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MULTISTABILITY IN BURSTING PATTERNS IN A MODEL OF A MULTIFUNCTIONAL 

CENTRAL PATTERN GENERATOR 

 

by 

 

MATTHEW BROOKS 

 

Under the Direction of Dr. Andrey Shilnikov 

 

ABSTRACT 

 A multifunctional central pattern generator (CPG) can produce bursting polyrhythms that 

determine locomotive activity in an animal: for example, swimming and crawling in a leech. Each rhythm 

corresponds to a specific attractor of the CPG. We employ a Hodgkin-Huxley type model of a bursting 

leech heart interneuron, and connect three such neurons by fast inhibitory synapses to form a ring.  This 

network motif exhibits multistable co-existing bursting rhythms.  The problem of determining rhythmic 

outcomes is reduced to an analysis of fixed points of Poincare mappings and their attractor basins, in a 

phase plane defined by the interneurons' phase differences along bursting orbits.  Using computer assisted 

analysis, we examine stability, bifurcations of attractors, and transformations of their basins in the phase 

plane.  These structures determine the global bursting rhythms emitted by the CPG.  By varying the 

coupling synaptic strength, we examine the dynamics and patterns produced by inhibitory networks. 

 

INDEX WORDS:   Bifurcation, Bursting, Central pattern generator, Multistability, Polyrhythmicity,  

        Attractors, Heteroclinic, Saddles, Computational neuroscience 
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1.  INTRODUCTION 

Neuron Structures and Properties 

 One of the principal goals of mathematical and computational neuroscience is to provide accurate 

models that possess or mimic the physical and chemical mechanics of neurons, as well as to construct 

theories on how those representative models might interact and perform within a set of analytical bounds.  

Neurons, organized into networks numbering in the thousands in higher order animals, give rise to a level 

of complexity that only recently has begun to be researched more thoroughly.   The evolution of these 

neuronal networks is thought to come about as a means of transmitting information in an animal’s 

nervous system, relaying messages that produce memory, locomotion, involuntary and voluntary motor 

reflexes, visual and even hallucinatory phenomena, and other sensory responses (Marder, et al., 1996; 

Gutkin, et al. 2003).  To produce this activity, neuronal networks are organized into smaller 

interconnected networks whose repetitive electrical rhythms generate these types of motor responses.  The 

basic neural circuits form what are known as central pattern generators (CPGs) and formulate the basis 

of neuronal activity in vertebrate and invertebrate species alike (Marder, et al., 1996).   A number of 

studies have reported on the mechanics and models whereby a significantly limited network of oscillators 

can yield different qualitative states, especially with neurons associated with locomotive activity; this 

special feature is referred to as multifunctionality (Ashwin, et al., 2008; Canavier, et al. 1999).  Our focus 

for this study is centered on small scale multifunctional neuronal networks and the multistable outcomes 

that arise as a result of varying external factors such as the strength of electrical currents and relative time 

periods in which individual bursting activity is initiated.   

 We briefly introduce the electrophysiological concepts of the neuron in order to provide a cursory 

foundation for the behaviors exhibited in the systems studied during the course of this work.  Consider 

then the neuron as a single arbiter of electrical activity:  a typical neuron contains concentrations of Na
+
, 

K
+
, Cl

-
, and Ca

2+
 ions, which are separated via a membrane from the extracellular medium which contains 
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different concentrations of the same ions.  The membrane then represents the potential difference between 

the collections of charges in the two mediums.   We refer to this as the membrane voltage, and it is the 

basis for voltage data collected from the models studied here.  For the purposes of most of the models 

described in this work, the voltage is assumed to be uniform across the membrane, although more 

intricate models may reflect real differences between membrane voltage along the axon and dendritic 

components of the cell (Izhikevich, 2007). 

 Changes in ionic concentration, and therefore membrane voltage, precipitate flows of ions across 

the membrane; this transfer is referred to as the concentration gradient, or ionic current.  As positively 

(negatively) charged ions flow out of the cell, they leave behind negatively (positively) charged 

counterparts which cannot pass through the membrane, lowering the membrane potential.   The 

equipotential is reached when the membrane potential is equal to the force exerted by the concentration 

gradient.   Each ionic current, then, is associated with a type of ionic channel.  Physiologically, the neuron 

membrane is comprised of a number of these channels in varying proportions with respect to the type of 

ion species.  Ionic channels are voltage regulated (or gated), meaning that they may be open or closed 

depending on the strength of the membrane potential.  We can view then the current I for a particular 

channel as 

� = ��(� − �) 

where g represents the maximal conductance, E is the equipotential, and p is a probability function that 

reflects the proportion of gates that are open, allowing ions to pass through the membrane.  Channels 

based on this model may be grouped into four types, shown in the table below (Table 1.1). 

 We geometrically portray the behavior that this electrochemical system effectively produces.  

Consider the diagram below of a single voltage spike produced by an applied current (Figure 1.1).   We 

observe that before the current is applied, the neuron is in a quiescent state.  In a typical neuron, there 

exists high concentrations of K
+
 ions internally and high concentrations of Na

+
 and Cl

-
 ions externally.   
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Table 1.1.  Ionic channels: Behavior and examples (from Terman, et al., 2002; Izhikevich, 2007). 

Channel type Action Examples 

Activation  Opens voltage gated channels.  For Na
+
 

currents, inflow increases membrane 

potential.  For K
+
 currents, outflow 

decreases membrane potential.  The 

closure of activated gate is called 

deactivation. 

 

Fast transient Na
+
 in rat 

thalamocortical neurons and 

squid giant axons. 

 

Fast transient K
+
 in GPe cells 

in the basal ganglia.  

 

    

Inactivation  Closes voltage gated channels.  For Na
+
 

currents, membrane potential 

decreases.  For K
+
 currents, membrane 

potential increases.  The opening of 

inactivated gates is called 

deinactivation. 

 

Delayed rectifier K
+
 current 

in neocortical pyramidal 

neurons. 

 

 

 

  

 

 Figure 1.1.  Anatomy of a voltage spike produced along a neuron’s membrane. 

 

The applied current depolarizes the neuron, pushing it towards an excited state.  Once the current is 

sufficient for the voltage to pass the bursting threshold, the neuron responds by firing an action potential, 

or a sharp increase in the membrane voltage. During this period, the ionic channels for Na
+
 and K

+
 are 

opened and cause the cations to flow in and out of the cell respectively.  The conductance g for Na
+
 

increases sharply, signifying that the channel is activated.  Following this peak the neuron returns to its 
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resting state, which may be a near instantaneous change in potential or a gradual decline, depending on 

the rate at which the activation/deactivation takes place.   Neurons can also be pushed back into a rest 

state by the introduction of external hyperpolarizing currents, i.e. currents that decrease the overall 

membrane potential. 

 In certain models, there exists a refractory period that precedes the resting state, a short interval 

of time where the neuron cannot achieve a spiking state, particularly when an inactivation current is 

present; absolute refractory states are generally immune to any depolarizing action.  Excitability (and 

therefore the potential for spiking activity) returns only as the inactivation current becomes deinactivated.  

 

The Neuron as a Dynamical System 

 In order to simulate neuronal behaviors, we want to represent the neuron in the form of a 

mathematical model that reproduces some of the physical processes that comprise the neuron’s structure.   

We first must consider how “real life” neurons alternate between periods of spiking behavior and 

quiescence; virtually every neuron studied is based on this characteristic.   Information is relayed from 

one neuron to the next in the form of action potentials, or abrupt changes in membrane voltage as a result 

of shifting changes in ion concentrations in the internal and external cellular media, necessarily perturbing 

neurons in the vicinity.  Thus, any accurate model of the neuron must acknowledge a system where there 

exists periods of inactivity or very little shift in voltage alternating with periods of intense spiking 

activity.  Voltage then is observed as function over time and is perturbed by changes in other 

electrophysical properties of the cell, such as inactivation and activation gating voltages associated with 

different ion concentrations.   Additionally, a more comprehensive model must exhibit neuronal 

properties, such as non-transient spiking, quiescence, and variances in burst frequency (the number of 

spikes produced in a burst), interspike interval (the duration between two action potential peaks) and duty 

cycle (the ratio of burst duration to complete burst cycle).   
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 There are a number of ways to represent this basic type of model, depending on the degree to 

which accurate mechanics are desired versus computational expediency.  Simple integrate-and-fire 

models as well as discrete models have been shown to demonstrate some of the behaviors common to 

neuronal spiking and bursting activity (Cazelles, et al., 2001; Rulkov, 2002; Rulkov, et al., 2004).  As 

such, these models are very efficient to compute, and they still exhibit many (but not all) of the same 

phenomena that are present in more comprehensive models.  For the purposes of our discussion, we will 

utilize a continuous dynamical system that closely represents the activities of a physical neuron, albeit 

with some characteristics that are commonly featured in both continuous and discrete models aimed at 

characterizing burst activity (Shilnikov, 2004; Rabinovich, et al., 2006). 

 

Quiescence, Spikes, and Bursts 

 We begin with a discussion of the properties of the typical states of neuronal activity.   Consider 

that the state of a neuron can be viewed as the sum total of the electrical currents passed through it, 

particularly activation and inactivation currents associated with ion species.  Altering the combinations of 

these currents plays a role in influencing the type of excitation produced by the neuron (Terman, 2004).  

As these currents are modified, one of several primary transitions can occur with respect to membrane 

potential: 

Table 1.2.   Common actions produced by passing current through the neuron membrane. 

Activity Characteristics 

Quiescence No action potentials are generated; the membrane potential 

changes very little for a specific period of time.  A neuron will 

remain quiescent unless its membrane potential crosses the 

bursting threshold.    

 

Spiking Action potentials are generated on a non-transient basis.  This 

is also referred to as tonic spiking. 

 

Bursting Action potentials are generated on a transient basis, and 

alternate with a resting period. 
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Sub-threshold Oscillations Adjustments in current change the membrane potential, but not 

strongly enough in order to produce action potentials.   

 

 

Slow-Fast Systems 

 Variables associated with neuronal activity, such as activation currents, tend to operate on 

differing time scales.   The Na
+
 current, for instance, may activate much more rapidly than the 

corresponding K
+
 current.  As a result, the neuron can express a large repertoire of dynamical behaviors.  

To characterize these behaviors, we employ the use of a model known as the slow-fast system: 


� = �(
, �) 
�� = ��(
, �) 

 The vector x corresponds to the “fast” subsystem; for the “slow” subsystem, which describes the 

dynamics of y, we introduce a perturbation constant ε<<1.   The solutions where x′=0 and y′=0 represent 

the fast and slow nullclines of the system respectively, and the solution x′=y′=0 represents a system 

equilibrium.   For our purposes, the slow-fast systems are represented by a set of continuous ODEs, 

although discrete slow-fast systems exist and are capable of mimicking many of the spiking and bursting 

behaviors in continuous systems, including bifurcations and chaotic dynamics (Shilnikov, et al., 2002). 

 To illustrate an example of a slow-fast system, we will briefly describe the example of the 

Hindmarsh-Rose model, which mimics the principal characteristics of a neuronal system (Shilnikov, et 

al., 2008): 

� ′ =  � − ��� + ��� + I − z 
� ′ = � − ��� − � 
� ′ = �(�(� − ��) − �) 
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In this example, (x,y) and z are the fast and slow systems respectively; parameters a, b, c, and d are static 

configurations, and x0 is a bifurcation parameter used to effect changes in the stability of the system.  Of 

particular note are the cubic shape of the fast nullcline and the planar structure of the slow nullcline 

(Figure 1.2).  As a trajectory is computed over time, it tends towards the right in regions where z′>0 and 

tends towards the left as z′<0.  Additionally, the state of the neuron is in part reflected by the portion of 

the branch a point on the trajectory resides.  Below the z′=0 plane, the trajectory moves along the lower 

branch, corresponding to a quiescent state, and above the z′=0 plane the trajectory moves along a 

manifold that wraps around the upper branch.  The changes between these states of the system are 

bifurcations; for this type of two-dimensional system there are number of different possible bifurcation 

pairs in the transition between bursting regimes and quiescence.  A full classification of these bifurcations 

is provided by Izhikevich (Izhikevich, 1999; Izhikevich, 2004).  As we can see, slow-fast dynamics are 

central to the transition of bursting and spiking behaviors found in neuronal activity.    

 

 Figure 1.2.  Nullclines of the Hindmarsh-Rose system.  Insets depict the 

position of the characteristic exponents in the complex plane. As the planar slow 

nullcline z′=0 is shifted through the branches of the fast nullcline (x′=y′=0), the 

eigenvalues for the plane shift, producing different states of burst activity (taken 

from Shilnikov, et al., 2008). 
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Derivation of the Hodgkin-Huxley Model 

 The original concept of the Hodgkin-Huxley model was derived in 1952 in order to characterize 

activity in the squid giant axon (Terman, 2004).  The model rests on the concept that the neuron is 

effectively an electrical circuit, which is common to many models of simulated neuronal behavior 

(Gutkin, et al., 2003).  In this setup, we consider that the capacitive current of the membrane itself plus 

the sum of all of its ionic currents is equal to the total current across the neuron’s membrane.   We can 

express this representation in its generalized form with the membrane voltage changing over time: 

� ��
� =  �!"" − # �$(�, %&, %�, … , %()

 

$
 

C is the capacitance of the neuron, X represents a current of a particular ionic species, wi represents the set 

of voltage gated activation variables, and Iapp is an external current that may be applied to the neuron 

(often a synaptic current).   For each current IX we have  

�$ = �$�$(� − �$) 

Again, as before, gX is the maximal conductance, and EX is the equipotential (also referred to as the 

reversal potential) of the species.  The term pX is a probability function, derived from the activation 

variables wi, (where 0≤ wi ≤1) indicating the likelihood that an ionic channel is open.  However, the 

activation variables are non-constant and operate under different time scales.  In particular, the dynamics 

of the activation variables are as follows: 

%� ) = *%),∞(�) − %+
,-.(�)  

�$ = %&$%�$ … %($ 

Each current IX may be associated with one or more activation variables, and the functions τwi represent 

corresponding time constants.   



9 

 

 The basic Hodgkin-Huxley model then is a four dimensional form of the model above: 

� ��
� = �!"" − �/ − �0!−�1 

= �!"" − �/23(� − �/) − �0!4�ℎ(� − �0!) − �1(� − �1) 
�4
� = 64∞(�) − 47

,8(�)  

�2
� = 62∞(�) − 27

,((�)  

�ℎ
� = 6ℎ∞(�) − ℎ7

,9(�)  

The corresponding model above describes the cooperative dynamics of three currents:  a persistent K
+
 

current, a transient Na
+
 current, and a leak current (usually from a concentration of Cl

-
 ions).  Variables 

m, h, n are voltage gating variables corresponding to the activation of the transient current, inactivation of 

the transient current, and the activation of persistent current, respectively.  Finally, the functions m∞(V), 

n∞(V), and h∞(V) are steady-state activation (inactivation) curves.  In simplified versions of the model, the 

steady state functions are approximated by Boltzmann (sigmoid) functions of the form: 

:∞(�) =  1
1 + exp {@�&/� − �BC} 

The shape of this function, normalized to the range [0,1], is influenced by the half-activation voltage V1/2 

(where X∞(V) = 0.5) and the slope factor θ (which determines the steepness of the sigmoid function).    

 Overall, the Hodgkin-Huxley model described above corresponds strictly to the squid axon, 

which only has three currents.  In the case of the leech heart interneuron, the model described above 

becomes a 14-dimensional system, complete with 5 different time scales (Cymbalyuk, 2005).  As we can 

see, the Hodgkin-Huxley model is easily capable of giving rise to incredibly rich and complicated 

dynamics.   However, attempting to study the dynamics in a 14-dimensional space is computationally 

challenging at best.  In order to observe some of these dynamics (especially in network models containing 
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multiple neurons), we must apply pharmacological reductions to the system.  That is, we must capture the 

currents that are pertinent to the dynamics being studied, and block the currents that are only marginally 

influential (Cymbalyuk, et al., 2005; Channell, et al., 2007; Clewley, et al., 2009). 

     

Neuronal Networks 

 We conclude our review of neuronal models with a discussion of mechanisms for neuronal 

interactivity.   Neurons can operate in two ways: Inhibitory neurons yield synaptic current that prevents 

another neuron’s membrane voltage from reaching the burst threshold and causing an action potential, 

and excitatory neurons do exactly the opposite, producing enough current to generate spiking (or 

bursting) activity.   To represent this in the Hodgkin-Huxley model, we introduce a function s(t) to limit 

the presence of synaptic current for a fixed time interval [ton,toff], effectively creating a square wave pulse: 

�( ) = 6E( −  F() − E@ −  FGGB7 

H(t) is the Heaviside step function, discretely defined as H(t) < 0 when t < 0 , H(t) = 1  when t > 0, and 

H(t) = ½ when t=0.  It follows that the range of s(t), by construction, is [0,1].  

 This convention becomes particularly useful as we need to create neuronal networks and pass 

information between them in some meaningful way.   As an example, we consider the model of the sub-

thalamic nucleus (STN) coupled with a model of the globus pallidus (GPe) cell, corresponding to two 

groups of neurons that reside in the basil ganglia of the human brain, (Terman, et al., 2002).   In a 

simplified model, the STN generates excitatory responses to structures in the basil ganglia, including GPe 

cells, which in turn produces action potentials inhibiting STN cells, temporarily hyperpolarizing them 

until the GPe cells cease firing (Terman, et al., 2002).   Figure 1.3 illustrates this behavior over a very 

limited network of one STN cell and one GPe cell.    
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V

 

 Figure 1.3.  Production of action potential firing via depolarization.  The 

excitation response (STN → GPe), shown in blue, is coupled with inhibition of 

action potential firing via hyperpolarization (GPe → STN), shown in red.  The 

action potential produced by the STN produces excitability in the recipient GPe, 

while the GPe inhibits the firing of action potentials until the GPe is quiescent, 

permitting the STN to fire again (model taken from Terman, et al, 2002).     
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2.  BIFURCATIONS AND STABILITY 

Equilibria in Systems 

 We now examine some of the characteristic phenomena that occur in higher dimensional 

dynamical systems.  Consider the generalized slow-fast system described in §1, with ε <<1 a perturbation 

parameter as before.  The fast and slow nullclines correspond to x′=0 and y′=0 respectively, and the 

solutions to x′=y′=0, correspond to equilibria of the complete system.  However, we can also determine 

the stability of the equilibrium point by linearizing the system, provided that f and g are smooth functions.  

Given a equilibrium point (x*,y*) of the system, we may rewrite f and g as follows: 

�� = �(� − �∗) + �(� − �∗) + I�(�, �) 
�� = �(� − �∗) + �(� − �∗) + I�(�, �) 

 O
2
(x,y) corresponds to higher order terms of the system.  The matrix  

J = K� �
� �L = M�N �O�N �OP

(N,O)Q(N∗,O∗)
 

corresponds to the Jacobian of f, g at (x*,y*).    We let x = (x,y) and look for solutions to the following 

equation: 

J
 = R
 

The solutions λ1 and λ2 are produced from the characteristic equation 

det|J − V�| = 0 

and are referred to as the eigenvalues of A.  The eigenvalues above also generate vectors u1 and u2 

respectively (known as eigenvectors), satisfying the equations above.  By looking at the values for λ1 and 

λ2, we can determine the stability of the equilibrium point (x*,y*); Table 2.1 provides a list of scenarios 

and the type of equilibria that are produced. 



13 

 

Table 2.1.  Eigenvalues for stability in a two-dimensional system. 

λ1 , λ2 Equilibrium type 

Two distinct real roots with opposite signs. (λ1 

≠ λ2 ) 

The equilibrium is a saddle, which is classified 

as unstable since one eigenvalue is positive.  

 

Two distinct real roots with same sign (λ1 ≠ λ2) The equilibria is a node, which can be unstable 

(λ1 , λ2 > 0) or stable (λ1 , λ2 < 0) 

 

 

Complex conjugates (λ1, λ2 = a±bi) The equilibria is a focus, which can be stable (a 

< 0) or unstable (a > 0). 

 

 

Thus, we have an analytical means for evaluating the stability of an equilibrium point in a higher order 

system with smooth nullclines.  The fact that the neighborhood around the equilibrium behaves 

equivalently to that of a linear system is a result derived from the Hartman-Grobman theorem 

(Guckenheimer, et al., 2002). 

 

Bifurcations of Co-dimension 1 

 A bifurcation is a transition in stability in a dynamical system.  As systems shift between 

different states of stability, we can model phenomena that also transition among different types of 

behaviors.  In the context of neurons, bifurcations occur when the neuron approaches a state of 

excitability, allowing perturbations to shift in a bursting or spiking state and vice versa (Izhikevich, 1999).  

Both of these transitions are modeled by a various combination of bifurcations.   Below, we discuss 

several classes of bifurcations that are common to higher order dynamical systems, but for simplicity we 

merely present the two-dimensional representation of the bifurcations we will encounter in this work.  

Furthermore, all of the bifurcations considered below are codimension-1, meaning that a single parameter 

(referred to as the bifurcation parameter) is changed in order to achieve the change in system stability.  
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Fold bifurcations 

 Fold (or saddle node) bifurcations can be geometrically viewed as a transition where, through 

changes in the bifurcation parameter, the system gives rise to two equilibria, one stable and one saddle 

(Figure 2.1).  Mathematically, saddle node bifurcations must satisfy three principal conditions: non-

hyperbolicity (λ1=0, λ2 = a+ib with a≠0), non-degeneracy (the second order derivatives of f,g are non-zero 

at the bifurcation point), and transversality (the first order partial derivative of f, g with respect to the 

bifurcation parameter itself is non-zero). 

(a) (b)   

(c)  

 Figure 2.1.  The saddle node (fold) bifurcation, shown for a planar system.  (a) 

A stable and saddle node gradually merge together to produce the phase portrait 

in (b). The unstable node vanishes, resulting in local instability near the ghost of 

the saddle node in (c). 

 

 In the two dimensional case, we can ascertain two types of saddle node bifurcations.  The 

bifurcation described in Figure 2.2 may occur in systems where there is a stable limit cycle present 

(meaning another unstable equilibrium point resides inside the limit cycle region).   However, in the 
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special case where the saddle and stable equilibria reside on the limit cycle itself, we have a saddle-node 

on invariant circle bifurcation (also known as a SNIC).  The phase portrait of a SNIC is shown below.   

With respect to Hodgkin-Huxley models, SNICs are observed to vary spiking frequency but preserve 

amplitude by effectively “slowing down” the trajectory along the limit cycle as the bifurcation parameter 

approaches criticality (Izhikevich, 2007).     

(a)   (b)  

(c)  

  Figure 2.2.  Saddle-node on invariant circle (SNIC) bifurcation. Similar to the 

saddle node bifurcation in Figure 2.1, a stable and saddle point converge reside 

on a limit cycle (a), converge, causing the stable equilibrium to lose stability (b) 

and eventually vanish, leaving only the stable limit cycle behind (c). 

 

Andronov-Hopf Bifurcations 

 Andronov-Hopf bifurcations characterize a shift where a system’s stable equilibrium point 

becomes unstable and gives rise to a stable limit cycle (supercritical case), or where a stable equilibrium 

point is surrounded by an unstable limit cycle which shrinks and collapses on it, making the equilibrium 

point unstable (subcritical case).  In both cases, the eigenvalues take the form a±bi with a<0.  As a=0 and 
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the eigenvalues move across the complex plane, the focus loses stability (an example of this loss of 

stability is visible in Figure 1.2 for the Hindmarsh-Rose system).  Figure 2.3 illustrates phase portraits of 

these bifurcations in progression. 

(a)  

(b)  

 Figure 2.3.  Andronov-Hopf bifurcations. (a) Sub-critical case: An unstable 

limit cycle collapses onto a stable focus to produce an unstable focus. (b) Super-

critical case: A stable focus loses stability, giving rise to a stable limit cycle 

surrounding a now unstable focus. 

 

 A signature feature of the supercritical Andronov-Hopf bifurcation is the vanishing amplitude of 

the stable limit cycle as the bifurcation parameter approaches criticality.   

Homoclinic Bifurcations 

 We first note that an orbit is termed homoclinic if it passes through both the unstable and stable 

manifolds of a saddle equilibrium.  It is this feature that gives rise to the homoclinic bifurcation in the 

two-dimensional case.   Recall that with saddle equilibria the eigenvalues λ1, λ2 are of opposite sign.   For 

the homoclinic bifurcation with λ1 + λ2  > 0, a homoclinic trajectory emerges at the bifurcation point, and 

past the bifurcation point the stable fixed becomes surrounded by unstable limit cycle (Figure 2.4).  In the 
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case where λ1+ λ2 < 0 (shown in Figure 2.5), the saddle persists, but instead a stable limit cycle converges 

with the homoclinic orbit and dissipates, leaving only the unstable equilibrium in Figure 2.5c. 

 In the supercritical case, we can observe the trajectory of the limit cycle move more slowly as it 

nears the saddle node; as the bifurcation parameter approaches criticality, the limit cycle period T 

increases logarithmically without bound until the limit cycle becomes a homoclinic trajectory.  

 (a)   (b)  

(c)  

 Figure 2.4.  Homoclinic bifurcation, with λ1 + λ2 > 0.  (a) The unstable manifold 

for the saddle node tends towards a stable focus; (b) The stable and unstable 

manifold for the saddle node intersect; this intersection is called the homoclinic 

orbit; (c) An unstable limit cycle appears, causing the unstable manifold to push 

trajectories onto the opposite side of the stable manifold. 
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(a)  (b)  

(c)  

 Figure 2.5.  Homoclinic bifurcation, with λ1 + λ2 < 0.   (a) The unstable 

manifold for the saddle node tends towards a stable limit cycle; (b) The 

homoclinic orbit appears at the point of bifurcation as a result of the limit cycle 

collapsing into the stable and unstable manifolds; (c) The limit cycle vanishes, 

leaving only an unstable focus; the unstable manifold pushes trajectories onto 

the opposite side of the stable manifold. 

 

Synchronous Behavior in Networks 

 We now turn our attention to the characteristics of synchronization of neurons organized in small 

networks.  In the case of a 2 cell neuronal network, neurons may be coupled with one another via 

inhibitory or excitatory synaptic couplings, introduced via a synaptic current Isyn.   Each neuron may 

exhibit a burst period, which we denote by T1 and T2.  We say that the two cells are synchronized if their 

voltage traces and their bursting periods are equal (T1 = T2).  Neurons with equal bursting periods where 

bursting occurs at a constant phase shift Φ with respect to each other are said to be out-of-phase or anti-

phase.  In the case of Φ=0 the neurons are said to be in-phase.  In-phase synchronization can occur in a 
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non-identical form, where bursts are sufficiently close to each other but the spike trains are non-identical, 

as well as complete synchrony, where burst trajectories become identical.  The trivial complete 

synchronization case is when the synaptic coupling current is absent and the neurons are effectively not 

interacting with each other.  Lastly, we mention the desynchronized scenario, where bursting neurons do 

not settle to a particular bursting rhythm with respect to each other over an indefinite time period. 

 In order to achieve and analyze burst synchronization, we have limited means of manipulating 

neurons that are applicable to a real-world scenario.  In effect, we only have the external applied current, 

which is reported to produce different synchronization outcomes between clusters of differently 

configured neurons (Terman, et al, 2002).  In addition to being subjected to variable external currents, 

neurons may also be phase shifted with each other, meaning that they represent a different state along the 

same orbit at the same time.  For instance, consider 2 uncoupled neurons that are firing and emitting the 

same burst pattern.  If we take points along the burst orbit at time t for each neuron, the "position" or state 

of each neuron is regarded as its phase with respect to another neuron, Φ (Figure 2.6).  To produce this 

phase shift artificially, we effectively "lock down" the neuron for a fixed length of time by setting the 

synaptic coupling current to zero.  By doing this, the neuronal network operates and behaves as if the 

impacted neuron is not present in the network.  After the lockdown period has passed, the neuron resumes 

participation in the network.  At this point, the neuron may be out of phase with respect to the other 

neurons in the network whose voltage trajectories will be at different stages of their respective periodic 

orbits. 
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 Figure 2.6.  Phase shift between two neurons. 

 

Half Center Oscillators 

 One of the simplest neuronal networks commonly found is the half-center oscillator (HCO).  The 

HCO has been identified in a variety of neuroscience literature as a driver for multifunctional behaviors 

within central pattern generators (CPGs) (Shilnikov, et al., 2008).  In the HCO, both neurons pass 

inhibitory currents to each other, preventing its counterpart from firing action potentials.  In the case when 

the neurons are configured similarly and exhibit bursting, the inhibitory signal causes one neuron to be 

“locked down” until the initiating neuron undergoes bifurcation from bursting to quiescence, allowing its 

counterpart to be released and transition from quiescence to bursting.  This mechanism is illustrated 

below for the leech heart interneuron in Figure 2.7.  We note that this particular mechanism is only 

successful in regions where the neuron can enter bursting modes; in the case of tonic spiking, one neuron 

will lock down the other permanently, never allowing it to produce action potentials (Shilnikov, et. al, 

2008). 
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 Figure 2.7.  The half-center oscillator (modified from Shilnikov, et al., 2008). 

 

 HCOs do not just manifest anti-phase behavior; it has been found that by varying the activation 

gating parameters in a Hodgkin-Huxley model, full synchronization can be achieved between inhibitory 

bursters (Jalil, et al. 2009).  Moreover, this synchronization appears to be robust within the HCO, 

allowing for slight deviations between inhibitory coupling strengths of the two neurons.   

 If adjusting the coupling strength of the system is sufficient to alter the bursting pattern produced 

by neuronal networks, it is also possible that bifurcations can also produce shifts in burst rhythms.    

Certainly one given example is adjusting the bifurcation parameter VK2
shift

 (described in more detail in §3) 

in the leech heart interneuron below the bifurcation point, increasing the duty cycle of the burst until tonic 

spiking is present, thus locking down the other neuron in the oscillator.  As the system approaches a 

homoclinic saddle node bifurcation, the burst duration increases and affects the overall network period of 

the HCO.  Our choice of VK2
shift

 allows us to configure the length of the burst accordingly.   

 

Multistability and Polyrhythmicity 

 We conclude our discussion with a characterization of multistable states in neuronal networks 

with more than two cells.   For the Hodgkin-Huxley model of a single neuron we can express the synaptic 

current Isyn as 
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where  

� = �)[�(� − �)) 

is a current that can be either excitatory or inhibitory, with s(t) denoting a square-wave pulse function 

indicating when the current is switched on or off for a specific time interval.  We note that the synaptic 

coupling strengths may vary between pairs of neurons in the network, therefore we may refer to each 

coupling strength between neurons i and j as gij.   Additionally, the equation above also assumes 

instantaneous synaptic firing; we can apply non-instantaneous kinetics to the current by introducing a 

sigmoidal function as follows: 

� = �)[�(� − �))\(�)) 

Γ(�)) = 1
1 + exp *−1000@�) − ]XO(B+ 

The term Θsyn corresponds to the bursting threshold of the membrane, i.e. the voltage at which the 

synaptic current becomes active, and E as before corresponds to the reversal potential.  The actual value 

for the reversal potential may differ between inhibitory and excitatory currents.   

 By establishing a model for these currents in individual neurons, we can begin to connect them 

together to form simple, small scale neuronal networks much like the half-center oscillator.  Such 

networks are referred to as motifs; similar to the half-center oscillator, motifs are regarded as the building 

blocks of central pattern generators (CPGs) that play a significant role in multifunctional behaviors.  

Motifs of just three cells can produce a wide variety of bursting patterns depending on the initial burst 

order and introduction of external perturbations, a phenomenon known as multistability.   Motif structures 

associated with this have been readily identified, for instance, in neuronal pathways of the nematode C. 

elegans, in mammalian cortices of rats (Sporns, et al., 2004), and of course the CPG responsible leech 
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heartbeat. Additionally, motifs are classified into structural and functional configurations (Sporns, et al., 

2004); we consider the latter only, where all three participants in the motif must exhibit some type of 

connection to each other.  Since motifs may contain a mixture of inhibitory and excitatory synaptic 

currents, there potentially exists a degree of complexity to the basins of attraction that correspond to burst 

outcomes.    

 Typically, in any three cell motif we may have one of the following attracting outcomes when the 

neurons begin bursting and passing inhibitory or excitatory signals over the network.   

Table 2.2.  Categorization of burst rhythm patterns. 

Outcome Activity 

Case I 

In phase synchrony 

All neurons are in bursting in phase, and cannot inhibit each other from 

bursting.   The network period is the same as the burst period. 

 

Case II 

Single-winner dynamics 

One neuron bursts out of phase with respect to each other.  The network 

period remains constant, signifying that the bursts are synchronized.   The 

out of phase neuron will lock down the other two neurons until is burst is 

complete.  In this scenario the “winning” neuron is known as the pacemaker 

neuron.  With the introduction of external perturbations such as 

hyperpolarizing current, it is possible to force the pacemaker role to pass 

from one neuron to another (Shilnikov, et al., 2008). 

 

Case III 

Winnerless dynamics 

All neurons burst out of phase with respect to each other.  The network 

period is increased but remains constant. There are two possible cyclic burst 

order scenarios:  Blue-Green-Red and Blue-Red-Green, which correspond to 

counterclockwise and clockwise bursting patterns respectively.        

 

 

For the motif example in Figure 2.8 below, and thereafter through the course of the work, we denote the 

neurons by color: neuron 1 = “blue”, neuron 2 = “green”, and neuron 3 = “red”.  It is certainly possible 

that by applying external perturbations to the motif the outcome can be shifted from one particular 

outcome to another (Shilnikov, et al., 2008).  The question, and in fact the question posed by this work, is 

to understand which shifts applied to the network result in changes to the attracting states of the network 

and which states act as unstable repellers in the system.    
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 (a)    (b)    (c)  

 Figure 2.8.  Burst outcomes in a three cell motif. (a) global synchrony; (b) 

single winner dynamics; (c) winnerless dynamics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 

 

3.  MODEL CHARACTERISTICS AND METHODOLOGY 

The Leech Heart Interneuron 

 Our principal focus for this work is the Hodgkin-Huxley representation of the leech heart 

interneuron.  The interneurons are coupled in an inhibitory fashion in a leech to produce a pattern 

generator responsible for leech heartbeat activity (Cymbalyuk, et al., 2002).  The model is empirically 

derived in part by applying a series of voltage clamp experiments, a process where the membrane 

potential is kept constant while current is passed to the membrane and measured when the monitored 

potential equals the membrane potential (Cymbalyuk, et al. 2005).  The measurement of this relationship 

between instantaneous current and voltage yields curves for activation gating parameters.  The model is 

shown here in its pharmacologically reduced form, along with a table of fixed parameters in Table 3.1.    
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   Vi is the membrane potential,  

   INa is the sodium current, 

   IK is the potassium current, 

   Ileak is the leak current, 

   Ipol is the polarization current, 

   Isyn is the synaptic current, 

   gij is synaptic coupling strength between neurons i and j, 

   s(t) is a square-wave pulse function using H(t) for a specific time 

   interval [ton,toff], signaling whether Isyn is active or not. 

Γ is the sigmoid function used to drive inhibitory synaptic 

coupling between neurons. 

 

 We create a three cell inhibitory motif using this model; hence i corresponds to the i-th neuron in 

the motif.   The slow-fast system above contains two time scales, incorporating a fast K
+
 current and a 

slow persistent Na
+
 current.  The original model, in its comprehensive form, would entail a 14 

dimensional system of ODEs with 5 separate time scales; because of the complexity of the full system, we 

reduce the system pharmacologically, taking into account only the primary ionic currents and their 

associated gating variables. These currents are of particular importance to us and their (in)activation 

strongly influences the synchronization outcomes we are studying (Jalil, et al, 2009; Shilnikov, 2008); the 

other currents are assumed to either be instantaneous or absent from the model altogether.  Lastly, it is 

noted that we introduce an external applied current Ipol, a non-variable current produced by latent activity 

between neurons organized in the motif.  
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Table 3.1.   Parameter settings for the leech heart interneuron. 

Parameter/Value Description 

C = 0.5  

GK2 = 30 

EK = -0.07 

ENa = 0.045 

GNa = 160 

GI = 8 

EI = -0.046 

Ipol = 0.006 

σm = 0.0035 

σh = 0.0065 

τK2 = 0.9 

τNa = 0.0405 

Esyn = -0.0625 

Θsyn = -0.03 

n = 0.018 

h = 0.99  

Membrane capacitance, µF  

K
+
 maximal conductance, nS/µm2 

K
+
 reversal potential, V 

Na
+
 reversal potential, V 

Na
+
 maximal conductance, nS/µm2 

leak maximal conductance, nS/µm2 

leak reversal potential, V 

polarization current, mA  

fixed gating parameter  

fixed gating parameter 

K time constant 

Na time constant 

inhibitory reversal potential, V 

Synaptic threshold, V 

Gating parameter for activation of IK  

Gating parameter for inactivation of Ina  

    

Several other considerations should be noted about the system above: 

• For our purposes the excitatory coupling strengths g
exc

=0 for all neurons in the motif.   

• The motif is strictly driven by inhibitory signals, which are varied in strength.    

 • All neurons in the motif are configured identically based on the parameters in Table 3.1.  

 • In addition to phase shifts for each instance of the model, VK2
shift

 is adjusted to account 

for the strength of the burst in order to obtain specific bursting dynamics. VK2
shift

 is equal 

for all neurons in the motif.  

 

Stability Analysis of an Isolated Neuron 

 We provide a cursory discussion of the stability analysis of a standalone leech heart interneuron; 

it is necessary to examine behaviors that may shift stability in an individual neuron in order to understand 

how inhibitory current applied at a specific phase of a burst cycle will impact synchronization outcomes.   



28 

 

Bifurcations occurring in the reduced system have been reported on extensively (Shilnikov, et al., 2004, 

Cymbalyuk, et al. 2005).   

 Figure 3.1 shows a bifurcation diagram with VK2
shift

 as the bifurcation parameter, and varying 

levels of (constant) synaptic current introduced to the neuron.  The leech heart interneuron is a principal 

example of a square wave burster, a system which undergoes a saddle node bifurcation when 

transitioning from quiescence to bursting, and a homoclinic saddle node bifurcation when transition from 

bursting back to quiescence (Rinzel, 1987).  Figure 3.2 depicts this activity as the burst trajectory moves 

along the nullcline’s stable branch until the saddle node bifurcation is reached, at which point the 

trajectory moves onto the stable manifold surrounding the upper branch of the nullcline.  The trajectory 

gradually moves forward, but the stable manifold coincides with the unstable branch of the nullcline, thus 

giving rise to the homoclinic bifurcation, and the trajectory returns to the stable branch.  This loop is 

repeated as long as the value of VK2
shift

 permits bursting activity.    

 

 Figure 3.1.  Bifurcation diagram for the leech heart interneuron. The bifurcation 

boundaries partition the VK2
shift

-I plane into regions of bursting, tonic spiking, 

and quiescence, with a small intersected region where bistability is present 

(taken from Shilnikov, et al., 2008). 
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 VK2
shift

 allows us to adjust the slow nullcline m′=0, shaping the length of the burst; by slowing the 

K
+
 activation current the burst duration can be increased.  Below VK2

shift
 ≈ -0.024 only tonic spiking or 

quiescent states can exist, meaning that should the neuron go into tonic spiking, the burst trajectory will 

stay on the stable manifold and be unable to return to the stable branch of the fast nullcline (Shilnikov, et 

al. 2005).    

 

 

  Figure 3.2.  Burst diagram for the leech heart interneuron. The slow nullcline 

m′=0 intersection with the stable manifold is determined by the bifurcation 

parameter VK2
shift

.  The burst trajectory moves from quiescence (lower branch of 

the fast nullcline) via saddle node bifurcation onto the manifold Mlc, producing 

spiking activity until terminating via a homoclinic bifurcation as Mlc intersects 

the unstable branch of the fast nullcline (taken from Channell, et al., 2007). 

    

 It should be noted however, that there exists a small region reported to exhibit bistability; that is, 

both tonic spiking and bursting modes can be exhibited by the neuron (Cymbalyuk, et al., 2005).   This 

coexistence is created by observing two things: 1) bursting occurs between saddle node bifurcation of the 

equilibrium point and a homoclinic bifurcation of the limit cycle that corresponds to the actual burst; 2) 

tonic spiking occurs between saddle node bifurcation of the equilibrium point and an Andronov-Hopf 
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bifurcation that occurs along the depolarized branch of the nullcline.  The intersection of these two basins 

of attraction yields a reduced region where both modes may coexist.  Moreover, it is possible to introduce 

a transition between the two modes by causing a saddle node periodic orbit to appear within the stable 

limit cycles produced along the stable manifold;  this transition between tonic, non-transient spiking and 

burst modes is known as a blue sky catastrophe (Shilnikov, 2004).   

 In summary, we must confine our neurons to use specific values of VK2
shift

 in order to produce the 

desired bursting, but we may also adjust the VK2
shift

 values in order to bring us closer to a specific 

bifurcation or cusp where stability shifts are imminent and measure changes in synchronization outcomes.   

 

Inhibitory Ring Networks 

 The arrangement of leech heart interneurons in a motif is fairly straightforward.  We consider two 

types of inhibitory motifs: strongly coupled, where gij are relatively large, and synchronization is rapid; 

and weakly coupled, where gij <<1 and synchronization patterns may be observed over a large number of 

burst cycles or not at all.   Additionally, we also consider asymmetric as well as symmetric inhibition 

(Figure 3.3), the former set up so that values of gij are significantly stronger in one direction.  For the 

purposes of this study, for all asymmetric measurements are assumed to be in the clockwise direction.   

 Considering the networks in Figure 3.3, there exists two possible burst cycles.  For uncoupled 

neurons (gij=0 for all i,j), the duration of the neuron’s burst cycle, or period, is said to be isolated (denoted 

by Tiso), since no synaptic current is being injected or output from any neuron to its neighbors.   For non-

zero gij, we have what is considered to be the coupled burst cycle between neurons i and j, whose period 

is denoted by Tcoup. In general, because of the presence of synaptic current, the burst period is altered, and 

Tiso≠Tcoup (Figure 3.5).   It should also be noted that the inhibitory motif also has a relative network period 

(the duration which the entire burst pattern is completed by the network), generally with a minimum of 

Tcoup, but increases for single winner and winnerless burst outcomes. 



 

 

1

 Figure 3.3.  Asymmetric and symmetric inhibitory motifs.  For the asymmetric 

case biased synaptic coupling is oriented in the clockwise direction.

 

Figure 3.4.  Isolated and coupled network periods T

coupling between cells causes the burst duration to increase.  

 

Setup of Phase Shift Analysis 

 One of our principal investigations is centered on the impact of phase shifting on multistable 

states in our three cell inhibitory motif described p

applied towards evaluating the basins of attraction produced by three oscillators; 

to evaluate the parametric phases of coupled oscillators have been considered for networks of th

four cells (Ashwin, et al., 2008; Canavier, et al. 1999) and the approach used here is similar.  Consider the 

inhibitory rings in Figure 3.4.  In the inhibitory motif setup, the outcome of bursting rhythms is dependent 

2

3

1 2

3  

Asymmetric and symmetric inhibitory motifs.  For the asymmetric 

case biased synaptic coupling is oriented in the clockwise direction. 

 

Isolated and coupled network periods Tiso and Tcoup.  Synaptic 

coupling between cells causes the burst duration to increase.   

One of our principal investigations is centered on the impact of phase shifting on multistable 

states in our three cell inhibitory motif described previously.  Below we discuss some of the methodology 

applied towards evaluating the basins of attraction produced by three oscillators; previous 

to evaluate the parametric phases of coupled oscillators have been considered for networks of th

Canavier, et al. 1999) and the approach used here is similar.  Consider the 

inhibitory rings in Figure 3.4.  In the inhibitory motif setup, the outcome of bursting rhythms is dependent 
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Asymmetric and symmetric inhibitory motifs.  For the asymmetric 

One of our principal investigations is centered on the impact of phase shifting on multistable 

reviously.  Below we discuss some of the methodology 

previous processes used 

to evaluate the parametric phases of coupled oscillators have been considered for networks of three and 

Canavier, et al. 1999) and the approach used here is similar.  Consider the 

inhibitory rings in Figure 3.4.  In the inhibitory motif setup, the outcome of bursting rhythms is dependent 



 

on the burst duration as well as the relative phase shift between cells as described in §2.  With respect to a 

particular neuron in the motif, the other two neurons may be initiate bursting at different phase shifts 

and Ф2; a third phrase shift is not necessary since it would be 

shifts.    We begin by locking down

introduce a pair of phase shifts (Ф1, 

The shifts are normalized with respect to the isolated period T

in burst cycles), we allow the network to burst and make note of the final bursting pattern produced in the 

simulation, an example of which is shown i

  Figure 3.5.  Example bursting rhythm with applied phase shift

(Ф1, Ф2) = (0.6, 0.3), 

outcome is single winner dynamics with red and green neurons in synchrony, 

and the blue neuron out of phase.

 

 For our purposes, the excitatory coupling strengths 

in the scope of this study.  The motif is strictly driven by inhibitory signals, which are varied in strength, 

although all neurons in the motif are otherwise configured identically.  Additionally, phase shifts are 

normalized with respect to Tiso. The motivation for this is that

neuron is active, causing the coupled period to be the same as the isolated period.  

as the relative phase shift between cells as described in §2.  With respect to a 

particular neuron in the motif, the other two neurons may be initiate bursting at different phase shifts 

; a third phrase shift is not necessary since it would be directly computed from the fir

shifts.    We begin by locking down neuron 1; here no delay is ever introduced to this neuron, and we 

, Ф2) which reflect the duration of time that cells 2 and 3 are 

shifts are normalized with respect to the isolated period Tiso.  For a specific length of time (measured 

we allow the network to burst and make note of the final bursting pattern produced in the 

simulation, an example of which is shown in Figure 3.5.    

  

Example bursting rhythm with applied phase shift.  Initial shifts 

) = (0.6, 0.3), are normalized with respect to Tiso  In this scenario the 

outcome is single winner dynamics with red and green neurons in synchrony, 

and the blue neuron out of phase. 

excitatory coupling strengths g
exc

=0.  Excitatory coupling is not considered 

udy.  The motif is strictly driven by inhibitory signals, which are varied in strength, 

although all neurons in the motif are otherwise configured identically.  Additionally, phase shifts are 

. The motivation for this is that when non-zero shifts are applied, only one 

neuron is active, causing the coupled period to be the same as the isolated period.   
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as the relative phase shift between cells as described in §2.  With respect to a 

particular neuron in the motif, the other two neurons may be initiate bursting at different phase shifts Ф1 

directly computed from the first two phase 

no delay is ever introduced to this neuron, and we 

) which reflect the duration of time that cells 2 and 3 are “off.”  

.  For a specific length of time (measured 

we allow the network to burst and make note of the final bursting pattern produced in the 

 

=0.  Excitatory coupling is not considered 

udy.  The motif is strictly driven by inhibitory signals, which are varied in strength, 

although all neurons in the motif are otherwise configured identically.  Additionally, phase shifts are 

zero shifts are applied, only one 
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Modeling and Data Analysis Tools 

 Several primary tools are used for modeling, analysis and visualization of results.  They are 

covered briefly in terms of application. 

 Dynamic Solver 

 Developed by J.  Aguirregabiria, dynamic solver is a system modeling tool for general ODEs.  It 

is suitable for examining a single burster or an individual simulation of a small motif.  Often, this 

trajectory data is captured and imported into other applications such as MATLAB for visualization.  

PyDsTool 

 PyDsTool is an API of dynamical systems modeling utilities written by R. Clewley (2004).   

Developed in Python, scripts are written around the API in order to produce models of neuronal networks 

and other systems.  The libraries are particularly used for collecting data based on the firing of neuronal 

events, such as spiking and bursting.  Additionally, PyDsTool is used to compute an extremely accurate 

trajectory for an isolated neuron, which is applied as a set of initial points along a phase shifted orbit.  For 

regular trajectories that are processed during a simulation of network activity, Dopri and Radau solvers 

are used. 

  Using PyDsTool, several simulation tools and data parsers were created in order to analyze and 

plot data produced as motifs are phase shifted.  The output is written to data files as well as visualized 

using a suite of MATLAB libraries for Python.   

 With data collection mechanisms in place, we then set up a grid of values for (Φ1, Φ2) over which 

we perform phase shift simulations.  In all cases, we normalize the phase shift (Φ1, Φ2) to be in the unit 

square [0,1]x[0,1].  Combinations of phase shifts are taken from this interval and applied to the motif.  To 

do this we set step sizes for Φ1 and Φ2 over the unit interval: e.g., if ∆Φ=0.01, this produces 10000 data 

points.   We use ∆Φ=0.02 for the bulk of our simulations; a lower step size is used only in refining 
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particular sub-regions of the unit interval, and higher step sizes are used for testing and performing 

consistency checks, where data are merely verified to see if the outcome match the expected result, given 

our configuration.  We also note that for all simulations the burst threshold Θsyn = -0.04; as the voltage 

trajectory passes this value, threshold events are fired to signify an action potential is imminent.  In all 

cases, we record the relative phase, spike count, duty cycle, and relative network period with respect to 

Tcoup. 

 For the strongly coupled motifs, we observe basins of attraction for bursting patterns as the 

strength of the synaptic inhibition in the clockwise direction is gradually increased.  In the weakly 

coupled motifs, in addition to capturing the basins of attraction, we also parameterize Φ1 and Φ2 with 

respect to time and observe the traces as the two shifts evolve while the motif is active.  In this case, the 

number of settle cycles is increased in order to observe longer traces in Φ1x Φ2.  The resulting equilibria 

states correspond to bursting patterns, including repeller states whose burst configurations are not 

converged to by phase shifted motifs.   

 

 

 

 

 

 

 

 

 



35 

 

4.  RESULTS 

 We report our results as data are collected along two separate axes.  Along one axis we examine 

the shifts between symmetric and asymmetric inhibitory motifs, where the synaptic coupling strength is 

increased in one direction, and along a separate axis we examine the qualitative characteristics 

distinguishing the behavior of strongly and weakly coupled motifs.   Our ultimate aim is to interpret the 

bifurcations and shifting basins of attraction that result by applying these changes to the three cell motif.  

Table 4.1 below provides a brief description of the procedures carried out for each combination of 

symmetry and coupling type.   

Table 4.1.  Classification of results for inhibitory motifs. 

 Strong Coupling Weak Coupling 

Symmetric Coupling strength g is constant in 

both directions.   

 

Phase shift basins of attraction are 

computed. 

  

Coupling strength g is constant in 

both directions.  Values of g << 1.  

 

Phase shift basins of attraction and 

phase portraits are computed. 

 

VK2
shift

 is decreased.  Phase portraits 

are computed to observe bifurcations 

that may result.  

 

Asymmetric Coupling strength g is increased 

unidirectionally towards 1. 

 

Phase shift basins of attraction are 

computed. 

 

Coupling strength of g is increased 

unidirectionally.  Values of g << 1. 

 

Phase portraits are computed to 

observe bifurcations that may result. 

 

Strongly Coupled Motifs:  Symmetric Cases 

 For the fully symmetric case, we compute burst rhythm outcomes for discretized values of phase 

pairs (Ф1, Ф2) with Ф1, Ф2 in [0,1] .  Figure 4.1 depicts the results for the symmetric strongly coupled 

case, with gij = 0.1, for all i,j, VK2
shift

 = -0.02, and the number of settle cycles for the motif fixed at 10.   As 

shown, there are three distinct basins of attraction that correspond to different bursting patterns, 

depending on the initial phase shift conditions.  As the phases are varied with respect to Tiso, the resulting 
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burst rhythm shifts; one cell in the motif is always anti-phase with the other two, corresponding to single 

winner dynamics.   The annotated regions below indicate which of the neuron is out of phase; 1, 2, and 3 

correspond to blue, green, and red neurons respectively. 

 Each basin of attraction corresponds to following outcomes once the network has approached its 

asymptotic periodic cycle (which we will refer to as settling):  Blue region:  (Ф1, Ф2) = (0.5, 0.5).  Green 

region: (Ф1, Ф2) = (0.5, 0).  Red region: (Ф1, Ф2) = (0, 0.5).   To interpret this for the green region, for 

instance, we are saying that after the network has been active for a sufficient number of settle cycles, the 

blue neuron is out of phase from the green neuron by 0.5*Tiso, and that the blue neuron is in phase with 

the red neuron .  The other bursting outcomes can be read similarly.   In any case, for the strongly coupled 

scenarios, convergence to each outcome is rapid, typically after the first burst cycle completes.  

Convergence to one of these patterns occurs regardless of our choice of (Φ1,Φ2), excepting (Φ1,Φ2)=(0,0), 

when no phase shift exists between the neurons.  Figure 4.2 (a-c) depicts samples of some of the burst 

outcomes with respect to the three basins of attraction. 

 

 Figure 4.1.  Phase shift plot for the strongly coupled symmetric case (gij = 0.1; 

∆Ф=0.02).  The three regions correspond to basins of attractions for the blue, 

green, and red neurons.  The actual equilibria states, corresponding to the final 

burst pattern of the motif, are marked in black.  
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Strongly Coupled Motifs:  Asymmetric Cases 

 For strongly coupled asymmetric cases, inhibitory coupling strengths are fixed in the 

counterclockwise direction for g
-
 ={g21, g32, g13}, while the clockwise couplings g

+
={g12, g23, g31} are 

varied identically in increasing magnitude from 0.1 to 0.9.  The changes in the basin boundaries are 

minute and subtle as g
+
 increases towards 0.6.  The green region expands slightly and becomes more 

distorted but noticeably remains on the left side of the line Ф1= Ф2, while the red basin of attraction 

contracts slightly.  These burst regimes exhibit subtle distortions until g
+
 ≈ 0.66, where a sub-region 

suddenly appears in the green burst rhythm region, and continues to expand until it becomes tangent to 

the line Ф1= Ф2 (Figure 4.4e).  At g
+
 = 0.69, another region appears, and this process cascades at an 

increasing rate until g
+
=0.70048, when the bounded region above the diagonal appears to exhibit chaotic 

burst outcomes with respect to our choice of Ф1 or Ф2.   The transition from randomized burst outcomes 

 

(a)       (b)  

 Figure 4.2.  Burst patterns in the symmetric case (gij = 0.1). (a)  (Φ1,Φ2) = 

(0.2,0.25); (b) (Φ1,Φ2) = (0.4,0.9). 



 

(c)

  Figure 4.2, cont’d.  Burst patterns in the symmetric case (

= (0.8,0.3).   

 

to desynchronized burst rhythms is extremely rapid, and dissimilar to the previous cascade of expanding 

regions described previously.   In this case pockets of winnerless state

4.4h) until all of the outcomes in the region become winnerless as 

4.4i).   It should be noted that because of the sheer sensitivity of the value for 

cascading regions of single winner bursting outcomes and the singular region of winnerless states, the 

number of settle cycles is adjusted upwards of 25 to verify that the strength of the coupling is still 

persistent even near this type of transition and produces the same outcomes.  

 Beyond this value for g
+
, the

states begin to transition to winnerless ones. 

approach (0.333, 0.666) as the network settles.  An example of this outcome is illustrated in Figure 4.3.  

As g
+
 continues to increase, the original red, green, and blue basins of attraction become enveloped by a 

globally out of phase regime.  By g
+

shifts.   

 The sequence of diagrams in Figure 4.4 on the following pages illustrate the basins of attraction 

producing sub-regions that yield a different burst outcome; this cascading behav

 

Burst patterns in the symmetric case (gij = 0.1). (c) (Φ1,Φ2

is extremely rapid, and dissimilar to the previous cascade of expanding 

regions described previously.   In this case pockets of winnerless state outcomes begin to 

until all of the outcomes in the region become winnerless as g
+
 is increased very slightly (Figure 

It should be noted that because of the sheer sensitivity of the value for g
+
 as the transition between 

cascading regions of single winner bursting outcomes and the singular region of winnerless states, the 

number of settle cycles is adjusted upwards of 25 to verify that the strength of the coupling is still 

is type of transition and produces the same outcomes.   

, the new region begins to expand, as other previously single winner 

states begin to transition to winnerless ones.  In this region the initial phase shift conditions (

approach (0.333, 0.666) as the network settles.  An example of this outcome is illustrated in Figure 4.3.  

continues to increase, the original red, green, and blue basins of attraction become enveloped by a 

+
=0.78 the winnerless state outcome occurs everywhere for all phase 

The sequence of diagrams in Figure 4.4 on the following pages illustrate the basins of attraction 

regions that yield a different burst outcome; this cascading behavior increases rapidly as 

38 

2) 

is extremely rapid, and dissimilar to the previous cascade of expanding 

begin to appear (Figure 

is increased very slightly (Figure 

as the transition between 

cascading regions of single winner bursting outcomes and the singular region of winnerless states, the 

number of settle cycles is adjusted upwards of 25 to verify that the strength of the coupling is still 

as other previously single winner 

In this region the initial phase shift conditions (Ф1, Ф2) 

approach (0.333, 0.666) as the network settles.  An example of this outcome is illustrated in Figure 4.3.  

continues to increase, the original red, green, and blue basins of attraction become enveloped by a 

=0.78 the winnerless state outcome occurs everywhere for all phase 

The sequence of diagrams in Figure 4.4 on the following pages illustrate the basins of attraction 

ior increases rapidly as g
-
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approaches 0.7, at which point a new burst regime begins to appear.  The final diagrams depict the 

transition to a globally out of phase burst outcome, regardless of our choice for (Ф1, Ф2).   

 

 

 Figure 4.3.  Example of a winnerless state burst outcome, for g
-
=0.8; (Ф1,Ф2) = 

(0.8,0.5).  
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 Figure 4.4. (insets a-f) Phase shift diagrams for the asymmetric strongly 

coupled motif, as g
+
 is increased between 0.60 and 0.76. The symmetric basins 

of attraction relatively present in the strongly coupled case begin to show visible 

indicators of distortion at g
+
=0.6.  Cascading regions of shifting single winner 

bursting rhythms appear until the outcomes become chaotic as g
+
 approaches 

0.70. (a) g
+
=0.6; (b) g

+
=0.65; (c) g

+
=0.66; (d) g

+
=0.67; (e) g

+
=0.68; (f) g

+
=0.69.     
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 Figure 4.4, cont’d. (insets g-l) Around g
+
≈0.70 the cascading of single winner 

burst regimes gives way to chaotic outcomes, although the convergence to those 

outcomes remains consistently fast. Between g
+
=0.7004 and g

+
=0.7006 a region 

of winnerless states (insets h,i) rapidly coalesces, and grows until the outcome 

occurs everywhere for all Φ1, Φ2. (g) g
+
=0.70; (h) g

+
=0.700485; (i) g

+
=0.70054; 

(j) g
+
=0.71; (k) g

+
=0.76; (l) g

+
=0.78.     
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 We make an observation about the globally desynchronized (but still phase locked) case that 

results from having a sufficiently strong g
+
 driving the motif.   Prior to the transition around g

+
=0.7, a 

bursting rhythm can converge to one of the three stable phase equilibria (1.0,0.5), (0.5,0.5), and (0.5,1.0), 

while repelling away from the unstable equilibrium (0,0) (indicating no phase shift applied).  These three 

single winner states reside in their respective basins of attraction (colored in red, blue, and green, 

respectively).  Between g
+
=0.7 and g

+
=0.78 the single winner attracting states co-exist with the 

winnerless attracting state (0.333,0.666), and after g
+
=0.78 only the latter equilibrium remains (Figure 

4.5).  This winnerless state resides in the basin of attraction colored in gray, and corresponds to the burst 

order 1-2-3 (green-blue-red), which occurs everywhere in Ф1xФ2.    The only other possible winnerless 

outcome, corresponding to (0.666, 0.333) and its burst order 1-3-2, does not occur and is considered a 

repeller within the system. 

(c)

Φ2

Φ1

(a)

(d)

(b)

 

  Figure 4.5.  Transition between single winner stable equilibria to winnerless 

stable equilibrium states.  Shown are phase shift diagrams annotated with the 

locations of the burst equilibria as g
+
 is increased.  (a) g

+
=0.66; (b) g

+
=0.70; (c) 

g
+
=0.71; (l) g

+
=0.78.   The stable equilibria are shown in black.  
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Weakly Coupled Motifs:  Symmetric Cases 

 Whereas strong coupling allows us to efficiently compute the basins of attraction with respect to 

the phase shifts (Ф1, Ф2), the convergence to burst outcomes is extremely rapid, and we are not easily able 

to ascertain the shifts in trajectories as the shift differences Ф1, Ф2 evolve through time.   In the case of 

weakly coupled inhibition, burst rhythms take significantly longer to stabilize, but allow us to see the 

manner of convergence to the final burst pattern outcome.  It is also important to note that because of 

weak coupling between neurons in the motif, the distribution of possible burst outcomes will appear 

different from that of the strongly coupled motifs.    

 Plotting the basins of attraction over the shift ranges [0,1]x[0,1] as before, we find that there 

exists well defined regions of both single winner and winnerless bursting states (Figure 4.6).  

Additionally, we qualify that in this case due to the presence of weak coupling, some of the initial phase 

shift conditions identified as yielding a winnerless state may in fact correspond to one of the other basins 

of attraction or be completely aperiodic due to the fixed number of settle cycles allotted for the motif.  We 

also note that the basins of attraction for the weakly coupled case are markedly different in shape than 

those of the strongly coupled motifs.   

 

 Figure 4.6.  Phase shift diagram for the weakly coupled, symmetric motif (gij = 

0.005; ∆Φ=0.02). 
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 For the symmetric weak coupling case, we plot functions Φ1(t), Φ2(t), parameterized with respect 

to time t, indicating the relative phase difference between neuron pairs (blue, green) and (blue, red) 

respectively.   This plot yields a phase portrait of the shifts which suggest possible mechanics of how the 

bursting rhythm arrives at a particular basin of attraction.   In our initial setup, we fix gij = 0.0005 and 

raise the number of settle cycles to 25, allowing the motif significantly more time to settle.  The following 

parameterized phase plot (Figure 4.7) illustrates boundaries where choices of Φ1 and Φ2 lead to a specific 

bursting rhythm, which can be thought of as a stable fixed point in (Φ1, Φ2).   

Φ2

Φ1
 

Figure 4.7.  Phase portrait for the weakly coupled symmetric motif (gij = 0.005; 

settle cycles = 25). Saddle nodes are indicated in grey, unstable foci and nodes 

are indicated in black, and stable nodes are indicated in black.  

 

 As shown, there are clearly trajectories that both converge towards the center (0.468,0.468) and 

repel from the origin.   Additionally, there appear to be two other stable equilibria, corresponding to the 

fixed points (0,0.468) and (0.468,0).  A magnification of one of the regions shows trajectories moving 

away from an unstable focus (Figure 4.8).   Moreover, the trajectories move away along asymptotes, 

indicating the presence of three saddle equilibria surrounding the unstable focus.  Figure 4.9 illustrates an 
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example of this type of non-linear trace whose initial phase shift conditions exist near the unstable focus.  

Additional test simulations around those regions also provide data suggesting this.  Finally, 

superimposition of the phase shift plots as well as the parameterized phase plots illustrate that unstable 

and saddle activity occurs around the triangular shaped gray regions corresponding to out of phase (or 

possibly aperiodic) burst rhythms (Figure 4.10).    

 

  Figure 4.8.  Magnification of phase portrait region around the unstable focus (gij 

= 0.005; settle cycles = 25).  Inset corresponds to the dashed region in Figure 

4.6.  Saddle nodes are indicated in gray, unstable foci are indicated in black. 

 

 

  Figure 4.9.  Voltage trace with phase shift near the unstable focus; (Ф1, Ф2) = 

(0.78,031). 
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(a)   

(b)   

Figure 4.10.  Superimposition of the phase shift diagram and the phase portrait 

for symmetric weakly coupled case. (a) Complete planar view. (b) Magnified 

view near one of the unstable foci. 

 

 In order to more clearly illustrate the relative locations of each of the equilibria present in the 

symmetric weakly coupled motif (Figure 4.11), we show a simplified phase trace diagram indicating the 

directions taken by trajectories originating in the basins of attraction.   



 

  Figure 4.11.  Simplified rendering of the 

symmetric case. 

 

 Next, we consider that the phase shifts are of unit modulus and that the regions shown above are 

symmetric with respect to the line Φ

of as being on a torus (shown in Figure 4.12

points) occurs along the surface.  As before, the traces in red indicate phase shift trajectories that 

converge towards stable equilibria as well indicate regions were s

present, whereas the white region shown is a repelling basin along the torus.  

 The single winner and winnerless outcomes described previously correspond to a specific case for 

VK2
shift

 with g
+
 fixed in both directions.  

the bifurcation parameter in order to produce the dynamics associated with bursting activity, and that the 

outcome of an individual neuron’s burst is subject to a shift of bifurcations m

adjust this parameter from a relatively stable value of 

phase portraits (∆Φ= 0.05) for each case (Figure 4.13). 

 

Simplified rendering of the phase portrait for the weakly coupled 

we consider that the phase shifts are of unit modulus and that the regions shown above are 

Φ1= Φ2.  Because of this symmetry, the phase shift plot can be thought 

torus (shown in Figure 4.12), where convergence to bursting rhythms (i.e. stable fixed 

nts) occurs along the surface.  As before, the traces in red indicate phase shift trajectories that 

converge towards stable equilibria as well indicate regions were saddle nodes and unstable foci are 

present, whereas the white region shown is a repelling basin along the torus.   

The single winner and winnerless outcomes described previously correspond to a specific case for 

fixed in both directions.  Recall that for the leech heart interneuron model 

the bifurcation parameter in order to produce the dynamics associated with bursting activity, and that the 

outcome of an individual neuron’s burst is subject to a shift of bifurcations mapped in Figure 3.1.  We 

adjust this parameter from a relatively stable value of VK2
shift

 = -0.01875 to VK2
shift

 = -0.02150 and plot 

= 0.05) for each case (Figure 4.13).  
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eakly coupled 

we consider that the phase shifts are of unit modulus and that the regions shown above are 

.  Because of this symmetry, the phase shift plot can be thought 

), where convergence to bursting rhythms (i.e. stable fixed 

nts) occurs along the surface.  As before, the traces in red indicate phase shift trajectories that 

addle nodes and unstable foci are 

The single winner and winnerless outcomes described previously correspond to a specific case for 

Recall that for the leech heart interneuron model VK2
shift

 is used as 

the bifurcation parameter in order to produce the dynamics associated with bursting activity, and that the 

apped in Figure 3.1.  We 

0.02150 and plot 



 

 Figure 4.12.  The phase portrait

represented on a torus.

 

 While the scope of this study is inadequate to fully explain the mechanics that transpire as 

is lowered, it is clear that the transitions are dramatic and strongly influence the bursting patterns 

exhibited in the motif.   We note that for 

dissipate before VK2
shift

=-0.019, leaving

decreases, the scenario gets more complicated; new, distinct equilibria points appear along the axes, 

suggesting that two of the single winner scenarios (red and green) may have more than one

outcome for some values of VK2
shift

.  We also note that some separatrices become more strongly stable 

(shown Figure 4.13 via the transition from red to black as each trajectory is calculated), meaning that 

trajectories tend to converge rapidly t

corresponding stable equilibrium.  These distinct outcomes continue to persist

change in the Φ1- Φ2 plane.   We finally note that the appearance of a stable focus arou

as well as the sudden disappearance of saddle nodes that previously persisted in the region.  

 

 

The phase portrait for the weakly coupled symmetric case 

represented on a torus.  

While the scope of this study is inadequate to fully explain the mechanics that transpire as 

is lowered, it is clear that the transitions are dramatic and strongly influence the bursting patterns 

exhibited in the motif.   We note that for VK2
shift

 =-0.01875 there exists two invariant circles that appear to 

0.019, leaving only the unstable foci and the stable equilibria.   As 

decreases, the scenario gets more complicated; new, distinct equilibria points appear along the axes, 

suggesting that two of the single winner scenarios (red and green) may have more than one

.  We also note that some separatrices become more strongly stable 

(shown Figure 4.13 via the transition from red to black as each trajectory is calculated), meaning that 

trajectories tend to converge rapidly to a separatrix well before it approaches the neighborhood of the 

corresponding stable equilibrium.  These distinct outcomes continue to persist, even as other dynamics 

plane.   We finally note that the appearance of a stable focus around 

as well as the sudden disappearance of saddle nodes that previously persisted in the region.  
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While the scope of this study is inadequate to fully explain the mechanics that transpire as VK2
shift 

is lowered, it is clear that the transitions are dramatic and strongly influence the bursting patterns 

5 there exists two invariant circles that appear to 

only the unstable foci and the stable equilibria.   As VK2
shift

 

decreases, the scenario gets more complicated; new, distinct equilibria points appear along the axes, 

suggesting that two of the single winner scenarios (red and green) may have more than one numerical 

.  We also note that some separatrices become more strongly stable 

(shown Figure 4.13 via the transition from red to black as each trajectory is calculated), meaning that 

o a separatrix well before it approaches the neighborhood of the 

, even as other dynamics 

nd VK2
shift

=-0.0215 

as well as the sudden disappearance of saddle nodes that previously persisted in the region.    
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  Figure 4.13.  Phase portraits for the symmetric weakly coupled motif with 

g=0.0005, and varying VK2
shift

.  Note the appearance of two invariant circles 

(inset a) that disappear, as unstable foci and saddle nodes produce dynamics that 

give rise to multiple equilibria states (insets b-g).  As VK2
shift

 is lowered further, 

more dynamics begin to emerge, include a stable focus (inset h). (a)  VK2
shift

 = -

0.01875; (b)  VK2
shift

 = -0.01912; (c)  VK2
shift

 = -0.01950; (d)  VK2
shift

 = -0.01975; 

(e)  VK2
shift

 = -0.02000; (f)  VK2
shift

 = -0.02050; (g)  VK2
shift

 = -0.02100; (h)  VK2
shift

 

= -0.02150.  
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Weakly Coupled Motifs:  Asymmetric Cases 

 For the weakly coupled asymmetric we fix VK2
shift

 = -0.019 and adjust the clockwise synaptic 

coupling strengths g
+
, but only proportionate to g

-
 so that the motif remains essentially weakly coupled.  

Phase portraits are plotted similar to the traces generated in Figure 4.7 for the symmetric motif.  The 

results of this asymmetric adjustment are shown in Figure 4.14 as g
+
 is varied between 0.0009 and 

0.0020.     

 Prior to g
+
=0.0008 there appears to be no unusual behavior.  Beginning at this point, the top 

unstable focus begins to weaken with respect to the unstable focus on the lower right.  Recall that for the 

symmetric case both unstable foci are surrounded by three saddle nodes.  As g
+
 increases the lower focus 

begins to become a stable attractor as saddle separatrices begin to tend towards it (Figure 4.14b).  

Increasing g
+
 further we begin to see the saddle nodes themselves begin to merge with the newly stable 

focus and eventually vanish (Figure 4.14d).   The upper unstable focus because more strongly repelling, 

with trajectories in the region rapidly tending towards an equilibrium or the newly formed stable focus.  

From the perspective of bursting rhythms, the convergence of many trajectories to the stable focus around 

(0.666, 0.333) suggests a large basin of attraction for the 1-3-2 winnerless state, an outcome not observed 

at all in the strongly coupled case, where all desynchronized burst outcomes were of the order 1-2-3. 
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 Figure 4.14.  Phase portrait diagrams for the weakly coupled asymmetric cases.  

The increased asymmetry begins causes the unstable focus to become stable 

(insets a-b), and eventually cause its neighboring saddle nodes to converge and 

vanish (insets c-d).  The location of the stable focus indicates a 1-3-2 bursting 

outcome in the motif.  (a) g
+
=0.0009; (a) g

+
=0.0011; (a) g

+
=0.0015; (a) 

g
+
=0.002; 
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5.  DISCUSSION 

Summary 

  The oscillatory attractors of the network correspond to specific burst rhythms, which are thought 

to be associated with a particular type of locomotive activity of a CPG.  Each burst rhythm that can be 

produced by the motif functions as an oscillatory attractor of the system with respect to the phase shifts of 

each cell.  By varying the strength of the asymmetric coupling in the strongly coupled motif, we observe 

bursting regimes that ultimately cascade into desynchronized burst rhythms.   Because of the large 

coupling strengths involved, synchronization to any of the possible bursting patterns is quite rapid, even 

in the case of the “chaotic” regime when g
+
≈0.70, where the phase shifts are measured for different fixed 

numbers of settle cycles.  The appearance of the winnerless state region does not result from a specifically 

bounded region appearing and growing as g+ is increased.  Instead the region results from a gradual 

tendency of single winner outcomes in the upper diagonal region of the Φ1- Φ2 plane to slowly give way 

to winnerless states, regardless of the orginal bursting rhythm.  Once the cascading regions of burst states 

appear more rapidly, a large desynchronized burst region appears almost instantly afterwards.  We also 

note that the burst order in the winnerless state is constant (1-2-3) regardless of our subsequent choice of 

g
+
 or initial phase conditions in Φ1xΦ2.     

 To observe the attractors and repellers of the phase system, we utilize a weak coupling motif that 

produces a slower rate of synchronization between the burst patterns within the network.  Very specific 

dynamics arise when the phase portrait for the symmetrically coupled case gij = 0.0005 is computed.  

There exist three stable fixed points corresponding to the known burst rhythm outcomes where one cell is 

in anti-phase with respect to the others.  More notably, there exists a repeller at the origin, which suggests 

that unless the phase shift is identically (0,0), the burst pattern will always tend to one of the other 

regions, which correspond to either single winner dynamics or a winnerless state.  Also of notice is the 

appearance of unstable focus surrounded by three saddle nodes.  When we examine the asymmetric weak 
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cases, we observe transitioning dynamics where one of the unstable foci becomes stable, and all three of 

its neighboring saddles collapse onto it.  We also find that with the newly formed stable focus, the burst 

order outcomes for winnerless states appear to be different than those observed in the strongly coupled 

asymmetric case.  When we increase the length of the burst by lowering VK2
shift

, we see the emergence of 

different dynamics altogether, where multiple equilibria arise for each of the single winner states, and 

separatrices begin to shift considerably.  The comprehensive dynamics occurring here are not yet fully 

understood, but it does suggest that adjusting the length of the burst has a significant effect on the type of 

bursting patterns that can arise in the motif, just as the length of the burst for a single neuron influences its 

capacity to exhibit tonic spiking and bursting states.     

 

Further Directions 

 This effort yields some insight into the basins of attraction that are produced when different phase 

shifts are introduced to an inhibitory motif, but certainly behaviors observed in the study remain open to 

qualification.  For the strongly coupled cases, we intend to investigate the dynamics that give rise to the 

cascading burst rhythms.  Additionally, anti-phase (but not necessarily aperiodic) states should yield a 

series of attractors as well, although these have not been characterized in the work shown.  However, 

transitioning attractors of oscillating networks from different stability states have been observed in similar 

Hodgkin-Huxley based models (Rabinovich, 2007). 

  The basins of attraction for the weakly coupled case are significantly different from the strongly 

coupled case, and as a result the range of bursting outcomes appears to be very different as well.  One 

possible way to observe this change in dynamics would be to identify the coupling strengths gij where the 

system tends from a weakly coupled motif to a strongly coupled one.  Additionally the dynamics that 

arise when the burst length of each cell is adjusted via VK2
shift

 become seemingly complex and require 

further investigation to determine the underlying bifurcations that give rise to these transitions.  
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Numerical computation of the separatrices and eigenvalues associated with these shifting equilibria would 

aid in efforts aimed in this direction. 

  The measurements made with regard to phase shift are isochronic, i.e. Φ1 and Φ2 are discretized 

with respect to the isolated period.  Because of this, more phase shift values are evaluated during the 

“slow” portion of burst cycle (quiescence) than the “fast” portion (tonic spiking).   To rectify this, it has 

been proposed that the isolated periodic orbit be spliced into equal intervals in phase space as opposed to 

time, from which the phase shift time values would be interpolated. 

 Finally many of the constructions used thus far in our investigation into the multistable outcomes 

for the inhibitory motif can be extended mixed CPG motifs (where inhibitory and excitatory signals are 

passed) as well as motifs with a larger population would potentially yield understanding of the complex 

dynamics generated by those networks.   Our study here provides the construction of a methodology for 

observing the emergence of dynamics in both symmetric and asymmetric networks as well as seeks to 

establish a relationship between the burst outcomes and behaviors present in strongly coupled motifs, 

where outcomes are decided very rapidly, and the slower, more traceable dynamics that are found in 

weakly coupled systems.       
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