
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Theses Department of Mathematics and Statistics

11-20-2008

An Analysis of Fourier Transform Infrared
Spectroscopy Data to Predict Herpes Simplex Virus
1 Infection
Patrick D. Champion

Follow this and additional works at: https://scholarworks.gsu.edu/math_theses

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Mathematics Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more
information, please contact scholarworks@gsu.edu.

Recommended Citation
Champion, Patrick D., "An Analysis of Fourier Transform Infrared Spectroscopy Data to Predict Herpes Simplex Virus 1 Infection."
Thesis, Georgia State University, 2008.
https://scholarworks.gsu.edu/math_theses/62

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71422561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

AN ANALYSIS OF FOURIER TRANSFORM INFRARED SPECTROSCOPY DATA

TO PREDICT HERPES SIMPLEX VIRUS 1 INFECTION

by

PATRICK D CHAMPION

Under the Direction of Dr. Yu-Sheng Hsu

ABSTRACT

The purpose of this analysis is to evaluate the usefulness of Fourier Transform Infrared

(FTIR) spectroscopy in the detection of Herpes Simplex Virus 1 (hsv1) infection at an early stage.

The raw absorption values were standardized to eliminate inter-sampling error. Wilcoxon-Mann-

Whitney (WMW) statistic's Z score was calculated to select significant spectral regions. Partial least

squares modeling was performed because of multicollinearity. Kolmogorov-Smirnov statistic

showed models for healthy tissues from different time groups were not from same distribution. The

additional 24 hour dataset was evaluated using the following methods. Variables were selected by

WMW Z score. Difference of Composites statistic, DC, was created as a disease indicator and

evaluated using area under the ROC curve, specificities, and confidence intervals using bootstrap

algorithm. The specificity of DC was high, however the confidence intervals were large. Future

studies are required with larger sample sizes to test this statistic's usefulness.

INDEX WORDS: FTIR, Collinearity, Disease predictor, Wilcoxon-Mann-Whitney, Partial
least squares, Kolmogorov-Smirnov, ROC Curve, Specificity, Bootstrap

AN ANALYSIS OF FOURIER TRANSFORM INFRARED SPECTROSCOPY DATA

TO PREDICT HERPES SIMPLEX VIRUS 1 INFECTION

by

PATRICK D CHAMPION

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2008

Copyright by
Patrick Douglas Champion

2008

AN ANALYSIS OF FOURIER TRANSFORM INFRARED SPECTROSCOPY DATA

TO PREDICT HERPES SIMPLEX VIRUS 1 INFECTION

by

PATRICK D CHAMPION

Committee Chair: Dr. Yu-Sheng Hsu

Committee: Dr. Gary Hastings
 Dr. Jun Han

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
December 2008

iv

DEDICATION

I would like to dedicate this thesis to my wife Youn-Kyung, who encouraged me, prodded

me when needed, and believed in me when I didn't think I could go on in the pursuit of my

masters. Thank you so much. I would also like to dedicate this paper to Jesus Christ, without

whom I would likely not be alive. He has saved me and blessed me in so many ways and has

shown His hand at numerous time in my life. I am forever joyfully indebted to Him.

v

ACKNOWLEDGEMENTS

I would like to acknowledge with deep gratitude Dr. Yu-Sheng Hsu who graciously

guided me through my thesis. I have been deeply impressed by how much he cares for all of his

students' success. I am grateful to him for providing the experience of working with real world

data which can be far more challenging to analyze than what is seen in text books. I am also so

thankful for his patience with my split commitments to school and a workplace that very often

keeps me at work late into the evenings.

I would also like to acknowledge both Dr. Gary Hastings and Dr. Jun Han who graciously

accepted the offer to be on my thesis review committee. Thank you for your assistance. I would

also like to express a special thanks to Dr. Gary Hastings who provided me with such intriguing

data and who graciously answered my questions.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER

1. INTRODUCTION 1

2. METHODOLOGY 3

2.1 Examination and Standardization of the Initial Raw Data 3

2.2 Variable Reduction 5

2.3 Prediction of Disease Status 7

2.4 Test for Distribution Equivalence Within Mock and Hsv1 Groups 9

2.5 New Directions: Loading Eight Mock and Hsv1 Groups at 24
Hours Exposure 10

2.6 Calculation of the Wilcoxon-Mann-Whitney Curve 11

2.7 Generation of a Difference of Composites Statistic DC 11

2.8 Evaluation of DC Statistics by ROC AUC value, Specificity, and
Confidence Intervals 12

3. RESULTS 13

3.1 Examination and Standardization of the Initial Raw Data 13

3.2 Variable Reduction 18

3.3 Prediction of Disease Status 20

3.4 Test for Distribution Equivalence Within Mock and Hsv1 Groups 21

vii

3.5 New Directions: Loading Eight Mock and Hsv1 Groups at 24
Hours Exposure 23

3.6 Calculation of the Wilcoxon-Mann-Whitney Curve 24

3.7 Generation of a Difference of Composites Statistic DC 25

3.8 Evaluation of DC Statistics by ROC AUC value, Sensitivity,
Specificity, and Confidence Intervals 26

4. CONCLUSIONS AND DISCUSSION 28

REFERENCES 29

APPENDIXES 30

APPENDIX A PYTHON SCRIPT FOR LOADING DATA FILES 31

APPENDIX B DOS BATCH CODE FOR LOADING DATA FILES 34

APPENDIX C PYTHON SCRIPT FOR PLOTTING RAW DATA 37

APPENDIX D SAS TEMPLATE FOR PLOTTING RAW DATA 40

APPENDIX E PYTHON CODE FOR REMOVING SIXTH DECIMAL
POINT VARIATION 42

APPENDIX F PYTHON CODE FOR STANDARDIZING ABSORPTION
DATA 44

APPENDIX G PYTHON SCRIPT TO HELP PLOT STANDARDIZED
DATA 46

APPENDIX H SAS TEMPLATE TO PLOT STANDARDIZED DATA 49

APPENDIX I PYTHON SCRIPT TO CALCULATE
WILCOXON-MANN-WHITNEY Z SCORE PLOTS 51

APPENDIX J SAS TEMPLATE SCRIPT TO GENERATE
WILCOXON-MANN-WHITNEY Z SCORES 52

APPENDIX K PYTHON SCRIPT TO EXTRACT WILCOXON-MANN-
WHITNEY Z SCORE TO A CSV FILE 53

viii

APPENDIX L PYTHON PROGRAM TO GENERATE PLS MODEL AND
CALL LOGISTIC REGRESSION TO GENERATE ROC
CURVE

54

APPENDIX M TWO SAS TEMPLATES TO GENERATE PLS MODEL
AND CALL LOGISTIC REGRESSION TO GENERATE
ROC CURVE

60

APPENDIX N PYTHON PROGRAM TO RUN KOLMOGOROV-
SMIRNOV TEST AGAINST 24 HOUR VERSUS 2, 4, 6
HOUR DATA OF SAME DISEASE STATUS

64

APPENDIX O SAS TEMPLATE TO RUN KOLMOGOROV-SMIRNOV
TEST AGAINST 24 HOUR VERSUS 2, 4, 6 HOUR DATA
OF SAME DISEASE STATUS

70

APPENDIX P THREE PROGRAMS TO LOAD SECOND DATASET AND
STANDARDIZE IT 71

APPENDIX Q PROGRAM TO PLOT MEAN CURVES AND
WILCOXON-MANN-WHITNEY CURVES 77

APPENDIX R PROGRAM TO CALCULATE THE DC STATISTIC 80

APPENDIX S PROGRAM TO CALCULATE USING BOOTSTRAP THE
AUC AND SPECIFICITY CONFIDENCE INTERVALS 83

ix

LIST OF TABLES

Table 1. Total Number of Samples in Each Group by Disease Status 3

Table 2. Results of PLS Analysis 20

Table 3. Partial ROC Curve for Mock Versus Hsv1 Data 21

Table 4. Results of PLS analysis for 24 Hour Mock Versus 2, 4, and 6 Hour Mock 21

Table 5. Kolmogorov-Smirnov Results for 24 Hour Mock Versus 2, 4, and 6 Hour Mock 22

Table 6. Kolmogorov-Smirnov Results for 24 Hour Hsv1 Versus 2, 4, and 6 Hour Hsv1 23

Table 7. Difference of Composites Statistic, DC, for Hsv1 and Mock for 8 Samples 26

Table 8. Mean and Variance of Difference of Composites Statistic, DC, for Hsv1 and

Mock for 8 Samples

26

x

LIST OF FIGURES

Figure 1. Raw Hsv1 Versus Mock Data at 2 Hours 13

Figure 2. Raw Hsv1 Versus Mock Data at 4 Hours 14

Figure 3. Raw Hsv1 Versus Mock Data at 6 Hours 14

Figure 4. Raw Hsv1 Versus Mock Data at 24 Hours 15

Figure 5. Standardized Hsv1 Versus Mock Data at 2 Hours 16

Figure 6. Standardized Hsv1 Versus Mock Data at 4 Hours 16

Figure 7. Standardized Hsv1 Versus Mock Data at 6 Hours 17

Figure 8. Standardized Hsv1 Versus Mock Data at 24 Hours 17

Figure 9. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Versus Mock Data at 2

Hours

18

Figure 10. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Versus Mock Data at

4 Hours

19

Figure 11. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Versus Mock Data at

6 Hours

19

Figure 12. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Versus Mock Data at

24 Hours

20

Figure 13. Mean Absorption Curves for 8 Hsv1 and 8 Mock Samples at 24 Hours 23

Figure 14. Wilcoxon-Mann-Whitney Statistic's Z Score for 8 Hsv1 Mean Curves

Versus 8 Mock Mean Curves at 24 Hours

24

Figure 15. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Standardized Data

Versus 8 Mock Standardized Data at 24 Hours

25

1

1. INTRODUCTION

Distinguishing between healthy and diseased tissue is very important for the purpose of

making a diagnosis of many diseases. A spectroscopic tool, called LightTouchTM made by

Spectrx, Inc, has been shown useful in the detection of cervical cancer by measuring the

reflectance and fluorescence spectrum of cervical tissue using the visible spectrum between

410nm and 710nm (Wang 2007).

Fourier Transform Infrared spectroscopy (FTIR) is another promising technology. It has

been used by chemical engineers to perform polymer forensics and by the EPA to measure 100

out of the 189 pollutants on the governments Hazardous Airborne Pollutants list. FTIR devices

have been commercially available since the 1980's. They can be as small as two reams of paper or

as large as a desktop. FTIR works on many organic and inorganic substances and can measure

solid, liquid and gaseous substances. FTIR works by splitting a HeNe laser beam in two. One

beam then bounces off of a stationary mirror and the other off of a rapidly moving mirror. The

beams are recombined, forming a time based interference pattern that is then directed at a

specimen. The resulting reflected or transmitted infrared light is then measured and a Fourier

transform is performed to create a absorption spectrum.

This study used a Fourier Transform Infrared (FTIR) spectroscopic device, which

measured absorption in the infrared spectrum from 800 cm-1 to 1500 cm-1. Please note that the

measurement, 800 cm-1 means 1/800 cm = 12.5 μm. This places the studied frequencies in the

mid-infrared frequency region.

In this study, the device was used to scan cellular suspensions of Vero cells to obtain

infrared absorption data that was used to test for the presence or absence of Vero cells infected

2

with Herpes Simplex Virus 1 (hsv1). Vero cells are cells derived from the epithelial kidney cells

of the African green monkey. These cells can be grown in culture banks indefinitely without

deterioration in the cell's characteristics. They have been in continuous culture since 1962 and

used for research into the development of vaccines against many diseases because of both their

stability and sensitivity to many human diseases (Sheets 2000). The purpose of this thesis is to

identify an indicator statistic to predict disease status between hsv1-infected and healthy (mock)

Vero cell cultures using the data produced by FTIR measurements of the sampled cultures.

Analyzing the data produced by the spectroscopic measurements presented several

challenges. One major issue was that the variables produced were highly correlated. In the FTIR

spectroscopic measurements, an absorption value was recorded for roughly each integer

increment in wavelength, ranging from 800 cm-1 to 1500 cm-1. The peaks in absorption, however,

were not isolated to single frequencies–instead, the absorption data consisted of peaks and valleys

extending for large ranges of frequencies. As a result, the number of correlated variables

produced were very large. The second major issue was that the sample size was small compared

to the number of variables.

To overcome these problems, several approaches were pursued including Partial least

squares method, Kolmogorov-Smirnov tests, sensitivity/specificity calculations for ROC curves,

and Bootstrap methods for calculating confidence intervals. This thesis presents results using

these methods and insights gleaned from these results.

3

2. METHODOLOGY

2.1 Examination and Standardization of the Initial Raw Data

In the study data, there were 728 infrared absorption variables for the corresponding 728

frequencies that were measured per location on a cellular suspension. Vero cells had been

cultured. Some cells would be withdrawn from the culture and divided into two subcultures. One

subculture would be infected with hsv1, the hsv1 sample, and one would not be infected, the

mock sample. The two cultures would then be allowed to grow for a specified number of hours,

2, 4, 6, and 24 hours. The first dataset included cells that were cultured for 2, 4, 6, and 24 hours.

The second set of data included 8 samples that were each cultured for 24 hours. Each of the two

subcultures, hsv1 and mock, would then be placed into separate cellular suspensions and scanned.

The following table shows the total number of samples in each group by disease status

within the first dataset.

Table 1. Total Number of Samples in Each Group by Disease Status

Group Diseased (hsv1) Non-diseased (mock)

2 hour 65 54

4 hour 45 82

6 hour 83 72

24 hour 111 180

For each sample, the spectroscopic measurements were taken and stored in a file – one file

per sample. Each file was saved in comma-separated-value (csv) ASCII format where each line

consisted of a spectrum frequency followed by the corresponding absorption value. Files were

organized into directories where a directory contained all samples for a particular disease status

and hour measurement. Using the Python language, the files were merged into one file, the

4

master dataset, so that each row of the master dataset contained the disease status (mock or

hsv1), the group (2, 4, 6, and 24 hours), the file number within the group, the filename, the

spectrum value, and the absorption value. The Python program for loading one directory at a

time into the dataset file is shown in Appendix A. The DOS batch script that changed to each

directory in the directory structure that contained the data and loaded the files from that directory

is shown in Appendix B.

Next, to get an initial visual idea of the nature of the data and secondly to confirm the

need for standardization of the data, Python and SAS were used. A Python script filtered the

master dataset data by group and Vero cell type (hsv1/mock) into csv files. Python code then

generated SAS programs for reading and plotting the data from a SAS template file. The SAS

programs were run and the Python script renamed the generated output GIF file to meaningful file

names. The Python script is shown in Appendix C and the SAS template file is shown in

Appendix D. Examination of the data revealed that differences between the mean absorption of

one sample (file) and another was far greater than the variation in absorption values within a file.

Sometimes this inter-sample variation was more than 10 times the intra-sample variation.

Therefore, the need for data standardization became obvious.

Standardization was accomplished by the following procedure. All samples were

examined to find the highest minimum spectrum value that the sample was measured. That

frequency was 799.492 cm-1. Similarly, the lowest maximum frequency was found to be 1500.615

cm-1. All frequency measurements outside of this range were excluded so that samples could be

compared at the same frequencies. For plotting convenience, the range was slightly narrowed to

include only frequencies between 800 and 1500. The Python script shown in Appendix A also

does this filtering now. Within the above range, all measurements were found to have been taken

5

at the same set of frequencies after the exclusion of a sixth decimal point in some of the data. In

other words, some spectrum values were record to six decimal places and some to 5 decimal

places depending on the day the measurement was taken. Once the impact of this extra digit of

precision was removed, all samples were found to have been measured at the same frequencies.

This was accomplished by the Python script shown in Appendix E. Next, the mean value and

standard deviation were calculated for each sample's absorption values. A standardized value was

the calculated for each frequency by the formula standardized absorption = (absorption – standard

deviation) / mean. The Python script that accomplished this is shown in Appendix F. The

standardized absorption values were then plotted using code similar to that used for plotting the

raw data. The Python script and SAS template script that did this are shown in Appendixes G and

H respectively.

2.2 Variable Reduction

The next step was a variable reduction process. Each sample had 728 spectrum variables

at which an absorption value were measured (starting at 799.492 cm-1). Many of these spectrum

variables might not differ overall in value between mock and hsv1 tissues. Our goal was to

eliminate those spectrum values where the differences between hsv1 and mock absorption values

were not highly significant. To do this we used the Wilcoxon-Mann-Whitney test and excluded

any frequency (i.e. variable) where Z < 8.0. The high value of 8.0 was chosen instead of 4.0

because the plateaus in the Z values occur above 8 in all plots and choosing only 4.0 would

eliminate very little of the less significant data.. This was done for the 2, 4, 6, and 24 hour groups.

The Wilcoxon rank sum test was initially developed by Wilcoxon in 1945. An equivalent

test, the Mann-Whitney U test, was developed by Mann and Whitney in 1947. The two tests are

6

collectively called the Wilcoxon-Mann-Whitney test. The test is a nonparametric rank based test

to assess whether two independent random samples belong to the same population by assessing

whether their population distributions are the same or not. This is achieved by the following

simple algorithm (Sprent 2001). For sample X of size m and sample Y of size n, combine the two

samples into one sample of size m+n and order, i.e. rank, the values from 1 to m+n. Then

separate out the samples and sum the rank values given to the X sample elements and call it Sm.

Sum the rank values given to the Y sample elements and call it Sn. If Sm is much larger than Sn,

then there is evidence that they belong to different distributions. StatXact will calculate the exact

p-value for these two number. SAS also provides Wilcoxon-Mann-Whitney calculation p-values

as well as a Z value via the NPAR1WAY procedure. The Z value provided, and which we used,

is the Z value one would get if one took the calculated Wilcoxon-Mann-Whitney p-value and

treated it as if it were a p-value from a normal distribution and then took the associated Z value.

The python code for this is shown in Appendix I. The SAS template code used by the python

code is shown in Appendix J. The python code that filtered through the SAS listing file to get the

Z values and the corresponding frequencies and dump them to a csv file is shown in Appendix K.

The number of frequency variables was then further reduced by taking the average of the

absorption values for the five adjacent spectrum variables in each sample and creating replacing

the five variables with the median frequency among the five and assigning it this average

absorption value. This acted as a kernel smoothing function that smoothed out localized noise.

These new spectrum variables were used for all the disease prediction modeling below. The code

that did this is included in all the the associated Partial least squares and Kolmogorov-Smirnov

code referred to in the below sections.

7

2.3 Prediction of Disease Status

Logistic regression would be used usually with binary outcome data. However, logistic

regression becomes unstable and misleading if either of the following conditions exist. Too many

variables exist compared to sample size. When initially investigating Logistic regression against

the data, SAS would report a failure to meet convergence criteria until the variable count was

reduced to 1 variable for roughly every 10.5 samples. For 24 hour data this would require a Z

cutoff of 13.85 and an overly fitted model. There exists collinearity between several variables.

Correlations among the predictors make it seem that no one variable is important when all the

other collinear variables are in the model (Agresti 2002). Hence logistic regression could not be

utilized directly.

Instead, we used the Partial least squares (PLS) regression in SAS to derive a model that

explained 95% or more of the variation in the independent variables. A second reason for using

PLS was that PLS does not require a normally distributed response variable. It is safest when

dealing with biological data to assume that the response variable is non-normal.

PLS was developed by Herman Wold and published as an econometric technique (Wold

1966) . It is now used by chemical engineers and many others . PLS works by finding linear

combinations of predictors, termed latent factors, to predict what are called manifest factors.

Both the latent factors and predictors are linear combinations of the dependent and independent

variables in the data.

The PLS method computes the factors by extracting one factor at at time. Let X=X0 be a

centered and scaled matrix of predictors and Y=Y0 be the centered and scaled matrix of response

variables. The PLS method starts with a linear combination t = X0wof the predictors, where t is

8

called a score vector and w is its associated weight vector. The PLS method predicts both X0 and

Y0 by regression on t.

X 0 = tp ' , where p '= t ' t −1 t ' X 0

Y 0 = tc ' , where c '= t ' t −1 t ' Y 0

The vectors p and c are called the X and Y loadings, respectively. The specific linear

combination t = X0w is the one that has a maximum covariance t'u with some response linear

combination u = Y0q. Another characterization is that the X and the Y weights w and q are

proportional to the first eigenvectors of X0'Y0Y0'X0 and Y0'X0X0'Y0 respectively. This gives the

first PLS factor that is extracted. The second factor is then extracted by replacing X0 and Y0 with

the X and Y residuals from the first factor. X 1 = X 0 − X 0 and Y 1 = Y 0− Y 0 Each

successive desired factor is extracted in the same way. The more factors that are created, the

more variance is explained in the dependent and independent variables.

We used the 24 hour hsv1 versus mock data to generate a model with PLS that explained

95% of the variation in the independent variables, the absorption variables. Since we were told

that 24 data is considered to be a gold standard for hsv1 spectrum analysis, we used this model

against the 2, 4, and 6 hour data and evaluated how well the model performed for those data.

To be able to evaluate the usefulness of the model for diagnosing a patient's hsv1 status, a

Receiver Operating Characteristic (ROC) curve is needed. SAS generates ROC curves under the

Logistic regression procedure. Therefore, the orthogonal factors from the PLS model that

accounted 95% of the independent variable variation were used to have PLS generate a disease

predictor model that was stored in the variable, ypred. This predictor model variable was then

used as the model in a Logistic regression. From the Logistic regression in SAS we then obtained

the ROC curve and and a table of the curves specificity and sensitivity values. The Python and

9

SAS code that accomplished the 5 variable reduction, PLS modeling, and use of Logistic

regression to generate a ROC curve is shown in Appendixes L and M.

2.4 Test for Distribution Equivalence Within Mock and Hsv1 Groups

For a diagnostic tool to be valid especially with Vero cell which can be cultured

indefinitely, there should be a common underlying distribution for all the healthy Vero cells and

there should be a change in the distributions of the diseased Vero cells as the disease progresses

with time. To test this hypothesis on the experiment data, PLS was run against the 24 mock

sample and mock sample from a different hour. For each location on a sample, PLS generated a

single number which would act as a predictor of the time group that the location belonged to.

This was done for 2 hours versus 24 hours, 4 hours versus 24 hours, and 6 hours versus 24 hours.

Then the Kolmogorov-Smirnov (KS) test was used to compare the distribution of the predicted

time values for each comparison pair. If the 2 hour mock cells behaved the same as the 24 hour

mock cells, then their predicted hour values - which were based on each location's absorption

values – should be similar in distribution and return a KS p-value that is not significant (i.e. p-

value > 0.05).

The Kolmogorov-Smirnov test was proposed by Kolmogorov(1933) and Smirnov(1936).

It is a nonparametric test of equality that compares the empirical distribution function of two

samples. It is sensitive to differences in both location and shape of the empirical cumulative

functions of the two samples. The test statistic is defined as follows. For a sample {xj} where

j=1,2,...,n the empirical distribution function (EDF) is defined as the function F(x) where:

F x =
1
n
number of x j≤ x =

1
n ∑j=1

n

I x j≤ x where I() is an indicator function.

10

The Kolmogorov-Smirnov statistic measures the maximum deviation of the EDF within

the classes from the pooled EDF by computing the statistic as follows.

KS = max
j  1

n∑i
ni F i x j−F x j

2 where j=1,2,... , n

The Python program and SAS template that calculated the PLS and KS test are shown in

Appendixes N and O.

2.5 New Directions: Loading Eight Mock and Hsv1 Groups at 24 Hours Exposure

Since the results of the Kolmogorov-Smirnov test showed that the 2, 4, 6, and 24 hour

mock populations all differed, and since there were still apparent differences between the hsv1 and

mock samples at a given hour, it was determined that we needed to look for consistent contrasts

between the mock and hsv1 population at a given hour. The second set of sample data was used

for this analysis. This data consisted of 8 samples of hsv1 and mock data for the 24 hour period.

The new data had been collected in the same manner as the previous data. Therefore, we

standardized the data using the same code for standardization that was used earlier except for

minor changes relating to directory names and similar things so that it could be manipulated in a

SAS dataset. The data loading programs are shown in Appendix P.

With this new data, it was discovered that each sample set was actually a set of

measurements of different locations on the same Vero cell culture. Hence there were only 8 hsv1

samples and 8 mock samples. For example, there were 79 spectrum measurements of the single

hsv1 culture that was examined on March 24, 2008. Therefore it made more sense to calculate

the mean values of absorption at each frequency to generate a single mean curve to represent that

culture. These mean curves were calculated and plotted using the code in Appendix Q.

11

2.6 Calculation of the Wilcoxon-Mann-Whitney Curve

To find at what spectrum the hsv1 sample differed from the mock sample, we calculated

Wilcoxon-Mann-Whitney Z scores for each spectrum frequency using the 8 mean hsv1 values and

8 mean mock values. The code for this is in the second half of the Curves.sas program shown in

Appendix Q.

2.7 Generation of a Difference of Composites Statistic DC

From the results we then chose the frequencies that had the largest significance – those

frequencies at which the absolute value of the Z value was greater than or at least near 4.0. These

resulting frequencies consisted of two frequency ranges. Then for each of the 8 hsv1 and 8 mock

mean curves, we created a statistic. The statistic, let's call it the difference of composites, DC,

takes the sum of the mean values within the region where approximately Z > 3, and subtracts

from it a sum of the frequency region where approximately Z < -3. Below is a formula that

represents this.

DC = ∑
i=1

m

x i − ∑
j=1

n

x j where i and j are frequencies such that Z i3 and Z j3

The SAS code that accomplished this is GetDataForBootStrap.sas shown in Appendix R.

12

2.8 Evaluation of DC Statistics by ROC AUC value, Specificity, and Confidence Intervals

In the final stage of our analysis, we evaluated the performance of this new DC statistic. In

the last part of the program, GetDatForBootStrap.sas, we calculated the mean and variance of

our 8 DC values. We then used those numbers to generate an Area Under Curve (AUC) value for

the Receiver Operating Characteristic (ROC) Curve.

We used the following formula to calculate the AUC. AUC = P Z
DC Hsv1

−DC Mock

S DcHsv1

2 −S DcMock

2 
To calculate the ROC specificity values given 0.95, 0.9, and 0.8 sensitivities we use the following

formula. Specificity = PZ
DCHsv1

−DC Mock
−Z ⋅S DcHsv1

S DcMock
where=0.95, 0.9, 0.8

Calculating the confidence intervals for the AUC and the specificities, requires the same

formulas but applied in a parametric bootstrap to generate 10,000 or 100,000 values which we

then take the 95% quartiles of. This is accomplished in the Python program, Bootstrap3.py,

shown in Appendix S.

13

3. RESULTS

3.1 Examination and Standardization of the Initial Raw Data

The initial examination of the data involved the plotting of the raw data for hsv1 versus

mock. As shown in Figures 1 through 4, the inter-sample variation exceeds the intra-sample

variation. In some cases, the intra-sample variation is quite small and almost appears to not exist,

whereas in other samples within the plot, the intra-sample variation is quite pronounced even

within the same Vero cell type (hsv1 or mock). However, on all four plots, one notices that all

the curves do appear to have similar peaks and valleys, albeit with different intensities.

Figure 1. Raw Hsv1 Versus Mock Data at 2 Hours

14

Figure 2. Raw Hsv1 Versus Mock Data at 4 Hours

Figure 3. Raw Hsv1 Versus Mock Data at 6 Hours

15

Figure 4. Raw Hsv1 Versus Mock Data at 24 Hours

In the following four plots, Figures 5 through 8, of standardized data, we can see these

results. Inter-sample shifting disappears. Each sample now scales to similar minimum and

maximums thus eliminating the variation in the spectroscope's ability to detect variations in

absorption perhaps caused by differences in thicknesses of the sample or other factors. Now, the

areas where mock and hsv1 overlap are far more apparent as are the areas where there is

significant divergence between the two. Also eliminated are the misleading data points which

appeared to show negative absorption values, i.e. the location on the sample appeared to have

generated its own light.

16

Figure 5. Standardized Hsv1 Versus Mock Data at 2 Hours

Figure 6. Standardized Hsv1 Versus Mock Data at 4 Hours

17

Figure 7. Standardized Hsv1 Versus Mock Data at 6 Hours

Figure 8. Standardized Hsv1 Versus Mock Data at 24 Hours

18

3.2 Variable Reduction

Next, we used the Wilcoxon-Mann-Whitney statistic's Z value to identify the spectrum

variables that showed significant variation between hsv1 and mock samples. We derived the

following plots using OpenOffice.org's Calc (an Excel clone) from the csv files generated by the

Python and SAS code for generating the WMW curves.

600.000 800.000 1000.000 1200.000 1400.000 1600.000
-8.0000

-6.0000

-4.0000

-2.0000

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

Spectrum

W
ilc

ox
on

-M
an

n-
W

hi
tn

ey
 Z

 S
co

re

Figure 9. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Versus Mock Data at 2 Hours

19

600.000 800.000 1000.000 1200.000 1400.000 1600.000
-10.0000

-8.0000

-6.0000

-4.0000

-2.0000

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

Spectrum

W
ilc

ox
on

-M
an

n-
W

hi
tn

ey
 Z

 S
co

re

Figure 10. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Versus Mock Data at 4 Hours

600.000 800.000 1000.000 1200.000 1400.000 1600.000
-15.0000

-10.0000

-5.0000

0.0000

5.0000

10.0000

15.0000

W
ilc

ox
on

-M
an

n-
W

hi
tn

ey
 Z

 S
co

re

Spectrum

Figure 11. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Versus Mock Data at 6 Hours

20

600.000 800.000 1000.000 1200.000 1400.000 1600.000
-20.0000

-15.0000

-10.0000

-5.0000

0.0000

5.0000

10.0000

15.0000

20.0000

Spectrum

W
ilc

ox
on

-M
an

n-
W

hi
tn

ey
 Z

 S
co

re

Figure 12. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Versus Mock Data at 24 Hours

3.3 Prediction of Disease Status

When we used Partial least squares (PLS) regression to derive a 24 hour model that

explained 95% or more of the variation in the independent variables, SAS generated 6 latent

factors which explained 96% of the variance according to the following breakdown.

Table 2. Results of PLS Analysis

number of
independent

variables

factors and total
X variation

accounted for

24 hour hsv1
vs mock

103 1
2
3
4
5
6

73.23%
81.77%
90.81%
92.92%
94.90%
96.03%

21

The 103 independent variables were the resulting number of absorption variables each

with its particular frequency from the previous variable reduction sections that were run against

the 24 data. The code generated these same frequency variables for the 2, 4, and 6 hour data.

Substituting the disease predictor model, ypred, that was generated by these 6 orthogonal factors

into a Logistic regression as model variables allowed the generation of the ROC curves. The

below table describes the ROC curves for each group at the sensitivity values of greatest interest.

Table 3. Partial ROC Curve for Mock Versus Hsv1 Data

Sensitivity
Specificity measurements at

2 hours 4 hours 6 hours 24 hours

99% 16.7% 52.4% 0.0% 100.0%

95% 46.3% 63.4% 63.9% 100.0%

90% 51.8% 71.9% 76.4% 100.0%

80% 87.0% 82.9% 86.1% 100.0%

3.4 Test for Distribution Equivalence Within Mock and Hsv1 Groups

Because we compared 24 hour mock to 2, 4, and 6 hour mock, this resulted in new PLS

models. In each of these models we used 6 factors resulting in 95 % to 96% of the independent

variable variance being explained.

Table 4. Results of PLS analysis for 24 Hour Mock Versus 2, 4, and 6 Hour Mock

groups
compared

number of
independent

variables

factors and total
X variation

accounted for

2 hour vs 24
hour

103 1
2
3
4
5
6

68.0%
78.7%
91.0%
92.8%
94.9%
95.4%

4 hour vs 24
hour

103 1
2
3
4

69.5%
81.4%
91.6%
92.8%

22

5
6

94.2%
96.5%

6 hour vs 24
hour

103 1
2
3
4
5
6

65.2%
83.8%
91.1%
92.3%
94.8%
96.6%

When we ran the Kolmogorov-Smirnov tests on the above models, we had hoped to find

that the mock groups all belonged to the same distribution and that the 2, 4, or 6 hour hsv1

groups had a different distribution than the 24 hour hsv1 group. What we discovered in the

below results was that there was a strong statistical difference (p value < 0.0001) between the 24

hour mock group and each of the other mock groups (2, 4, and 6 hour mock). We also ran

similar test for the hsv1 groups. They also had different distributions (p value < 0.0001 for 2, 4,

and 6 hour hsv1) from the 24 hour hsv1 group, but then that was expected.

Table 5. Kolmogorov-Smirnov Results for 24 Hour Mock Versus 2, 4, and 6 Hour Mock

Group
comparison

Kolmogorov-Smirnov
Two-Sample Test
(Asymptotic)

p value

2 hour vs
24 hour

5.911106 < 0.0001

4 hour vs
24 hour

6.697076 < 0.0001

6 hour vs
24 hour

6.456331 < 0.0001

23

Table 6. Kolmogorov-Smirnov Results for 24 Hour Hsv1 Versus 2, 4, and 6 Hour Hsv1

Group
comparison

Kolmogorov-Smirnov
Two-Sample Test
(Asymptotic)

p value

2 hour vs
24 hour

4.769696 < 0.0001

4 hour vs
24 hour

4.437060 < 0.0001

6 hour vs
24 hour

4.961718 < 0.0001

3.5 New Directions: Loading Eight Mock and Hsv1 Groups at 24 Hours Exposure

After loading the 8 sets of mock and hsv1 sample data, and standardizing the second

dataset using basically the same algorithm that we used for the first dataset, we calculated the

means of the absorption values for each frequency variable for each of the 8 hsv1 and 8 mock 24

hour groups. The following plot shows these 16 mean curves.

Figure 13. Mean Absorption Curves for 8 Hsv1 and 8 Mock Samples at 24 Hours

24

It will be noticed that the plot of these 16 mean curves closely resembles the plot of the

initial dataset. The overall location and relative scale of the peaks and valleys is very similar,

however, the normalized first dataset exhibited far greater variance in the height and depth of the

peaks and valleys of the 24 hour data than what is seen here. Some of this may be explainable by

the fact that we are averaging out the extremes within each sample in this plot of means above.

However, part of the variance is likely also due to variance between each sample. Ascertaining

how much of the variance reduction is due to taking the means will require further sampling in the

future. Currently our goal is to find an indicator statistic, hence, the next stage of analysis.

3.6 Calculation of the Wilcoxon-Mann-Whitney Curve

Next, we plotted the Wilcoxon-Mann-Whitney Z scores which show the spectrum

variables that had significant variation between hsv1 and mock mean curves.

Figure 14. Wilcoxon-Mann-Whitney Statistic's Z Score for 8 Hsv1 Mean Curves Versus 8 Mock

Mean Curves at 24 Hours

25

In the interest of verifying whether using the mean curves to calculate a Z statistic gives a

different result than using the standardized data, the Wilcoxon-Mann-Whitney Z Score was also

calculated on the standardized data (that was used to generate the means) and yielded the

following plot which is almost identical except for the scale of the Z value and some small

differences in two peaks near 900 cm-1 and 1000 cm-1.

Figure 15. Wilcoxon-Mann-Whitney Statistic's Z Score for Hsv1 Standardized Data Versus 8

Mock Standardized Data at 24 Hours

3.7 Generation of a Difference of Composites Statistic DC

From the above plot we can see that the spectrum from 1415 cm-1 to 1455 cm-1 has the

highest positive Z values. In this case Z > 3.0. The region with the largest negative Z values were

in the range 1050 cm-1 to 1070 cm-1. Using the code in GetDataForBootStrap.sas, the following 8

pairs of DC values were generated and their mean and variance values.

26

Table 7. Difference of Composites Statistic, DC, for Hsv1 and Mock for 8 Samples

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Hsv1 21.1279 27.9380 12.8544 11.3004 19.1465 8.7847 21.9278 5.1373

Mock 7.1749 1.6203 2.6050 3.9264 5.5607 3.0025 -10.1459 -2.0627

Table 8. Mean and Variance of Difference of Composites Statistic, DC, for Hsv1 and Mock for 8

Samples

Mean Variance Standard
Deviation

Hsv1 16.0271 59.4121 7.7079

Mock 1.4602 29.4831 5.4298

It would appear that mock sample 7 could be an outlier since without it the mean of the

remaining 7 mock values is 3.1182 and the standard deviation is 2.9563 which places -10.1459

more than 3 standard deviations away. However since there are only 8 mock samples, excluding

it would be premature. Furthermore, to perform the later bootstrap test we need to maintain

normality in our data values and selectively removing values would remove this normality.

3.8 Evaluation of DC Statistics by ROC AUC value, Sensitivity, Specificity, and Confidence

Intervals

Using the previously mentioned formula for the area under the ROC curve, we get the

following value. AUC = P Z 
16.0271−1.4602

59.412129.4831 = PZ1.5450 = 0.9388 .

Using the bootstrap3.py, which uses the nonparametric Bootstrap algorithm to generate 100,000

samples with replacement, where each sample consists of the 8 paired hsv1/mock means, we get

for the 0.9388 AUC value a moderately narrow 95% confidence interval of [0.8907, 0.9924].

27

Since it is over 90%, a 0.9388 AUC would indicate a very good ability of the test statistic to

discriminate between diseased and healthy cells.

From a medical diagnostic perspective, the more important numbers are the specificity

values, Sp , given sensitivity values, Se , of 0.95, 0.9, and 0.8. Using the previously described

equation for specificity we get the following three values.

S p at S e=0.95 = P Z16.0271−1.4602−1.6449⋅7.7079
5.4298  = P Z0.3478 = 0.6360

S p at S e=0.90 = PZ16.0271−1.4602−1.2816⋅7.7079
5.4298  = P Z0.8635 = 0.8061

S p at S e=0.80 = PZ
16.0271−1.4602−0.8416⋅7.7079

5.4298  = P Z1.4880 = 0.9316

Using the same nonparametric Bootstrap algorithm with 100,000 iterations, we get for

63.6% specificity a 95% confidence interval of [0.04427, 0.9544]. For the 80.61% specificity the

95% confidence interval is [0.4199, 0.9964]. Finally, for the 0.9316 specificity, the 95%

confidence interval is [0.8345, 0.9999]. These confidence intervals are disappointingly large, but

it might be expected.

It should be noted that calculating 100,000 iterations enabled us to get a very stable

estimate of these three confidence intervals. The 95% confidence intervals for specificity are so

wide because, in addition to the width of the AUC CI, the standard deviation term on the top of

the specificity equation increases the CI width because of its variability from sample to sample.

Also, the smaller standard deviation value in the bottom term of the equation also contributes to

the width of the confidence intervals.

AUC = P Z
DC Hsv1

−DC Mock

S DcHsv1

2 −S DcMock

2 
Specificity = PZ

DCHsv1
−DC Mock

−Z ⋅S DcHsv1

S DcMock
where=0.95, 0.9, 0.8

28

4. CONCLUSIONS AND DISCUSSION

In conclusion, the analysis was able to find a simple test statistic, DC, to predict disease

status. The mean and variance of the DC statistics for hsv1 and mock data resulted in distribution

curves for the statistic that were well separated as indicated by the AUC value of 0.9388. The

resulting specificity values were moderately good – 63%, 80%, and 95% for sensitivity values of

95%, 90%, and 80% respectively. However, the confidence intervals for both the AUC and even

more so for the specificity values were highly impacted by the small sample size of 8 mean mock

and hsv1 curves. However, based on the first dataset, we found it difficult to draw a conclusion

regarding whether an earlier cell culture than 24 hours could be used to predict disease status,

because of the significant difference in distributions between the 24 hour and the 2, 4, and 6 hour

groups for mock.

In the future, to confirm the usefulness of the DC statistic for predicting disease status, an

increased sample size is needed. This will help to reduce the confidence interval width for the

specificity measurements and it would enable the use of cross-validation to estimate the AUC

after shrinkage. One could have just 10 hsv1 and 10 mock measurements per sample pair, but

have 10 sample pairs for 2 hour data, 10 sample pairs for 4 hour data, et cetera. It might also be

beneficial to draw additional samples from time periods in between 24 hours and 6 hours to better

understand the nature of the inversion of Z scores between these two groups.

Finally, it might be worthwhile to explore other methods of reducing the number of

frequency variables, such as Fourier decomposition. One could find the Fourier equation

coefficients that explain at least 95% of the variability in the mean values and use these

coefficients for PLS or other model generation.

29

REFERENCES

Chakravarti, R. and Laha, R.G. (1967), “Handbook of Methods of Applied Statistics, Volume I”,

John Wiley and Sons, pp. 392-394.

Efron, B. and Tibshirani, R.J. (1993), “An Introduction to the Bootstrap”, Chapman & Hall.

Andrei N. Kolmogorov. “Grundbegrie der Wahrscheinlichkeitsrechnung”. Springer, Berlin, 1933.

English translation (1950): Foundations of the theory of probability. Chelsea, New York.

SAS Institute Inc., 2003-2005 SAS OnlineDoc, version 9.1.3.

Sheets, R. (2000), “History and Characterization of the Vero Cell Line for Vaccines and Related

Biological Products Advisory Committee”, FDA.

www.fda.gov/ohrms/dockets/ac/00/backgrd/3616b1a.pdf

Sprent, P. and Smeeton, N.C. (2001), “APPLIED NONPARAMETRIC STATISTICAL

METHODS, Third Edition”, Chapman & Hall/CRC, pp. 43-44.

Tobias, R.D., “An Introduction to Partial Least Squares Regression”, SAS Institute., Cary, NC.

Wang, H. (2007), “Some Conclusions of Statistical Analysis of the Spectropscopic Evaluation of

Cervical Cancer”, Masters Thesis, Georgia State University.

Wold, H. (1966), "Estimation of Principal Components and Related Models by Iterative Least

Squares," in Multivariate Analysis, ed. P. R. Krishnaiah, New York: Academic Press,

391 - 420.

http://www.fda.gov/ohrms/dockets/ac/00/backgrd/3616b1a.pdf

30

APPENDIXES

The following appendixes contain the Python and SAS code used to perform the data

management and analysis.

31

APPENDIX A: PYTHON SCRIPT FOR LOADING DATA FILES

#Python program, makeDataSet.py, for loading dataset

#

#It assumes the loaded data file contains several prefix lines

#of alpha text which are then followed by comma separated numeric

#lines with a spectrum frequency floating point number, a comma,

#and the absorption floating point number.

#

#The code also filters out any spectrum value less than 800 or

#greater than 1500. Finally, it filters out one data file that

#contains an outlyer sample caused by the initial sample having

#a miniscule standard deviation (around.001 or so) and

#resulted in a totally different curve once it was standardized.

import os,os.path,sys

def getFiles(destFileName):

 df=0

 fileList=[]

 try:

 df = open(destFileName,'a+')

 except Exception,err:

 print "Failed opening file, "+os.path.basename(destFileName)

+". "+str(err)

 else:

 cwd=os.getcwd()

 fileList=os.listdir(cwd)

 return df,fileList

def getHeader(line,f):

 display='.'

 peak='.'

 size=0

 for i in range(0,10):

 linePair=line.upper().split(',')

 if 'DISPLAYDIRECTION' in linePair[0]:

 display=linePair[1].strip(' \r\n')

 if 'PEAKDIRECTION' in linePair[0]:

 peak=linePair[1].strip(' \r\n')

 if linePair[0][0].isdigit():

 size=i

 break

32

 line=f.readline()

 return display,peak,size,line

def loadLine(line,xyList):

 x,y = line.split(',')

 x = x.strip(' \n\r')

 y = y.strip(' \n\r')

 if (x[0].isdigit() or x[0] in ('+','-','.')) and (y[0].isdigit()

or y[0] in ('+','-','.')):

 if 800.0 < float(x) < 1500.0 :

 xyList.append((float(x),x,y))

def writeLine (x, y,

destFile,lineNum,fileNum,fileType,fileName,hours):

 out = '%02.2d ' % int(hours)

 out += '%03.3d ' % fileNum

 if fileType[0].upper() == 'V':

 out += 'v ' + '%4.4s ' % fileType[1:5]

 else:

 out += 'n ' + '%4.4s ' % fileType[0:4]

 out += '%03.3d ' % lineNum

 out += ('%-12.12s'%x + ' ')[0:13]

 out += ('%-12.12s'%y[0:9] + ' ')[0:10]

 out += ' '*14

 out += (fileName.replace(' ','') + ' '*75)[0:75]

 destFile.write(out+'\n')

def loadFile(fileName):

 xyList=[]

 f=open(fileName,'r')

 line=f.readline()

 display,peak,size,line=getHeader(line,f)

 while len(line)>10:

 loadLine(line,xyList)

 line=f.readline()

 f.close()

 return xyList

def main():

 (destFile,fileList) = getFiles(sys.argv[1])

 fileType=sys.argv[2]

 hours=sys.argv[3]

 fileNum=0

 if destFile != 0:

 for fileName in fileList:

33

 fileNum += 1

 if (fileName == "v-mock-human-t-nofix-24hpi-041608-

2cm-1_2000-700 filter(8).csv" and

 hours=="24" and fileType=="vmock"

):

 continue

 print "Reading",fileName

 xyList = []

 xyList = loadFile(fileName)

 xyList.sort()

 lineNum=0

 for node in xyList:

 lineNum += 1

 writeLine(node[1],node[2],destFile,lineNum,fileNu

m,fileType,fileName,hours)

 destFile.close()

 else:

 print "Error opening file: "+sys.argv[1]

if len(sys.argv) == 1:

 print "syntax: ",sys.argv[0],"destFile fileType hours"

else:

 main()

34

APPENDIX B: DOS BATCH CODE FOR LOADING DATA FILES

REM Dos batch program to load data files, makeDSwith1call.bat

echo "LOAD DATA"

echo "---------------------"

cd "M:\Data\all mock had1 hsv1 2 hip 2cm-1 032608-032708\had1\all

1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt had1 02

cd "M:\Data\all mock had1 hsv1 2 hip 2cm-1 032608-032708\hsv1\ALL

1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt hsv1 02

cd "M:\Data\all mock had1 hsv1 2 hip 2cm-1 032608-032708\mock\all

1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt mock 02

cd "M:\Data\all mock had1 hsv1 4 hip 2cm-1 032808\had1\all 1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt had1 04

cd "M:\Data\all mock had1 hsv1 4 hip 2cm-1 032808\hsv1\all 1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt hsv1 04

cd "M:\Data\all mock had1 hsv1 4 hip 2cm-1 032808\mock\all 1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt mock 04

cd "M:\Data\all mock had1 hsv1 6 hip 2cm-1 032808-033108\had1\all

1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt had1 06

cd "M:\Data\all mock had1 hsv1 6 hip 2cm-1 032808-033108\hsv1\all

1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt hsv1 06

cd "M:\Data\all mock had1 hsv1 6 hip 2cm-1 032808-033108\mock\ALL

35

1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt mock 06

cd "M:\Data\all mock had1 hsv1 24hip 2cm-1 032408-041808\mock hsv1

had1 24hip 2cm-1 032408-040708\had1 24hip 2cm-1 032508-040708\all

1500-700"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt had1 24

cd "M:\Data\all mock had1 hsv1 24hip 2cm-1 032408-041808\mock hsv1

had1 24hip 2cm-1 032408-040708\hsv1 24hip 2cm-1 032508-040708\all

high hsv1 24hip 2cm-1 032408-040708"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt hsv1 24

cd "M:\Data\all mock had1 hsv1 24hip 2cm-1 032408-041808\mock hsv1

had1 24hip 2cm-1 032408-040708\mock 24hip 2cm-1 032508-040708\all

high mock 24hip 2cm-1 032408-040708"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt mock 24

cd "M:\Data\all mock had1 hsv1 24hip 2cm-1 032408-041808\mock hsv1

had1 24hpi 2cm-1 041708--041808\v-had1-human-t-nofix-24hpi-041708--

041808-2cm-1_2000-700 filter\all 1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt vhad1 24

cd "M:\Data\all mock had1 hsv1 24hip 2cm-1 032408-041808\mock hsv1

had1 24hpi 2cm-1 041708--041808\v-hsv1-human-t-nofix-24hpi-041808-

2cm-1_2000-700 filter\all 1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt vhsv1 24

cd "M:\Data\all mock had1 hsv1 24hip 2cm-1 032408-041808\mock hsv1

had1 24hpi 2cm-1 041708--041808\v-mock-human-t-nofix-24hpi-041608--

041708-2cm-1_2000-700 filter\all 1500-800"

m:\python25\python.exe m:\data\makeDataSet.py

m:\data\mastDataSet.txt vmock 24

cd \data

echo "3 digit rounding of Spectrum"

echo "-------------------------------"

m:\python25\python.exe m:\data\JoinSlices3.py m:\data\mastDataSet.txt

36

m:\data\mastDataset3digit.txt

echo "Standardize DataSet"

echo "-------------------"

m:\python25\python.exe m:\data\makeStdData.py

m:\data\mastDataset3digit.txt m:\data\mastDataset3digitSTD.txt

37

APPENDIX C: PYTHON SCRIPT FOR PLOTTING RAW DATA

#This Python program, , extracts data from the

#master dataset by hour and by tissue type into subset files.

#It then modifies a SAS script using the corresponding data

#and tissue types to make the target SAS file which it then runs.

#The SAS script processes the data and GPLOTS it. This program then

#renames the generate GIF file to a filename that indicates the

#type of data that was plotted.

import os,sys

def MakeDataFile(dataSetFileName,dataSubsetFileName,hour,tiss1):

 hr=0;file=1;v=2;tiss=3

 row=4;x=5;y=6;avg=7;std=8;stdy=9;

 disp=10;peak=11;fname=12

 fp=open(dataSetFileName,'r')

 fpout=open(dataSubsetFileName,'w')

 d1={}

 d2={}

 linenum=0

 while True:

 linenum += 1

 if linenum%10000 == 0:

 print 'reading line',linenum

 line = fp.readline()

 if len(line) == 0:

 break

 t=line.split()

 if t[hr] != hour:

 continue

 if t[tiss] not in (tiss1,'mock'):

 continue

 if t[tiss]==tiss1:

 if not d1.get(float(t[x])):

 d1[float(t[x])]={}

 d1[float(t[x])][t[int(file)]] = t[y]

 else:

 if not d2.get(float(t[x])):

 d2[float(t[x])]={}

38

 d2[float(t[x])][t[int(file)]] = t[y]

 fp.close()

 xlist = d1.keys()

 xlist.sort()

 tissCount=0

 mockCount=0

 for xval in xlist:

 print 'WRITING line',xval

 fpout.write(('%4.3f '%xval)[0:10])

 cols1 = d1[xval].keys()

 cols2 = d2[xval].keys()

 cols1.sort()

 cols2.sort()

 oldTissCount=tissCount

 tissCount = len(cols1)

 if tissCount!=oldTissCount and oldTissCount!=0:

 print "Warning",tiss1," count of",tissCount,"does not

match old count of",oldTissCount,"for hour",hour

 oldMockCount=mockCount

 mockCount = len(cols2)

 if mockCount!=oldMockCount and oldMockCount!=0:

 print "Warning mock count of",mockCount,"does not match

old count of",oldMockCount,"for hour",hour

 for col in cols1:

 fpout.write((d1[xval][col]+' ')[0:11])

 fpout.write(' '*11)

 for col in cols2:

 fpout.write((d2[xval][col]+' ')[0:11])

 fpout.write('\n')

 fpout.close()

 return tissCount,mockCount

def WriteSasFiles(hour,tiss,tissCount,mockCount):

 fTmpl = open('RawDataPlot.sas','r')

 buf = fTmpl.read()

 fTmpl.close()

 varOffsets = ''

 varList = ''

 for i in range(0,tissCount):

 varOffsets += 'y'+str(i)+' '+str(11+i*11)+'-'+str(11+i*11+8)+'

'

 varList += 'y'+str(i)+'*x=1 '

 if i%10 == 9:

39

 varOffsets += '\n' + ' '*10

 varList += '\n'+' '*9

 varOffsets += '\n'+' '*10

 varList += '\n'+' '*9

 for j in range(0,mockCount):

 varOffsets += 'y'+str(j+tissCount)+' '+str(11+

(j+tissCount)*11)+'-'+str(11+(j+tissCount)*11+8)+' '

 varList += 'y'+str(j+tissCount)+'*x=2 '

 if j%10 == 9:

 varOffsets += '\n' + ' '*10

 varList += '\n'+' '*9

 recLen = 10 + tissCount*11 + 11 + mockCount*11 + 1

 newBuf = buf.replace("@HR", hour).replace("@TISS",

tiss).replace('@RECLEN',str(recLen))

 finalBuf = newBuf.replace('@VAROFFSETS',

varOffsets).replace('@VARLIST', varList)

 fSas = open('RawDataPlot'+hour+tiss+'.sas','w')

 fSas.write(finalBuf)

 fSas.close()

def RunSasFiles(hour,tiss):

 os.system('"M:\Program Files\SAS\SAS 9.1\sas.exe"

RawDataPlot'+hour+tiss+'.sas')

 os.system('copy gplot.gif RawDataPlot'+hour+tiss+'.gif')

 os.system('copy sashtml.htm RawDataPlot'+hour+tiss+'html.htm')

def main():

 for hour in ['02','04','06','24']:

 for tiss in ['had1','hsv1']:

 tissCount,mockCount = MakeDataFile

("mastDataset3digitSTD.txt", "RawDataSubSet"+hour+tiss+".dat", hour,

tiss)

 WriteSasFiles(hour,tiss,tissCount,mockCount)

 RunSasFiles(hour,tiss)

main()

40

APPENDIX D: SAS TEMPLATE FOR PLOTTING RAW DATA

/*SAS template program for plotting raw data of a tissue type

 contrasted against mock for a particular hour */

goptions device=gif reset=global gunit=pct border cback=white

 colors=(black blue green red)

 ctext=black

 ftitle=swissb ftext=swiss htitle=4 htext=3;

filename logfile 'm:\data\RawDataPlot@HR@TISS.log';

filename output 'm:\data\RawDataPlot@HR@TISS.lst';

proc printto log=logfile print=output new;

run;

data std@HR@TISS;

 infile 'm:\data\RawDataSubSet@HR@TISS.dat' lrecl=@RECLEN;

 input x 1-8

 @VAROFFSETS;

run;

ods html;

ods graphics on;

/*

title1 height=5 'Raw data';

title2 height=4 'Hour @HR @TISS vs Mock';

*/

footnote1 c=red f=swissb h=3 'red = @TISS '

 c=blue f=swissb h=3 ' blue = mock';

/*footnote2 j=c c=green ' Each line is raw data, not standardized';

*/

symbol1 color=red interpol=join;

symbol2 color=blue interpol=join;

axis1 label=('Spectrum')

 order = 800 to 1501 by 100

 offset=(3)

 width=3;

axis2 label=('Absorption')

 order=(-0.4 to 1.6 by 0.2)

 width=3;

41

proc gplot data=std@HR@TISS;

 plot @VARLIST

 / overlay

 haxis=axis1 hminor=1

 vaxis=axis2 vminor=1

 caxis=black;

run;

ods graphics off;

ods html close;

quit;

42

APPENDIX E: PYTHON CODE FOR

REMOVING SIXTH DECIMAL POINT VARIATION

#This code, JoinSlices3.py, unites spectrum frequency values that

#were measured to5 decimal points with other samples that had spectrum

#frequencies recorded to 6 decimal positions but which are the

#same point minus this miniscule roundoff difference.

#

#This prevents interesting plotting problems were the small set

#of samples with 6 decimal places are not evenly balanced with

#other data.

import os,sys

fp=open(sys.argv[1],'r')

ds={}

hour=0

file=1

v=2

tiss=3

row=4

x=5

y=6

disp=7

peak=8

fname=9

line = fp.readline()

while len(line) > 0:

 t=line.split()

 if ds.get('%04.1f'%float(t[x])):

 if t[x] not in ds['%04.1f'%float(t[x])]:

 ds['%04.1f'%float(t[x])].append(t[x])

 if len(t[x]) > len(ds['%04.1f'%float(t[x])][0]):

 ds['%04.1f'%float(t[x])].reverse()

 else:

 ds['%04.1f'%float(t[x])] = [t[x]]

 line = fp.readline()

fp.close()

43

fp=open(sys.argv[1],'r')

fpout=open(sys.argv[2],'w')

line = fp.readline()

while len(line) > 0:

 t=line.split()

 t[x] = ds['%04.1f'%float(t[x])][0]

 temp = '%04.3f' % float(t[x])

 out = line[0:23]

 out += ('%-12.12s' % temp + ' ')[0:13]

 out += line[36:]

 fpout.write(out)

 line = fp.readline()

fp.close()

fpout.close()

44

APPENDIX F: PYTHON CODE FOR STANDARDIZING ABSORPTION DATA

#Python program, makeStdData.py, for standardizing the

#absorption values in the consolidated master data set

import os,sys,math

if len(sys.argv) == 1:

 print "Syntax: makeStdData srcfile destfile"

 sys.exit(1)

srcfile=sys.argv[1]

destfile=sys.argv[2]

fp=open(srcfile,'r')

fpout=open(destfile,'w')

d={}

hr=0;file=1;v=2;tiss=3;row=4

x=5;y=6;disp=7;peak=8;fname=9;norm=10

#status values

readdata=1

calcvals=2

last=3

done=4

status=readdata

linenum=0

oldrec=0

sum=0.0

while status != done:

 if status == readdata:

 line = fp.readline()

 if len(line) <= 2:

 status = last

 fp.close()

 else:

 linenum += 1

 if linenum%10000 == 0:

 print 'read line',linenum

 t=line.split()

 if len(t)==11:

 t[9]=t[9]+' '+t[10]

 t[10]=0

 elif len(t)==10:

 t.append('0')

 r=int(t[row])

 if oldrec+1 <= r:

45

 d[r] = t

 oldrec = r

 else:

 status = calcvals

 elif status==calcvals or status==last:

 sum = 0.0

 for i in range(1,oldrec+1):

 sum += float(d[i][y])

 avg = sum/oldrec;

 var=0.0

 for i in range(1,oldrec+1):

 diff = float(d[i][y]) - avg

 var += diff*diff/(oldrec-1)

 stddev=math.sqrt(var)

 for i in range(1,oldrec+1):

 #testing

 #if linenum > 508000:

 # print d[i]

 d[i][norm] = (float(d[i][y])-avg)/stddev

 for i in range(1,oldrec+1):

 out = d[i][hr]+' '

 out += d[i][file]+' '

 out += d[i][v]+' '

 out += d[i][tiss]+' '

 out += d[i][row]+' '

 out += ('%-9.9s'%d[i][x] + ' ')[0:10]

 out += ('%-12.12s'%d[i][y] + ' ')[0:10]

 out += '%01.8f '%avg

 out += '%01.8f '%stddev

 out += ('%02.8f '%d[i][norm])[0:13]

 out += (d[i][disp] + ' '*7)[0:7]

 out += (d[i][disp] + ' '*7)[0:7]

 out += (d[i][fname] + ' '*75)[0:75]

 fpout.write(out+'\n')

 if status==calcvals:

 sum = float(t[y])

 d={r:t}

 oldrec=r

 status = readdata

 elif status==last:

 status=done

 fpout.close()

print "Done!!!"

46

APPENDIX G: PYTHON SCRIPT TO HELP PLOT STANDARDIZED DATA

#program name: StdDataPlotsMake.py

#This Python script filters the standardized absorption by tissue

#and hour group, modifies a template of a SAS script, runs the

#modified SAS code to plot the data. It then renames the

#generated GIF file appropriately.

import os,sys

def MakeDataFile(dataSetFileName, dataSubsetFileName, hour, tiss1):

 hr=0;file=1;v=2;tiss=3;row=4

 x=5;y=6;avg=7;std=8;stdy=9;disp=10;peak=11;fname=12

 fp=open(dataSetFileName,'r')

 fpout=open(dataSubsetFileName,'w')

 d1={}

 d2={}

 linenum=0

 while True:

 linenum += 1

 if linenum%10000 == 0:

 print 'reading line',linenum

 line = fp.readline()

 if len(line) == 0:

 break

 t=line.split()

 if t[hr] != hour:

 continue

 if t[tiss] not in (tiss1,'mock'):

 continue

 if t[tiss]==tiss1:

 if not d1.get(float(t[x])):

 d1[float(t[x])]={}

 d1[float(t[x])][t[int(file)]] = t[stdy]

 else:

 if not d2.get(float(t[x])):

 d2[float(t[x])]={}

 d2[float(t[x])][t[int(file)]] = t[stdy]

 fp.close()

 xlist = d1.keys()

47

 xlist.sort()

 tissCount=0

 mockCount=0

 for xval in xlist:

 print 'WRITING line',xval

 fpout.write(('%4.3f '%xval)[0:10])

 cols1 = d1[xval].keys()

 cols2 = d2[xval].keys()

 cols1.sort()

 cols2.sort()

 oldTissCount=tissCount

 tissCount = len(cols1)

 if tissCount!=oldTissCount and oldTissCount!=0:

 print "Warning",tiss1," count of",tissCount,"does not

match old count of",oldTissCount,"for hour",hour

 oldMockCount=mockCount

 mockCount = len(cols2)

 if mockCount!=oldMockCount and oldMockCount!=0:

 print "Warning mock count of",mockCount,"does not match

old count of",oldMockCount,"for hour",hour

 for col in cols1:

 fpout.write((d1[xval][col]+' ')[0:13])

 fpout.write(' '*13)

 for col in cols2:

 fpout.write((d2[xval][col]+' ')[0:13])

 fpout.write('\n')

 fpout.close()

 return tissCount,mockCount

def WriteSasFiles(hour,tiss,tissCount,mockCount):

 fTmpl = open('StdDataPlot.sas','r')

 buf = fTmpl.read()

 fTmpl.close()

 varOffsets = ''

 varList = ''

 for i in range(0,tissCount):

 varOffsets += 'y'+str(i)+'

'+str(11+i*13)+'-'+str(11+i*13+10)+' '

 varList += 'y'+str(i)+'*x=1 '

 if i%10 == 9:

 varOffsets += '\n' + ' '*10

 varList += '\n'+' '*9

 varOffsets += '\n'+' '*10

 varList += '\n'+' '*9

48

 for j in range(0,mockCount):

 varOffsets += 'y'+str(j+tissCount)+' '+str(11+

(j+tissCount)*13)+'-'+str(11+(j+tissCount)*13+10)+' '

 varList += 'y'+str(j+tissCount)+'*x=2 '

 if j%10 == 9:

 varOffsets += '\n' + ' '*10

 varList += '\n'+' '*9

 recLen = 10 + tissCount*13 + 13 + mockCount*13 + 1

 newBuf =

buf.replace("@HR",hour).replace("@TISS",tiss).replace('@RECLEN',str(re

cLen))

 finalBuf =

newBuf.replace('@VAROFFSETS',varOffsets).replace('@VARLIST',varList)

 fSas = open('StdDataPlot'+hour+tiss+'.sas','w')

 fSas.write(finalBuf)

 fSas.close()

def RunSasFiles(hour,tiss):

 os.system('"M:\Program Files\SAS\SAS 9.1\sas.exe"

StdDataPlot'+hour+tiss+'.sas')

 os.system('copy gplot.gif StdDataPlot'+hour+tiss+'.gif')

 os.system('copy sashtml.htm StdDataPlot'+hour+tiss+'html.htm')

def main():

 for hour in ['02','04','06','24']:

 for tiss in ['had1','hsv1']:

 tissCount,mockCount = MakeDataFile

("mastDataset3digitSTD.txt", "StdDataSubSet"+hour+tiss+".dat", hour,

tiss)

 WriteSasFiles(hour,tiss,tissCount,mockCount)

 RunSasFiles(hour,tiss)

main()

49

APPENDIX H: SAS TEMPLATE TO PLOT STANDARDIZED DATA

/* Template, StdDataPlot.sas, of SAS script to help plot

 standardized data given the tissue type and hour group. */

goptions device=gif reset=global gunit=pct border cback=white

 colors=(black blue green red)

 ctext=black

 ftitle=swissb ftext=swiss htitle=4 htext=3;

filename logfile 'm:\data\StdDataPlot@HR@TISS.log';

filename output 'm:\data\StdDataPlot@HR@TISS.lst';

proc printto log=logfile print=output new;

run;

data std@HR@TISS;

 infile 'm:\data\StdDataSubSet@HR@TISS.dat' lrecl=@RECLEN;

 input x 1-8

 @VAROFFSETS;

run;

ods html;

ods graphics on;

/*

title1 height=5 'Standardized raw data';

title2 height=4 'Hour @HR @TISS vs Mock';

*/

footnote1 c=red f=swissb h=3 'red = @TISS '

 c=blue f=swissb h=3 ' blue = mock';

/*

footnote2 j=c c=green ' Each line is standardized with mu=0 var=1';

*/

symbol1 color=red interpol=join;

symbol2 color=blue interpol=join;

axis1 label=('Spectrum')

 order = 800 to 1501 by 100

 offset=(3)

 width=3;

axis2 label=('Absorption')

 order=(-2.5 to 2.5 by 0.25)

50

 width=3;

proc gplot data=std@HR@TISS;

 plot @VARLIST

 / overlay

 haxis=axis1 hminor=1

 vaxis=axis2 vminor=1

 caxis=black;

run;

ods graphics off;

ods html close;

quit;

51

APPENDIX I: PYTHON SCRIPT TO CALCULATE

WILCOXON-MANN-WHITNEY Z SCORE PLOTS

#Python script, CalcWmwZ.py, to generate SAS script to calculate

#Wilcoxon-Mann-Whitney statistic's Z score in the SAS

#listing file and then to call a script to extract those

#scores to csv files based on hour and tissue.

import os,sys

def calc(hour,tiss1,tiss2):

 fp=open("CalcWmwZ.sas","r")

 buf=fp.read()

 fp.close()

 newbuf=buf.replace('@1',hour).replace('@2',tiss1).replace('@3',ti

ss2)

 fpout=open('CalcWmwZ'+hour+tiss1+tiss2+'.sas', 'w')

 fpout.write(newbuf)

 fpout.close()

 os.system('"M:\Program Files\SAS\SAS 9.1\sas.exe"

CalcWmwZ'+hour+tiss1+tiss2+'.sas')

 os.system('M:\Python25\python.exe M:\data\makeplotWmwZs.py '

 +'M:\data\WmwZ'+hour+tiss1+tiss2+'.lst '

 +'M:\data\WmwZ'+hour+tiss1+tiss2+'.csv')

for x in ('02','04','06','24'):

 for y in ('hsv1','had1'):

 print 'running data for',x,y,'mock'

 calc(x,y,'mock')

52

APPENDIX J: SAS TEMPLATE SCRIPT TO GENERATE

WILCOXON-MANN-WHITNEY Z SCORES

/*SAS template script,CalcWmwZ.sas, to calculate

 the WMW statistics Z score*/

filename logfile 'm:\data\WmwZ@1@2@3.log';

filename output 'm:\data\WmwZ@1@2@3.lst';

proc printto log=logfile print=output new;

run;

data masterset;

 infile 'm:\data\mastDataset3digitSTD.txt';

 input hours 1-2 srcfilenum 5-7 vtype $ 10 tissue $ 13-16 linenum

19-21

 spectrum 24-31 absorbtion 34-41 avg 44-53 stdv 59-65

absorbstd 68-78

 displaydirection 81-85 peakdirection 88-92 srcfile $ 95-

160;

run;

title "Remaining Data excluding outlier";

data subset1; set masterset;

 if hours=@1 and (tissue='@2' or tissue='@3');

run;

proc sort;

 by spectrum;

run;

proc npar1way wilcoxon;

 class tissue;

 var absorbstd;

 by spectrum;

run;

proc printto; run;

53

APPENDIX K: PYTHON SCRIPT TO EXTRACT WILCOXON-MANN-WHITNEY

Z SCORE TO A CSV FILE

#Python script, makeplotWmwZs.py, to extract the

#Wilcoxon-Mann-Whitney Z Score statistic to a csv file for plotting.

import os,sys

if len(sys.argv) != 3:

 print "Syntax: "+os.path.basename(sys.argv[0])+' infile

outfile'

 sys.exit(1)

fpin=open(sys.argv[1],'r')

fpout=open(sys.argv[2],'w')

spec=1

specstr='spectrum='

z=2

zstr='Z '

state=spec

line = fpin.readline()

while len(line) > 0:

 if state==spec:

 offset = line.find(specstr)

 if offset > -1:

 specval = line[(offset+len(specstr)):].split(' ')[0]

 state=z

 elif state==z:

 offset = line.find(zstr)

 if offset > -1:

 zval = line[(offset+len(zstr)):].strip(' ').split(' ')

[0].strip('\n\r ')

 state=spec

 fpout.write(specval+','+zval+'\n')

 line = fpin.readline()

fpin.close()

fpout.close()

54

APPENDIX L: PYTHON PROGRAM TO GENERATE PLS MODEL AND CALL

LOGISTIC REGRESSION TO GENERATE ROC CURVE

#Python program, PlsNoCvMake.py, to reduce via 5 point kernel

#smoothing fuction, the number of variables, run PLS to

#generate a model, and run Logistic to generate an ROC curve

import os,sys,time

FNprefix = 'PlsNoCv'

#indexes of line elements

hr=0 #hour index

file=1

v=2

tiss=3

row=4

xIdx=5

yIdx=6

avg=7

dev=8

yStd=9

#global debug variable

debug=False

def Getz5set (fz, clump, zlimit):

 eof=False

 z5set=[]

 zline = fz.readline()

 idx = 0

 while (len(zline) > 0) and (len(z5set) < clump):

 x,z=zline.split(',')

 x="%3.3f" % float(x)

 z=float(z)

 if idx%clump==0 or len(z5set)==idx%clump:

 if abs(z) > zlimit:

 z5set.append(x)

 else:

 z5set=[]

 else:

55

 z5set=[]

 idx += 1

 if len(z5set) < clump:

 zline = fz.readline()

 if len(zline) == 0:

 eof = True

 if debug: print eof,z5set

 return eof,z5set

def GetZset (zFileName, clump, zlimit):

 zset = []

 fz=open(zFileName,'r') #Z score file

 if debug: print "Reading Zfile:",zFileName

 eof=False

 zsetCount = 0

 while not eof:

 eof,z5set = Getz5set(fz, clump, zlimit)

 if len(z5set)==clump:

 zset += z5set

 zsetCount += 1

 fz.close()

 ft=open(FNprefix+'ZsetCounts.txt','a+')

 msg=("Filtering standardized dataset using "+zFileName+" where Z >

"+str(zlimit)+" gives "+str(zsetCount)+

 " variables.\nEach variable is the average absorption for

a cluster of "+str(clump)+" adjacent points\n")

 ft.write(msg)

 print msg,

 ft.close()

 if debug: print "\nEntire ZSET:",zset

 return zset, zsetCount

def clearOldFiles():

 f=open(FNprefix+'ZsetCounts.txt','w')

 f.close()

 for hour in ['02','04','06','24']:

 for tissue in ['hsv1']:

 f=open(FNprefix+'5set'+hour+tissue+'dataset.dat','w')

 f.close()

def writeData (firstLine, xset, yset, idx, clump, t, fout, tissCount,

56

mockCount):

 if debug: print "Average x and y",xset, yset

 #For now, instead of using median, use mean since we are taking

the mean of the Y values, taking the mean of the

 #X values seems to make more sense

 #avgx = xset[clump//2] #get median x in clump (choose an odd (not

even) length for clump size for best results)

 avgx = sum(xset)/(1.0*len(xset))

 avgy = sum(yset)/(1.0*len(yset))

 buf=""

 if idx//clump == 0:

 if not firstLine:

 buf = "\n"

 #write data before first "clumped" variable

 buf += "%2s %3s %4s %3s " % (t[hr],t[file],t[tiss],t[row])

#t[row] is the ending row

 if t[tiss]=='mock':

 buf += "0 "

 else:

 buf += "1 "

 if t[tiss]=='mock':

 mockCount[0] += 1

 else:

 tissCount[0] +=1

 #write the clumped variables frequency

 buf += ("%4.3f " % avgx)[0:10]

 #write the clumped variable's absorption

 buf += ("%1.8f " % avgy)[0:14]

 fout.write(buf)

 if debug: print "Writing:",buf

def CreatePlsSasFile(hour,tissue,variables):

 filteredFilename = FNprefix+'5set'+hour+tissue+'dataset.dat'

 if hour=='24':

 sasFname = FNprefix+'24'+'.sas'

 else:

 sasFname = FNprefix+'XX'+'.sas'

 fTemplate = open(sasFname,'r')

 template=fTemplate.read()

 fTemplate.close()

 varList = []

 varOffsetStr=''

57

 varNameStr=''

 for i in range(0,variables):

 offset=34+24*i

 offsetStr=str(offset)+'-'+str(offset+10)

 varName='v'+str(i)

 varNameStr += varName+' '

 varOffsetStr += varName+' '+offsetStr+' '

 if i%10==9:

 varOffsetStr += '\n'

 varNameStr += '\n'

 newTemplate =

template.replace('@HR',hour).replace('@TISS',tissue).replace('@RECLEN'

,str(offset+11+5))

 finalText =

newTemplate.replace('@VarOffsets',varOffsetStr).replace('@Vars',varNam

eStr)

 f=open(FNprefix+hour+tissue+'.sas','w')

 f.write(finalText)

 f.close()

def RunPls(hour,tissue):

 os.system('"M:\Program Files\SAS\SAS 9.1\sas.exe"

'+FNprefix+hour+tissue+'.sas')

 #os.system("copy ROCCurve0.gif

PlsLogis"+hour+tissue+"ROCCurve0.gif")

 #os.system("copy ROCOverlay1.gif

PlsLogis"+hour+tissue+"ROCOverlay1.gif")

 #os.system("copy sashtml.htm PlsLogis"+hour+tissue+"sashtml.htm")

 print ' '

def FilterDataUsingZFile (hour, tissue, clump, zlimit,

dataSourceFile):

 zset,variables = GetZset('WmwZ24'+tissue+'mock.csv', clump,

zlimit)

 if debug:

 print "Got Zset. sleeping 10"

 time.sleep(2)

 zsetLen=len(zset) #total number of significant dots within

significant clumps

 idx = 0

 xset = []

 yset = []

 fd=open(dataSourceFile,'r') #dataset file

58

 filteredFilename=FNprefix+'5set'+hour+tissue+'dataset.dat'

 if debug: print "Writing to filtered dataset

file:",filteredFilename

 fout=open(filteredFilename,'w')

 firstLine=True

 tissCount = [0]

 mockCount = [0]

 line=fd.readline()

 while len(line)>2:

 t=line.split() #get tuple t from line

 if t[hr]==hour and t[tiss] in [tissue,'mock'] and t[xIdx] in

zset:

 xset.append(float(t[xIdx]))

 yset.append(float(t[yStd]))

 if idx%clump == (clump - 1):

 writeData(firstLine, xset, yset, idx, clump, t, fout,

tissCount, mockCount)

 firstLine=False

 xset=[]

 yset=[]

 idx+=1

 if idx==zsetLen: #reached end of a the significant dots within

one sample

 idx=0

 line=fd.readline()

 fc=open(FNprefix+'ZsetCounts.txt','a+')

 text = ('tissue samples:'+str(tissCount)+' mock

samples:'+str(mockCount)+'\n' +

 'samples per variable from smaller sample = ' +

str(1.0*min(tissCount[0],mockCount[0])/(variables+0.000001)) +'\n')

 fc.write(text)

 print text

 fc.close()

 fd.close()

 fout.close()

 CreatePlsSasFile(hour,tissue,variables) ##SAS code

def main():

 #Setup

 global debug

 StandardizedDataSet = 'mastDataset3digitSTD.txt'

 offset=0

 if len(sys.argv)>1 and 'help' in sys.argv:

59

 print "Syntax:",sys.argv[0]," [clump z_02had1 z_02hsv1

z_04had1 z_04hsv1 z_06had1 z_06hsv1 z_24had1 z_24hsv1]"

 return 1

 if len(sys.argv)>1 and sys.argv[1]=='debug':

 debug=True

 offset=1

 print "Reading from standardized dataset

file:",StandardizedDataSet

 if len(sys.argv)==1:

 clump = 5

 zLimitList = [8,8, 8,8, 8,8, 8,8]

 else:

 clump=int(sys.argv[1])

 zLimitList = []

 for i in range(offset+2, offset+len(sys.argv)):

 zLimitList.append(float(sys.argv[i]))

 #Run

 clearOldFiles()

 i=0

 for hour in ['02','04','06','24']:

 for tissue in ['hsv1']:

 print "making",hour,tissue,"with Z =",zLimitList[i]

 FilterDataUsingZFile(hour, tissue, clump, zLimitList[i],

StandardizedDataSet)

 i+=1

 i=0

 for hour in ['02','04','06','24']:

 for tissue in ['hsv1']:

 print "running",hour,tissue,"with Z =",zLimitList[i]

 RunPls(hour,tissue)

 i+=1

main()

60

APPENDIX M: TWO SAS TEMPLATES TO GENERATE PLS MODEL AND CALL

LOGISTIC REGRESSION TO GENERATE ROC CURVE

/*SAS template, PlsNoCv24.sas, to perform PLS modeling and

 ROC curve creation via proc Logistic for 24 hour data, out

 of 2,4,6,24 dataset*/

filename grafout 'M:\Data\graphs\@HR@TISS\';

goptions device=gif gsfname=grafout gsfmode=replace;

filename logfile 'm:\data\PlsNoCv@HR@TISS.log';

filename output 'm:\data\PlsNoCv@HR@TISS.lst';

proc printto log=logfile print=output new;

run;

data sourceset;

 infile 'm:\data\PlsNoCv5set@HR@TISSdataset.dat' lrecl=@RECLEN;

 input hours 1-2 srcfilenum 5-7 tissue $ 10-13 linenum 16-18

disease 21

 @VarOffsets;

run;

ods listing close;

ods output

 CenScaleParms = Cen_Scale_Parms_@HR@TISS

 PercentVariation = Pct_Vari_@HR@TISS

 XWeights = X_Wts_@HR@TISS;

proc pls data=sourceset details nfac=6;

 model disease = @Vars

 / solution;

 output out=outpls predicted=ypred xscore=xscr yscore=yscr;

run;

ods output close;

ods listing;

proc print data=Pct_Vari_@HR@TISS;

run;

proc sort data=Cen_Scale_Parms_@HR@TISS;

 by disease;

61

run;

proc print;

run;

proc print data=X_Wts_@HR@TISS;

run;

proc print data=outpls; run;

proc logistic data=outpls; /*outest=betas;*/

 model disease (event='1') = ypred

 / outroc=roc@HR@TISS ;

run;

/*title2 'Parameter Estimates at hour @HR for @TISS vs mock';

 proc print data=betas;run;

*/

title2 'Complete ROC data printout at hour @HR for @TISS vs mock';

proc print data=roc@HR@TISS;

run;

symbol1 interpol=join color=blue;

proc gplot data=roc@HR@TISS;

 plot _SENSIT_*_1MSPEC_;

 run;

proc printto;

run;

quit;

62

/*SAS template, PlsNoCvXX.sas, to perform PLS modeling

and ROC curve creation via proc Logistic for 2,4,6 hour data,

out of 2,4,6,24 dataset*/

filename grafout 'M:\Data\graphs\@HR@TISS\';

goptions device=gif gsfname=grafout gsfmode=replace;

filename logfile 'm:\data\PlsNoCv@HR@TISS.log';

filename output 'm:\data\PlsNoCv@HR@TISS.lst';

proc printto log=logfile print=output new;

run;

title 'PLS Model at hour @HR for @TISS vs mock';

data sourceset24;

 infile 'm:\data\PlsNoCv5set24@TISSdataset.dat' lrecl=@RECLEN;

 input hours 1-2 srcfilenum 5-7 tissue $ 10-13 linenum 16-18

disease 21

 @VarOffsets;

run;

data new24;

 set sourceset24; diseasecopy=disease;

run;

data sourceset@HR;

 infile 'm:\data\PlsNoCv5set@HR@TISSdataset.dat' lrecl=@RECLEN;

 input hours 1-2 srcfilenum 5-7 tissue $ 10-13 linenum 16-18

disease 21

 @VarOffsets;

run;

data new@HR;

 set sourceset@HR; diseasecopy=disease;

run;

data whole; set new24 new@HR(drop=disease);run;

ods listing close;

ods output

 CenScaleParms = Cen_Scale_Parms_@HR@TISS

 PercentVariation = Pct_Vari_@HR@TISS

 XWeights = X_Wts_@HR@TISS;

proc pls data=whole details nfac=6;

 model disease = @Vars

 / solution;

63

 output out=outpls predicted=ypred xscore=xscr yscore=yscr;

run;

data just@HR; set outpls;

 if hours=@HR; disease=diseasecopy;

run;

ods output close;

ods listing;

proc print data=Pct_Vari_@HR@TISS;

run;

proc sort data=Cen_Scale_Parms_@HR@TISS;

 by disease;

run;

proc print;

run;

proc print data=X_Wts_@HR@TISS;

run;

proc print data=just@HR; run;

proc logistic data=just@HR; /*outest=betas;*/

 model disease (event='1') = ypred

 / outroc=roc@HR@TISS ;

run;

/*title2 'Parameter Estimates at hour @HR for @TISS vs mock';

 proc print data=betas;run;

*/

title2 'Complete ROC data printout at hour @HR for @TISS vs mock';

proc print data=roc@HR@TISS;

run;

symbol1 interpol=join color=blue;

proc gplot data=roc@HR@TISS;

 plot _SENSIT_*_1MSPEC_;

 run;

proc printto;

run;

quit;

64

APPENDIX N: PYTHON PROGRAM TO RUN KOLMOGOROV-SMIRNOV TEST

AGAINST 24 HOUR VERSUS 2, 4, 6 HOUR DATA OF SAME DISEASE STATUS

#Python program, KsPlsMake.py, to perform Kolmogorov-Smirnov test

#on 24 hour versus 2, 4, and 6 hour mock data to

#verify whether mock data belongs to same population or not

#also will run against hsv1 data.

import os,sys,time

FNprefix = 'KsPls'

#indexes of line elements

hr=0 #hour index

file=1

v=2

tiss=3

row=4

xIdx=5

yIdx=6

avg=7

dev=8

yStd=9

#global debug variable

debug=False

def Getz5set (fz, clump, zlimit):

 eof=False

 z5set=[]

 zline = fz.readline()

 idx = 0

 while (len(zline) > 0) and (len(z5set) < clump):

 x,z=zline.split(',')

 x="%3.3f" % float(x)

 z=float(z)

 if idx%clump==0 or len(z5set)==idx%clump:

 if abs(z) > zlimit:

 z5set.append(x)

 else:

 z5set=[]

 else:

65

 z5set=[]

 idx += 1

 if len(z5set) < clump:

 zline = fz.readline()

 if len(zline) == 0:

 eof = True

 if debug: print eof,z5set

 return eof,z5set

def GetZset (zFileName, clump, zlimit):

 zset = []

 fz=open(zFileName,'r') #Z score file

 if debug: print "Reading Zfile:",zFileName

 eof=False

 zsetCount = 0

 while not eof:

 eof,z5set = Getz5set(fz, clump, zlimit)

 if len(z5set)==clump:

 zset += z5set

 zsetCount += 1

 fz.close()

 ft=open(FNprefix+'ZsetCounts.txt','a+')

 msg=("Filtering standardized dataset using "+zFileName+" where Z >

"+str(zlimit)+" gives "+str(zsetCount)+

 " variables.\nEach variable is the average absorption for

a cluster of "+str(clump)+" adjacent points\n")

 ft.write(msg)

 print msg,

 ft.close()

 if debug: print "\nEntire ZSET:",zset

 return zset, zsetCount

def clearOldFiles():

 f=open(FNprefix+'ZsetCounts.txt','w')

 f.close()

 for hour in ['02','04','06']:

 for tissue in ['hsv1','mock']:

 f=open(FNprefix+'5set24'+hour+tissue+'dataset.dat','w')

 f.close()

def writeData (firstLine, xset, yset, idx, clump, t, fout, count24,

66

counthr):

 if debug: print "Average x and y",xset, yset

 #For now, instead of using median, use mean since we are taking

the mean of the Y values, taking the mean of the

 #X values seems to make more sense

 #avgx = xset[clump//2] #get median x in clump (choose an odd (not

even) length for clump size for best results)

 avgx = sum(xset)/(1.0*len(xset))

 avgy = sum(yset)/(1.0*len(yset))

 buf=""

 if idx//clump == 0:

 if not firstLine:

 buf = "\n"

 #write data before first "clumped" variable

 buf += "%2s %3s %4s %3s " % (t[hr],t[file],t[tiss],t[row])

#t[row] is the ending row

 #if t[tiss]=='mock':

 # buf += "0 "

 #else:

 # buf += "1 "

 if t[hr]=='24':

 count24[0] += 1

 buf += "1 "

 else:

 counthr[0] +=1

 buf += "0 "

 #write the clumped variables frequency

 buf += ("%4.3f " % avgx)[0:10]

 #write the clumped variable's absorption

 buf += ("%1.8f " % avgy)[0:14]

 fout.write(buf)

 if debug: print "Writing:",buf

def CreatePlsSasFile(hour,tissue,variables):

 fTemplate = open(FNprefix+'.sas','r')

 template=fTemplate.read()

 fTemplate.close()

 varList = []

 varOffsetStr=''

 varNameStr=''

 for i in range(0,variables):

 offset=34+24*i

67

 offsetStr=str(offset)+'-'+str(offset+10)

 varName='v'+str(i)

 varNameStr += varName+' '

 varOffsetStr += varName+' '+offsetStr+' '

 if i%10==9:

 varOffsetStr += '\n'

 varNameStr += '\n'

 newTemplate =

template.replace('@HR',hour).replace('@TISS',tissue).replace('@RECLEN'

,str(offset+11+5))

 finalText =

newTemplate.replace('@VarOffsets',varOffsetStr).replace('@Vars',varNam

eStr)

 f=open(FNprefix+'24'+hour+tissue+'.sas','w')

 f.write(finalText)

 f.close()

def RunPls(hour,tissue):

 os.system('"M:\Program Files\SAS\SAS 9.1\sas.exe"

'+FNprefix+'24'+hour+tissue+'.sas')

 #os.system("copy ROCCurve0.gif

StepLogis"+hour+tissue+"ROCCurve0.gif")

 #os.system("copy ROCOverlay1.gif

StepLogis"+hour+tissue+"ROCOverlay1.gif")

 #os.system("copy sashtml.htm

StepLogis"+hour+tissue+"sashtml.htm")

 print ' '

def FilterDataUsingZFile (hour, tissue, clump, zlimit,

dataSourceFile):

 zset,variables = GetZset('WmwZ24hsv1mock.csv', clump, zlimit)

 if debug:

 print "Got Zset. sleeping 10"

 time.sleep(2)

 zsetLen=len(zset) #total number of significant dots within

significant clumps

 idx = 0

 xset = []

 yset = []

 fd=open(dataSourceFile,'r') #dataset file

 filteredFilename=FNprefix+'5set24'+hour+tissue+'dataset.dat'

 if debug: print "Writing to filtered dataset

file:",filteredFilename

68

 fout=open(filteredFilename,'w')

 firstLine=True

 count24 = [0]

 counthr = [0]

 line=fd.readline()

 while len(line)>2:

 t=line.split() #get tuple t from line

 if t[hr] in [hour,'24'] and t[tiss] == tissue and t[xIdx] in

zset and t[v]=='n':

 xset.append(float(t[xIdx]))

 yset.append(float(t[yStd]))

 if idx%clump == (clump - 1):

 writeData(firstLine, xset, yset, idx, clump, t, fout,

count24, counthr)

 firstLine=False

 xset=[]

 yset=[]

 idx+=1

 if idx==zsetLen: #reached end of the significant dots within

one sample

 idx=0

 line=fd.readline()

 fc=open(FNprefix+'ZsetCounts.txt','a+')

 text = ('tissue:'+tissue + ' hour 24 samples:'+str(count24)+'

hour '+hour+' samples:'+str(counthr)+'\n' +

 'samples per variable from smaller sample = ' +

str(1.0*min(counthr[0],count24[0])/(variables+0.000001)) +'\n')

 fc.write(text)

 print text

 fc.close()

 fd.close()

 fout.close()

 CreatePlsSasFile(hour,tissue,variables) ##SAS code

def main():

 #Setup

 global debug

 StandardizedDataSet = 'mastDataset3digitSTD.txt'

 offset=0

 if len(sys.argv)>1 and 'help' in sys.argv:

 print "Syntax:",sys.argv[0]," [clump z_02had1 z_02hsv1

z_04had1 z_04hsv1 z_06had1 z_06hsv1 z_24had1 z_24hsv1]"

 return 1

69

 if len(sys.argv)>1 and sys.argv[1]=='debug':

 debug=True

 offset=1

 print "Reading from standardized dataset

file:",StandardizedDataSet

 if len(sys.argv)==1:

 clump = 5

 zLimitList = [8,8, 8,8, 8,8]

 else:

 clump=int(sys.argv[1])

 zLimitList = []

 for i in range(offset+2, offset+len(sys.argv)):

 zLimitList.append(float(sys.argv[i]))

 #Run

 clearOldFiles()

 i=0

 for hour in ['02','04','06']:

 for tissue in ['mock','hsv1']:

 try:

 os.makedirs('graphs\\24'+hour+tissue)

 except:

 pass

 print "making",hour,tissue,"with Z =",zLimitList[i]

 FilterDataUsingZFile(hour, tissue, clump, zLimitList[i],

StandardizedDataSet)

 i+=1

 i=0

 for hour in ['02','04','06']:

 for tissue in ['mock','hsv1']:

 print "running",hour,tissue,"with Z =",zLimitList[i]

 RunPls(hour,tissue)

 i+=1

main()

70

APPENDIX O: SAS TEMPLATE TO RUN KOLMOGOROV-SMIRNOV TEST

AGAINST 24 HOUR VERSUS 2, 4, 6 HOUR DATA OF SAME DISEASE STATUS

/* SAS template to perform Kolmogorov-Smirnov test against

 24 vs 2,4,6 hour tissue of same type (mock vs mock,

 hsv vs hsv) */

filename grafout 'M:\Data\graphs\24@HR@TISS\';

goptions device=gif gsfname=grafout gsfmode=replace;

filename logfile 'm:\data\KsPls24@HR@TISS.log';

filename output 'm:\data\KsPls24@HR@TISS.lst';

proc printto log=logfile print=output new;

run;

title 'PLS Model for @TISS at hour 24 vs @HR';

data sourceset;

 infile 'm:\data\KsPls5set24@HR@TISSdataset.dat' lrecl=@RECLEN;

 input hours 1-2 srcfilenum 5-7 tissue $ 10-13 linenum 16-18

hoursCat 21

 @VarOffsets;

run;

proc pls data=sourceset details nfac=6;

 model hoursCat = @Vars

 / solution;

 output out=OutPls predicted=ypred xscore=xscr;

run;

proc print data=OutPls;

run;

proc npar1way data=OutPls EDF;

 class hours;

 var ypred;

 /*exact ks;*/

run;

proc printto;

run;

71

APPENDIX P: THREE PROGRAMS TO LOAD SECOND DATASET AND

STANDARDIZE IT

#Program for loading dataset

import os,os.path,sys

def getFiles(destFileName):

 df=0

 fileList=[]

 try:

 df = open(destFileName,'a+')

 except Exception,err:

 print "Failed opening file, "+os.path.basename(destFileName)

+". "+str(err)

 else:

 cwd=os.getcwd()

 fileList=os.listdir(cwd)

 return df,fileList

def getHeader(line,f):

 display='.'

 peak='.'

 size=0

 for i in range(0,10):

 linePair=line.upper().split(',')

 if 'DISPLAYDIRECTION' in linePair[0]:

 display=linePair[1].strip(' \r\n')

 if 'PEAKDIRECTION' in linePair[0]:

 peak=linePair[1].strip(' \r\n')

 if linePair[0][0].isdigit():

 size=i

 break

 line=f.readline()

 return display,peak,size,line

def loadLine(line,xyList):

 x,y = line.split(',')

 x = x.strip(' \n\r')

 y = y.strip(' \n\r')

 if (x[0].isdigit() or x[0] in ('+','-','.')) and (y[0].isdigit()

or y[0] in ('+','-','.')):

 if 800.0 < float(x) < 1500.0 :

72

 xyList.append((float(x),x,y))

def writeLine (x, y, destFile, lineNum, fileNum, curve, fileType,

fileName,hours):

 out = '%02.2d ' % int(hours)

 out += '%03.3d ' % fileNum

 if fileType[0].upper() == 'V':

 out += 'v ' + '%4.4s ' % fileType[1:5]

 else:

 out += 'n ' + '%4.4s ' % fileType[0:4]

 out += '%03.3d ' % lineNum

 out += ('%-12.12s'%x + ' ')[0:13]

 out += ('%-12.12s'%y[0:9] + ' ')[0:10]

 out += '%1s ' % curve

 #out += (display + ' '*7)[0:7]

 #out += (peak + ' '*7)[0:7]

 out += (fileName.replace(' ','') + ' '*75)[0:75]

 destFile.write(out+'\n')

def loadFile(fileName):

 xyList=[]

 f=open(fileName,'r')

 line=f.readline()

 display,peak,size,line=getHeader(line,f)

 while len(line)>10:

 loadLine(line,xyList)

 line=f.readline()

 f.close()

 return xyList

def main():

 (destFile,fileList) = getFiles(sys.argv[1])

 fileNum=0

 if destFile != 0:

 for fileName in fileList:

 if fileName[-4:]=='.csv':

 fileNum += 1

 print "Reading",fileName

 xyList = []

 xyList = loadFile(fileName)

 xyList.sort()

 lineNum=0

 for node in xyList:

 lineNum += 1

 writeLine(node[1],node[2],destFile, lineNum,

73

fileNum, sys.argv[4], sys.argv[2],fileName,sys.argv[3])

 destFile.close()

 else:

 print "Error opening file: "+sys.argv[1]

if len(sys.argv) == 1:

 print "syntax: ",sys.argv[0],"destFile fileType hours curve"

else:

 main()

74

#Program for removing variation in spectrum frequency values at the

#fifth and sixth decimal points

import os,sys

fp=open(sys.argv[1],'r')

ds={}

hour=0;file=1;v=2;tiss=3

row=4;x=5;y=6;curve=7;fname=8

line = fp.readline()

lineCount = 0

while len(line) > 0:

 lineCount += 1

 if lineCount%10000 == 0:

 print "read line",lineCount

 t=line.split()

 if ds.get('%04.1f'%float(t[x])):

 if t[x] not in ds['%04.1f'%float(t[x])]:

 ds['%04.1f'%float(t[x])].append(t[x])

 if len(t[x]) > len(ds['%04.1f'%float(t[x])][0]):

 ds['%04.1f'%float(t[x])].reverse()

 else:

 ds['%04.1f'%float(t[x])] = [t[x]]

 line = fp.readline()

fp.close()

fp=open(sys.argv[1],'r')

fpout=open(sys.argv[2],'w')

line = fp.readline()

while len(line) > 0:

 t=line.split()

 t[x] = ds['%04.1f'%float(t[x])][0]

 temp = '%04.3f' % float(t[x])

 out = line[0:23]

 out += ('%-12.12s' % temp + ' ')[0:13]

 out += line[36:]

 fpout.write(out)

 line = fp.readline()

fp.close()

fpout.close()

75

#Program for standardizing absorption data in dataset

import os,sys,math

if len(sys.argv) == 1:

 print "Syntax: makeStdData srcfile destfile"

 sys.exit(1)

srcfile=sys.argv[1]

destfile=sys.argv[2]

fp=open(srcfile,'r')

fpout=open(destfile,'w')

d={}

hr=0;file=1;v=2;tiss=3;row=4

x=5;y=6;curve=7;fname=8;norm=9

#status values

readdata=1

calcvals=2

last=3

done=4

status=readdata

linenum=0

oldrec=0

sum=0.0

while status != done:

 if status == readdata:

 line = fp.readline()

 if len(line) <= 2:

 status = last

 fp.close()

 else:

 linenum += 1

 if linenum%10000 == 0:

 print 'read line',linenum

 t=line.split()

 t.append('0')

 r=int(t[row])

 if oldrec+1 <= r:

 d[r] = t

 oldrec = r

 else:

 status = calcvals

 elif status==calcvals or status==last:

76

 sum = 0.0

 for i in range(1,oldrec+1):

 sum += float(d[i][y])

 avg = sum/oldrec;

 var=0.0

 for i in range(1,oldrec+1):

 diff = float(d[i][y]) - avg

 var += diff*diff/(oldrec-1)

 stddev=math.sqrt(var)

 for i in range(1,oldrec+1):

 #testing

 #if linenum > 508000:

 # print d[i]

 d[i][norm] = (float(d[i][y])-avg)/stddev

 for i in range(1,oldrec+1):

 out = d[i][hr]+' '

 out += d[i][file]+' '

 out += d[i][v]+' '

 out += d[i][tiss]+' '

 out += d[i][row]+' '

 out += ('%-9.9s'%d[i][x] + ' ')[0:10]

 out += ('%-12.12s'%d[i][y] + ' ')[0:10]

 out += '%01.8f '%avg

 out += '%01.8f '%stddev

 out += ('%02.8f '%d[i][norm])[0:13]

 out += d[i][curve]+' '

 out += (d[i][fname] + ' '*75)[0:75]

 fpout.write(out+'\n')

 if status==calcvals:

 sum = float(t[y])

 d={r:t}

 oldrec=r

 status = readdata

 elif status==last:

 status=done

 fpout.close()

print "Done!!!"

77

APPENDIX Q: PROGRAM TO PLOT MEAN CURVES AND

WILCOXON-MANN-WHITNEY CURVES

/*program name: Curves.sas

 purpose: to plot mean and variance curves of second dataset and

 to calculate and plot the Wilcoxon-Mann-Whitney curve for

 the means curves and for the overall standardized dataset.*/

goptions device=gif reset=global gunit=pct border cback=white

 colors=(black blue green red)

 ctext=black

 ftitle=swissb ftext=swiss htitle=4 htext=3;

filename logfile 'm:\data2\CurvesAll.log';

filename output 'm:\data2\CurvesAll.lst';

proc printto log=logfile print=output new;

run;

title "DataSet";

data masterset;

 infile 'm:\data2\mastDataset3digitSTD.txt';

 input hours 1-2 srcfilenum 5-7 vtype $ 10 tissue $ 13-16 linenum

19-21

 spectrum 24-31 absorbtion 34-41 avg 44-53 stdv 56-65

absorbstd 68-78

 curve 81 srcfile $ 84-155;

run;

%let ctotal=8; /*how many curves*/

proc sort data=masterset out=results1;

 by curve tissue spectrum;

run;

/*proc print data=smaster (obs=500);run;*/

title "Means";

proc means n mean std;by curve tissue spectrum;

 var absorbstd;

 output out=resultsm mean=mean_absorption std=stddev_absorption;

run;

proc print data=resultsm (obs=2); run;

%macro singleCurvTxt(hdr);

 title " ";

78

 symbol1 color=red interpol=join;

 symbol2 color=blue interpol=join;

 footnote1 c=red 'Red = hsv1 ' c=blue ' Blue = mock';

%mend singleCurvTxt;

%singleCurvTxt(Mean Curves);

proc gplot data=resultsm;plot mean_absorption*spectrum=tissue/overlay;

by curve; run;

%singleCurvTxt(StdDev Curves);

proc gplot data=resultsm;plot

stddev_absorption*spectrum=tissue/overlay; by curve; run;

%macro mcurv;

 data multcurv;set resultsm;

 %do c=1 %to &ctotal;

 if curve=&c and tissue='hsv1' then ctiss=&c;

 if curve=&c and tissue='mock' then ctiss=%eval(&c+&ctotal);

 %end;

 run;

%mend mcurv;

%mcurv;

%macro multCurvTxt(hdr);

 title " ";

 %do j=1 %to &ctotal;

 symbol&j color=red interpol=join;

 symbol%eval(&j+&ctotal) color=blue interpol=join;

 %end;

%mend multCurvTxt;

%multCurvTxt(Combined Mean Curves);

proc gplot data=multcurv;plot mean_absorption*spectrum=ctiss/overlay

nolegend; run;

%multCurvTxt(Combined StdDev Curves);

proc gplot data=multcurv;plot stddev_absorption*spectrum=ctiss/overlay

nolegend; run;

proc print data=multcurv (obs=20); run;

/*Generate WMW Z plot from means*/

/* title "Wilcoxon Mann Whitney Z Score"; */

title " ";

proc sort; by spectrum; run;

79

proc npar1way wilcoxon;

 class tissue;

 var mean_absorption;

 by spectrum;

 output out=meanwz wilcoxon;

run;

%singleCurvTxt(Wilcoxon Mann Whitney Z Score of Means);

proc print data=meanwz (obs=20); run;

proc gplot data=meanwz;plot z_wil*spectrum; run;

%singleCurvTxt(Wilcoxon Mann Whitney Z Score of Raw Data);

proc sort data=masterset out=wmwraw; by spectrum; run;

proc npar1way data=wmwraw wilcoxon;

 class tissue;

 var absorbstd;

 by spectrum;

 output out=wmwrawz wilcoxon;

run;

proc gplot data=wmwrawz;plot z_wil*spectrum; run;

proc printto; run;

80

APPENDIX R: PROGRAM TO CALCULATE THE DC STATISTIC

/* Filename GetDataForBootStrap.sas

 Purpose: To calculate the Difference of Composites, DC, statistic.

*/

/*goptions device=gif reset=global gunit=pct border cback=white

 colors=(black blue green red)

 ctext=black

 ftitle=swissb ftext=swiss htitle=4 htext=3;

*/

filename logfile 'M:\data2\GetDataForBootStrap.log';

filename output 'M:\data2\GetDataForBootStrap.lst';

proc printto log=logfile print=output new;

run;

title "DataSet";

data masterset;

 infile 'm:\data2\mastDataset3digitSTD.txt';

 input /*hours 1-2 srcfilenum 5-7 vtype $ 10*/

 tissue $ 13-16 /*linenum 19-21*/

 spectrum 24-31 /*absorbtion 34-41 avg 44-53 stdv 56-65*/

 absorbstd 68-78

 curve 81 /*srcfile $ 84-155*/;

run;

%let ctotal=8; /*how many curves*/

proc sort data=masterset out=data_cts;

 by curve tissue spectrum;

run;

title "Means";

proc means n mean;

 by curve tissue spectrum;

 var absorbstd;

 output out=data_means8

 mean=mean_absorption;

run;

proc print data=data_means8 (obs=20); run;

title "Create Ranges";

data data_ranges;

 set data_means8;

 if 1415<=spectrum<=1455 then ranges='1415-1455';

81

 else if 1050<=spectrum<=1070 then ranges='1050-1070';

 else ranges='allothers';

 if ranges='allothers' then delete;

run;

proc sort out=data_ranges_ctr;

 by curve tissue ranges;

run;

proc print data=data_ranges_ctr (obs=100); run;

title "Sum Within Ranges";

proc means sum data=data_ranges_ctr;

 by curve tissue ranges;

 var mean_absorption;

 output out=data_range_sums

 sum=sum_range;

run;

proc print data=data_range_sums; run;

title "Calculate per Curve and Tissue. Composite Difference DC =

1415range - 1050range";

data data_range_sum_pos;

 set data_range_sums;

 if ranges='1415-1455';

 DC=sum_range;

run;

data data_range_sum_neg;

 set data_range_sums;

 if ranges='1050-1070';

 DC=sum_range;

run;

proc compare outdif

 base=data_range_sum_neg

 compare=data_range_sum_pos

 out=data_diffs;

 var DC;

 by curve tissue;

run;

proc sort data=data_diffs out=data_diffs_sorted;

 by tissue curve;

run;

proc print; run;

title "Generate Means and SD's of Difference of Composite Sums

Variable DC for Mock and Hsv1";

proc means mean var data=data_diffs_sorted;

82

 by tissue;

 var DC;

 output out=data_diff_stats

 mean=DC_mean

 var=DC_var;

run;

proc print data=data_diff_stats; run;

proc printto; run;

83

APPENDIX S: PROGRAM TO CALCULATE USING BOOTSTRAP THE AUC AND

SPECIFICITY CONFIDENCE INTERVALS

#Python script, bootstrap3.py, to calculate CI for AUC and specificity

import sys

import random

import math

debug=False

def mean(xlist):

 sum = 0.0

 for x in xlist:

 sum += float(x)

 return sum/len(xlist)

def svar(xlist):

 sum2 = 0.0

 xbar=mean(xlist)

 for x in xlist:

 sum2 += (float(x) - xbar)*(float(x) - xbar)

 return sum2 / (len(xlist) - 1)

def BootStrap(sampleSize,iters,zalpha):

 basex=[21.1279, 27.9380, 12.8544, 11.3004, 19.1465, 8.7847,

21.9278, 5.1373]

 basey=[7.1749, 1.6203, 2.6050, 3.9264, 5.5607, 3.0025, -10.1459,

-2.0627]

 llist=[]

 qlist=[]

 for i in range(0,iters):

 xlist=[]

 ylist=[]

 for j in range(0,sampleSize):

 idx=random.randint(0,7)

 xlist.append(basex[idx])

 ylist.append(basey[idx])

 li = (mean(xlist)-mean(ylist))/math.sqrt(svar(xlist)

+svar(ylist))

 llist.append(li)

 qi = (mean(xlist)-mean(ylist)-

zalpha*math.sqrt(svar(xlist)))/math.sqrt(svar(ylist))

 qlist.append(qi)

84

 return llist,qlist

def Quartile(xlist,pct):

 clist=xlist[0:]

 clist.sort()

 n=len(clist)

 low=clist[int(round((n-1)*pct/100.0))]

 high=clist[int(round((n-1)*(100-pct)/100.0))]

 return low,high

def BootStrapStats(sampleSize,iters,zalpha,alpha):

 #zalpha is the value from the t-distribution with alpha value of

alpha

 #and sampleSize-1 degrees of freedom

 pct=2.5

 llist,qlist = BootStrap(sampleSize,iters,zalpha)

 print 100*(1-2*pct/100.0),"percent CI for AUC

is",Quartile(llist,pct)

 print str(100-2.0*pct)+"% CI for specificity at

sensitivity="+str(alpha)+"% in 'Z' values is",Quartile(qlist,pct)

if len(sys.argv) > 1 and sys.argv[len(sys.argv)-1]=="debug":

debug=True

sampleSize=int(sys.argv[1])

iters=int(sys.argv[2])

#p values below from SPlus - qt(0.95,7), qt(0.90,7), qt(0.80,7)

BootStrapStats(sampleSize,iters,1.894579,0.95)

BootStrapStats(sampleSize,iters,1.414924,0.95)

BootStrapStats(sampleSize,iters,0.8960296,0.95)

	Georgia State University
	ScholarWorks @ Georgia State University
	11-20-2008

	An Analysis of Fourier Transform Infrared Spectroscopy Data to Predict Herpes Simplex Virus 1 Infection
	Patrick D. Champion
	Recommended Citation

	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Examination and Standardization of the Initial Raw Data
	2.2 Variable Reduction
	2.3 Prediction of Disease Status
	2.4 Test for Distribution Equivalence Within Mock and Hsv1 Groups
	2.5 New Directions: Loading Eight Mock and Hsv1 Groups at 24 Hours Exposure
	2.6 Calculation of the Wilcoxon-Mann-Whitney Curve
	2.7 Generation of a Difference of Composites Statistic DC
	2.8 Evaluation of DC Statistics by ROC AUC value, Specificity, and Confidence Intervals

	3. RESULTS
	3.1 Examination and Standardization of the Initial Raw Data
	3.2 Variable Reduction
	3.3 Prediction of Disease Status
	3.4 Test for Distribution Equivalence Within Mock and Hsv1 Groups
	3.5 New Directions: Loading Eight Mock and Hsv1 Groups at 24 Hours Exposure
	3.6 Calculation of the Wilcoxon-Mann-Whitney Curve
	3.7 Generation of a Difference of Composites Statistic DC
	3.8 Evaluation of DC Statistics by ROC AUC value, Sensitivity, Specificity, and Confidence Intervals

	4. CONCLUSIONS AND DISCUSSION
	REFERENCES
	APPENDIXES
	APPENDIX A: PYTHON SCRIPT FOR LOADING DATA FILES
	APPENDIX B: DOS BATCH CODE FOR LOADING DATA FILES
	APPENDIX C: PYTHON SCRIPT FOR PLOTTING RAW DATA
	APPENDIX D: SAS TEMPLATE FOR PLOTTING RAW DATA
	APPENDIX E: PYTHON CODE FOR
REMOVING SIXTH DECIMAL POINT VARIATION
	APPENDIX F: PYTHON CODE FOR STANDARDIZING ABSORPTION DATA
	APPENDIX G: PYTHON SCRIPT TO HELP PLOT STANDARDIZED DATA
	APPENDIX H: SAS TEMPLATE TO PLOT STANDARDIZED DATA
	APPENDIX I: PYTHON SCRIPT TO CALCULATE
WILCOXON-MANN-WHITNEY Z SCORE PLOTS
	APPENDIX J: SAS TEMPLATE SCRIPT TO GENERATE
WILCOXON-MANN-WHITNEY Z SCORES
	APPENDIX K: PYTHON SCRIPT TO EXTRACT WILCOXON-MANN-WHITNEY
Z SCORE TO A CSV FILE
	APPENDIX L: PYTHON PROGRAM TO GENERATE PLS MODEL AND CALL LOGISTIC REGRESSION TO GENERATE ROC CURVE
	APPENDIX M: TWO SAS TEMPLATES TO GENERATE PLS MODEL AND CALL LOGISTIC REGRESSION TO GENERATE ROC CURVE
	APPENDIX N: PYTHON PROGRAM TO RUN KOLMOGOROV-SMIRNOV TEST AGAINST 24 HOUR VERSUS 2, 4, 6 HOUR DATA OF SAME DISEASE STATUS
	APPENDIX O: SAS TEMPLATE TO RUN KOLMOGOROV-SMIRNOV TEST AGAINST 24 HOUR VERSUS 2, 4, 6 HOUR DATA OF SAME DISEASE STATUS
	APPENDIX P: THREE PROGRAMS TO LOAD SECOND DATASET AND STANDARDIZE IT
	APPENDIX Q: PROGRAM TO PLOT MEAN CURVES AND
WILCOXON-MANN-WHITNEY CURVES
	APPENDIX R: PROGRAM TO CALCULATE THE DC STATISTIC
	APPENDIX S: PROGRAM TO CALCULATE USING BOOTSTRAP THE AUC AND SPECIFICITY CONFIDENCE INTERVALS

