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DIRECT ADJUSTMENT METHOD ON AALEN’S ADDITIVE HAZARDS 

MODEL FOR COMPETING RISKS DATA 

by 

HACI MUSTAFA AKCIN 

Under the Direction of Dr. Xu Zhang 

ABSTRACT 

Aalen’s additive hazards model has gained increasing attention in recently years 

because it model all covariate effects as time-varying. In this thesis, our goal is to explore 

the application of Aalen’s model in assessing treatment effect at a given time point with 

varying covariate effects. First, based on Aalen’s model, we utilize the direct adjustment 

method to obtain the adjusted survival of a treatment and comparing two direct adjusted 

survivals, with univariate survival data.  Second, we focus on application of Aalen’s 

model in the setting of competing risks data, to assess treatment effect on a particular 

type of failure. The direct adjusted cumulative incidence curve is introduced. We further 

construct the confidence interval of the difference between two direct adjusted 

cumulative incidences, to compare two treatments on one risk.  

 

INDEX WORDS: Direct adjustment method, Aalen’s additive hazards model, 

Competing risks, Survival analysis, Cumulative incidence function, Survival function  
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CHAPTER I. INTRODUCTION 

The survival curves of different treatments are often presented in medical articles to 

visualize the efficacy of treatments. When the failure time data is obtained from a clinical trial, 

one can directly present the crude survival curve of each treatment group. When observational 

data is utilized, one needs to analyze data with appropriate regression model and compute the 

adjusted survival curve of a treatment based on the regression model.  

There are two methods to compute the adjusted survival curve of a treatment based on a 

regression model. The first method is known as the mean covariate method. For this method, one 

computes the survival probabilities for an individual with the average covariate values, given a 

treatment. Let  be the vector of average covariates. Let A denote treatment assignment, 

where . ) should be computed and viewed as the survival probability for 

treatment k. This method has the drawback that the covariate value for the average patient may 

be meaningless for categorical variables. For example, if the covariate gender is coded as 0 for 

male and 1 for female, it would be difficult to interpret the survival for an average patient the 

gender covariate value 0.7.  

The second method is the direct adjustment method, which computes the average survival 

curve over the entire sample, given a treatment (Makuch, 1982; Chang, Gelman and Pagano, 

1982; Gail and Byar, 1986). This method is also known as the group prognosis method. For a 

sample of size n, let Zi be the vector of characteristics for the ith individual. The direct adjusted 

survival curve is given by 



 Z                               

Lee et al. (1992) and Ghali et al. (1986) provided the computer programs in SAS, STATA, and 

S-plus for obtaining the direct adjusted survival curves based on a Cox model (Cox,1972). The 

asymptotic results of the direct adjusted survival curves based on a Cox model and a Weibull 

regression model were studied by Gail and Byar (1986). Zhang et al. (2007) gave the asymptotic 

results of such curves based on a stratified Cox model and provided a SAS macro to derive the 

curves and their confidence limits. 

Cox model is the most commonly used regression model to assess covariate effect with 

failure time data. It is known that Cox model is a multiplicative hazards model, and the effect of 

covariate is multiplicative on the baseline level. Another principle framework to analyze failure 

time data is additive models, in which the hazard of a risk factor is often an additive increment 

on the baseline hazard. A nonparametric additive hazards model was proposed by Aalen (1989, 

1993). Aalen gave the least-square estimation of the regression coefficients. Huffer and 

McKeague (1991) proposed a weighted least-square estimation approach, which specifically 

addresses the problem of the unequal variances. Lin and Ying (1994) proposed an additive 

hazards model that assumes constant covariate effect. An additive hazards model that includes 

both time-varying effect and constant effect was studied by McKeague and Sasieni (1994).  

Aalen’s model has gained important attention in recent years because the effects of all 

covariates are modeled as time-varying (Martinussen and Scheike, 2006). Such a model does not 

require the constant proportional or additive hazards assumption between levels of a covariate, 

which is crucial for other regression models like Cox model or Lin and Ying’s model. In this 

thesis, we wish to explore the application of Aalen’s model in assessing treatment effect with 



time-varying covariate effect. The aforementioned direct adjustment method shall be adopted to 

give adjusted treatment effect. Our first goal is to estimate direct adjusted survival of a treatment, 

and compare the direct adjusted survivals of two treatments at a given time. This has been 

implemented in a SAS macro and illustrated in stem cell transplant example.  

The second goal of this thesis is to illustrate the application of Aalen’s model with 

competing risks data. It has been pointed out that additive hazard model is consistent with the 

nature of competing risks data (Klein, 2005). It often appears in clinical articles that, with 

competing risks data, all cause-specific hazards and the all-cause hazard are specified as Cox 

models. Klein explicitly criticized this approach. Consider a study with two competing risks. Let 

z  and z  be cause-specific hazards. Let z be the hazard for the all-cause 

failure time. By definition, z  z  z . If one wishes to model all the above 

hazard rate functions by Cox models, that is,  

z z ,      

 z z ,      

 z z ,        

then one would expect the following relationship,  

z  z  z .    

Klein explained that the above equation holds only in some rare situations and the problem of 

internal inconsistency exists. Klein suggested additive hazard model for competing risks 

problems and specifically analyzed a real example with Aalen’s model as well as Lin and Ying’s 

model. In Klein’s paper, only the individual covariate adjusted cause-specific hazard and 

cumulative incidence function were presented.  



In this thesis we apply the direct adjustment method to compute the cause-specific hazard 

and cumulative incidence function, on the basis of Aalen’s additive model. We give the 

confidence limits for the direct adjusted cause-specific hazard and cumulative incidence function 

for one type of failure. Treatment comparison regarding a given cause is implemented by 

constructing the confidence intervals of the difference between two direct adjusted cumulative 

incidence functions. We apply the methods to data of breast cancer patients from SEER registry. 

In this example, three competing risks exist: breast cancer, vascular disease, and other causes. 

The primary goal is to compare two treatments: breast conserving surgery and mastectomy. We 

wish to assess the effectiveness of treatments with respect to each type of failure and the all-

cause failure. 

The thesis is organized in the following way. Chapter 2 consists of three sections. In 

Section 2.1, we briefly review Aalen’s model. In Section 2.2, we give the asymptotic results for 

the direct adjusted survival curve based on Aalen’s model, and then describe the macro that 

reports the direct adjusted survival curves. In Section 2.3 we utilize the Aalen’s model to analyze 

competing risks data; we illustrate how to compare two treatments for a particular type of failure 

at a given time. The results from a simulation study are reported in Chapter 3. We analyze two 

real examples in Chapter 4 to illustrate the methods described in this thesis. The concluding 

remarks are given in Chapter 5. 



CHAPTER II. METHODS 

 

2.1 The Additive Hazards Model 

Let T and C denote the failure time and the censoring time. For a sample of size n, the observed 

data can be summarized as  for , where  and 

, Zi is a p-dimensional vector of covariates with . Note 

that we have set the covariate vector as a row vector. Let be the counting process for the ith 

subject of the sample, where . Aalen’s model specify the intensity 

process of  as 

,   2.1 

where , is the at risk indicator, and  is a vector of 

regression coefficients. The integrated regression coefficient is given by  

.      2.2 

Aalen (1989) considered least-square estimation of B(t). Let  

and let  be a  matrix with the ith row given by 

.    2.3 

The Nelson-Aalen estimator of   is given by 

    d     2.4 

where          .     2.5 

and . 



Define 

     .     2.6 

An estimator of the mean squared error function,  

,    2.7 

is given by  

diag d   2.8 

It is often desirable to predict the survival probability for an individual with given covariates. 

Given z, the cumulative hazard at t, , can be estimated by  

d .     2.9 

An estimator of survival probability is  

.    2.10 

For fixed z, variance of is given by , which can be estimated by  

2.2 The Direct Adjusted Survival Curves and the Macro 

Suppose that a study involves m treatments. We wish to estimate the overall survival for the ith 

treatment for i = 1, …, m. We can split the covariate vector Z in two components,  and , 

where  is the coding for treatment assignment and specifies patient’s characteristics. 

Specifically, Z = ( , . Please note that is fixed and  can be time-dependent. We further 

let X be the treatment index, corresponding to a specific coding of . For example, consider a 

study involving four treatments, we will let X  and treat the effect of treatment 1 as 



baseline; X = 1 would be equivalent to , X = 2 would be equivalent to , 

and etc. We define  

i = 1, …, m,   2.12 

with the understanding that the value of X should be replaced by the corresponding value of . 

We further add a subscript l to z
i
 to let  be the characteristics of the lth patient. Let  

denote the direct adjusted survival of the ith treatment for i = 1, …, m, that is, 

.  can be estimated by 

    2.13                                    

Applying the delta method, we derive the variance of , which can be estimated by 

  2.14 

It is important to study the difference between two direct adjusted survivals, 

,                2.15 

It can be estimated by . The variance of can be estimated by 

  2.16 

We have implemented a SAS macro to compute the above estimators. Before we run the 

macro we should prepare a SAS data set to contain the following variables: a variable of the 



failure time, a censoring indicator (which should be coded as 1 for an event occurs and 0 for 

censoring), a variable of treatment which should be coded as 1,…K, and the variables for 

patients’ characteristics. This SAS macro can be used for both continuous and categorical 

variables. An m-level categorical prognostic risk factor should be coded as (m-1) binary 

variables. For example, suppose that race is included in the regression and it contains four levels 

of White, Black, Hispanic and Other. We may treat White as the reference level and create three 

binary variables of Black (1 for Black, 0 otherwise), Hispanic (1 for Hispanic, 0 otherwise), and 

Other (1 for Other, 0 otherwise), for the race factor. 

Suppose that our macro is saved as a SAS file with the file name “estimate.sas”. One can 

save a copy of the file in the current working directory, and then use the following SAS 

statement to load the macro into the current program. 

% include ‘estimate.sas’ ; 

The macro will be invoked by running the following statement; 

% estimate (indata, time, event, group, option, covlist, outdata)   

where;   

 indata     the input SAS data set name  

 time      the variable of failure time  

 event        the variable of event indicator  

 group        the variable of treatment indicator 

 option        the variable of covariate indicator ( 1 with covariates, 0 without )   

 covlist        a list of all covariates 



 outdata      the SAS output data set name 

        The results of the macro will be saved in a SAS output data set named “outdata” and 

printed in the output window. The output data set includes the failure time variable, the estimated 

direct adjusted survivals and their estimated standard errors, as well as the estimated standard 

errors of the differences between two direct adjusted survivals. ’s and their estimated 

standard errors are given by “surv1, …, survK, se1, …, seK”. The estimated standard errors 

  for  are given by “se12, …, se ”. 

2.3 The Direct Adjusted Cause-Specific Hazards and Cumulative Incidence Functions 

In medical researches, the problems of competing risks often arise. For example, breast cancer 

patients usually have a relatively long-term post-surgery survival. Such patients may finally die 

from other causes instead of cancer. The survival of bone marrow transplant patients is another 

example of competing risks. Some patients die shortly after transplant due to graft-versus-host 

disease, and the other competing risk is leukemia relapse. For the problems of competing risks, 

the occurrence of one type of failure precludes other types of failure.  

It is known that, in the setting of competing risks, the cumulative incidence function is an 

important quantity to evaluate the cumulative failure probability due to a particular cause, with 

existence of other types of failure. In some applications, the cause-specific hazard has been 

utilized as well as criteria to compare effect of different groups. However, its drawback is 

obvious: the cause-specific hazard is meaningful in the hypothetical setting that other competing 

risks are removed. Therefore, in this thesis, we emphasize on the cumulative incidence function. 

For comparison, the result on cause-specific hazard is provided as well.  



With covariates, the cumulative incidence function is defined as a function of all cause-

specific hazards, , where z) z) ) and z) is 

the cumulative hazard due to the kth cause for given covariate values z. Certain regression 

models needs to be specified for cause-specific hazards. It has been pointed out that the 

framework of additive hazards models is a solution to modeling the cause-specific hazards with 

the competing risks data (Klein, 2005). When effects of covariates are time-varying, Aalen’s 

model is the appropriate model. Let z be the row vector including 1, for intercept, and the 

covariate values. One needs to specify, 

z  z k   

The all-cause hazard should be the sum of all cause-specific hazards. Let . 

Then, Aalen’s model can properly model the all-cause hazard, 

z  z . 

Let  be the estimator of the regression function of the kth cause-specific hazard. A 

natural estimator of the regression function of the all-cause hazard would the sum of the 

estimators of the regression functions of all cause-specific hazards. The covariate adjusted 

cumulative hazard due to the kth cause is given by z) = z du. The overall survival 

can be estimated by z) z) ). 

In this thesis, we apply the direct adjustment method to give inference on assessing 

treatment effect with respect to a specific type of failure. Suppose that K types of failure exist. In 

order to simply the notations, we consider two treatments only, but the results can be easily 



extended to a setting with more than two treatments. Let X indicates the treatment group index, 

where . We define       

   2.17 

Let Aik(t) be the direct adjusted cumulative hazard of the ith treatment for the kth type of failure. 

It can be estimated by 

2.18 

Let  be the difference in the adjusted cumulative hazard between two treatments for the kth 

type of failure, 

                           2.19 

Variances of  and  can be estimated by 

   2.20 

           2.21 

We define to be the cumulative incidence function of treatment i for the kth type of failure. 

The direct adjusted estimator of 

2.22 

Its variance can be estimated by 



2.23 

where  

2.24

2.25

The difference of cumulative incidence functions between two treatments is often of 

study interest. Let  Obviously,  We have derived 

the variance formula of . The estimated variance is given by 

2.26 

where 

2.27 

2.28 



CHAPTER III. SIMULATION STUDY 

The settings considered in the simulation study include two treatments (1 and 2). Both 

discrete and continuous covariates have been simulated in the study. Treatment assignment was 

determined by generating a Bernoulli random variable with the probability 0.5 to be assigned to 

treatment 1, and the probability 0.5 to be assigned to treatment 2.   

First, we conducted simulation on settings with discrete covariates. We let treatment 1 be 

the better treatment option with the baseline cumulative hazard 0.1t, an term should be 

added to the cumulative hazard if the observation is in treatment 2 group. Three covariates, , 

and  were generated from Bernoulli distributions with the probability 0.5 to take the value 

1. Given t, the cumulative hazard will be increased by 0.05t, , if , or  takes the 

value 1, respectively.  

In summary, given z, the cumulative hazard with treatment 1 is  

        ,    3.1 

and the cumulative hazard with treatment 2 is 

.   3.2 

Utilizing the relation , we applied the inverse transform method to 

generate failure time T. First, a random unit, U, needs to be generated. Then the failure time T, 

given treatment 1, shall be obtained by the following formulas with various values of z, 

i. , , 

ii. , , 



iii. , , 

iv. , , 

v. , , 

vi. , , 

vii. , , 

viii. ,  

Given treatment 2, the failure time can be generated by the following formulas, 

i. ,   , 

ii. , , 

iii. , , 

iv. ,     , 

v. , , 



vi. ,   , 

vii. ,   , 

viii. ,     

The censoring time was generated from the Uniform distribution [0, a]. The value of a 

was chosen to yield the censoring rates 25% and 50%. We considered sample size 100 and 200, 

1000 replicates were simulated for each setting. The simulation results are shown in Table 1 and 

Table 2. In the tables, we report the difference between the average of the estimated directed 

survival probabilities and the true values, the empirical standard errors, the averages of the 

estimated standard errors, and the 95% coverage. For 95% coverage, we computed three types of 

confidence intervals. They are linear, log-log transformed and arcsine-square-root transformed 

confidence intervals.  

For the second set of simulation, we considered continuous covariates. We still let 

treatment 1 be the better treatment option with the baseline cumulative hazard , the cumulative 

hazard for treatment 2 was set to be  higher. The covariates , and  were generated 

from a standard Normal distribution. We further set, given z, the cumulative hazard with 

treatment 1 is  

,    3.3 

and the cumulative hazard with treatment 2 is 

.    3.4 



The failure time was generated using the inverse transform method. First, generate a random 

unit, U. The failure time T, given treatment 1, is obtained by 

. 

Given treatment 2, the failure time can be generated by  

. 

 The censoring time was generated from the Uniform distribution [0, a]. We simulated 

settings with the censoring rates 25%, 50%, and the sample size 100, 200. 1000 replicates were 

utilized. The simulation results are shown in Table 3 and Table 4.  

According to Table 1-4, the average estimated standard errors are quite close to the 

empirical standard errors when the regression model contains only continuous covariates, but 

they are slightly smaller than the empirical standard errors for models with discrete covariates. 

Through all settings, the log-log transformed confidence interval consistently performs better 

than the linear or arcsine-square-root transformed confidence interval, and should be strongly 

recommended.  



Table 1: Simulation results for discrete covariates with censoring rate 25% 

 

t  0.75  1  1.25  1.5  1.75  2.0 

 

n = 100    

 

 

 

Bias  0.005  0.008          0.013          0.016          0.017  0.021 

Empirical SE 0.056           0.065           0.071          0.075          0.077  0.074 

Estimated SE 0.053          0.061           0.067            0.071         0.072  0.072 

Linear-Cov.  0.901          0.920          0.918         0.908           0.919  0.927 

LogLog-Cov.  0.962      0.955      0.951      0.936      0.936  0.944 

Arcsin-Cov. 0.929      0.937      0.930      0.917      0.926  0.931 

 

 

 

Bias  0.006           0.008          0.010          0.012           0.012  0.017 

Empirical SE 0.056          0.065          0.073          0.074          0.077  0.077 

Estimated SE 0.055          0.064          0.069          0.072          0.072  0.072 

Linear-Cov. 0.928          0.925         0.916           0.929          0.922  0.921 

LogLog-Cov. 0.963  0.954  0.947  0.949  0.939  0.938 

Arcsin-Cov. 0.943      0.941      0.925      0.936      0.926  0.925 

 

n = 200   

 

 

 

Bias  0.003      0.005      0.007      0.008      0.008  0.010

Empirical SE 0.039      0.045      0.050      0.052      0.052  0.052 

Estimated SE 0.038      0.044      0.048      0.050      0.051  0.051 

Linear-Cov.  0.926      0.938      0.932      0.931      0.935  0.934

LogLog-Cov.  0.959      0.949      0.947      0.951      0.948  0.945  

Arcsin-Cov. 0.948      0.948      0.936      0.939      0.936  0.937 

 

 

 

Bias  0.004      0.004      0.006      0.007      0.007  0.006

Empirical SE 0.041      0.048      0.050      0.053      0.054  0.054 

Estimated SE 0.039      0.045      0.049      0.051      0.051  0.050 

Linear-Cov. 0.920      0.937      0.947      0.939      0.929  0.928 

LogLog-Cov.  0.956      0.954      0.965      0.955      0.937  0.934 

Arcsin-Cov. 0.934      0.948      0.954      0.942      0.935  0.930 



Table 2: Simulation results for discrete covariates with censoring rate 50% 

 

t  0.75  1  1.25  1.5  1.75  2.0 

 

n = 100    

 

 

 

Bias  0.006  0.010          0.015          0.020          0.023  0.030 

Empirical SE 0.058           0.068           0.077          0.083          0.088  0.091 

Estimated SE 0.055          0.065           0.073            0.078         0.083  0.086 

Linear-Cov.  0.908          0.925          0.917         0.913           0.922  0.919 

LogLog-Cov.  0.958      0.954      0.949      0.941      0.951  0.940 

Arcsin-Cov. 0.928      0.938      0.931      0.921      0.934  0.925 

 

 

 

Bias  0.006           0.009          0.012          0.016           0.019  0.025 

Empirical SE 0.058          0.070          0.079          0.081          0.086  0.092 

Estimated SE 0.057          0.067          0.074          0.079          0.082  0.085 

Linear-Cov. 0.925          0.919         0.915           0.931          0.929  0.923 

LogLog-Cov. 0.962  0.948  0.948  0.941  0.948  0.939 

Arcsin-Cov. 0.948      0.941      0.932      0.953      0.934  0.925 

 

n = 200   

 

 

 

Bias  0.003      0.006      0.007      0.008      0.011  0.014

Empirical SE 0.041      0.048      0.054      0.058      0.059  0.062 

Estimated SE 0.039      0.047      0.052      0.056      0.058  0.059 

Linear-Cov.  0.931      0.929      0.926      0.927      0.934  0.932

LogLog-Cov.  0.956      0.952      0.943      0.940      0.947  0.947  

Arcsin-Cov. 0.946      0.935      0.931      0.933      0.936  0.936 

 

 

 

Bias  0.005      0.005      0.007      0.008      0.009  0.009

Empirical SE 0.043      0.050      0.054      0.060      0.061  0.062 

Estimated SE 0.041      0.048      0.053      0.056      0.058  0.059 

Linear-Cov. 0.928      0.938      0.945      0.931      0.932  0.922 

LogLog-Cov.  0.945      0.950      0.956      0.939      0.945  0.928 

Arcsin-Cov. 0.938      0.948      0.952      0.937      0.938  0.925 



Table 3: Simulation results for continuous covariates with censoring rate 25% 

 

t   0.2  0.4  0.6  0.8  1.0 

 

n = 100  

 

 

 

Bias   -0.008      0.001      0.011      0.018      0.024

Empirical SE  0.067      0.051      0.066      0.077      0.080 

Estimated SE  0.026      0.050      0.067      0.077      0.081 

Linear-Coverage  0.885      0.930      0.935      0.931      0.939 

LogLog-Coverage 0.848      0.960      0.959      0.946      0.956 

Arcsin-Coverage 0.922      0.948      0.949      0.942      0.942 

 

 

Bias   -0.008      0.003      0.010      0.016      0.022 

Empirical SE  0.068      0.056      0.071      0.078      0.075 

Estimated SE  0.031      0.057      0.072      0.076      0.073 

Linear-Coverage 0.919      0.938      0.944      0.936      0.921 

LogLog-Coverage  0.893      0.970      0.971      0.949      0.932 

Arcsin-Coverage 0.937      0.956      0.956      0.939      0.928 

 

n = 200 

 

 

 

Bias   -0.006     -0.003      0.000      0.004      0.009 

Empirical SE  0.021      0.037      0.049      0.054      0.056

Estimated SE  0.020      0.036      0.048      0.054      0.055 

Linear-Coverage 0.918      0.936      0.935      0.944      0.945 

LogLog-Coverage  0.920      0.944      0.947      0.951      0.956 

Arcsin-Coverage 0.952      0.945      0.944      0.947      0.946 

 

 

Bias   -0.002      0.001      0.003      0.008      0.008 

Empirical SE  0.023      0.041      0.052      0.055      0.053 

Estimated SE  0.022      0.041      0.051      0.054      0.050  

Linear-Coverage 0.916      0.948      0.934      0.945      0.933  

LogLog-Coverage  0.958      0.955      0.941      0.953      0.941 

Arcsin-Coverage 0.938      0.951      0.938      0.948      0.933 



Table 4: Simulation results for continuous covariates with censoring rate 50% 

 

t   0.2  0.4  0.6  0.8  1.0 

 

n = 100 

 

 

 

Bias   -0.008      0.001      0.013      0.024      0.047

Empirical SE  0.067      0.053      0.072      0.089      0.113

Estimated SE  0.027      0.053      0.073      0.088      0.113 

Linear-Coverage 0.880      0.932      0.926      0.923      0.920 

LogLog-Coverage  0.840      0.962      0.969      0.944      0.948 

Arcsin-Coverage 0.919      0.946      0.946      0.935      0.926 

 

 

Bias   -0.008      0.003      0.013      0.020      0.037 

Empirical SE  0.068      0.059      0.078      0.090      0.101 

Estimated SE  0.032      0.059      0.078      0.087      0.097  

Linear-Coverage 0.911      0.925      0.943      0.928      0.933  

LogLog-Coverage  0.891      0.967      0.962      0.950      0.946 

Arcsin-Coverage 0.935      0.951      0.952      0.933      0.939 

n = 200 

 

 

Bias   -0.005     -0.002      0.002      0.007      0.016      

Empirical SE  0.022      0.038      0.052      0.061      0.067

Estimated SE  0.020      0.038      0.052      0.061      0.068 

Linear-Coverage  0.912      0.941      0.947      0.941      0.948 

LogLog-Coverage  0.918      0.953      0.962      0.959      0.960 

Arcsin-Coverage 0.950      0.949      0.956      0.948      0.954 

 

 

 

Bias   -0.002      0.001      0.005      0.011      0.016 

Empirical SE  0.023      0.043      0.057      0.062      0.064  

Estimated SE  0.023      0.043      0.055      0.061      0.062  

Linear-Coverage 0.913      0.936      0.923      0.935      0.931 

LogLog-Coverage 0.964      0.956      0.939      0.946      0.937 

Arcsin-Coverage 0.948      0.946      0.928      0.944      0.930 



CHAPTER IV. EXAMPLES 

4.1 Example 1 

The goal of study is to compare three types of stem cell transplantation in treating follicular 

lymphoma patients. The study cohort consists of 904 follicular lymphoma patients who received 

either allogeneic or autologous transplant between 1990 and 1999 and reported to the 

International Bone Marrow Transplant Registry. Among these 904 patients, 176 received 

allogeneic transplant, 131 received purged autologous transplant, and 597 received unpurged 

autologous transplants. The median follow up times for survivors are 36, 49 and 41 months for 

allogeneic, purged autologous and unpurged autologous transplant recipients. Distribution of risk 

factors in three transplant groups is shown in Table 5. It seems that that the purged autologous 

transplant group contained more healthy patients than the other two groups. In the purge 

autologous group, relatively more patients had high Karnofsky scores (87%) and were in the 

early stage of disease (53%). Differences in patients’ baseline profiles between transplant groups 

need to be adjusted when one compares three types of transplantation. This data set was 

originally analyzed by Besien et al. (2003). Because the hazards between transplant groups are 

apparently nonproportional, Besien et al. considered a Cox model stratified on transplant groups. 

Aalen’s model gives more flexibility on modeling covariate effects. We wish to reanalyze the 

data set and we are interested in comparison in the survival between transplant groups at 3-year 

and 5-year after transplant. 

 The macro described in Section 2.2 was applied to give us the comparison results. First, 

we made a SAS data set that included the following variables: “time”=failure time; 

“death”=death indicator; “transplant”=1 for unpurged auto transplant, 2 for purged auto 

transplant, 3 for allogeneric transplant; “stage”=1 if disease is in advanced stage, 0 otherwise; 



“chemo1”=1 if chemosensitivity is resistant; “chemo2”=1 if chemosensitivity is untreated / 

unknown, 0 otherwise; “LHD1”=1 if LHD is abnormal; “LHD2”=1 if LHD is unknown; 

“kscore”=1 if Karnofsky is 90%- 100%; “DX2T1”=1 if interval from diagnosis is 1-2 years; 

“DX2T2”=1 if interval from diagnosis is more than 2 years; and “age”=1 if older than 40; 

“year1”=1 if year of diagnosis  between 1994-1996 ; “year2”=1 if year of diagnosis greater or 

equal to 1997. The macro was loaded by %include statement and invoked by  

%estimate (data, time, event, group, stage chemo1 chemo2 LHD1 LHD2 kscore DX2T1 

DX2T2 age year1 year2 , out). 

The direct adjusted survival curves of three types of transplant have been plotted in 

Figure 1. In the figure, two autologous transplants yield better survival outcome than allogeneic 

transplant, during the majority study period. Among two autologous transplants, they have 

similar survival outcome within 1 year post transplant, while purged transplant give higher 

survival rate after 1 year. Figure 2-4 shows the differences between any two transplants and their 

confidence intervals. These figures suggest obvious changes in treatment effect over time.  

We further select the time points, 3 year and 5 year, to assess effects of transplants. 

Comparison of survival rates between any two transplants, at the given time points, is given in 

Table 6. At both time points, unpurged autologous transplant yields lower survival probabilities 

than purged autologous transplant. However, the effect is only marginally significant (p-values: 

0.1075 and 0.0869, respectively). Compared to allogeneic transplant, two autologous transplants 

have significant better result in terms of three-year survival rate (p-values: 0.0087 and 0.0019, 

respectively). Two autologous transplant still outperform allogeneic transplant in terms of five 

year survival rate (p-values: 0.0694 and 0.0465, respectively), however, the magnitude has been 

reduced.  



Table 5:   Groups and risk factors for transplantation of follicular lymphoma patients__  

 

 

    _Unpurged   Purged   Allogeneic____ 

 

Total    597   131    176  

 

Stage 

 

Early    350  (59%)  69  (53%)  85 (48%) 

Advanced   247  (41%)  62  (47%)  91 (52%) 

 

Chemosensitivity 

 

Sensitivity   488  (82%)  111  (85%)  118 (67%) 

Resistant   66  (11%)  14  (11%)  31 (18%) 

Untreated/unknown  43   (7%)  6 (4%)  27 (15%) 

     

LHD 

 

Normal    389  (65%)  55  (42%)  117 (67%) 

Abnormal   174  (29%)  27  (21%)  44 (25%) 

Unknown   34 (6%)  49 (37%)  15 (8%)  

 

Karnofsky score 

 

No more than 80%  183  (31%)  17  (13%)  60 (34%) 

90%-100%   414  (69%)  114  (87%)  116 (66%) 

 

Interval from diagnosis 

 

Less than 1 yr   115  (19%)  27  (21%)  26 (15%) 

1-2 yrs    156  (16%)  32  (24%)  56 (32%) 

More than 2 yrs   326 (55%)  72 (55%)  94 (53%) 

 

Age group 

 

No older than 40  100  (17%)  22  (17%)  77 (44%) 

Older than 40   497  (83%)  109  (83%)  99 (56%) 



Table 6:  Direct adjusted survivals of unpurged-auto (S1), purged-auto (S2) and allogenic (S3)__ 

 

 

___________ S1  SE  S2  SE  S3  SE 

 

 

36 months 0.651  0.020  0.708  0.041  0.546  0.038    

60 months 0.550  0.025  0.626  0.049  0.517  0.042 

 

 _____  S1-S2  SE(S1-S2) p-value 

 

36 months -0.057  0.046  0.1075 

 

60 months -0.075  0.055  0.0869 

   

 

                        S1-S3  SE(S1-S3) p-value 

36 months  0.105  0.044  0.0087 

60 months  0.033  0.049  0.0694 

   

 

_________ S2-S3  SE(S2-S3) p-value 

36 months  0.162  0.056  0.0019 

60 months  0.108  0.064  0.0465 







4.2 Example 2

In this study, we would compare the direct adjusted cumulative incidence probabilities between 

two treatment options (mastectomy vs. breast conserving surgery) for early staged breast cancer 

patients. The study cohort was selected from the published SEER cancer case registry. The 

Surveillance, Epidemiology, and End Results (SEER) program collects all cancer cases 

occurring in the participating SEER sites and periodically publish the database to give source to 

clinicians and epidemiologist who conduct various cancer-related research projects. The SEER 

registry was initiated in 1973 with 9 sites and has now been expanded to 13 sites, covering 26% 

of the US population. In our study, female breast cancer cases were selected if a patient was 

diagnosed with stage I/II breast cancer between 1991 and 1996, resided in Atlanta at diagnosis, 

was 30-79 years of age at time of diagnosis, and her breast cancer was the first malignant 

primary cancer and was microscopically confirmed, and either mastectomy or breast conserving 

surgery (BCS) was conducted. A total of 3760 patients entered the study cohort. The cut-off date 

for the database used in this study is December 31, 2002. Most of the patients were followed till 

this date, but a small percentage of patients were lost to follow-up before this date. The median 

follow up time is 92 months. During the follow-up, 929 deaths were recorded: 598 died from 

breast cancer, 162 died from vascular disease and 169 died from other causes. 

 In this example, three competing risks exist: breast cancer, vascular disease and other 

cause. Mastectomy and BCS are the surgical procedures that patients received. Mastectomy is 

the surgical procedure of removing the affected breast. BCS (or lumpectomy) is to remove only 

the lump (tumor), which is considered to be non-invasive compared to mastectomy. Prognostic 

factors that we identified from SEER database include demographical characteristics, patient’s 

age at diagnosis and race, and tumor-related characteristics, tumor size, lymph node status, tumor 



grade and extension. Table 7 shows the distribution of the risk factors in two treatment groups. It 

is obvious that the distribution of tumor-related factors is very different between two groups, the 

cohort receiving mastectomy have much worse profiles than the cohort receiving BCS. It should 

be important to address the problem of the imbalance in distribution of tumor-related factors 

when comparing these two surgical procedures.  

When fitting Aalen’s models on all cause-specific hazards, we include the following  

factors:  race (White, Black and Other), age at diagnosis (30-49, 50-64 and 65-79), tumor size  (< 

2 cm, 2-5 cm and > 5 cm), lymph node status ( negative, positive and unknown/unexamined), 

tumor grade (1, 2 and  3 / 4), tumor extension (confined and invasive).  

 The results are given for the predetermined time points, 5 years and 8 years. Figures 5, 7 

and 9 give the direct adjusted cumulative incidence curves for both types of surgery on cancer, 

vascular disease, and other cause, respectively. Differences between two direct adjusted 

cumulative incidence curves and their 95% confidence intervals, for all competing risks, are 

given in Figures 6, 8 and 10. Figure 5 and 6 show that mastectomy and BCS have similar 

outcome on cancer. Figure 7-10 show that mastectomy has higher cumulative incidence than 

BCS for vascular disease and other cause, but the effect is only marginally significant at the 

selected times points. Direct adjusted cumulative incidence estimates and their estimated 

standard errors, as well as the results on treatment comparison at the selected times points are 

given in Table 8. Finally, we give the results on direct adjusted cumulative cause-specific 

hazards in Figures 11-14.. It is interesting that treatment effect is significant with respect to 

direct adjusted cause-specific hazard, but insignificant or marginal significant with respect to 

direct adjusted cumulative incidences. Because of the drawback of cause-specific hazard in the 



setting of competing risks, the results on the direct adjusted cumulative incidences are 

recommended. 



Table 7:   Causes, treatments and risk factors for breast cancer patients    

 

 

    _Mastectomy       BCS____ 

 

Total    2020 (53.7%)  1740  (46.3%) 

 

Cause 

Censored   1422  (70.4%)  1409  (81%) 

Cancer    386  (19.1%)  212  (12.2%) 

Vascular Disease  107  (5.3%)  55  (3.1%) 

Other    105  (5.2%)  64  (3.7%) 

 

 

Age groups 

30-49    717  (35.5%)  650  (37.3%) 

50-64    691  (34.2%)  673  (38.7%) 

65-79    612  (30.3%)  417  (24.0%) 

 

Race 

White    1480  (73.3%)  1315  (75.6%) 

Black    485  (24%)  383  (22%) 

Other    55  (2.7%)  42  (2.4%) 

 

Size group 

<2 cm    917  (45.4%)  1190  (68.4%) 

2-5 cm    1070  (53.0%)  546  (31.4%) 

>5 cm    33  (1.6%)  4  (0.2%) 

 

Node 

Negative   1194  (59.1%)  1208  (69.4%) 

Positive    783  (38.7%)  417  (23.9%) 

Unknown/Unexamined  43  (2.1%)  115  (6.6%) 

 

Grade 

1    220  (10.9%)  346  (19.9%) 

2    839  (41.5%)  722  (41.5%) 

3 /4    961  (47.6%)  672  (38.6%) 

 

Ext 

Confined   1932  (95.6%)  1721  (98.9%)     

Invasive   88  (4.4%)  19  (1.1%) 

 

Diagnosis Year 

1991    331  (16.4%)  177  (10.2%) 

1992    344  (17.0%)  207  (11.9%) 

1993    336  (16.6%)  276  (15.9%) 

1994    327  (16.2%)  302  (17.3%) 

1995    352  (17.4%)  353  (20.3%) 

1996    330  (16.3%)  425  (24.4%) 



Table 8:  Direct adjusted cumulative incidence functions for breast cancer patients 

 

 

 

Cause  CIF1  SE  CIF2  SE   

 

Cancer         

60 months 0.102  0.006  0.101  0.007   

96 months 0.153  0.008  0.146  0.008   

Vascular Disease 

60 months 0.021  0.003  0.015   0.002   

96 months 0.043  0.004  0.032  0.004   

Other 

60 months 0.028  0.003  0.019  0.003   

96 months 0.047  0.004  0.036  0.004   

 

Cause  (CIF1-CIF2)   SE(CIF1-CIF2)  p-value  

 

Cancer         

60 months 0.001   0.009   0.456 

96 months 0.007   0.012   0.281 

Vascular Disease 

60 months 0.006   0.004   0.067 

96 months 0.011   0.007   0.058 

Other 

60 months 0.009   0.005   0.036 

96 months 0.011   0.007   0.058 













CHAPTER V. CONCLUSION

In this thesis, our goal is to explore the application of Aalen’s additive hazards model in 

analyzing failure time data. Analytical methods implemented in the thesis were motivated by the 

advantages of Aalen’s model: 1. Aalen’s model can naturally model influence of a risk factor 

that changes over time, and does not require constant multiplicative or additive effect assumption 

for the results to be meaningful. 2. With competing risks data, Aalen’s model can be utilized to 

model all cause-specific hazards, and an additive model still holds for the all-cause hazard.  

Based on Aalen’s model, we have adopted the direct adjustment method to make a 

survival curve of a treatment. The direct adjustment method fits Aalen’s model very well. The 

relevant direct adjusted survival curves of different treatments do not need to follow certain 

patterns required by the parametric or semi-parametric models. This is clearly illustrated by the 

stem cell transplant example given in Section 4.1. We have plotted the direct adjusted survival 

curves of three types of transplant in Figure 1. The curve of allogeneic transplant is very 

different from the curves of the other two types of transplant within the first three years. 

However, all three curves become close after five years. Treatment comparison at a given time 

point have been implemented by making a confidence interval for the difference between two 

direct adjusted survival probabilities. In the stem cell transplant example, we have illustrated that 

the magnitude of treatment effect changes at different time points.  

With competing risks data, we suggest to fit Aalen’s model for each cause-specific 

hazard, and the all-cause hazard, which is the sum of all cause-specific hazard, can be time-

varying. Direct adjustment has been also adopted to make the cumulative incidence curve of a 

treatment, due to one type of failure. Treatment effect at a time, on one type of failure, has been 

assessed by comparing two direct adjusted cumulative incidence probabilities. In the breast 



cancer example, we have compared the survival outcome of two types of surgery, mastectomy 

versus BCS, with respect to three types of failures, cancer, vascular disease, and other cause. 

Figures 5 to 10 show that mastectomy yields higher cumulative failures than BCS due to 

vascular disease or other cause for the majority of the time, while these two types of surgery are 

quite similar in terms of cancer failures. For comparison, we have made the direct adjusted 

cumulative hazards of different treatments. The cumulative hazard of a treatment on one type of 

failure is meaningful only if one hypothetically removes other competing risks.  

In this thesis, we have illustrated flexibility of Aalen’s model in analyzing failure time 

data, especially in the context of competing risks. Compared to the commonly used semi-

parametric models like Cox (1972) or Lin and Ying’s additive model (1994), the power is 

reduced with Aalen’s model to compensate for the complete time-varying effect of all covariates. 

Various graphical diagnoses have been proposed to show the goodness of fit of a semi-

parametric model. It is interesting to further investigate whether a certain criterion can be 

developed to direct one to adopt a much simple model like Cox or Lin and Ying’s model.  

Estimation of Aalen’s model has been improved by Huffer and McKeague (1991). They 

proposed a weight least square estimator, which has been show to be more efficient. An 

extension of current work is to adopt the estimation approach given by Huffer and McKeague. 

Another important application is to develop robust inference approach to adjust for random 

effect, also known as frailty, which often appear in failure time data. 
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