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AN APPLICATION OF ARMITAGE TREND TEST TO GENOME-WIDE

ASSOCIATION STUDIES

by

NIGEL A. SCOTT

Under the Direction of Dr. Yixin Fang

ABSTRACT

Genome-wide Association (GWA) studies have become a widely used method for ana-

lyzing genetic data. It is useful in detecting associations that may exist between particular

alleles and diseases of interest. This thesis investigates the dataset provided from problem 1

of the Genetic Analysis Workshop 16 (GAW 16). The dataset consists of GWA data from the

North American Rheumatoid Arthritis Consortium (NARAC). The thesis attempts to deter-

mine a set of single nucleotide polymorphisms (SNP) that are associated signi�cantly with

rheumatoid arthritis. Moreover, this thesis also attempts to address the question of whether

the one-sided alternative hypothesis that the minor allele is positively associated with the

disease or the two-sided alternative hypothesis that the genotypes at a locus are associated

with the disease is appropriate, or put another way, the question of whether examining both

alternative hypotheses yield more information.

INDEX WORDS: False discovery rate, Genetic analysis workshop, Rheumatoid arthritis,
Sequentially rejective bonferroni, Single nucleotide polymorphisms
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Chapter 1

INTRODUCTION

1.1 Genome-wide Association (GWA) Studies

There has been a long history, dating back to 1985, behind decoding the human genome

and its potential uses. The Human Genome Project which spanned over 20 years, essentially

sequenced the human genome and allowed researchers to study what all humans have in

common (Roberts, 2001). In addition to the information gained from the Human Genome

Project, the results released by the International HapMap Consortium (2003) further ad-

vanced our understanding of the human DNA by studying the variability of the DNA in

several world populations.

There are many exciting successes in this area. For example, Risch and Meringkan (1996)

andWTCCC (2007) list several diseases such as Huntington's disease and Alzheimer's disease

in which researchers have found genetic basis. However, Risch and Meringkan (1996) also

indicated that there had not been many successes in more complex diseases, due to the

modest association of some genes to these diseases. They also suggested that the method of

linkage analysis used for detection has low power in �nding linkages between diseases and

genes. Instead, they showed that GWA studies have much higher power and can detect

associations for the more complex diseases.

The detection of strategically selected markers called Single Nucleotide Polymorphisms

(SNPs), play a vital role in GWA studies. SNPs are essentially variations in the DNA

sequence of chromosomes. According to International HapMap Consortium (2003), a section

of DNA in a chromosome region will have a sequence of bases consisting of A, T, C, or G.

Whenever these sequences vary across the regions, they are referred to as SNPs. On average,

these variations in the chromosome occur at a rate of one variant per 1,000 bases as reported

by Wang et al. (1998). It was also estimated that about 10 million SNPs account for about

90% of the variation in the human population, and the other 10% results from rare variants

in the population (Kruglyak and Nickerson, 2001). However, according to Gabriel et al.
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(2002) and Carlson (2003) most of these variations can be studied by genotyping 200,000 to

1,000,000 tag SNPs across the human genome.

In order to conduct a GWA study, researchers take samples of DNA from a group of

people with the disease of interest, and samples of DNA from a control group without the

disease. These samples are then tested for the presence of SNPs that can highlight genetic

abnormalities. If it is found that these abnormalities are signi�cantly present in individuals

with the disease relative to those without the disease, then those mutations can be considered

as being associated with an increased risk of the disease.

GWA studies have already proven to have some successes. As noted in WTCCC (2007),

these studies have been able to �nd signi�cant associations between speci�c genetic muta-

tions and certain diseases such as type-II diabetes, Parkinson's disease and Crohn's disease.

However, other more complex diseases, such as rheumatoid arthritis, still hold a challenge

for researchers.

1.2 NARAC Dataset

The dataset in problem 1 of the Genetic Analysis Workshop 16 (GAW 16) is part of the

dataset used by Plenge et al. (2007), in which a GWA study was performed on cases, from

North America and Sweden, with anti-CCP positive rheumatoid arthritis. The GAW 16

dataset is based on the data from North America. After removing duplicated and contam-

inated samples, this dataset consists of 868 cases and 1,194 controls and contains 545,080

SNPs. Actually, the initial North American cases were taken from several rheumatology

clinics that make up the NARAC. The cases were randomly drawn from these clinics and

the patients were self-identi�ed as having white ancestry and they are matched with control

subjects according to similar self-identi�ed ethnic background.

1.3 Challenges for Statistical Methods

GWA studies have been made possible due to the improvement of technology. For exam-

ple, the WTCCC used the A�ymetrix GeneChip 500K Mapping Array Set that allowed it

the ability to study 7 diseases in approximately 2,000 cases and 3,000 controls. As pointed
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out by Gabriel et al. (2002), the variations in the human population can be studied by geno-

typing 200,000 to 1,000,000 tag SNPs across the genome. While the technology has made it

possible to study associations between diseases and SNPs, it has highlighted some statistical

challenges in terms of analyzing such large datasets that has plagued the statistics for years.

One issue is the curse of high dimensionality (Hastie, Tibshirani and Friedman, 2009).

This problem occurs when the number of variables are much larger than the sample size.

Liang and Kelemen (2008) classi�ed the statistical methods used to address high dimen-

sionality problems into three groups: �ltering methods, wrapping methods and embedded

methods. The �ltering methods are the most popular, because they are convenient and fast.

When �ltering methods are used to address high dimensionality problems, the next big

problem created is the problem of multiple testing. Hypothesis testing is used in GWA studies

to determine which SNPs are most signi�cantly associated with the disease of interest. Each

SNP that is analyzed constitutes one hypothesis test. In traditional hypothesis testing, the

signi�cant level is often set at 5%. However, as shown in the table below as the number

of SNPs tested increases, the number of SNPs falsely claimed to be signi�cant increases,

provided that all the SNPs are non-signi�cant.

Table 1.1: Increase in False Positive (α = 5%)

Number of SNPs Tested False Positive Incidence

100 5
10,000 500
500,000 25,000

Note: Assume that all the SNPs are non-signi�cant

Tons of methods have been proposed to combat the problem of multiple testing, as dis-

cussed by Hastie et al. (2009). According to Lee (2004), the Sequentially Rejective Bonferroni

(SRB) method introduced by Holm (1979), uses an application of Bonferroni correction to

ordered p-values. The False Discovery Rate (FDR) method proposed by Benjamini and

Hochberg (1995) is similar to the SRB method in that it uses the ordering of p-values. The
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FDR method adjusts these p-values as a proportion of the rank of the p-value to the total

number of hypothesis tests. These two methods are discussed further in this thesis.

1.4 Armitage Trend Test

One of the disadvantages of the case-control GWA studies is that they are prone to a

number of biases including population strati�cation, as pointed out by Pearson and Manolio

(2008). Despite the debate on the importance of considering confounding due to popula-

tion strati�cation in GWA studies using case-control designs, Thomas and Witte (2002) and

Wacholder et al. (2002), the Armitage's trend tests can correct for population strati�cation

to some extent, as suggested by Armitage (1955), Sasieni (1997) and Schaid and Jacobsen

(1999). Some other methods were also developed for the same purpose, based on the Ar-

mitage's trend test, such as the genomic control approach discussed by Devlin and Roeder

(1999) and Reich and Goldstein (2001).

However, there is still a question as to whether the one-sided or the two-sided alternative

hypothesis is appropriate, or put another way, whether or not examining both the one-

sided and the two-sided alternative hypotheses can give more information. The dataset for

problem 1 of GAW 16 provides us with a chance to address this question, because it is a part

of a combined sample from the NARAC and the Swedish Epidemiological Investigation of

Rheumatoid Arthritis (EIRA). The results from the combined sample is used as a reference.

1.5 Organization of Thesis

The remainder of this thesis is organized as follows. Chapter two provides an overview

of the three classical methods, di�erence of proportions, relative risk and odds ratio, used to

analyze case-control data. Chapter three presents the theory behind the Armitage's trend

test for both the one-sided and the two-sided alternative hypotheses as well as the motivation

for its use in this thesis. Chapter four discusses the SRB method and the FDR method, and

their use in �nding a threshold to determine the signi�cant SNPs. Chapter �ve compares

the results of the one-sided and the two-sided alternatives when using the Armitage's trend

test and the three classical methods. Chapter six presents some conclusions and discussion.
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Chapter 2

THREE CLASSICAL METHODS

2.1 Notation

The response variable in a GWA study is the status of the disease of interest, either

diseased or non-diseased. The explanatory variable at a SNP is the genotype: AA, Aa or

aa. The data at a SNP are shown in a 2 × 3 contingency table, as displayed in Table 2.1.

Throughout the thesis, denote the major allele as �A", and the minor allele as �a". Here the

minor allele is the one with smaller frequency.

Table 2.1: Genotype Distribution at a SNP

AA Aa aa Total

Case n10 n11 n12 N1

Control n00 n01 n02 N0

Total N+0 N+1 N+2 N

In Table 2.1, N1 and N0 denote the numbers of subjects in the case group and the control

group respectively, and N+0, N+1 and N+2 denote the numbers of the subjects with genotypes

AA, Aa and aa respectively. Let N denote the total numbers of subjects in the study. Let

n10, n11 and n12 denote the numbers of subjects with genotypes AA, Aa and aa in the case

group and n00, n01 and n02 the corresponding numbers in the control group.

At any SNP, each subject has two alleles, a major allele and a minor allele. By counting

the frequency of the minor allele �a" and the major allele �A", we can convert Table 2.1 to

a 2× 2 contingency table, as displayed in Table 2.2.

Table 2.2: Allele Distribution at a SNP

�a" �A" Total

Case ñ11 = 2n12 + n11 ñ10 = 2n10 + n11 Ñ1 = 2N1

Control ñ01 = 2n02 + n01 ñ00 = 2n00 + n01 Ñ0 = 2N0

Total Ñ+1 = 2N+2 +N+1 Ñ+0 = 2N+0 +N+1 Ñ = 2N
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In Table 2.2, Ñ1 and Ñ0 denote the numbers of alleles in the case group and the control

group respectively, and Ñ+1 and Ñ+0 denote the numbers of the minor and major alleles in

the dataset. Let Ñ denote the total number of alleles in the study. Let ñ11 and ñ10 denote

the numbers of minor and major alleles in the case group and ñ01 and ñ00 the numbers of

minor and major alleles in the control group. Let P1 denote the population proportion of

the minor allele �a" in the case group, and P0 denote the population proportion of the minor

allele �a" in the control group. De�ne the sample proportion of the minor allele in the case

group as �p1 = ñ11/Ñ1 and the sample proportion of the minor allele in the control group

as �p0 = ñ01/Ñ0. Agresti, (2007) describes three classical methods, di�erence of proportions,

relative risk and odds ratio to analyze 2× 2 tables, such as Table 2.2.

2.2 Di�erence of Proportions

Because D = P1−P0 compares the population proportion of the minor alleles in the case

group with that in the control group, if the di�erence of proportions is zero, then there is no

association between the SNP and the risk of disease. If P1 > P0, then there exists a positive

association between the minor allele and the risk of disease.

The di�erence of sample proportions d̂ = p̂1 − p̂0 estimates D. Let p̂ = Ñ+1/Ñ be the

pooled sample proportion of the minor allele. Under the null hypothesis that there is no

association between the SNP and the risk of disease, the estimated standard error of d̂ is,

SE(d̂) =

√
�p(1− �p)

Ñ
. (2.1)

To test the H0: P1 = P0, the test statistic is

Z1 =
�p1 − �p0

SE(d̂)
, (2.2)

which asymptotically follows the standard normal distribution under the H0.
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For the one-sided alternative hypotheses that the minor allele is positively associated

with the disease of interest, that is P1 > P0, the p-value is Prob(N(0, 1) ≥ Zobs1 ). For

the two-sided alternative hypotheses that the genotypes are associated with the disease of

interest, that is P1 6= P0, the test based on Z1 is equivalent to the test based on Z2
1 , which

asymptotically follows a chi-squared distribution with one degree of freedom, χ2
1. The p-value

is Prob(χ2
1 ≥ Z2obs

1 ).

2.3 Relative Risk

The method based on di�erence of proportions is not e�ective when the proportions are

near 0 (Agresti, 2007). The method of relative risk can solve this problem. The relative risk

is de�ned as ρ = P1/P0, which can be estimated by the sample relative risk of ρ̂ = �p1/�p0. If

ρ = 1, then there is no association between the SNP and the risk of disease. If ρ > 1, then

there exists a positive association between the minor allele and the risk of disease.

To avoid skewness in the asymptotic distribution of ρ̂, the log ρ̂ is considered. The

estimated standard error of log ρ̂ is (Agresti, 2007)

SE(log ρ̂) =

√
(1− �p1)

Ñ1�p1

+
(1− �p0)

Ñ0�p0

. (2.3)

To test the H0: P1 = P0 the test statistic is

Z2 =
log �p1

�p0

SE(log ρ̂)
, (2.4)

which asymptotically follows the standard normal distribution under the H0.

For the one-sided alternative hypotheses that the minor allele is positively associated with

the disease of interest, that is P1 > P0, the p-value is Prob(N(0, 1) ≥ Zobs2 ). For the two-sided

alternative that the genotypes are associated with the disease of interest, that is P1 6= P0,

the test based on Z2 is equivalent to the test based on Z2
2 , which asymptotically follows a

chi-squared distribution with one degree of freedom, χ2
1. The p-value is Prob(χ2

1 ≥ Z2obs
2 ).
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2.4 Odds Ratio

Another method used is the odds ratio test statistic which is based on the ratio of the

odds of the minor allele in the case group with that in the control group. The odds of the

minor allele in the case group is de�ned as odds1 = P1/(1− P1) and the odds of the minor

allele in the control group is de�ned as odds2 = P0/(1− P0). The odds ratio can be de�ned

as θ = P1

1−P1
/ P0

1−P0
, which can be estimated by the sample odds ratio θ̂ = p̂1

1−p̂1/
p̂0

1−p̂0 . If θ = 1,

then there is no association between the SNP and the risk of the disease. If θ > 1, then

there exists a positive association between the minor allele and risk of the disease.

To avoid skewness in asymptotic distribution of θ̂, the log θ̂ is considered. The estimated

standard error of the log θ̂ is (Agresti, 2007)

SE(log θ̂) =

√
1

ñ11

+
1

ñ10

+
1

ñ01

+
1

ñ00

. (2.5)

To test the H0: P1 = P0 the test statistic is,

Z3 =
log θ̂

SE(log θ̂)
, (2.6)

which asymptotically follows the standard normal distribution under the H0.

For the one-sided alternative hypotheses that the minor allele is positively associated

with the disease of interest, that is P1 > P0, the p-value is Prob(N(0, 1) ≥ Zobs3 ). For

the two-sided alternative hypotheses that the genotypes are associated with the disease of

interest, that is P1 6= P0, the test based on Z3 is equivalent to the test based on Z2
3 , which

asymptotically follows a chi-squared distribution with one degree of freedom, χ2
1. The p-value

is Prob(χ2
1 ≥ Z2obs

3 ).
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Chapter 3

ARMITAGE TREND TEST

3.1 Population Strati�cation

Case-control designs are useful in analyzing GWA studies to answer the question of which

SNPs are most signi�cantly associated with an increase risk of disease. However, the main

drawback of case-control studies is that they are prone to population strati�cation.

Population strati�cation is a form of confounding that can occur speci�cally in genetics

studies, such as GWA studies. This type of confounding occurs when two or more subgroups

of the population under study display a large variation in the allele frequencies of the gene

being investigated. These subgroups also di�er from the rest of the population in the risk of

disease. There are many causes of population strati�cation. One possible cause is migration.

The migrated group of people maybe susceptible to a particular disease and has become part

of a larger population (Thomas and Witte, 2002). In this situation, a case-control study will

detect a false association between the population and the disease of interest, that is really

being caused by the association between the migrated subgroup and the disease of interest.

There are several examples of population strati�cation that highlight the seriousness of

the problem, and the adverse e�ects it can have on the results of a study, Thomas and Witte

(2002). One of those examples involves a genetic association study that suggested an inverse

association between variants in the immunoglobulin haplotype Gm3,5,13,14 and non-insulin-

dependent diabetes mellitus in members of the Gila River Indian Community. After further

investigation of this association, it was determined that the inverse association was due to

the Caucasian heritage among the community. In fact, there was an association between

heritage and Gm3,5,13,14 and between Caucasian heritage and risk of the speci�c diabetes

mellitus. Once the data was corrected for heritage, the results no longer re�ected the inverse

association.

Figure 3.1 was presented in Wacholder et al. (2002) to explain population strati�cation.

Case-control studies can consist of participants with several unknown backgrounds, such as
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Fig: Classical confounding and population stratification. In population stratification, the 
frequency of an unmeasured risk factor for disease differs by ethnicity. Broken lines with 
arrow indicate an association that is potentially confounded by the true risk factor. Solid 
unidirectional arrows indicate the direction of causal relationship. Solid bidirectional 
arrows indicate a correlation that may or may not be causal. Reprinted from Journal of 
the National Cancer Institute. 
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Figure 3.1: Confounding and Population Strati�cation

ethnicity. When these participants are pooled together in the study, an association may be

observed between a genetic variant and the disease of interest. However, if the participants

are broken up based on their background, such as ethnicity, then the observed association

between a genetic variant and the disease of interest may no longer exist.

3.2 Armitage Trend Test

This disadvantage is overcomed, to some extent, by applying the Armitage's trend test,

as suggested by Armitage (1955), Sasieni (1997), and Schaid and Jacobsen (1999). Sasieni

(1997) discusses the use of three di�erent approaches for the analysis of genetic case-control
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data. The �rst approach di�erentiates the subjects into three categories, those in which

the allele of interest is recessive, those in which the allele of interest is co-dominant, an

heterozyous allele, and those in which the allele of interest is dominant, an homozygous

allele. This approach uses a standard 2 × 3 contingency table, as in Table 2.1. The second

approach is to combine the heterozygous and homozygous separate from the subjects without

the allele of interest. The third approach is to consider the allele frequency for the cases

and controls, which in e�ect doubles the sample size. These last two approaches use a 2× 2

contingency table. Sasieni (1997) concluded that an analysis based on treating alleles as

individual entities is valid only when the Hardy-Weinberg equilibrium holds. As a result,

he warns against this allelic based analysis and recommends that genetic case-control data

be analyzed using genotype approach. Below is the generic contingency table from Sasieni

(1997), denoting the major allele as �A", and the minor allele as �a". Table 3.1 is identical

to Table 2.1, except for the addition of the three scoring systems in Table 3.1.

Table 3.1: Scores for Armitage's Trend Test

AA Aa aa Total

Case n10 n11 n12 N1

Control n00 n01 n02 N0

Total N+0 N+1 N+2 N
Score x0 x1 x2

In order to analyze such 2 × 3 contingency tables, a test statistic based on scores was

developed to determine whether there is a linear trend in proportions (Armitage, 1955;

Sasieni, 1997; and Schaid and Jacobsen, 1999). Let xj denote the score associated with the

jth column of the contingency table, j=0, 1, 2. The Armitage's trend test statistic is

X2
A =

N(NΣn1jxj −N1ΣN+jxj)
2

N1N0[NΣN+jx2
j − (ΣN+jxj)2]

. (3.1)

This statistics has an approximate chi-square distribution with one degree of freedom

under the null hypothesis. When considering the two-sided alternative hypothesis that the
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genotypes at a SNP are associated with the disease of interest, this statistic can be employed.

An important part of this statistic is the choice of the scoring system. According Armitage

(1955), while the score does not a�ect the validity of the test, it does a�ect the power of the

test. If there is no prior information or known relationship between the columns, it can be

di�cult to determine a scoring system. However, in analyzing the contingency table above,

there are three common scoring systems used. The scoring system can be chosen as one

of the following: (1) co-dominant score: x0 = 0, x1 = 1, and x2 = 2; (2) dominant score:

x0 = 0, x1 = 1 and x2 = 1; (3) recessive score: x0 = 0, x1 = 0, and x2 = 1. Since the disease

can be consider rare, the minor allele can be assumed to be of interest in terms of increased

risk of the occurrence of the disease. So the system is in favor of this minor allele.

3.3 One-Sided and Two-Sided Alternative Hypotheses

The Armitage's trend test statistic can also be adjusted for the one-sided alternative

hypotheses. There are two one-sided alternatives, (i) the alternative that the minor allele is

positively associated with the disease of interest; (ii) the alternative that the major allele is

positively associated with the disease of interest. As mentioned above, the disease can be

considered to be rare, so that the �rst alternative hypothesis is more logical. However, if

no prior information is known, both alternative hypotheses would have to be considered. So

Armitage's trend test for the one sided alternative hypotheses is,

ZA =

√
N(NΣn1jxj −N1ΣN+jxj)√

N1N0[NΣN+jx2
j − (ΣN+jxj)2]

. (3.2)

Under the null hypothesis, this statistic is approximately distributed with a N(0, 1). The

same scoring systems described above can be used.

If the one-sided alternative hypotheses (i) is considered, the p-value = Prob(N(0, 1) ≥

Zobs
A ); if the one-sided alternative hypotheses (ii) is considered, the p-value = Prob(N(0, 1) ≤

Zobs
A ); if two-sided alternative hypotheses is considered, the p-value = Prob(χ2

1 ≥ Xobs
A ).
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Chapter 4

FINDING THRESHOLDS

4.1 Notation

A statistical challenge in dealing with the data from a GWA study is that the number of

variables is much larger than the sample size. The problem is so-called multiple comparison.

In the GWA study, each SNP to be analyzed constitutes one hypothesis test. When testing

hundred thousands of hypotheses simultaneously, it is important to determine a threshold

for selecting the most signi�cant SNPs. While tons of methods have been proposed to deal

with this problem, this thesis reviews and compares two approaches: the SRB method and

the FDR method.

Some notations for these two methods are de�ned as follows. Assume that there are

n null hypotheses H1, H2, H3, · · ·, and Hn. Their corresponding alternative hypotheses are

denoted by K1, K2, K3, · · ·, and Kn. To test for these null hypotheses, test statistics are

Y1, Y2, Y3, · · ·, and Yn. Let the n critical regions be C1, C2, C3, · · ·, and Cn. Particularly, in

this thesis, the test for each null hypotheses could be one of the three classical methods and

the Armitage trend tests with the three di�erence scores.

4.2 Sequentially Rejective Bonferroni Method

One approach in dealing with the multiple testing problem is the Sequentially Rejective

Bonferroni (SRB) method. This was proposed by Holm (1979). The method is based on the

Bonferroni test and requires the type-I error to be as small as possible. Philosophically, for

each of these n tests, the probability of committing a type-I error is less than or equal to

a small predetermined value α. Rejecting a null hypothesis constitutes making a discovery,

that the alternative hypotheses is statistically signi�cant.

Now let the corresponding p-values generated from the test statistics, Y1, Y2, Y3, ···, and Yn,

be P1, P2, P3, · · ·, and Pn, where Pk = αk(Yk), where k=1, 2, · · ·, n. When these p-values

are ordered P (1) ≤ P (2) ≤ P (3) ≤ · · · ≤ P (n), along with their corresponding hypotheses,

H(1) ≤ H(2) ≤ H(3) ≤ ·· · ≤ H(n), the most signi�cant ones would have the smallest p-values.
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As shown in Table 1.1, the number of false positives increases as the number of null hy-

potheses tested increases. The SRB method attempts to solve this multiple testing problem

by adjusting the signi�cant level α, for each hypotheses tested, before comparing it with the

p-values. Speci�cally, these p-values are compared to corresponding levels denoted by

α

n
,

α

n− 1
, · · ·, α

1
. (4.1)

The hypotheses are rejected until no other rejections are possible. Since the most important

hypotheses would have the smallest p-values, they are compared with the smallest level of

α/(n− i+ 1), where i = 1, 2, 3, · · ·, n. The least important hypotheses are compared with

increasingly larger levels.

4.3 False Discovery Rate Controlling Method

Another approach to combating the multiple testing problem that arises in GWA studies

comes from an idea proposed by Benjamini and Hochberg (1994), referred to as False Dis-

covery Rate (FDR). They noted that the classical approaches despite their uses in industries

are less likely used in genetic.

Many multiple testing procedures, such as the SRB method, are based on controlling the

type-I error. The FDR method takes a philosophically di�erent approach, in that it takes

into account the number of hypotheses that are falsely rejected, that is the number of false

discoveries. As a result, the FDR can be de�ned as the expected proportion of errors among

the reject hypotheses.

Table 4.1: Number of Errors Committed When Testing n Null Hypotheses

Declared non-signi�cant Declared signi�cant Total

True Null Hypotheses U V n0

Non-true Null Hypotheses T S n− n0

n−R R n

The FDR method considers testing simultaneously n null hypotheses of which n0 are true.

The situation is summarized in Table 4.1. Benjamini and Hochberg (1994) suggested that
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the unknown random variable Q = V/R, can be used to represent the proportion of errors

committed by falsely rejecting the null hypotheses. This is the proportion of the rejected

null hypotheses which are erroneously rejected. Let the FDR be represented by Qc which is

the expectation of Q. Then we have

Qc = E(Q) = E(
V

R
). (4.2)

The FDR method is conducted as follows. Consider testing H1, H2, · · ·, and Hn based on the

corresponding p-values P1, P2, · · ·, and Pn. When these p-values are ordered P (1) ≤ P (2) ≤

P (3) ≤ · · · ≤ P (n), along with their corresponding hypotheses, H(1) ≤ H(2) ≤ H(3) ≤ · · · ≤

H(n), the most signi�cant ones would have the smallest p-values. Let P(1) ≤ P(2) ≤ ·· · ≤ P(n)

be the ordered p-values, and denote by H(i) the null hypothesis corresponding to P(i). De�ne

the following Bonferroni-type multiple testing procedure: Let k be the largest i for which

P(i) ≤
i

n
q∗; (4.3)

then reject all H(i), i = 1, 2, · · ·, k. As stated by Theorem I in Benjamini and Hochberg

(1994), for independent test statistics and for any con�guration of false null hypotheses, the

above procedure controls the FDR at q∗.

4.4 Comparison of SRB method and FDR method

These methods take two philosophically di�erent approaches to the multiple comparison

problem. With these two approaches, there is some measure of tradeo� that exists between

the type-I and type-II errors.

The SRB method focuses on keeping the type-I error small. This is accomplished by

taking the predetermined value of α, and reducing it by a factor of 1/n, 1/(n − 1), 1/(n −

2), · · ·, 1/1. These adjusted levels are then compared to the p-values to determine signif-

icance. The FDR method instead focuses on controlling the expected number of falsely

rejected hypotheses, q∗. This is accomplished by taking the q∗ and reducing it by a factor
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of 1/n, 2/n, 3/n, · · ·, n/n. These adjusted levels are then compared with the p-values to

determine signi�cance.

Comparison of SRB and FDR Methods
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Figure 4.1: Comparison of Levels from SRB and FDR Methods
Note: Assume there are 100 SNPs to be tested. For SRB method α=0.05. For FDR method q∗=0.05.

Figure 4.1 compares these two approaches by looking at the factors that adjust α for the

SRB method and q∗ for the FDR method. It shows that 1/n, 1/(n− 1), 1/(n− 2), · · ·, 1/1 ≤

1/n, 2/n, 3/n, · · ·, n/n at all corresponding levels. This means that the FDR method has a

larger type-I error, and hence more false positives than the SRB method.
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Chapter 5

RESULTS

5.1 Thresholds for NARAC Dataset

The Bonferroni correction is the most popular method for adjusting the type-I error, α.

It accomplishes this by using α/n, where n is the number of hypotheses to be tested. This

adjusted value is compared with the p-values from the statistical tests. For the NARAC

dataset, n = 545,080. The LOD threshold from the Bonferroni correction is − log(α/n). If

α=0.05, this gives a threshold of 9.17, which will be considered a strict threshold for the

NARAC dataset.

The SRB and FDR methods can also be used to test hundreds of thousands of hypotheses

simultaneously and indicate which SNPs are signi�cantly associated with the disease of

interest. To illustrate this, the test based on the di�erence of proportions and the Armitage's

Trend test with the three types of scores are conducted for each SNP. The tests based on

the relative risk and the odds ratio are not shown here since they yield similar results to

the test based on the di�erence of proportions. For each test, all chromosomes are pooled

together and their p-values are arranged in ascending order. The LOD values are calculated

using − logP(i), where i = 1, 2, · · ·, n and the log is in base 10.

By using the SRB method, if α = 0.05 then the SNPs are considered to be signi�cant

once − logP(i) ≥ − logα/(n− i+ 1). Table 5.1 illustrates this procedure for both one-sided

alternative that the minor allele is positively associated with the disease of interest and the

two-sided alternative that the genotypes are associated with the disease of interest using the

test based on the di�erence of proportions. For the one-sided alternative, the �rst 110 SNPs

in Table 5.1 are considered to be signi�cant, since at the 111th SNP, we observe for the �rst

time that − logP(i) < − logα/(n− i+ 1). For the two-sided alternative, the �rst 267 SNPs

in Table 5.1 are considered to be signi�cant, since at the 268th SNP, we observe for the �rst

time that − logP(i) < − logα/(n− i+ 1).
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Similarly, by the FDR method, if the FDR is controlled at q∗=0.05 then the SNPs

are considered to be signi�cant once − logP(i) ≥ − log(i/n)q∗. Table 5.2 illustrates this

procedure for both one-sided alternative that the minor allele is positively associated with

the disease of interest and the two-sided alternative that the genotypes are associated with

the disease of interest using the test based on the di�erence of proportions. For the one-

sided alternative, the �rst 305 SNPs in Table 5.2 are considered to be signi�cant, since at the

306th SNP, we observe for the �rst time that − logP(i) < − log(i/n)q∗. For the two-sided

alternative, the �rst 1,571 SNPs in Table 5.2 are considered to be signi�cant, since at the

1, 572th SNP, we observe for the �rst time that − logP(i) < − logα/(n− i+ 1). Other tables

using the Armitage's trend tests with the three types of scores are provided in Appendix A.

Table 5.1: SRB Method Applied to All Chromosomes Using Di�erence of Proportions

One-Sided Alternative Two-Sided Alternative
i − logP(i) − log α

n−i+1
i − logP(i) − log α

n−i+1

1 15.95458977 7.037490243 1 15.95458977 7.037490243
2 15.95458977 7.037489446 2 15.95458977 7.037489446
3 15.65355977 7.037488649 3 15.95458977 7.037488649
4 15.65355977 7.037487853 4 15.95458977 7.037487853
5 15.65355977 7.037487056 5 15.95458977 7.037487056
· · · · · ·
· · · · · ·
· · · · · ·

106 7.371783044 7.037406576 263 7.117567861 7.037281443
107 7.280601029 7.037405779 264 7.093959244 7.037280646
108 7.251640762 7.037404982 265 7.08718124 7.037279849
109 7.102001717 7.037404185 266 7.056862889 7.037279052
110 7.073791831 7.037403388 267 7.045368703 7.037278255
111 6.925704639 7.037402591 268 7.022062247 7.037277458

5.2 Two-Sided Alternative with SRB and FDR

This thesis attempts to conduct the tests based on the NARAC dataset, and hopes to

produce results similar to those in Plenge et al. (2007) based on the NARAC and EIRA

datasets. The results from that paper identify SNPs on chromosome 9 which contain the

common genetic variant at the TRAF1-C5, as being associated with the disease of interest.
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Table 5.2: FDR Method Applied to All Chromosomes Using Di�erence of Proportions

One-Sided Alternative Two-Sided Alternative
i − logP(i) − log i

n
q∗ i − logP(i) − log i

n
q∗

1 15.95458977 7.041392685 1 15.95458977 7.037490243
2 15.95458977 6.740362689 2 15.95458977 6.736460247
3 15.65355977 6.56427143 3 15.95458977 6.560368988
4 15.65355977 6.439332694 4 15.95458977 6.435430252
5 15.65355977 6.342422681 5 15.95458977 6.338520239
· · · · · ·
· · · · · ·
· · · · · ·

301 4.574769683 4.56282619 1567 3.846768666 3.842421246
302 4.568560359 4.561385742 1568 3.846747367 3.842144185
303 4.5668634 4.559950057 1569 3.844239762 3.841867299
304 4.564884748 4.558519102 1570 3.843674598 3.841590591
305 4.560209023 4.557092846 1571 3.842915061 3.841314058
306 4.546526523 4.555671259 1572 3.839681445 3.841037701

To this end, this thesis focuses on chromosome 9 in its analysis of results. The results from

the other chromosomes can be analyzed similarly, but are not reported in this thesis. Based

on Tables 5.1 and 5.2 the FDR gives a treshold of about 4, while the SRB gives a threshold

of about 7. The Bonferroni correction yields a strict threshold of 9.17 and the SRB is closer

than the FDR to the Bonferroni correction. So a threshold of 7 is used.

Tables 5.3 and 5.4 show the SRB and FDR methods respectively. These tables are based

on the two-sided alternative hypotheses that the genotypes are associated with the disease

of interest. The threshold from the FDR method suggest that 100 SNPs from chromosome

9 are signi�cant. The �rst 15 of these SNPs are illustrated in Table 5.4. The SRB method

suggest that 12 SNPs are signi�cant. The SNPs reported in Plenge et al. (2007) are marked

by asterisks in both tables.

In Table 5.3, results from Armitage's trend tests, which corrects for population strat-

i�cation to some extent, are shown in columns X2
A1, X

2
A2 and X2

A3. These three columns

correspond to the three type of scoring systems. For the SNPs with asterisks, X2
A1 seems

to be more signi�cant than X2
A2 and X2

A3. This suggests that these SNPs are more likely
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to be co-dominant. For the remaining SNPs, X2
A3 is slightly more signi�cant than X2

A1, but

X2
A2 is not signi�cant. This shows that these SNPs are very likely to be recessive. Table 5.4

is similarly analyzed, in that the SNPs with asterisks are co-dominant, while those without

the asterisks are recessive.

Another interesting observation from Table 5.3, is that the SNP �rs10985073" does not

appear in this table, even though Plenge et al. (2007) has it as being signi�cant. This can be

explained by the fact that the SRB method, while it has a smaller probability of committing

type-I errors compared to the FDR method, it has a larger probability of committing type-II

errors compared to the FDR. The SRB has a larger probability of having false negatives.

This is the case with SNP �rs10985073". It does not show up as being signi�cant, but if the

results of Plenge et al. (2007) can be trusted, it is signi�cant.

Most important to the goal of this thesis is that the result from the di�erence of pro-

portions shown in column Z2
1 show that more SNPs are reported to be signi�cant than in

Plenge et al. (2007). The other two classical methods report similar outcomes. The di�er-

ence of proportions was used in Plenge et al. (2007) to show signi�cance. The question is

whether these additional SNPs are truly signi�cant, or are they false positives. This question

is answered partially by looking at the results from the one-sided alternative hypotheses.

5.3 One-Sided Alternative with SRB and FDR

This thesis attempts to determine whether the one-sided alternative hypothesis that the

minor allele is positively associated with the disease of interest or the two-sided alternative

hypothesis that the genotypes at a locus are associated with the disease interest is appropri-

ate. Tables 5.5 and 5.6 illustrates the results of the one-sided alternative hypotheses using

the SBR and FDR methods respectively. Both Tables show that fewer SNPs are signi�cant

compared to the two-sided alternative.

In Table 5.6 suggest that only 25 SNPs are signi�cant using the FDR threshold com-

pared to the 100 SNPs under the two-sided alternative. The six SNPs reported in Plenge

et al. (2007) are marked with asterisks. The FDR threshold shows that 19 other SNPs are
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also signi�cant. As discussed in Chapter 4, the FDR method has larger type-I error when

compared to the SBR method. The FDR has a larger probability of selecting false positives.

These 19 SNPs are very likely false positives.

The results in Table 5.5 using the SRB threshold are completely consistent with the re-

sults reported in Plenge et al. (2007). The SRB method has smaller type-I error compared

to the FDR method. It has a smaller probability of selecting SNPs that are false positives.

Moreover, by considering the one-sided alternative, the number of false positive SNPs re-

ported under the two-sided alternative is signi�cantly reduced. For the NARAC dataset, it

seems more reasonable to consider the one-sided alternative that the minor allele is positively

associated with the disease of interest.

These results are made even more clear by observing Figure 5.1 that shows the graphs the

LOD values of the test based on di�erence of proportions and the Armitage's trend test using

the three types of scores. The graphs compare the two-sided and one-sided alternatives. It is

observed that under the two-sided alternative more SNPs appear to be above the threshold

and hence more are signi�cant, than compared to the one-sided alternative. This further

supports the result that the one-sided alternative is more appropriate. The graphs for the

other chromosomes are provided in Appendix B.

Table 5.3: Chromosome 9 - Two Sided Alternative Using SRB

SNP Z2
1 X2

A1 X2
A2 X2

A3

rs872863 15.65355977 14.77849851 1.514451286 15.10949173
rs12380341 11.61068906 10.01190276 0.357222945 13.45216265
rs7854383 8.848399893 8.349044334 1.426720752 8.425534747
rs11792145 8.583459392 6.530999627 0.035692369 12.24026001
*rs2900180 8.205139225 8.188440621 5.195706388 6.093046561
*rs3761847 7.905145845 7.745195252 5.923341449 5.027178064
*rs881375 7.644376052 7.630402983 4.814960586 5.711575544
*rs1953126 7.558423781 7.532747742 5.048066573 5.443400865
rs11185665 7.541426497 6.479544704 0.325826012 9.681503269
*rs10760130 7.422629646 7.296316207 6.032196468 4.398693388
rs16929545 7.222324725 6.706251792 1.010274200 7.615575785
rs7021867 7.169175803 7.145823736 3.429323902 6.060016234
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Table 5.4: Chromosome 9 - Two-Sided Alternative Using FDR

SNP Z2
1 X2

A1 X2
A2 X2

A3

rs872863 15.65355977 14.77849851 1.514451286 15.10949173
rs12380341 11.61068906 10.01190276 0.357222945 13.45216265
rs7854383 8.848399893 8.349044334 1.426720752 8.425534747
rs11792145 8.583459392 6.530999627 0.035692369 12.24026001
*rs2900180 8.205139225 8.188440621 5.195706388 6.093046561
*rs3761847 7.905145845 7.745195252 5.923341449 5.027178064
*rs881375 7.644376052 7.630402983 4.814960586 5.711575544
*rs1953126 7.558423781 7.532747742 5.048066573 5.443400865
rs11185665 7.541426497 6.479544704 0.325826012 9.681503269
*rs10760130 7.422629646 7.296316207 6.032196468 4.398693388
rs16929545 7.222324725 6.706251792 1.0102742 7.615575785
rs7021867 7.169175803 7.145823736 3.429323902 6.060016234
*rs10985073 6.979571033 6.871828281 5.630131282 4.190117723
rs10815605 6.911648334 5.377070055 0.108460003 9.081435534
rs2087358 6.702586771 5.676697464 0.048732253 9.267784016

Table 5.5: Chromosome 9 - One-Sided Alternative Using SRB

SNP Z ZA1 ZA2 ZA3

*rs2900180 8.50616922 8.489470624 5.496736384 6.394076556
*rs3761847 8.206175845 8.046225245 6.224371444 5.32820806
*rs881375 7.945406048 7.931432977 5.115990582 6.01260554
*rs1953126 7.859453775 7.833777737 5.349096569 5.744430861
*rs10760130 7.723659641 7.597346203 6.333226464 4.699723384
*rs10985073 7.280601029 7.172858277 5.931161278 4.491147719
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Table 5.6: Chromosome 9 - One-Sided Alternative Using FDR

SNP Z ZA1 ZA2 ZA3

*rs2900180 8.50616922 8.489470624 5.496736384 6.394076556
*rs3761847 8.206175845 8.046225245 6.224371444 5.32820806
*rs881375 7.945406048 7.931432977 5.115990582 6.01260554
*rs1953126 7.859453775 7.833777737 5.349096569 5.744430861
*rs10760130 7.723659641 7.597346203 6.333226464 4.699723384
*rs10985073 7.280601029 7.172858277 5.931161278 4.491147719
rs10821376 6.311121125 6.226259449 4.977581247 4.187365559
rs10122120 6.092889305 5.965322782 3.553945037 4.974853751
rs1412224 5.918572721 5.667379507 3.562094393 4.548336867
rs7037866 5.849851994 5.770187608 2.642452562 5.628537838
rs3802400 5.812590713 5.734669784 2.840231366 5.354178503
rs942152 5.705178895 5.680209038 4.033059385 4.121280492
rs540124 5.559100556 5.189371179 3.943581378 3.788547028
rs9409575 5.525573516 5.458565469 2.762855576 4.880818507
rs306772 5.441733507 5.373340922 2.815296589 4.589856973
rs2578240 5.282875011 5.305390553 2.56494468 5.050914524
rs10758875 5.164580164 5.240910111 2.579385278 4.988672234
rs913588 5.062264344 5.064095565 2.628907803 4.821522642
rs2025324 4.92685557 4.767655552 2.977829096 3.936825417
rs3802401 4.779773872 4.783660502 1.846746222 4.449794008
rs965474 4.766941026 4.698495465 4.27441813 2.872064904
rs1468673 4.758838365 4.700002288 2.608394768 4.136229612
rs3897745 4.689205229 4.727279688 1.580076088 4.564260452
rs7022212 4.601264948 4.360589882 2.363891926 3.8173894
rs548348 4.564884748 4.508921901 3.704820517 3.084481137
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Figure 5.1: Chromosome 9 Two Sided and One Sided
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Chapter 6

CONCLUSIONS

This thesis attempts to determine a set of SNPs that are signi�cantly associated with

rheumatoid arthritis using the NARAC data. In addition, this thesis also attempts to ad-

dress the question of whether the one-sided alternative hypotheses that the minor allele is

positively associated with the disease of interest or the two-sided alternative hypotheses that

the genotypes are associated with the disease of interest is appropriate. The results from this

thesis are compared with the work from Plenge et al. (2007), under the assumption that if

results were trustful based in the combined sample (NARAC and EIRA), then similar results

can be obtained based on a part of the sample (NARAC).

From the analysis in chapter 5, concentrating on the one-sided alternative tends to remove

much of the noise that is present when considering the two-sided alternative. This yields

the similar results as Plenge et al. (2007). The Armitage Trend test, which controls for

population strati�cation to some extent, can also be used to determine which SNPs are

likely co-dominant, recessive and dominant.

The SRB and FDR methods are used to deal with the problem of multiple comparisons

in GWA studies. The SRB method, because of a smaller type-I error, seems to work better

than the FDR method. However, a smaller type-I error indicates a larger type-II error and

hence smaller power. The FDR method would have larger power compared with the SRB

method. So care must be taken when deciding which method to use, since there is often a

tradeo� between type-I error and power.
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APPENDIX A

METHODS APPLIED TO ALL CHROMOSOMES
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Table A.1: SRB Method Applied to All Chromosomes Using Armitage Trend Test: Score 1

One-Sided Alternative Two-Sided Alternative
i − logP(i) − log α

n−i+1
i − logP(i) − log α

n−i+1

1 15.95458977 7.037490243 1 15.95458977 7.037490243
2 15.95458977 7.037489446 2 15.95458977 7.037489446
3 15.95458977 7.037488649 3 15.95458977 7.037488649
4 15.95458977 7.037487853 4 15.95458977 7.037487853
5 15.95458977 7.037487056 5 15.95458977 7.037487056
· · · · · ·
· · · · · ·
· · · · · ·

105 7.29933708 7.037407373 204 7.094042645 7.037328472
106 7.249840288 7.037406576 205 7.081299247 7.037327675
107 7.172858277 7.037405779 206 7.070780584 7.037326878
108 7.168687338 7.037404982 207 7.065220047 7.037326081
109 7.11051051 7.037404185 208 7.037803289 7.037325284
110 6.977747803 7.037403388 209 7.02652442 7.037324487

Table A.2: FDR Method Applied to All Chromosomes Using Armitage Trend Test: Score 1

One-Sided Alternative Two-Sided Alternative
i − logP(i) − log i

n
q∗ i − logP(i) − log i

n
q∗

1 15.95458977 7.037490243 1 15.95458977 7.037490243
2 15.95458977 6.736460247 2 15.95458977 6.736460247
3 15.95458977 6.560368988 3 15.95458977 6.560368988
4 15.95458977 6.435430252 4 15.95458977 6.435430252
5 15.95458977 6.338520239 5 15.95458977 6.338520239
· · · · · ·
· · · · · ·
· · · · · ·

281 4.594796099 4.588783923 1339 3.916876178 3.910709666
282 4.590472185 4.587241135 1340 3.914022299 3.910385445
283 4.58912837 4.585703807 1341 3.913043637 3.910061465
284 4.586435957 4.584171903 1342 3.90987487 3.909737727
285 4.58600428 4.582645383 1343 3.909431274 3.90941423
286 4.581096046 4.58112421 1344 3.908970886 3.909090974
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Table A.3: SRB Method Applied to All Chromosomes Using Armitage Trend Test: Score 2

One-Sided Alternative Two-Sided Alternative
i − logP(i) − log α

n−i+1
i − logP(i) − log α

n−i+1

1 15.65355977 7.037490243 1 15.95458977 7.037490243
2 15.65355977 7.037489446 2 15.65355977 7.037489446
3 15.25561977 7.037488649 3 15.47746852 7.037488649
4 15.17643852 7.037487853 4 15.47746852 7.037487853
5 15.10949173 7.037487056 5 15.47746852 7.037487056
· · · · · ·
· · · · · ·
· · · · · ·
45 7.363966079 7.037455184 103 7.288854606 7.037408966
46 7.358192526 7.037454388 104 7.222977769 7.03740817
47 7.218073116 7.037453591 105 7.0692883 7.037407373
48 7.15520363 7.037452794 106 7.062936083 7.037406576
49 7.134668063 7.037451997 107 7.05716253 7.037405779
50 6.998258493 7.0374512 108 6.984901697 7.037404982

Table A.4: FDR Method Applied to All Chromosomes Using Armitage Trend Test: Score 2

One-Sided Alternative Two-Sided Alternative
i − logP(i) − log i

n
q∗ i − logP(i) − log i

n
q∗

1 15.65355977 7.037490243 1 15.95458977 7.037490243
2 15.65355977 6.736460247 2 15.65355977 6.736460247
3 15.25561977 6.560368988 3 15.47746852 6.560368988
4 15.17643852 6.435430252 4 15.47746852 6.435430252
5 15.10949173 6.338520239 5 15.47746852 6.338520239
· · · · · ·
· · · · · ·
· · · · · ·

193 4.762563575 4.751932934 205 4.779919099 4.725736382
194 4.762431027 4.749688513 206 4.744296879 4.723623023
195 4.761208396 4.747455632 207 4.728191006 4.721519897
196 4.752455696 4.745234172 208 4.727199986 4.719426908
197 4.748502961 4.743024017 209 4.727158648 4.717343957
198 4.740603973 4.740825053 210 4.705387958 4.715270948
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Table A.5: SRB Method Applied to All Chromosomes Using Armitage Trend Test: Score 3

One-Sided Alternative Two-Sided Alternative
i − logP(i) − log α

n−i+1
i − logP(i) − log α

n−i+1

1 15.95458977 7.037490243 1 15.95458977 7.037490243
2 15.95458977 7.037489446 2 15.95458977 7.037489446
3 15.95458977 7.037488649 3 15.95458977 7.037488649
4 15.95458977 7.037487853 4 15.95458977 7.037487853
5 15.65355977 7.037487056 5 15.95458977 7.037487056
· · · · · ·
· · · · · ·
· · · · · ·
82 7.172270273 7.037425701 381 7.060629554 7.037187371
83 7.16350943 7.037424904 382 7.059987948 7.037186574
84 7.158937026 7.037424107 383 7.057190494 7.037185776
85 7.086642167 7.03742331 384 7.053331656 7.037184979
86 7.039949146 7.037422514 385 7.048459333 7.037184182
87 7.035507398 7.037421717 386 7.026866128 7.037183384

Table A.6: FDR Method Applied to All Chromosomes Using Armitage Trend Test: Score 3

One-Sided Alternative Two-Sided Alternative
i − logP(i) − log i

n
q∗ i − logP(i) − log i

n
q∗

1 15.95458977 7.037490243 1 15.95458977 7.037490243
2 15.95458977 6.736460247 2 15.95458977 6.736460247
3 15.95458977 6.560368988 3 15.95458977 6.560368988
4 15.95458977 6.435430252 4 15.95458977 6.435430252
5 15.65355977 6.338520239 5 15.95458977 6.338520239
· · · · · ·
· · · · · ·
· · · · · ·

207 4.766319169 4.721519897 1811 3.780647366 3.779571793
208 4.746166609 4.719426908 1812 3.780436936 3.77933205
209 4.73330389 4.717343957 1813 3.780397869 3.779092439
210 4.727998954 4.715270948 1814 3.780043274 3.77885296
211 4.721933118 4.713207788 1815 3.778860012 3.778613614
212 4.710493483 4.711154382 1816 3.776151949 3.778374399
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APPENDIX B

GRAPHS OF LOD SCORES FOR SNPs
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Figure B.1: Chromosome 1: One and Two Sided

Figure B.2: Chromosome 2: One and Two Sided
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Figure B.3: Chromosome 3: One and Two Sided

Figure B.4: Chromosome 4: One and Two Sided
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Figure B.5: Chromosome 5: One and Two Sided

Figure B.6: Chromosome 6: One and Two Sided



37

Figure B.7: Chromosome 7: One and Two Sided

Figure B.8: Chromosome 8: One and Two Sided
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Figure B.9: Chromosome 9: One and Two Sided

Figure B.10: Chromosome 10: One and Two Sided
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Figure B.11: Chromosome 11: One and Two Sided

Figure B.12: Chromosome 12: One and Two Sided
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Figure B.13: Chromosome 13: One and Two Sided

Figure B.14: Chromosome 14: One and Two Sided
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Figure B.15: Chromosome 15: One and Two Sided

Figure B.16: Chromosome 16: One and Two Sided
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Figure B.17: Chromosome 17: One and Two Sided

Figure B.18: Chromosome 18: One and Two Sided
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Figure B.19: Chromosome 19: One and Two Sided

Figure B.20: Chromosome 20: One and Two Sided
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Figure B.21: Chromosome 21: One and Two Sided

Figure B.22: Chromosome 22: One and Two Sided
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