
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Theses Department of Mathematics and Statistics

11-21-2008

Factorization of Quasiseparable Matrices
Paul D. Johnson

Follow this and additional works at: https://scholarworks.gsu.edu/math_theses

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Mathematics Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more
information, please contact scholarworks@gsu.edu.

Recommended Citation
Johnson, Paul D., "Factorization of Quasiseparable Matrices." Thesis, Georgia State University, 2008.
https://scholarworks.gsu.edu/math_theses/65

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71422583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

FACTORIZATION OF QUASISEPARABLE MATRICES

by

Paul D. Johnson

Under the Direction of Michael Stewart

ABSTRACT

This paper investigates some of the ideas and algorithms developed for exploiting the

structure of quasiseparable matrices. The case of purely scalar generators is considered

initially. The process by which a quasiseparable matrix is represented as the product of

matrices comprised of its generators is explained. This is done clearly in the scalar case, but

may be extended to block generators. The complete factoring approach is then considered.

This consists of two stages: inner-outer factorization followed by inner-coprime factorization.

Finally, the stability of the algorithm is investigated. The algorithm is used to factor various

quasiseparable matrices R created �rst using minimal generators, and subsequently using

non-minimal generators. The result is that stability of the algorithm is compromised when

non-minimal generators are present.

INDEX WORDS: Structured matrices, Quasiseparable matrices, QR factorization,

Fast algorithms.

FACTORIZATION OF QUASISEPARABLE MATRICES

by

PAUL D. JOHNSON

A Thesis Submitted in Partial Ful�llment of Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2008

Copyright by
Paul D. Johnson

2008

FACTORIZATION OF QUASISEPARABLE MATRICES

by

PAUL D. JOHNSON

Committee Chair: Michael Stewart

Committee: Frank Hall
George Davis

Electronic Version Approved:

O�ce of Graduate Studies
College of Arts and Sciences
Georgia State University
December 2008

Contents

1 Introduction and De�nitions 1

2 Factoring: The Scalar Case 7

2.1 Applying Givens Rotations . 7

2.2 Constructing a Hessenberg Matrix . 10

2.3 Converting from Hessenberg to Lower Quasiseparable Structure 13

2.4 Factoring . 15

3 Factoring: The General Case 21

3.1 Inner Coprime Factorization . 22

3.2 Inner-outer Factorization . 44

4 Findings 52

4.1 Generic case: minimal generators . 53

4.2 Non-minimal generators . 54

Bibliography 57

iv

Appendices 59

A Programs and Functions 59

B Generator Dimension Quick-Reference 62

v

List of Tables

4.1 Results with minimal generators, all elements in [0, 1) 53

4.2 Results with minimal generators, all elements in [−10, 10) 54

4.3 Results with nonminimal generators . 57

vi

Chapter 1

Introduction and De�nitions

This paper primarily investigates claims and algorithms presented in [2]. Although the

main point of this process is to gain e�ciency in multiplying, factoring, and solving systems

involving quasiseparable matrices, this paper is focused on stability of such processes. The

Octave programs developed herein are designed with functionality and stability in mind,

with relatively little thought given to e�ciency. As in the case of [2], it is assumed that the

generators of the quasiseparable matrix are known.

A quasiseparable matrix R is a structured matrix in the form



d1 g1h2 g1b2h3 g1b2b3h4 · · · g1b2 · · · bN−1hN

p2q1 d2 g2h3 g2b3h4 · · · g2b3 · · · bN−1hN

p3a2q1 p3q2 d3 g3h4 · · · g3b4 · · · bN−1hN

p4a3a2q1 p4a3q2 p4q3
.

...

...
...

...
. . . dN−1 gN−1hN

pNaN−1 · · · a2q1 pNaN−1 · · · a3q2 pNaN−1 · · · a4q3 · · · pNqN−1 dN


(1.1)

1

or, expressed in a more compact form,

Rij =


piai−1 · · · aj+1qj, 1 ≤ j < i ≤ N,

di, 1 ≤ i = j ≤ N,

gibi+1 · · · bj−1hj, 1 ≤ i < j ≤ N

. (1.2)

(Note that on the subdiagonal, j = i− 1, allowing for no ak, and similarly on the superdiag-

onal, j = i+1, allowing for no bk.) The generators, dk, pi, qj, ak, gi, hj, and bk may be scalar

or matrix quantities. Matrix generators are commonly referred to as block generators. For

block generators, the dimensions are de�ned in the following table. (This is taken directly

from [2].)

Generator Dimensions

dk mk × nk

pi mi × r′i−1

qj r′j × nj

ak r′k × r′k−1

gi mi × r′′i

hj r′′j−1 × nj

bk r′′k−1 × r′′k

1. Rank of Submatrices

Any submatrix entirely in the strict lower triangle, or equivalently, in the strict upper

triangle, is of rank equal to the largest size (max(r′k) in the lower triangle, and max(r′′k)

in the upper triangle) of any generator in that submatrix. The diagram below illustrates

2

submatrices of each type. As a side note, the rank of such submatrices is referred to

as the �Hankel rank� in [1].



d1 ∗ · · · ∗ ∗ ∗ ∗

d2 ∗ · · · ∗ ∗ ∗ ∗

d3

. . .

dN−3

∗ ∗ ∗ · · · ∗ dN−2

∗ ∗ ∗ · · · ∗ dN−1

∗ ∗ ∗ · · · ∗ dN



2. Upper and Lower Rank

The �upper rank� of a quasiseparable matrix R is the largest rank of any submatrix in

the strict upper triangle of R, i.e. upper rank = max(r′′k , k = 2, . . . , N − 1), and the

�lower rank� of R is the largest rank of any submatrix in the strict lower triangle of R,

i.e. lower rank = max(r′k, k = 2, . . . , N − 1).

3. The Scalar Case

In this paper, �the scalar case� refers to a quasiseparable matrix in which all gener-

ators pi, ak, qj, dk, gi, bk, hj are scalar, i.e. in which mk = nk = 1, k = 1, ..., N and

r′k = r′′k = 1, k = 1, ..., N − 1.

4. Subclasses

The class of quasiseparable matrices includes several other well-known matrices, such as

band matrices, diagonal plus semiseparable matrices, tridiagonal matrices, and unitary

Hessenberg matrices [2].

5. Bene�ts

3

The structure of a quasiseparable matrix may be exploited in order to reduce the

number of calculations required in performing certain operations. Speci�cally:

(a) Multiplying a quasiseparable matrix R by a vector x may be performed in O(N)

operations, as opposed to O(N2) operations for the multiplication of a non-

structured matrix M by a vector x. (The details are provided in [1] and re-

produced in the included programs quasifactor.m, lowermult.m, dmult.m, and

uppermult.m. The idea is to separate the quasiseparable matrix into three parts:

the strict lower triangle, the diagonal, and the strict upper triangle; multiply each

by the given vector; and then add the three products to �nd the product Rx.)

(b) Solving a system Rx = y may be accomplished with fewer computations (solution

is (O(N)) by �rst e�ciently factoring R into unitary factors to the greatest extent

possible. This is the main focus of this paper.

6. Non-Minimal Generators

The idea of minimal generators is that the information represented in the generators,

and more speci�cally in their product, cannot be represented by generators of smaller

size. To illustrate, as simply as possible, the idea of non-minimal generators, consider

the following example.

p =

[
1 0

]
, a =

2 0

0 3

 , q =

1

0


such that

paq =

[
1 0

]2 0

0 3


1

0

 =

[
2

]
,

which could easily have been represented by scalar generators. Using generators of

larger size represented more information than was available in the �nal product. (This

4

example was transcribed directly from notes provided by Dr. Michael Stewart in his

explanation of the concept of minimality in [5].)

The idea of near non-minimality describes generators that are numerically very close

to a non-minimal state (typically where one or a few elements have been very slightly

perturbed from a non-minimal state.)

This thesis is developed in the following steps. Chapter 2 initially considers a representa-

tion of the lower triangle of a quasiseparable matrix, which can be thought of as a portion of a

lower Hessenberg matrix of larger dimension. This representation, developed in Section 2.2,

demonstrates a simple way to multiply the generators of (1.2) to create the lower triangle of

(1.1). This is a particularly explicit way of seeing how the factoring/decomposition of the

quasiseparable matrix R may be performed. The initial development is intended to be as

transparent as possible, so it is performed with the idea that all generators are scalar. Before

things become too complicated, factoring the scalar case of R is considered in Section 2.4.

Many of the important ideas about the construction and factoring of a quasiseparable matrix

should be clear, allowing easier transition to the general (block) case of R.

The complete factoring approach is then considered in Chapter 3. This consists of two

steps. First is inner coprime factorization, in which R is decomposed into R = V T , where

V is a block lower triangular unitary matrix and T is a block upper triangular matrix, each

quasiseparable. Next is inner-outer factorization, in which T is decomposed into T = US,

where U is a block upper triangular unitary matrix and S is a block upper triangular matrix

with square invertible blocks on the main diagonal [2, p. 429]. Both steps rely heavily on

QR factorization applied to two block rows of R at a time. The unitary factor Q from each

step is separated into blocks that act as generators of one of the new quasiseparable factors:

V in the inner coprime factorization and U in the inner-outer factorization. This chapter is

simply an explicit description of the algorithm described in [2].

5

Chapter 4 considers the results of the algorithm as applied to various quasiseparable

matrices R created �rst using minimal generators, and subsequently using non-minimal and

nearly non-minimal generators. The result is that stability of the algorithm is compromised

when non-minimal or nearly non-minimal generators are present.

6

Chapter 2

Factoring: The Scalar Case

2.1 Applying Givens Rotations

Current ideas for exploiting the structure of quasiseparable matrices tend to use related

factoring approaches. The principles are based primarily on QR factorization applied con-

secutively to pairs of block rows of R in a way that produces unitary factors to the greatest

extent possible.

To begin, consider the scalar case: a quasiseparable matrix with lower order one and

upper order one; that is to say, one in which all generators are scalar. A powerful way to

factor this matrix is by applying plane rotations row by row, from the bottom to the top of the

matrix. Because each submatrix below the diagonal is of rank one, every element in one row

(rij, 1 ≤ j < i− 1), is a constant multiple of the row directly above it (ri−1,j, 1 ≤ j < i− 1).

This allows a single sweep of a plane rotation to zero out all elements [Ri,j], j < i − 1 in a

7

given row, i = N, . . . , 3. Thus, all entries below the subdiagonal may be eliminated by such

rotations. Whereas a true plane rotation is expressed as a unitary matrix of the form

fi −ēi

ei fi

 ,

this paper generalizes and modi�es such rotations to allow work in C2 and according to a

convention common in the context of unitary Hessenberg matrices which pre-multiplies the

plane rotation by the permutation matrix

0 1

1 0

 ,

which is equivalent to following the rotation by a re�ection about y = x in the Euclidean

plane, R2. These modi�ed plane rotations take the form

U∗
i = Ii−2 ⊕

ei fi

fi −ēi

⊕ IN−i,
√
|ei|2 + |fi|2 = 1, 1 < i ≤ N

where U∗
i acts on the (i − 1) and i rows of R, and U∗

i is unitary. (The selection of ei and

fi will be derived so as to zero out elements of R.) Note that fi and f̄i would be used in a

more general representation of a plane rotation. Here, it is arbitrarily decided to let fi = f̄i

(this goes back at least as far as [4]), resulting in a pure real value for fi.

The selection of ei and fi is based on the goal of zeroing out elements in the i row of R.

Because ei fi

fi −ēi


x

y

 =

m

0

 (2.1)

8

implies  f̄i

−ei

 ⊥

 x

y



(because

[
fi −ēi

]x

y

 = 0) and

 f̄i

−ei

 ⊥

ēi

f̄i


(by the orthogonality of the columns of the modi�ed rotation matrix), then

 ēi

f̄i

 = α

 x

y


which implies

ei =
x̄y

|y|
√
|x|2 + |y|2

and fi =
|y|√

|x|2 + |y|2
. (2.2)

The nature of the x and y used to determine e and f will be investigated following the

discussion of the product of modi�ed plane rotations, and de�ned precisely in Algorithm 1.

Assuming that ei and fi may be determined in U∗
i for i = N, N − 1, . . . , 4, 3, each modi�ed

rotation may be applied from the bottom (U∗
N) to the top (U∗

3) to zero out all elements in R

below the subdiagonal. The result of this iterative process is U∗
3 U∗

4 · · ·U∗
N−1U

∗
NR = H where

H is upper Hessenberg. Hence, R = QH, where Q = UNUN−1 · · ·U3 and is thus unitary. In

fact, the product of these modi�ed plane rotations is lower Hessenberg, so Q is unitary lower

Hessenberg.

Before investigating how to take a quasiseparable matrix apart, it is instructive to consider

one way to put one together. The process of factoring will resume in Section 2.3.

9

2.2 Constructing a Hessenberg Matrix

This section demonstrates a method for constucting a lower Hessenberg matrix of dimen-

sions (N + 1) × (N + 1) that can be modi�ed to create the lower part of a quasiseparable

matrix, as will be shown in Section 2.3. The quasiseparable structure created in Section 2.3

is part of the Hessenberg matrix created in this section. These two sections demonstrate a

way of understanding the explicit parameterization of R in (1.1) as a product of block 2× 2

matrices. This generalizes a well-known representation of unitary Hessenberg matrices.

Without regard to the (unitary) structure of the modi�ed plane rotations described above,

consider the product of matrices L = LN · · ·L2L1 where

Lk = Ik−1 ⊕

 pk dk

ak qk

⊕ IN−k, 1 ≤ k ≤ N. (2.3)

Multiplying from right to left, partition each factor such that its diagonal blocks are square,

i.e. such that the column partition is identical to the row partition. When multiplying Lk

by the previously computed product Lk−1 · · ·L1, partition each of the factors such that its

diagonal blocks are of size (k − 1)× (k − 1), 1× 1, and (N − k + 1)× (N − k + 1). So

Lk =



Ik−1 0 0 0

0 pk dk 0

0 ak qk 0

0 0 0 IN−k


.

10

Now it is easy to see that the e�ect of the latest factor (Lk) on the previous product

Lk−1 · · ·L1

=



p1 d1

p2a1 p2q1 d2 0

p3a2a1 p3a2q1 p3q2 d3

...
...

.

pk−2ak−3 · · · a1 pk−2ak−3 · · · a2q1 · · · pk−2qk−3 dk−2

pk−1ak−2 · · · a1 pk−1ak−2 · · · a2q1 · · · pk−1ak−2qk−2 pk−1qk−2 dk−1

ak−1 · · · a1 ak−1 · · · a2q1 · · · ak−1ak−2qk−3 ak−1qk−2 qk−1 0

0 · · · 0 IN−k+1


is the following:

1. Retain the �rst (k − 1) rows,

2. Create a new k row by multiplying pk by each element in the k row and appending dk

in the (k, k + 1) position.

3. Create a new (k+1) row by multiplying ak by each element in the k row and appending

qk in the (k + 1, k + 2) position.

4. Retain the last (N − k) rows.

11

So Lk · · ·L1 =



p1 d1

p2a1 p2q1 d2 0

p3a2a1 p3a2q1 p3q2 d3

...
...

.

pk−1ak−2 · · · a1 pk−1ak−2 · · · a2q1 · · · pk−1qk−2 dk−1

pkak−1 · · · a1 pkak−1 · · · a2q1 · · · pkak−1qk−2 pkqk−1 dk

ak · · · a1 ak · · · a2q1 · · · akak−1qk−2 akqk−1 qk 0

0 · · · 0 IN−k


for k = 2, ..., N . Hence

L = LN · · ·L1

=



p1 d1

p2a1 p2q1 d2

p3a2a1 p3a2q1 p3q2 d3

...
...

.

pNaN−1 · · · a1 pNaN−1 · · · a2q1 · · · pNaN−1qN−2 pNqN−1 dN

aN · · · a1 aN · · · a2q1 · · · aNaN−1qN−2 aNqN−1 qN


and is clearly lower Hessenberg. (If the generators, p, a, q, d are matrices, L is block lower

Hessenberg.)

12

2.3 Converting from Hessenberg to Lower Quasisepara-

ble Structure

To create the lower part of a quasiseparable matrix, it is only necessary to delete the �rst

column and last row of the lower Hessenberg matrix obtained in the last section, producing

an N × N matrix. This can be accomplished through the use of an L0 and LN+1 to create

a modi�ed L1 and LN . Simply let

L = LN+1LNLN−1 · · ·L2L1L0

= L̃NLN−1 · · ·L2L̃1 (2.4)

where L0 =

 0

IN

 and LN+1 =

[
IN 0

]
such that

L̃1 = L1L0 =


p1 d1 0

a1 q1 0

0 0 IN−1


 0

IN

 =

 d1

q1

⊕ IN−1

and

L̃N = LN+1LN =

[
IN 0

]
IN−1 0 0

0 pN dN

0 aN qN

 = IN−1 ⊕
[

pN dN

]
.

13

This shaves the �rst column and last row o� of the lower Hessenberg structure, leaving

behind precisely the quasiseparable structure of interest:

L = R =



d1

p2q1 d2

p3a2q1 p3q2 d3

...
.

pNaN−1 · · · a2q1 · · · pNaN−1qN−2 pNqN−1 dN


. (2.5)

In this instance, all upper generators are e�ectively zero.

One drawback to this technique is the lack of invertibility of L̃1 and L̃N if dk, pk, and

qk are scalar. However, in the case of block generators, there are cases in which L̃1 and L̃N

may be invertible. Particularly, they may each be unitary, by design, as will be shown in

Section 3.1. Their selection will be based on the Q (the unitary factor) from QR factorization

of speci�c generators of R.

It should be clear that the same technique may be used to construct the upper part of a

quasiseparable matrix. For this, let

W = W̃1W2 · · ·WN−1W̃N

14

where

W̃1 =

[
0 IN

]
h1 b1 0

d1 g1 0

0 0 IN−1

 =

[
d1 g1

]
⊕ IN−1

Wk = Ik−1 ⊕

 hk bk

dk gk

⊕ IN−k, 2 ≤ k ≤ N − 1, and

W̃N =


IN−1 0 0

0 hN bN

0 dN gN


 IN

0

 = IN−1 ⊕

 hN

dN

 .

2.4 Factoring

Returning to the idea of using modi�ed plane rotations to factor the quasiseparable

matrix R, whose lower triangle is de�ned in (1.1) and created equivalently as L by the

generators leading to (2.5), R may be factored into R = QH, where Q is unitary and H is

upper Hessenberg. Consider a submatrix taken from two rows in the strict lower triangle of

R:  ri−1,j

ri,j

 for 3 ≤ i ≤ N, 1 ≤ j ≤ i− 2.

 ri−1,j

ri,j

 =

 pi−1ai−2 · · · a2q1 pi−1ai−2 · · · a3q2 · · · pi−1ai−2qi−3 pi−1qi−2

piai−1ai−2 · · · a2q1 piai−1ai−2 · · · a3q2 · · · piai−1ai−2qi−3 piai−1qi−2


=

 pi−1

piai−1

[
ai−2 · · · a2q1 ai−2 · · · a3q2 · · · ai−2qi−3 qi−2

]
.

15

Now it is clear that the whole lower row in this submatrix may be zeroed out if a modi�ed

rotation that turns piai−1 into 0 is applied [3]. This can easily be accomplished through

careful selection of ei and fi discussed in Section 2.1.

Beginning with rows N − 1 and N , select eN and fN based on (2.1) and (2.2) by setting

x

y

 =

 pN−1

pNaN−1

 , (2.6)

so that eN fN

fN −ēN


 pN−1

pNaN−1

 =

mN−1

0

 .

Then

U∗
NR =

=


IN−2 0 0

0 eN fN

0 fN −ēN





d1

p2q1 d2 ∗

p3a2q1 p3q2 d3

...
.

pN−1aN−2 · · · a2q1 · · · pN−1qN−2 dN−1 ∗

pNaN−1aN−2 · · · a2q1 · · · pNaN−1qN−2 pNqN−1 dN



=



d1

p2q1 d2 ∗

p3a2q1 p3q2 d3

...
.

mN−1aN−2 · · · a2q1 · · · mN−1qN−2 ∗ ∗

0 · · · 0 0 fNdN−1 − ēNpNqN−1 ∗



16

where

mN−1 = eNpN−1 + fNpNaN−1 = z =
√
|pN−1|2 + |pNaN−1|2.

Note that in addition to zeroing out elements in the lower triangle, this modi�ed rotation

a�ects a diagonal element and introduces a nonzero element in the upper triangle. (The

nature of the new elements in the upper triangle is not extremely important here, but will

be investigated in detail in the general factoring case in Section 3.1.)

This process can be repeated iteratively. In the next step, select eN−1 and fN−1 by setting x

y

 =

 pN−2

mN−1aN−2

 .

17

Then

U∗
N−1(U

∗
NR) =

=



IN−3 0 0 0

0 eN−1 fN−1 0

0 fN−1 −ēN−1 0

0 0 0 I1


·



d1

p2q1 d2 ∗
...

. . .

pN−2aN−3 · · · a2q1 · · · pN−2qN−3 dN−2 ∗ ∗

mN−1aN−2aN−3 · · · a2q1 · · · mN−1aN−2qN−3 mN−1qN−2 ∗ ∗

0 · · · 0 0 ∗ ∗



=



d1

p2q1 d2 ∗
...

. . .

mN−2aN−3 · · · a2q1 · · · mN−2qN−3 ∗ ∗ ∗

0 · · · 0 ∗ ∗ ∗

0 · · · 0 0 ∗ ∗


where

mN−2 = eN−1pN−2 + fN−1mN−1aN−2.

This process may be continued iteratively. In each successive step, for i = N − 1, . . . , 3,

select ei and fi by setting  x

y

 =

 pi−1

miai−1

 (2.7)

with the details provided in the next algorithm.

18

Algorithm 1: Let R = [Rij]
N
i,j=1 =


piai−1 · · · aj+1qj, for 1 ≤ j < i ≤ N,

di, 1 ≤ i = j ≤ N,

gibi+1 · · · bj−1hj, 1 ≤ j < i ≤ N

with all scalar generators: pk, ak, qk, dk, gk, bk, hk ∈ C.

Then R admits factoring R = QH where Q is unitary lower Hessenberg and H is upper

Hessenberg as follows.

1. Let mN = pN .

2. Compute recursively for i = N, . . . , 3:

ei = p̄i−1miai−1

|miai−1|
√

|pi−1|2+|miai−1|2
,

fi = |miai−1|√
|x|2+|y|2

,

U∗
i = Ii−2 ⊕

 ei fi

fi −ēi

⊕ IN−i,

Ui = Ii−2 ⊕

 ēi f̄i

f̄i −ei

⊕ IN−i, and

mi−1 = eipi−1 + fimiai−1.

3. Then compute the products

Q = UNUN−1 · · ·U3 and H = U∗
3 · · ·U∗

N−1U
∗
NR.

Essentially, this approach allows the upper or lower triangle of a quasiseparable matrix

to be treated using the techniques developed for factoring a unitary Hessenberg matrix.

We now have de�ned recurrences for Q as a product of modi�ed rotations but have not

described the structure of H. The details of the e�ect of a sweep of modi�ed rotations

on the upper quasiseparable structure have been ignored thus far, but will be quanti�ed

19

precisely in Chapter 3. To broaden the bene�ts of this more detailed investigation, it is

worth expanding the de�nition of generators from purely scalar to block generators of rank

greater than one.

20

Chapter 3

Factoring: The General Case

In moving from the case of a quasiseparable matrix created from scalar generators to one

created from matrix generators, similar ideas may be applied, but with some modi�cation.

The goal is to describe the algorithm of [2] for the QR factorization of a general quasiseparable

matrix.

First, the quasiseparable matrix is factored into R = V T , where V is a block lower

triangular unitary matrix, and T is a block upper triangular matrix [2, p. 429]. This is

achieved through QR factorization, introducing zeros from the bottom to the top of R,

exploiting the quasiseparable structure in a way analogous to the application of modi�ed

plane rotations applied in the case of scalar generators. From the nomenclature of [1], this

stage is referred to as inner coprime factorization. One detail that is not immediately obvious

from this factorization is that the diagonal blocks of T are not necessarily square. This creates

problems for solving systems via back substitution, and is thus considered undesirable.

Hence, the matrix T is factored into T = US, where U is a block upper triangular unitary

matrix and S is a block upper triangular matrix with square invertible blocks on the main

diagonal [2, p. 429]. From [1], this stage is referred to as inner-outer factorization. The main

objective of this stage is the creation of new generators that are easily inverted. Speci�cally,

21

this factoring step causes the diagonal blocks of S to be square, gaining signi�cant advantages

over the non-square diagonal blocks of T .

The result of these two stages is the block QR factorization R = V US.

3.1 Inner Coprime Factorization

Similar to the application of a modi�ed rotation to two rows of a quasiseparable matrix

formed from scalar generators, such that each ei and fi is selected to create U∗
i by applying

(2.1) and (2.2) to the more general case of (2.7), QR factorization may be applied to

 pi−1

Xiai−1


in such a way as to zero out much, or all, of a block row in R. As in the scalar case, this is

performed from the bottom to the top of R.

The objective is to factor R = V T , where V is a block lower triangular unitary matrix,

and T is a block upper triangular matrix. This is analogous to the factoring in the scalar

case: R = QH. Here, V is the product of unitary matrices ṼNVN−1 · · ·V2Ṽ1, much like

Q = L = L̃NLN−1 · · ·L2L̃1 in the scalar case. Now there is an opportunity to make ṼN and

Ṽ1 unitary, unlike in the scalar case, where

[
pN dN

]
and

d1

q1


are not invertible, much less unitary, allowing V to be block lower triangular and unitary,

rather than lower Hessenberg and unitary.

22

This process will be performed from the bottom to the top of R. In the �rst step, let

ρN−1 = min(mN , r′N−1), νN = mN − ρN−1, and then perform QR factorization on pN , which

will be used to zero out parts of the last block row if pN is rank de�cient. Let

pN = QN

XN

0

 =

[
(pV)N (dV)N

]XN

0

 ,

where

QN and

XN

0


are the unitary and upper triangular factors, respectively, with dimensions:

(pV)N : mN × ρN−1

(dV)N : mN × νN

XN : ρN−1 × r′N−1.

Then let ṼN = IηN
⊕QN where

ηN =
N−1∑
k=1

mk.

23

Multiply Ṽ ∗
N by R to see its e�ect on the last block row of R:

Ṽ ∗
NR =


IηN

0

0 (pV)∗N

0 (dV)∗N


 R(1 : N − 1, :)

pNaN−1 · · · a2q1 · · · pNaN−1qN−2 pNqN−1 dN



=

 R(1 : N − 1, :)

Q∗
NpN

(
aN−1 · · · a2q1 · · · aN−1qN−2 qN−1)

)
Q∗

NdN



=


R(1 : N − 1, :)XN

0

(
aN−1 · · · a2q1 · · · aN−1qN−2 qN−1

)
dN



=


R(1 : N − 1, :)

XN

(
aN−1 · · · a2q1 · · · aN−1qN−2 qN−1

)
(pV)∗NdN

0 · · · 0 (dV)∗NdN

 . (3.1)

For convenience, we de�ne

h′
N = (pV)∗NdN and

(dT)N = (dV)∗NdN ,

so that (3.1) may be written more simply:

Ṽ ∗
NR =


R(1 : N − 1, :)

XN

(
aN−1 · · · a2q1 · · · aN−1qN−2 qN−1

)
h′

N

0 · · · 0 (dT)N

 . (3.2)

24

For the next step, observe that

R(N − 1 : N, 1 : N − 2) =


pN−1

XNaN−1

0


[
aN−1 · · · a2q1 · · · aN−1qN−2

]
,

so QR factorization applied to  pN−1

XNaN−1


produces factors  pN−1

XNaN−1

 = QN−1

XN−1

0


in a way analogous to the application of a modi�ed rotation de�ned in (2.1) and applied to

the speci�c case of (2.7).

As with QN , QN−1 may be separated into blocks that will ultimately be used as generators

to characterize the quasiseparable structure of the upper triangular factor T . Here,

QN−1 =

(pV)N−1 (dV)N−1

(aV)N−1 (qV)N−1


with dimensions:

(pV)N−1 : mN−1 × ρN−2

(dV)N−1 : mN−1 × νN−1

(aV)N−1 : ρN−1 × ρN−2

(qV)N−1 : ρN−1 × νN−1,

where ρN−2 = min(mN−1 + ρN−1, r
′
N−2) and νN−1 = mN−1 + ρN−1 − ρN−2.

25

Let VN−1 = IηN−1
⊕QN−1 ⊕ IφN−1

, where

ηN−1 =
N−2∑
k=1

mk and φN−1 =
N∑

k=N

mk = mN .

26

Then multiply V ∗
N−1 by the previous product to see its e�ects on the (N − 1) and N block

rows of R.

V ∗
N−1Ṽ

∗
NR

=


IηN−1

Q∗
N−1

IφN−1





R(1 : N − 2, :)

pN−1aN−2 · · · a2q1 · · · pN−1qN−2 dN−1 gN−1hN

XNaN−1aN−2 · · · a2q1 · · · XNaN−1qN−2 XNqN−1 h′
N

0 · · · 0 0 (dT)N



=



R(1 : N − 2, :)

Q∗
N−1

 pN−1

XNaN−1

[aN−2 · · · a2q1 · · · qN−2

]
Q∗

N−1

 dN−1 gN−1hN

XNqN−1 h′
N


0 (dT)N



=



R(1 : N − 2, :)XN−1

0

[aN−2 · · · a2q1 · · · qN−2

]
Q∗

N−1

 dN−1 gN−1hN

XNqN−1 h′
N


0 (dT)N



=



R(1 : N − 2, :)XN−1

0

[aN−2 · · · a2q1 · · · qN−2

] (pV)∗N−1 (aV)∗N−1

(dV)∗N−1 (qV)∗N−1


 dN−1 gN−1hN

XNqN−1 h′
N


0 (dT)N



=



R(1 : N − 2, :)

XN−1aN−2 · · · a2q1 · · · XN−1qN−2

0 · · · 0

(pV)∗N−1 (aV)∗N−1

(dV)∗N−1 (qV)∗N−1


 dN−1 gN−1hN

XNqN−1 h′
N


0 (dT)N


. (3.3)

27

The complicated part is taking place in the product

(pV)∗N−1 (aV)∗N−1

(dV)∗N−1 (qV)∗N−1


 dN−1 gN−1hN

XNqN−1 h′
N

 ,

which warrants some simplifying and renaming:

(pV)∗N−1 (aV)∗N−1

(dV)∗N−1 (qV)∗N−1


 dN−1 gN−1hN

XNqN−1 h′
N



=


(pV)∗N−1dN−1 + (aV)∗N−1XNqN−1

[
(pV)∗N−1gN−1 (aV)∗N−1

]hN

h′
N


(dV)∗N−1dN−1 + (qV)∗N−1XNqN−1

[
(dV)∗N−1gN−1 (qV)∗N−1

]hN

h′
N




.

Let

h′
N−1 = (pV)∗N−1dN−1 + (aV)∗N−1XNqN−1,

b′N−1 =

[
(pV)∗N−1gN−1 (aV)∗N−1

]
,

(dT)N−1 = (dV)∗N−1dN−1 + (qV)∗N−1XNqN−1,

(gT)N−1 =

[
(dV)∗N−1gN−1 (qV)∗N−1

]
, and

(hT)N =

hN

h′
N

 .

Then (pV)∗N−1 (aV)∗N−1

(dV)∗N−1 (qV)∗N−1


 dN−1 gN−1hN

XNqN−1 h′
N

 =

 h′
N−1 b′N−1(hT)N

(dT)N−1 (gT)N−1(hT)N

 . (3.4)

28

By substituting (3.4) into (3.3), we have

V ∗
N−1Ṽ

∗
NR

=



R(1 : N − 2, :)

XN−1aN−2 · · · a2q1 · · · XN−1qN−2 h′
N−1 b′N−1

hN

h′
N


0 · · · 0 (dT)N−1 (gT)N−1(hT)N

0 · · · 0 (dT)N



=



R(1 : N − 3, :)

R(N − 2, :)

XN−1aN−2 · · · a2q1 · · · XN−1qN−2 h′
N−1 b′N−1

hN

h′
N


0 · · · 0 (dT)N−1 (gT)N−1(hT)N

0 · · · 0 (dT)N



=



R(1 : N − 3, :)

pN−2aN−3 · · · a2q1 · · · pN−2qN−3 dN−2 gN−2hN−1 gN−2bN−1hN

XN−1aN−2 · · · a2q1 · · · XN−1aN−2qN−3 XN−1qN−2 h′
N−1 b′N−1

hN

h′
N


T (N − 1 : N, :)


.(3.5)

In the next step, apply QR factorization to

 pN−2

XN−1aN−2

:
 pN−2

XN−1aN−2

 = QN−2

XN−2

0

 =

(pV)N−2 (dV)N−2

(aV)N−2 (qV)N−2


XN−2

0

 .

29

Let VN−2 = IηN−2
⊕ QN−2 ⊕ IφN−2

. Then V ∗
N−2 acts on two block rows of the previous

product, given in (3.5). So

V ∗
N−2V

∗
N−1Ṽ

∗
NR =


IηN−2

Q∗
N−2

IφN−2

V ∗
N−1Ṽ

∗
NR

=



R(1 : N − 3, :)XN−2

0

[aN−3 · · · a2q1 · · · qN−3

]
Q∗

N−2

 dN−2

XN−1qN−2

 T ′
N−2

T (N − 1 : N, :)


(3.6)

whereXN−2

0

[
aN−3 · · · a2q1 · · · qN−3

]
=

XN−2aN−3 · · · a2q1 · · · XN−2qN−3

0 · · · 0

 (3.7)

and

Q∗
N−2

 dN−2

XN−1qN−2

 =

(pV)∗N−2 (aV)∗N−2

(dV)∗N−2 (qV)∗N−2


 dN−2

XN−1qN−2


=

(pV)∗N−2dN−2 + (aV)∗N−2XN−1qN−2

(dV)∗N−2dN−2 + (qV)∗N−2XN−1qN−2


=

 h′
N−2

(dT)N−2

 (3.8)

by setting

h′
N−2 = (pV)∗N−2dN−2 + (aV)∗N−2XN−1qN−2 and

(dT)N−2 = (dV)∗N−2dN−2 + (qV)∗N−2XN−1qN−2,

30

and

T ′
N−2 = Q∗

N−2


gN−2hN−1 gN−2bN−1hN

h′
N−1

[
(pV)∗N−1gN−1 (aV)∗N−1

]hN

h′
N




=

(pV)∗N−2 (aV)∗N−2

(dV)∗N−2 (qV)∗N−2




gN−2hN−1 gN−2bN−1hN

h′
N−1

[
(pV)∗N−1gN−1 (aV)∗N−1

]hN

h′
N




=

(pV)∗N−2 (aV)∗N−2

(dV)∗N−2 (qV)∗N−2


gN−2 0

0 1




hN−1

[
bN−1 0

]hN

h′
N


h′

N−1

[
(pV)∗N−1gN−1 (aV)∗N−1

]hN

h′
N




=

(pV)∗N−2gN−2 (aV)∗N−2

(dV)∗N−2gN−2 (qV)∗N−2




hN−1

h′
N−1


 bN−1 0

(pV)∗N−1gN−1 (aV)∗N−1


hN

h′
N


 .(3.9)

By setting

b′N−2 =

[
(pV)∗N−2gN−2 (aV)∗N−2

]
,

(gT)N−2 =

[
(dV)∗N−2gN−2 (qV)∗N−2

]
,

(hT)N−1 =

hN−1

h′
N−1

 , and

(bT)N−1 =

 bN−1 0

(pV)∗N−1gN−1 (aV)∗N−1

 ,

31

(3.9) can be written more simply as:

Q∗
N−2


gN−2hN−1 gN−2bN−1hN

h′
N−1

[
(pV)∗N−1gN−1 (aV)∗N−1

]hN

h′
N




=

(pV)∗N−2gN−2 (aV)∗N−2

(gT)N−2

 ((hT)N−1 (bT)N−1(hT)N)

=

 b′N−2

[
(hT)N−1 (bT)N−1(hT)N

]
(gT)N−2(hT)N−1 (gT)N−2(bT)N−1(hT)N

 . (3.10)

Now that each detail has been worked out, (3.6) may be simpli�ed. By substituting (3.7),

(3.8),and (3.10) into (3.6), we have

32

V ∗
N−2V

∗
N−1Ṽ

∗
NR

=



R(1 : N − 3, :)XN−2

0

[aN−3 · · · a2q1 · · · qN−3

]
Q∗

N−2

 dN−2

XN−1qN−2

 T ′
N−2

T (N − 1 : N, :)



=



R(1 : N − 3, :)

XN−2

(
aN−3 · · · a2q1 · · · qN−3

)
h′

N−2 b′N−2

[
(hT)N−1 (bT)N−1(hT)N

]
0 · · · 0 (dT)N−2 (gT)N−2(hT)N−1 (gT)N−2(bT)N−1(hT)N

T (N − 1 : N, :)



=



R(1 : N − 4, :)

R(N − 3, :)

XN−2

(
aN−3 · · · a2q1 · · · qN−3

)
h′

N−2 b′N−2

[
(hT)N−1 (bT)N−1(hT)N

]
0 · · · 0 (dT)N−2 (gT)N−2(hT)N−1 (gT)N−2(bT)N−1(hT)N

0 · · · 0 (dT)N−1 (gT)N−1(hT)N

0 · · · 0 (dT)N



=



R(1 : N − 4, :)

R(N − 3, :)

XN−2

(
aN−3 · · · a2q1 · · · qN−3

)
h′

N−2 b′N−2

[
(hT)N−1 (bT)N−1(hT)N

]
T (N − 2 : N, :)


. (3.11)

33

Everything in the latest step of factoring may be applied iteratively for block rows Ri,

i = N − 1, . . . , 2. At each step, perform QR factorization:

 pi

Xi+1ai

 = Qi

Xi

0

 .

Compute ρi−1 = min(mi + ρi, r
′
i−1) and νi = mi + ρi − ρi−1. Then partition

Qi =

(pV)i (dV)i

(aV)i (qV)i


according to the dimensions:

(pV)i : mi × ρi−1

(dV)i : mi × νi

(aV)i : ρi × ρi−1

(qV)i : ρi × νi,

so  pi

Xi+1ai

 = Qi

Xi

0

 =

(pV)i (dV)i

(aV)i (qV)i


Xi

0

 .

Let

ηi =
i−1∑
k=1

mk, φi =
N∑

k=i+1

νk, i = 1, . . . , N

and let

Vi = Iηi
⊕Qi ⊕ Iφi

=


Iηi

Qi

Iφi

 .

34

For notational convenience, compute

h′
i = (pV)∗i di + (aV)∗i Xi+1qi,

(dT)i = (dV)∗i di + (qV)∗i Xi+1qi,

b′i =

[
(pV)∗i gi (aV)∗i

]
,

(gT)i =

[
(dV)∗i gi (qV)∗i

]
,

(hT)i+1 =

hi+1

h′
i+1

 , and

(bT)i =

 bi 0

(pV)∗i gi (aV)∗i

 .

Then V ∗
i acts on the ith and (i+1)th block rows of the previous product, V ∗

i+1 · · ·V ∗
N−1Ṽ

∗
NR:

V ∗
i (V ∗

i+1 · · ·V ∗
N−1Ṽ

∗
NR) =



R(1 : i− 1, :)Xi

0

[ai−1 · · · a2q1 · · · qi−1

]
Q∗

i

 di

Xi+1qi

 T ′
i

T (i + 1 : N, :)


(3.12)

where Xi

0

[ai−1 · · · a2q1 ai−1 · · · a3q2 · · · ai−1qi−2 qi−1

]

=

 Xiai−1

[
ai−2 · · · a2q1 ai−2 · · · a3q2 · · · qi−2

]
Xiqi−1

0 · · · 0 0

 (3.13)

35

and

Q∗
i

 di

Xi+1qi

 =

(pV)∗i (aV)∗i

(dV)∗i (qV)∗i


 di

Xi+1qi


=

(pV)∗i di + (aV)∗i Xi+1qi

(dV)∗i di + (qV)∗i Xi+1qi


=

 h′
i

(dT)i

 (3.14)

and

T ′
i = Q∗

i


 gihi+1

h′
i+1


 gibi+1

(
hi+2 bi+2hi+3 · · · bi+2 · · · bN−1hN

)
b′i+1

[
(hT)i+2 (bT)i+2(hT)i+3 · · · (bT)i+2 · · · (bT)N−1(hT)N

]




=

(pV)∗i (aV)∗i

(dV)∗i (qV)∗i


gi 0

0 1




 hi+1

h′
i+1


 bi+1

(
hi+2 · · · bi+2 · · · bN−1hN

)
b′i+1

[
(hT)i+2 · · · (bT)i+2 · · · (bT)N−1(hT)N

]




=

(pV)∗i gi (aV)∗i

(dV)∗i gi (qV)∗i




 hi+1

h′
i+1


 bi+1

(
hi+2 · · · bi+2 · · · bN−1hN

)
b′i+1

[
(hT)i+2 · · · (bT)i+2 · · · (bT)N−1(hT)N

]



=

 b′i

(gT)i


 hi+1

h′
i+1

bi+1hi+2

b′i+1(hT)i+2

· · ·

· · ·

bi+1bi+2 · · · bN−1hN

b′i+1(bT)i+2 · · · (bT)N−1(hT)N


=

 b′i

(gT)i

[
(hT)i+1 (bT)i+1(hT)i+2 · · · (bT)i+1(bT)i+2 · · · (bT)N−1(hT)N

]
(3.15)

=

 b′i

[
(hT)i+1 (bT)i+1(hT)i+2 · · · (bT)i+1(bT)i+2 · · · (bT)N−1(hT)N

]
(gT)i(hT)i+1 (gT)i(bT)i+1(hT)i+2 · · · (gT)i(bT)i+1(bT)i+2 · · · (bT)N−1(hT)N

 .(3.16)

36

Note that (3.15) can be clearly seen as follows:

 bi+1bi+2 · · · bk−1hk

b′i+1(bT)i+2 · · · (bT)k−1(hT)k



=



[
bi+1 0

]bi+2 0

∗ ∗

 · · ·
bk−2 0

∗ ∗


bk−1 0

∗ ∗


hk

h′
k


[
(pV)∗i+1gi+1 (aV)∗i+1

] bi+2 0

(pV)∗i+2gi+2 (aV)∗i+2

 · · ·
 bk−1 0

(pV)∗k−1gk−1 (aV)∗k−1


hk

h′
k




=

 bi+1 0

(pV)∗i+1gi+1 (aV)∗i+1


 bi+2 0

(pV)∗i+2gi+2 (aV)∗i+2

 · · ·
 bk−1 0

(pV)∗k−1gk−1 (aV)∗k−1


hk

h′
k


= (bT)i+1(bT)i+2 · · · (bT)k−1(hT)k, k = i + 2, . . . , N. (3.17)

It is also worth noting that all of the complexity from the lower and upper triangles of R

is accumulated in the upper-triangular blocks of T . The order of these terms is ρ′, which is

generally the sum r′ + r′′. Brie�y consider one simple example that illustrates the signi�cant

amount of information accumulated in one block of T :

(gT)i(bT)i+1(hT)i+2

=

[
(dV)∗i gi (qV)∗i

] bi+1 0

(pV)∗i+1gi+1 (aV)∗i+1


hi+2

h′
i+2


=

[
(dV)∗i gi (qV)∗i

] bi+1 0

(pV)∗i+1gi+1 (aV)∗i+1


 hi+2

(pV)i+2di+2 + (aV)i+2Xi+3qi+2


=

[
(dV)∗i gi (qV)∗i

] bi+1hi+2

(pV)∗i+1gi+1hi+2 + (aV)∗i+1(pV)i+2di+2 + (aV)∗i+1(aV)i+2Xi+3qi+2



=

[
(dV)∗i gibi+1hi+2 + (qV)∗i (pV)∗i+1gi+1hi+2 + (qV)∗i (aV)∗i+1(pV)i+2di+2 + (qV)∗i (aV)∗i+1(aV)i+2Xi+3qi+2

]
.

37

This simple block demonstrates approximately the least complexity in a block of T , in this

case, one formed by the product of only three generators, i.e. Rij where j = i + 2.

Substituting (3.13), (3.14), and (3.16) into (3.12) gives

V ∗
i V ∗

i+1 · · ·V ∗
N−1Ṽ

∗
NR

=



R(1 : i− 1, :)

Xiai−1

[
ai−2 · · · a2q1 · · · qi−2

]
Xiqi−1

0 · · · 0 0

h′
i

(dT)i

T ′
i

T (i + 1 : N, :)



=



R(1 : i− 2, :)

Xiai−1

[
ai−2 · · · a2q1 · · · qi−2

]
Xiqi−1 h′

i b′i

[
(hT)i+1 · · · (bT)i+1 · · · (hT)N

]
0 · · · 0 (dT)i (gT)i(hT)i+1 · · · (gT)i(bT)i+1 · · · (hT)N

T (i + 1 : N, :)



=



R(1 : i− 2, :)

R(i− 1, :)

Xiai−1

[
ai−2 · · · a2q1 · · · qi−2

]
Xiqi−1 h′

i b′i

[
(hT)i+1 · · · (bT)i+1 · · · (hT)N

]
0 · · · 0 (dT)i (gT)i(hT)i+1 · · · (gT)i(bT)i+1 · · · (hT)N

T (i + 1 : N, :)



=



R(1 : i− 2, :)

R(i− 1, :)

Xiai−1

[
ai−2 · · · a2q1 · · · qi−2

]
Xiqi−1 h′

i b′i

[
(hT)i+1 · · · (bT)i+1 · · · (hT)N

]
T (i : N, :)


. (3.18)

All that remains is to select a Ṽ ∗
1 to multiply by the previously computed product

V ∗
2 · · ·V ∗

N−1Ṽ
∗
NR to cause V = Ṽ ∗

1 V ∗
2 · · ·V ∗

N−1Ṽ
∗
N to be a unitary block lower triangular ma-

38

trix. (This is the block unitary version of what was demonstrated in (2.4) and (2.5). All

that is required is to select a unitary matrix Q1 of dimensions ν1 × ν1 where ν1 = m1 + ρ1.

Partition

Ṽ1 =

(dV)1

(qV)1


according to the dimensions:

(dV)1 : m1 × ν1

(qV)1 : ρ1 × ν1.

As in previous iterations, let Ṽ1 = Q1 ⊕ Iφ1 and compute

(dT)1 = (dV)∗1d1 + (qV)∗1X2q1,

(gT)1 =

[
(dV)∗1g1 (qV)∗1

]
, and

(hT)2 =

h2

h′
2

 .

39

Then Ṽ ∗
1 acts on the 1st and 2nd block rows of the product V2 · · ·V ∗

N−1Ṽ
∗
NR. Details are

very similar to those in the case of i = N − 1, · · · , 2.

T = Ṽ ∗
1 (V ∗

2 · · ·V ∗
N−1Ṽ

∗
NR)

= Ṽ ∗
1


R(1, :)

X2q1 h′
2 b′2

[
(hT)3 (bT)3(hT)4 · · · (bT)3 · · · (hT)N

]
T (2 : N, :)



=

(dV)∗1 (qV)∗1

Iφ1




d1 g1h2 g1b2

[
h3 b3h4 · · · b3 · · ·hN

]
X2q1 h′

2 b′2

[
(hT)3 (bT)3(hT)4 · · · (bT)3 · · · (hT)N

]
T (2 : N, :)


=

 (dT)1 T ′
1

T (2 : N, :)

 (3.19)

where

T ′
1 =

[
(dV)∗1 (qV)∗1

]g1h2 g1b2

[
h3 b3h4 · · · b3 · · ·hN

]
h′

2 b′2

[
(hT)3 (bT)3(hT)4 · · · (bT)3 · · · (hT)N

]


=

[
(dV)∗1g1 (qV)∗1

]
 h2

h′
2


 b2

[
h3 · · · b3 · · ·hN

]
b′2

[
(hT)3 (bT)3(hT)4 · · · (bT)3 · · · (hT)N

]



= (gT)1

 h2

h′
2

b2h3 b2b3h4 · · · b2b3 · · · bN−1hN

b′2(hT)3 b′2(bT)3(hT)4 · · · b′2(bT)3 · · · (bT)N−1hN


= (gT)1

[
(hT)2 (bT)2(hT)3 (bT)2(bT)3(hT)4 · · · (bT)2(bT)3 · · · (bT)N−1hN

]
=

(
(gT)1(hT)2 (gT)1(bT)2(hT)3 · · · (gT)1(bT)2 · · · (bT)N−1(hT)N

)
, (3.20)

40

so, substituting (3.20) into (3.19), we have

T =

 (dT)1 (gT)1(hT)2 (gT)1(bT)2(hT)3 · · · (gT)1(bT)2 · · · (bT)N−1(hT)N

T (2 : N, :)



=



(dT)1 (gT)1(hT)2 (gT)1(bT)2(hT)3 · · · (gT)1(bT)2 · · · (bT)N−1(hT)N

0 (dT)2 (gT)2(hT)3 · · · (gT)2(bT)3 · · · (bT)N−1(hT)N

...
.

...

. . . (dT)N−1 (gT)N−1(hT)N

0 · · · 0 (dT)N


.(3.21)

This is the exact result sought:

Ṽ ∗
1 V ∗

2 · · ·V ∗
N−1Ṽ

∗
NR = T,

so

R = ṼNVN−1 · · ·V2Ṽ1T

= V T

where V is unitary (as the product of unitary matrices) block lower triangular, and T is

block upper triangular.

The process thus described is written more concisely as Algorithm 2.

Algorithm 2: Let R be a quasiseparable block matrix with generators as de�ned in

(1.2). Then R admits factorization R = V T where V is a block lower triangular unitary

matrix, and T is a block upper triangular matrix according to the following steps.

1. Calculate generator dimensions.

(a) First stage, performed on pN :

41

ρN−1 = min(mN , r′N−1)

νN = mN − ρN−1

ρ′
N−1 = r′′N−1 + ρN−1

(b) Middle stages, performed on pk, k = N − 1, . . . , 2:

for k = N − 1 : 2

ρk−1 = min(mk + ρk, r
′
k−1)

νk = mk + ρk − ρk−1

ρ′
k−1 = r′′k−1 + ρk−1

end

(c) Final dimension used in inner-coprime factoring:

ν1 = m1 + ρ1

2. Use QR factorization row by row to zero out block rows of R.

(a) Perform QR factorization on last row (pN). Determine generators of V and T .

[Q, r] = qr(pN)

(pV)N = Q(:, 1 : ρN−1)

(dV)N = Q(:, ρN−1 + 1 : mN)

XN = r(1 : ρN−1, 1 : r′N−1)

(dT)N = (dV)∗NdN

h′
N = (pV)∗NdN

(hT)N =

hN

h′
N



(b) Middle stages, performed on pk, k = N − 1, ..., 2

42

for k = N − 1, . . . , 2

[Q, r] = qr


 pk

Xk+1ak




(pV)k = Q(1 : mk, 1 : ρk−1)

(dV)k = Q(1 : mk, ρk−1 + 1 : mk + ρk)

(aV)k = Q(mk + 1 : mk + ρk, 1 : ρk−1)

(qV)k = Q(mk + 1 : mk + ρk, ρk−1 + 1 : mk + ρk)

Xk = r(1 : ρk−1 : 1 : r′k−1)

h′ = (pV)∗kdk + (aV)∗kXk+1qk

(hT)k =

hk

h′
k


(bT)k =

 bk 0

(pV)∗kgk (aV)∗k


(gT)k =

[
(dV)∗kgk (qV)∗k

]
(dT)k = (dV)∗kdk + (qV)∗kXk+1qk

end

(c) Final stage of inner-coprime factoring

Q = Iν1

(dV)1 = Q(1 : m1, 1 : ν1)

(qV)1 = Q(m1 + 1 : ν1, 1 : ν1)

(dT)1 = (dV)∗1d1 + (qV)∗1X2q1

(gT)1 =

[
(dV)∗1g1 (qV)∗1

]

43

3.2 Inner-outer Factorization

In a way similar to the factoring of R into R = V T , T may be factored by applying QR

factorization to two consecutive block rows, in this case working from the top to the bottom.

The objective is to factor T into T = US, where U is a block upper triangular matrix and

S is a block upper triangular invertible matrix with block entries of size ni × nj. Note the

important feature that diagonal blocks of S are square.

For the �rst two block rows, compute s1 = ν1 − n1. Perform QR factorization on[
(dT)1 (gT)1

]
such that

[
(dT)1 (gT)1

]
= P1

(dS)1 (gS)1

0 Y1

 =

[
(dU)1 (gU)1

](dS)1 (gS)1

0 Y1

 ,

with dimensions:

(dS)1 : n1 × n1

(gS)1 : n1 × ρ′
1

Y1 : s1 × ρ′
1

(dU)1 : ν1 × n1

(gU)1 : ν1 × s1.

44

Let Ũ1 = P1 ⊕ Iφ1 . Then

Ũ∗
1 T =


(dU)∗1

(gU)∗1

Iφ1


 (dT)1 (gT)1(hT)2 · · · (gT)1(bT)2 · · · (bT)N−1(hT)N

T (2 : N, :)



=


(dU)∗1

(gU)∗1

Iφ1


 (dT)1 (gT)1

(
(hT)2 · · · (bT)2 · · · (bT)N−1(hT)N

)
T (2 : N, :)



=


(dU)∗1

(gU)∗1

Iφ1




[
(dT)1 (gT)1

]In1 0 · · · 0

0 (hT)2 · · · (bT)2 · · · (bT)N−1(hT)N


T (2 : N, :)



=

P ∗
1

Iφ1




P1

(dS)1 (gS)1

0 Y1


In1 0 · · · 0

0 (hT)2 · · · (bT)2 · · · (bT)N−1(hT)N


T (2 : N, :)



=


(dS)1 (gS)1

0 Y1


In1 0 · · · 0

0 (hT)2 · · · (bT)2 · · · (bT)N−1(hT)N


T (2 : N, :)



=


(dS)1 (gS)1

(
(hT)2 · · · (bT)2 · · · (bT)N−1(hT)N

)
0 Y1

(
(hT)2 · · · (bT)2 · · · (bT)N−1(hT)N

)
T (2 : N, :)

 . (3.22)

45

Because no modi�cation of the generators (hT)k, (bT)k for k = 2, . . . , N is required, this step

is complete. For consistency in the naming of generators, set (hS)k = (hT)k and (bS)k = (bT)k

for k = 2, . . . , N . Then (3.22) becomes:

Ũ∗
1 T =


(dS)1 (gS)1

(
(hS)2 · · · (bS)2 · · · (bS)N−1(hS)N

)
0 Y1

(
(hS)2 · · · (bS)2 · · · (bS)N−1(hS)N

)
T (2 : N, :)



=



(dS)1 (gS)1(hS)2 (gS)1(bS)2(hS)3 · · · (gS)1(bS)2 · · · (bS)N−1(hS)N

0 Y1(hS)2 Y1(bS)2(hS)3 · · · Y1(bS)2 · · · (bS)N−1(hS)N

0 (dS)2 (gS)2(hS)3 · · · (gS)2(bS)3 · · · (bS)N−1(hS)N

T (3 : N, :)



=



S(1, :)

0

0

Y1(hS)2

(dS)2

Y1(bS)2

(gS)2

[(hS)3 (bS)3(hS)4 · · · (bS)3 · · · (bS)N−1(hS)N

]

T (3 : N, :)



=



S(1, :)

0

0

Y1(hS)2 Y1(bS)2

(dS)2 (gS)2


In2 0 · · · 0

0 (hS)3 · · · (bS)3 · · · (bS)N−1(hS)N


T (3 : N, :)


. (3.23)

Next, for i = 2, . . . , N − 1, compute si = si−1 + νi − ni. Then perform QR factorization

on Yi−1(hS)i Yi−1(bS)i

(dS)i (gS)i



46

to produce

Yi−1(hS)i Yi−1(bS)i

(dS)i (gS)i

 = Pi

(dS)i (gS)i

0 Yi


=

(hU)i (bU)i

(dU)i (gU)i


(dS)i (gS)i

0 Yi


with dimensions:

(dS)k : nk × nk

(gS)i : ni × ρ′
i

Yi : si × ρ′
i

(hU)j : sj−1 × nj

(bU)k : sk−1 × sk

(dU)k : νk × nk

(gU)i : νi × si.

Let

χi =
i−1∑
k=1

nk,

with φi de�ned as before:

φi =
N∑

k=i+1

νk,

47

and let Ui = Iχi
⊕ Pi ⊕ Iφi

. Then

U∗
i · · ·U∗

2 Ũ∗
1 T

=


Iχi

P ∗
i

Iφi





S(1 : i− 1, :)

0 · · · 0

0 · · · 0

Yi−1(hS)i Yi−1(bS)i

(dS)i (gS)i


Ini

0 · · · 0

0 (hS)i+1 · · · (bS)i+1 · · · (hS)N


T (i + 1 : N, :)



=


Iχi

P ∗
i

Iφi





S(1 : i− 1, :)

0 · · · 0

0 · · · 0
Pi

(dS)i (gS)i

0 Yi


Ini

0 · · · 0

0 (hS)i+1 · · · (bS)i+1 · · · (bS)N−1(hS)N


T (i + 1 : N, :)



=



S(1 : i− 1, :)

0 · · · 0

0 · · · 0

(dS)i (gS)i

0 Yi


Ini

0 · · · 0

0 (hS)i+1 (bS)i+1(hS)i+2 · · · (bS)i+1 · · · (bS)N−1(hS)N


T (i + 1 : N, :)



=



S(1 : i− 1, :)

0 · · · 0 (dS)i (gS)i

(
(hS)i+1 (bS)i+1(hS)i+2 · · · (bS)i+1 · · · (bS)N−1(hS)N

]
0 · · · 0 0 Yi

(
(hS)i+1 (bS)i+1(hS)i+2 · · · (bS)i+1 · · · (bS)N−1(hS)N

)
T (i + 1 : N, :)



=



S(1 : i− 1, :)

0 · · · 0 (dS)i (gS)i(hS)i+1 (gS)i(bS)i+1(hS)i+2 · · · (gS)i(bS)i+1 · · · (bS)N−1(hS)N

0 · · · 0 0 Yi(hS)i+1 Yi(bS)i+1(hS)i+2 · · · Yi(bS)i+1 · · · (bS)N−1(hS)N

0 · · · 0 0 (dS)i+1 (gS)i+1(hS)i+2 · · · (gS)i+1(bS)i+2 · · · (bS)N−1(hS)N

T (i + 2 : N, :)



=



S(1 : i, :)

0

Yi(hS)i+1 Yi(bS)i+1

(dS)i+1 (gS)i+1


Ini

0 · · · 0

0 (hS)i+2 · · · (bS)i+2 · · · (bS)N−1(hS)N


T (i + 2 : N, :)


. (3.24)

48

Note that in the case of i = N − 2 :

U∗
N−2 · · ·U∗

2 Ũ∗
1 T =



S(1 : N − 2, :)

0

YN−2(hS)N−1 YN−2(bS)N−1

(dS)N−1 (gS)N−1


InN−2

0

0 (hS)N


T (N, :)


,

and in the case of i = N − 1 :

U∗
N−1 · · ·U∗

2 Ũ∗
1 T =


S(1 : N − 1, :)

0

YN−1(hS)N YN−1(bS)N

(dS)N (gS)N


InN−2

0




=


S(1 : N − 1, :)

0 · · · 0

0 · · · 0

YN−1(hS)N

(dS)N


 .

In the �nal step of inner-outer factorization, perform QR factorization on

YN−1(hS)N

(dS)N


to produce YN−1(hS)N

(dS)N

 = PN(dS)N =

(hU)N

(dU)N

 (dS)N

with dimensions:

(dS)N : nN × nN

(hU)N : sN−1 × nN

(dU)N : νN × nN .

49

Let

χN =
N−1∑
k=1

nk,

and let ŨN = IχN
⊕ PN . Then

S = Ũ∗
NU∗

N−1 · · ·U∗
2 Ũ∗

1 T

=

IχN

P ∗
N




S(1 : N − 1, :)

0 · · · 0

YN−1(hS)N

(dS)N




=

IχN

P ∗
N


 S(1 : N − 1, :)

0 · · · 0 PN(dS)N


=

 S(1 : N − 1, :)

0 · · · 0 (dS)N



=



(dS)1 (gS)1(hS)2 (gS)1(bS)2(hS)3 · · · (gS)1(bS)2 · · · (bS)N−1(hS)N

0 (dS)2 (gS)2(hS)3 · · · (gS)2(bS)3 · · · (bS)N−1(hS)N

...
.

...

. . . (dS)N−1 (gS)N−1(hS)N

0 · · · 0 (dS)N


.(3.25)

This is precisely what was sought:

Ũ∗
NU∗

N−1 · · ·U∗
2 Ũ∗

1 T = S

so

T = Ũ1U2 · · ·UN−1UNS

= US

50

where U is a block upper triangular unitary matrix and S is a block upper triangular invertible

matrix with invertible square blocks on the diagonal.

51

Chapter 4

Findings

One important claim made by Eidelman and Gohberg is that the need for minimality

stated in [1] is no longer relevant in their algorithm: �It allows us to avoid the requirement

of the minimality of generators...� [2, p. 421]. But tests of their algorithm, in the solution

of linear systems Rx = y, were performed on generators created from random numbers,

resulting, essentially as a given, in minimal generators every time. However, non-minimal

generators or nearly non-minimal generators can lead to signi�cant residuals, as will be

demonstrated in Section 4.2.

To verify the e�cacy of the program quasifactor.m and the functions it calls, several

tests were performed using generators of various sizes with randomly generated elements.

The objective is to solve the system Rx = y and to observe residuals in various cases of

generators with particular characteristics. Initially, quasiseparable matrices were constructed

in a way intended to mimic that described in [2]. Then, in order to investigate stability of

the algorithm in the case of non-minimal and nearly non-minimal generators, it was decided

to reduce complexity and to perform all tests after establishing matrix R as block-lower

Hessenberg (this simply requires making all generators bk zero). Also in the interest of

52

N max(r′) cond(R) max. (relative) residual
20 2 104 10−17

20 3 106 10−16

40 2 104 10−16

40 3 1010 10−16

80 2 105 10−16

80 3 1017 10−16

500 2 108 10−16

Table 4.1: Results with minimal generators, all elements in [0, 1)

reducing complexity, it was decided that y would be created by multiplying R by a column

vector, the nominal x, of the appropriate length and consisting of all 1's.

4.1 Generic case: minimal generators

First, the algorithm is performed on quasiseparable matrices of various sizes, comprised

entirely of generators dk, pi, qj, ak, gi, hj, and bk of size 2 × 2 with all elements randomly

selected from [0, 1).

It was found that the relative residual had a value on the order of 10−16 or smaller,

for experiments on quasiseparable matrices R up to dimension 1000 × 1000 (N = 500 and

r′ = 2). Some typical results are listed in Table 4.1. Clearly, the algorithm performs with

minimal error for cases involving minimal (randomly generated) generators.

This result con�rms the �ndings of [2], speci�cally that the algorithm is stable, but in

a setting that involves generators that are very unlikely to be non-minimal, or even near

non-minimal.

Next, to con�rm that the results hold for generators containing elements outside of the

right half of the unit circle, i.e. for z that is an element in any generator dk, pi, qj, ak, gi,

hj, and bk such that |z| > 1 or Re(z) < 0, the previous experiment is repeated, except that

the elements are randomly selected from the interval [−10, 10).

53

N max(r′) cond(R) max. (relative) residual
20 2 1017 10−17

20 3 1020 10−19

40 2 1034 10−19

40 3 1040 10−18

Table 4.2: Results with minimal generators, all elements in [−10, 10)

Relative residuals similar to those in Table 4.1 were found, demonstrating that the algo-

rithm works well for a variety of matrices formed from minimal generators, regardless of the

size of the elements of the generators. The only notable di�erence was that the matrix R was

generally less well-conditioned, which is not surprising considering the larger values of its el-

ements, compared to the previous experiment. In fact, the matrix became so ill-conditioned

that beyond size 120× 120, the invertible factor, S, contained many generators (dS)k, that

were singular to machine precision, rendering any results meaningless. The results through

N = 40, r′k = 3, k = 2, . . . , N − 1 are shown in Table 4.2.

4.2 Non-minimal generators

To shed more light on the e�ect of minimality, some nearly non-minimal generators are

now selected based on classical linear systems theory. The idea is that a generator associated

with an uncontrollable mode is not minimal [5], and that errors may be introduced in each

multiplication by such a generator. To confound the numerical processes of the algorithm, a

non-minimal system is established (with an uncontrollable mode) and then transformed by

a similarity matrix to remove the computational bene�t of multiplying by zero (which is an

exact operation in �oating point arithmetic). The non-minimal system is then modi�ed to

a nearly non-minimal system. Residuals in the non-minimal and nearly non-minimal cases

are recorded and tabulated in Table 4.3.

54

The �rst example to confound the algorithm is constructed of 2 × 2 blocks, with all

generators of size 2 × 2, and N (the number of block rows and block columns) = 20. The

lower generators are selected such that they fail to meet the minimality condition. The

generators

p′ =

 1 0

0 1

 , a′ =

 3.3 0

0 0.9

 , and q′ =

 0 0

1 1


are modi�ed by a similarity transformation, via an arbitrary 2× 2 matrix:

S =

 .6 .88

−.4 .7


to produce

pi = p′S for i = 2, . . . , n,

ak = S−1a′S for k = 2, . . . , n− 1, and

qj = S−1q for j = 1, . . . , n− 1.

To minimize the number of variables in play, let

dk =

1 0

0 1

 , k = 1, . . . , N

gi =

1 0

0 1

 , i = 1, . . . , N − 1

hj =

1 0

0 1

 , j = 2, . . . , N

bk =

0 0

0 0

 , k = 2, . . . , N − 1.

55

The results of factoring and solving Rx = y are summarized in the �rst line of Table 4.3. The

next four lines document the results of making small changes to the values in a′. Because

a′ =

4 0

0 .92


produced the largest relative residuals, it was used in every subsequent investigation.

To broaden the investigation, it is worth considering two modi�cations. First, allow the

matrix to grow, i.e. consider larger values of N . Also, consider the somewhat more realistic

possiblity, from imperfectly measured data that are based on a non-minimal system (which is

not uncommon in applications of linear systems). Simply modify the generator q′ by a small

perturbation. (For simplicity, just perturb one zero element that was causing the system to

be minimal.) Let

q′ =

0 δ

1 1


for various values of δ. These changes are implemented, and their results are summarized in

the lower portion of Table 4.3. It should be noted that in the case of N = 40 and δ = 10−4, the

factorization produced generators in S that were singular to machine precision, invalidating

results. This seems to be related to a very high condition number of R, in this case 2× 1021.

The same was true for N = 80 and every value of δ attempted. These trials produced

condition number of R greater than 1032 in each case.

Some interesting results were found. Clearly, non-minimal and nearly non-minimal gener-

ators produce a matrix R whose factorization can result in relative residuals (in the solution

of Rx = y) signi�cantly larger than the machine precision. This contradicts a key claim of

[2]. It appears that minimality may be a necessary condition to guarantee the stability of

the algorithm. The most surprising result was the alarming discrepancy between the relative

residuals in the case of N = 40 after a′ was perturbed from the non-minimal case (δ = 0) to

56

N a′
11 a′

22 δ cond(R) max. residual
20 3.3 0.9 0 3× 108 2× 10−9

20 3.84 0.92 0 1× 108 4× 10−8

20 4 0.9 0 5× 106 4× 10−8

20 4 0.92 0 5× 107 8× 10−8

20 4 0.95 0 2× 107 8× 10−8

20 4 0.92 10−16 8× 106 3× 10−8

20 4 0.92 10−12 9× 102 8× 10−8

20 4 0.92 10−8 1× 104 2× 10−9

20 4 0.92 10−4 1× 108 2× 10−13

40 4 0.92 0 8× 107 6× 10−16

40 4 0.92 10−16 3× 108 5× 10−2

40 4 0.92 10−12 3× 1012 7× 10−6

40 4 0.92 10−8 3× 1016 1× 10−9

Table 4.3: Results with non-minimal generators

a very near nonminmal case (by changing δ to 10−16). The change in the relative residual

from less than 10−15 to more than 10−2 was dramatic to say the least. This single instance

may be particularly informative in gaining a deeper understanding of how computational

errors arise and propagate in the factoring process.

How the algorithm may be modi�ed to provide stability even in the case of non-minimal

generators is a pressing question that warrants further investigation. The �rst step in this

task is to quantify precisely how computational errors are propagated in the factoring process.

It may be necessary to convert non-minimal generators into minimal ones before performing

any factoring, as suggested in [1], or it may be possible to quantify and minimize error prop-

agation by modifying the algorithm of [2] without having to alter the generators. Signi�cant

research is still needed.

57

Bibliography

[1] P. M. Dewilde and A. J. van der Veen, Time-Varying Systems and Computations,

Kluwer Academic Publishers, New York, 1998.

[2] Y. Eidelman and I. Gohberg, A modi�cation of the Dewilde- van der Veen method

for inversion of �nite structured matrices, Linear Algebra and its Applications, 343-344

(2002), pp. 419-450.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University

Press, Baltimore, MD, second ed., 1989.

[4] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, Journal of Compu-

tational and Applied Mathematics, 16 (1986), pp. 1�8. Cited in [3].

[5] T. Kailath, Linear Systems, Prentice-Hall, Inc., Englewood Cli�s, NJ, 1980.

58

Appendix A

Programs and Functions

1. quasifactor.m

This program:

(a) de�nes the generators of the quasiseparable matrix, R.

(b) creates the matrix R from its generators.

(c) performs inner coprime factorization of R such that R = V T where V is unitary

block lower triangular and T is block upper triangular.

(d) performs inner-outer factorization of T such that T = US where U is unitary

block upper triangular and S is block upper triangular invertible (and such that

R = V T = V US).

(e) e�ciently solves the system Rx = y by solving Sx = V ∗U∗y.

If the variable �verify� is set to 1, then the program calculates V , T , U , and S explicitly

This is not necessary, as their generators are su�cient for all relevant computation.

2. lower.m

This function e�ciently (O(n2)) multiplies to create the lower part of a quasiseparable

matrix from its generators: p, a, q, with dimensions m(i), n(j), r′(k) (rprime).

59

3. upper.m

This function e�ciently (O(n2)) multiplies to create the upper part of a quasiseparable

matrix from its generators: g, b, h, with dimensions m(i), n(j), r′′(k) (rdprime).

4. diagonal.m

This function creates a block-diagonal matrix from given generators, d with dimensions

m(i), n(j), essentially just placing the generators in the appropriate positions.

5. innercoprime.m

This function performs inner coprime factorization of R such that R = V T where

V is unitary block lower triangular and T is block upper triangular. The primary

mechanism of this algorithm relies on QR factorization.

6. innerouter.m

This function performs inner-outer factorization of T such that T = US where U is

block upper triangular unitary, and S is block upper triangular invertible. This process

also relies primarily on QR factorization.

7. lowermult.m

This function e�ciently (O(n)) multiplies a strict lower block quasiseparable matrix

times a column vector.

8. uppermult.m

This function e�ciently (O(n)) multiplies a strict upper block quasiseparable matrix

times a column vector.

9. dmult.m

This function e�ciently (O(n)) multiplies a block diagonal matrix times a column

vector.

60

(Note that any quasiseparable matrix may be multiplied by a column vector by de-

composing it into a strict lower, a strict upper and a diagonal part, multiplying each

by the given vector, and then summing the products.)

10. backsolve.m

This function e�ciently solves the system Rx = y using the generators of V, U, S found

by performing inner coprime factorization and inner-outer factorization on R.

61

Appendix B

Generator Dimension Quick-Reference

1. Dimensions of generators of R, with block entries of size mi × nj:

Generator Dimensions

dk mk × nk

pi mi × r′i−1

qj r′j × nj

ak r′k × r′k−1

gi mi × r′′i

hj r′′j−1 × nj

bk r′′k−1 × r′′k

62

2. Dimensions of generators of V , with block entries of size mi × νj:

Generator Dimensions

(dV)k mk × νk

(pV)i mi × ρi−1

(qV)j ρj × νj

(aV)k ρk × ρk−1

Xi ρi−1 × r′i−1

where

ρN−1 = min(mN , r′N−1)

ρk−1 = min(mk + ρk, r
′
k−1), k = N − 1, . . . , 2

νN = mN − ρN−1

νk = mk + ρk − ρk−1, k = N − 1, . . . , 2.

3. Dimensions of generators of T , with block entries of size νi × nj:

Generator Dimensions

(dT)k νk × nk

(gT)i νi × ρ′
i

(hT)j ρ′
j−1 × nj

(bT)k ρ′
k−1 × ρ′

k

with ρk−1 and νk de�ned as above for k = N, . . . , 2, and ρ′
k = ρk+r′′k for k = N−1, . . . , 2.

63

4. Dimensions of generators of U , with block entries of size νi × nj:

Generator Dimensions

(dU)k νk × nk

(gU)i νi × si

(hU)j sj−1 × nj

(bU)k sk−1 × sk

where

s1 = ν1 − n1

sk = sk−1 + νk − nk, k = 2, . . . , N − 1.

5. Dimensions of generators of S, with block entries of size ni × nj:

Generator Dimensions

(dS)k nk × nk

(gS)i ni × ρ′
i

(hS)j ρ′
j−1 × nj

(bS)k ρ′
k−1 × ρ′

k.

64

	Georgia State University
	ScholarWorks @ Georgia State University
	11-21-2008

	Factorization of Quasiseparable Matrices
	Paul D. Johnson
	Recommended Citation

	tmp.1257870811.pdf.AJRSP

