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by
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ABSTRACT

Many statistical methods for truncated data rely on the assumption that the fail-

ure and truncation time are independent, which can be unrealistic in applications.

The study cohorts obtained from bone marrow transplant (BMT) registry data are

commonly recognized as truncated samples, the time-to-failure is truncated by the

transplant time. There are clinical evidences that a longer transplant waiting time is

a worse prognosis of survivorship. Therefore, it is reasonable to assume the depen-

dence between transplant and failure time. To better analyze BMT registry data, we

utilize a Cox analysis in which the transplant time is both a truncation variable and

a predictor of the time-to-failure. An inverse-probability-weighted (IPW) estimator

is proposed to estimate the distribution of transplant time. Usefulness of the IPW

approach is demonstrated through a simulation study and a real application.

INDEX WORDS: Left truncation, Dependent, Inverse probability weighting, Cox
regression model, SAS programming
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Chapter 1

INTRODUCTION

Data truncation is a problem in scientific investigation. Truncation is one type

of incompleteness which occurs when the incomplete nature of the observation is due

to a systematic selection process inherent to the study design. A truncated sample

includes realizations of (L, T ) subject to the constraint L ≤ T . Within the scope

of life science, T is often the failure time, and L is the entrance time indicating

that the subject enters the study. Two types of truncation, left truncation and right

truncation, coexist in a truncated sample. In terms of the failure time and entrance

time, left truncation occurs if a failure time is greater than the entrance time. T is

left truncated by L. As a consequence, left truncation is also known as late entrance.

The other type of truncation targets at the variable L, that is, L is right truncated

by T .

To illustrate left truncation, a survival study of residents in a retirement center

is considered. Age at death T and the age of entrance L are recorded. An individual

must survive to a certain age, for example, 65 years, to enter the retirement center.

If an individual died early and was not old enough to enter the center, he/she has no

chance to be included in the study. Therefore, the ages of death, using the survival

data collected at the retirement center, are left-truncated by the ages at entrance. A

right truncation example is the HIV virus latent time in AIDS studies. It is manda-
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tory to report AIDS cases to CDC. If patients were infected with HIV virus from

blood transfusion, researchers can track back the calendar date of blood transfusion.

Suppose that the closing date of a study was set at Dec. 31, 2010, then infected

individuals who developed AIDS after this date were not included in the sample. In

another word, the subjects can be possibly included only if the HIV virus latent time

less than the time between blood transfusion date and study closing date. Thus, the

latent time is right truncated by the time between blood transfusion date and the

closing date of study.

The major study interest with a truncated sample is to find the marginal distri-

butions of T and L (Woodroofe, 1985). So far most statistical methods for truncated

data make the key assumption of quasi-independence between T and L. Truncated

version of Kaplan-Meier estimators have been widely used for estimating the distri-

bution function and their asymptotic properties were studied by Woodroofe (1985),

Keiding and Gill (1990) and Wang et al. (1986).

However, the quasi-independence assumption is questionable in many instances.

Tsai (1990) proposed a conditional Kendalls Tau test to test the quasi-independence

for a truncated sample. He explained that independence between T and L cannot

be nonparametrically verified in the quadrant T < L. Keiding (1992) also showed

that when failure time T and truncation time L were dependent, the standard delayed

entry method, based on the quasi-independence assumption, yielded a biased estimate

of the failure hazard.

Estimation of the marginal distribution of T and L is rarely studied for a depen-

dently truncated sample. To relax the independence assumption, Emma and Konno

(2010) presented a bivariate normal distribution method of fitting a parametric model

on (L, T ), which could easily incorporate the dependence structure on the truncation

mechanisms. They used the maximum likelihood estimation method to find the esti-
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mates of the parameters. However, it is difficult to extend this method to the context

when multiple predictors are associated with the failure time. Chaieb et al. (2006)

developed a nonparametric estimator of the time-to-event distribution in the presence

of dependent truncation using a copula, while implementation of this method requires

the user to specify a copula from an Archimedian family. There is a growing interest

in finding more simple estimation methods when T and L are dependent.

For complete time to event data, it is well known that the empirical estimator

can be used to estimate the distribution function of the failure time. In an empirical

estimator, all observations contribute equally for estimating the distribution function.

The observation should be weighted when we want to have the empirical estimator

form for estimating the distribution function of a truncated variable.

Since truncated data represent a nonrandomly screened subset of a population,

analytical methods must account for the biased selection nature of the sample. A

commonly used method to correct biased selection for truncated data is inverse-

probability-weighting (IPW) technique (Wang, 1989; Shen, 2003,2006). The con-

cept of IPW is first proposed by Horvitz and Thompson (1952). The principle is

to weight an observation by the reciprocal of its selection probability. Satten and

Datta (2001)showed that the Kaplan-Meier estimator can be expressed as an IPW

estimator for randomly censored data. Shen (2003) presented the IPW estimator for

independently truncated samples and proved that the IPW estimator is evaluated the

same as Kaplan-Meier estimator. Wang (1989) studied the IPW estimator when the

parametric distribution of the truncation variable was known. Using the parametric

information of the truncation variable, she proved the asymptotic efficiency of the

IPW estimator compared to its analogue of Kaplan-Meier estimator. IPW estimator

was more powerful for bias correction and efficiency improvement. The weighted av-

erage form is convenient for various statistical problems such as causal inference and
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missing data (Robins and Finkelstein, 2000).

To identify and quantify the effect of prognostic factors which is related to the

course of a disease is the primary goal of survival analysis. To predict the outcome

of a patient based on a series factors, several regression models, including Cox model

(1972), accelerated failure time model (Kalbfleisch, 1980) and additive hazards models

(Aalen, 1989; Lin and Yin, 1994; Mckeague and Sasieni, 1994) have been proposed.

The Cox proportional hazard model is probably the most commonly used method

when analyzing the impact of covariates on continuous survival time. The main

advantage of the Cox model is the possibility to estimate the regression parameters

without any assumption on the distribution of the duration variable. That is, there

are no parametric restrictions on the functional form of the baseline hazard function.

In a Cox model, the specification for the hazard function is given as:

λ(t|z) = λ0(t) exp(β
T z), (1.1)

where λ0(t) is the unspecified baseline hazard function, β is the vector of regression

coefficients and z is the vector of covariates. The estimation of the regression pa-

rameters can be carried out using the partial likelihood function (Cox, 1975). In its

classical form, the Cox model was introduced in the setting of right censored observa-

tion. However, in practice the structure of data might be more complex and different

sampling schemes are frequently encountered. These motivate the new extensions of

Cox model allowing for truncation and recurrent event. For example, to compare

chemotherapy and Bone Marrow Transplant (BMT) on treating leukemia patients,

Klein and Zhang (1996) advocated the left-truncated version Cox model to analyze

the pooled samples of chemotherapy and BMT with satisfied results. However, the

effect of transplant is assumed to be constant regardless of the transplant time. They
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assumed the independence between failure time T and transplant time L in their

model. In recent year, there is considerable interest in the differential effect of trans-

plant time on the future survival of leukemia patient. It is hence necessary to modify

the above Cox model to reflect the effects of various transplant times, so that such

effect can be tested and evaluated.

The study cohorts obtained from BMT registry data are commonly recognized as

truncated samples, the truncation time is the transplant time. Some clinical results

show strong evidence that the longer waiting time in BMT regimen is associated

with a worse prognosis (Balduzzi et al., 2008; Davies and Mehta, 2010). Thus, it is

reasonable to assume the dependence between L and T in BMT study. The current

analytical methods on the pooled samples include the matched pairs analysis and

the Cox analysis assuming a constant effect for transplant. However, the effect of

the transplant waiting time cannot be evaluated using these analytical approaches

(Galimberti et al., 2002). In this thesis, we consider a Cox analysis and the transplant

time is both a truncation variable and a predictor of the time-to-failure. We propose

an IPW estimator to estimate the marginal distribution of L. Simulation studies have

been conducted to investigate the performances of the proposed IPW estimator and

variance estimators.

The structure of this thesis is organized as follows. In chapter 2, we first briefly

describe the Kaplan-Meier estimators and IPW estimators for the distribution func-

tions in a truncated sample. Second, we present the truncated version Cox model

for analyzing the effect of covariates on continuous survival time. In Chapter 3, we

introduce the new methodology for dependently truncated samples. In Chapter 4, the

simulation study is performed to show the performances. In Chapter 5, a real BMT

registry data is analyzed to illustrate the proposed method. Finally, the concluding

remarks are given in Chapter 6.
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Chapter 2

METHODOLOGY REVIEW

2.1 Kaplan-Meier estimator for truncated data

The Kaplan-Meier estimator is commonly used to find the crude survival curve

for right censored time-to-event data. It is known that Kaplan-Meier estimator is

NPMLE. For a truncated sample, suppose F (t) and G(t) are the distribution func-

tions for the failure time T and the truncation time L, respectively. If one assume

independence between T and L, the truncated version of Kaplan-Meier estimators can

be used for the distribution functions of T and L. For the sample (Li, Ti), i = 1, · · · , n,

define Ȳ (t) as the number of individuals who entered the study prior to time t and

remained under study at t, then Ȳ (t) =
∑n

i=1 I(Li ≤ t ≤ Ti), also let t(1) < · · · < t(N)

be the ordered distinct event times. Kaplan-Meier (1958) and Lynden-Bell (1971)

proposed a nonparametric estimator for F (t):

F̂ (t) = 1−
∏

i:t(i)≤t

[
1−

d(t(i))

Ȳ (t(i))

]
, 0 ≤ t ≤ τ, (2.1)
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where d(t) is the number of failures at t. Let l(1) < l(2) < · · · < l(M) be distinct

truncation times. The estimator of G(t) is given by,

Ĝ(t) =
∏

k:l(k)>t

[
1−

s(l(k))

Ȳ (l(k))

]
, 0 ≤ t ≤ τ, (2.2)

where s(l) =
∑n

i=1 I(Li = l).

2.2 The inverse probability weighted (IPW) estimator

Besides the truncated version Kaplan-Meier estimator, various estimation meth-

ods have been proposed to handle truncated data. Among them, inverse probability

weighting technique is one powerful tool for bias correction and efficiency improve-

ment (Wang, 1989). The concept of IPW is first proposed by Horvitz and Thompson

(Horvitz, 1952). The key idea is both straightforward and intuitively attractive as

shown in the following example. Suppose that we have the following data

Group A B C

Response 1 1 1 2 2 2 3 3 3

Then the average response is 2. However, if selection probability varies between

groups and the observed values are shown in the following table:

Group A B C

Response 1 ? ? 2 2 2 3 3 ?

The intuitive average is 13
6

= 2.16, which departs from the true mean. IPW

technique can be used to eliminate this kind of selection bias. The probability of

being selected in the sample is 1
3
in group A, 1 in group B and 2

3
in group C, we can

calculate a weighted average where each observation is weighted by the reciprocal of
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its probability of selection:

1× 3
1
+ (2 + 2 + 2)× 1 + (3 + 3)× 3

2
3
1
+ 1 + 1 + 1 + 3

2
+ 3

2

= 2

Thus, the selection bias has been corrected in this example using IPW method. Some

recent researches have proven the equivalence between Kaplan-Meiler estimator and

the inverse probability weighted average. For example, Satten (Satten and Datta,

2001) showed that the Kaplan-Meier estimator (product-limit estimator, PLE) can

be expressed as an IPW average for randomly censored data. Shen (Shen, 2003)

showed the truncation PLE and the censoring-truncation PLE can also be expressed

as IPW averages. In this section, the complex mathematical proof is out of our inter-

est and ignored; however, the useful conclusions about IPW estimators for truncated

data will be focused and shown as in the following discussion. For a truncated sam-

ple (Li, Ti), i = 1, · · · , n, let F̂ (t) and Ĝ(t) be the truncated version Kaplan-Meier

estimators (see Chapter 2.1). since G(Ti) is the selection probability of Ti, the IPW

estimator of F (t) is given by

F̂ IPW(t) =

(
n∑

i=1

1

Ĝ(Ti)

)−1 n∑
i=1

I(Ti ≤ t)

Ĝ(Ti)
. (2.3)

By recognizing F (Li) to be the selection probability of Li, we can give the IPW

estimator of G(t),

ĜIPW(t) =

(
n∑

i=1

1

1− F̂ (Li−)

)−1 n∑
i=1

I(Li ≤ t)

1− F̂ (Li−)
. (2.4)

The above IPW estimators are essentially the same as the truncated version Kaplan-

Meier estimators (Shen, 2003). One useful application of the IPW estimator was stud-
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ied by Wang (1989) for the context that the parametric distribution of the truncation

variable was already known. G(Ti; θ), the given parametric distribution probability

at Ti, was used as the selection probability of Ti. Wang (1989) proposed the following

IPW estimator

F̂ IPW(t; θ̂) =

(
n∑

i=1

1

Ĝ(Ti; θ̂)

)−1 n∑
i=1

I(Ti ≤ t)

Ĝ(Ti; θ̂)
, (2.5)

where θ̂ and Ĝ are MLE’s. Wang illustrated in a simulation study that the IPW

estimator is more efficient than the truncated version Kaplan-Meier estimator.

2.3 The Cox model for truncated data

Regression analysis on the failure time T based on a truncated sample has been

identified to be practically important (Karlsson and Laitila, 2008; Shen, 2010). The

solution is simple if T and L are independent. For the hazard based regression

models, the only modification one needs to implement in estimation procedure is to

use truncation time to adjust the risk set. Let t(1) < t(2) < · · · < t(N) denote the

ordered event times. Ȳ (t) is the risk set contains the subjects who enter the study

before t and are still alive at t. Let d(i) be the total number of failures at t(i), D(i) be

the set of all subjects who fail at time t(i). Let s(i) be the sum of the covariate values

over all subjects in the set d(i), that is s(i) =
∑

i∈D(i)
zi. The MLE of β, maximizes

the partial likelihood of β (Breslow, 1974) is given as

L(β) =
N∏
i=1

exp(βT s(i))

[
∑

i∈Ȳ (t(i))
exp(βT zi)]

d(i)
. (2.6)
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Let Λ0(t) be the cumulative baseline hazard function, Λ0(t) =
∫ t

0
λ0(u)du. Breslow

estimator is routinely used for estimating Λ0(t), and it has the form,

Λ̂0(t) =
∑

i:t(i)≤t

d(i)∑
i∈Ȳ (t(i))

exp(βT zi)
. (2.7)

Given covariate z, the survival probability at t is

S(t; z) = exp(−Λ0(t)e
βT z). (2.8)

One can use a plug-on estimator shown below:

Ŝ(t; z) = exp(−Λ̂0(t)e
β̂T z). (2.9)

The product limit estimator is an alternative. The explicit expression can be found

in Klein and Zhang (2003). Estimation of covariate effects in a Cox model with a

truncated sample has been implemented in the statistical software such as SAS and

S-plus. The SAS procedure PHREG can be used to give us the estimation result. One

simple example is illustrated below to show how to implement left truncated version of

Cox model using the PHREG procedure. Suppose that a truncated sample has been

saved as a SAS data set “sample”. In the SAS data set, the truncation time and the

failure time are saved in the variables “Ltime”and “Xtime” respectively. The variable

“event” takes the value 1 if the failure time is observed (patient is died), and takes

the value 0 if the follow-up time is observed (patient is censored). Two factors, age

and gender, are considered. The data set “sample” includes the continuous variable

“age”and the binary variable “male” (1 if the gender is male, 0 otherwise). We can

use the following statements to have the covariate effects estimated:
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Proc PHREG data=sample;

Model (Ltime, Xtime)*event(0)= age male;

Run;

The left truncated version Cox model requires the condition of quasi-independence

between the failure time variable and the truncation variable. The validity of the

model has not been studied for a dependently truncated sample.
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Chapter 3

NEW METHODOLOGY

3.1 The Cox model with truncation variable included as a covariate

The major study interest with a truncated sample is to find the marginal distri-

butions of L and T . Many researches have been done based on the key assumption of

quasi-independence between L and T . The real applications may yield dependently

truncated samples. For example, in BMT studies, there is evidence for the associa-

tion between the failure and the transplant waiting time. The longer waiting time in

BMT regimen will be associated with a worse prognosis. It is reasonable to assume

the dependence between L and T . Li (2010) employed a Cox analysis for the depen-

dently truncated sample. The key idea is to use the transplant time as a predictor

for the occurrence of the failure time. Inclusion of the transplant time explains the

association between the transplant time L and the failure time T . For more general

use, the regressor should also include other covariates z. The hazard of the failure

time can be specified as follows

λ(t|L,Z) =

 λ0(t)exp(α
T z) if t < L

λ0(t)exp(γκ(L) + αT z) if t > L
, (3.1)
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where λ0(t) is the unspecified baseline hazard, γ and α are the regression coefficients,

κ(.) is a known function.

Estimation of regression coefficients in a Cox model, with the presence of right

censoring and left truncation, has been well established. Suppose that the truncated

sample is summarized as {Li, Xi,∆i, Zi}, i = 1, · · · , n, where Xi = min(Ti, Ci),

∆i = I(Ti ≤ Ci), Zi and Ci are the covariate vector and the censoring time for the

ith subject. Define the following processes, NT
i (t) = I(Xi ≤ t,∆i = 1), N̄T (t) =∑n

i=1N
T
i (t) and Yi(t) = I(Li ≤ t ≤ Xi). Since the transplant time is treated as

predictor of failure event, we define the covariate vector, Z̃T
i =

{
κ(Li) ZT

i

}
. We also

combine the regression parameters, γ and α, into one vector, βT =
{
γ αT

}
. Define

S(p)(β, t) = n−1

n∑
i=1

Yi(t)Z̃
⊗p
i exp(βT Z̃i), p = 0, 1, 2,

where a⊗2 = aaT . The partial likelihoods (Cox, 1972) can be constructed for Model

(3.1), yielding the following score estimation equation,

U(β) =
n∑

i=1

∫ ∞

0

(
Z̃i −

∑n
j=1 Yj(t)Z̃j exp(β

T Z̃j)∑n
j=1 Yj(t) exp(β

T Z̃j)

)
dNT

i (t).

Let β̂ be the solution to U(β) = 0, and it is hence the MLE. More explicitly, β̂T ={
γ̂ α̂T

}
. The variance-covariance matrix of β̂ can be estimated by the inverse of the

estimated information matrix,

Î(β̂) =
n∑

i=1

∫ ∞

0

S(2)(β̂, t)

S(0)(β̂, t)
−

(
S(1)(β̂, t)

S(0)(β̂, t)

)⊗2
 dNT

i (t)

One can use the Breslow-type estimator to estimate the cumulative baseline hazard
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function,

Λ̂0(t) =
n∑

i=1

∫ t

0

dNT
i (u)∑n

j=1 Yj(u) exp(β̂
T Z̃i)

. (3.2)

This type of Cox analysis has been implemented in a few statistical packages

such as SAS and R. We use the example described in Chapter 2.3 to present the

SAS syntax, assuming that the truncation variable should enters the regressor of Cox

model. Suppose that the logarithm of “Ltime” is the proper form to be added into

the regression. We can create a variable “logtime”, which is the logarithm of the

truncation time variable. We shall employ the following syntax to specify the model:

Proc PHREG data=sample;

model (Ltime, Xtime)*event(0)= logtime age male;

run;

3.2 A new IPW estimator

For BMT registry data, the truncation variable is the transplant time, which

is dominantly determined by the donor searching process. For treating leukemia

patients, the information about the amount of time normally spent on the donor

searching is crucial for policy makers to efficiently allocate resources to assist patients

in finding donors. It is challenging to estimate the distribution function of L, given

Model (3.1). The truncated version Kaplan-Meier estimator is not applicable due to

the dependence nature between transplant time and failure time. The bias of such an

estimator is demonstrated in the simulation results included in Chapter 4. Li (2010)

proposed an algorithm to estimate the distribution of L. However, Li only used the

resampling approach to assess the precision of the estimates. In this section, we

introduce an IPW estimator for the distribution of L, and give the analytical formula

for variance estimation.
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To find the form of the IPW estimator, it is important to identify the selection

probability for individual observation Li. In BMT operations, the donor searching

can be viewed as a random process, independent from the failure event. The waiting

time alters the future survivorship when the transplant is operated. We introduce a

latent random variable T0,z. Its underlying counting process is associated with the

intensity process Yi(t)λ0(t)e
αT z. Since we assume that donor searching is a random

process, the variables L and T0,z are independent. The selection probability of Li

is recognized as P (T > Li|Li = 0, Zi). For presentation simplicity, we assume no

dies observed among the truncation times and observed times. Let {Z̃0
i }T = {0 ZT

i }

and S(Li; Z̃
0
i ) = P (T > Li|Li = 0, Zi). The reciprocal of S(Li; Z̃

0
i ) is the weight

pertaining to the observation Li. S(Li; Z̃
0
i ) can be estimated by

Ŝ(Li; Z̃
0
i ) = exp

(
−Λ̂0(t)e

α̂TZi

)
.

To estimate the distribution function of L, we suggest the following IPW esti-

mator,

Ĝ(t; β̂) = P̂ (β̂)n−1

n∑
i=1

I(Li ≤ t)

Ŝ(Li; Z̃0
i )
,

where P (β) = P (L ≤ T |data) and

P̂ (β̂) =

(
n−1

n∑
i=1

1

Ŝ(Li; Z̃0
i )

)−1

.

The asymptotic distribution of
√
n(Ĝ(t; β̂)−G(t)) is given as follows.

Assume that:

(1) The regularity conditions needed for asymptotic properties of the
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estimators in Cox analysis. There exists s(0), s(1), s(2) such that

sup
β,t∈[0,τ ]

||S(p)(β, t)− s(p)(β, t)|| →P 0.

s(0)(β, t) is bounded away from zero. Define e = s(1)/s(0), v =

s(2)/s(0) − e⊗2 and

Σ =

∫ ∞

0

v(β, t)s(0)(β, t)λ0(t)dt.

(2) Let z̃0(u) be the covariate value of the subject with transplant time u.

Then S(u; z̃0(u)) is the selection probability for the transplant time

u. Suppose that S(u; z̃0(u)) and G(u) are the continuous functions

defined on [0,∞), and the following condition is satisfied,

∫ ∞

0

1

S(t; z̃0(t))
dG(t) <∞.

Given t, the IPW estimator
√
n(Ĝ(t; β̂)−G(t)) converges in distribution

to a normal random variable with mean zero and variance

σ2(t) = P (β)

∫ t

0

S(u; z̃0(u))−1dG(u) + P (β)G(t)2
∫ ∞

0

S0(u; z̃
0(u))−1dG(u)

−2P (β)G(t)

∫ t

0

S(u; z̃0(u))−1dG(u)

+

∫ ∞

0

{η(u, t)− P (β)G(t)ψ(u)}2 dΛ0(u)

s(0)(β, u)

+ {ρ(t)− P (β)G(t)× π}T Σ−1 {ρ(t)− P (β)G(t)× π} ,
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where

η(u, t) = lim
n→∞

n−1P (β)
n∑

i=1

S(Li; Z̃
0
i )

−1I(u ≤ Li ≤ t)eα
TZi ,

ψ(u) = lim
n→∞

n−1P (β)
n∑

i=1

S(Li; Z̃
0
i )

−1I(u ≤ Li)e
αTZi ,

ρ(t) = lim
n→∞

n−1P (β)
n∑

i=1

S(Li; Z̃
0
i )

−1I(Li ≤ t)h(Li;Zi),

π = lim
n→∞

n−1P (β)
n∑

i=1

S(Li; Z̃
0
i )

−1h(Li;Zi).

h(t; z) =

∫ t

0

eα
T z


 0

z

− e(β, u)

λ0(u)du.

Here we present a brief description of our derivation. The variation of our IPW

estimator can be explained by two sources: the variation of an IPW estimator using

known weight functions, and the variation due to estimated weight. We define an

interim term

Ĝ(t; β) = P̂ (β)n−1

n∑
i=1

I(Li ≤ t)

S(Li; Z̃0
i )
,

P̂ (β) =

(
n−1

n∑
i=1

1

S(Li; Z̃0
i )

)−1

.

Essentially, Ĝ(t; β) is an IPW estimator using known weight functions. Then,

√
n
(
Ĝ(t; β̂)−G(t)

)
=

√
n
(
Ĝ(t; β̂)− Ĝ(t; β)

)
+
√
n
(
Ĝ(t; β)−G(t)

)

First, we consider weak convergence of
√
n
(
Ĝ(t; β)−G(t)

)
. Note that Ĝ(t; β) is

an IPW estimator with known weight functions. Vardi (1985) studied the problem of
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estimating a distribution function when sampling weights are known. The proposed

weighted estimator based on known weight functions was proved to be MLE, and the

weak convergence result was sketched in his paper. Wang (1989) studied an IPW

estimator for an independently truncated sample, when the parametric distribution

of the other variable is known. She explicitly split the variation of the IPW estimator

into two sources, Varid’s result was used for the variation for the estimator with

known weight functions. There is a high level of similarity between our IPW estimator

and Wang’s IPW estimator. According to Vardi (1985, Section 8) and Wang (1989,

Lemma 3.3), we have the following convergence result.
√
n
(
Ĝ(t; β)−G(t)

)
converges

in distribution to a normal variate with mean zero and variance

σ2
1(t) = P (β)

∫ t

0

S(u; z̃0(u))−1dG(u) + P (β)G(t)2
∫ ∞

0

S(u; z̃0(u))−1dG(u)

−2P (β)G(t)

∫ t

0

S(u; z̃0(u))−1dG(u)

Some notations should be defined for studying weak convergence of

√
n
(
Ĝ(t, β̂)− Ĝ(t; β)

)
. Define

E(β, t) =
S(1)(β, t)

S(0)(β, t)
,

V (β, t) =
S(2)(β, t)

S(0)(β, t)
− E(β, t)⊗2,

Mi(t) = NT
i (t)−

∫ t

0

Yi(u)λ0(u) exp(β
T Z̃i)du, i = 1, · · · , n,
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In the following context, ≈ means asymptotic equivalence. We have

√
n
[
Ĝ(t, β̂)− Ĝ(t; β)

]
=

√
n

[
P̂ (β̂)

n∑
i=1

I(Li ≤ t)

Ŝ(Li; Z̃0
i )

− P̂ (β)
n∑

i=1

I(Li ≤ t)

S(Li; Z̃0
i )

]

=
√
nP̂ (β̂)

[
n∑

i=1

I(Li ≤ t)

Ŝ(Li; Z̃0
i )

−
n∑

i=1

I(Li ≤ t)

S(Li; Z̃0
i )

]
+
√
n
[
P̂ (β̂)− P̂ (β)

] n∑
i=1

I(Li ≤ t)

S(Li; Z̃0
i )

≈
√
nP̂ (β)

[
n∑

i=1

I(Li ≤ t)

Ŝ(Li; Z̃0
i )

−
n∑

i=1

I(Li ≤ t)

S(Li; Z̃0
i )

]

−P̂ (β)2
√
n

[
n∑

i=1

1

Ŝ(Li; Z̃0
i )

−
n∑

i=1

1

S(Li; Z̃0
i )

]
n∑

i=1

I(Li ≤ t)

S(Li; Z̃0
i )

≈ P (β)
1

n

n∑
i=1

S(Li; Z̃
0
i )

−1I(Li ≤ t)
√
n
[
Λ̂(Li; Z̃

0
i )− Λ(Li; Z̃

0
i )
]

−P (β)G(t) 1
n

n∑
i=1

S(Li; Z̃
0
i )

−1
√
n
[
Λ̂(Li; Z̃

0
i )− Λ(Li; Z̃

0
i )
]

Using the standard result of a Cox model (Andersen and Gill, 1982),

√
n
[
Λ̂(Li; Z̃

0
i )− Λ(Li; Z̃

0
i )
]

≈ 1√
n

[
n∑

j=1

∫ Li

0

eα
TZi

dMj(u)

s(0)(β, u)

+ h(Li;Zi)Σ
−1

n∑
j=1

∫ ∞

0

(
Zj −

s(1)(β, u)

s(0)(β, u)

)
dMj(u)

]
.

The above equation can be further expressed as

√
n
(
Ĝ(t, β̂)− Ĝ(t; β)

)
≈ 1√

n

n∑
j=1

∫ ∞

0

{η(u, t)− P (β)G(t)ψ(u)} dMj(u)

s(0)(β, u)

+
1√
n
{ρ(t)− P (β)G(t)× π}T Σ−1

n∑
j=1

∫ ∞

0

(
Zj −

s(1)(β, u)

s(0)(β, u)

)
dMj(u).

The standard result for the variation process of martingale can help us to find the

variance. Using the martingale central limit theorem,
√
n
{
Ĝ(t)− Ĝ(t; β)

}
converges
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in distribution to a zero-mean normal variate with variance

σ2
2(t) =

n∑
j=1

∫ ∞

0

{η(u, t)− P (β)G(t)ψ(u)}2 λ0(u)du
s(0)(β, u)

+ {ρ(t)− P (β)G(t)× π}T Σ−1 {ρ(t)− P (β)G(t)× π} .

Based on the arguments used in Wang’s derivation, we have the independence be-

tween
√
n
(
Ĝ(t; β̂)− Ĝ(t; β)

)
and

√
n
(
Ĝ(t; β)−G(t)

)
. Therefore,

√
n
(
Ĝ(t; β̂)−G(t; β)

)
converges in distribution to a zero-mean normal random variable, with the variance

σ2(t) = σ2
1(t) + σ2

2(t). The plug-in estimator can be used for the asymptotic variance

of
√
n(Ĝ(t, β̂)−G(t)). The explicit express has the form

σ̂2(t) = P̂ (β̂)

∫ t

0

Ŝ(u; z̃0(u))−1dĜ(u) + P̂ (β̂)Ĝ(t)2
∫ ∞

0

Ŝ(u; z̃0(u))−1dĜ(u)

−2P̂ (β̂)Ĝ(t)

∫ t

0

Ŝ(u; z̃0(u))−1dĜ(u)

+n−1

∫ ∞

0

{
η̂(u, t)− P̂ (β̂)Ĝ(t)ψ̂(u)

}2 dN̄T (u)[
S(0)(β̂, u)

]2
+
{
ρ̂(t)− P̂ (β̂)Ĝ(t)× π̂

}T

Σ̂−1
{
ρ̂(t)− P̂ (β̂)Ĝ(t)× π̂

}
,

where

η̂(u, t) = n−1P̂ (β̂)
n∑

i=1

Ŝ(Li; Z̃
0
i )

−1I(u ≤ Li ≤ t)eα̂
TZi ,

ψ̂(u) = n−1P̂ (β̂)
n∑

i=1

Ŝ(Li; Z̃
0
i )

−1I(u ≤ Li)e
α̂TZi ,

ρ̂(t) = n−1P̂ (β̂)
n∑

i=1

Ŝ(Li; Z̃
0
i )

−1I(Li ≤ t)ĥ(Li;Zi),

π̂ = n−1P̂ (β̂)
n∑

i=1

Ŝ(Li; Z̃
0
i ))

−1ĥ(Li;Zi),
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ĥ(t; z) =

∫ t

0

eα̂
T z


 0

z

− E(β̂, u)

 dΛ̂0(u) and Σ̂ = n−1Î(β̂).
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Chapter 4

THE SIMULATION STUDY

Our goal is to evaluate the practical performance of the proposed IPW estimator

and the variance estimator. The Kaplan-Meier estimator used for independently

truncated sample is also reported for comparison. The simulation study in this section

emphasizes on the scenario that L is one predictor of T and a fixed covariate z is also

associated with T . We assume that regressor of Cox model contains a linear form of

the truncation time.The underlying hazard rate function of T is given by

λ(t|L, z) =

 λ0(t)exp(α
T z) if t < L

λ0(t)exp(γL+ αT z) if t > L
. (4.1)

The truncation variable L was simulated from a Uniform distribution at the interval

[0,80]. The baseline hazard rate in the above model has been set to a constant

and we use different constants as the baseline hazard rate to control the censoring

and truncation rates. Continuous covariate is generated from a standard normal

distribution, restraining in the internal [-3, 3]. We use true value: α = 0.5, 1. Discrete

covariate is generated from a Bernoulli distribution with parameter value 0.5. We use

true value: α = 1. Settings with positive β value (β = 0.02) and negative β value

(β = −0.05) were both generated. Positive β and negative β represent the escalated

risk of failure rate or preventive effect of the truncation time variable, respectively.
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We considered two levels for the truncation rate (25%, 50%) and two levels for

the censoring rate (25%, 50%). Censoring time was generated from Uniform [a, b].

We adjusted the values of a, b to control the censoring rate. For each setting, we

generate 1000 samples with size 200. The bias is defined as the deviation between

the average cumulative hazard estimate and the true value. For estimation on each

parameter, we calculate bias, sample variance, estimated variance and 95% confidence

interval coverage at different time points when G(t) is evaluated to be 0.25, 0.5, 0.75.

The following formulas are used to calculate the relative terms:

Bias = ḠIPW(t)−G(t)

ḠIPW(t) =
1

1000

1000∑
i=1

Ĝ(i)(t; β̂)

var(Ĝ(t; β̂)) =
1

1000− 1

n∑
i=1

(Ĝ(i)(t; β̂)− ḠIPW(t)

ˆvar(Ĝ(t; β̂)) =
1

1000

1000∑
i=1

σ̂2
(i)(t)

where Ĝ(i)(t; β̂) be the IPW estimate for the ith replicate at time t, which is discussed

in Chapter 2.2. ḠIPW(t) be the average IPW estimate across 1000 replicates. σ̂2
(i)(t)

be the estimated variance of IPW estimate for the ith replicate using the the variance

estimation result given in Chapter 3.2.

Regarding the distribution function of the truncation time L, we implement two

methods: the Kaplan-Meier estimator for independently truncated sample given in

(2.4) and the proposed IPW estimator. For each method, we find the average of

the 1000 estimates at the predetermined times and plot the averages against the

times. We also depict the true distribution function in each figure. Figure 4.1-4.4
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and Figure 4.5-4.6 describe the estimation results for setting with continuous covariate

and discrete covariate, respectively. The dotted line is the true value (“true”), the

solid line is the näıve Kaplan-Meier estimation (“left”), the long dashed line is the

proposed IPW estimator (“new”). We can see the bias clearly for the näıve Kaplan-

Meier estimator, while the result from our new method closely matches the true

function, indicating the distribution of L is precisely estimated using the proposed

IPW estimator.

The simulation results for variance estimation and confidence interval coverage

are given in Table 4.1-4.6. The tables show a good performance of the proposed vari-

ance estimator at at different time points when G(t) is evaluated to be 0.25, 0.5, 0.75.

The average of the estimated variances closely matches the variance pertaining to

1000 cumulative probability estimates. The actual coverage of the confidence inter-

vals is very close to the nominal level, except for the settings with heavy censoring and

truncation. A slight higher degree of departure is observed between sample variance

and estimated variance for settings with continuous covariate when the truncation

rate or censoring rate is heavy.
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Figure 4.1. Estimated distribution function of L for the setting with a continuous
covariate (β = 0.02, α = 0.5).
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Figure 4.2. Estimated distribution function of L for the setting with a continuous
covariate (β = 0.02, α = 1).
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Figure 4.3. Estimated distribution function of L for the setting with a continuous
covariate (β = −0.05, α = 0.5).
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Figure 4.4. Estimated distribution function of L for the setting with a continuous
covariate (β = −0.05, α = 1).
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Figure 4.5. Estimated distribution function of L for the setting with a discrete
covariate (β = 0.02, α = 1).
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Figure 4.6. Estimated distribution function of L for the setting with a discrete
covariate (β = −0.05, α = 1).
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Table 4.1. 95% confidence interval coverage for estimating G(t) for the setting with
a continuous covariate (β = 0.02, α = 0.5).

(L%, C%) G(t) Bias var(Ĝ(t; β̂)) ˆvar(Ĝ(t; β̂)) 95% CI cov.

(25, 25) 0.25 0.001 0.0009 0.0010 0.953

0.50 0.001 0.0015 0.0015 0.955

0.75 0.000 0.0013 0.0012 0.966

(25, 50) 0.25 -0.000 0.0010 0.0010 0.946

0.50 0.000 0.0017 0.0016 0.942

0.75 -0.001 0.0013 0.0013 0.966

(50, 25) 0.25 -0.001 0.0014 0.0014 0.952

0.50 -0.001 0.0031 0.0030 0.935

0.75 -0.004 0.0030 0.0031 0.948

(50, 50) 0.25 -0.000 0.0019 0.0023 0.970

0.50 0.000 0.0042 0.0055 0.954

0.75 -0.001 0.0041 0.0055 0.926
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Table 4.2. 95% confidence interval coverage for estimating G(t) for the setting with
a continuous covariate (β = 0.02, α = 1).

(L%, C%) G(t) Bias var(Ĝ(t; β̂)) ˆvar(Ĝ(t; β̂)) 95% CI cov.

(25, 25) 0.25 0.001 0.0010 0.0010 0.942

0.50 -0.000 0.0016 0.0016 0.947

0.75 -0.001 0.0013 0.0014 0.968

(25, 50) 0.25 0.000 0.0010 0.0010 0.953

0.50 -0.000 0.0017 0.0017 0.944

0.75 -0.001 0.0014 0.0015 0.961

(50, 25) 0.25 0.000 0.0014 0.0017 0.969

0.50 0.001 0.0031 0.0038 0.955

0.75 0.004 0.0032 0.0039 0.917

(50, 50) 0.25 0.001 0.0018 0.0023 0.964

0.50 0.001 0.0042 0.0057 0.950

0.75 0.004 0.0039 0.0055 0.908



33

Table 4.3. 95% confidence interval coverage for estimating G(t) for the setting with
a continuous covariate (β = −0.05, α = 0.5).

(L%, C%) G(t) Bias var(Ĝ(t; β̂)) ˆvar(Ĝ(t; β̂)) 95% CI cov.

(25, 25) 0.25 0.001 0.0010 0.0010 0.947

0.50 0.000 0.0017 0.0017 0.945

0.75 -0.001 0.0014 0.0014 0.968

(25, 50) 0.25 -0.000 0.0011 0.0011 0.944

0.50 -0.001 0.0016 0.0017 0.954

0.75 -0.003 0.0014 0.0014 0.969

(50, 25) 0.25 -0.004 0.0013 0.0014 0.957

0.50 -0.008 0.0027 0.0030 0.966

0.75 -0.007 0.0026 0.0029 0.958

(50, 50) 0.25 -0.004 0.0015 0.0016 0.949

0.50 -0.007 0.0031 0.0034 0.954

0.75 -0.007 0.0031 0.0033 0.967
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Table 4.4. 95% confidence interval coverage for estimating G(t) for the setting with
a continuous covariate (β = −0.05, α = 1).

(L%, C%) G(t) Bias var(Ĝ(t; β̂)) ˆvar(Ĝ(t; β̂)) 95% CI cov.

(25, 25) 0.25 0.001 0.0011 0.0011 0.937

0.50 0.001 0.0019 0.0018 0.938

0.75 -0.001 0.0015 0.0015 0.963

(25, 50) 0.25 0.001 0.0011 0.0011 0.937

0.50 0.001 0.0019 0.0018 0.938

0.75 -0.001 0.0015 0.0015 0.963

(50, 25) 0.25 0.000 0.0016 0.0018 0.948

0.50 0.001 0.0034 0.0039 0.943

0.75 0.007 0.0030 0.0037 0.924

(50, 50) 0.25 -0.000 0.0016 0.0019 0.953

0.50 0.002 0.0033 0.0042 0.960

0.75 0.006 0.0032 0.0040 0.920
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Table 4.5. 95% confidence interval coverage for estimating G(t) for the setting with
a discrete covariate (β = 0.02, α = 1).

(L%, C%) G(t) Bias var(Ĝ(t; β̂)) ˆvar(Ĝ(t; β̂)) 95% CI cov.

(25, 25) 0.25 0.001 0.0010 0.0010 0.942

0.50 -0.000 0.0016 0.0016 0.947

0.75 -0.001 0.0013 0.0014 0.968

(25, 50) 0.25 -0.000 0.0010 0.0010 0.946

0.50 0.000 0.0015 0.0016 0.955

0.75 -0.000 0.0013 0.0014 0.966

(50, 25) 0.25 -0.001 0.0016 0.0016 0.947

0.50 -0.003 0.0035 0.0037 0.955

0.75 -0.001 0.0037 0.0040 0.934

(50, 50) 0.25 -0.003 0.0020 0.0024 0.957

0.50 -0.008 0.0048 0.0060 0.942

0.75 -0.007 0.0050 0.0065 0.925
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Table 4.6. 95% confidence interval coverage for estimating G(t) for the setting with
a discrete covariate (β = −0.05, α = 1).

(L%, C%) G(t) Bias var(Ĝ(t; β̂)) ˆvar(Ĝ(t; β̂)) 95% CI cov.

(25, 25) 0.25 0.001 0.0011 0.0011 0.937

0.50 0.001 0.0019 0.0018 0.938

0.75 -0.001 0.0015 0.0015 0.963

(25, 50) 0.25 0.000 0.0010 0.0011 0.953

0.50 -0.000 0.0018 0.0017 0.954

0.75 -0.001 0.0016 0.0015 0.956

(50, 25) 0.25 0.000 0.0016 0.0017 0.962

0.50 -0.002 0.0034 0.0036 0.953

0.75 -0.001 0.0036 0.0036 0.927

(50, 50) 0.25 0.000 0.0016 0.0017 0.962

0.50 -0.002 0.0034 0.0036 0.953

0.75 -0.001 0.0036 0.0036 0.927
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Chapter 5

A REAL EXAMPLE

5.1 Data Description

In this chapter, we analyze a transplant outcome data set from The Center for

International Blood and Marrow Transplant Research (CIBMTR). The CIBMTR is

comprised of clinical and basic scientists who confidentially share data on their blood

and bone marrow transplant patients with CIBMTR Data Collection Center located

at the Medical College of Wisconsin. The CIBMTR is a repository of information

about results of transplants at more than 450 transplant centers worldwide. In our

case, 376 children who received transplantation in second complete remission are

selected. Since only the patients who received transplants are observed and patients

who died while waiting for transplantation would not be included, the BMT group is

a truncated sample.

The BMT sample, jointly with a sample of 540 children receiving chemotherapy,

was analyzed by Barrett et al. (1994) to assess the treatment effect on the leukemia-

free survival. They conducted Cox analysis on the BMT sample and identified the

following significant risk factors for the leukemia-free survival at 0.10 levels: age (> 10

yr, ≤ 10 yr), the T-cell phenotype (no, yes) and duration of the first remission (≤ 18

months; > 18 months). In his study, the effect of transplant time was not considered.

Barrett’s Cox analysis results were summarized in Table 5.1. We will compare this
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result with our new analysis which transplant time is included as a predictor.

Table 5.1. Regression coefficient estimates for the Cox model on the BMT sample.

Parameter Barrett’s Study New analysis

Relative risk P-value Relative risk P-value

Transplant time - - 1.357 0.0295

Age >10 1.51 0.003 1.374 0.0214

T cell phenotype 2.16 < 0.001 2.025 0.0003

Duration of the first remission ≤ 18 2.02 < 0.001 1.504 0.0043

5.2 Cox analysis

In Cox model 3.1, k(β, L) indicates that a particular functional forms of L should

be included in the regressor. The following simple forms L,L2and
√
L were considered

for the functional form of transplant time. We found that the quadratic form L2

yielded the highest level of significance. Therefore, the quadratic transplant time

was included in the Cox regression. A model-building procedure was used to search

for the significant risk factors with p-value 0.05 as the threshold. Four risk factors,

transplant time, age, duration of first remission, and T-cell phenotype were identified

to be significant factors. As can be seen in Table 5.1, the relative risks of age, duration

of first remission, and T-cell phenotype are all comparable to those in Barrett’s study.

The relative risks are estimated as 1.374 [95% CI (1.048, 1.800)] for patients with

Age > 10, 2.025 [95% CI (1.387, 2.956) for patients with T cell phenotype and 1.504

[95% CI (1.136, 1.989)] for patients with duration of first remission in ≤ 18 months,

respectively.
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An important finding in our study is to find out the effect of transplant time. As

can be seen in Table 5.1, the relative risk is 1.357 [95% CI (1.037, 1.786)]. This positive

estimated regression coefficient for transplant time means that the long waiting time

for transplant will lead to a higher rate of failure at future time. Suppose that there

are two leukemia patients. One has the bone marrow transplant 6 months after

diagnosis and the other one has the transplant 18 months after diagnosis. After their

transplants, if both are alive at time t, then the patient who has the transplant one

year later is 35.7% more likely to experence relapse or mortality. The finding that a

longer waiting time is a poor prognosis of leukemia-free survival agrees well with the

recent clinical observation (Balduzzi, 2008; Davies, 2010).

5.3 Distribution function of the transplant time

In BMT studies, the truncation time is the transplant time, which is dominantly

determined by the donor search process. Since the transplant is the major surgi-

cal procedure and consequently dramatically alerts the pattern of survivorship, it is

crucial to find the marginal distribution of transplant time. We propose an IPW

estimator and use it to estimate the distribution function of L. The estimation result

is plotted and 95% confidence intervals is also shown in Figure 5.1.
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Figure 5.1. Estimated distribution function of the transplant time and 95%
confidence intervals
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Chapter 6

CONCLUSION

The study cohort obtained from Bone Marrow Transplant (BMT) registry data

are commonly recognized as truncated samples, because the participating hospitals do

not report data on patients died while waiting for transplants. The current analytical

methods on the pooled samples include the matched pairs analysis and the Cox anal-

ysis assuming a constant effect for transplant. However, the effect of the transplant

time cannot be evaluated using the above analytical approaches. In this thesis, we use

a Cox model for analyzing the left-truncated data with the dependently truncation

time L and failure time T . We also proposed an inverse probability weighted estima-

tor to estimate the distribution of the transplant time. Simulation studies have been

conducted to investigate the performances of the new IPW estimators and a variance

estimator. A real data example was also applied to the proposed method.

The future direction of this work will be focused on the application of the new

inverse probability weighting approach to more real data sets. For example, in BMT

study, we can determine the effect of transplant time on different race groups based

on our proposed method. This will provide valuable information on the survival of

patients affected by the transplant time from different race groups. Our new inverse-

probability-weighted approach will be more efficient since we consider the dependence

of the truncation distribution on the covariate.
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