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Assessment of the Sustained Financial Impact of Risk Engineering Service on Insurance Claims

Costs

By

Bobby I. Parker

Abstract

This research paper creates a comprehensive statistical model, relating financial impact of risk
engineering activity, and insurance claims costs. Specifically, the model shows important statistical
relationships among six variables including: types of risk engineering activity, risk engineering
dollar cost, duration of risk engineering service, and type of customer by industry classification,
dollar premium amounts, and dollar claims costs.

We accomplish this by using a large data sample of approximately 15,000 customer-years of
insurance coverage, and risk engineering activity. Data sample is from an international
casualty/property insurance company and covers four years of operations, 2006-2009. The choice
of statistical model is the linear mixed model, as presented in SAS 9.2 software. This method
provides essential capabilities, including the flexibility to work with data having missing values, and

the ability to reveal time-dependent statistical associations.

INDEX WORDS: Linear Mixed Model, Risk Engineering Service, Claims Cost, Financial Impact
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1. Introduction
1.1 Background Information and Context

The primary author of this research has a 24 year career history, in commercial insurance risk
engineering, and the following comments, providing background information, result partly from
that experience .

In the casualty/property insurance Industry, the role of risk engineering is widely recognized
as critical in delivery of financial services by insurance underwriters. Typically this role
encompasses these tasks in the insurance production sequence, underwriters follow to provide
insurance policies:

e Surveying prospective businesses to assess future claims risk.

e Consulting with insured companies to reduce losses.

e Investigating claims to learn preventive measures (not to financially settle claims).

e Completing data analysis to determine long-term trends.

There are many specialists in risk engineering, such as boiler inspectors, fire inspectors,
ergonomists, industrial hygienists, transportation specialists. (National Safety Council, 1992). For
the reader interested in the roles played by risk engineering in the insurance industry, one might
begin with one of a number of professional organizations, such as ASSE, at www.asse.org, or a
second industry organization, the Board of Certified Safety Professionals, at www.bcsp.org.

The flow chart below illustrates two basic production processes in casualty/property work
cycles, and some of the most important roles filled by risk engineers. First of these is the insurance
policy cycle, in which risk engineering has a survey role. Second is the claims cycle, in which the
risk engineer acts as consultant to intervene and prevent loss (Head,9). This research investigates

the impact of these activities to the claims dollars paid.


http://www.bcsp.org/

Underwriter
requests survey of
current/future
insured company

Risk Engineering
provides pre-
renewal report to
Underwriter

Risk Engineering
fulfills request,
shared findings

Risk Engineering Underwriter

monitors claims provides insurance
patterns and policy, Risk Engineer

analyses losses. begins work.

Insured claim occurs
and is reported to
Claims Department

Claims Adjuster
settles the claim and
shares information
with Risk Engineering
and Underwriting

Risk Engineering
conducts follow-up on
recommendations
with insured.

Risk Engineering Risk Engineering
updates Underwriting analyzes claims
on changes in claims patterns and consults
patterns and level of with insured on
risk abatement.

Figure 1. Basic Work Flows for Risk Engineering Activity

It is an ongoing discussion in the industry to develop credible methods, to measure benefit of
risk engineering expense, in terms of reduced claims cost or frequency. Risk engineers fulfill
various critical roles in the casualty/property insurance industry and the challenge of assessing

financial impact resulting from these is the purpose of this research.




1.2 Purpose of Study

While there are general strategies of measurement, there is no single, easily-applied, widely-
accepted, measure to calculate financial benefit from risk engineering activity (National Safety
Council, 1992). One possible means of creating such a metric is a statistical model, powerful
enough to associate a wide variety of risk engineering data, with claims data of the customers
serviced by risk engineering. Such a model, using a wide-scope sample over many types of
companies, might provide the statistical insight, to draw conclusions on how risk engineering
impacts customers, financially.

Since risk engineering service might occur over months or years for a given company, financial

impact resulting from this expenditure may become evident gradually, only after years.
Accordingly, it makes sense to utilize a data model which measures the association over time,

between risk engineering activity and claims occurrence. A longitudinal model seems appropriate.

1.3 General Description of the Data Sample

Inputs in the model, the independent variables, are of four types.

e Basic Information on the insured company, including the type of business enterprise, and
location (state). The variables in this group are of several levels of Standard Industrial
Classifications, and give a basic identification of the type of business enterprise. This will
prove important throughout this research.

Note, obviously, for reasons of data security, all names of insured companies and other
identifiable information have been removed. Origin of these industry groupings is the U.S.

Government Bureau Of Labor Statistics, as noted in the following link: www.bls.gov/pub,

1987 version.


http://www.bls.gov/pub

(Variable: SIC_CAT)

SIC Groups -Identified by
two digit numbers 00-99.
Sub-divides basic industry
groupings. ( Variable:
SIC_Grp)

Standard Industrial Code -four digit
identification: 0000-9999) Subdivides
Groups into specific types of operations
(Variable: SIC)

Figure 2. SIC Organization
It should be noted this classification system has been updated to the newer NAICS version
on the National Bureau of Labor Statistics website; however, the SIC classification system is
still used in the insurance industry, as is the case with the insurance company providing
the data.

e Basic underwriting information, including names of insured companies for every year of
data, and the premium paid per year.

e Financial information pertinent to risk engineering activity, including budget expended per
customer and the basic types of activity: that provided before the insurance contract, or
during it. We also knew the time (in months) each customer was provided service. It is
common for underwriters to survey future clients, and have detailed on- site risk
engineering surveys completed. Outcomes and findings of these prospective surveys assist
to decide if coverage is to be provided and under what conditions. Prospected companies
may be required to make changes in operations, to minimize risk in order to acquire

coverage: these changes may affect future claims patterns for the better.



o The choice for output variable (the response variable) is total dollar claims costs paid to
settle claims per year for the insured company. There are many choices to use as the
response variable (count of claims, ratio of count of claims to dollar loss, etc), this choice is
intuitive and simple. Dollar loss per customer per year is valued as of 12/31/2009. For
those not familiar with casualty/property insurance claims, valuation of claims data is an
important detail, since claims dollars frequently change in value over a period of years.
Insurance insiders refer to this as “claims development” (Head, Essentials of Risk Financing,

1996).

1.4 Challenges

As a veteran of the industry, this author is unaware of any serious attempts to build such a

model. Understandably, there are a number of natural obstacles to prevent this, such as:

1. Typically, data fitting is an easier task if the observations, or data points, are independent.
In other words, they are unrelated statistically. While this would be plausible for two
distinct companies for one year, most of the companies in the sample data had multi-year
associations with the underwriters. Hence, repeated years of claims experience must be
considered related and dependent. This type of data is considered clustered or repeated (or
longitudinal), and requires some special techniques to account for data dependency (Diggle
et al, p 17). The statistical relationship, expressed over years, is time-dependent and may
change substantially, over time.

Because the data is time-dependent, complexities in analysis are introduced. Of prime
concern is the type of correlation (positive or negative) between the claims costs and the
independent variables, including risk engineering expense. With time-dependency, at some
times this correlation may be positive, and other times negative. A chief interest in this

paper is the capability of the model to assess these time-dependent relationships.



A second challenge to building such a model, is the presence of other more powerful forces
at work, which could mask or hide financial impact of risk engineering involvement.
Statistically, this involves the issue of scale: and differences of scale are manifested in
various forms. One of these results from the fact that some business activities are much
more hazardous, inherently, than others and are likely to generate more serious claims.
For example, working at heights in construction, obviously is much more likely to produce
serious falls than typical office work. (Professional Safety . February 2004 p 25, Injury
Ratios). These differences in claims costs may be orders of magnitude. While much effort is
expended to make hazardous work safer, these different levels of risks and resulting claims
trends are more or less permanent, and pervasive.

A third challenge of this project also pertains to differences of scale of financial influence.
Typically, risk engineering budgets are very small compared to overall claims costs and
insurance premiums, as depicted in the tables 3 and 4. Logically, one would expect less
influence on the financial dynamics, resulting from risk engineering budgets, compared to
larger economic forces present. As a result, the statistical relationships involving risk
engineering expenditures may be hidden, unless the statistical model is sufficiently
sensitive to filter through these larger forces, and reveal correlations between risk
engineering and claims costs, over time.

A fourth challenge of data-fitting and the subsequent model, results from the potentially
transitory nature of insured-underwriter relationship. Typically, in the U.S., insurance
contracts have 12 months duration, and companies are free to find the best contract in
insurance coverage, periodically. This can result in discontinuity of risk engineering service
from a single source, since the risk engineering service characteristically changes with the
insuring company. From a statistics perspective, this creates the issue of missing

observations for the Risk Engineering department, interested in assessing sustained



impact measurement. Those conducting statistical research must choose appropriate

methods that work, with data with some missing observations. Table 1 below shows the

sample data: uneven counts across the four years indicate drops in coverage, new clients

etc.

There are statistical methods to deal with this type of data. Importantly, the Mixed
Procedure of SAS 9.2 fits longitudinal data with observations missing at random, as is the case
with the data used in this research. Procedure Mixed in SAS 9.2 fits data to the Linear Mixed

Model.

1.5 Development Path of the Report

Development path of the report includes the sequence:

1. Description of the raw data and the variables chosen to be in the model.

2. Preparation of the data for use, by making necessary transformations to the variables.
3. Creation of the model, running the model and examining the output.

4. Evaluation of the fit of the model.

5. Interpretation of the results applied to the initial questions.

Raw Data and Variables

2.1 Basic Characteristics of the Data

Table 2 below shows overall dollar sums of the raw sample data. A large amount of customer
data was made available in 2010 to conduct this research. At our disposal were 138,955
records of data, each representing one year of the four year period for most types of customers
provided insurance contracts. Consistent grouping of data was by industry groups, in Tables 1
through 6. Initial filtering of the data was required to insure data consistency, as noted:

e Observations with locations not in the 50 USA states.



o All observations with negative earned premium or negative risk engineering cost. These
amounts are negligible and reflect some accounting practices which can result from
revisions, from audits.

o All observations for year 2010: these are projections of 2009 data (premium, etc).

o We filtered the data to only use companies from SIC’s in which there was a minimum level
of activity over the course of the four years. Thus, we excluded all SIC’s in which there were
less than five observations (five customer-years). Additionally, we chose only observations
for Standard Industrial Classifications which, stayed fairly constant through the four years.
The approach here was to minimize or control dramatic increases or decreases of customer
counts, resulting from the introduction of new types of industries, or dropping or phasing-
out coverage with certain industries. It is not uncommon for Insurers to withdraw from
specific markets or industry types for business-strategic reasons.

The above steps left 14,766 observations. Using this, a random sample was selected for 50% of
these rows to be used in the thesis: 7347 observations.. Validation of the model was completed with
the remaining 7422 observations.. We collected the initial random sample in the source file, an
Excel 2007 file. After this step, all further analysis was conducted in SAS 9.2

Premium Earned (Prem_Earn_Amt) appears below, grouped by calendar year and SIC Category.
Table 2 is for the entire sample and Table 3 shows that for the split sample. Table 5 and Table 6
show various Risk Engineering Costs. The data differentiates types of Risk Engineering Costs, with
Table 5 showing costs for surveys conducted at the request by underwriting, before insurance
coverage was contracted. Table 6 shows all costs during coverage time, the ratio of these two are

about 1:4. Note SIC Categories have been abbreviated for use in SAS.



Table 1.

Overview of Sample Data:

Entire Sample by Year and SIC Category

SIC Category hd

2006 2007 2008 2009 Grand Total

Agriculture 52 35 51 40 198

Chem-Pharm 33 36 42 48 159

Construction 1,671 1,804 1,746 1,597 6,818

Finance, Insurance and Real Estate 255 260 285 317 1,117

Food, Beverage 98 91 104 98 391

Forestry, Paper 7 ] 7 7 26

Healthcare 190 198 235 238 861

Hospitality 323 335 372 337 1,367

Manufacturing 175 188 191 189 743

Mining 8 8 7 5 28

MNaon-Profit, Public 121 120 122 118 481

Retail, Wholesale 290 317 344 332 1,283

Services 65 78 28 a0 321

Technology 97 100 121 122 440

Transportation 8 3 7 3 33

Truck, Transport, Maritime 125 120 130 121 500

Grand Total 3,522 3,724 3,852 3,668 14,766

Table 2. Premium for Entire Data Sample

SIC Category e 2006 2007 2008 2009 Grand Total
Agriculture 51,780,165 51,849,406 51,971,993 51,974,394 57,575,958
Chem-Pharm 518,603,961 519,159,370 520,527,517 518,832,738 577,123,586
Construction 5958,744,739 51,018,950,281  5902,085,933  3709,284,906 53,589,665,839
Finance, Insurance and Real Estate 5122,665,142 5118,905,312 5108,254,708  5112,3538,574  $462,183,736
Food, Beverage 549,783,516 549,000,119 551,103,841 545,999,415  5195,886,891
Farestry, Paper 51,193,319 51,203,190 5763,351 5499,118 53,658,978
Healthcare 5100,823,413  5100,595,878  5107.093,234 589,549,906  $398,062,431
Haspitality 5106,557,409 5111309010 5113,002,694 599,610,486  5430,479,599
Manufacturing 574,275,003 573,372,129 570,616,796 563,583,588  5281,847,516
Mining 54,479,880 53,831,860 52,683,312 51,400,211 512,395,263
Non-Profit, Public 535,259,583 537,986,577 539,481,250 531,552,217  5144,279,626
Retail, Wholesale 5114,576,159  5115,192,051  5117,389,642  5110,592,070  5457,749,922
Services 544 006,764 554,854,214 581,075,238 551,312,426 5211248643
Technology $44,038,674  $43,740,525  $47,096,102 549,016,544  $183,891,846
Transportation 55,322,273 53,624,847 57,897,394 517,740,364 534,584,877
Truck, Transport, Maritime 596,635,321 593,690,623  5102,967,187 598,547,904  $391,841,035

Grand Total

$1,778,745,321 $1,847,265,392 $1,754,010,194 $1,502,454,861 $6,882,475,768
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Table 3. Premium for Split Sample (Prem_Earn_Amt)

Row Labels 2006 2007 2008 2009 Grand Total
Agricult 5352,491 5261,703 5208,363 5358,875 51,181,433
Chem_Pha 88,429,477 59,432,412 59,988,659 39,018,752  $3@,869,300
Construc 5447,890,320 5481,982,703 5434,356,476 5345425529 51,709,655,028
Financia 859,946,851 558,769,304 $56,299,261 560,086,450  $235,101,866
Food_Bev 527,290,905 524,243,547 530,301,798 $29,389,331  5111,225,580
Forestry 5807,290 5934,036 5284457 5114239 52,140,022
Healthca 549,877,809 552,338,366 558,946,903 551,323,805 5212,486,884
Hospital 564,526,260 566,440,105 563,885,958 558,383,250  $253,235,573
Manufact 530,036,466 531,491,601 529,108,051 524,767,334  5115,403,453
Mining 52,419,711 52,136,152  §1,535,582 5488,206 86,599,651
MonProfi 516,247,142 517,885,843 520,724,436 518,625,983 573,483,410
Retail_w 565,699,882 559,802,295 562,235,645 558,374,565 524,112,387
Services 523,997,491 527,749,538 533,792,033 531,570,801 5117,109,862
Technolo 525,192,510 524,232,751 525,751,501 $26,452,698  5101,629,460
Transpor 51,684,155 51,276,958 £936,547 51,133,783 55,011,442
Truck_Tr 853,100,377 547,770,759 560,449,259 556,516,716 5217,837,111
Grand Total $877,479,135 $906,748,073 $888,824,028 $772,030,327 $3,445,082,463

Table 4. Claims Losses (Best_Est_Amt_Loss) Split Sample

Agricult
Chem_Pha
Construc
Financia
Food_Bev
Forestry
Healthca
Hospital
Manufact
Mining
NonProfi
Retail_w
Services
Technolo
Transpor
Truck_Tr
Grand Total

$104,092
83,142,617

$370,293
53,921,467

$129,007
85,694,161

5314,591,364 5369,471,527 5332,375,518

537,137,304
514,675,310
$317,441
$22,155,552
534,495,854
523,070,897
53,911,384
56,566,754
537,229,892
88,760,712
518,721,397
5455,789
529,343,769
$554,680,1290

531,622,648
518,090,778
8522,477
526,358,821
537,159,313
522,848,574
5678,725
59,686,364
837,555,332
516,205,202
%14,945,308
5671,109
532,261,701
$622,368,639

534,546,198
520,321,137
5264,554
538,169,424
543,206,316
520,769,736
$535,387
514,332,154
556,526,023
522,392,101
$17,028,451
53,171,437
553,196,387
$662,658,193

542,650
54,926,779
5242,033,168
530,909,839
S17,245,096
540,291
$28,888,226
531,950,083
514,818,991
5208,313
59,456,779
534,963,742
520,243,093
$14,291,081
$529,886
540,575,475
$491,124,491

SR46,042
517,685,024
$1,258,471,577
5134,215,950
570,333,322
51,144 763
$115,570,024
$146,811,567
581,508,199
55,334,009
540,042,050
$166,274,990
867,601,107
564,987,237
54,828,220
$155,377,331
$2,330,831,452




Table 5. Risk Engineering Cost: Prospect (Prospect): Pre-Coverage Surveys.
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Row Labels - 2006 2007 2008 2009 Grand Total
Agricult 56,931 56,931 56,931 56,087 526,882
Chem_Pha 529,957 531,476 531,913 536,008  $129,354
Construc 5143,418  $189,652 5280,820 5325,646 5945,536
Financia 5834,760 5769,990 5822,647  S831,637 53,259,033
Food_Bev 5337,275 5320,229 S$362,477 5357785 S1,377.767
Faorestry 58,598 510,726 85,473 56,810 531,607
Healthca 5947,002 $932,824 51,003,821 51,016,493 53,900,141
Hospital 5378,063 5372499  5398,216 5385833 51,534,617
Manufact 5227,700 5229,645 5225,554 5131,434  5814,333
Mining 511,083 511,083  $11,083 511,083 544,331
NanProfi 5252,633  5253,006 5417,6821 5422,873 51,346,133
Retail_w 5420,122  $435,933  $437,394  5470,123  S$1,763,622
Services 563,925 573,917  S76,773  5A9,323  5283,941
Technolo 5280,303  3260,310 5277407  5269,328  S1,087,348
Transpor 56,954 59,679 56,954 56,954 530,541
Truck_Tr 5325,350 5318,749 S257,530  5240,931 51,142,560
Grand Total $4,280,073 $4,226,701 $4,622,617 54,588,355 517,717,745

Table 6. Total Risk Engineering Cost (Tot_Cost)

Row Labels - 2006 2007 2008 2009 Grand Total
Agricult 517,575 510,438 527,034 521,578 576,624
Chem_Pha 5210,148  5199,809  $194,190 5167,356 5771503
Construc 5519,639 58,416,841 57,985,861 56,718,909 523,641,249
Financia 52,107,278 52,210,655 52,476,396 52,536,057 59,330,385
Food_Bevw 5892,368  5746,021  5935,126 51,028,487 53,652,002
Forestry 542,699 553,648 515,827 52,858  5115,031
Healthca 51,219,463 51,153,749 51,396,200 51,474,371 55,243,782
Hospital 51,018,130 51,133,249 51,135,748  5$962,692 54,249,819
Manufact 5699,822  5770,758  5623,491  $498,103 52,592,173
Mining 514,269 539,205 525,916 56,991 586,381
NonProfi 5211,755  5456,007  5460,250  5554,779 51,682,790
Retail_w 51,511,434 51,700,806 51,375,358 51,489,044 56,076,643
Services 5215,147 5281946  5443,688  5446,954 51,387,736
Technolo 5538,495  5660,610  5582,817  5536,837 52,318,759
Transpor 518,531 520,330 513,056 59,761 561,677
Truck_Tr 5662,710  5686,842  5783,988  5649,686 52,783,226

Grand Total $9,890,462 $18,540,914 518,524,943 $17,104,461 564,069,780
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2.2 Data Variables
Throughout this research paper, all variables (fields) of data will be of three basic types:
(1) Class Variables, such as SIC, Industry Classification, location (State) or subject (customer).
Here, the term “level” refers to subgroups of class variables.
(2) Continuous numeric variables, such as premium, claims dollar loss, etc. Many of these are
currency, those which are not will be apparent in the usage.
(3) The time variables used are calendar year and service year.

Detailed definitions of all variables used in the research are to be found in Appendix A.

2.3 Relationships of Variables
Visual exploration of continuous and ranked variables appears below. Visual data analysis we
accomplished, primarily by use of histograms, QQ-plots, and profile charts. For Figure 3, each of the
smaller panels are scatter plots comparing two variables, horizontally and vertically. Legend for the
names shown on the diagonal are:
Tot_cost---------------- Dollar cost for risk engineering activity. Each dot represents a customer year.
Prem_earn------------- Earned premium in U.S. dollars for every customer for every year.
Loss_best_est_amt---Claims dollars for each customer/year.
SVC_mon_ct------------ Service month Count for customers.
Long_mons------------ Total time of insured time (in months) for the given customer.
Essentially, we wished to identify patterns or basic shapes in the scatter. Patterns occur for:
1. Tot_cost and Prem_earn. This type of wedge shape suggests a data relationship which may be
useful.
2. Prem_earn and Loss_best_est_amt (yearly claim dollar loss). Note the pattern here is distinct

from the first mentioned.
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3. Tot_cost and Loss_best_est_amt. One should note the rough scatter shape is approximately the
same as the first.
With the scatter plot in Figure 3, our greatest interest is any patterns associating the dependent
variable (Loss_best_est_amt) and the potential regressor variables, also occurring in the Figure.
We see there are some rough patterns and shapes apparent, along the first column of the Figure,

and these suggest an underlying statistical relationship is present.

Scatter Plot Matrix
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Figure 3. Scatter Plot for Continuous/Ranked Variables

In Table 7, our interest is observation of any relationships between the claims cost, our
response variable, and any of the others. While the Pearson correlations are strong between the
time variables, as a group, the time variables do not correlate highly with claims cost.

The highest correlation coefficient exists between premium and claims cost. This is to be
expected: considerable expertise among actuaries and underwriters result in a strong relationship
between Claims Cost and Premium. Actuaries build statistical models to forecast claims loss, and

premiums are based, largely on these models. The Spearman correlation is a ranking correlation:
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higher results indicate that the two variables are ordered similarly (For two variables x and y,
higher x variable means higher y variable). No time variables rank relatively high with claims cost.

The high amount of correlation of premium and loss, apparent in the table, will assure that a
high level of regression will emerge in a basic linear model, assuring some success in creating this.
However, this strong relationship can also hide the relationships of greater interest to us:
relationships directly controlled by risk engineering.

It is appropriate at this point to note that modeling premium and claims costs are not subjects
of this research, and we accept these variables as necessary components of the statistical setting of
risk engineering. It would be possible to build a model without the premium variable, but premium
is very much in the context of risk engineering work, and to ignore it is not logical. In some cases
underwriting decides risk engineering budgets as a percentage of the annual premium .

We anticipate the effect or impact of risk engineering may be much less than other effects, given
previous discussions of scale, but assessing this is a chief interest. We also desire to incorporate all

possible variables of interest into our model, to increase its explanatory capability.

Table 7. Correlations for Scatter Plot Matrix

Pearson Correlation Coefficients, N = 7347
Prob > |r| under HO: Rho=0
Tot_Cost Prem_Earn_Amt Loss_Best Est Amt Sve_Mon_Ct Long Mons

Tot_Cost 1 0.33549 0.22066 0.26775 0.15537
=0001 = 0001 =0001 =0001

Prem_Earn_Amt 0.33549 1 072183 0.19621 0.28241
=0001 = 0001 =0001 =0001

Loss_Best_Est Amt 0.22066 0.72183 1 0.13952 0.20111
=0001 =,0001 =0001 =,0001

Svc_Mon_Ct 0.26773 0.19621 0.13952 1 0.32542
=0001 =,0001 = 0001 =0001

Long Mons 013537 0.28241 0.20111 0.32542 1

=0001 =0001 =0001 =0001
Spearman Correlation Coefficients, N = 7347
Prob = |r| under HO: Rho=0
Tot_Cost Prem_Earn_Amt Loss_Best_Est Amt Svec_Mon_Ct Long Mons

Tot_Cost 1 0.49979 0.41098 0.52667 015271
=.0001 <0001 <0001 <0001

Prem_Earn_Amt 0.49979 1 0.55498 0.39753 0.35857
<0001 =.0001 =.0001 <0001

Loss_Best_Est_ Amt 0.41098 0.85498 1 0.28649 0.29695
<0001 =.0001 <0001 <0001

Svc_Mon_Ct 0.52667 0.39753 0.28649 1 052738
<0001 =.0001 =.0001 <0001

Long Mons 0.15271 0.35857 0.29695 0.52738 1

<0001 =.0001 <0001 <0001
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The scatter patterns of financial variables in Figure 3 suggest a simple transformation (natural
logarithm). We apply this to the variables and the resulting scatter pattern is shown below in
Figure 4. We note that logarithm transform assists with the scaling issue mentioned. Finally, the
scatter matrix previously showed many points which appear to be outlier points, and the log
transform will help control outliers. Additionally, we introduce a fourth financial variable, the log
value of the prospect report cost. We applied the transformation f(x) = In (x +1) with the variables:

Ln_loss = In(Loss_best_est_amt +1)

Ln_Cost=In(Tot_cost +1)

Ln_Prem=In(Earn_prem)

Ln_Prospect = In(prospect +1).

Note, addition of one unit to each variable was necessary to make sure the logarithm was
defined for all observations. These transformations show a diffuse linear relationship among many
of the matchings of the variables of interest. We are chiefly interested in associations between the
dependent variable, Ln_loss, and the independent variables. Also, one of the time variables (Svc_yr
for service years) has been included (0-7) and some relationships are present here.

In Figure 4, while the log-transformed risk engineering finanical (In_cost) has an approximately
normal distribution for most of the observations, there are many customers which have $0 risk
engineering expenditure. This variable may be multi-modal (more than one center) in distribution.
While the pattern is diffuse, the roughly diagonal direction of the scatter matrices indicate a linear

relationship is present, or the variables can be transformed to reveal it.
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Scatter Plots for Loss-Prem-Cost-Prospect Svc_Yrc
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Figure 4. Scatter Matrix of Transformed Variables and Service Year with SAS Code

2.4 Exploration of Distribution of Variables

An examination of Histograms for the claims lost below, shows widely scattered distribution of
the points and suggests that the financial variables may have exponential distributions. The scale of
the axis shows the great extent of outlier points. Introducing a logarithm transform f(x) = log (x +1)
greatly reduces the spread of the data, compared to the mean. Comparing mean and standard
deviation of the raw data and the transformed data in Figure 5 shows the effectiveness of the log
transform to cluster the data and reduce the spread of the data. (SAS 9.2 User Guide, Univariate

Procedure).
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Inspection of the graphs also suggest a multi-modal distribution, with most of the data

clustered in a roughly normal distribution around a center of 12. There may be a second cluster

center of data, which accounts for the lower valued claims.

Histogram of Response = All Observations
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Figure 5.

Histogram Comparisons of Dependent Variable

At this point of data exploration, we conclude that the linear mixed model is a plausible model

for this research. We conclude this, since histograms indicate linear relationships are presentin the

data and the data is longitudinal in type. The linear mixed model is an appropriate choice of model

for data having these attributes (SAS 9.2 User Guide, 2008).

Later in this research we will explicitly define the specifics of the linear mixed modal and verify

that this choice is an appropriate model with additional tests.
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3 Exploratory Phase: Data Transformations

3.1 Box Cox Transform

Up to this point of the research, the only data transformations applied are the simple log
transformations, to cluster the data. Other methods of transformation of the data can enhanced our
ability to fit the data. One of these is the Box-Cox Transform (Montgomery P 171). Earlier we noted
the approximate normal distribution of the In_loss variable (the transformed claim cost). This can

be enhanced For a given variable y, this is defined as:

{f(y) = (y* = 1)/AforA # 0
f(y) = In(y) forA= 0

The SAS 9.2 Procedure “Transreg” finds the optimum choice of A= 2 by minimizing the residual
sum of squares between the response variable and candidate power curves. Applying this
transformation to the response variable In_loss (the claims cost) . and running the Univariate
Procedure to generate the Q-Q plots and the histogram for all of the sample data, we generate the
following results, shown in Figure 6, compared to the previous distribution. The new result better
approximates normal distribution, based on visual inspection, and is more symmetric. Note we

have introduced tln_loss_trans: the new Box-Cox transformed response variable.

12 il

Fercart
o
Percent

T T T T T T T T T T T T T T T T T T T T T
02 15 27 a9 &1 63 75 87 99 i °2  BS MI B9 5 25 45 65 B85 105 125 145 165 185 205 225 245 285 285

Figure 6. Log Transform and Box Cox Transform
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3.2 Data Exploratory Phase- Profile Analysis

The final phase of data-exploration is a detailed examination of profile graphs: these are line
graphs, with the horizontal axis being the years, and the vertical axis being the claims costs.
Examination of these graphs is essential for longitudinal data sets, since this type of graph is suited
to show movement of the data over time. (Diggle, p 33) However, the chief challenge of using this
type of visualization with a large data set (7337 observations from 2235 customers) is the clutter
and statistical noise, which obscure important patterns of data. Understanding of the patterns of
movement of the data across the four years will be essential to correctly specifying the model.

One obvious solution to the problem is clustering the observations using the Standard
Industrial Classification coding mentioned earlier. The following two graphs in Figure 7 show
profile plots for two levels of this classification. Note the graph in Figure 7 is longitudinal in scale.
There are 73 four-digit SIC Codes represented in the data in the first panel. We note the between-
class variance (the spread of the lines) appears to reduce as the years increase. Non-constant
variance cannot be handled by basic linear regression methods, but linear mixed models can deal
with this data feature. Figure 7 shows the profile data at the SIC level and a higher level in the
second panel, at the SIC_Cat level.

The change of variance over the four years becomes clear when we examine the data at the
SIC_Cat level (the general industry level). The non-constant variance noted across the years is
partially a reflection of dollar claims development. Generally, a serious claim with large dollar
amounts, will mature and change in value, over some years, before it is settled and closed.
Additional complexity is introduced in the issue of claims development when IBNR ,“Incurred but
not Reported”, is considered. Serious claims and claims under litigation further complicate
forecasting. The reader can contrast the two profile charts in Figure 7 to see some of this effect.

(Head, p 305).
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The financials in this study are “Point in Time” financials. All claims data is dated 12/31/2009.

Therefore, serious claims occurring three years before, have had much more time to mature

financially. This effect is one of the justifications to utilize a longitudinal model, which clearly

illustrates the difference in variance between years. Additional evidence of change of correlation

and covariance will be discussed with the variance/covariance lag analysis, to follow in Part 4.

SICmeans

Plot of SIC Means Data

15.04

Vear

T
2009

SICmeans

Plot of SIC Category Means Data

15.0 4

R

T T T
2007 2008 2009

Year

SIC_Cat
Construe — — — Retail_w — - — Senices —— — Manufact
——-—- Truck_Tr —— - Technolo — - - — Food_Bev — — — Hospital
—————— Healthca — --— NonProfi Financia Mining
— — — Agricut  — - — Transpor —— — CGhem_Pha — —-—- Forestry

Figure 7.

Profile Plots for SIC Levels and SAS Code: Ln_loss by Year

Cumulative effect of data transformations used in this research, on the profile charts, appear

below in Figure 8. Shown are: the original data profile, log- transformed, Box-Cox transformed, as

well as standardized. With all of them, we see inconstant variance over the years, mentioned

before. The transformations appear to reduce difference of variance in data across the years: a

desirable effect. Additionally, they appear to be roughly parallel. This question of profile data

pattern will be revisited in the following section on covariance structure. Note that panels 2, 3, 4

(left to right) in Figure 8 do not show 95 observations from the Agricultural SIC_Cat. This was

sacrificed to provide additional resolution of the data for most of the SIC_Cats. Note also, the entire

SAS 9.2 code to generate these graphs is attached, as Appendix B.
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Figure 8. SIC Category Level Profile Charts and SAS Code

From Figure 8 we note that the Box-Cox Transform reduces the change of variance over the
years, which assists in fitting the data. Nevertheless, the Figures may suggest that the data is more
orderly than it is, in reality. The SIC Categories do not differentiate the data as cleanly as the
profile charts would suggest.. The output of the GLM Proc generated by the code (without

standardization) shows that Standard Deviation is relatively large , compared to the means of each
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SIC_Cat level for each year. Categories with Standard Deviation more than % of the Mean, have

questionable value in grouping the data.

Table 8. SIC Category Statistics

Level of N Loss_Trans

SIC_Cat Mean Std Dev
Agricult 94 14.8608 22.3671
Chem_Pha 85 63.5952 35.7667
Construc 3274 79.5982 22.9789
Financia 618 57.9816 30.3298
Food_Bev 183 67.0968 35.8816
Forestry 15 66.3212 16.4651
Healthca 422 62.7314 32.9126
Hospital 721 69.0493 24.3168
Manufact 347 66.2396 30.0852

Mining 12 80.4465 20.3243
NonProfi 259 59.7081 31.3577
Retail_ w 669 65.6005 29.5933
Services 164 73.8625 30.3737
Technolo 205 75.4836 27.9877
Transpor 10 77.1334 31.4603
Truck_Tr 266 72.2398 37.4372

4 Model Construction

4.1 Basic Concepts for Linear Mixed Model

The following section provides a non-technical introduction of data models, applicable to the
general linear mixed model. In that context, these comments serve to provide a high-level look at
the unifying concepts for statistical modeling, at least in terms of the linear mixed model. Some
basic examples appropriate to the flow of this research will be used. We will follow with the
technical formulations for the model in section 4.3.

Recall the goal of this research paper is to fit the sample data presented earlier, to a data model.

One might consider this process as using a template, or blueprints, to construct a building. Rather
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than a structure of steel and concrete, our end-product will consist of equations, tables and other
mathematical objects. While the end-purpose of the engineer, of building a high-rise building, is to
provide a suitable interior space for business offices, the end-product of the Statistician in building
a data model, is to identify the patterns and structure of the data, to describe these. The end
purpose of the statistical model is forecasting or prediction.

There are many statistical models than can be used in data fitting for this, but the linear mixed
model is a powerful type of model, since it accommodates different types of quantitative
relationships between variables or effects. The key term used here is “effect”: the concern is with
the type of effect and the strength or magnitude of the effect. Four types of effects are prominent in
the mixed model: “Within Effects”, “Between Effects”, “Fixed Effects”, “Random Effects”.

To illustrate these in the context of this paper, consider the operations of three companies over
three consecutive years: company A is a construction operation, company B is a manufacturing
operation, and the company C may be a transport company, as shown in Figure 9. The statistical
models at our disposal can identify and quantify all of these effects. The diagrams in Figure 9
illustrate at least 15 different effects, counted separately, and we are ignoring factorial (cross)
effects. Typically, averaging of these effects by type or group is normally completed.

In addition to “between” and “within” effects, Statistical tools in SAS can identify and measure
fixed effects and random effects. (Diggle, 2002). Fixed effects can be characterized as definite and
precise. The simple linear relationship of Y =2X + 5 models a fixed effect between the two

variables X and Y and it is a linear fixed effect.
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Compan Compan YACCLA Compan Y Year 3
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The longitudinal correlation for claims rate
of the same customer is depicted as the
“within effect”. Overall, this effect would be
independent of correlation or relationships
with similar companies. We would expect a
greater overall effect with this, compared
to dissimilar operations (other Industry
Groups).

|

Arrow Up : “between effect”. We would
expect some correlation of claims rates,
even though the operations are different:
the year is the same.
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Commonalities pertinent to general
economic conditions, or geographic
location might be considered “between-
class effect”. In our data, two chief
between-class effects are service year and
year. Initial analysis of the geographic
relationship did not indicate importance of
the location “State”, variable.
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Arrow up: here is a second “between
effect”, which differs from the earlier, given
a different year. As a fixed effect, this would
be combined for all years.
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Said otherwise, we are dealing with
different types of data dependency, and
correlation. Magnitude may vary greatly,
but the overall success of the model is
largely a result of our degree in identifying
and measuring these different effects.

Figure 9. Illustration: Between , Within Effects

On the other hand, random effects intrinsically involve the notions of random variables
distributions, mean, and variance, With the scatter plots shown in Figure 4, the characteristic
normal curve shape we see, is a random effect between claims dollar loss (transformed) and the
probability of specific magnitudes of loss. This random variable shows the claims costs which are

more probable, occur in the center of the curve.
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General Data Fitting Method

4. Test Entire
Model for fit:

stop process or
iterate to
improve

Several of the above cycles were needed to fit the final version of the data. Some comments
for each of the above steps are as:

1.

4,

The subject is the Acct_id (customer) and the Repeated effect is the year of coverage
2006 - 2009. Our Fixed effects include the Class variable ( SIC_CAT), ranked variables
(Svc_yrc for service year) and continuous variables (Ln_prem-transformed premium,
Ln_cost- transformed Risk Engineering Cost, and Ln_prospect, transformed prospect
costs). Year is our repeated effect variable and is used as a class variable.

We control random effects primarily by choosing a covariance structure, suggested by
the profile plots and other data exploration as detailed in section 4.4. The three most
promising types of covariance structure were found to be auto-regressive moving
average (“ARMA(1,1)"), CS (“Compound Symmetry”), and Ante-Dependence (“Ante(1)).
Later we show how we made the final choice.

Several SAS test outputs are used with each choice of variance structure for the random
effect, including the Null Likelihood, AIC and BIC tests. These are some tools to measure
our success.

AS we run the SAS code, we also desire the F test results for the fixed effects variables
to have low p values, and desire the AIC, BIC and Null Likelihood to reduce, or stay
level, as other changes are made. This process we run as many iterations we need, until
we cannot improve on the test results noted above.

Figure 10. Iterative Process of Data Fitting
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At this point we have identified essential patterns of the data and can begin to fit a model. Two

suppositions are reasonable at this point, but we verify them after building the model:
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1. We have sufficiently met the requirements of the linear mixed model, that the response
variable is associated linearly with the regressor variables.
2. We have identified important candidates for “Between”, “Within”, “Fixed”, “Random”, and
“Repeated effects” such as year, SIC_Cat, service year, and customer.
In selecting specifics of the model, we follow basically a four stage process (Diggle, 2002)
illustrated in Figure 10.
After arriving at a reasonable model, in terms of SAS output, many diagnostic tests are
available to check for outliers, influential observations and residual analysis (SAS User Guide,

2008). We provide this in a later section.

4.3 Data Model Definition

The linear mixed model builds on the general linear model characterized by the equation:

y=XB+e (1)

With y, as a vector of response variables; X, as a matrix composed of the regressor values; e,
the residual value vector containing the error terms; and 3, as the vector of coefficients, derived as
a solution. The assumptions are that y has normal distribution, and e also has multivariate normal
distribution with mathematical expectation, E(e) = 0 and variance, var(e) = o2I.

The linear mixed model relaxes some of the requirements of the general linear model.
(Henderson, 1984). This is done by introduction of an additional vector of multivariate normal
random variables, u, into the equation above. As is the case with the regressor matrix X, Z is
assumed to be a known set of variables which are given. “e” retains the same meaning as before.
The resulting expression is:

y =XB + Zu +e (2)

With the new quantities we also make these assumptions:

E(L) = () (3)
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var ()= (5 ) )

V =Var(y) = ZGZ’ +R (5)

The ultimate goal is to determine estimates of § and u specified in equation (2). However, this
problem is made complex and difficult, due to the fact that we may not know the actual G and R
matrices, and these must be estimated. This problem is not within the scope of this research, and
the reader can see relevant research (Henderson, 1984). Note however, that the general strategy
for solution is to solve the general least squares problem:

[y-(XB + Zw)]'(V)[y- (XB + Zu)] (6)

The mixed model equations result, and these are:

X F—lx AX”R—le ] [G]z [X:EjZ )
ZR'X Z'R'Z+G1tlla ZR™y
We use the method of Restricted Maximum Likelihood to minimize error in (6) and derive the
estimates for R: R and for G: G as shown in (7).
The solutions of the mixed model equations are:

B=(XV1X) XV ly (8)

GZ V1 (y-XP) €)

a
The version of the Mixed Model used in this research is a simplification of the standard model
provided above in (7), (8), and (9). (Jennrich and Schluchter, 1986). We write this model as :
Yj~MVN (Xif3,Vi). (10)
Effectively, equation (10) expresses the claims costs, Y, for customer i, as a multivariate
normal, random vector with expected value Xif3 and variance/covariance matrix Vi. This is the
multiple regression linear model with correlated errors within each subject (Customer). Effectively,
we are allowing the possibility that the claims costs for a given customer are correlated across the

years. We note that this problem can also be modeled otherwise, with the full equation specified in
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(2). However, our experimentation showed no advantage for this additional complexity, in terms of
fit. Rather than modeling between-class effects (such as that between SIC Categories) using the u
random vector, these effects are modeled by the X3 fixed component.

We add subscripts to provide additional information and express this simplified model
alternatively as:

Yn1 =Xn (14108 (k1) 1% Tn1 (11)

Note, n = total observations, and k = number of regressor variables. Since we are using
longitudinal data, it is helpful to think of the data as a set of repeated measures (years) with
customers: fori=1,2,3.. . m customers. The X symbol is the matrix composed of the regressors
(Ln_Prem, Ln_Cost, etc). 3 is the vector of coefficients for the fixed effects. The r vector in (11) is a
multivariate normal vector with expected value of 0 for each customer- year of data and is the error
term.

Therefore, the V matrix above can be considered as a block diagonal matrix, with each block
associated with a customer. For each customer in equation (8), the equation above becomes:

Yn;1 = Xn; (k+1)B (k1) 1+ Ty 1 (12)

The number of observations in each of the m blocks can be 1, 2, 3,or 4, depending on the
number of years in the history of the given customer. The Covariance/Variance matrix of the

residual vectorr, for eachi,i=1...m, is Vni,ni , which is a symmetric block diagonal matrix. With

this simplification, we also have:

E(r;) =0, azero- valued vector. (13)

4.4 Covariance Structure
After the exploratory analysis of the earlier sections, it is necessary to specify the
variance/covariance structure, the Vi matrix, which composes the diagonal blocks of the V matrix.

The overall V matrix can be represented as :
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V, 0 0 0
0oV, 0 of_

o 0o - of=Y (14)
0 0 0 ¥,

This will be a block symmetric matrix, each V; block will correspond to individual customers as
specified in equation (12). Essentially we need to choose a structure that will capture the pattern of
the data across the years. In addition to the previous exploratory analysis, variograms or
covariance/correlation lag analysis between the years can be helpful in determining the
distribution of variance across the years of the study (Diggle, 2002). There may be more than one
adequate choice of variance structure, but a serious error with model specification will produce

unsatisfactory end results.

Table 9. SAS Output: Identifying Covariance Structure

SAS Output Wariance/Covariance Lag Matrix Caorrelation Lag Matrix
Covariance Parameter Estimates
Year 2006 |Year 2007 |Year 2008|Year 2009 Year 2006]Year 2007]Year 2008 Year 2009
Cov Parm Subject Estimate 0.0723 0.0245 0.0197 00132 1.0000 0 4068 03392 0 2655
UN({1,1) Acct_Id 0.0723 0.0245 0.0503 00222 00131 0 4068 1.0000 0 4567 0 3165
UN(2,1) Acct_Id 0.0245 0.0197 0.0222 0.0469 0.0179 03392 0 4567 1.0000 04470
UN(2,2) Acct_Id 0.0503 0.0132 0.0131 0.0179 00342 0 2655 0 3165 0.4470 1.0000
UN({3,1) Acct Id 0.0197
UN(3,2) Acct Id 00222
UN(3,3) Acct Id 0.0469
UN{4,1) Acct Id 0.0132
UN{4,2) Acct Id 0.0131
UN({4,3) Acct Id 0.0179
UN{4.4) Acct Id 0.0342
Residual 01934

With this in mind, we run PROC Mixed, specifying no variance structure for the solution and
output the covariances between the years. This will output the covariances between the years and
variances of the years as shown in Table 9.

The SAS output (using the R and Rcorr options with the Repeated statement) provides the first

block in Table 9: these are correlations between the residuals of claims costs taking the years
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individually. The second block of the same table arranges these covariances in the specified order,
by the pairs of coordinates. Then, we calculate correlation:

pij= Cov(rir;)/(0ioy), (15)

These results are shown as the final blocks of numbers, of Table 9. Thus, as an example, the
correlation between year 2007 and year 2009 is .3165, as shown in the last block of numbers. From
this information, we conclude that the covariance and the correlation have a roughly linear
relationship, and that covariance and correlation are stronger when the years are adjacent in time.
This would suggest several types of covariance structure as plausible, particularly, those based on
various types of moving averages.

After some experimentation, using the method described for fitting in the text with Figure 10,
we derive the Ante(1) model, which is First Order Antedependence, (Kenward, 1987) and (Patel,
1991). Other candidate covariance structures including Compound Symmetry, Variance

Components, Auto Regressive, and others were tried; Ante(1) had best results in terms of fit.

Table 10. Covariance Structure Output

Covariance Parametar Estimates Estimated R Matrix for Acct_Id 10161
Cov Parm| Subject | Estimate | Standard | Z Value PrZ S E0UNSENE ol2 EDHENENE ot
E 1 32168] 11932] 529589 18.7004
[ralr 2 11932] 22423] 995198] 351429
Var(1) Acct_ld 32168| 110654 29.07|=0001 3 529560 095108 200.01] 70.6286
Var(2) | Acet_ld 924 23 7 4681 30.02]= 0001 4 18.7004] 351429] 706286 14103

Var(3) | Acct_Id 200.01 6.4503 31.01]=.0001
Var{4) | Acct_Id 141.03 47416 28.74|=.0001
Rho(1) | Acet_Id 0.4443| 0.02047 21.71]=.0001
Rho(2) | Acet_Id 0.4699| 0.01933 24.31]=.0001
Rho(3) | Acct_Id 0.4205] 0.02018 20.84|=.0001

The SAS 9.2 output for the covariance structure appears in Table 10. These are used to compute
the V; blocks for the V matrix. Note our ” V” is the same as the “R” in SAS output. First block in the
table 10 shows the R Matrix values, the V; .In the SAS Code we requested the V; block for Customer

ID 10161, and this is shown on the right in Table 10. For all customers with four years of data, this
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block will be identical. Ante(1) collapses to produce a smaller block for customers with less years
as discussed immediately.

It is important to note the definition of Ante(1): o;0; ]'[{;11. Pk » (16)

|pk| <1, the kth autocorrelation parameter and

o; is the ith variance parameter.

2
01 0102P1 0103P1P2
For three dimenions this would be realized as | o;0,p; o3 00,0307
2
0103P1P2 0203P2 03

4.5. Model Specification
Table 11 shows the original solution output of the SAS code provided in the Appendix. We note the
Null Likelihood Ratio Test is acceptable, however, some of the levels of the SIC_Cat, (the Industry
groups) do not meet needed level of significance, to remain in the model. Therefore, the model we
run again, grouping all those groups into a miscellaneous category. The result is approximately the
same AIC, AICC, BIC and Null Likelihood test and the all remaining groups meet the .05 level of
significance. Ln_Cost is improved in p value, but might be considered marginal in the second
version. Results of this second run can be found in Table 12.

Figure 11 and Figure 12 following, show diagnostics of the fit. An important assumption of the
linear mixed model is that the residuals are multivariate normal in distribution, the diagnostics
below basically confirm this assumption, although there is some deviation from the assumed
distribution. The first panel in Figure 11 shows graphs of the raw residuals. However, these do not
take into account that the residuals are in fact correlated, and we should not expect the normal
patterns on the graphs: completely normal distributions should produce a random band of points
grouped around the 0 horizontal line (Gregoire, 1995).

Residual Diagnostics generally are more complex with the Mixed Model, compared to the Linear

Model. SAS suggests modifying the raw residual produced using:



Var(Y) =V

Var(Y) =CC

~

re=C-1*r

V is our block diagonal covariance matrix introduced earlier. Since V is Positive Definite and
Symmetric, it can be factored as a Cholesky Decomposition (first factor is lower triangular, second
factor is upper triangular, lower triangular has positive diagonal elements) : r . is the result. It is

uncorrelated. Figure 12 shows the scatter plot with this formula applied and the pattern of scatter

more closely matches a random appearance.

(17)
(18)

(19)

Table 11. Primary Model Output: Initial Solution
Solution for Fixed Effects
Effect | 5IC_Cat |Estimate |Standard DF tValue | Pr=|t| Fit Statistics
Intercept -77.977] 17645 2505 -44.19(<.0001 -2 Res Log Likelihood [59047.7
Ln_Cost 0.101| 0.05349 4819 1.89| 0.0592 AIC (smaller is better) | 59061.7
Ln_Prem 12.4457| 01236 4819| 100.73|<.0001 AICC (smaller is better) | 59061.7
In_prosp -0.1555] 0.06802 4819 -2.29| 0.0223 BIC (smalleris better) | 59102.5
sve_yre 0.8307| 0.1376 4819 6.04[<.0001
SIC_Cat | Agricult | -7.6134| 22557 2505 -3.38| 0.0007 Null Model Likelihood Ratio Test
SIC_Cat |Chem Ph| -7.0726| 2.2386 2505 -3.16| 0.0016 DF Chi- Pr>
SIC_Cat |Construc| 3.520e| 11871 2505 2.97 0.003 6| 1311.25(<.0001
SIC_Cat | Financia| -6.9856| 13279 2505 -5.26|=.0001
SIC_Cat |Food_Be| -45109] 17379 2505 -2.6| 0.0095
SIC_Cat |Forestry | -0.3575| 4.7615 2505 -0.08] 0.9402
SIC_Cat |Healthca| -8.9453| 14191 2505 -6.3|<.0001
SIC_Cat |Hospital | -2.0471| 1.3081 2505 -1.56| 01177
SIC_Cat |Manufact| -1.88%2| 14751 2505 -1.28| 0.2004
SIC_Cat | Mining 01734 56504 2505 0.03| 0.9755
SIC_Cat |NonProfi| -3.0558 1.593 2505 -1.92| 0.0552
SIC_Cat |Retail_ w| -2.0223 1314 2505 -1.54| 01239
SIC_Cat | Services -0.164( 1.7892 2505 -0.09 0.927
SIC_Cat |Technolo| -0.6252| 16733 2505 -0.37| 0.7087
SIC_Cat |Transpor| -6.0058| 56162 2505 -1.07 0.285
SIC_Cat |Truck Tr al.

Figure 13 and Figure 14 compare the profile graphs of the predicted data and the actual data.

While the predictions mimic the general pattern of the raw data, some disparity is evident. We

noted earlier that the SIC_Cat field has limitations as a predictor. The amount of disparity is

acceptable.
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Table 12. Primary Model Output: Final Solution
Solution for Fixed Effects Fit Statistics
Effect | sic_catl | Estimate |Standard DF tValue | Pr=|t| Ly [P
oy Likelihood
Intercept -70.8885| 1.3817 2514]  -37.82[<.0001 AIC (smaller | 580972
Ln_Cost 0.103] 0.03343 4819 1,93 0.054 i=lheter]
X 2,46 22 =
Ln Prem 12.4645] 01229 4310 101.41]<0001 =
In_prospe -0.1483| 0.06767 4819 -2.19 0.0283 is better)
ct
sve_yre 0.8194] 01373 4819 5.97|=.0001 BIC (smaller | 301381
siccatl | Agri 5.8503] 1.0841 2514 205 0.0032 is better)
sic.catl | Chem 5.370]  1.0694 2514 273 0.0064
sic.catl | Cons 5.2018]  0.5295 2514 9.82|=.0001 L :
sic catl | Fina 52051  0.7991 2514 -6.63|<.0001 BullMbdelie hondatialesk
sic.catl | Food 2.8468]  1.3802 2514 206  0.0302
sic catl | Heal 7.2714]  0.9477 2514 -7.67|=.0001 DF Chi- Pr>
sic_catl misc 0. Square | ChiSq
5| 1308.34]=.0001

Residuals for TLoss_Trans
25
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Figure 11. Residual Diagnostics: Correlated Residuals
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Corrected Residuals: Accounting for Correlation
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Industry Group Profile Charts: Predicted by Model
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Figure 14. Industry Group Profile Charts: Sample Data

4.6 Influence Diagnostics

As is the case with previous residual diagnostics, influence diagnostics is more complex than
that with the standard linear model. (Gregoire, 1995). Estimates of the fixed effects and the random
effects are linked, removing points for influence diagnostics, require refitting all of the data left to
achieve a completely new solution, both fixed and random. SAS provides the option of estimating
revised 3 parameters without refitting the entire model, by asking for no iterations in the
calculations. This is not preferred to the iteration process, but is offered as an alternative when it is
not possible to do otherwise. There is no attempt to redefine the random effects. Cook’s D is

defined in the mixed model as

D(B)=(B - By V(B - Bu)/Rank(X) (20)
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The reader will note this is similar to the definition of Cook’s D, for the linear model
(Montgomery, 2006) . The “u” subscript indicates the new beta parameters, without the deleted
points in the model. Cook’s D should be interpreted as an F statistic, and if we use the rejection
region of .05, this results in Figure 15 below. We would conclude no points are unduly influential in
changing the 8 vector, the coefficients. Given n= 7343 observations and with five regressors, the

Cook’s D value required would be greater than 2.10 (Fos6120) and this is not the case.

Influence Statistics for Fixed Effects
0.08
0.06
=
_UJ
X 004+
=2
L]
0.02
o000 TRIFTR IR PP TR A Tl | P Y ||i IJ | | i -l J‘. -|I Jl.l. LL Jlxl..l " J.LIILI ul|.I|J
T T T
2000 4000 6000

Figure 15. Cook’sD

5: Conclusions

5.1 General Observations

If we compare the output in Table 12, with the original expectations for the model, the general
expectations are met. All of the variables of most interest including the risk engineering cost and
the industry group differentiator, proved useful in the model. Additionally, there were no surprises
in terms of the relative magnitude of them, with premium being by far the strongest effect.

There was no speculation on some available time variables, as noted in the first section, and the
strength of the relationship between service year and claim costs is somewhat surprising: more
service time is associated with higher amounts of claim costs. The impact resulting from prospect

service is very surprising and has not been noted in previous research. The service years of 0, 1,
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and 2 account for 4986 out of 7344 customer-years, or 68% of the total customer-years
(observations). As such, the graph in Figure 16 helps to understand why prospect service has the

financial impact it has.

Means of SIC Cat by Service Year = Actual Yalues

SIChears Acct Has Frosp Sve  BFEFEING
na BB Ve

Figure 16. Interpretation of Results

5.2 Interpretation of Model

While the Fixed Effects Solutions in Table 12 indicate financial impact in reducing claims cost
over time, for prospect activity, it is appropriate to apply the model to a real-world situation, to
better understand this financial impact. It is incorrect to apply the coefficients in column three of
the solution, as they are, due to the data transformations applied before fitting the data. Recall that

both a logarithm transformation and the Box Cox Transformation were completed.
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Ignoring random effects, we can calculate approximate results of the model with simulated
data, to better understand the action of the model. To do this, we need to reverse the
transformations applied to the original variables, and insert the solution coefficients from Table 12
in the model. Recall that A = 2 in the Box Cox Transform. The reader will note that the
transformations (as well as the interpretation of the model) are made more complicated by the
addition of the constant 1, initially when the log transform was used, as well as when the Box-Cox
Transform was applied. The equations below take this into account.

Equation (21) below is the general model with the fixed effects and (22) is the equation with
our values applied. Equation (23) regroups the terms for ease in calculation.

Y=Xp (21)
((Ln(Loss_Best_Est_Amt +1)+1)2-1)/2 =-79.89 + (Ln(Tot_Cost +1) *.103) + (22)
(Ln(Prem_Earn_Amt+1) *12.465) - (In(Prospect +1)*.1485) + (Svc_Yr *.8194)
+ (Sic_Cat1 *IN)
Loss_Best_Est_Amt = (exp(2*( -79.89 + (Ln(Tot_Cost +1) *.103) + (23)
(Ln(Prem_Earn_Amt+1) *12.465) - (In(Prospect +1)*.1485) + (Svc_Yr *.8194)
+ (Sic_Cat1*IN)) +1) ~.5)-1) -1

Note, in equations (22) and (23), the variable ” IN” = 1, whenever the specific SIC Category is
one of the differentiated SIC Categories {Agricult, Chem_Pha, Construc, Financia, Healthca, Food_Bev
}. Otherwise, IN =0 as indicated in the output Table 12. This is an indicator variable.

As areal-life example, the following chart uses the above equations to forecast financial impact.
In our situation, we are assuming that the customer is in the miscellaneous SIC_Cat group.
Additionally, we are assuming no risk engineering budget and no service years are recorded. Both
the premium amounts and risk engineering expenditure are plausible amounts. We are therefore

examining the effects of two different amounts of premium and several amounts of prospect

expenditure, as indicated.
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The third column of Table 13 contains output of the equations, immediately above. Of greatest
interest is the last column showing a positive return of investment for some rows. Note we are
using the expected loss as a baseline for calculations. The model predicts maximization of financial
impact in the region of $1000- $7500 expenditure for prospect activity, but this depends on the
premium amount. The fourth column is the ratio of expected loss, at the given level of premium

and prospect, with the first row. Loss percent reduction in column five restates column four as

percent.
Table 13. Simulated Cases of Financial Impact: Prospect Activity
Benefit of Early RE Intervention (Prospect Activity)
Prospect Amount Premium Amount: [Forecasted Loss Ratio of Expected |Loss Percent Return per 51.00
Expended: Hypothetical With Prospect (Col  |Loss with Prospect  |Reduction (1- Col D}|Investment
Hypothetical A} and Premium to Loss without
(Col B). Mo Random |Prospect (Col C/

Effect Assumed. *  |Reference Forecast)

50 $100,000 582,798 1.0000
51,000 $100,000 575,600 0.9131 8.69% 56.20
57,500 $100,000 573,610 0.5890 11.10% 50.23
55,000 5100,000 574,007 0.8938 10.62% 50.76
$10,000 $100,000 573,330 0.8856 11.44% -50.05
550,000 $100,000 571,731 0.8669 13.31% -50.78
575,000 $100,000 571,395 0.8623 13.77% -50.85

S0 $500,000 $131,653 1.0000
51,000 $500,000 5398,745 0.9238 7.62% 531.91
55,000 5500,000 5391,418 0.9068 9.32% 57.05
57,500 5500,000 5389,591 0.9026 9.74% 2161
510,000 $500,000 5388,300 0.89%6 10.04% $3.34
$50,000 $500,000 5381,151 0.8830 11.70% $0.01
575,000 5500,000 5379,369 0.8739 12.11% -50.30
5100,000 5500,000 5378,109 0.8760 12.40% -50.46

* 2 Bordered Cells in Col C: Reference Forecast (Forecasted
Loss without Prospect).

More complex simulations and resulting forecasts, using specific industry groups and non-zero
amount of Risk Engineering budget, could be calculated and would be instructive. This is suitable

future work on this model.
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Appendix A Data Variables

The following table provides data variable definitions in alphabetical order. The table

distinguishes raw data variables as source variables, from derived variables.

This Readme file provides data definitions for the data files used with the Thesis to build to
model. These are ordered alphabetically.

Variable Name

Variable Definition

Acct_Addr_St

This class variable denotes the US State for the head office for the given
customer. Since many customers have multiple locations in multiple states, it
was decided not to use this variable in the model. Additionally, insertion of
the variable into the preliminary mixed models showed that no states, as
levels of this class variable, met a .10 level of significance with t-tests for
inclusion.

Acct_has_Prosp_Svc

Abbreviation for "Account Has Prospect Service". This class variable (with
two levels), shows if any type of Risk Engineering activity occurred for the
customer prior to first year of insurance coverage. This is a preliminary survey
or survey report, from Risk Engineering, issued to Underwriting to assist in
the decision to provide insurance coverage.

Acct_ID Identification number for the customer. After filtering the data as
described in the research, there are about 15,000 observations. We split the
data into two sub files of the same size and randomly sampled the
observations by Acct_ID.

Assign_Ct This integer valued variable is the total number of assignments completed
for an observation (customer-year).

Bus_Unit This class variable is a derived alpha-numeric abbreviation representing
the underwriting unit responsible for insurance coverage and was not used in
the statistical model.

Ln_Cost: Natural logarithm of Tot_cost, shifted one unit: In(Tot_Cost +1). The shift
by one unit insures logarithm is defined for all observations.

Ln_Loss This continuous variable represents natural logarithm of
"Loss_Best_Est_ Amt" (shifted one unit).

Ln_Prem This is the natural logarithm of the (Premium Earned Amount + 1). Shift

was to insure positive value for this field.

Ln_prospect

Natural logarithm of Prospect amount, shifted one unit.

Long_mons

This integer variable shows the cumulative amount of time, in months, in
which the customer had insurance coverage.

Loss_Best_Est_ Amt

This continuous variable represents total dollars paid on behalf of a
customer for a given year to settle insurance claims. Since claims amounts
develop over time due to changes in reserves and other reasons, it is
necessary to indicate the point in time the claims were valued: this was
12/31/2009.

Loss_Ratio

This is ratio of Loss_Best Est Amtand Prem_Earn_Amt. It was not used
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in the model.

Pol_Year

The integer variable shows the policy year for the given customer. The
data sample has observations ranging from 1 to 7 years.

Prem_Earn_Amt

Abbreviation for Premium Earned Amount: this is the raw dollar value for
all premium on the records for the given customer for a given year of
observation.

Prospect

Dollar amount expended in Prospect Service and discussed earlier.

Rec_ID

Record identification, observation number for the data. Each row of data
represents a customer year based on calendar years 2006 through 2009. The
maximum number of observations a customer could have would be four.

Sbus_Unit

This class variable indicates the underwriting sub-unit responsible for
insurance coverage and was not used in the statistical model.

SIC

Abbreviation for Standard Industrial Classification. The variable is a four
digit identification and subsets the SIC Groups into 150 subsets.

SIC_Cat

Abbreviation for Standard Industrial Classification Category. This is a large
scale grouping of the customer into basic industry types. Industry types are
abbreviates accordingly: This is a classification variable with 16 levels as
indicated in the paper. The nature of the specific industries is indicated in the
abbreviated names. SAS truncates names of class variables

SIC_Grp

Abbreviation for SIC Group, this subsets the SIC Categories using two digit
identifications. There were 48 SIC Groups in the data file.

Svc_Mon_Ct

This integer variable shows the cumulative amount of time, in months, in
which the customer had Risk Engineering Service of any type.

Svc_Yr:

This is a time variable representing the year of service for the given
customer for the given observation. The data file has values with range of -3
to 8. A value of "-3" indicates that the observation is for the third year before
the customer was placed on service initially. A value of "na" indicates that the
customer never had service for any year. Note that the SAS program
transformed this variable and grouped all negative value observations along
with "na" asa " 0" value to become the "Svc_yrc" variable. Thus, all "0" value
svc_yrc observations correspond to years in which the customer had not Risk
Engineering Service.

Svc_Yrc

This variable is derived from Svc_Yr and is a simplification. All customer-
years in which the customer was not on service were transformed to O.

Loss_Trans

Box Cox Transformed version of Ln_loss, the log-transformed claims cost.
Value of lambda = 2.0

Tot_Cost:

Continuous positive numeric variable for dollars expended in Risk
Engineering activities for a given customer, for a given year for all
observations.

Year

This is the calendar year for the observation.
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AppendixB SAS Code

/*** Reference Figure 4 ***/

/Matching SAS Code for Panel Scatter Plots */

/* Following Code requires changing the infile line to locate data file*/
/* This code creates a group of histogram charts for log-transformed data */

data MD 2011;
infile 'C:\users\Bobby\desktop\DataSamplel.csv' delimiter =",";
input Rec_Id $ Acct Id $ SIC Cat $ SIC Grp $ SIC $ Bus Unit $ Sbus Unit $ Year
Long Mons Pol Year Svc Mon Ct Svc_Yr $ Prem Earn Amt Ln Prem Loss Best Est Amt Ln Loss
Loss Ratio Assign Ct Tot Cost Ln Cost Acct Has Prosp Svc $ Acct Addr St $ prospect
ln prospect;
- run;

/* Create SIC (Standard Industrial Classification Means for Loss_Scaled */

ods html; /*turn on html output*/
ods listing close; /*turn off list (regular) output window, optional*/
ods graphics on; /*turn on ods graphics*/

Data TransMD;

Set MD 2011;

/* Renaming service year for consistency */

/* Initial Coding has anticipatory service years */

if svc_yr = 'na' then svc_yrc = 0;
if svc_yr = '-3' then svc_yrc = 0;
if sve_yr = '-2' then svc_yrc = 0;
if sve_yr = '-1' then svc_yrc = 0;
if sve_yr = 'l' then svc_yrc = 1;
if sve_yr = '2' then svc_yrc = 2;
if sve_yr = '3' then svc_yrc = 3;
if sve_yr = '4' then svc_yrc = 4;
if sve_yr = '5' then svc_yrc = 5;
if sve_yr = '6' then svc_yrc = 6;
if sve_yr = '7' then svc_yrc = 7;
if svc_yr = '8' then svc_yrc = 8;
output;

run;

proc sgscatter data=Transmd;
title "Scatter Plots for Loss-Prem-Cost-Prospect Svc_Yrc";
matrix Ln Loss Ln Prem Ln Cost Ln Prospect Svc Yrc
/ diagonal=(histogram kernel) ;
run;

/* AKhkAkkkkAkhk kA kA kA kA kA h k% Code for Graphs Reference Figure 7 *kkkhkhkkkhkhkkkhkhkk kK */

goptions reset=global gunit=pct border cback=white
colors=(black)
ftitle=swissb ftext=swiss htitle=1 htext=2;

/* Input the data: change the infile line as needed */

data MD 2011;
infile 'C:\users\Bobby\desktop\datasamplel.csv' delimiter =",";

input Rec Id $ Acct Id $ SIC Cat $ SIC Grp $ SIC $ Bus Unit $ Sbus Unit $
Year Long Mons Pol Year Svc Mon Ct Svc Yr $ Prem Earn Amt Ln Prem
Loss Best Est Amt Ln Loss Loss Ratio Assign Ct Tot Cost Ln Cost
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Acct Has Prosp Svc $ Acct Addr St $ prospect 1ln prospect;
run;
/* Create SIC Category (Standard Industrial Classification Means for Loss
Scaled */

proc glm data=MD 2011;

class SIC SIC Cat Acct Id Year;

model Ln loss =Year (SIC Cat);

means Year (SIC Cat);

output out= REmeans2 p=SICmeans;

run;

Proc sort data= REmeans2;

by Year;

run;

/* Draw plots for SIC Category means by time */

title 'Plot of SIC Category Means Data';
titlel ''Plot of SIC Category Means Data';
symboll color=red
Repeat = 76
interpol=join
value=dot
height=1;
legendl label=none
position=(top left inside)
mode=share;
proc sgplot data=REmeans?2;
xaxis type=discrete;
series x=Year y= SICMeans/ group = SIC Cat;
run;
quit;

/**************Reference Figure 8 ***************************/

/* Bob Parker- Linear Mixed Model for Zurich RE Data 061511 */

/***********************************************************************/

/* Data Input */
ods graphics on;
ods html; /*turn on html output*/
ods listing close;
goptions reset=global gunit=pct border cback=white
colors=(red green blue orange) hsize=7.5 IN
ftitle=swissb ftext=swiss htitle=3 htext=2;
data MD 2011;
infile 'C:\users\Bobby\desktop\datasamplel.csv' delimiter =",";
input Rec Id $ Acct Id $ SIC Cat $ SIC Grp $ SIC $ Bus Unit $ Sbus Unit $
Year Long Mons Pol Year Svc Mon Ct Svc Yr $ Prem Earn Amt Ln Prem
Loss Best Est Amt Ln Loss Loss Ratio Assign Ct Tot Cost Ln Cost
Acct Has Prosp Svc $ Acct Addr St $ prospect 1ln prospect;
run;
/Ij***************************************************/
/* Creating additional variables needed later */
Data TransMD;
Set MD 2011;
Ln lossl = Ln Loss+l;
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/* Renaming service year for consistency */
/* Data has Anticipatory Service Years */

if svc_yr = 'na' then svc_yrc = 0;
if svc_yr = '-3' then svc_yrc = 0;
if svc_yr = '-2' then svc_yrc = 0;
if svc_yr = '-1' then svc_yrc = 0;
if svc_yr = 'l' then svc yrc = 1;
if svc_yr = '2' then svc _yrc = 2;
if svc_yr = '3' then svc _yrc = 3;
if svc_yr = '4' then svc _yrc = 4;
if svc_yr = '5' then svc yrc = 5;
if svc_yr = '6' then svc yrc = 6;
if svc_yr = '7' then svc yrc = 7;
if svc_yr = '8' then svc yrc = 8;

output;

run;

/* ******************************************************************/

/* Running Box Cox to normalize data and standardizing */
proc transreg data = Transmd;
model BoxCox (ln lossl)= identity(Ln Cost Ln Prem ln prospect SVC Yrc );
output out = Transmd?2;
run;
data all;
merge TransMD TransMD2;
output;
run;
/* R R R I dh Sb b d db b db Ib b S Sb b IR Sb b db db b db b b db db b b S Sb b JE db b b db Ib b e db I b JR Sb b S db I b db Sb b dh db Ib b db  Sb 4 */
/* creating SIC Category Mean Groups and Graphing */
proc glm data= all;
class Acct Id Year SIC Cat;
model 1n loss =Year (SIC Cat);
means Year (SIC Cat);
output out= SIC Means p=SICMeans;
run;
Proc sort data= SIC Means;
by vyear;
run;
/* Draw plots for group means by time */
title 'Means of SIC Cat by Year - Actual Values';
titlel 'Means of SIC Cat by Year - Actual Values';
symboll interpol=join
value=square
height=2;
symbol2 interpol=join
value=triangle
height=2;
symbol3 interpol=join
value=star
height=2;
symbol4 interpol=join
value="2"
height=2;
symbol5 interpol=join
value="Y"
height=2;
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symbol6 interpol=join
value="X"
height=2;
symbol7 interpol=join
value="Y"
height=2;
symbol8 interpol=join
value="2"
height=2;
symbol9 interpol=join
value="#"
height=2;
legendl Position = (Top Right Outside) Across = 1;
proc gplot data=SIC Means;
plot SICmeans * year = SIC cat / haxis= 2006 to 2009 by 1
vaxis= 0 to 12 by 1
legend=legendl autovref;
run;

/* Bob Parker RE Data 061711 Only SSCP Reference Table 9 */
ods graphics on;

ods html; /*turn on html output*/

ods listing close;

goptions reset=global gunit=pct border cback=white
colors=(red green blue orange) hsize=7.5 IN
ftitle=swissb ftext=swiss htitle=3 htext=2;

/* ********************Input data****************************** */

data MD_2011;
infile 'C:\users\Bobby\desktop\datasamplel.csv' delimiter =",";
input Rec_Id $ Acct_Id $ SIC_Cat $ SIC_Grp $ SIC $ Bus_Unit $ Sbus_Unit $ Year Long_Mons
Pol_Year Svc_Mon_Ct Svc_Yr $ Prem_Earn_Amt Ln_Prem Loss_Best_Est_Amt Ln_Loss
Loss_Ratio Assign_Ct
Tot_Cost Ln_Cost Acct_Has_Prosp_Svc $ Acct_Addr_St $ prospect In_prospect;
/* I;I:B;*****************Add Variables **************************/
Data TransMD;
Set MD_2011;
z=0;
Ln_loss1 = Ln_Loss+1;
/* Renaming service year for consistency */
/* Data has Service Years before Actual Service */
if svc_yr = 'na’ then svc_yrc = 0;
if svc_yr ='-3' then svc_yrc = 0;
if svc_yr ='-2' then svc_yrc = 0;
if svc_yr ='-1' then svc_yrc = 0;
if svc_yr ='1" then svc_yrc = 1;
if svc_yr = '2' then svc_yrc = 2;
if svc_yr ='3' then svc_yrc = 3;
if svc_yr = '4' then svc_yrc = 4;
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if svc_yr ='5" then svc_yrc = 5;

if svc_yr ='6' then svc_yrc = 6;

if svc_yr ='7" then svc_yrc = 7;

if svc_yr ='8' then svc_yrc = 8;

output;

run;

/* Running Box Cox to normalize data */

proc transreg data = Transmd;

model BoxCox(In_loss1)=identity(Ln_Cost Ln_Prem In_prospect SVC_Yrc );

output out = Transmd?2;

run;

data all;

merge TransMD TransMD2;

output;

run;

proc Mixed data=All Covtest plots = all;

class Acct_Id Year SIC_Cat Acct_Has_Prosp_Svg;

model Loss_Trans = Ln_cost Ln_Prem In_Prospect svc_yrc SIC_Cat/
Solution Covb outp = final_r;

repeated year /sscp type = un subject = Acct_ID r rcorr;

ods output covb = RE_SIC;

run;

/* Bob Parker- Linear Mixed Model for Zurich RE Data 061511 */
/* Final Model Code Reference Table 10 */

/****************************************************************************/

/* Data Input */

ods graphics on/antialiasmax = 7400;
ods html; /*turn on html output*/
ods listing close;

goptions reset=global gunit=pct border cback=white
colors=(red green blue orange) hsize=7.5 IN
ftitle=swissb ftext=swiss htitle=3 htext=2;

data ZRE_Data;
infile 'C:\users\Bobby\desktop\datasamplel.csv' firstobs=2 delimiter =",";
input Rec_Id $ Acct_Id $ SIC_Cat $ SIC_Grp $ SIC $ Bus_Unit $ Sbus_Unit $ Year Long_Mons
Pol_Year Svc_Mon_Ct Svc_Yr $ Prem_Earn_Amt Ln_Prem Loss_Best_Est_Amt Ln_Loss
Loss_Ratio Assign_Ct Tot_Cost Ln_Cost Acct_Has_Prosp_Svc $ Acct_Addr_St $ prospect
In_prospect;

run;

/****************************************************/

/* Creating additional variables needed later */

Data TransMD;

Set ZRE_Data;

Loss_Trans = Ln_Loss+1;
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/*************************** ***********************/

/* Renaming service year for consistency */
/* Data has Pre Service Years */
if svc_yr = 'na’ then svc_yrc = 0;
if sve_yr ='-3' then svc_yrc = 0;
if svc_yr ='-2" then svc_yrc = 0;
if svc_yr ='-1'" then svc_yrc = 0;
if svc_yr ='1" then svc_yrc = 1;
if svc_yr ='2' then svc_yrc = 2;
if svc_yr ='3' then svc_yrc = 3;
if svc_yr ='4' then svc_yrc = 4;
if svc_yr ='5" then svc_yrc = 5;
if svc_yr ='6' then svc_yrc = 6;
if svc_yr ='7' then svc_yrc = 7;
if svc_yr ='8' then svc_yrc = 8;

/*******************************************************************************/

/* Grouping Levels which do not meet .05 Level of Sig for final code */

if sic_cat = 'Mining' then sic_cat1 = 'misc’;

if sic_cat = 'Hospital' then sic_cat1 ="misc’;

if sic_cat = 'Forestry' then sic_cat1 ="misc’;

if sic_cat = 'Technolo’ then sic_cat1 = 'misc’;

if SIC_Cat = 'Agricult’ then SIC_Cat1 = "Agricult’;

if SIC_Cat = 'Chem_Pha' then SIC_cat1 = 'Chem_pha’;
if SIC_Cat = 'Construc' then SIC_Cat1 = 'Construc’;

if SIC_Cat = 'Financia' Then sic_cat1 = 'Financia’;

if SIC_Cat = 'Food_Bev' then sic_cat1 = 'Food_Bev';
if SIC_Cat = 'Healthca' then SIC_Cat1 = 'Healthca';

if SIC_Cat = '"Manufact' then sic_catl = 'misc’;

if SIC_Cat = 'NonProfi' then sic_cat1 = 'misc’;

if SIC_Cat = 'Retail_w' then Sic_cat1 = 'misc’;

if SIC_Cat = "Truck_Tr' then sic_cat1 = 'misc’;

if SIC_CAT = '"Transpor' then sic_catl = 'misc’;

if Sic_Cat = 'Services' then sic_catl = 'misc’;

output;

run;

/* *******************>|<>k>k>k>|<>|<>|<****************************************/
/* Running Box Cox to normalize data */

proc transreg data = Transmd;

model BoxCox(loss_trans)= identity(Ln_Cost Ln_Prem In_prospect SVC_Yrc );
output out = Transmd?2;

run;

data all;

merge TransMD TransMD2;

output;

run;
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/* koK ok okokskok kR Kok okok ok k K kok ok ok ok ok k kKKK ok k kK KKKk */

/* Creating Mixed Model and Output */

proc Mixed data=All Covtest plots = all;

class Acct_Id Year SIC_Cat1;

model tLoss_Trans = Ln_cost Ln_Prem In_Prospect svc_yrc SIC_Cat1/
Solution Covb outpm = final_r residual vciry influence;

repeated year /type = Ante(1) subject = Acct_ID r = 10161 rcorr;

ods output covb = RE_SIC;

run;

proc univariate data = final_r noprint;
histogram scaledresid;
run;

proc sgplot data = final_r;
scatter x = pred y = scaledresid;
run;
/* Skesk skok sk ke sk skok sk sk sk skeosk sk sk sk skesk ko sk sk sk skok skesk sk skesk skoke sk sk skoke sk sk skesk sk sk sk sk sk sk skok sk skesk skok sk skesk skesk sk sksk sk sk skoke sk */
/* Creating SIC Mean Groups Lines and Graphing */
proc glm data= Final_r;
class Acct_Id Year SIC_Cat Svc_Yrc;
model pred =Year(SIC_Cat);
means Year(SIC_Cat);
output out= SIC_Means p=SICMeans;
run;
Proc sort data= SIC_Means;
by year;
run;
/***********************************************************************/
/* Draw plots for group means by time */
title 'Means of SIC_Cat by Year - Actual Values';
titlel 'Means of SIC Cat by Year - Actual Values';
symbol1 interpol=join
value=square
height=2;
symbol?2 interpol=join
value=triangle
height=2;
symbol3 interpol=join
value=star
height=2;
symbol4 interpol=join
value="Z"
height=2;
symbol5 interpol=join
value="Y"
height=2;
symbolé interpol=join
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value="X"
height=2;
symbol7 interpol=join
value="Y"
height=2;
symbol8 interpol=join
value="Z"
height=2;
symbol9 interpol=join
value="#"
height=2;
legend1 Position = (Top Right Outside) Across = 1;
proc gplot data=SIC_Means;
plot SICmeans * year = SIC_cat / haxis= 2006 to 2009 by 1
vaxis= 10 to 100 by 10
legend=legend1
autovref;
run;
Quit;
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