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EMPIRICAL LIKELIHOOD CONFIDENCE INTERVALS FOR THE 
SENSITIVITY OF A CONTINUOUS-SCALE DIAGNOSTIC TEST

by

ANGELA E. DAVIS

Under the Direction of Gengsheng Qin

ABSTRACT

Diagnostic testing is essential to distinguish non-diseased individuals from 

diseased individuals. More accurate tests lead to improved treatment and thus reduce 

medical mistakes. The sensitivity and specificity are two important measurements for the 

diagnostic accuracy of a diagnostic test. When the test results are continuous, it is of 

interest to construct a confidence interval for the sensitivity at a fixed level of specificity 

for the test. In this thesis, we propose three empirical likelihood intervals for the 

sensitivity. Simulation studies are conducted to compare the empirical likelihood based 

confidence intervals with the existing normal approximation based confidence interval. 

Our studies show that the new intervals had better coverage probability than the normal 

approximation based interval in most simulation settings. 

INDEX WORDS: Empirical Likelihood, Confidence Intervals, Diagnostic Test, 
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Chapter I  

INTRODUCTION

Diagnostic testing, an integral facet of medical testing, aids in classifying the 

presence or absence of a disease or condition. There are two types of diagnostic tests: 

qualitative and quantitative. A qualitative test classifies patients as diseased or non-

diseased based on clinical signs or symptoms. A quantitative test classifies patients 

according to c, a predetermined cutoff point. Disease or non-disease status is dependent 

upon whether or not the test result falls above or below the cutoff point. A more accurate 

diagnostic test leads to more effective treatment and thus reduces medical malpractice 

and mortality. The results of a diagnostic test help to answer two questions: If the test is 

positive, what is the probability that the person actually has the disease, and if the test is 

negative, what is the probability that the person actually doesn’t have the disease? These 

questions can simply be answered in terms of the test’s sensitivity and specificity 

respectively. A model test would have high sensitivity and high specificity. 

The Receiver Operating Characteristic (ROC) curve, developed in World War II, 

was initially used in signal detection theory. It has since become widely used in 

diagnostic medicine as an efficient way to graphically display the tradeoff between 

sensitivity and specificity. When the specificity is high, the sensitivity is low and vice 

versa. More specifically, a ROC curve is a plot of 1 - specificity against sensitivity. In 

order to classify the results of a diagnostic test as positive or negative, a cutoff point c
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must be defined when the response is continuous. When a level of specificity is chosen 

(commonly 80 %, 90% or 95%), it is of interest to construct confidence intervals for the 

sensitivity at the selected level of specificity. 

Empirical likelihood (EL), introduced by Owen (1988, 1990), is a powerful non-

parametric method. The EL method has many advantages over normal approximation 

based methods. For example, it has better small sample performance than approaches 

based on normal approximation; EL-based confidence regions are range preserving and 

transformation respecting; the regularity conditions for EL-based methods are weak and 

natural etc. The use of EL methods has becoming increasingly common in recent years 

and is attractive in many applied area (Wu and Rao, 2006). Claeskens et al. (2003), one 

of few studies on the EL method for ROC analysis, developed an empirical likelihood 

confidence interval for a ROC curve. Their EL confidence interval had better coverage 

probability than the normal approximation based interval. However, their method still 

needs kernel distribution estimation and the selection of smoothing parameters are 

problematic. It thus has not been well applied in practice. 

In this thesis, we propose new empirical likelihood based confidence intervals and 

compare them with the existing normal approximation based interval. The thesis is 

organized in the following manner: Chapter I is an introduction, Chapter II lists concepts 

and terminology used throughout the thesis, existing confidence intervals for sensitivity 

at a fixed level of specificity for a continuous-scale test are presented in Chapter III, 

Chapter IV introduces three new empirical likelihood intervals for sensitivity at a fixed 

level of specificity, in Chapter V we conduct simulations studies to evaluate the 
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performance of new confidence intervals and in Chapter VI we apply the proposed 

methods to a real dataset. Lastly, there is a discussion of our findings in Chapter VII.
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Chapter II

CONCEPTS AND TERMINOLOGY

2.1 Sensitivity and Specificity of a Binary Diagnostic Test

Sensitivity – probability that a diseased patient will have a positive test result.
          P(positive test | patient has the disease)

Specificity – probability that a non-diseased patient will have a negative test result.
                      P(negative test | patient doesn’t have the disease)

Classification of individuals according to diagnostic test results are shown in the 
following table:

                           

The following formulas are used to estimate the sensitivity and specificity:

FNTP

TP
ySensitivit




TNFP

TN
ySpecificit




Disease/Condition
Test Result Present Absent

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Figure 1. 2x2 classification table of diagnostic test results



5

2.2 Sensitivity and Specificity of a Continuous-Scale Diagnostic Test

For a continuous-scale diagnostic test, let X be the test result from a non-diseased 

patient, and let Y be the test result from a diseased patient. At a given cutoff point c, the 

sensitivity and specificity are defined as

Se = P(Y ≥ c),    Sp = P(X ≤ c),

respectively. If F is the distribution function of X and G is the distribution function of Y, 

the sensitivity and specificity can then be written as

Se = 1-G( c),    Sp = F(c).

At a fixed level p of specificity, the corresponding sensitivity of the test is 

1( ) 1 ( ( ))R p G F p  ,

where 1F  is the inverse function of F.

One problem that arises is how to construct a (1-α)100% confidence interval for 

)( pR  based on, X1,…,Xm, the results from the non-diseased group, and Y1,…,Yn,, the 

results from the diseased group.
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Chapter III 

EXISTING METHODS

3.1 Normal Approximation Based Confidence Interval

If 1( ) ( ( )),R p P Y F p   then the estimator for )( pR is the observed sensitivity at 

the p-th sample quantile from the test results of the non-diseased individuals. If we let F̂

be the empirical distribution function based on ,,...,1 mXX  then the estimator for )( pR

becomes

                                      
1

1
ˆ( ( ))

ˆ( ) .

n

jj
I Y F p

R p
n








                                               (1)

Linnet (1987) presented a formula for the variance of )(ˆ pR defined as

                       
2 1

2 1

( )(1 ( )) (1 ) ( ( ))ˆ( ( )) ,
( ( ))

R p R p p p g F p
Var R p

n m f F p





 
                          (2)

where f and g are the probability density functions of F and G respectively. It has been 

shown that when both m and n are large, ˆ ( )R p has an approximately normal distribution 

with mean R(p) and variance ˆ( ( ))Var R p , given by (2). By substituting unknown 

quantities in (2) by their corresponding sample estimates, we can obtain a (1-α)100% 

normal approximation based confidence interval for )( pR . However, this interval may be 

greatly affected by poor empirical density and quantile estimation. Platt et al. (2000) 
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studied this issue and found via simulation study that the normal approximation based 

confidence interval could have poor coverage probability.

3.2 Empirical Likelihood Interval

Let ))1((1)( 1 pFGpR    then there exists a quantity     such that

   )1()1( 11 GpF .

Using this relationship between sensitivity and specificity, Claeskens, Jing, Peng and 

Zhou (2003) proposed a smoothed empirical likelihood for )( pR  defined as follows:

















 



m

j
j

n

i
i

qp
qpL

11,,
sup)(




subject to the following constraints

p
h

X
Gq

h

Y
Gp j

j
i

n

i
i 







 








  


1,1
2

2
1

1
1






where p and q are probability vectors, 1G and 2G are known functions and sh j ' are 

unknown smoothing parameters. Claeskens et al (2003), under certain conditions, 

illustrated that the empirical log-likelihood ratio is a chi-square distribution,

2
1)(   ,

and by inversing )( , they obtained an empirical likelihood confidence interval for 

)( pR defined as

                                                   2
1: ( ) (1 ) .                                                    (3)
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Their new confidence interval performed much better than the normal approximation 

based interval. However, the smoothed empirical likelihood method has two main 

drawbacks: (1) The method is computationally extensive, three nonlinear equations have 

to be solved to calculate the value of ( ) ; (2) Two smoothing parameters sh j ' have to 

be selected, which is problematic in practice.
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Chapter IV

NEW CONFIDENCE INTERVALS

Qin and Zhou (2006) successfully applied the empirical likelihood method to the 

inference for an area under the ROC curve. We will define the empirical likelihood 

method in this section for the sensitivity of a diagnostic test. Pepe (2003) defined a 

placement value for a given test value Y from a diseased subject as

).(1 YFU 

This value is the proportion of the non-diseased population with a test value greater than 

Y, essentially marking the placement of Y within the non-diseased distribution. It is 

evident that

1( ( )) ( ( ) ) ( ( )) ( )E I U p P F Y p P Y F p R p      .

Based on the relationship between )( pR  and the placement value U, an empirical 

likelihood procedure is derived for the sensitivity of a diagnostic test. Let p = 

),...,,( 21 nppp  be a probability vector, i.e.,  


n

j jp
1

1and 0jp  for all j. The profile 

empirical likelihood for )( pR  can be defined as

,0)(,1:sup))((
~

1 1 1 







   
  

n

j

n

j

n

j
jjjj pWppppRL

where )()()( pRpUIpW jj   with ),(1 jj YFU  .,...,2,1 nj   Placement values, 

jU ’s, depend on the unknown distribution function F of the non-diseased population. 
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Therefore, by replacing F by its empirical distribution F̂ , we get an adjusted empirical 

likelihood for )( pR :

,00)(ˆ,1:sup))((
1 1 1 








   
  

n

j

n

j

n

j
jjjj pWppppRL

where )()ˆ()(ˆ pRpUIpW jj  with .,...,2,1)(ˆ1ˆ njYFU jj   Then, by Lagrange 

multiplier, we get

  ,,...2,1,))(ˆ1
1 1

njpW
n

p jj 




where λ is the solution of

  .0
)(ˆ1

)(ˆ1

1







n

j j

j

pW

pW

n 
            (4)

Note that 

n

j jp
1

, subject to 1
1

 

n

j jp , attains its maximum nn at 1 np j . So the 

empirical likelihood ratio for )( pR is defined as

                                         .)(ˆ1)())((
1

11




 

n

j
j

n

j
j pWnppRr                                     

The resulting log-pseudo-empirical likelihood ratio is

                                 ,)(ˆ1log2))((log2))((
1




n

j
j pWpRrpRl                        (5)

where λ is the solution of (4).

Qin (2006) established the following theorem for the asymptotic distribution for 

the log-pseudo-empirical likelihood ratio.
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Theorem 3.1. If )(0 pR is the true value of sensitivity )( pR  at a fixed level p of 

specificity, and 0 < R(p) <1 for 0 < p < 1, then the limiting distribution of )),(( 0 pRl

defined by (5), is a scaled chi-square distribution with one degree of freedom. That is,

                                                      ,))(()( 2
10 pRlpc                                       (6)

where the scale constant )( pc  is 

)(

)(
)(

2
1

2

p

p
pc






with

2

2 1
2 2
1 2 1

( ) ( )(1 ( )),

( ( ))
( ) ( ) (1 ) .

( ( ))

p R p R p

n g F p
p p p p

m f F p



 




 

    

Here f and g are the density functions of F and G respectively.

In order to construct confidence intervals for )( pR based on Theorem 3.1, we need 

to estimate )(2 p and ).(2
1 p  Let

2

2 1
2 2
1 2 1

ˆ ˆˆ ( ) ( )(1 ( )),

ˆˆ ( ( ))
ˆ ˆ( ) ( ) (1 ) .

ˆ ˆ( ( ))

p R p R p

n g F p
p p p p

m f F p



 




 

    

where 1ˆ ( )F p  is the p-th sample quantile of iX ’s, f̂ and ĝ are the estimates of density 

functions f and g. Then, a (1-α)-th empirical likelihood based confidence interval, called 

ELI interval, for )( pR , is defined by
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                                  )},1())()(ˆ:)({))(( 2
1,2   pRpcpRpRCI                         (7)

where .
)(ˆ
)(ˆ

)(ˆ
2
1

2

p

p
pc




  By Theorem 3.1, 1, ( ( ))CI R p  gives an approximate confidence 

interval for )(0 pR  with asymptotically correct coverage probability 1-α, i.e.,

).1(1)))(()(( ,20 opRCIpRP  

The performance of the ELI interval depends on the density estimates f̂  and ĝ , 

particularly when the sample sizes are small. We now propose a bootstrap method to 

estimate ).(2
1 p  The bootstrap estimate is motivated by the fact that )(2

1 p  is the 

asymptotic variance of ))()(ˆ(21 pRpRn  . The procedure for computing the bootstrap 

variance can be summarized in the following steps:

1. Draw a resample of size n, ,'* sYi with replacement from the diseased sample 

sYi ' and a separate resample of size m, ,'* sX i with replacement from the non-

diseased sample .' sX i

2. Calculate the bootstrap version of ),(ˆ pR

* 1*

1*
ˆ ( )

ˆ ( ) ,

n

ii
I Y F p

R p
n




  


             where 1*ˆ ( )F p is the p-th sample quantile based on the bootstrap resample .'* sX j
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3. Repeat the first two steps B times to obtain the set of bootstrap replications 

 .,...,2,1:)(ˆ * BbpR b   Then, the bootstrap estimate )(2*
1 p  for )(2

1 p  is defined 

by








B

b

b pRpR
B

n
p

1

2**2*
1 ,))()(ˆ(

1
)(

             where * *

1
( ) (1/ ) ( ).

B b

b
R p B R p


 

Now we propose two new empirical likelihood based confidence intervals 

for )( pR by using the bootstrap variance )(2*
1 p .

The first one, called ELII interval, is defined by

                                              ,)1())(()(:)( 2
1

*
1  pRlpcpR                                (8)

where .
)(ˆ
)(ˆ

)(
2*

1

2
*
1 p

p
pc






The second one, called ELIII interval, is defined by

                                              ,)1())(()(:)( 2
1

*
2  pRlpcpR                                (9)

where .
)(ˆ

))(1)((
)(

2*
1

**
*
2 p

pRpR
pc





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Chapter V

SIMULATION STUDIES FOR THE CONFIDENCE INTERVALS

We conducted three simulation studies to compare the coverage accuracy of the 

newly proposed intervals to that of the normal approximation based interval. In 

simulation studies, we generate 3,000 random samples of size m from the distribution 

function F for test responses of non-diseased patients and another independent random 

sample of size n from the distribution function G for test responses of diseased patients. 

In these studies, the sample sizes (m,n) were chosen to be (20,50), (50,20), (50,100), 

(100,50), (50,50) and (100,100), respectively.

In the first simulation study, the distribution function F was chosen to be a 

standard normal distribution whereas the distribution function G was a normal 

distribution with mean μ and variance 1. The specificity was fixed at 80% or 90% level 

for different values of μ (See Table I). The results of the simulation study at the nominal 

level of 95% are given in Tables IV-IX.

Table I. Parameter settings for the normal distribution at fixed 
levels of specificity.
Run μ Specificity Sensitivity

(p) (R(p))
1 2.9264 0.90 0.95
2 2.5631 0.90 0.90
3 2.1231 0.90 0.80
4 2.4865 0.80 0.95
5 1.6832 0.80 0.80
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Our distributions, F and G, were beta distributions with parameters (a0,b0) and 

(a1,b1) respectively in the second simulation study. The specificity was also fixed at 80% 

or 90% for different values of (a0,b0) and (a1,b1) to get the corresponding sensitivities 

(See Table II). The coverage probabilities resulting from the simulation study at the 

nominal level of 95% are given in Tables X-XV.

Table II. Parameter setting for the Beta Distribution at fixed levels of 
specificity.
Run (a1,b1) (a0,b0) Specificity (p) Sensitivity (R(p))
1 (4,1) (1,3.5) 0.90 0.95
2 (3,1) (1,3) 0.80 0.93
3 (3,1) (1,3) 0.90 0.85
4 (4,2) (2,4) 0.80 0.82
5 (3,2) (2,3) 0.80 0.55

In the third simulation study, we chose the distributions F and G to be the 

standard exponential distribution (with rate = 1) and an exponential distribution with rate 

= 1/δ - 1, where δ represents the area under the receiver operating characteristic curve 

(AUC). Here, δ was taken to be 0.95. Specificity was set at 0.60, 0.70, 0.80, 0.90 and 

0.95 along with the corresponding sensitivities (See Table III). The coverage probabilities 

resulting from the simulation study at the nominal level of 95% are given in Tables XVI-

XXI.
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Table III. Parameter settings for the exponential distribution

Run δ Specificity Sensitivity
(p) (R(p))

1 0.95 0.60 0.95
2 0.95 0.70 0.94
3 0.95 0.80 0.92
4 0.95 0.90 0.89
5 0.95 0.95 0.85

The simulation studies illustrate that the newly proposed intervals generally 

performed better than the normal approximation based interval at the 95% nominal level 

in most settings.
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Chapter VI

REAL APPLICATION

In this chapter, we apply the newly proposed intervals to a real life data example. 

The data is from 403 subjects out of a group of 1046 who were selected to gain more 

understanding regarding the prevalence of diabetes, obesity, etc. among African 

Americans in central Virginia. The risk factors that were chosen from the study were the 

waist and hip measurements, as they have been known to be a predictor of diabetes.

6.1 Detection of Diabetes

Diabetes is a disease resulting from the way our bodies use blood glucose. The 

glucose (sugar) is your body’s energy source. Insulin, produced by the pancreas, helps the 

body produce sugar, which is used for energy. Too little insulin or the body using it 

improperly causes diabetes. It is the 5th leading cause of death in America and more 

prevalent among African Americans. Left untreated, diabetes leads to amputations, organ 

failure and even death in some cases. 

Our study used the waist and hip measurements (in inches) of 388 female and 

male subjects to determine the waist/hip ratio (WHR). The waist/hip ratio is just one way 

of detecting diabetes in patients. Excess abdominal fat has been associated with higher 

levels of insulin, which can raise blood sugar and pressure among other things. A WHR 

greater than 0.8 in women and 0.9 in men is said to increase the risk of diabetes in 
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patients. Snijder et al. (2004) found that waist and hip measurements are important 

factors in predicting diabetes and other diseases. 

The new empirical likelihood confidence intervals were applied to the data to 

determine the accuracy of the WHR in predicting diabetes. There were 305 non-diseased 

patients and 83 diseased patients. The results of the computation are found in Table XXII. 

The interval lengths were shorter when specificity was fixed at 90% and 95%.
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Chapter VII

DISCUSSION

Diagnostic testing is essential in distinguishing diseased patients from non-

diseased patients. When the result of a test is more accurate, there is less misconduct and 

better treatment options can be implemented. The ROC curve provides a summary of the 

performance of a diagnostic test (Claeskens et. al, 2003). For a quantitative test, the 

cutoff point c is imperative because it determines which patients will be classified as 

diseased and non-diseased. When the response of a test is continuous, it is of interest to 

construct confidence intervals for the sensitivity of the test at this point. Calculating the 

sensitivity and specificity of a test at various cutoff points is effective in determining the 

best point at which to classify the test. The normal approximation confidence intervals 

are inadequate when the distribution is skewed or the parameter range is restricted (Wu 

and Rao, 2006). We proposed three new empirical likelihood confidence intervals for the 

sensitivity of a continuous scale diagnostic test at a fixed level of specificity. The newly 

proposed intervals were shown to generally perform better than the normal 

approximation based interval at the 95% nominal level in most simulation settings.
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APPENDIX I: SIMULATION TABLES

A.  Normal Distribution Tables

Table IV. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the normal distribution with m=20 and n=50.
Run Method Coverage Probability

95%
1 Normal 0.9957

ELI 0.9810
ELII 0.9793
ELIII 0.9836

2 Normal 0.9280
ELI 0.9746
ELII 0.9628
ELIII 0.9678

3 Normal 0.8500
ELI 0.9557
ELII 0.9412
ELIII 0.9335

4 Normal 0.9987
ELI 0.9895
ELII 0.9717
ELIII 0.9745

5 Normal 0.9277
ELI 0.9790
ELII 0.9619
ELIII 0.9519
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Table V. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the normal distribution with m=50 and n=20.
Run Method Coverage Probability

95%
1 Normal 0.9983

ELI 0.9576
ELII 0.9731
ELIII 0.9759

2 Normal 0.9910
ELI 0.9736
ELII 0.9821
ELIII 0.9842

3 Normal 0.8510
ELI 0.9708
ELII 0.9785
ELIII 0.9795

4 Normal 0.9983
ELI 0.9668
ELII 0.9706
ELIII 0.9745

5 Normal 0.8953
ELI 0.9780
ELII 0.9791
ELIII 0.9832
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Table VI. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the normal distribution with m=50 and n=100.
Run Method Coverage Probability

95%
1 Normal 0.9793

ELI 0.9820
ELII 0.9716
ELIII 0.9737

2 Normal 0.9220
ELI 0.9670
ELII 0.9616
ELIII 0.9543

3 Normal 0.8873
ELI 0.9267
ELII 0.9583
ELIII 0.9543

4 Normal 0.9940
ELI 0.9884
ELII 0.9700
ELIII 0.9714

5 Normal 0.9367
ELI 0.9730
ELII 0.9600
ELIII 0.9533
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Table VII. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the normal distribution with m=100 and n=50.
Run Method Coverage Probability

95%
1 Normal 0.9907

ELI 0.9802
ELII 0.9833
ELIII 0.9832

2 Normal 0.9333
ELI 0.9729
ELII 0.9736
ELIII 0.9730

3 Normal 0.9067
ELI 0.9433
ELII 0.9703
ELIII 0.9673

4 Normal 0.9977
ELI 0.9835
ELII 0.9816
ELIII 0.9835

5 Normal 0.9383
ELI 0.9620
ELII 0.9690
ELIII 0.9627
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Table VIII. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the normal distribution with m=n=50.
Run Method Coverage Probability

95%
1 Normal 0.9947

ELI 0.9782
ELII 0.9798
ELIII 0.9844

2 Normal 0.9133
ELI 0.9771
ELII 0.9750
ELIII 0.9757

3 Normal 0.8853
ELI 0.9343
ELII 0.9637
ELIII 0.9567

4 Normal 0.9983
ELI 0.9859
ELII 0.9821
ELIII 0.9840

5 Normal 0.9313
ELI 0.9663
ELII 0.9646
ELIII 0.9600
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Table IX. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the normal distribution with m=n=100.
Run Method Coverage Probability

95%
1 Normal 0.9610

ELI 0.9837
ELII 0.9745
ELIII 0.9748

2 Normal 0.9253
ELI 0.9730
ELII 0.9673
ELIII 0.9620

3 Normal 0.9017
ELI 0.9320
ELII 0.9537
ELIII 0.9527

4 Normal 0.9787
ELI 0.9854
ELII 0.9661
ELIII 0.9678

5 Normal 0.9353
ELI 0.9563
ELII 0.9540
ELIII 0.9533
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B.  Beta Distribution Tables

Table X. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the beta distribution with m=20 and n=50.
Run Method Coverage Probability

95%
1 Normal 0.9883

ELI 0.9757
ELII 0.9753
ELIII 0.9817

2 Normal 0.9900
ELI 0.9848
ELII 0.9770
ELIII 0.9803

3 Normal 0.8497
ELI 0.9645
ELII 0.9522
ELIII 0.9436

4 Normal 0.9297
ELI 0.9802
ELII 0.9758
ELIII 0.9670

5 Normal 0.8853
ELI 0.9283
ELII 0.9413
ELIII 0.9330
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Table XI. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the beta distribution with m=50 and n=20.
Run Method Coverage Probability

95%
1 Normal 0.9957

ELI 0.9567
ELII 0.9671
ELIII 0.9726

2 Normal 0.9953
ELI 0.9702
ELII 0.9757
ELIII 0.9785

3 Normal 0.9457
ELI 0.9726
ELII 0.9823
ELIII 0.9827

4 Normal 0.9240
ELI 0.9724
ELII 0.9794
ELIII 0.9801

5 Normal 0.9023
ELI 0.9330
ELII 0.9603
ELIII 0.9483
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Table XII. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the beta distribution with m=50 and n=100.
Run Method Coverage Probability

95%
1 Normal 0.9490

ELI 0.9760
ELII 0.9739
ELIII 0.9732

2 Normal 0.9697
ELI 0.9876
ELII 0.9705
ELIII 0.9685

3 Normal 0.8830
ELI 0.9363
ELII 0.9517
ELIII 0.9477

4 Normal 0.9380
ELI 0.9703
ELII 0.9527
ELIII 0.9470

5 Normal 0.9090
ELI 0.9220
ELII 0.9503
ELIII 0.9473
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Table XIII. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the beta distribution with m=100 and n=50.
Run Method Coverage Probability

95%
1 Normal 0.9877

ELI 0.9752
ELII 0.9770
ELIII 0.9804

2 Normal 0.9657
ELI 0.9792
ELII 0.9751
ELIII 0.9764

3 Normal 0.8960
ELI 0.9503
ELII 0.9646
ELIII 0.9586

4 Normal 0.9360
ELI 0.9687
ELII 0.9650
ELIII 0.9573

5 Normal 0.9230
ELI 0.9330
ELII 0.9560
ELIII 0.9533
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Table XIV. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the beta distribution with m=n=50.
Run Method Coverage Probability

95%
1 Normal 0.9817

ELI 0.9702
ELII 0.9744
ELIII 0.9767

2 Normal 0.9800
ELI 0.9841
ELII 0.9789
ELIII 0.9813

3 Normal 0.8847
ELI 0.9558
ELII 0.9648
ELIII 0.9615

4 Normal 0.9260
ELI 0.9696
ELII 0.9616
ELIII 0.9566

5 Normal 0.9070
ELI 0.9290
ELII 0.9547
ELIII 0.9503
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Table XV. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the beta distribution with m=n=100.
Run Method Coverage Probability

95%
1 Normal 0.9370

ELI 0.9762
ELII 0.9708
ELIII 0.9684

2 Normal 0.9573
ELI 0.9853
ELII 0.9675
ELIII 0.9651

3 Normal 0.8960
ELI 0.9370
ELII 0.9587
ELIII 0.9530

4 Normal 0.9520
ELI 0.9667
ELII 0.9623
ELIII 0.9590

5 Normal 0.9227
ELI 0.9320
ELII 0.9507
ELIII 0.9483



34

C.  Exponential Distribution Tables

Table XVI. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the exponential distribution with m=20 and n=50.
Run Method Coverage Probability

95%
1 Normal 0.9993

ELI 0.9837
ELII 0.9783
ELIII 0.9791

2 Normal 0.9940
ELI 0.9875
ELII 0.9811
ELIII 0.9840

3 Normal 0.9423
ELI 0.9860
ELII 0.9818
ELIII 0.9846

4 Normal 0.8893
ELI 0.9815
ELII 0.9737
ELIII 0.9690

5 Normal 0.8357
ELI 0.9369
ELII 0.9452
ELIII 0.9459
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Table XVII. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the exponential distribution with m=50 and n=20.
Run Method Coverage Probability

95%
1 Normal 0.9983

ELI 0.9771
ELII 0.9766
ELIII 0.9776

2 Normal 0.9977
ELI 0.9493
ELII 0.9620
ELIII 0.9638

3 Normal 0.9950
ELI 0.9723
ELII 0.9733
ELIII 0.9729

4 Normal 0.9677
ELI 0.9770
ELII 0.9788
ELIII 0.9800

5 Normal 0.9733
ELI 0.9694
ELII 0.9729
ELIII 0.9765
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Table XVIII. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the exponential distribution with m=50 and n=100.
Run Method Coverage Probability

95%
1 Normal 0.9616

ELI 0.9899
ELII 0.9689
ELIII 0.9448

2 Normal 0.9520
ELI 0.9873
ELII 0.9669
ELIII 0.9599

3 Normal 0.9467
ELI 0.9850
ELII 0.9643
ELIII 0.9567

4 Normal 0.9363
ELI 0.9653
ELII 0.9647
ELIII 0.9597

5 Normal 0.9130
ELI 0.9337
ELII 0.9457
ELIII 0.9477
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Table XIX. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the exponential distribution with m=100 and n=50.
Run Method Coverage Probability

95%
1 Normal 0.9773

ELI 0.9709
ELII 0.9764
ELIII 0.9768

2 Normal 0.9806
ELI 0.9867
ELII 0.9765
ELIII 0.9779

3 Normal 0.9063
ELI 0.9763
ELII 0.9736
ELIII 0.9763

4 Normal 0.9087
ELI 0.9625
ELII 0.9678
ELIII 0.9655

5 Normal 0.9127
ELI 0.9489
ELII 0.9619
ELIII 0.9606
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Table XX. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the exponential distribution with m=n=50.
Run Method Coverage Probability

95%
1 Normal 0.9907

ELI 0.9870
ELII 0.9759
ELIII 0.9773

2 Normal 0.9850
ELI 0.9838
ELII 0.9764
ELIII 0.9792

3 Normal 0.9147
ELI 0.9793
ELII 0.9793
ELIII 0.9806

4 Normal 0.9097
ELI 0.9695
ELII 0.9709
ELIII 0.9702

5 Normal 0.9020
ELI 0.9375
ELII 0.9469
ELIII 0.9496
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Table XXI. Coverage probabilities of intervals at the 
nominal level of 95 percent when the data are generated
from the exponential distribution with m=n=100.
Run Method Coverage Probability

95%
1 Normal 0.9397

ELI 0.9807
ELII 0.9582
ELIII 0.9548

2 Normal 0.9323
ELI 0.9799
ELII 0.9655
ELIII 0.9592

3 Normal 0.9523
ELI 0.9687
ELII 0.9563
ELIII 0.9543

4 Normal 0.9207
ELI 0.9550
ELII 0.9577
ELIII 0.9540

5 Normal 0.9247
ELI 0.9463
ELII 0.9580
ELIII 0.9580
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APPENDIX II: REAL APPLICATION TABLE

Table XXII. Confidence Intervals for R(p) for the real data application at the
95% nominal level.
Specificity Method Sensitivity Confidence Intervals Length

(p) R(p)
0.95 ELI 0.1446 (0.0714, 0.2473) .1759

ELII 0.1446 (0.0591, 0.2741) .2150
ELIII 0.1446 (0.0590, 0.2742) .2152

0.90 ELI 0.2410 (0.1457, 0.3576) .2119
ELII 0.2410 (0.1521, 0.3480) .1959
ELIII 0.2410 (0.1505, 0.3503) .1998

0.85 ELI 0.3133 (0.2055, 0.4366) .2311
ELII 0.3133 (0.1989, 0.4454) .2465
ELIII 0.3133 (0.1983, 0.4462) .2479

0.80 ELI 0.4096 (0.2920, 0.5347) .2427
ELII 0.4096 (0.2864, 0.5410) .2546
ELIII 0.4096 (0.2857, 0.5419) .2562

0.70 ELI 0.5181 (0.3941, 0.6406) .2465
ELII 0.5181 (0.4094, 0.6256) .2162
ELIII 0.5181 (0.4094, 0.5419) .1325
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APPENDIX III: S-PLUS CODE FOR SIMULATION

# Computing the pseudo empirical likelihood ratio confidence intervals for ROC 
curve

#
# December 3, 2005 
# 
###############################################################################

m<-20
n<-50

#sp<-0.7  # 0.90, 0.80, 0.70
iter<-3000
levelc1<-0.90
levelc2<-0.95

############################################################################
#normal distribution.

#muy<-1 # the mean of diseased population
#sens<-1-pnorm(qnorm(sp),muy,1)

#sp = 0.9; muy = 2.9264 
#sp = 0.9; muy = 2.5631
#sp = 0.9; muy = 2.1231
#sp = 0.8; muy = 2.4865
#sp = 0.8; muy = 1.6832
#sens<-1-pnorm(qnorm(sp),muy,1)

############################################################################
#Exponential distribution.
    
   #sp<- 0.95         #  specificity = 0.6, 0.7, 0.8, 0.9, 0.95                                                 

#delta<- 0.95    #   AUC = 0.95  
#sens<- 1-pexp(qexp(sp), rate= (1/delta -1))                                                                                               

############################################################################

###########################################################################
#Beta(a,b) distribution.

#Table 2:

#Run 1: specificity=1-tt=0.9, sensitivity=0.95
#sp<-0.9; a0<-1; b0<-3.5; a1<-4; b1<-1;# sensitivity=0.946002
    # Delete the "#" before "tt"  when you run "Run 1" for Beta(a,b) 

distribution.

#Run 2: specificity=1-tt=0.8, sensitivity=0.93
#sp<-0.8; a0<-1; b0<-3; a1<-3; b1<-1; # sensitivity=0.9284251
    # Delete the "#" before "tt"  when you run "Run 2" for Beta(a,b) 

distribution.

#Run 3: specificity=1-tt=0.9, sensitivity=0.85
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#sp<-0.9; a0<-1; b0<-3; a1<-3; b1<-1; # sensitivity=0.8461462
    # Delete the "#" before "tt"  when you run "Run 3" for Beta(a,b) 

distribution.

#Run 4: specificity=1-tt=0.8, sensitivity=0.82
#sp<-0.8; a0<-2; b0<-4; a1<-4; b1<-2; # sensitivity=0.8245191
    # Delete the "#" before "tt"  when you run "Run 4" for Beta(a,b) 

distribution.

#Run 5: specificity=1-tt=0.8, sensitivity=0.55
#sp<-0.8; a0<-2; b0<-3; a1<-3; b1<-2; # sensitivity=0.5548815
    # Delete the "#" before "tt"  when you run "Run 5" for Beta(a,b) 

distribution.

#sens<- 1-pbeta(qbeta(sp,a0,b0),a1,b1)  #sensitivity
 # Delete the "#" before "Rtt"  when you run the S code for Beta(a,b) 
distribution.

############################################################################

p<-1-sp

   coverage1<-0
coverage2<-0

coverageb11<-0   # First bootstrap
coverageb12<-0

coverageb21<-0 # Second bootstrap
coverageb22<-0

   coveraget1<-0
coveraget2<-0

   CILT1<-c(rep(0,iter))
CILT2<-c(rep(0,iter))

# Loop

Rp<-0

for ( i in c(1:iter))
{   

#normal distribution:
  #x<-rnorm(m,0,1) # obs from non-diseased population

#y<-rnorm(n,muy,1) # obs from diseased population

#Exponential distribution: rexp(n, rate=1, scale)
#x<-rexp(m, rate= 1)  # obs from non-diseased population                
#y<-rexp(n, rate= (1/delta -1))  # obs from diseased population

                      
   #Beta(a,b) distribution:
   #x<-rbeta(m,a0,b0) #nondesease:
                      # Delete the "#" before "x"  when you run the S code for
                        Beta(a,b) distribution.
   #y<-rbeta(n,a1,b1) #desease
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                      # Delete the "#" before "y"  when you run the S code for               
                        Beta(a,b) distribution.

u<-rep(100,n) # hat U =1- hat F
for (j in 1:n)
{

u[j]<-1-mean((x<=y[j]))
}

indU<-(u <= p)*1 # indicator function of U: I(U_j <=p)

Rp[i]<-mean(indU)

# compute the scale constant c(p).
if ((Rp[i]!=1) & (Rp[i]!=0))

{
sigma<-Rp[i]*(1-Rp[i])  

# estimate for sigma^2

hg<-bandwidth.sj(y, nb=1000, method="dpi")  
# Uses the method of Sheather & Jones (1991) 

                # to select the bandwidth of a Gaussian kernel density       
                   estimator for g
    hf<-bandwidth.sj(x, nb=1000, method="dpi")  

# Uses the method of Sheather & Jones (1991) 
                # to select the bandwidth of a Gaussian kernel density   
                   estimator for f

    quantileF<-quantile(x,1-p)
    densityg<-density(y,n=1,window="g",width=hg, from=quantileF)$y  
           #density(.): density estimate at (1-p)-th quantile of F.

densityf<-density(x,n=1,window="g",width=hf, from=quantileF)$y  
            #density(.): density estimate at tt-th quantile of F.

hatsigma1<-sigma + n*p*(1-p)*densityg/(m*densityf)  
# estimate for sigma_1^2

#sigma1<-sigma + n*p*(1-p)*dnorm(qnorm(1-p), muy,   
                        1)/(m*dnorm(qnorm(1-p),0,1))

# True value of sigma_1^2

#bootstrap estimates for R(p). Bootstap variance estimate of R(p)
test<-sensb(y,x,1-p,300,0)
Rpboot<-mean(test)

    Rpvar<-var(test) 

cp<-sigma/hatsigma1
cpstar1<- sigma/(n*Rpvar)
cpstar2<- Rpboot*(1-Rpboot)/(n*Rpvar)

  

# cat("the scale constant cp=",cp, "\n")
wjhat<-indU-sens

funclambda<-function(lam)mean(wjhat/(1+lam*wjhat))
lambda<-solveNonlinear(funclambda, c(0), c(0.01))$x 
#lambda<-sum(wjhat)/sum(wjhat^2)

lroc<-2*sum( log(abs(1+lambda*wjhat)) )
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coverage1[i]<-(cp*lroc <= qchisq(levelc1,1))*1 
coverage2[i]<-(cp*lroc <= qchisq(levelc2,1))*1 

coverageb11[i]<-(cpstar1*lroc <= qchisq(levelc1,1))*1 # First 
bootstrap

coverageb12[i]<-(cpstar1*lroc <= qchisq(levelc2,1))*1 

coverageb21[i]<-(cpstar2*lroc <= qchisq(levelc1,1))*1 # second 
bootstrap

coverageb22[i]<-(cpstar2*lroc <= qchisq(levelc2,1))*1 

}else{
  coverage1[i]<-NA; coverage2[i]<-NA
  coverageb11[i]<-NA; coverageb12[i]<-NA
  coverageb21[i]<-NA; coverageb22[i]<-NA
  }

   # compute the normal approximation based interval.
   
    hwidth1<-qnorm(1-(1-levelc1)/2)*(hatsigma1/n)^(1/2)
     tlow1<-Rp[i]-hwidth1 # lower limit of the CI
     tup1<- Rp[i]+hwidth1 # upper limit of the CI
   if ((tlow1 <= sens) & (tup1 >= sens))coveraget1<-coveraget1+1
     CILT1[i]<-2*hwidth1 # The length of CI

hwidth2<-qnorm(1-(1-levelc2)/2)*(hatsigma1/n)^(1/2)
     tlow2<-Rp[i]-hwidth2 # lower limit of the CI
     tup2<- Rp[i]+hwidth2 # upper limit of the CI
   if ((tlow2 <= sens) & (tup2 >= sens))coveraget2<-coveraget2+1
     CILT2[i]<-2*hwidth2 # The length of CI

}

sink("pseudoelroc1bootres")

#Normal distribution: # Delete the "#"'s before "cat" when you run the S code 
for normal distribution.

#cat("Normal distribution: m=", m, "n=", n, "specificity=", sp, "sensitivity=", 
sens, "mu=", muy, "iter=", iter, "\n")

#Exponential distribution: # Delete the "#"'s before "cat" when you run the S 
code for Exponential distribution.

#cat("Exponential dist: m=", m, "n=", n, "sp=", sp, "sens=", sens, "AUC=", 
delta, "iter=", iter, "\n")

# Beta distribution: # Delete the "#"'s before "cat"  when you run the S code 
for Beta distribution.

#cat("Beta distribution:  m=", m, "n=", n, "iter=", iter, "\n")
#cat("specifity=",sp, "sens=", sens, "a0=",a0,"a1=",a1,"b0=",b0,"b1=",b1, "\n")

cat("CI for sensitivity at level=", levelc1, "\n")
cat("Coverage of the ELRCI :", mean(sort(coverage1)), "\n")
cat("First bootstrap method. Coverage of the ELRCI :", mean(sort(coverageb11)), 

"\n")
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cat("second bootstrap method. Coverage of the ELRCI :", 
mean(sort(coverageb21)), "\n")

cat("Coverage of the Normal CI :", coveraget1/iter, "\n")
#cat("Average length of ELRCI:  ", mean(CIL), " STD=", (var(CIL))^(1/2), "\n")
cat("Average length of Normal CI:  ", mean(CILT1),  "  STD=", 

(var(CILT1))^(1/2), "\n")
#cat("Midpoint:", mean(Mid),  "   STD=", (var(Mid))^(1/2), "\n")
cat("-----------------------------------------------------------------","\n")

cat("CI for sensitivity at level=", levelc2, "\n")

cat("Coverage of the ELRCI :", mean(sort(coverage2)), "\n")
cat("First bootstrap method. Coverage of the ELRCI :", mean(sort(coverageb12)), 

"\n")
cat("second bootstrap method. Coverage of the ELRCI :", 

mean(sort(coverageb22)), "\n")
cat("Coverage of the Normal CI :", coveraget2/iter, "\n")
#cat("Average length of ELRCI:  ", mean(CIL), " STD=", (var(CIL))^(1/2), "\n")
cat("Average length of Normal CI:  ", mean(CILT2),  "  STD=", 

(var(CILT2))^(1/2), "\n")
#cat("Midpoint:", mean(Mid),  "   STD=", (var(Mid))^(1/2), "\n")
cat("Mean estimate for sensitivity:", mean(Rp),  "  STD=", (var(Rp))^(1/2), 

"\n")
cat("=================================================================","\n")
sink()
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APPENDIX IV: S-PLUS CODE FOR REAL APPLICATION 

# Computing the pseudo empirical likelihood ratio confidence intervals for ROC 
curve

#
# Jan. 3, 2006

#Diabetes example
xx<-NON[,1]     # obs from non-diseased population
yy<-DIS[,1] # obs from diseased population

x<-sort(xx)
y<-sort(yy)

m<-length(x)
n<-length(y)

levelc<-0.95

   crit<-qchisq(levelc,1)
   

sp<- 0.95 # specificity
p<-1-sp # p<-1-sp   # False Positive Rate

   ELlow<-0 # EL interval
ELup<-0

BELlow1<-0 # First bootstrap EL-based CI
BELup1<-0

BELlow2<-0 # Second bootstrap EL-based CI
BELup2<-0

u<-rep(100,n) # hat U =1- hat F
for (j in 1:n)
{

u[j]<-1-mean((x<=y[j]))
}

hg<-bandwidth.sj(y, nb=1000, method="dpi")  
# Uses the method of Sheather & Jones (1991) 

      # to select the bandwidth of a Gaussian kernel density estimator for g
   hf<-bandwidth.sj(x, nb=1000, method="dpi")  

# Uses the method of Sheather & Jones (1991) 
      # to select the bandwidth of a Gaussian kernel density estimator for f

indU<-(u <= p)*1 # indicator function of U: I(U_j <=p)

Rp<-mean(indU)  # estimate for R(p). Sensitivity

# compute the scale constant c(p).

sigma<-Rp*(1-Rp)  # estimate for sigma^2

   quantileF<-quantile(x,1-p)
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   densityg<-density(y,n=1,window="g",width=hg, from=quantileF)$y  
      #density(.): density estimate at (1-p)-th quantile of F.
   densityf<-density(x,n=1,window="g",width=hf, from=quantileF)$y  
      #density(.): density estimate at tt-th quantile of F.

hatsigma1<-sigma + n*p*(1-p)*densityg^2/(m*densityf^2)  
# estimate for sigma_1^2

#bootstrap estimates for R(p). Bootstap variance estimate of R(p)

test<-sensb(y,x,1-p,1000,0)
Rpboot<-mean(test)

   Rpvar<-var(test) 

cp<-sigma/hatsigma1
cpstar1<- sigma/(n*Rpvar)
cpstar2<- Rpboot*(1-Rpboot)/(n*Rpvar)

# cat("the scale constant cp=",cp, "\n")

critcp_crit/cp # EL interval

critcps1_crit/cpstar1 # First bootstrap EL-based CI

critcps2_crit/cpstar2 # second bootstrap EL-based CI

# EL confidence intervals

y<-elciroc(n,indU,critcp)     # calling "elciroc" to compute the EL 
interval.

ELlow<-y[4] # lower limit of the EL CI
      ELup<-y[5] # upper limit of the EL CI

   
# first bootstrap EL based CI:

y<-elciroc(n,indU,critcps1) # calling "elciroc" to compute the EL 
interval.

BELlow1<-y[4] # lower limit of the bootstrap EL CI
      BELup1<- y[5] # upper limit of the bootstrap EL CI

   
# Second bootstrap EL based CI:

y<-elciroc(n,indU,critcps2) # calling "elciroc" to compute the EL 
interval.

BELlow2<-y[4] # lower limit of the bootstrap EL CI
      BELup2<- y[5] # upper limit of the bootstrap EL CI

sink("realexampleres")

cat("CI for sens at level=", levelc, "m=", m, "n=", n, "\n")
cat("specificity =", sp, "\n")
cat("R(p)=", Rp, "\n")

cat("lower limit of the EL CI :", ELlow, "\n")
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cat("upper limit of the EL CI :", ELup, "\n")

cat("lower limit of the First bootstrap EL CI :", BELlow1, "\n")
cat("upper limit of the First bootstrap EL CI :", BELup1, "\n")

cat("lower limit of the second bootstrap EL CI :", BELlow2, "\n")
cat("upper limit of the second bootstrap EL CI :", BELup2, "\n")

cat("-----------------------------------------------------------------","\n")

sink()
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