on observed table, denoted as M(x*, H)w* = , 

can be used as the test statistic of the reduced model against the Full model.  The 

distribution of w can be found by enumerating the possible tables conditioned on the 

observed set of marginal sums of reduced model. The probability of w is: 

��=∈=
TwU

FxPFxPTxw; FW );(/);()|P(
)(

 

where T  is the set of all possible tables conditioned on the observed marginal sums of 

the reduced model, U(w) is the set of the tables that M(x, H)equal to w  in T . P(x; F)  is 

the probability of table x in the multinomial sampling. 

∏==
i

x
i

iPxcnFxXP )(!);(  

where n is the marginal total, iP  is the probability of the ith  cell, ix  is the count of the 

ith  cell, and ∏=
i

ixxc !/1)( . Under null hypothesis, the probability of w  can be reduced 

to: 
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��=∈=
TwU

xcxcTw; F|xW )(/)()(P
)(

 

The P-value in testing the reduced model against the full model is the probability of w  

satisfied  P(w*)P(w) ≤ . 

From previous chapter, we notice that the response to the treatment is dependent 

of MAO-B A/G conditioned on 5-HTTLPR l/s or MAO-A 3/4 and dependent of 5-

HTTLPR l/s conditioned on MAO-B. We make further study on these three 

polymorphisms based on the test statistic above. 

First, the three-way interaction is tested based on the data from 5-HTTLPR l/s, 

response to antidepressant treatment, and MAO-B A/G (2 × 3 × 2 table). The reduced 

model is [MAO-B * 5-HTTLPR, MAO-B * Response, 5-HTTLPR * Response] against 

the full model [MAO-B * 5-HTTLPR * Response]. The test result is shown in Table 5. 

The three-way interaction is found to be significant with p-value = 0.0255. It confirms the 

previous research of Dr. Datta et al. that the simultaneous presence of 5-HTTLPR l and 

MAO-B A alleles affords a high level of poor response to antidepressant treatments. We 

also analyze this data set by Poisson regression model. The model without three-way 

interaction term yields a AIC value 25.89. Next, a three-way interaction term is added 

into the model, the AIC value is lowered to 24.00. The model is improved, but it is hard 

to say whether the improvement is significant or not with P-value = 0.053.  

Next, the reduce model [MAO-B * MAO-A, MAO-B *Response, MAO-A* 

Response] against the full model [MAO-B*MAO-A*Response] is tested. The test result 
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is shown in Table 6. The three-way interaction is found to be insignificant with p-value = 

0.279. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.    The distribution of w for test three-way interaction 
MAO-B × 5-HTTLPR × Response 

P-Wobs: 0.02436                                        P-value:  0.0255 
 
P-W:    0.41092     0.32662      0.17011     0.06682          0.02436   0.00115    

             
            1.55530*10-5      4.08095*10-8       
   

P-Wobs: The probability of w in observed table 
P-W:  the probability that statistic W is equal to w in the table set T.  

Table 6.    The distribution of w for test three-way interaction 
MAO-B × MAO-A × Response 

P-Wobs: 0.13025                                        P-value:  0.279 
 
P-W:    0.42040      0.30029    0.13025    0.05584     0.04692    0.02509     0.01766                    
 
            0.00132     0.00223       
   

P-Wobs: The probability of w in observed table 
P-W:  the probability that statistic W is equal to w in the table set T.  
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CHAPTER VI  

The Algorithm In Enumerating The Tables 

The running time of programs always limits the applications of the exact tests. 

The appropriate algorithms in enumerating exact tables can dramatically improve the 

efficiency of programs. The effective way is to find out the cells that are free to vary and 

find out the range of counts in each cell.  

Morgan and Blumenstein (1992) provide an algorithm in enumerating exact tables. 

In this algorithm, the list of cells that are free to vary can be found by the set of fixed 

margins that are in the reduced model. Each of the margins can fix a set of cells in the 

contingency table. The complete set of fixed cells is obtained by going through the set of 

fixed margins. The remaining cells would be what are designed to be free to vary. The 

counts systematically change in the cells that are free to vary. The remaining counts can 

be calculated based on the fixed marginal totals and the counts in the cells that are 

designed to be free to vary. For example, the reduce model is [AB, AC, BC] against the 

full model [ABC] in a 2 × 2 × 3 table. The degree of freedom is (2-1) × (2-1) × (3-1) = 2. 

Hence, only two cells are designed to be free to vary. The computations are dramatically 

reduced. 

Cox (1980) provides another algorithm in enumerating exact tables. In his 

algorithm, a table that satisfies the fixed marginal totals, such as the observed table, is 

specified. Other tables can be generated by adding this table to the pseudo tables with 

zero marginal totals.  
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Setting the appropriate range of counts in each cell can dramatically reduce the 

calculation in counting the exact tables. Given the set of fixed marginal totals, each sell 

are subjected to a subset of the margins. The count of the specific cell is less than or 

equal to the minimum of the subset of the margins. Given the marginal totals and the set 

of upper limit counts, the lower limit count of the specific cell is generated by subtracting 

the upper limit counts of the other cells that are subjected to the same margins from the 

marginal totals. For example, consider a 2 × 3 table. The row totals and column totals are 

fixed. 

1195

4
21

211
984

 

The upper limit of the count for cell a11 is equal to min{21,5}=5. Get the upper limit 

count of the other cells by the same idea. The upper limit count matrix is: 

444
1195

 

To calculate the lower limit of the count for cell 12a , we subtract the upper limit counts 

of 11a  and 13a  from the row total (21-5-11=5) and subtract the upper limit counts of 22a  

from the column total (9-4=5). Then, the lower limit of the count for cell 12a is equal to 

max{21-5-11, 9-4}=5. The lower limit count matrix is: 

000
751

 

In this example, two cells are free to vary. Set a11 and a12 as the free cells whose ranges 

are from 1 to 5, and 5 to 9 separately. We only need generate 25 tables. If we 



 18 

systematically vary the six cells to get the tables that are subjected to the marginal totals, 

56 tables are generated and most of them should be discarded. The calculation is 

dramatically reduced. 

Two subroutines that use the above algorithm are provided in this paper: ECIT is 

used to test conditional independent by the exact test method in chapter 3; ECT using the 

exact test method in Chapter V is more general.  
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Appendix  I: Common Subroutines 

################################################### 
#decompose formula into elements 
#for example: decompose 'ab*bc' into "ab" "bc" 
#################################################### 
 
decompose.elem<-function(formula) 
{ 
 elem<-character(0) 
 while (regexpr('\\*',formula)!=-1) 
 { 
  pst<-regexpr('\\*',formula)[1] 
  elem <-c(elem,substring( formula , first = 1,  last = pst-1 )) 
  formula<-substring( formula , first = pst+1) 
 } 
 elem<-c(elem,formula) 
 return(elem)  
} 
 
############################################################# 
#compare 2 formulas 
#return True if 2 formulas are equal 
#otherwise reture False 
#for example compare.formulas('ac',"ab*ac") will return False 
############################################################# 
 
compare.formulas<-function(formula1,formula2) 
{ 
 temp1<-decompose.elem(formula1) 
 n1<-length(temp1) 
 temp2<-decompose.elem(formula2) 
 n2<-length(temp2) 
 if (n1!=n2) return(F) 
 rst<-F 
 for (i in 1:n1)  
 { 
  for (j in 1:n2) 
  { 
   if(temp1[i]==temp2[j]) rst<-T 
  } 
  if (rst==F) return (F) 
  else rst<-F 
 } 
 return(T) 
} 
 
########################################################### 
# Test whether a formula is contained in a list of formulas 
# Return the subscript if A belongs to B 
# Otherwise return 0 
# For example, AbelongB('3*2',c("1" ,  "1*2", "2",   "2*3" ,"3")) returns 4. 
########################################################### 
AbelongB<-function(A,B) 
{ 
 if ((length(B)==0) || (A=='')) return(0) 
 for (i in 1:length(B)) 
 { 
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  if (compare.formulas(A,B[i])) return(i) 
 } 
 return(0) 
} 
 
########################################################### 
#decompose formular into a list of sub-formulars 
#For example decompose.sub ('col1*col2') will decompose 
# 'col1*col2' into ('col1', 'col2','col1*col2') 
############################################################ 
 
decompose.sub<-function(formular) 
{ 
 while (regexpr(' ',formular)!=-1) #eliminate blank from formula 
 { 
  pst<-regexpr(' ',formular)[1] 
  formular<-paste(substring(formular, first = 1,  last = pst-

1),substring(formular, first = pst+1),sep='') 
 } 
 elem1<-character(0) 
 while (regexpr('\\*',formular)!=-1) 
 { 
  pst<-regexpr('\\*',formular)[1] 
  if (length(elem1)==0) tmpelm<-paste(elem1,substring(formular, first = 1,  

last = pst-1),sep='') 
  else  
  { 
   tmpelm<-paste(elem1,substring(formular, first = 1,  last = pst-

1),sep='*') 
   tmpelm<-c(tmpelm,substring(formular, first = 1,  last = pst-1)) 
  } 
  elem1 <-c(elem1,tmpelm) 
  formular<-substring( formular, first = pst+1) 
 } 
 if (length(elem1)==0) elem1<-c(elem1,paste(elem1,formular,sep='')) 
 else  
 { 
  elem1<-c(elem1,paste(elem1,formular,sep='*')) 
  elem1<-c(elem1,formular) 
 } 
 return(elem1) 
} 
 
###################################################################### 
#decompose str and eliminate blank 
#for example, decompose.substr(' 1*2 | 2 * 3') returns ('1*2', '2 * 3') 
##################################################################### 
 
decompose.substr<-function(str) 
{ 
 elem<-character(0) 
 while (regexpr('|',str)!=-1) 
 { 
  pst<-regexpr('|',str)[1] 
  elem <-c(elem,substring(str, first = 1,  last = pst-1 )) 
  str<-substring( str, first = pst+1) 
 } 
 elem<-c(elem,str) 
 for (i in 1:length(elem)) 
 { 
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  while (regexpr(' ',elem[i])!=-1) #eliminate blank from formula 
  { 
   pst<-regexpr(' ',elem[i])[1] 
   elem[i]<-paste(substring(elem[i], first = 1,  last = pst-

1),substring(elem[i], first = pst+1),sep='') 
  } 
 } 
 return(elem) 
} 
 
#################################################################### 
# decompose formula into the list of marginal cells 
# for example, decompose.marg.list(y~V3* V5|V2*V5) will generate  
# the list of margins ("V3","V3*V5","V5","V2","V2*V5") and the 
# the list of variables in the model ("V3" "V5" "V2") 
########################################################### 
decompose.marg.list<-function(formula) 
{ 
 tmpform1<-as.character(formula[3]) 
 elem<-decompose.substr(tmpform1) 
 rst<-character(0) 
 varlist<-character(0) 
 for (i in 1:length(elem)) 
 { 
 
  temp<-decompose.sub(elem[i]) 
  for (j in 1:length(temp)) 
  { 
 
   if (AbelongB(temp[j],rst)==0)  
   { 
    rst<-c(rst,temp[j]) 
    if (regexpr('\\*',temp[j])==-1) varlist<-c(varlist,temp[j]) 
   } 
  } 
 }  
  
 return(list(marglist=rst,varlist=varlist)) 
} 
 
######################################################################## 
# construct observed marginal table 
# arguments: 
# marg.list: the set of marginal totals. For example c('V1', 'V1*V2', 'V2') 
# varorder: the ordered dimensions. For example, c('V1','V2') indicates 
#            V1 is the first dimension and V2 is the second dimension. 
# data: multi-way contingency table 
# return: the set of marginal totals 
####################################################################### 
marginal.cell<-function(marg.list,varorder,data) 
{ 
 rst<-sum(data) 
 for(i in 1:length(marg.list)) 
 { 
  var.1<-pmatch(decompose.elem(marg.list[i]),varorder) 
  rst<-c(rst,apply(data,var.1,sum)) 
 } 
 return(rst) 
} 
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######################################################### 
#Compare whether ‘a’ match the set of marginal total of a talbe 
# a: the vector of a set of marginal totals 
# marg.list: the set of margins in the reduced model 
#varorder: the dimension list of the observed contingency table 
#data: the observed contingency table 
#return T if a match the set of margins of table ‘data’; 
#otherwise return F 
##################################################################### 
compar.margcell<-function(a,marg.list,varorder,data) 
{ 
 p<-2 
 for(i in 1:length(marg.list)) 
 { 
  var.1<-pmatch(decompose.elem(marg.list[i]),varorder) 
  rst<-apply(data,var.1,sum) 
  up<-p+length(rst)-1 
  if (!compar(rst,a[p:up])) return(F) 
  p<-up+1 
 } 
 return(T) 
} 
 
##################################################### 
#function for comparing two vector.  
#x, y: the vectors compared 
#Return true,if they are equal. otherwise return F 
##################################################### 
compar<-function(x,y) 
{ 
 if (length(x)!=length(y)) return(F) 
 z<-ifelse(x!=y,1,0)  
 return(ifelse(max(z)==0,T,F)) 
} 
 
#################################################################### 
# Find out the maximum count table that subject to the reduced model 
# marg.list: the set of margins in the reduced model 
# var: the variable list of the reduced model 
# varorder: the variable list in the observed contingency table 
# data: the observed contingency table 
# return a vector of the maximum count 
##################################################################### 
 
max.cell<-function(marg.list,var,varorder,data) 
{ 
 pmatch1<-pmatch(var,varorder) 
 data.dim<-dim(data) 
 tab.dim<-data.dim[pmatch1] 
 ncell.table<-max(cumprod(tab.dim))   #the number of cells 
 rst1<-rep(sum(data),ncell.table) 
 for(k in 1:length(marg.list)) 
 { 
  t1<-decompose.elem(marg.list[k]) 
  t3<-rep(0,length(t1)) 
  pmatch2<-pmatch(t1,varorder) 
  app.dim<-data.dim[pmatch2] 
  free.pmatch<-pmatch1[-match(pmatch2,pmatch1)] 
  free.dim<-data.dim[free.pmatch] 
  cumpr<-c(1,cumprod(app.dim)) 
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  cumpr<-cumpr[-length(cumpr)] 
  var.1<-pmatch(t1,varorder) 
  t2<-apply(data,var.1,sum) 
  for (i in 1:length(t2)) 
  { 
   temp1<-rep(1,length(var)) 
   ppi<-1 
   while(ppi<=length(free.pmatch)) 
   { 
    n<-length(cumpr) 
    no.cell<-i 
    for (j in 1:n) 
    { 
     temp1[pmatch(t1[n-j+1],var)]<-floor(no.cell/cumpr[n-j+1])+1 
     no.cell<-no.cell-cumpr[n-j+1]*(temp1[pmatch(t1[n-j+1],var)]-1) 
     if (no.cell==0) 
     { 
     temp1[pmatch(t1[n-j+1],var)]<-temp1[pmatch(t1[n-j+1],var)]-1 
     no.cell<-cumpr[n-j+1] 
     } 
    } 
    tmpdim<-(tab.dim) 
    cumpr1<-c(1,cumprod(tmpdim)) 
    cumpr1<-cumpr1[-length(cumpr1)] 
    posi<-sum((temp1-1)*cumpr1)+1 
    cond<-rst1[posi] 
    if (cond>t2[i]) rst1[posi]<-t2[i] 
     
    ppi<-1 
    temp1[free.pmatch[ppi]]<-temp1[free.pmatch[ppi]]+1 
    while(temp1[free.pmatch[ppi]]>tab.dim[free.pmatch[ppi]]) 
    { 
     temp1[free.pmatch[ppi]]<-1 
     ppi<-ppi+1 
     if (ppi<=length(free.pmatch)) temp1[free.pmatch[ppi]]<-

temp1[free.pmatch[ppi]]+1 
     else break 
    } 
   } 
  } 
 } 
 return(rst1) 
} 
 
######################################################################### 
# find out whether the simulated statistic W is contained in a list of W 
# b: the vector of the statistic W  
# rst: the set of the statistic W  
# wnumber: the number of the statistic W in ‘rst’. 
# return the position of ‘b’ in rst if b is contained in ‘rst’. 
# otherwise return 0. 
######################################################################### 
 
WBelong<-function(b,rst,wnumber) 
{ 
 n<-length(b) 
 for (wid in 1:wnumber) 
 { 
  if (compar(b,rst[((wid-1)*n+1):(wid*n)])) return(wid) 
 }  
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 return(0) 
} 
 
############################################################ 
# Find out the cells that are free to vary 
# marg.list: the set of margins in the reduced model 
# varorder: the variable list of the observed table 
# dima: The vector of the dimension of table. for example,  
#       dima=[2,3] indicates a 2×3 table. 
# return the list of cells that are free to change and the 
#        the list of fixed cells. 
############################################################ 
 
gettab.ab<-function(marg.list,varorder,dima) 
{ 
 #get the fixed cell number 
 fix.n<-1 
 for (i2 in 1:length(marg.list)) 
 { 
  elem.d<-decompose.elem(marg.list[i2]) 
  var.2<-pmatch(elem.d,varorder) 
  fix.n<-fix.n+max(cumprod(dima[var.2]-1)) 
  if (i2==1) 
  { 
   list.t<-marg.list[i2] 
   x.t<-length(elem.d) 
  }  
  else 
  { 
   pp<-match(T,x.t<length(elem.d)) 
   if (is.na(pp))  
   { 
    list.t<-c(list.t,marg.list[i2]) 
    x.t<-c(x.t,length(elem.d)) 
   } 
   else if (pp==1) 
   { 
    list.t<-c(marg.list[i2],list.t) 
    x.t<-c(length(elem.d),x.t) 
   } 
   else 
   { 
    list.t<-c(list.t[1:(pp-

1)],marg.list[i2],list.t[pp:length(list.t)]) 
    x.t<-c(x.t[1:(pp-1)],length(elem.d),x.t[pp:length(x.t)]) 
     
   } 
  } 
 }  
  
 wnumber<-0 
 rsta<-rstb<-rst<-numeric(0) 
 i1<-1 
 while(wnumber<fix.n) 
 { 
  dima1<-dima 
  dima2<-dima+1 
  var.1<-pmatch(decompose.elem(list.t[i1]),varorder) 
  i1<-i1+1 
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  f.dima<-dima[var.1] 
  cumpr<-c(1,cumprod(f.dima)) 
  cumpr<-cumpr[-length(cumpr)] 
   
  for (i in 1:max(cumprod(f.dima))) 
  { 
    n<-length(f.dima) 
    no.cell<-i 
    for (j in 1:n) 
    { 
     dima2[var.1[n-j+1]]<-dima1[var.1[n-j+1]]<-

floor(no.cell/cumpr[n-j+1])+1 
     no.cell<-no.cell-cumpr[n-j+1]*(dima1[var.1[n-j+1]]-1) 
     if (no.cell==0) 
     { 
      dima2[var.1[n-j+1]]<-dima1[var.1[n-j+1]]<-dima1[var.1[n-

j+1]]-1 
      no.cell<-cumpr[n-j+1] 
     } 
    } 
    if (wnumber==0 || WBelong(dima1,rst,wnumber)==0) 
    { 
     rst<-c(rst,dima1) 
     rstb<-c(rstb,dima2) 
     wnumber<-wnumber+1 
      
     if (wnumber== fix.n) break 
    } 
    
  }  
 } 
 #get cells that free to vary 
 dima3<-rep(1,length(dima)) 
 cumpr<-c(1,cumprod(dima)) 
 cumpr<-cumpr[-length(cumpr)] 
 for (k in 1:max(cumprod(dima))) 
 { 
  n<-length(dima) 
  no.cell<-k 
  for (j in 1:n) 
  { 
   dima3[n-j+1]<-floor(no.cell/cumpr[n-j+1])+1 
   no.cell<-no.cell-cumpr[n-j+1]*(dima3[n-j+1]-1) 
   if (no.cell==0) 
   { 
    dima3[n-j+1]<-dima3[n-j+1]-1 
    no.cell<-cumpr[n-j+1] 
   } 
  } 
  if (WBelong(dima3,rst,wnumber)==0) 
  { 
   rsta<-c(rsta,dima3) 
  } 
 } 
 return(list(cell.free=rsta, cell.fix=rstb)) 
} 
 
###################################################################### 
# find out the range of cell counts subjected to the reduced model. 
# obs.t: the observed table 
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# tab.a: the list of cells that are free to vary. 
# tab.b: the list of cells that are fixed. 
# maxcount: the vector of the maximum cell counts. 
# return the range of counts that are allowed to vary 
###################################################################### 
 
max.min<-function(obs.t,tab.a,tab.b,maxcount) 
{ 
 dima<-dim(obs.t) 
 max.t<-maxcount-as.vector(obs.t) 
 min.t<--as.vector(obs.t) 
 a.max<-numeric(0) 
 a.min<-numeric(0) 
 cumpr1<-c(1,cumprod(dima)) 
 cumpr1<-cumpr1[-length(cumpr1)] 
 var.n<-length(dima) 
 for (i1 in 1:(length(tab.a)/var.n)) 
 { 
  x<-tab.a[((i1-1)*var.n+1):(i1*var.n)] 
  for (i in 1:(length(tab.b)/var.n)) 
  { 
   temp1<-tab.b[((i-1)*var.n+1):(i*var.n)] 
   kx<-(x==temp1) 
   kx1<-temp1[F==kx]>dima[F==kx] 
   if (is.na(match(F,kx1))) 
   { 
    kx.1<-dima[!kx] 
    t.sum<-0 
    cumpr<-c(1,cumprod(kx.1)) 
    cumpr<-cumpr[-length(cumpr)] 
    kx.length<-length(kx.1) 
    for (j in 1:max(cumprod(kx.1))) 
    { 
     no.cell<-j 
     kxk<-kx 
     for (k in 1:kx.length) 
     { 
      p<-max(pmatch(rep(F,length(kxk[kxk==F])),kxk)) 
      temp1[p]<-floor(no.cell/cumpr[kx.length-k+1])+1 
      no.cell<-no.cell-cumpr[kx.length-k+1]*(temp1[p]-1) 
      if (no.cell==0) 
      { 
       temp1[p]<-temp1[p]-1 
       no.cell<-cumpr[kx.length-k+1] 
      } 
      kxk[p]<-T 
     } 
     t.sum<-t.sum+max.t[sum(cumpr1*(temp1-1))+1] 
    } 
    p1<-sum(cumpr1*(x-1))+1 
    cond<--(t.sum-max.t[p1]) 
    if (cond>min.t[p1]) min.t[p1]<-cond 
   } 
  } 
  a.max<-c(a.max,max.t[sum(cumpr1*(x-1))+1]) 
  a.min<-c(a.min,min.t[sum(cumpr1*(x-1))+1]) 
 } 
 return(list(a.max=a.max,a.min=a.min)) 
} 
 



 29 

########################################################################## 
# generate an exact table that are subjected to the fixed marginal totals 
#        given the counts in cells that are free to vary. 
# dima: The vector of the dimension of table. for example,  
#       dima=[2,3] indicates a 2×3 table. 
# tab.a: the list of cells that are free to vary. 
# tab.b: the list of cells that are fixed. 
# a.count: the counts in cells that are free to vary. 
# return the simulated table. 
######################################################################### 
 
gettable<-function(dima,tab.a,a.count,tab.b) 
{ 
 var.n<-length(dima) 
 while (length(tab.b)>0) 
 { 
  n<-length(a.count) 
  tab.b.t<-tab.b[1:(var.n)] 
  t1<-tab.b.t>dima 
  t2<-(!t1)*tab.b.t 
  needed.n<-max(cumprod(tab.b.t[t1]-1))-1 
  t.count<-0 
  for (i in 1:n) 
  { 
    
   t3<-tab.a[((i-1)*var.n+1):(i*var.n)]*(!t1) 
   if (compar(t2,t3)) 
   { 
    if (needed.n==1) 
    { 
     a.count<-c(a.count,t.count-a.count[i]) 
     tab.b.t[tab.b.t>dima]<-tab.b.t[(tab.b.t>dima)]-1 
     tab.a<-c(tab.a, tab.b.t) 
     tab.b<-tab.b[-c(1:var.n)] 
     break 
    } 
    else if (i==n) 
    { 
     tab.b<-c(tab.b,tab.b[1:var.n]) 
     tab.b<-tab.b[-c(1:var.n)]    
    } 
    else 
    { 
     needed.n<-needed.n-1 
     t.count<-t.count-a.count[i] 
    } 
   } 
   else if (i==n) 
   { 
    tab.b<-c(tab.b,tab.b[1:var.n]) 
    tab.b<-tab.b[-c(1:var.n)] 
   } 
  } 
 } 
 y<-c(1,dima[-(length(dima))]) 
 indx<-matrix((tab.a-1),ncol=var.n,byrow=T)%*%cumprod(y)+1 
 rst<-a.count[order(indx)] 
 return(rst) 
} 
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Appendix II: S-Plus Code for Exact Conditional Independent Test 

Subroutine (Used In Chapter III) 

################################################################### 
# Calculate the Pearson’s statistic given a I×J table. 
# simulat.t: a I×J table. 
# return the probability of this table and the Pearson’s statistic 
#################################################################### 
pearson.st<-function(simulat.t) 
{ 
 if (sum(simulat.t)==0) 
 { 
  prob1<-1 
  xsq<-0 
 } 
 else 
 { 
  io<-apply(simulat.t,1,sum) 
  oj<-apply(simulat.t,2,sum) 
  t.p<-c(factorial(io),factorial(oj))/factorial(simulat.t[1:5]) 
  prob1<-cumprod(t.p)[5]/factorial(sum(simulat.t))/factorial(simulat.t[6]) 
  mij<-outer(io,oj)/sum(simulat.t) 
  simulat.t<-simulat.t[mij>0] 
  mij<-mij[mij>0] 
  xsq<-t(as.vector(simulat.t-mij))%*%(as.vector(simulat.t-mij)/mij) 
   
 } 
 return(list(prob=prob1,xsq=xsq)) 
} 
 
 
######################################################################## 
# The conditional independent test by exact method 
# tbl: the tested table. Test the independence between first and second  
#      dimension conditioned on the rest dimensions. 
# return a list of values: 
#      1. Observed Pearson’s statistic 
#      2. The P-value for independent test 
#      3. the number of exact tables subjected to null hypothesis 
######################################################################## 
 
 
ECIT<-function(tbl) 
{ 
 formula.f<-y~x1*x2 
 reduce<-'x1*x2' 
 dim<-c('x1','x2') 
 list1<-decompose.marg.list(formula.f) 
 list2<-decompose.substr(reduce)      #reduced part 
 rr<-AbelongB(list2,list1$marglist) 
 list1$marglist<-list1$marglist[-rr]  #reduced model 
  
 xsq<-numeric(0) 
 prb<-numeric(0) 
 n16<-numeric(0) 
 obs.xsq<-0 
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 npartial<-cumprod(dim(tbl)[-c(1,2)]) 
 npa<-npartial[length(npartial)] 
 dpartial<-cumprod(dim(tbl)[c(1,2)]) 
 dpa<-dpartial[2] 
  
 for(ip in 1:npa)  
 { 
  obs.t<-as.vector(tbl)[((ip-1)*dpa+1):(ip*dpa)] 
  obs.t<-matrix(obs.t,ncol=dim(tbl)[2]) 
  obs.xsq<-pearson.st(obs.t)$xsq+obs.xsq 
  
  maxcount<-max.cell(list1$marglist,list1$varlist,dim,obs.t) 
  dima<-dim(tbl)[c(1:2)] 
  tab<-gettab.ab(list1$marglist,dim,dima) 
  max.c<-max.min(obs.t,tab$cell.free,tab$cell.fix,maxcount) 
  maxrange<-max.c$a.max-max.c$a.min 
  n<-length(maxrange) 
  t.vector<-rep(0,n)  
  t.number<-0  
  xsq1<-numeric(0) 
  prb1<-numeric(0) 
  while (t.vector[n]<=maxrange[n]) 
  { 
   tt<-t.vector[1]<-t.vector[1]+1 
   i<-1 
   while (tt==(maxrange[i]+1) && i<n) 
   { 
    t.vector[i]<-0 
    tt<-t.vector[i+1]<-t.vector[i+1]+1 
    i<-i+1 
   } 
   #do sth 
   if (t.vector[n]>maxrange[n]) rst1<-rep(0,n)+max.c$a.min 
   else rst1<-t.vector+max.c$a.min 
   rst2<-gettable(dima,tab$cell.free,rst1,tab$cell.fix)+as.vector(obs.t) 
   if (is.na(match(T,rst2<0)))  
   { 
    rst2<-matrix(rst2,ncol=3) 
    statis<-pearson.st(rst2) 
    t.number<-t.number+1 
    xsq1<-c(xsq1,statis$xsq) 
    prb1<-c(prb1,statis$prob) 
   } 
  } 
 
  z<-data.frame(xsq1,prb1) 
  z1<-sort.col(z,c('xsq1','prb1'),'xsq1',F) 
  if (ip==1) 
  { 
   xsq<-c(xsq,z1$xsq1) 
   prb<-c(prb,z1$prb1) 
   n16<-c(n16,t.number)   
  }  
  else 
  { 
   pp<-match(T,t.number>n16) 
   if (is.na(pp))  
   { 
    n16<-c(n16,t.number) 
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    xsq<-c(xsq,z1$xsq1) 
    prb<-c(prb,z1$prb1) 
   } 
   else if (pp==1) 
   { 
    n16<-c(t.number,n16) 
    xsq<-c(z1$xsq1,xsq) 
    prb<-c(z1$prb1,prb) 
   } 
   else 
   { 
    xsq<-c(xsq[1:sum(n16[1:(pp-1)])],z1$xsq1,xsq[(sum(n16[1:(pp-

1)])+1):length(xsq)]) 
    prb<-c(prb[1:sum(n16[1:(pp-1)])],z1$prb1,prb[(sum(n16[1:(pp-

1)])+1):length(prb)]) 
    n16<-c(n16[1:(pp-1)],t.number,n16[pp:length(n16)]) 
   } 
  } 
 } 
  
 
 n.lth<-length(n16[n16>1]) 
 tem<-rep(1,n.lth) 
 tem[1]<-0 
 flex<-c(0,cumsum(n16[n16>1])[-n.lth]) 
 pvalue<-0 
 while (pvalue<1*10^n.lth) 
 { 
  tt<-tem[1]<-tem[1]+1 
  i<-1 
  while (tt==(n16[i]+1) && i<n.lth) 
  { 
   tem[i]<-1 
   tt<-tem[i+1]<-tem[i+1]+1 
   i<-i+1 
  } 
  if ((tem[n.lth]>n16[n.lth])) break 
  if(sum(xsq[tem+flex])>=obs.xsq) 
  { 
   pvalue<-pvalue + cumprod(prb[(tem+flex)]*10)[n.lth] 
  } 
  else 
  { 
   temi<-1 
   while (tem[temi]==1) {temi<-temi+1} 
   tem[1:temi]<-n16[1:temi] 
  } 
 } 
 return(list(obs.xsq=obs.xsq,pvalue=(pvalue/(10^n.lth)),n.partial=n16)) 
} 
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Appendix III: S-Plus Code for Exact Conditional Test Subroutine 

(Used In Chapter V) 
 
##################################################################### 
# perform the exact conditional test 
# tbl: the observed table 
# dim: the list of variables ordered by the dimension NO. 
# formula.f: the full model 
# reduce: the reduced term for example, to test A*B+A*C+B*C against 
#         the saturated model, the reduced part is A*B*C 
# return a list of values, including: 
#        1. The observed W statistic 
#        2. The distribution of the W statistic 
#        3. The number of exact tables that satisfy the fix marginal total.   
#        4. The P-value  
##################################################################### 
 
ect<-function(tbl,dim,formula.f,reduce) 
{ 
 list1<-decompose.marg.list(formula.f) 
 list2<-decompose.substr(reduce)      #reduced part 
 rr<-AbelongB(list2,list1$marglist) 
 list1$marglist<-list1$marglist[-rr]  #reduced model 
 maxcount<-max.cell(list1$marglist,list1$varlist,dim,tbl) 
 obs.t<-apply(tbl,pmatch(list1$varlist,dim),sum) 
  
 dima<-dim(obs.t) 
 tab<-gettab.ab(list1$marglist,dim,dima) 
 max.c<-max.min(obs.t,tab$cell.free,tab$cell.fix,maxcount) 
 maxrange<-max.c$a.max-max.c$a.min 
 n<-length(maxrange) 
 t.vector<-rep(0,n)  
 rst<-numeric(0) 
 wnumber<-0 
 while (t.vector[n]<=maxrange[n]) 
 { 
  tt<-t.vector[1]<-t.vector[1]+1 
  i<-1 
  while (tt==(maxrange[i]+1) && i<n) 
  { 
   t.vector[i]<-0 
   tt<-t.vector[i+1]<-t.vector[i+1]+1 
   i<-i+1 
  } 
  #do sth 
  if (t.vector[n]>maxrange[n]) rst1<-rep(0,n)+max.c$a.min 
  else rst1<-t.vector+max.c$a.min 
  rst2<-gettable(dima,tab$cell.free,rst1,tab$cell.fix)+as.vector(obs.t) 
  #### 
  if (is.na(match(T,rst2<0))) 
  { 
    cstar.1<-

cumprod(factorial(as.vector(obs.t))/factorial(rst2))[length(obs.t)]   
    dim(rst2)<-dima 
    b<-marginal.cell(list2,dim,rst2) 
    if (wnumber==0)  
    { 
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     cstar.w<-cstar.1 
     cstar.t<-cstar.1 
     t.number<-1 
     rst<-b 
     wnumber<-wnumber+1 
    } 
    else 
    { 
     cstar.t<-cstar.t+cstar.1 
     t.number<-t.number+1 
     Wposi<-WBelong(b,rst,wnumber) 
     if (Wposi==0) 
     { 
       rst<-c(rst,b) 
       cstar.w<-c(cstar.w,cstar.1) 
       wnumber<-wnumber+1 
       
     } 
     else 
     { 
      cstar.w[Wposi]<-cstar.w[Wposi]+cstar.1 
     } 
    } 
  } 
 } 
 distr.w<-cstar.w/cstar.t 
 c<-marginal.cell(list2,dim,tbl) 
 obs.w<-distr.w[WBelong(c,rst,wnumber)] 
 return(list(obs.w=obs.w,distr.w=distr.w,t.number=t.number,pvalue=sum(distr.w

[distr.w<=obs.w]))) 
} 
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Appendix IV: S-Plus Code for Conditional Independent Test 

(Exact Test and Asymptotic Test) 
 
dat<-read.table("c:\\matemp\\project\\data.txt",header=F) 
#MAO-B conditioned on all other polymorphisms 
tbl<-table(dat$V5,dat$V2,dat$V3,dat$V4,dat$V6,dat$V7) 
tbl<-tbl[,-c(1,2),,,-1,-1] 
ECI(tbl) 
 
#LPR conditioned on all other polymorphisms 
tbl<-table(dat$V3,dat$V2,dat$V5,dat$V4,dat$V6,dat$V7) 
tbl<-tbl[,-c(1,2),,,-1,-1] 
ECI(tbl) 
 
#VNTR conditioned on all other polymorphisms 
tbl<-table(dat$V4,dat$V2,dat$V5,dat$V3,dat$V6,dat$V7) 
tbl<-tbl[,-c(1,2),,,-1,-1] 
ECI(tbl) 
 
#HT1A conditioned on all other polymorphisms 
tbl<-table(dat$V6,dat$V2,dat$V5,dat$V4,dat$V3,dat$V7) 
tbl<-tbl[-1,-c(1,2),,,,-1] 
ECI(tbl) 
 
#MAO-A conditioned on all other polymorphisms 
tbl<-table(dat$V7,dat$V2,dat$V5,dat$V4,dat$V3,dat$V7) 
tbl<-tbl[-1,-c(1,2),,,,-1] 
ECI(tbl) 
 
#VNTR conditioned on all other polymorphisms 
1-pchisq(14.613,32) 
#LPR conditioned on all other polymorphisms 
1-pchisq(18.1412,32) 
#MAO-B conditioned on all other polymorphisms 
1-pchisq(20.6343,32) 
#HT1A conditioned on all other polymorphisms 
1-pchisq(11.571,32) 
#MAO-A conditioned on all other polymorphisms 
1-pchisq(9.339,32) 
 
#mao-b on VNTR 
tbl<-table(dat$V5,dat$V2,dat$V4) 
tbl<-tbl[,-c(1,2),] 
ECIT(tbl) 
 
#mao-b on LPR 
tbl<-table(dat$V5,dat$V2,dat$V3) 
tbl<-tbl[,-c(1,2),] 
ECIT(tbl) 
 
#mao-b on HT1A 
tbl<-table(dat$V5,dat$V2,dat$V6) 
tbl<-tbl[,-c(1,2),-1] 
ECIT(tbl) 
 
#mao-b on MAO-A 
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tbl<-table(dat$V5,dat$V2,dat$V7) 
tbl<-tbl[,-c(1,2),-1] 
ECIT(tbl) 
 
#LPR on VNTR 
tbl<-table(dat$V3,dat$V2,dat$V4) 
tbl<-tbl[,-c(1,2),] 
ECIT(tbl) 
 
#LPR on MAO-B 
tbl<-table(dat$V3,dat$V2,dat$V5) 
tbl<-tbl[,-c(1,2),] 
ECIT(tbl) 
 
#LPR on HT1A 
tbl<-table(dat$V3,dat$V2,dat$V6) 
tbl<-tbl[,-c(1,2),-1] 
ECIT(tbl) 
 
#LPR on MAO-A 
tbl<-table(dat$V3,dat$V2,dat$V7) 
tbl<-tbl[,-c(1,2),-1] 
ECIT(tbl) 
 
#VNTR on MAO-B 
tbl<-table(dat$V4,dat$V2,dat$V5) 
tbl<-tbl[,-c(1,2),] 
ECIT(tbl) 
 
#VNTR on LPR 
tbl<-table(dat$V4,dat$V2,dat$V3) 
tbl<-tbl[,-c(1,2),] 
ECIT(tbl) 
 
#VNTR on HT1A 
tbl<-table(dat$V4,dat$V2,dat$V6) 
tbl<-tbl[,-c(1,2),-1] 
ECIT(tbl) 
 
#VNTR on MAO-A 
tbl<-table(dat$V4,dat$V2,dat$V7) 
tbl<-tbl[,-c(1,2),-1] 
ECIT(tbl) 
 
#HT1A on MAO-B 
tbl<-table(dat$V6,dat$V2,dat$V5) 
tbl<-tbl[-1,-c(1,2),] 
ECIT(tbl) 
 
#HT1A on LPR 
tbl<-table(dat$V6,dat$V2,dat$V3) 
tbl<-tbl[-1,-c(1,2),] 
ECIT(tbl) 
 
#HT1A on VNTR 
tbl<-table(dat$V6,dat$V2,dat$V4) 
tbl<-tbl[-1,-c(1,2),] 
ECIT(tbl) 
 
#HT1A on MAO-A 
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tbl<-table(dat$V6,dat$V2,dat$V7) 
tbl<-tbl[-1,-c(1,2),-1] 
ECIT(tbl) 
 
#MAO-A on MAO-B 
tbl<-table(dat$V7,dat$V2,dat$V5) 
tbl<-tbl[-1,-c(1,2),] 
ECIT(tbl) 
 
#MAO-A on LPR 
tbl<-table(dat$V7,dat$V2,dat$V3) 
tbl<-tbl[-1,-c(1,2),] 
ECIT(tbl) 
 
#MAO-A on VNTR 
tbl<-table(dat$V7,dat$V2,dat$V4) 
tbl<-tbl[-1,-c(1,2),] 
ECIT(tbl) 
 
#MAO-A on HT1A 
tbl<-table(dat$V7,dat$V2,dat$V6) 
tbl<-tbl[-1,-c(1,2),-1] 
ECIT(tbl) 
 
1-pchisq(0.5,4) #VNTR on LPR 
1-pchisq(2.736,4) #VNTR on MAO-B 
1-pchisq(0.9,4)  #VNTR on MAO-A 
1-pchisq(1.601,4)  #VNTR on HT1A 
1-pchisq(5.536,4)  #LPR on VNTR 
1-pchisq(11.763,4)  #LPR on MAO-B 
1-pchisq(7.06,4)  #LPR on MAO-A 
1-pchisq(4.714,4)  #LPR on HT1A 
1-pchisq(8.25,4)  #MAO-B on VNTR 
1-pchisq(12.466,4)  #MAO-B on LPR 
1-pchisq(9.669,4)  #MAO-B on MAO-A 
1-pchisq(8.019,4)  #MAO-B on HT1A 
1-pchisq(0.431,4)  #MAO-A on VNTR 
1-pchisq(1.77,4)  #MAO-A on LPR 
1-pchisq(3.494,4) #MAO-A on MAO-B 
1-pchisq(2.791,4)  #MAO-B on HT1A 
1-pchisq(3.166,4)  #HT1A on VNTR 
1-pchisq(1.919,4)  #HT1A on LPR 
1-pchisq(3.613,4)  #HT1A on MAO-B 
1-pchisq(4.561,4)  #HT1A on MAO-A 
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Appendix V: S-Plus Code for Fisher’s Exact Test and Three-way Interaction 

Test (ECT and Poisson) 

 
dat<-read.table("c:\\matemp\\project\\data.txt",header=F) 
#MAO-B 
tbl<-table(dat$V5,dat$V2) 
tbl<-tbl[,-c(1,2)] 
fisher.test(tbl) 
 
#LPR 
tbl<-table(dat$V3,dat$V2) 
tbl<-tbl[,-c(1,2)] 
fisher.test(tbl) 
 
#VNTR 
tbl<-table(dat$V4,dat$V2) 
tbl<-tbl[,-c(1,2)] 
fisher.test(tbl) 
 
#HT1A 
tbl<-table(dat$V6,dat$V2) 
tbl<-tbl[-1,-c(1,2)] 
fisher.test(tbl) 
 
#MAO-A 
tbl<-table(dat$V7,dat$V2) 
tbl<-tbl[-1,-c(1,2)] 
fisher.test(tbl) 

# three-way interaction test for MAO-B*LPR*Response by ECT method 
tbl<-table(dat$V3,dat$V2,dat$V5) 
tbl<-tbl[,-c(1,2),] 
dim<-c('V2','V3','V5') 
formula.f<-y~V2*V3*V5 
reduce<-'V2*V3*V5' 
ect(tbl,dim,formula.f,reduce) 
 
# three-way interaction test for MAO-B*LPR*Response by ECT method 
tbl<-table(dat$V7,dat$V2,dat$V5) 
tbl<-tbl[-1,-c(1,2),] 
dim<-c('V6','V3','V5') 
formula.f<-y~V6*V3*V5 
reduce<-'V6*V3*V5' 
ect(tbl,dim,formula.f,reduce) 

#Poisson regression in testing three-way interaction MAO-B*LPR*Response 
tbl<-table(dat$V3,dat$V5,dat$V2) 
tab2<-tbl[,,c(-1,-2)] 
Rsp<-c(rep("N",4),rep("P",4),rep("R",4)) 
LPR<-rep(c('l','s'),6) 
MAOB<-rep(c(rep('A',2),rep('G',2)),3) 
Frq<-as.vector(tab2) 
dat1<-data.frame(Rsp,LPR,MAOB,Frq) 
x.glm0<-glm(Frq~LPR*MAOB + 

Rsp,family=poisson,data=dat1,control=glm.control(maxit=50)) 
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x.glm1<-
glm(Frq~LPR*MAOB*Rsp,family=poisson,data=dat1,control=glm.control(maxit=50)) 

x.glm2<-glm(Frq~LPR*MAOB + MAOB*Rsp + 
LPR*Rsp,family=poisson,data=dat1,control=glm.control(maxit=50)) 

x.glm3<-glm(Frq~LPR*MAOB + 
LPR*Rsp,family=poisson,data=dat1,control=glm.control(maxit=50)) 

anova(x.glm1,x.glm2,test='chisq') 
step1<-step(x.glm0,list(lower=formula(x.glm0),upper=~.^2)) 
step1$anova 
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Appendix VI: Antidepressant Treatment Data 
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