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“CLUSTERING CATEGORICAL RESPONSE” 

APPLICATION TO LUNG CANCER PROBLEMS IN LIVING SCALES 

 
                                                       

by 
 
                                                                       Ling Guo 

 
 

Under the Direction of Yu-Sheng Hsu, Jiawei Liu 
 

 
ABSTRACT 

 

             The study aims to estimate the ability of different grouping techniques on categorical 

response. We try to find out how well do they work? Do they really find clusters when clusters 

exist?  We use Cancer Problems in Living Scales from the ACS as our categorical data variables 

and lung cancer survivors as our studying group. Five methods of cluster analysis are examined 

for their accuracy in clustering on both real CPILS dataset and simulated data. The methods 

include hierarchical cluster analysis (Ward's method), model-based clustering of raw data, 

model-based clustering of the factors scores from a maximum likelihood factor analysis, model-

based clustering of the predicted scores from independent factor analysis, and the method of 

latent class clustering.  The results from each of the five methods are then compared to actual 

classifications. The performance of model-based clustering on raw data is poorer than that of the 

other methods and the latent class clustering method is most appropriate for the specific 

categorical data examined. These results are discussed and recommendations are made regarding 

future directions for cluster analysis research.  

 

INDEX WORDS: Cluster analysis, Categorical data, CPILS, ACS, Lung Cancer Survivors, 
Factor analysis, Latent class clustering. 
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Chapter 1     

 Introduction 

 

1.1  Background 

           Clustering techniques have been developed to divide a large group of observations into 

smaller groups such that the observations within each group are relatively similar to each other 

and the observations in different groups are relatively dissimilar. Many different approaches to 

cluster analysis have been developed. Most clustering techniques can handle datasets that contain 

either numerical or categorical attributes. We are interested in the application of cluster analysis 

to categorical data, and specifically the data from a health questionnaire sent to cancer survivors.  

          In this paper, we use data from a survey of lung cancer survivors that measures quality of 

life, the Cancer Problems in Living Scale (CPILS). CPILS is a set of 31 survey statements 

designed to identify what cancer survivors are likely to experience following successful 

treatment for their cancers. Survivors answer these questions with one of three responses: not a 

problem for me, somewhat a problem for me, or a severe problem for me, which are then coded 

to 0, 1 and 2, respectively.  Using these categorical data the goal is to group or cluster lung 

cancer survivors into similar response groups.  

            Several clustering methods are used to achieve this goal. A simulation study is needed to 

evaluate the performance of each method. Latent Class Analysis (LCA) is a statistical method to 

find subtypes of related cases (latent classes) from multivariate categorical data.  We use a latent 

class model to create a simulated dataset that can be used to examine effectiveness of the
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different clustering methods under differing conditions. Then the results are summarized and 

compared to the original groups. Finally, all of the cluster procedures are applied to the real 

quality of life (QOL) dataset.  

 

1.2 Study objectives:   

• To identify and describe 5 methods of factoring and clustering categorical data.  

• To apply several selected clustering approaches on a real life dataset from American 

Cancer Society Study of Cancer Survivors  

• To perform a simulation study to document the performance of the 5 methods and 

compare their performance in correctly classifying individuals using simulated test data. 

• To learn how to compute latent factors and clusters in the statistical software package R. 

 

1.3 Overview: 

           The remainder of this thesis is organized as follow:  Chapter 2 is a detailed description on 

the study data. Chapter 3 describes statistical methods for clustering categorical data, and also 

presents an application to real QOL data and the corresponding implementation in R. Chapter 4 

presents the simulation study that examines these methods applied to simulated data and 

discusses the results.  
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Chapter 2  

The Data Set Overview 

 

2.1 American Cancer Society-Study of Cancer Survivors (ACS-SCS) Study Goals 

             In this study we use data from an American Cancer Society survivorship survey. The 

main goal of the Study of Cancer Survivors (SCS) is to describe the needs and quality of life of 

survivors of the major of cancer types as they change over time in a large national population-

based sample of survivors. SCS consists of two surveys, SCS-I and SCS-II. SCS-I was designed 

as a longitudinal study and SCS-II as a cross sectional study. SCS was designed to examine how 

behavioral, psychosocial, treatment, and support factors influence the quality of life of survivors. 

Finally, SCS was designed to help participating states to identify quality of life issues faced by 

cancer survivors in their state that may be different from those identified for the nation as a 

whole.  Together, the information generated by this study is directed at supporting policy 

decisions at the American Cancer Society and of health care agencies as they work to improve 

the quality of life of cancer survivors.  

             This thesis analyzes data from the first round of SCS – I which targeted survivors of ten 

cancers from 11 states at approximately 12 months after diagnosis. The main goal of SCS-I is to 

assess quality of life for survivors of these 10 most commonly occurring cancers within the 

United States hence the cancer type is used as the primary stratification variable.  It is known that 

the distribution of the ages of cancer survivors is skewed to the left with nearly 77% of all 

cancers being diagnosed to persons aged 55 or older (Cancer Facts and Figures, 2002).
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To ensure a sufficient number of younger cancer survivors, age was also used as a stratification 

variable (with two levels:  18-54 years and 55+ years of age at diagnosis) with a 

disproportionately higher sampling of the younger age group.  The incidence rates for the 10 

target cancers are also known to vary across race and/or ethnicity demographic groups hence 

race/ethnicity is used as a stratification variable in states that has enough racial diversity to 

populate substrata formed by this additional stratification variable.  Minority strata were over 

sampled. Finally, SCS-I is designed as a longitudinal study that seeks to follow cancer survivors 

over a 10 year period, therefore possible losses due to mortality has to be factored into the 

sample size of the initial survey.  The number of survivors sampled for each cancer at the 

baseline or year 1 study is chosen to take into account the survival rate for each cancer over the 

expected 10 years of the study.  

               State cancer registry cases selected in each state for participation in SCS-I are first 

stratified by cancer type and then by age and race/ethnicity (wherever appropriate).  The overall 

sample sizes are first allocated to each cancer type using fractions that are approximately 

inversely proportional to the survival rate associated with each cancer type. Next, the cancer 

specific samples are partitioned equally across the two age substrata.  Note that equal allocation 

on age results in the younger survivors is over-sampled, that is, their sampling fraction is higher 

than their actual proportion in the population. Finally, for those states that have sufficient 

identifiable racial diversity among the population of cancer survivors, allocation is performed 

such that non-white cases are over sampled.  This is done to ensure that sufficient non-white 

cases would be available for analysis.  In general, an attempt is made to allocate one-third of the 

allocated sample size for each age group to non-white cases. It is necessary to modify the target 

allocation of the sample assigned to non-white cases for some cancer types within some states to 
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compensate for the variation in cancer case counts for minorities across states. Because of over 

sampling of younger cancer survivors and non-white cancer survivors, sampling weights are 

computed and used in the calculation of all statistics reported.  

 

2.2 Sample Design 

             Survivors are identified for the SCS via cancer registries of states invited to participate in 

the national study.  Selected survivors were given the opportunity to participate via either a 

mailed questionnaire or a telephone interview. Participants knew that all data collected would be 

used for research, and responses were strictly confidential. Study protocols for each participating 

registry were reviewed and approved by a human studies institutional review board, either by the 

review panel typically used by the state registry for all registry-associated research or by the 

Emory University Institutional Review Board at the request of researchers at the American 

Cancer Society National Home Office (ACS-NHO). In addition, the ACS Behavioral Research 

Center’s (BRC) Advisory Committee reviewed and approved these protocols. 

            The SCS used a sampling design with stratification factors. The analytical sample used 

had 590 eligible survivors diagnosed with lung cancer. Lung cancer survivors are used since 

Lung cancer is the second most commonly diagnosed cancer in the United States, and the most 

common cause of cancer-related deaths for both men and women. Lung cancer survivors 

typically have significant QOL issues. According to “Cancer Facts & Figures 2007”, an 

estimated 213,380 new cases are expected in 2007, accounting for about 15% of cancer 

diagnoses; an estimated 160,390 deaths, accounting for about 29% of all cancer deaths, are 

expected to occur in 2007.  
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            To be eligible for inclusion in this study, individuals were required to meet the following 

eligibility criteria: 

1. Be 18 years of age or older at the time of diagnosis. 

2. Participants must have been diagnosed with lung cancer to achieve the desired time-

since-diagnosis cohorts. 

3. Have been diagnosed with stage I to IV cancer 

4. Have been a state resident at the time of diagnosis with cancer.  

5. Be alive at the time of initial contact. 

 

2.3 Questionnaire Development 

                Quality of life is generally seen as a multi-dimensional concept.  Among the 

dimensions typically considered important are the degree of psychological stress/distress, 

social/interpersonal functioning, physical health status and economic and financial status. The 

SCS questionnaires contained a selection of instruments and scales widely used in psychosocial 

research that have been shown to be valid and reliable for use with cancer patients. In addition, 

the  researchers in the study developed other scales and items where no established instruments 

existed.  The development of the SCS questionnaires involved three major activities:  1) 

consultation with a panel of medical and behavioral cancer researchers; 2) administration of the 

instrument to a focus group of cancer survivors representing both male and female cancer 

survivors with a wide range of cancer diagnoses, years since completion of treatment, and 

ethnic/racial backgrounds; and 3) pilot testing of the instrument with a sample of cancer 

survivors selected from a limited number of state cancer registries.  A Spanish translation of the 
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questionnaire was prepared by a professional translation company. It was available on request 

and used by some Spanish speaking respondents. Full details of the questionnaire development 

process can be found in Smith et al., 2006. 

 

2.4 Cancer Problems In Living Scale (CPILS) 

                Despite of the progresses in early detection and treatment, a significant portion of 

cancer survivors continuous to have levels of long term physical, emotional and social problems, 

sometimes years after treatment ends. Several quality of life (QOL) measurements have been 

developed and are widely applied. In this paper, findings for one of the more commonly used 

instruments are reported. The Cancer Problems in Living Scale (CPILS) (Baker et al., 2003) 

instrument is used to identify the extent of problems typically associated with cancer. CPILS is a 

set of 31 statements identifying problems that cancer survivors are likely to experience. For each 

problem, survivors were asked to indicate whether the statement represented 0 = Not a problem 

for me, 1 = somewhat a problem for me, or 2 = A severe problem for me. In this thesis, we use 

this measurement to study the important aspects of QOL such as social problems and 

financial/employment concerns for these lung cancer survivors.  

 

2.5 Analysis Issues 

              The study design is stratified on cancer type, cohort and in many states on race/ethnicity.  

Because strata were not sampled in proportion to their population fraction, for example in many 

cases blacks and minorities were over sampled, responses may need to be weighted to obtain 

unbiased population estimate.  These weights attempt to account for sampling of subgroups of 

the population in proportions different from their representation in the population and to account 
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for ineligibility of some individuals initially chosen in the sample.  Sampling weights for the 

studies were computed using AAPOR (AAPOR, 2006) recommended methodology.  While 

every effort was made to remove ineligible individuals prior to select the sample survivors, 

factors which could make selected survivors ineligible, such as being a non-English and non-

Spanish speaker, were not always known by the cancer registry. The full details of the 

calculation of the sampling weights and associated sampling weight tables are available in 

Portier, et. al., 2007.  Weights may not be important in identifying clusters. Weights may be 

important in defining latent factors, but their use for this task is beyond the current skills of this 

research. Hence, for this study sample weight is not used (communication with K Portier,2008). 

 

2.6 Basic SCS –CPILS statistics for 1 year lung cancer survivors. 

            Table 1 presents top 12 most reported CPILS items and item distribution for weighted 

and unweighted calculation respectively.  Table 2 shows the unweighted percentage of the 

frequency of the respondents answered each CPILS items. 
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Table 2.1. Top 12 most reported CPILS items and distributions for 1 year lung cancer   
survivors. 
 

                Cohort (1 Years since diagnosis)    weighted  unweighted 
 N 590 

N 422* 
% 2.96 2.61 
% 8.72 5.69 
% 20.89 19.19 
% 30.22 27.96 

                             Item Distribution  
                                     0 Problem 
                                 1-2 Problems 
                                 3-6 Problems 
                               7-12 Problems 
                              >=13 Problems % 37.21 44.55 
    

N 562 1. Fatigue, loss of strength 
% 85.0 84.3 

    
N 566 2. Feeling fearful illness will return 
% 72.5 77.0 

    
N 552 3. Concern about relapsing 
% 62.2 69.2 

    
N 569 4. Fears about the future 
% 58.4 65.2 

    
N 571 5. Sleep difficulties 
% 55.6 60.6 

    
N 563 6. Continued major problems with health 
% 53.5 56.0 

    
N 568 7. Difficulty making long term plans 
% 52.5 55.8 

    
N 525 8. Less physically able to have sex 
% 48.9 49.71 

    
N 563 9. Preoccupation with being ill 
% 44.7 49.73 

    
N 564 10. Feeling dependent 
% 43.4 43.6 

    
N 566 11. Uncomfortable w/ changes in physical    

      appearance % 43.0 48.2 
    

N 563 12. Diminished ability to concentrate 
% 42.7 44.2 

 
         * all individuals with the missing values are deleted. 
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Table 2.2: Description of CPILS items for 1 year cohort lung cancer survivors. 
            ( unweighted percent of respondents) 
 

Item Description Missing value   
(%) 

Not a 
Problem 

(%) 

Somewhat 
of a 

Problem    
(%) 

A 
Severe 

Problem   
(%) 

CPILS_A Not being able to change jobs for fear of losing 
my health insurance coverage. 10 73.9 7.97 8.14 

CPILS_B Job discrimination. 11.02 82.03 4.24 2.71 
CPILS_C Concern about relapsing.         6.44 28.81 50.17 14.58 
CPILS_D Fatigue, loss of strength. 4.75 14.92 60.17 20.17 

CPILS_E Uncomfortable with changes in my physical 
appearance. 4.07 49.66 38.31 7.97 

CPILS_F Preoccupation with ill. 4.58 47.97 40.17 7.29 
CPILS_G Eating difficulties. 3.90 62.20 27.12 6.78 

CPILS_H Concern about being physically unable to have 
children. 9.15 87.46 1.53 1.86 

CPILS_I Diminished ability to concentrate. 4.58 53.22 37.63 4.58 
CPILS_J Sleep difficulties. 3.22 38.14 46.27 12.37 
CPILS_K Feeling dependent. 4.41 53.90 33.73 7.97 
CPILS_L Less physically able to have sexual intercourse. 11.02 44.75 26.10 18.14 
CPILS_M Fear about the future. 3.56 33.56 47.80 15.08 
CPILS_N Guilt feelings. 4.41 65.25 24.41 5.93 
CPILS_O Feeling angry. 4.07 58.81 29.66 7.46 
CPILS_P Having difficulties in making long-term plans. 3.73 42.54 40.17 13.56 
CPILS_Q Feeling isolated.     4.24 64.75 24.75 6.27 
CPILS_R Feeling helpless.                                 3.56 56.78 30.85 8.81 
CPILS_S Feeling vulnerable.                               4.92 53.39 34.24 7.46 
CPILS_T Being treated as different from others.           3.39 77.97 16.61 2.03 
CPILS_U Concerned about infection and crowd.               3.56 59.83 29.83 6.78 
CPILS_V Problems with family/children.                   3.39 82.54 10.17 3.90 
CPILS_W Difficulty in returning to former roles.            5.43 57.29 27.97 9.32 
CPILS_X Problem communicating with spouse or partner. 10.17 68.98 15.76 5.08 
CPILS_Y Difficulty in meeting my medical expenses. 4.41 62.20 24.58 8.81 
CPILS_Z Feeling fearful that my illness will return. 4.07 22.03 50.85 23.05 

CPILS_AA Being less able to provide for the financial 
needs of my family 7.97 55.93 23.73 12.37 

CPILS_BB Difficulty in obtaining adequate insurance. 5.25 74.24 12.37 8.14 
CPILS_CC Difficulties in pursuing the career of my choice. 8.47 68.47 11.86 11.19 
CPILS_DD Continued major problems with my health. 4.58 42.03 39.83 13.56 

CPILS_EE Not able to get the information I need about 
cancer. 4.41 81.69 11.36 2.54 
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Chapter 3   

 Clustering Methods 

 

3.1. Distance Clustering (Ward’s Method) 

        3.1.1   General approach to hierarchical clustering 

            An important component of a clustering algorithm is the distance measure between data 

points. Hierarchical cluster analysis is one approach to clustering that uses a basic distance 

measure to systematically group observations. Initially, each individual/object is assigned to its 

own cluster, so that if we have n objects, we start with n clusters and each cluster contains just 

one object. We then find the closest (most similar) pair of clusters and merge them into a new 

group, as a result having one cluster less to begin the next iteration. The program then re-

computes distances (similarities) between the new cluster and each of the remaining old clusters. 

The process is repeated until a certain stopping criterion is met, (typically when all objects are 

clustered into a single cluster of size n). 

 

     3.1.2 Distance measures typically used in hierarchical clustering 

            Inter-object similarity is measured by distance between pairs of objects. The typical ways 

of computing distances between objects in a multi-dimensional space is via Euclidean distances, 

Manhattan distance, or Mahalanobis Distance. Let 1 2 1 2( , , ) , ( , , )i i i iH j j j jHX x x x X x x x′ ′= =L L  

be two H dimensional sample points, and let 
∧

− =Σ )(ˆ 1 Xcor  denote the inverse of the sample
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covariance matrix (assuming it exists).  

 

 Euclidean distances     )()()(),(
1

2
jiji

H

k
jkikjie XXXXxxXD −′−=−=Χ ∑

=

 

Manhattan distance       ||),(
1

jk

H

k
ikji xxXD −=Χ ∑

=

       

Mahalanobis distance       )(ˆ)(),( 1'
jijiji XXXXXXD −Σ−= −  

            For hierarchical clustering of categorical data we use the Manhattan distance metric. The 

distance between objects whose x vector represents categorical responses is typically measured 

using the Manhattan metric.  This distance is simply the sum of the absolute difference across 

dimensions.   

 

      3.1.3 Minimum Variance Clustering (Ward’s method) 

            Ward's method, also known as Minimum Variance clustering uses an analysis of variance 

based metric to evaluate the distances between clusters in a hierarchical clustering algorithm, 

This method attempts to minimize the ANOVA Sum of Squares (SS) of any two clusters that can 

be formed at each step.  The distance between two elements (individuals or previously defined 

clusters) is defined by 

LK

LK
LK

nn

XX
CCD

11
)(

2

,

+

−
= . Where Kn , number of observations in 

clusters KC and { }kHkkK xxxX ...,2,1= , is the mean vector for observations belonging to the cluster 

KC . Cluster LC is defined similarly. A cluster can consist of one point, say point 

{ }HyyyY ,..., 21=  and the distance from this point to cluster KC  for example is 
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n

XY
CYD

11
),(

2

+

−
= .  If we combine two previously defined clusters, say clusters K and L 

into a new cluster LKM CCC ∪=   then the distance ),( MJ CCD  between the cluster JC and  MC   

is given by the combinatorial formula defined as the flexible-beta approach proposed by Lance 

and Williams (1967): 

[ ] ),(),(),(
)(
)(

),( LK
MJ

J
LJKJ

MK

KJ
MJ CCD

nn
n

CCDCCD
nn
nn

CCD
+

−+
+
+

= . 

               In general, Ward's method merges clusters that maximize the multivariate normal 

classification likelihood assuming each level of the hierarchy has the same covariance matrices 

and equal sampling probabilities.  It is regarded as very efficient; however, it is very sensitive to 

outliers. 

 

       3.1.4 Minimum Variance Clustering Applied to SCS Data 

         We use the hclust package in the R language (R-project, see http://www.r-project.org/ ) and 

the following commands to perform a hierarchical cluster analysis using Wards method on the 

CPILS data.  

         D<- dist(cpils.df,method="manhattan") 
    clust.ward<-hclust(D, method="ward") 
 

 where cpils.df is a data frame (matrix) of all coded variable responses for all Lung cancer 

survivor respondents to the SCS I. Please refer to Appendix I for a fuller implementation of R 

program for this analysis.       



                                                                                                                             

14 

         When Ward’s method is applied to the CPILS data from the SCS, the dendrogram resulting 

from the hierarchical clustering process is as given in Figure 3.1. Note there are two clusters that 

are quite far from each other and that one of these clusters can be further divided into two, 

resulting on three clearly separated groups.  
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Figure 3.1 Hierarchical Cluster  Dendrogrom Applied to CPILS Data. 

 
3.2. Model-based clustering 

        3.2.1 General approach to Model-based clustering 

           In model-based clustering, we assume the data come from a mixture of multivariate 

normal or Gaussian distributions. Each component probability distribution corresponds to one of 

the clusters. A specific cluster in this model is often referred to as a component distribution. The 

entire data set is modeled by a mixture of several distributions. Models that differ in members of 

components or in component distributions can be compared. Outliers are handled by adding one

3 clusters
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or more components representing a different distribution for outlying data. Parameters for the 

component distribution are estimated using likelihood techniques. 

           Suppose the model is a mixture of G components (clusters). Each component is assumed 

to follow a multivariate Gaussian distribution parameterized by a mean   vector kµ , and 

covariance matrix kΣ . Denote the data by ( )1 2, , , HX x x x ′= L , X  is normal matrix and assume 

the mixture has G components.  Although our data is discrete 0,1,2. We show this method just 

for comparison purpose.   

The density of mixture component k is assumed to be multivariate normal:  

         
⎭
⎬
⎫

⎩
⎨
⎧ µ−Σ′µ−−Σπ=Σµφ −−−

)()(
2
1exp)2(),|( 12

1
2

kikkik

H

kkk XXX . 

If kτ  is the probability that an observation belongs to the kth component ( ;0≥kτ ),11 =Σ = k
G
k τ the 

likelihood of the full data can be written as the follow mixture: 

                ),|()(
11

kkikk

G

k

n

i
XXL Σµφτ∑∏=

==
                                                          

 
 
Maximum likelihood estimators of the parameters can be computed by using the EM algorithm 

(ref:[8]). In the models considered here, an iteration of EM consists of an E-step followed by an 

M-step. In the E-step, a matrix z is computed such that  ikz  is an estimate of the conditional 

probability that observation i belongs to group k  given the current parameter estimates.  In the 

M-step parameter estimates that maximize the expected log-likelihood from given z are 

computed. The algorithm proceeds as follows. 

1. Initialize parameters. (means, covariances, and mixing proportions) 

Essentially each object is randomly assigned to a group or start with the results of a    

hierarchical clustering. 
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 Assume that each z i  is iid multinomial having probabilities    

Gττ ,......,1 drawn from G groups.  The log-likelihood is: 
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2. E-step: Estimate the conditional probabilities ikz  for all i =1, ..., n, k= 1, ...,G assuming the 

distribution parameters are fixed at their current values. 
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3. M-step: Compute the MLE for each distributional parameters assuming the conditional 

probabilities are fixed at the values obtained in the previous E-step. 
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4. Repeat step 2 and 3 until convergence.  The convergence criterion within the MCLUST 

package in R is specified as a relative convergence tolerance for the log-likelihood ( 5101 −× ) and 

for parameter estimates convergence, respectively. 

            The components or clusters in these models have ellipsoidal confidence regions centered 

at the meansµk  and the covariance matrix kΣ  determines other geometric features. Specification 

of kΣ  is supported by assuming it can be represented by its eigenvalue decomposition in the 

form kkkkk DAD ′=Σ λ , where kλ  is a scalar, kD  is the orthogonal matrix of eigenvectors, and kA  

is a diagonal matrix whose elements are proportional to the eigenvalues of kΣ . The orientation of 

the density contours of the component distributions and also the principal components of kΣ  is 

determined by kD  , while kA determines the shape of the density contours and kλ specifies the 

volume of the corresponding density contours, which is proportional to k
d
k Aλ , where d is the 

data dimension. The covariance structures defining the models are summarized in table 3.1.            

When the model is multivariate normal with an equal-volume spherical covariance Iλ , the 

selection criterion is equivalent the previously discussed Ward’s method. 
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Table 3.1:  Parameterizations of kΣ  currently available in MCLUST for multidimensional 
data.  
 

identifier Model Distribution   Volume          Shape          Orientation 
EII Iλ  Spherical    equal            equal              NA* 
VII Ikλ  Spherical   variable         equal              NA* 
EEI Aλ  Diagonal    equal            equal       coordinate axes 
VEI Akλ  Diagonal   variable         equal       coordinate axes 
EVI kAλ  Diagonal    equal          variable     coordinate axes 
VVI kk Aλ  Diagonal   variable       variable     coordinate axes 
EEE TDADλ  Ellipsoidal     equal           equal              equal 
EEV 

T
kk ADDλ  Ellipsoidal     equal           equal            variable 

VEV 
T
kkk ADDλ  Ellipsoidal  variable          equal            variable 

VVV 
T
kkkk DADλ  Ellipsoidal  variable        variable          variable 

* Spherical shape has no orientation. 
 

             The Bayesian Information Criterion (BIC) is used to decide on the optimal clustering 

model (parameterization and number of cluster). The BIC has the form  

BIC=2* )m(Llog  -(npar)*log(n), where )m(Llog is the maximized log-likelihood for the model 

and data, npar represents the number of parameters to be estimated in the model, and n is the 

number of observations in the data. In general the larger the value of the BIC is, the stronger the 

evidence for the model and number of clusters. 

           According to the description above the strategy for clustering based on mixture models is 

to fit each of the models presented in Table 3.1 for a range of numbers of clusters and compute 

each model’s BIC.  Select the best model from those having the largest BIC. 
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  3.2.2 Application of model-based clustering to CPILS data from the SCS 

             MCLUST is a R package for normal mixture modeling and model-based clustering. It 

provides functions for parameter estimation via EM for the models given in Table 3.1.  The 

following commands produce the clustering results of the CPILS dataset: 

          clust.raw<-Mclust(cpils.df) 
          summary<-summary(mclustBIC(cpils.df), data=cpils.df) 
          plot(clust.raw) 
          table(clust.raw$classification) 
 
 
 The implementation of R program in MCLUST package, please refer to Appendix II. 

           The general model-based clustering approach is applied to the CPILS data from the SCS. 

All models showed in Figure 3.2 were fit to the data assuming 1 to 9 clusters (a total of 46 model 

fits). Using the BIC, the top 3 models were shown in Table 3.2.  According to our protocol, we 

chose as the best model the “VEI” form with 3 components. 

Table 3.2 The Results of Mclust Applied to Raw Data 

VEI model, 3 clusters the  best BIC values: 
1 2 3 VEI,3 VII,3 VEI,2 
88 201 133 -17506.4 -18976 -19209 
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Figure 3.2: BIC plot for raw data of CPILS dataset. 

 

 

3.3 Clustering on Latent factors 

        3.3.1 Latent factors approaches/methods  

               Models in which the orientation is allowed to vary between clusters (EEV, VEV, EVV, 

VVV), have approximately 2d  parameters per cluster, where d is the number of variables 

(dimensions). For this reason, the model-based clustering algorithm for large d may not work 

well or may otherwise be inefficient. It may still be possible to analyze such data with model-

based clustering by restricting the models to fewer dimensions resulting in fewer parameters by 
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first applying a dimension-reduction technique as well as restricting the component shape 

characteristics (e.g. spherical or diagonal models). Our next approach is to first apply standard 

factor analysis or perform an independent factor analysis in order to extract latent factors prior to 

applying the model-based cluster approach. 

              Factor analysis is widely used as an exploratory tool to reduce the dimensionality of 

multivariate data. The underlying assumption of factor analysis is that there exist a number of 

unobserved latent factors that account for the correlations among observed variables. Latent 

factors typically are computed as linear function or weighted sum of the original variables. Via 

the Central Limited Theorem, the resulting factor scores should have more normal-like 

distribution than the original variable values, even in the case where the original variables are 

categorical. The latent factors as a result should have properties that more closely match the 

requirements of the clustering methods. For this reason we examine approaches that first find 

latent factors and then apply clustering to the latent factor scores. We selected two factor analytic 

techniques: Maximum-likelihood estimation of factor analysis (MLE-FA) and independent factor 

analysis for use in this study.   

        

      3.3.2 Application of MLE-FA to CPILS data from SCS 

             Maximum likelihood factor analysis is based on a linear combination of variables to 

form factors, when normality is assumed with large sample sizes. Using the MLE method, the 

linear combination weights (parameters) are estimated by finding the values those most likely to 

have resulted in the observed correlation matrix. One nice characteristic of this approach is that 

MLF generates a chi-square goodness-of-fit test. We can increase the number of factors one at a 

time until a satisfactory goodness of fit is obtained.   



                                                                                                                             

22 

            There are many criteria for determining the number of factors.  Typically we use one or 

more of the methods, determine an appropriate range of numbers of factors to investigate, and 

then select the solution which generates the most comprehensible factor structure. In this study 

we used the Kiser rule (ref: [10]) and scree plot. The Kiser rule is to drop all components with 

eigenvalues under 1.0. The scree plot is used to identify where adding further factors results in 

only marginally additional explanation of total variability (i.e. the point of inflection in the plot). 

The scree plot (figure 3.3) suggests use of 2 or 3 factors. The "eigenvalues greater than one" rule 

suggests a maximum of 6 factors (see table 3.3).  After comparing fits of different number of 

factors, we chose 2 factors for use in further analyses since it also with the number of factors 

chose by the independent factor analysis model which we discuss later. 

             We used the factanal function in the stats package in R and the following 

  commands to fit a two factor model using maximum likelihood methodology. 

cpils.fa<-factanal(cpils.df, factors=2,rotation="promax", 
scores="regression")  
 
           In this model, we chose to rotate the factors using a “promax” procedure.  This procedure 

performs an oblique rotation.   Factor scores were estimated using the “regression” or 

Thompson's methodology (ref: [16]). When oblique rotation is used the resulting factors are 

correlated, so the final factor correlation matrix is not diagonal (see figure 3.4) 

 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                             

23 

Table 3.3: Eigenvalues of  the CPILS Correlation Matrix                                 
Number Eigenvalue Difference Proportion Cumulative 

1 14.594 12.276 0.471 0.471 
2 2.318 0.655 0.075 0.546 
3 1.662 0.340 0.054 0.599 
4 1.322 0.169 0.043 0.642 
5 1.153 0.100 0.037 0.679 
6 1.053 0.150 0.034 0.713 
7 0.903 0.058 0.029 0.742 
8 0.845 0.079 0.027 0.769 
9 0.766 0.112 0.025 0.794 

10 0.655 0.042 0.021 0.815 
11 0.612 0.022 0.020 0.835 
12 0.591 0.018 0.019 0.854 
13 0.573 0.083 0.018 0.872 
14 0.490 0.014 0.016 0.888 
15 0.475 0.041 0.015 0.904 
16 0.434 0.050 0.014 0.918 
17 0.384 0.014 0.012 0.930 
18 0.369 0.063 0.012 0.942 
19 0.306 0.020 0.010 0.952 
20 0.286 0.038 0.009 0.961 
21 0.248 0.027 0.008 0.969 
22 0.221 0.026 0.007 0.976 
23 0.195 0.038 0.006 0.982 
24 0.157 0.023 0.005 0.987 
25 0.134 0.009 0.004 0.992 
26 0.125 0.006 0.004 0.996 
27 0.119 0.037 0.004 1.000 
28 0.082 0.033 0.003 1.002 
29 0.049 0.026 0.002 1.004 
30 0.024 0.169 0.001 1.005 
31 -0.145 -  -0.005 1.000 
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Figure 3.3. Scree Plot                                                  
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 Figure 3.4: plot of factor scores of CPILS data 
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         3.3.3 Model_based clustering of latent factor scores from MLE-FA 

             The MCLUST method as implemented in R and discussed previously was also applied to 

the rotated latent factor scores from standard factor analysis.  The following commands produce 

the clustering results using the latent factor scores: 

          clust.fa<-Mclust(cpils.fa$scores, G=3)  

          plot(clust.fa) 

          table(clust.fa$classification) 
 
 The implementation of R program in MCLUST package, please refer to Appendix III. 

         Figure 3.5 plots BIC of all models that were fit to the data by number of components which 

ranged from 1 to 9. We can see that a best model best is “VEV” with 4 components and a BIC of 

-2011.168. In order to have consistency with other methods to be discussed in this study, we 

chose instead to use the slightly poorer fitting 3 components model “VVV” with BIC of  -

2045.994.  
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Figure 3.5: BIC plot for CPILS dataset (2 factor scores) 
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.             Figure 3.6 shows the density estimation after applying the clustering functions to fit a 

model to the CPILS data.   
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Figure 3.6   Perspective plot of density estimate for CPILS dataset (factor scores)   
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 Figure 3.7 Classification (a) and classification uncertainty (b) plots for 2 factor scores of 
CPILS dataset.  
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               The ellipses shown in Figure 3.7 define equal density regions and illustrate how the 

component covariance matrices have different size, shape and orientation.  In the classification 

plot, points in different classes are indicated by different symbols. In the uncertainty plot, the 

symbols have the following meanings: large filled symbols for 95% quantile of uncertainty; 

smaller open symbols 75-95% quantile; small dots, first three quantiles of uncertainty.  

 

        3.3.4. Independent factor analysis applied to SCS data  

             Independent Factor Analysis (IFA) is a new procedure that does not have a lot of 

associated research literature or use in practice. IFA assumes a latent factor structure that closely 

resembles that of the ordinary un-rotated factor analysis model but which assumes that the latent 

variables are mutually independent and that the density of each latent variable is modeled by a 

mixture of Gaussians distributions.  The model is complex and underlying density parameters are 

estimated by a EM algorithm. The p-dimensional observed variables X are modeled in terms of a 

smaller set of k unobserved independent latent variables, Y, and an additive specific term u via a 

linear function. That is X=HY+u, where u is assumed to be normally distributed with diagonal 

variance matrixΨ . The factor loading matrix H is also referred to as the mixing matrix.  

           The general methodology of IFA has been incorporated into the ifa library in R.  Use of 

the methodology requires first that we choose an IFA model form. A function ifa.em fits a 

specified IFA model by the EM algorithm, and ifa.BIC computes the model-associated Bayesian 

Information Criterion (BIC) defined previously.  According to the formula BIC=2* )(log mL  - 

(npar)*log(n),  each model is run 10 times and model BIC values compared for consistency of fit. 

We chose a model with two factors, one factor having three mixture components and the other 

two mixture components ( the c(3,2) model) as having  the best fit to the CPILS data according 
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to the average largest BIC value criterion.  Table 3.4 shows the BIC and maximum likelihood 

value (LIK) for each model.  After a best fitted model is chosen, the function ifa.predict  is used 

to compute the predicted latent variables also referred to as the “independent factor scores”. 

(Please refer to Appendix III for R implementation) 

 

3.3.5. Model_based clustering of independent factor analysis scores 

          The clustering results can be displayed as follows: 

              best BIC values:                                              classification table: 

    VEV,4     VII,3     VEV,3                                             1        2        3  

-1204.733 -1213.640 -1214.534                                      99     160     163 
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Figure 3.8 BIC plot of CPILS dataset (independent factor scores) 
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In this case, the best model is “VEV” with 4 components and BIC of -1204.733.  Here we picked 

the second best model 3 components model “VII” with BIC of -1213.640.  The spheres shown in 

Figure 3.10 are the component covariance matrices of different size, same shape and no 

orientation. 

Table 3.4 .Bayesian Information Criterion (BIC) and log-likelihood (LIK) for ifa models   
model   1 2 3 4 5 6 7 8 9 10 

c(1,1) BIC -37148 -37132 -37140 -37138 -37132 -37146 -37149 -37132 -37133 -37140 
  LIK -18293 -18285 -18289 -18288 -18285 -18292 -18293 -18285 -18285 -18289 
                        
c(1,2) BIC -37140 -37149 -37158 -37157 -37158 -37141 -37151 -37157 -37146 -37165 
  LIK -18280 -18284 -18289 -18288 -18289 -18280 -18285 -18288 -18283 -18292 
                        
c(2,2) BIC -36808 -36886 -36744 -36842 -37186 -36786 -36751 -36979 -37183 -37163 
  LIK -18105 -18144 -18073 -18122 -18294 -18094 -18076 -18190 -18292 -18283 
                        
c(3.1) BIC -37185 -36899 -37154 -37177 -37168 -37178 -37164 -37015 -36881 -37175 
  LIK -18293 -18150 -18278 -18289 -18285 -18290 -18283 -18209 -18141 -18288 
                        
c(3,2) BIC -36825 -36853 -36807 -37192 -36783 -36806 -36824 -36152 -36719 -35402 
  LIK -18104 -18118 -18095 -18288 -18083 -18095 -18104 -17768 -18051 -17393 
                        
c(3,3) BIC -37221 -36917 -37216 -37217 -36834 -37220 -36891 -37214 -37215 -37219 
  LIK -18293 -18141 -18291 -18291 -18099 -18293 -18128 -18290 -18290 -18292 
                        
c(1,4) BIC -37201 -36870 -36899 -36909 -37202 -37187 -37196 -37190 -37180 -37179 
  LIK -18292 -18127 -18141 -18146 -18293 -18285 -18290 -18287 -18282 -18281 
                        
c(2,4) BIC -37219 -37191 -37206 -36820 -37211 -37201 -36880 -37000 -37204 -37201 
  LIK -18292 -18278 -18285 -18092 -18288 -18283 -18123 -18183 -18285 -18283 
                        
c(3,4) BIC -36877 -37232 -37230 -37227 -37231 -37225 -36853 -37227 -36801 -37236 
  LIK -18112 -18290 -18289 -18287 -18289 -18286 -18100 -18287 -18074 -18292 
                        
c(1,1,1) BIC -37332 -37333 -37320 -37336 -37336 -37335 -37335 -37333 -37335 -37336 
  LIK -18291 -18292 -18285 -18293 -18293 -18293 -18293 -18292 -18293 -18293 
                        
c(1,1,2) BIC -37353 -37349 -37185 -37062 -37338 -37345 -37335 -37335 -37336 -37353 
  LIK -18293 -18291 -18209 -18147 -18285 -18288 -18284 -18284 -18284 -18293 
                        
c(2,2,2) BIC -37386 -37393 -36910 -36798 -37384 -37385 -36775 -37385 -37389 -37383 
  LIK -18291 -18294 -18053 -17997 -18290 -18291 -17986 -18291 -18293 -18290 
                        
c(3,2,2) BIC -37402 -37404 -37402 -37402 -37036 -37297 -37033 -36818 -37402 -37408 
  LIK -18290 -18291 -18290 -18290 -18107 -18238 -18106 -17998 -18290 -18293 
                        
c(1,1,1,1) BIC -37520 -37519 -37522 -37523 -37522 -37512 -37522 -37522 -37520 -37522 
  LIK -18291 -18291 -18293 -18293 -18292 -18287 -18292 -18292 -18292 -18292 
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Figure 3.9  Perspective plot of density estimate for CPILS dataset (independent  
factor scores) 
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Figure 3.10   (a) Classification  and (b) Uncertainty plots for independent factor scores of 
CPILS dataset. 
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3.4  Latent Class Cluster analysis   

         3.4.1 General approaching             

            Latent Class Analysis (LCA) is another relatively new statistical approach for identifying 

unmeasured class membership from multivariate categorical response. The model identified 

classes are called “latent” because a case's underlying class membership is not directly observed. 

LCA does not assume linearity of latent structure, normality of response data, or homogeneity of 

variances. The basic LCA model assumes that the distribution of responses for each observed 

variable can be represented by a finite mixture of the mutually independent latent component 

class response distributions.  

           Suppose we have J categorical variables (the “manifest” variables), each of which contain 

jK possible outcomes, for ni ...1=  individuals. The manifest variables may have different 

numbers of outcomes. But in the case of CPILS, all have the same number (3) possible outcomes. 

Let  ijkY  represent the observed values of the J manifest variables such that ijkY = 1 if individual i 

give the kth response to the jth variable, arnd ijkY  = 0 otherwise, where j = 1...J and k = 1… jK  

The latent class model approximates the observed joint distribution of the manifest variables as 

the weighted sum of a finite number, R, of constituent cross-classification tables. Let  jrkπ  

denote the class-conditional probability that an observation in class r = 1…R produces the kth 

outcome on the jth variable. Within each class, for each manifest variable, therefore, 1
1

=∑
=

jK

k
jrkπ . 

Further denote as rp  the R mixing proportions that provide the weights in 
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the weighted sum of the component tables, with 1
1

=∑
=

R

r
rp .  The probability that an individual i in 

class r produce a particular set of J outcomes on the manifest variables, assuming local 

independence, is the product    

                                    ijk
j

Y
J

j

K

k
jrkiYf )()(

1 1
∏∏
= =

= π  

The probability density function across all classes is the weighted sum 

                            ijk
j

Y
J

j

K

k
jrk

R

r
ri ppY )(),|Pr(

1 11
∏∏∑
= ==

= ππ  

            The parameters estimated by the latent class model are rp  and jrkπ . Given estimates rp̂  

and jrkπ̂  of rp  and jrkπ , respectively, the posterior probability that each individual belongs to 

each class, conditional on the observed values of the 

manifest variables, can be calculated using Bayes' formula: 

                 
∑
=

= R

q
qiq

rir
i

Yfp

Yfp
Yr

1
)ˆ;(ˆ

)ˆ;(ˆ
)|r(P̂

π

π
      

rπ̂  are estimates of outcome probabilities conditional on class r. 

 The latent class model is estimated by maximizing the log-likelihood function 

                                     ijk
j

Y
J

j

K

k
jrk

R

r
r

N

i
pL )(lnln

1 111
∏∏∑∑
= ===

= π  

with respect to rp  and jrkπ  , using the expectation-maximization (EM) algorithm 

This log-likelihood function is identical with the standard finite mixture model log-likelihood. 

(ref:[12])  

The EM algorithm proceeds iteratively: 
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1. Begin with arbitrary initial values of rp̂  and jrkπ̂   

2. In the E step, calculate the unknown class membership probabilities using    
 

       
∑
=

= R

q
qiq

rir
i

Yfp

Yfp
Yr

1
)ˆ;(ˆ

)ˆ;(ˆ
)|r(P̂

π

π
  

    And substituting in old rp̂  and  old jrkπ̂  

3. In the M step, update  ∑
=

=
N

iN 1

1rP̂ )|r(P̂ iYr  as the new prior probabilities and 

  
∑

∑

=

== N

i
i

N

i
iij

jk

Yr

YrY

1

1

)|r(P̂

)|r(P̂
π̂   as the  new  class-conditional outcome probabilities,  jkπ̂  is the  

vector of  length jK of class-r conditional outcome  probabilities for the jth manifest  

 variable. 

4. Repeat step 2 and step 3, until the overall log-likelihood reaches a maximum and stop 

‘   iterating when the overall likelihood or all parameter estimate changes are less than  

     some arbitrarily small value. (In poCLA function, the default value is 10101 −×   when  

     convergence has been reached. ) 

            Once the latent class model is estimated, each case is assigned to the latent class for 

which it has the highest posterior probability of membership.  

           When we determine the number of the classes, The primary method is to iteratively test 

the goodness of fit of models with 2, 3, ..., up to the maximum plausible number of latent classes 

using the likelihood ratio chi-square test or Bayesian Information Criterion. Preferred models are 

those that maximum values of BIC or AIC.  

                         BIC=2* )m(Llog -(npar)*log(n) 



                                                                                                                             

34 

                         AIC=2* )m(Llog -2*(npar) 

We used BIC in this study. 

 

        3.4.2 Applied to SCS data. 

              We used the  poLCA library in R.  The response categories must be denoted by the 

integers 1, 2, ... . since the algorithms do not allow 0 to denote a response level. This required 

recoding of the original CPILS categorical variables from a 0 to 2 scale to a 1 to 3 scale.  

             The following R commands perform latent class clustering analysis: 

f  <- cbind(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, 
          q, r, s, t, u, v, w, x, y, z, aa, bb, cc, dd, ee) ~ 1 
M2<poLCA(f,cpils2.df,nclass=3,na.rm=TRUE,maxiter=1000,graphs=TRUE) 
    
Please refer to appendix IV for R program implementation of latent class clustering  

analysis. 

                                         (a)                                                                         (b) 
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Figure 3.11 plots for assessing the best fitted model by log-likelihood (a) and BIC(b). 
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             From figure 3.11, we determined that the model with 3 latent classes is the best fitted 

model since it has largest BIC value.  

 
Table 3.5. : Classification of individuals based on the their most likely latent class 
membership 

Latent Classes*      Class Counts Proportion
1 181 0.42891 
2 137 0.32464 
3 104 0.24645 

*the membership of class is unordered. 
 
 
              For each observation, the LCA model allows estimation of what class a person belongs 

to by referring to its posterior class membership probabilities. Table 3.5 shows how the original 

422 observations in the CPILS dataset are allocated to the three latent classes with 181 (42.9%) 

categorized as Class 1, 137 (32.5%) as Class 2, and 104 (24.6%) as Class 3.  Table 3.6 shows the 

average latent class probabilities for most likely latent class membership. 

Table 3.6: Average Latent Class Probabilities for Most Likely Latent Class Membership 
(Row) by Latent Class (Column) 

 1 2 3

1 0.971 0.014 0.015

2 0.035 0.965 0.000

3 0.020 0.000 0.980
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Figure 3.12 CPILS items conditional probabilities for 3 classes model 

 

Figure 3.12 presents the estimated class-conditional response probabilities by original CPILS 

question. These are one plot for each latent class or type of individual. For each different CPILS 

item the expected probability of responding 1, 2 or 3 are plotted above the item number.  

Probabilities of responding 1 are linked via a red line across all CPILS items, responding 2 with 

a blue line and responding 3 with a green line. So, for example for CIPLS item one” Not being 

able to change jobs for fear of losing my health insurance coverage”, if one belongs to Class 1, 

one has a 82.9% probability of saying "Not a problem for me" (response 1) , 8.2% chance to say 

“Somewhat a problem to me” (response 2)  and 8.9% chance to say “A severe problem for me” 
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(response 3). If one belongs to Class 2, one has a 92.5% probability of saying "not a problem for 

me", 6.7% chance to say “Somewhat a problem to me” and 0.9% chance to say “A severe 

problem for me”. If one belongs to Class 3, one has a 65.9% chance of saying "not a problem for 

me", 14.3% chance to say “Somewhat a problem to me” and 19.8% chance to say “A severe 

problem for me”. 

A slightly different view of these data is given in Figure 3.13. Since the sum of the 

probabilities of response to a question for any given latent class must sum to 1, these 

probabilities can be displayed on a barycentric graph. The three probabilities for any one 

question in a given class is plotted as one point on this graph. Here the points for all 31 questions 

and three classes are displayed. We see from this plot that individuals in latent class 3 typically 

have higher probabilities for response 3 and near equal probabilities for response 1 and 2. Class 2 

individuals have lower probabilities for response 3 but a mix of questions that have high 

probabilities for response 2.  Finally, latent class 1 individuals typically have high probability of 

response 1 for almost all questions. 
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Figure 3.13  Barycentric coordinate display for 3 classes model 

 

          One other way of visualizing the results of the LCA results is to assign individuals to the 

latent class having the highest posterior probability and then coloring points to identify latent 

class membership in a bivariate scatter plot of the regular factor scores or the independent factor 

scores. This is given in figure 3.14 (a) and (b) respectively.  This graph clearly demonstrates that 

the LCA does separate individuals into distinct clusters with little overlap. 

           

 

 

Class 1 

Class 2 

Class 3 
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Figure 3.14  Plot for latent class classification on (a)fa score and (b) ifa score  
 
   
Table 3.7:  Comparison classifications for 5 methods 
          

  LCA raw fa ifa ward 
 class 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

LCA 1 181 0 0 0 153 28 0 57 124 0 52 129 2 166 13 

 2  137 0 88 48 1 82 6 49 99 6 32 106 31 0 

 3   104 0 0 104 0 104 0 0 102 2 0 6 98 

raw 1    88 0 0 71 0 17 83 0 5 86 2 0 

 2     201 0 11 36 154 16 38 147 22 175 4 

 3      133 0 131 2 0 122 11 0 26 107 

fa 1       82 0 0 73 0 9 78 4 0 

 2        167 0 0 146 21 0 57 110 

 3         173 26 14 133 30 142 1 

ifa 1          99 0 0 89 10 0 

 2           160 0 0 54 106 

 3            163 19 139 5 

ward 1             108 0 0 

 2              203 0 

 3               111 
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3. 5. General application of these methods to categorical data 

             From figure 3.15, we can see that all five methods find clusters underlying the CPILS 

data but that the clusters found do not always have the same membership. This is quantified 

more extensively in table 3.7 where we look at how the clusters of each method overlap with 

those of the other methods. There does seem to exist at least 3 latent clusters among the lung 

cancer survivors. Latent class analysis (LCA) seems to have done a nice job on clustering these 

categorical data. 
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Figure 3.15 Display of the results of 5 methods classification on CPILS data
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Chapter 4   

 Simulation Study 

4.1   Introduction 

               In the previous chapter, we examined the ability of several techniques to cluster the 

SCS categorical data. In this chapter, we present some simulations in order to study the validity 

of the methods. As was seen in the previous chapter, the LCCA model did a good job in 

clustering observations into relevant groups. Since it can be used for identifying groups of 

observations in multivariate categorical data, estimating the characteristics of these groups, and 

predicting the probability that each observation belongs to each group, we use the latent class 

model's posterior probabilities to create a simulated dataset that can be used to test not only the 

properties of the latent class estimator, but also the properties of the other clustering methods 

which were used in the previous chapter, and then compare and contrast  simulation results for 

each method to see what is actually happening. 

 

4.2   Simulation Methods 

        4.2.1. Generating categorical responses – use of LCCA method 

              We use the poLCA package in R to first generate a random sample using appropriate 

normal probability distributions, and then create simulated categorical data by applying the class-

conditional outcome probabilities (please refer to Figure 3.12) and class mixing proportions 

(class population shares, please refer to table 3.5) from the 
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output of the application of the three latent class model of the real CPILS dataset. The simulated 

data allows us to know the "true" class membership for each observation. So we use this known 

“true” classification to compare with the classification produced by the application of different 

methods to the simulated data, and as a result can evaluate their accuracy of clustering. 

 

        4.2.2 Clustering Methods applied to simulated data. 

            In this section, we applied the five clustering approaches which were used in the previous 

chapter to the simulation data. Methods examined include the distance clustering (Ward’s 

method), Model-based clustering on raw data, Model-based clustering on factor scores, Model-

based clustering on independent factor scores and latent class (LCCA) clustering methods. 

(Please refer to appendix VI for program implementation in  R) 
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Figure 4.1 Hierarchical cluster dendrogrom applied to one simulated set of data 

             Figure 4.1 Applys hierarchical cluster analysis to the simulation data. It indicates three 

clusters clearly.  
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            Figure 4.2 shows BIC values for model-based clustering on 3 sets of input data, (a) the 

best model is “VEI” on raw data. (b) The best model is “VVV” on factor score data. (c) the best 

model is “VEI” on independent factor score data. 
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2 4 6 8

-2
20

0
-2

00
0

-1
80

0
-1

60
0

number of components

B
IC

EII
VII
EEI
VEI
EVI

VVI
EEE
EEV
VEV
VVV

 
 

Figure 4.2 BIC for a simulated dataset, (a). Raw data.    (b). Factor scores.   (c). 
Independent factor scores. 
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Table 4.1 Classification compare with actual class  

  LCA raw fa ifa ward total 
true 

class 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3   
1 1 157 0 0 0 158 155 0 3 2 0 156 4 0 154 158 
2 1 0 149 19 131 0 0 142 8 3 147 0 1 149 0 150 
3 187 0 5 187 3 2 0 3 189 187 5 0 179 11 2 192 
 189 157 154 206 134 160 155 145 200 192 152 156 184 160 156 500 
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Figure 4.3 Simulated Data conditional Probabilities for 3 Classes Model 
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             Table 4.1 shows the classification results of the 5 methods applying for one simulated 

dataset of 500 observations, and comparison with the true class.  
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Figure 4.4 Barycentric coordinate display for 3 classed model 
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Figure 4.5 Comparison of 5 methods classification
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4.3 Results 

             The different clustering models were applied to 20 simulated dataset and we recorded the 

proportions of the misclassification for each method. Table 4.3 summarizes the misclassification 

for each method and presents means, standard deviation, and 95% confidence interval for the 

whole experiment. Given that proportions are typically not normally distributed, the arcsine 

square root transformation is used to normalize the percentages for analysis purpose. In table 4.3 

the arcsine of the square root of the raw data: )(sin 1
ii pp −=′  is first computed, then means and 

standard deviation are computed on the transformed data, and finally these means and 95% CI 

are converted it back into units of the raw data by taking the sine of the squared results (in this 

case, the 95% confident interval is estimated by 2)*96.1sin( DSp ′±′ ). 

            One-Way Analysis of Variance is one way to test the equality of three or more means at 

one time. We use the GLM procedure in SAS to test for mean equality on the transformed data 

(please refer to appendix VII for SAS program). From the SAS code output we compute a P-

value that is <0.001 suggesting that at least one mean is significant different from other means.  

Using Tukey HSD multiple comparison procedures we analyze pairs of means to determine 

where the significant differences lie. The results are shown in Table 4.3. 
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Table 4.2: Summary of Misclassification 

  
Latent class 

analysis 

Model-based 
cluster on factor 

scores 

Model-based 
cluster on 

independent 
factor scores Ward’s method 

Model-based 
cluster on raw 

data 
1 1.00% 1.60% 2.00% 2.40% 5.60% 
2 1.00% 1.40% 3.60% 3.40% 4.00% 
3 2.20% 6.00% 9.00% 7.40% 12.20% 
4 1.20% 3.20% 5.00% 3.00% 9.80% 
5 1.40% 4.40% 5.80% 4.20% 9.40% 
6 1.00% 2.00% 2.00% 4.40% 4.60% 
7 0.80% 0.80% 1.20% 1.80% 1.80% 
8 2.00% 1.80% 2.00% 3.60% 3.80% 
9 1.00% 1.80% 3.00% 4.20% 3.00% 
10 1.00% 1.40% 3.20% 3.40% 4.00% 
11 2.20% 6.60% 8.40% 7.40% 12.20% 
12 0.80% 1.80% 1.80% 3.40% 7.20% 
13 2.00% 3.00% 2.60% 4.20% 11.80% 
14 1.00% 1.00% 1.20% 5.00% 2.80% 
15 2.00% 1.80% 2.20% 6.00% 3.40% 
16 0.80% 1.60% 1.40% 3.00% 4.40% 
17 1.80% 2.00% 1.80% 4.00% 2.40% 
18 1.00% 1.40% 3.20% 3.40% 4.00% 
19 2.20% 6.60% 9.00% 7.40% 12.20% 
20 1.00% 1.80% 3.00% 4.20% 3.00% 

 Sample size=500           
Average   1.33% 2.38% 3.27% 4.22% 5.71% 
Standard deviation 0.54% 1.83% 2.54% 1.61% 3.72% 
95% confidence 
 interval* (0.50%,2.55%) (0.29%,6.49%) (0.34%,9.16%) (1.69%,7.89%) (0.83%,14.92%) 

*Based on Arcsine square root Transformation predictors 

 

4.4 Discussion 

          From Table 4.2, it is clear that the latent class (LCCA) model yields the smallest 

misclassification when clustering these simulated categorical data, followed by model-based 

clustering on factor scores data and then model-based clustering on independent factor score data. 

Although Ward’s method has higher misclassification, it also has a smaller standard deviation 

and hence smaller confidence interval, so it’s maybe more reliable.  Model-based clustering on 

raw categorical data seems to have the highest misclassification rate, suggesting that it may not 

be advisable to use the raw data directly for clustering categorical data. From table 4.3, we can 
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see that the performance of model-based clustering on raw data is significantly poorer than that 

of the other three methods except for Ward’s method. There are few differences between model-

based clusters on factor scores and clusters based on independent factor scores. These findings 

also suggest that the latent class clustering method may be the most appropriate method 

categorical data. But, given that the simulation model data are originally generated according to 

an LCCA model structure it is not surprising that the LCCA clustering produced the best fit.  

What is surprising is that model-based clustering on factor analysis scores produced clusters that 

were very similar to that produced by the LCCA fit. Given that LCCA requires more complex 

fitting methodology and specified software whereas software for factor analysis and model-based 

clustering are much more readily available, it would seem useful to use this second method as a 

starting point for clustering categorical data. 

 

                               Table 4.3 Result of Tukey’s HSD comparisons 
 

Means with the same letter are not 
significantly different. 

Tukey Grouping Mean* N Method 

 A 0.23908 20 raw 

 A  

B A 0.20545 20 ward 

B   

B C 0.18075 20 ifa 

 C  

D C 0.15442 20 fa 

D   

D  0.11529 20 lca 
                                             * Based on Arcsine square root Transformation data 

 



                                                                                                                             

52 

4. 5 Conclusion and further consideration.              

             From the above analysis and discussion, we can conclude that all these five methods will 

cluster categorical data, but their accuracy is different.  

Among them, the latent class clustering method seems the most appropriate method for 

clustering categorical data. Model-based clustering on raw categorical data with the assumption 

of multivariate normal clusters produces results that are clearly poorer than the other methods. 

The similarity of the model-based clustering of the common factor scores suggests a starting 

point for applications, especially with high dimensions.  

The small sample size of this simulation study places limitations on the conclusions that can 

be made. In the future this study should be replicated with hundreds of simulated samples and from more 

than one underlying latent class structure. Other clustering technique, such as the use of Ward’s clustering 

or a K-means clustering on the common factor scores should be examined as well.  
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APPENDICES 
 

Appendix I:  Implementation in R for Section 3.1 
 
#load all the required packages for this thesis 
library(ifa) 
library(Rcmdr) 
library(ade4) 
library(mclust) 
library(psy) 
library(poLCA) 
library(TeachingDemos) 
 
#write CPILS dataset from my local drive  
cpils<- read.table("C:/Documents and Settings/lguo/My 
Documents/thesis/cpils.csv", header=TRUE, sep=",", na.strings="NA", 
dec=".", strip.white=TRUE) 
attach(cpils) 
 
#delete the missing values 
cpils<-as.matrix(cpils) 
cpils.data <- na.omit(cpils) 
cpils.df<-data.frame(cpils.data) 
names(cpils.df) 
dim(cpils.df) 
 
 
#================================================================ 
#                        Hierarchical clustering 
#================================================================ 
 
# Hierarchical clustering  using manhattan metric and Ward's  
# method 
D<-  dist(cpils.df,method="manhattan") 
clust.ward<-hclust(D, method="ward") 
 
# plot hierarchical Dendrogram 
plot(clust.ward, labels=FALSE,main=NULL, hang=0.05,axes=TRUE, 
frame.plot=FALSE, ann=TRUE, sub=NULL, ylab="height") 
 
#cut the tree into three clusters  
clust.ward3 <- cutree(clust.ward,k=3) 
 
#show the size of each cluster 
table(clust.ward3) 
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Appendix II: Implementation in R for Section 3.2 
 
#================================================================ 
#                   Model-based clustering on raw data 
#================================================================ 
 
# Cluster the raw data 
clust.raw<-Mclust(cpils.df) #return a best model 
names(clust.raw) 
summary<-summary(mclustBIC(cpils.df), data=cpils.df) 
#specify the range of models and numbers of clusters to be #considered 
summary 
 
#plot BIC  
plot(clust.raw) 
 
#show the size of classification 
table(clust.raw$classification) 
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Appendix III: Implementation in R for Section 3.3 
 
#================================================================ 
#                Model-based clustering on factor scores 
#================================================================ 
 
#****Factor analysis: this is the maximum likelihood method  **** 
 
# First perform a principal components analysis and compute SCREE 
#plot 
cpils.pca <- princomp(~.,data=cpils.df,cor=TRUE) 
cpils.pca 
 
cpils.fa<-factanal(cpils.df, factors=2,rotation="promax", 
scores="regression") # varimax is the default 
 
names(cpils.fa) 
cpils.fa$loadings 
cpils.fa$uniquenesses 
cpils.fa$scores 
 
#produce the SCREE plot. 
par(mfrow=c(1,2)) 
scree.plot(cpils.df,use="P") 
 
# add p screeplots of simulated random normal data  
scree.plot(cpils.df,use="P",simu=20)  
#plot factor scores 
plot(cpils.fa$scores, main="factor scores") 
fa.scores <- data.frame(cpils.fa$scores) 
 
#plot 3D plot if factors=3 
with(fa.scores,scatter3d(Factor1,Factor2,Factor3,surface=FALSE, 
point.col="red",sphere.size=1.5) ) 
x <- with(fa.scores,identify3d(Factor1,Factor2,Factor3,col="blue")) 
 
# Cluster the 2 factor scores  
clust.fa<-Mclust(cpils.fa$scores, G=3) 
names(clust.fa) 
summary<-summary(mclustBIC(cpils.fa$scores),G=3, data=cpils.fa$scores) 
summary 
 
#plot BIC  
plot(clust.fa) 
 
#display perspective plot of density estimate 
apply(cpils.fa$scores,2,range) 
x<-grid1(60,range=range(cpils.fa$scores[,1])) 
y<-grid1(60,range=range(cpils.fa$scores[,2])) 
xy<-grid2(x,y) 
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xyDens<-
dens(modelName=clust.fa$modelName,data=xy,parameters=clust.fa$paramete
rs) 
xyDens<-matrix(xyDens,nrow=length(x), ncol=length(y)) 
par(pty="m") 
Z<-xyDens 
persp(x=x,y=y,z=Z,main="Perspective Plot", expand=0.5, 
box=TRUE,xlab="factor1",ylab="factor2", zlab="Density") 
par(mfrow=c(1,2)) 
 
#display the classification, uncertainty 
par(mfrow=c(1,2)) 
mclust2Dplot(data=cpils.fa$scores,what="classification",identify=TRUE,
parameters=clust.fa$parameters,z=clust.fa$z) 
mclust2Dplot(data=cpils.fa$scores,what="uncertainty",identify=TRUE,par
ameters=clust.fa$parameters,z=clust.fa$z) 
 
 
 
#================================================================ 
#          Model-based clustering on independent factor scores 
#================================================================ 
 
#************   independent factor analysis model  ************** 
 
# the function to choose the optimal model 
MYFIT<-function(size) 
{ 
ndf<-length(size) 
#init.values<-ifa.init.random(cpils.df,ndf) 
fit<-ifa.em(cpils.df,size,it=200,eps=0.0001,scaling=TRUE) 
#list(H=fit$H,L=fit$L,NumVar=fit$numvar,NumObs=fit$numobs,W=fit$w, 
#MU=fit$mu,VU=fit$vu,BIC=ifa.bic(fit),LIK=fit$lik, 
#PSI=diag(fit$psi)) 
list(BIC=ifa.bic(fit),LIK=max(fit$lik))} 
 
#select the best model by BIC  
MYFIT(c(1,1)) 
MYFIT(c(2,1)) 
MYFIT(c(2,2)) 
MYFIT(c(3,1)) 
MYFIT(c(3,2)) 
MYFIT(c(3,3)) 
MYFIT(c(1,4)) 
MYFIT(c(2,4)) 
MYFIT(c(3,4)) 
MYFIT(c(4,4)) 
MYFIT(c(1,1,1)) 
MYFIT(c(2,1,1)) 
MYFIT(c(2,2,1)) 
MYFIT(c(2,2,2)) 



                                                                                                                             

59 

MYFIT(c(3,1,1)) 
MYFIT(c(3,2,1)) 
MYFIT(c(3,2,2)) 
MYFIT(c(3,3,1)) 
MYFIT(c(3,3,2)) 
MYFIT(c(3,3,3)) 
MYFIT(c(2,2,2,2)) 
 
# Cluster the ifa scores 
size <- c(3,2)  
ndf <- 2 
fit2<-ifa.em(cpils.df,size,it=400,eps=0.0001,scaling=TRUE) 
y_hat.df<-data.frame(ifa.predict(cpils.df, fit2)) 
clust.ifa<-Mclust(y_hat.df) 
 
 
#display perspective plot of density estimate of CPILS data 
apply(y_hat.df,2,range) 
x<-grid1(60,range=range(y_hat.df[,1])) 
y<-grid1(60,range=range(y_hat.df[,2])) 
xy<-grid2(x,y) 
xyDens<-
dens(modelName=clust.ifa$modelName,data=xy,parameters=clust.ifa$parame
ters) 
xyDens<-matrix(xyDens,nrow=length(x), ncol=length(y)) 
par(pty="m") 
Z<-xyDens 
persp(x=x,y=y,z=Z,main="Perspective Plot",theta=30,phi=15,expand=0.5, 
box=TRUE,xlab="ifa score1",ylab="ifa score2", zlab="Density") 
par(mfrow=c(1,2)) 
 
#plot BIC 
plot(clust.ifa) 
 
#show the size of classification 
table(clust.ifa$classification) 
 
#display the classification, uncertainty 
par(mfrow=c(1,2)) 
mclust2Dplot(data=y_hat.df,what="classification",identify=TRUE,paramet
ers=clust.ifa$parameters,z=clust.ifa$z) 
mclust2Dplot(data=y_hat.df,what="uncertainty",identify=TRUE,parameters
=clust.ifa$parameters,z=clust.ifa$z) 
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Appendix IV: Implementation in R for Section 3.4 
 
#===============================================================# 
#                latent class clustering analysis               # 
#===============================================================# 
## models without covariates: 
## M0: Loglinear independence model. 
## M1: Two-class latent class model. 
## M2: Three-class latent class model. 
 
#recode cpils categorial variables 0=1, 1=2, 2=3 
cpils2<- read.table("C:/Documents and Settings/lguo/My 
Documents/thesis/cpils2.csv", header=TRUE, sep=",", na.strings="NA", 
dec=".", strip.white=TRUE) 
attach(cpils2) 
 
#delete the missing values 
cpils2<-as.matrix(cpils2) 
cpils2.data <- na.omit(cpils2) 
cpils2.df<-data.frame(cpils2.data) 
names(cpils2.df) 
dim(cpils2.df) 
 
library(poLCA) 
#define model formula f: 
f  <- cbind(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, 
u, v, w, x, y, z, aa, bb, cc, dd, ee) ~ 1 
 
M0<-poLCA(f,cpils2.df,nclass=1,na.rm=TRUE,maxiter=8000)               
M1<-poLCA(f,cpils2.df,nclass=2,na.rm=TRUE,maxiter=8000)                
M2<poLCA(f,cpils2.df,nclass=3,na.rm=TRUE,maxiter=1000,graphs=TRUE)    
M3<-poLCA(f,cpils2.df,nclass=4,na.rm=TRUE,maxiter=8000)                
M4<-poLCA(f,cpils2.df,nclass=5,na.rm=TRUE,maxiter=8000)               
M5<-poLCA(f,cpils2.df,nclass=6,na.rm=TRUE,maxiter=8000)           
M6<-poLCA(f,cpils2.df,nclass=7,na.rm=TRUE,maxiter=8000)  
              
# What is best fitting model 
llik_L<-c(M0$llik,M1$llik,M2$llik,M3$llik, M4$llik,M5$llik, M6$llik) 
bic_L<-c(-M0$bic,-M1$bic,-M2$bic,-M3$bic,-M4$bic,-M5$bic,- M6$bic) 
par(mfrow=c(1,2)) 
plot(1:7, llik_L,type="b",xlab="size", ylab="log_likelihood") 
plot(1:7, bic_L,type="b",xlab="size", ylab="BIC") 
 
#estimated class-conditional response probabilities 
M2$probs 
 
# plot conditional probabilities for 3 classes model 
cl<-data.frame(M2$probs) 
dim(cl) 
 
plotlca<-function(class, title) 
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{ 
plot(c(1,31), c(0,1.05), xlab="Cpils Items", ylab="Probability", 
main=title) 
lines(c(1:31),c(cl[class,seq(1,91,3)]), col="red",type="o",pch=1) 
lines(c(1:31),c(cl[class,seq(2,92,3)]), col="blue",type="o",pch=6) 
lines(c(1:31),c(cl[class,seq(3,93,3)]), col="green4",type="o", pch=22) 
legend(2.5,1.05, c("Category 1", "Category 2", "Category 3"),cex=0.5, 
lty=c(1,1,1),pch=c(1,6,22),col=c("red", "blue", "green4"),  merge=TRUE) 
} 
 
par(mfrow=c(3,1)) 
plotlca(1, "Class 1: P=0.42891") 
plotlca(2, "Class 2: P=0.32464") 
plotlca(3, "Class 3: P=0.24645") 
 
#plot triplot 
c1 <- matrix(1,nrow=31, ncol=4)  # class 1 probabilities 
c2 <- matrix(2,nrow=31, ncol=4)  # class 2 probabilities 
c3 <- matrix(3,nrow=31, ncol=4)  # class 3 probabilities 
 
for (ques in (1:31)) 
{ 
   class <-M2$probs[[ques]]       
   c1[ques,1:3] <- class[1,] 
   c2[ques,1:3] <- class[2,] 
   c3[ques,1:3] <- class[3,] 
} 
qs <- rep(rep(1:31,1),3) 
clc <-rbind(c1, c2,c3)  
 
triplot(clc[,1:3],txt=qs,col=clc[,4],pch=clc[,4],labels=c("Resp 
1","Resp 2","Resp 3"),cex=.7) 
 
#comparision classifications for consistency 
table(M2$predclass,clust.raw$classification) 
table(M2$predclass,clust.fa$classification) 
table(M2$predclass,clust.ifa$classification) 
table(clust.raw$classification,clust.fa$classification) 
table(clust.raw$classification,clust.ifa$classification) 
table(clust.fa$classification,clust.ifa$classification) 
table(clust.ward3,clust.M2$predclass) 
table(clust.ward3,clust.raw$classification) 
table(clust.ward3,clust.fa$classification) 
table(clust.ward3,clust.ifa$classification) 
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Appendix V: Implementation in R for Section 3.5 
 
#*****  Comparison of 5 methods Applied on CPILS dataset ******* 
 
DoAn <- function(newc.df,pclass) 
{ 
  # Cluster the raw data 
  clust.raw<-Mclust(newc.df,G=3) 
 
  # Cluster the 2 factor scores 
  cpils.fa<-factanal(newc.df, factors=2,rotation="promax",  
  scores="regression") 
  clust.fa<-Mclust(cpils.fa$scores,G=3) 
 
  # Cluster the ifa scores 
  size <- c(3,2)  
  ndf <- 2 
  fit2<-ifa.em(newc.df,size,it=400,eps=0.0001,scaling=TRUE) 
  y_hat.df<-data.frame(ifa.predict(newc.df, fit2)) 
  clust.ifa<-Mclust(y_hat.df,G=3) 
 
  # Hierarchical clustering  using manhattan metric and Ward's method 
  D<-dist(newc.df,method="manhattan")  
  clust.ward<-hclust(D, method="ward") 
 
  #cut the tree into three clusters and reconstruct the upper part of  
  #the tree from the cluster centers.  
  clust.ward3 <- cutree(clust.ward,k=3) 
 
  # Plot cluster membership on different orientations 
  attach(newc.df) 
  f1 <- cbind(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s,  
    t, u, v, w, x, y, z, aa, bb, cc, dd, ee) ~ 1 
  clust.lca<-  
  poLCA(f1,newc.df,nclass=3,na.rm=TRUE,maxiter=8000,graphs=FALSE)  
  
  #  Plot using factor orientations. 
 
  par(mfrow=c(2,5)) 
  plot(cpils.fa$scores[,1:2],pch=clust.raw$classification, 
  col=clust.raw$classification,main="Raw") 
  plot(cpils.fa$scores[,1:2],pch=clust.fa$classification,  
  col=clust.fa$classification,main="FA-1:2") 
  plot(cpils.fa$scores[,1:2],pch=clust.ifa$classification,  
  col=clust.ifa$classification,main="IFA") 
  plot(cpils.fa$scores[,1:2],  
  pch=clust.ward3,col=clust.ward3,main="Ward") 
  plot(cpils.fa$scores[,1:2],pch=clust.lca$predclass, 
  col=clust.lca$predclass,main="LCA") 
 
  # Plot using ifa factor orientations. 
  plot(y_hat.df[,1:2],pch=clust.raw$classification, 
  col=clust.raw$classification) 
  plot(y_hat.df[,1:2],pch=clust.fa$classification,col=clust.fa$classification) 
  plot(y_hat.df[,1:2],pch=clust.ifa$classification, 
  col=clust.ifa$classification) 
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  plot(y_hat.df[,1:2],pch=clust.ward3,col=clust.ward3) 
  plot(y_hat.df[,1:2],pch=clust.lca$predclass, col=clust.lca$predclass) 
  # Compare classifications for consistency 
  t.raw <-table(clust.raw$classification,pclass) 
  t.ifa <-table(clust.ifa$classification,pclass) 
  t.fa <-table(clust.fa$classification,pclass) 
  t.ward<-table(clust.ward3,pclass) 
  t.lca <- table(clust.lca$predclass,pclass) 
  t.fa_ifa<-table(clust.fa$classification,clust.ifa$classification) 
 
  list(t.raw=t.raw,t.ifa=t.ifa,t.fa=t.fa,t.ward=t.ward,t.lca=t.lca, 
      t.fa_ifa=t.fa_ifa) 
 } 
 
DA <-DoAn(cpils2.df,pclass=M2$predclass) 
DA 
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Appendix VI: Implementation in R for section 4.2 
 
#**************************************************************** 
#                        Simulation study  
#**************************************************************** 
 
#recode cpils categorial variables 0=1, 1=2, 2=3 
cpils2<- read.table("C:/Documents and Settings/lguo/My 
Documents/thesis/cpils2.csv", header=TRUE, sep=",", na.strings="NA", 
dec=".", strip.white=TRUE) 
attach(cpils2) 
 
#delete the missing values 
cpils2<-as.matrix(cpils2) 
cpils2.data <- na.omit(cpils2) 
cpils2.df<-data.frame(cpils2.data) 
names(cpils2.df) 
dim(cpils2.df) 
 
# create simulated categorical data by applying the class-conditional 
outcome #probabilities and class mixing proportions from the output of 
the #application of the three latent class model to the real CPILS 
dataset. 
f  <- cbind(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s,  
    t, u, v, w, x, y, z, aa, bb, cc, dd, ee) ~ 1 
M2<-poLCA(f,cpils2.df,nclass=3,na.rm=TRUE,maxiter=1000,graphs=TRUE) 
    
# The function check model-based clustering for three sets of data: 
raw data, # factor scores and independent factor scores 
CheckBest <- function(newc.df) 
{ 
  # Cluster the raw data 
  clust.raw<-Mclust(newc.df) 
 
  # Cluster the 2 factor scores 
  cpils.fa<-factanal(newc.df, factors=2,rotation="promax",  
  scores="regression") # varimax is the default 
  clust.fa<-Mclust(cpils.fa$scores)  
   
  # Cluster the ifa scores 
  size <- c(3,2)  
  ndf <- 2 
  fit2<-ifa.em(newc.df,size,it=400,eps=0.0001,scaling=TRUE) 
  y_hat.df<-data.frame(ifa.predict(newc.df, fit2)) 
  clust.ifa<-Mclust(y_hat.df) 
 
  #display BIC plots 
  plot(clust.raw) 
  dev.next(2) 
  plot(clust.fa) 
  dev.next(2) 
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  plot(clust.ifa) 
  dev.next(2) 
 } 
  
# Fit best cluster model with three clusters to all three sets of 
#data. 
DoAn <- function(newc.df,pclass) 
{ 
  # Cluster the raw data 
  clust.raw<-Mclust(newc.df,G=3) 
 
  # Cluster the 2 factor scores 
  cpils.fa<-factanal(newc.df, factors=2,rotation="promax", 
  scores="regression")   
  clust.fa<-Mclust(cpils.fa$scores,G=3) 
 
  # Cluster the ifa scores 
  size <- c(3,2)  
  ndf <- 2 
  fit2<-ifa.em(newc.df,size,it=400,eps=0.0001,scaling=TRUE) 
  y_hat.df<-data.frame(ifa.predict(newc.df, fit2)) 
  clust.ifa<-Mclust(y_hat.df,G=3) 
 
  # Hierarchical clustering  using manhattan metric and Ward's  
  # method 
  D<-dist(newc.df,method="manhattan")        
  clust.ward<-hclust(D, method="ward") 
 
  #cut the tree into three clusters and reconstruct the upper 
  # part of the  
  #tree from the cluster centers.  
  clust.ward3 <- cutree(clust.ward,k=3) 
 
  # Plot cluster membership on different orientations 
  attach(newc.df) 
  f1 <- cbind(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q,  
        r, s,  
    t, u, v, w, x, y, z, aa, bb, cc, dd, ee) ~ 1 
  clust.lca<- 
  poLCA(f1,newc.df,nclass=3,na.rm=TRUE,maxiter=8000,graphs=FALSE)  
  
  #  Plot using factor orientations. 
  par(mfrow=c(2,5)) 
  plot(cpils.fa$scores[,1:2],pch=clust.raw$classification,  
       col=clust.raw$classification,main="Raw") 
  plot(cpils.fa$scores[,1:2],pch=clust.fa$classification,  
       col=clust.fa$classification,main="FA-1:2") 
  plot(cpils.fa$scores[,1:2],pch=clust.ifa$classification,  
  col=clust.ifa$classification,main="IFA") 
  plot(cpils.fa$scores[,1:2],  
  pch=clust.ward3,col=clust.ward3,main="Ward") 
  plot(cpils.fa$scores[,1:2],pch=clust.lca$predclass,  
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      col=clust.lca$predclass,main="LCA") 
 
  # Plot using ifa factor orientations.  
  plot(y_hat.df[,1:2],pch=clust.raw$classification,    
       col=clust.raw$classification) 
    
plot(y_hat.df[,1:2],pch=clust.fa$classification,col=clust.fa$classific
ation) 
  plot(y_hat.df[,1:2],pch=clust.ifa$classification, 
  col=clust.ifa$classification) 
  plot(y_hat.df[,1:2],pch=clust.ward3,col=clust.ward3) 
  plot(y_hat.df[,1:2],pch=clust.lca$predclass, col=clust.lca$predclass) 
 
  # Compare classifications for consistency 
  t.raw <-table(pclass,clust.raw$classification) 
  t.fa <-table(pclass,clust.fa$classification) 
  t.ifa <-table(pclass,clust.ifa$classification) 
  t.ward<-table(pclass,clust.ward3) 
  t.lca <- table(pclass,clust.lca$predclass)  
  list(t.raw=t.raw,t.fa=t.fa,t.ifa=t.ifa,t.ward=t.ward,t.lca=t.lca) 
} 
 
#generate simulated dataset  
xk <- matrix(rnorm(500,mean=0,sd=2.0),nrow=500,ncol=1) 
newcp <- 
poLCA.simdata(N=500,probs=M2$probs,nclass=3,x=xk,classdist=M2$P,missva
l=FALSE) 
newc.df <- newcp$dat[,1:31] 
names(newc.df) <- names(cpils.df)  
 
CheckBest(newc.df) 
DA <-DoAn(newc.df,pclass=newcp$trueclass) 
DA 
 
# plot Hierarchical dendrogram 
plot(clust.ward, labels=FALSE,main=NULL, hang=0.05,axes=TRUE, 
frame.plot=FALSE, ann=TRUE, sub=NULL, ylab="height") 
 
# plot conditional probabilities for 3 classes model 
cl<-data.frame(clust.lca$probs) 
cl 
 
dim(cl) 
 
plotlca<-function(class, title) 
{ 
plot(c(1,31), c(0,1.05), xlab="Cpils", ylab="Probability", main=title) 
lines(c(1:31),c(cl[class,seq(1,91,3)]), col="red",type="o",pch=1) 
lines(c(1:31),c(cl[class,seq(2,92,3)]), col="blue",type="o",pch=6) 
lines(c(1:31),c(cl[class,seq(3,93,3)]), col="green4",type="o", pch=22) 
legend(2.5,1.05, c("Category 1", "Category 2", "Category 3"),cex=0.5, 
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       lty=c(1,1,1),pch=c(1,6,22),col=c("red", "blue", "green4"), 
merge=TRUE) 
} 
par(mfrow=c(3,1)) 
plotlca(1, "Class 1") 
plotlca(2, "Class 2") 
plotlca(3, "Class 3") 
 
c1 <- matrix(1,nrow=31, ncol=4)  # class 1 probabilities 
c2 <- matrix(2,nrow=31, ncol=4)  # class 2 probabilities 
c3 <- matrix(3,nrow=31, ncol=4)  # class 3 probabilities 
 
#plot triplot 
for (ques in (1:31)) 
{ 
   class <-lca$probs[[ques]]       
   c1[ques,1:3] <- class[1,] 
   c2[ques,1:3] <- class[2,] 
   c3[ques,1:3] <- class[3,] 
} 
qs <- rep(rep(1:31,1),3) 
clc <-rbind(c1, c2,c3)  
 
triplot(clc[,1:3],txt=qs,col=clc[,4],pch=clc[,4],labels=c("Resp 
1","Resp 2","Resp 3"),cex=.7) 
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Appendix VII: Implementation in SAS for section 4.3 
 
********************************************************************* 
*                SAS code for one way ANOVA test                    * 
*********************************************************************; 
 
data test; 
input grp $ ca @@; 
cards; 
lca 0.1002 lca 0.1002 lca 0.1489 lca 0.1098 lca 0.1186 
lca 0.1002 lca 0.0896 lca 0.1419 lca 0.1002 lca 0.1002 
lca 0.1489 lca 0.0896 lca 0.1419 lca 0.1002 lca 0.1419 
lca 0.0896 lca 0.1346 lca 0.1002 lca 0.1489 lca 0.1002 
fa 0.1268 fa 0.1186 fa 0.2475 fa 0.1799 fa 0.2113 
fa 0.1419 fa 0.0896 fa 0.1346 fa 0.1346 fa 0.1186 
fa 0.2598 fa 0.1346 fa 0.1741 fa 0.1002 fa 0.1346 
fa 0.1268 fa 0.1419 fa 0.1186 fa 0.2598 fa 0.1346 
ifa 0.1419 ifa 0.1909 ifa 0.3047 ifa 0.2255 ifa 0.2432 
ifa 0.1419 ifa 0.1098 ifa 0.1419 ifa 0.1741 ifa 0.1799 
ifa 0.2940 ifa 0.1346 ifa 0.1620 ifa 0.1098 ifa 0.1489 
ifa 0.1186 ifa 0.1346 ifa 0.1799 ifa 0.3047 ifa 0.1741 
ward 0.1555 ward 0.1855 ward 0.2755 ward 0.1741 ward 0.2064 
ward 0.2113 ward 0.1346 ward 0.1909 ward 0.2064 ward 0.1855 
ward 0.2755 ward 0.1855 ward 0.2064 ward 0.2255 ward 0.2475 
ward 0.1741 ward 0.2014 ward 0.1855 ward 0.2755 ward 0.2064 
raw   0.2389 raw 0.2014 raw 0.3568 raw 0.3184 raw 0.3116 
raw 0.2162 raw 0.1346 raw 0.1962 raw 0.1741 raw 0.2014 
raw 0.3568 raw 0.2717 raw 0.3507 raw 0.1681 raw 0.1855 
raw 0.2113 raw 0.1555 raw 0.2014 raw 0.3568 raw 0.1741 
; 
run; 
 
ods rtf; 
proc glm data=test; 
class grp; 
model ca=grp; 
means grp/ tukey ; 
run; 
ods rtf close; 
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********************************************************************* 
*                               SAS OUTPUT                          * 
*********************************************************************; 
 
                                        The GLM Procedure 
 
                                    Class Level Information 
 
                          Class         Levels    Values 
 
                          grp                5    fa ifa lca raw ward 
 
 
                            Number of Observations Read         100 
                            Number of Observations Used         100 
 
Dependent Variable: ca 
 
                                              Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
      Model                        4      0.17949622      0.04487406      15.79    <.0001 
 
      Error                       95      0.26992689      0.00284134 
 
      Corrected Total             99      0.44942311 
 
 
                       R-Square     Coeff Var      Root MSE       ca Mean 
 
                       0.399393      29.77937      0.053304      0.178997 
 
 
      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
      grp                          4      0.17949622      0.04487406      15.79    <.0001 
 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
      grp                          4      0.17949622      0.04487406      15.79    <.0001 

 
                          Tukey's Studentized Range (HSD) Test for ca 
 
 NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher 
                                 Type II error rate than REGWQ. 
 
                          Alpha                                   0.05 
                          Error Degrees of Freedom                  95 
                          Error Mean Square                   0.002841 
                          Critical Value of Studentized Range  3.93274 
                          Minimum Significant Difference        0.0469 
 
 
                Means with the same letter are not significantly different. 
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                      Tukey Grouping          Mean      N    grp 
 
                                   A       0.23908     20    raw 
                                   A 
                              B    A       0.20545     20    ward 
                              B 
                              B    C       0.18075     20    ifa 
                                   C 
                              D    C       0.15442     20    fa 
                              D 
                              D            0.11529     20    lca 
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