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ABSTRACT 

The National health and nutrition examination survey (NHANES) is a respected nation-wide program in 

charge of assessing the health and nutritional status of adults and children in United States. Recent 

cal research found that folic acid play an important role in preventing baby birth defects. In this paper, we 

use the generalized estimating equation (GEE) method to study the generalized linear model (GLM) with 

compound symmetric correlation matrix for the NHANES data and investigate significant factors to 

ence the intake of food folic acid.  

INDEX WORDS:  Intraclass correlation coefficients, Quasi-likelihood method, Generalized estimating equa-
tion, Generalized linear model, National health and nutrition examination survey
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1 INTRODUCTION  
 

The U.S. statistical and clinical studies show Birth Defects as the major leading cause for the infant mor-

tality. For surviving babies, Birth Defects also have significant and long lasting impacts throughout their 

life spans.  The difficulty of preventing and treating Birth Defects is largely due to the fact that the caus-

es leading to Birth Defects are unknown for up to 70% of babies suffer from it.  The researchers in the 

medical field have been studying Birth Defects to ensure the wellbeing of the babies, and recently had a 

major breakthrough, they discovered the role folic acid playing in prevention of neural tube defects 

(NTDs).  The importance of this discovery is that it effectively proved women consuming sufficient 

amount of folic acid during early pregnancy period have shown significant decrease of developing severe 

forms of Birth Defects such as abnormal neural tube development, opening spine or defective brain 

problems. Folic acid is synthetic vitamin B and folate is found in natural food sources such as dark green 

vegetables, citrus fruits and juices and beans. Natural food folate is not as easily processed as the folic 

acid in human body. We focus on natural Food folate in this paper.  

With the discovery and in an effort to prevent NTDs, the US Public Health Service has recommended 

taking 400 micrograms (0.4 milligrams) of folic acid per day for childbearing age women. However, the 

execution of the recommendation remained challenging because of several reasons, the facts that preg-

nancies are often not planned, it is difficult to get the public awareness, and also because the harmful 

impacts of the lack of folic acid during the pre and early days of pregnancies is not treatable during the 

latter phases of pregnancy.   

An effort to overcome the said difficulties implemented a policy of introducing enriched folic acid to 

flour to supply sufficient amount of folic acid in day to day dietary. The first step of this work is to esti-
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mate average daily intake of folic acid to determine the net amount to be added to flour.  The baseline 

data used in the calculation is from the National Health and Nutrition Examination Survey (NHANES).  

Although the NHANES is a respected nation-wide program in charge of assessing the health and nutri-

tional status of adults and children in United States, the data from the program needed to be validated 

from the statistical stand point by carefully reviewing the data collection process utilized in the program. 

The program uses a population-based survey questionnaire targeted to a pool of about 5000 sample 

respondents each year. The survey consists of demographic followed by examination and questionnaire 

parts, and conducted by an in person or phone interviews.  The outcome of the surveys provides two 

days observations of nutritional intake data of the participants. While the demographic information as-

sociated with nutrition data at an individual level makes up a good foundation for the folic acid calcula-

tion task, the limited number of participants and the short observation period called for further refine-

ments of data though sophisticated Statistical methodologies.       

The main objective of this paper is to discuss the Statistical methods used to refine the said data, fol-

lowed by validity results revealed by running various statistical models. In the effort to refine the data, 

we utilized two methods, simple approach taking an average of repeated measurements method and 

single model taking advantage of regression model. In the simple of averaging measurements calcula-

tion, to resolve the repeated measurement in each individual, researchers take an average of repeated 

measurement to apply some form of data reduction procedure. In the single model method, we attempt 

to define data by applying a regression model fitted for each individual. A Single model is more efficient 

when individuals show low intraclass correlation coefficients between repeated measurements. In this 

paper, we will examine repeated measurements data using the generalized linear model with analyzing 

intraclass correlation efficient.  
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This paper contains a section to analyze significant factors for usual intake of folic for women of child-

bearing age (18-44 years) by the generalized linear regression and estimate correlation coefficients un-

der the Generalized Estimating Equations (GEE) method. We analyze correlation coefficients between 

two measurements of one individual from this NHANES data. With this result, the equality of correlation 

coefficients is tested using the log likelihood ratio test statistics by factor groups. 

The methodology part in chapter 2 discusses definitions of Quasi-likelihood and GEE method which are 

used for our paper. In chapters 3, we estimate the intraclass correlation coefficients by simulation study. 

In chapter 4, we show test result performed with realistic data of unequal family members sizes. In 

chapter 5, the NHANES data analysis part, we determine significant factors for the food folate intake and 

analyze correlation coefficients between two repeated measurement for usual intake of natural food 

folate in NHANES data between women of childbearing age. Chapter 6 ends this paper with the conclu-

sion and discussion part summarizing our result of study.  As a wrap up, we will have a discussion on our 

result and talk about required future research needs. 
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2 METHODOLOGY 
 

2.1 Quasi-Likelihood 

The Quasi-likelihood was proposed by Wedderburn (1974). He first estimated the regression coefficients 

by the estimating equation. This method can describe the distribution of data without full likelihood 

function and strong assumptions. The Quasi-likelihood describes the relationship between explanatory 

variable and response variable using the first two moments of the mean and the variance. McCullagh 

(1983) presented the estimation based on the quasi-score function later.  Let  be a  vector of 

observations  = (   , where  is the number of member in the th family 

and  is the total number of families. Let  be the  matrix of factors for the th family 

 , where  is the number of factors. The mean response is  .  The 

function  is the link function and  is    vector of parameters. 

  (2.1) 

Then, the variance of  is to be the function of its mean   

  (2.2) 

where the function  is the variance function and  is the scaling factor. 

The  quasi-score function for any generalized linear model is as the following: 

 
 

(2.3) 

where   =Var( .  The least-squares estimate  is obtained by an 

iteratively reweighted algorithm by McCullagh and Nelder (1983).  
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2.2 Generalized Estimate Equation Method 

Liang and Zeger presented the Generalized Estimate Equation (GEE) method in 1986 as a model to ana-

lyze correlated data the generalized linear models by weak assumptions. The propose of GEE method is 

very closed to quasi-likelihood. Let  be the   working correlation matrix on each response 

variable   where   is an unknown parameter. 

Therefore, we have 

 
 

(2.4) 

where  is the diagonal matrix for the th family,  . Here is the general esti-

mating equations  

 
 

(2.5) 

Where  . The equation (2.5) depends on  and   compared with equation (2.3). A solution 

of equation (2.5) can be found by fixing an  and  first, then solve for  using fixed  in (2.4). 

Equation (2.5) can be rewritten as a function of  by replacing  in (2.4) and (2.5) by ), a 

- consistent estimator of  when   and  is known, and replacing  by , a - con-

sistent estimator of  when  is known. 

 
 

(2.6) 

Estimator of  can be solved from (2.6). We iterate between an estimation for  from (2.6) and moment 

estimation for  and . After converge, call the estimator of , .  



6 
 

With mild regularity conditions, Liang and Zeger (1986) present is asymptotically multiva-

riate Gaussian with zero mean and covariance matrix  given by 

 
 

(2.7) 

In this paper, we estimate parameters by GEE method and test resemblance of families by population 

using log likelihood ratio test statistics. 

2.3 Common Intraclass Correlation Coefficients 

The intraclass correlation coefficient is often used to a homogeneity measurement among members of 

family.  In this paper, we assume that all correlations of each family are equal and the correlations within 

populations are the same.  

We assume that there are K families. Let represent measurements taken on the th 

family, and is the size of the ith family. 

We define parameters   ,  and  as a common variance, intraclass correlation coefficients and com-

mon mean of members of family respectively. The response variable   of the generalized linear model 

for familial data follows multivariate normal distribution. 

 

 

 

(2.8) 

In this chapter, we estimate parameter using GEE method which is related “working” correlation matrix. 

For familial data, it is reasonable to consider exchangeable structure metrices as the proper correlation 

structure.   
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After estimating variance  and intraclass correlation coefficient ρ, we want to test difference of com-

mon intraclass correlation coefficients by population using the log likelihood ratio test. 

To estimate  for fixed   and   , we use the Guass-newton algorithm. Using initial estimated parame-

ters  and , we update   iteratively.  

 
 

(2.9) 

Using matrix of residual, we can calculate the variance  and correlation coefficients  below. 

 
 

(2.10) 

With estimated , we can calculate Pearson residual    

 
 

(2.11) 

Using matrix of residual, we can calculate the variance  and correlation coefficients  below. 

 
 

(2.12) 

We are interested in testing of equivalence for the intraclass correlation coefficients   among several 

populations. The hypothesis is stated as below.   

                

  (2.13) 

We can find the likelihood function under  or . A likelihood ratio test is a statistical test for making 

decision between two hypotheses based on the value of this ratio. The Likelihood ratio test is a general 
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method for a composite hypothesis testing.  A procedure used in hypothesis testing based on the ratio 

of the values of two likelihood functions, one derived from the null hypothesis being tested and one 

from the alternative hypothesis under test. 

The likelihood ratio test statistic follows  distribution, where the degree of freedom (df) = # parame-

ters under   - # parameters under . 
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3 SIMULATION STUDY 
 

3.1 Overview 

We generate multivariate normal random data using S plus program in order to test our method for a 

simulation study. The generalized estimation equation (GEE) is used for estimating parameters of the 

model. We estimate  using an iterative algorithm.  To find value of intraclass correlation coefficients, 

we first focus on finding  with fixed covariance matrix. With estimated , we are able to calculate va-

riance  and correlation coefficients by each population. Finally, we perform a hypothesis test using the 

log likelihood ratio test statistics for evaluating equivalence of intraclass correlation coefficients in our 

two populations. 

We assumed that individual members have the same correlation in same family, and the familial correla-

tion coefficients are also assumed to be equal in the same population. With the assumptions applied, we 

are able to use the compound symmetric working correlation for GEE method. 

We simply generated the simulated data with the 4  4 compound symmetric correlation matrices 

which are  and .  

Each population contains 500 families among two populations and  follows the multivariate normal 

distribution with zero mean and standard deviation 1. We considered population and intercept for  

variables and the response variable  which is generated by the equation.  

  (3.1) 
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3.2 Results 

We are interested in testing the intraclass correlation coefficients   by different two populations. The 

hypothesis is stated as below.   

               (3.2) 

For the null hypothesis part, we assume all data has common correlation coefficient  for two popula-

tions and we estimate parameter  using this assumption under GEE method.   

For the alternative hypothesis , we estimate parameter  using two correlation coefficients per each 

population. After estimating the parameter  and we repeat these iteratively, we are able to calculate 

variance and correlation coefficients. 

With all parameters, we can describe likelihood for our simulated data. By calculating log likelihood ratio 

test statistics for hypothesis testing using , we get   = 1.591236. The 

likelihood ratio test statistics follows  distribution with one degree of freedom and it is smaller than 

=3.8. Therefore, the null hypothesis of our study cannot be rejected and  are same for two popu-

lations. When , we get   = 32.60598.  The likelihood ratio test statistics is 

larger than =3.8. Therefore, the null hypothesis of our study can be rejected and  are not equal 

for two populations. 

In this simulation study, we can get the result of rejecting or not rejecting the null hypothesis consistent-

ly , for different simulated data.   With this finding, we can positively conclude two populations have a 

common intraclass correlation coefficient using GEE method.  
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4 FAMILIAL DATA ANALYSIS 
 

4.1 Data Background 

In the simulation study performed in chapter 3, a set of simulated data is generated by families of equal 

size. While this artificial data set reduced complexity running the required test, the finding needs to be 

put under test with real world practical data - families of various sizes.  Chapter 4 focuses on this and 

attempts to validate our method with the intraclass correlation coefficients against real world data pool 

of families of unequal sizes. 

In preparation of Familial Data Analysis, we carefully selected a biological data set from a region called 

the Rhondda Fach, a mining valley located in South Wales, England (Published by Miall and Oldham 

1955). The population of this mining valley as defined by census conducted from 1950 and 1953 in-

cluded first degree relatives people living within a radius of 25 miles. These first degree relative sub-

groups within the census data make up the ideal input source for our study since the intraclass correla-

tion coefficient ρ is frequently used to measure the degree of intrafamily resemblance with respect to 

characteristics such as blood pressure, cholesterol level, weight and height.  

We excluded people who do not have first degree relatives associations. Each person is verified to have 

a minimum of 2 relatives to a maximum of 12 relatives. We also divided the qualified families into two 

groups by regions. The first region, Population A, has 109 families and the second one, Population B, has 

132. We create 141 matrices based on families. 

The table 4.1 describes the mean value of high blood pressure and distributions of the two populations, 

and the figure 4.1 shows the distributions of high blood pressure for population A and B using box plot. 

As depicted in the figure 4.1, the population A shows higher mean value and larger distribution variation 

than the population B. 
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Table 4.1 A comparison of all members High blood pressure by two populations. 

 

Figure 4.1 A comparison of high blood pressure by two populations. 

 

4.2 Results 

We apply the same estimation and testing methods of simulation study to familial data. We assume all 

family members have equal correlation coefficients in each population. Under the null hypothesis, we 

estimate this common  = 0.166004 and under the alternative hypothesis   = 0.1450482 and  = 

0.1903675. We use the log likelihood ratio test statistics for conducting the equivalence test. With all 

Population Size Minimum Mean Maximum 

A 1243 80 129.28 250 

B 1507 80 128.39 260 
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estimated parameters, the log likelihood ratio statistic   is 47.44443 and it is larger than the criti-

cal value from chi-square distribution with one degree of freedom =3.8. The Null hypothesis for 

homogeneity testing is rejected. It shows that the intraclass correlation coefficients of this familial data 

are not equal between populations.   
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5 NHANES DATA ANALYSIS 
 

5.1 Overview 

In this chapter, we analyze correlation coefficients between two measurements of individuals by popu-

lations. As previously discussed, folic acid effectively prevent severe forms of birth defects such as Neur-

al Tube Defects (NTDs). Folic acid is one of the vitamin B family and it is used to make new cell for hu-

man body. Therefore, everyone need to takes folic acid.  Especially, it is an important nutrient during pre 

and early pregnant periods. Our primary focus is to find out the day to day average of folic acid intake 

among the child bearing age women population.  

The input of our study is from the National Health and Nutrition Examination Survey (NHANES). The 

NHANES publish their survey findings for uses by general public, of which include nationally representa-

tive sample of the child bearing age women population. The data is in a format of a replicate 24-hour 

recall for each individual in the survey sample pool.  

We import the data published for the year of 2005 - 2006 to SAS analytic tool, and merge resulting data-

sets in our interest, namely demographics, body measurements , total Nutrient intakes of first day and 

second day. 

 We analyze 1352 women of childbearing age (18-45 years old) after running data quality check and ex-

cluding incomplete rows with missing of food folate and body mass index (BMI) value.  The table 5.1 

summarizes race-ethnicity percentages in the population as 36.24% of non-Hispanic white, 39.5% in 

non-Hispanic black, 23.08% Hispanic and 6.36% others. In regarding to BMI characteristics, over 60% 

women are in the overweight category by the standard weight status categories. 
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Table 5.1 Frequency of population by demographic characteristics in NHANES 2005-2006 

Characteristics Percent Total population 
Age 
18-24 
25-34 
35-45 

 
36.24% 
34.47% 
29.29% 

 
490 
466 
396 

Race-Ethnicity 
Non-Hispanic White  
Non-Hispanic Black  
Hispanic 
Other 

 
31.07% 
39.50% 
23.08% 
6.36% 

 
420 
534 
312 
86 

Body Mass Index 
18.5           (Underweight) 

18.5 to 24.9 (Normal) 
25.0 to 29.9 (Overweight) 
30              (Obese) 

 
2.47 

35.75 
27.82 
33.96 

 
33 

478 
372 
454 

Pregnancy Status 
Pregnant 
Not pregnant 
Not examined 

 
301 

1014 
37 

 
22.26% 
75.00% 
2.74% 

Total 100% 1352 
 

Figure 5.1 and 5.2 summarize the food folate intake findings obtained from NHANES' two repeated mea-

surement in 24-hour recall questionnaire. As depicted by the figures, there are difference of measure-

ments in two days per age groups and race-ethnicity groups. 
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Figure 5.1 Two days of total food folate intake by Race-Ethnicity group 

 

 

Figure 5.2 Two days of total food folate intake by Age group 

 

The next step of our study is to confirm or deny that the population exhibits a normal distribution curve. 

The Figure 5.3 consists of Q-Q plots and histograms for each surveyed day, effectively showing food fo-
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late intakes are not following normality assumption. Therefore, we must use the transformation tech-

nique.  

We first use the logarithm transformation because it is the preferred and recommended method by the 

National Research Council committee for the uses on daily intakes studies. After the logarithm trans-

formation, response variable still shows skewed to the left in histograms and are not straight line in Q-Q 

plots (see Figure 5.4). So we try the Box-Cox transformation ( ). The Box-Cox transformation 

(Box, George, 1964) of total food folate intakes shows approximately straight line in Q-Q plots (see Fig-

ure 5.5) and normal shape in histograms when compared with the result gained from the logarithm 

transformation method (see Figure 5.4).  

We want to determine significant factors using variables of demographics, examination, laboratory and 

questionnaire for consuming folate from food. There are variables in table 5.2. We test for significant 

factors using generalized linear regression with equal correlation using GEE. Age of women for child-

bearing age 18-45 years, four race-ethnicity, the pregnancy status at the time of the health exami-

nation and body mass index variables are significantly influenced for two days of total food folate 

intakes.  

After fitting a regression model, we estimate different correlation coefficients by age and race-ethnicity 

groups using GEE method.   
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First day 

 

Second day 

Figure 5.3 Q-Q plots and histograms for two days of food folate intakes 
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First day 

 

Second day 

Figure 5.4 Q-Q plots and histograms for two days of food folate intakes after the logarithm transforma-
tion 
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First day 

 

Second day 

Figure 5.5 Q-Q plots and histograms for two days of food folate intakes after the Box-Cox transformation 
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Table 5.2 Showing the main variables used in this study 

Variables Meaning 
SEQN Respondent sequence number 
DR1TFA Dietary Interview - Total Nutrient Intakes Folic acid, First Day 
DR2TFA Dietary Interview - Total Nutrient Intakes Folic acid, Second Day 
DR1TFF Dietary Interview - Total Nutrient Intakes Total folate, First Day 
DR2TFF Dietary Interview - Total Nutrient Intakes Total folate, Second Day 
SDDSRVYR Data Release Number 
RIDSTATR Interview/Examination Status 
RIDEXMON Six month time period 
RIAGENDR Gender 
RIDAGEYR Age at Screening Adjudicated – Recode 
RIDAGEMN Age in Months – Recode 
RIDAGEEX Exam Age in Months – Recode 
RIDRETH1 Race/Ethnicity – Recode 
DMQMILIT Veteran/Military Status 
DMDBORN Country of Birth – Recode 
DMDCITZN Citizenship Status 
DMDYRSUS Length of time in US 
DMDEDUC3 Education Level - Children/Youth 6-19 
DMDEDUC2 Education Level - Adults 20+ 
DMDSCHOL Now attending school? 
DMDMARTL Marital Status 
DMDHHSIZ Total number of people in the Household 
DMDFMSIZ Total number of people in the Family 
INDHHINC Annual Household Income 
INDFMINC Annual Family Income 
INDFMPIR Family PIR 
RIDEXPRG Pregnancy Status at Exam – Recode 
SIALANG Language of SP Interview 
SIAPROXY Proxy used in SP Interview? 
SIAINTRP Interpreter used in SP Interview? 
FIALANG Language of Family Interview 
FIAPROXY Proxy used in Family Interview? 
FIAINTRP Interpreter used in Family Interview? 
MIALANG Language of MEC Interview 
MIAPROXY Proxy used in MEC Interview? 
MIAINTRP Interpreter used in MEC Interview? 
AIALANG Language of ACASI Interview 
WTINT2YR Full Sample 2 Year Interview Weight 
WTMEC2YR Full Sample 2 Year MEC Exam Weight 
SDMVPSU Masked Variance Pseudo-PSU 
SDMVSTRA Masked Variance Pseudo-Stratum 
BMXBMI Body Mass Index (kg/m**2) 
BMXHT Standing Height(cm) 
SMQ020 Smoked at least 100 cigarettes in life 
SMD030 Age started smoking cigarettes regularly 
SMQ040 Do you/Does SP now smoke cigarettes 
SMD070 How many cigarettes now smoke per day? 
HOQ011 Type of home 
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We recode some of the variables for the purpose of this study. For example, we define age groups into 3 

groups consist of first group aged from 18 to 22, the second from 23 to 24 and the last group from 34 to 

44.  For the race-ethnicity groups, we want to associate individuals to Non-Hispanic white, Non-Hispanic 

Black, Hispanic, or other. 

5.2 Results 

Regression model is defined as below: 

  (5.1) 

Using the generalized linear regression modeling, we get four significant factors: age, race, pregnant 

exam and the body mass index.  

Table 5.3 Showing significance of variables in the GLM model 

Variables Estimate P-Value 
Intercept 3.949863745       <.0001 

Age 0.106897742       <.0001 
Race -0.043319249 0.0003 

INDHHINC 0.002505156       0.1813 
INDFMINC 0.000062457       0.9710 
RIDEXPRG -0.231428095       <.0001 
BMXBMI -0.003661058       0.0118 

 

We want to estimate the individual correlation effects by independent variables groups using GEE me-

thod. With 3 age groups and 4 ethnic groups, we have a total of 12 cases to consider.    
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Table 5.4 Correlation Coefficients by age and race-ethnicity groups 

Characteristics Correlation Coefficients Total population 
Non-Hispanic White 
18-24 
25-34 
35-45 

 
0.3600630 
0.2877560 
0.4517186 

420 
168 
150 
102 

Non-Hispanic Black  
18-24 
25-34 
35-45 

 
0.2576722 
0.4205261 
0.3474469 

534 
154 
200 
180 

Hispanic 
18-24 
25-34 
35-45 

 
0.2322034 
0.1488621 
0.4593146 

312 
140 
89 
83 

Other  
18-24 
25-34 
35-45 

 
0.4221666 
0.5905801 
0.8278194 

86 
28 
27 
31 

Common 0.3213651 1352 

 

By calculating the common , we get 0.3213651. The age 35-45 of the "Other" group shows the highest 

correlation coefficient among the repeated measurements of their members.  The "Other" race-

ethnicity group shows high correlation coefficients than Non-Hispanic white, Black and Hispanic groups 

and to the degree that we can safely conclude the “Other” group’s two values to be having dependent 

relationship.  

However, the case of “Other” race group is unique and an exception to the overall results that as the 

table 5.4 shows all other groups show low correlation between two measurements. In practice, we take 

average of repeated measurements for estimating intake. However, we find that the intraclass correla-

tion is not high enough to use average so the GLM with exchangeable working covariance metrics is 

shown better result by our study.  
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6 CONCLUSIONS AND DISCUSSIONS 
 

We present the GEE Liang & Zeger (1986) for estimating intraclass correlation coefficients for simulation 

study, familial data and NHANES repeated measurement survey data under the GLM.  

In simulation study, we test the equivalence of two correlation coefficients by two populations. We use 

log likelihood ratio statistics to check the homogeneity of the multivariate normal data with different 

intraclass correlation coefficients among populations.  

We apply the same method to the real familial data and can get consistent result like in the simulation 

study. In this familial data study, we conclude the intraclass correlation coefficients of this familial data 

are not equal between populations so we cannot use the common correlation coefficient. 

In the NHANES data part, we also apply same methods using the GEE and the GLM. We can determine 

significant factors for food folic acid by age, race-ethnicity and pregnant exam and body mass index un-

der GLM. We find that low correlation coefficients in two repeated measurement of NHANES data for 

age and race-ethnicity groups. Therefore, we cannot take average of repeated measurements for esti-

mating daily food folate intake. 

As a follow up research, we suggest some ways to improve the method used in this paper. For NHANES 

data, we did not consider weights for data. We should consider weights depend on nutrients or food 

computations in the data refinement process. Also, we also should study for synthetic folic acid which is 

a man-made form of the B vitamin folate. 
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APPENDICES  

Appendix A:  S-plus Code for Simulation Study 
 

################################################################## 
# Simulation N = 1000  2 Sample & 4 members for one family                       # 
# Create data following multivariate normal distribution                                      # 
################################################################## 
 
# First Test  rho1=0.1, rho2=0.15 
 
#rho1=0.1 
#rho2=0.15 
 
#Second Test rho1=0.1, rho2=0.3 
rho1=0.1 
rho2=0.3 
 
vector1=c(rep(c(1,rep(rho1,4)),4-1), 1) 
mat1 = matrix(vector1,nrow=4, ncol=4,byrow=T) 
 
vector2=c(rep(c(1,rep(rho2,4)),4-1), 1) 
mat2 = matrix(vector2,nrow=4, ncol=4,byrow=T) 
 
ns=1000 
Xm=matrix(0,4*ns,2) # 8000 rows, 2 columns 
Ym=rep(0,4*ns) 
 
yi=rep(0,4*1000) # gives 4*2000 ->(0,...,0) 
ei=rep(0,4*1000) 
n1=500 
n2=500 
 
#Population 1 
for (i in 1:n1) 
{ 
 xi=c(rep(1,4)) 
 ei=rmvnorm(1, mean=rep(0,4), cov=mat1, d=4) 
 yi=100+10.2428*xi+ei 
 Xm[(4*i-3):(4*i),1:2]=c(1,1,1,1,xi) 
 Ym[(4*i-3):(4*i)]=yi 
} 
 
#Population 2 
for (i in (n1+1):ns) 
{ 
 xi=c(rep(2, 4)) 
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 ei=rmvnorm(1, mean=rep(0,4), cov=mat2, d=4) 
 yi=100+10.2428*xi+ei 
 Xm[(4*i-3):(4*i),1:2]=c(1,1,1,1,xi) 
 Ym[(4*i-3):(4*i)]=yi 
} 
 
 
 
################################################### 
# Null Hypothesis : All correlation are equal    # 
# compound symetric correlation     # 
################################################### 
 
m2=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),4,4) 
B=c(0,0) 
old.B=c(1,1) 
var=1 
rho=0 
maxit=0 
 
while(max(abs(old.B-B))>1E-6 & maxit <100) 
{  
maxit=maxit+1 
old.B=B 
 
V=solve(m2) 
 
 
sum1=rep(0,2) 
sum2=matrix(0,2,2) 
for (i in 1:ns) 
{ 
 xi=Xm[(4*(i-1)+1):(4*i),1:2] 
 yi=Ym[(4*(i-1)+1):(4*i)] 
 sum1=sum1+t(xi)%*%V%*%yi 
 sum2=sum2+t(xi)%*%V%*%xi 
} 
B=solve(sum2)%*%sum1 
 
Rm=(Ym-(Xm%*%B)) 
var = sum(Rm^2)/(4*ns-2) 
 
 
rho=0 
for(i in 1:ns) 
{ 
 rho = rho+Rm[4*i-3]*Rm[4*i-2]+Rm[4*i-3]*Rm[4*i-1]+Rm[4*i-3]*Rm[4*i] 
       +Rm[4*i-2]*Rm[4*i-1]+Rm[4*i-2]*Rm[4*i]+Rm[4*i-1]*Rm[4*i] 
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} 
rho=rho/var/(6*ns-2) 
 
m2=matrix(var*c(1,rho,rho,rho,rho,1,rho,rho,rho,rho,1,rho,rho,rho,rho,1), 4,4) 
print(c(maxit,B,var, rho)) 
 
} 
 
R=matrix(Rm,nrow=ns,ncol=4,byrow=T) 
V2=solve(m2) 
ELL=0 
g=4 
for (i in 1:ns) 
{ 
 ELL=ELL+sum(-log(2*pi)*g/2-log(det(m2))/2-t(R[i,])%*%V2%*%R[i,]/2) 
} 
 
################################################### 
# Alternative Hypothesis :                       # 
################################################### 
 
m1=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),4,4) 
m2=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),4,4) 
 
#allocate space 
 
n1=500 
n2=500 
ns=1000 
B1=c(0,0) 
old.B1=c(1,1) 
var1=1 
rho1=0 
rho2=0 
maxit1=0 
 
# Iterated until convergence 
while(abs(old.B1-B1)>1E-6 & maxit1 <100)  
{ 
 maxit1=maxit1+1 
 old.B1=B1 
 Va1=solve(m1) 
        Va2=solve(m2) 
 sum11=rep(0,2) 
 sum21=matrix(0,2,2) 
 
 for (i in 1:n1) 
 { 
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  xi=Xm[(4*i-3):(4*i),1:2] 
  yi=Ym[(4*i-3):(4*i)] 
  sum11=sum11+t(xi)%*%Va1%*%yi 
  sum21=sum21+t(xi)%*%Va1%*%xi 
 } 
  
 for (i in (n1+1):ns) 
 { 
  xi=Xm[(4*i-3):(4*i),1:2] 
  yi=Ym[(4*i-3):(4*i)] 
  sum11=sum11+t(xi)%*%Va2%*%yi 
  sum21=sum21+t(xi)%*%Va2%*%xi 
 } 
 
        B1=solve(sum21)%*%sum11 
        Rm=(Ym-(Xm%*%B1)) 
        var1 = sum(Rm^2)/(4*ns-2) 
 
        rho1=0 
        for(i in 1:n1) 
        { 
       rho1 = rho1+Rm[4*i-3]*Rm[4*i-2]+Rm[4*i-3]*Rm[4*i-1]+Rm[4*i-3]*Rm[4*i] 
               +Rm[4*i-2]*Rm[4*i-1]+Rm[4*i-2]*Rm[4*i]+Rm[4*i-1]*Rm[4*i] 
        } 
        rho1=rho1/var1/(6*n1-2) 
        m1=matrix(var1*c(1,rho1,rho1,rho1,rho1,1,rho1,rho1,rho1,rho1,1,rho1,rho1,rho1,rho1,1), 4,4) 
  
 rho2=0 
 for(i in (n1+1):ns) 
 { 
  rho2 = rho2+Rm[4*i-3]*Rm[4*i-2]+Rm[4*i-3]*Rm[4*i-1]+Rm[4*i-3]*Rm[4*i] 
    +Rm[4*i-2]*Rm[4*i-1]+Rm[4*i-2]*Rm[4*i]+Rm[4*i-1]*Rm[4*i] 
 } 
 
 rho2=rho2/var1/(6*n2-2) 
 m2=matrix(var1*c(1,rho2,rho2,rho2,rho2,1,rho2,rho2,rho2,rho2,1,rho2,rho2,rho2,rho2,1), 4,4) 
 
 print(c(maxit1,B1,var1,rho1,rho2)) 
} 
 
R=matrix(Rm,nrow=ns,ncol=4,byrow=T) 
V1=solve(m1) 
V2=solve(m2) 
ELL1=0 
g=4 
for (i in 1:n1) 
{ 
 ELL1=ELL1+sum(-log(2*pi)*g/2-log(det(m1))/2-t(R[i,])%*%V1%*%R[i,]/2)} 
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for (i in (n1+1):ns) 
{ 
 ELL1=ELL1+sum(-log(2*pi)*g/2-log(det(m2))/2-t(R[i,])%*%V2%*%R[i,]/2) 
} 
 
ELL 
ELL1 
L= -2*(ELL-ELL1) 
L  
 

Appendix B:  S-plus/SAS code for Familial Data 
 

#SAS 

data hype; 
 infile cards missover; 
 input id group $ age gender high a1-a10; 
 cards; 
DATA 
run; 
 
data intra_hype; 
 set hype; 
 array bp{1:11} high a1-a10; 
 
    do i=1 to 11; 
  no = i; 
  pressure = bp(i); 
  if group = 'A' then sample = 1;  
  else sample =2; 
  if pressure ne . then k=i; 
  output; 
 end; 
 drop gender high a1-a10 age i; 
 label pressure ='High blood pressure'; 
 label group ='population'; 
run; 
 
proc means data=intra_hype min mean max ; 
 class sample; 
 var pressure; 
run; 
 
proc univariate data=intra_hype; 
 class sample; 
 var pressure; 
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run; 
 
proc boxplot data=intra_hype; 
 plot pressure*group/BOXWIDTH=10; 
run; 
 
#S-plus 

################################################### 
# Real Data Reading data                 # 
################################################### 
real <- c(scan("C:/Users/Kyung Ah/Documents/GSU_statistics/thesis/high_tension2.txt")) 
#Number of members per family 
nf=repn$repn 
ns=241  #number of family 
n1=109  #population 1 
nf1=558  # number of members of family in population 1 
n2=132  #population 2 
nf2=661 # number of members of family in population 2 
rho=0 
nn=1219 # Total number of members of family 
Xm=matrix(c(rep(1,nn),rep(1,558),rep(2,661)),1219,2) 
Ym=real # hypertension  
################################################### 
# Null Hypothesis : All correlation are equal    # 
# compound symetric correlation        # 
# Covariance depending on number of family      # 
################################################### 
 
B=c(0,0) 
var=1 
old.rho=1 
rho=0 
maxit=0 
R=rep(0,ns) 
while(abs(old.rho-rho)>1E-6 & maxit <100)  
{ 
 maxit=maxit+1 
 old.rho=rho 
 nk=0 
 sum1=rep(0,2) 
 sum2=matrix(0,2,2) 
 df=rep(0,ns) 
 
 for(i in 1 :ns)  
 { 
  k=nf[i] 
  yi=Ym[(nk+1):(nk+k)] 
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  xi=Xm[(nk+1):(nk+k),1:2] 
#  print(c(i,k,nk+1,nk+k,yi, xi)) # ith, num per family, start, ending point 
  Vector=c(rep(c(1, rep(rho,k)),k-1),1) # number of member per family 
  m=matrix(Vector,nrow=k,ncol=k, byrow=T) 
  V=solve(m) 
  sum1=sum1+t(xi)%*%V%*%yi 
  sum2=sum2+t(xi)%*%V%*%xi 
  nk = nk+k 
  df[i]=(k*(k-1)/2) 
#  print(c(i,k,df[i])) 
 } 
 df=sum(df)-2 
 B=solve(sum2)%*%sum1 
 Rm=(Ym-(Xm%*%B)) # Residual : Y - E(Y) 
 var = sum(Rm^2)/(nn-2) 
 var 
 rho=0 
 # Calculate correlation : individual correlations  
 nk=0 
 for(i in 1:ns) 
 { 
  k=nf[i] 
  for(j in (nk+1):(nk+k-1)) 
  {  
    for(h in (j+1):(nk+k)) 
    { 
     rho = rho+Rm[j]*Rm[h] 
    } 
  } 
  nk = nk+k # ending point 
 } 
 rho=rho/var/(df-2) 
# print(c(maxit,B,var, rho)) 
} 
 
# Loglikelihood by family size 
LL=rep(0,ns) 
nk=0 
for(i in 1:ns)  
{ 
 k=nf[i] 
 m0=matrix(var*c(rep(c(1, rep(rho,k)),k-1),1),k,k) 
 V=ginverse(m0) 
# R=matrix(Rm,nrow=i,ncol=k,byrow=T) 
 R=Rm[(nk+1):(nk+k)] 
 g=k 
 LL[i]=-log((2*pi))*g/2-log(det(m0))/2-t(R)%*%V%*%R/2 
 nk=nk+k 
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 # print(m0) 
 # print(c(g,R[i,])) 
 
} 
 ELL=sum(LL) 
 
########################################################## 
# Alternative Hypothesis 
########################################################## 
 
B1=c(0,0) 
old.rho1=1 
old.rho2=1 
var1=1 
rho1=0 
rho2=0 
maxit1=0 
R1=rep(0,ns) 
while((abs(old.rho1-rho1)&abs(old.rho2-rho2)>1E-6) & maxit1 <100)  
{ 
 maxit1=maxit1+1 
 old.rho1=rho1 
 old.rho2=rho2 
 sum11=rep(0,2) 
 sum21=matrix(0,2,2) 
 df1=rep(0,ns) 
 df2=rep(0,ns) 
 
#population 1 
 nk=0 
 for(i in 1 :n1)  
 { 
  k=nf[i] 
  yi=Ym[(nk+1):(nk+k)] 
  xi=Xm[(nk+1):(nk+k),1:2] 
 # print(c(i,k,nk+1,nk+k,yi)) # ith, num per family, start, ending point 
  Vector1=c(rep(c(1, rep(rho1,k)),k-1),1) # number of member per family 
  m1=matrix(Vector1,nrow=k,ncol=k, byrow=T) 
  V1=solve(m1) 
  sum11=sum11+t(xi)%*%V1%*%yi 
  sum21=sum21+t(xi)%*%V1%*%xi 
  nk = nk+k 
  df1[i]=(k*(k-1)/2) 
#  print(c(i,k,m1)) # ith, num per family, start, ending point 
 } 
 
#population 2 
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 for(i in (n1+1):ns)  
 { 
  k=nf[i] 
 # print(c(i,k,nk+1,nk+k,yi)) # ith, num per family, start, ending point 
  yi=Ym[(nk+1):(nk+k)] 
  xi=Xm[(nk+1):(nk+k),1:2] 
  Vector2=c(rep(c(1, rep(rho2,k)),k-1),1) # number of member per family 
  m2=matrix(Vector2,nrow=k,ncol=k, byrow=T) 
  V2=solve(m2) 
  sum11=sum11+t(xi)%*%V2%*%yi 
  sum21=sum21+t(xi)%*%V2%*%xi 
  nk = nk+k 
  df2[i]=(k*(k-1)/2) 
 #   print(c(i,k,df)) 
 } 
   
 df1=sum(df1) 
 df2=sum(df2) 
 df=df1+df2-2 
 B1=solve(sum21)%*%sum11 
 Rm=(Ym-(Xm%*%B1)) # Residual : Y - E(Y) 
 var1 = sum(Rm^2)/(nn-2) 
 rho1=0 
 # Calculate correlation : individual correlations  
 nk=0 
 
 for(i in 1:n1) 
 { 
  k=nf[i] 
  for(j in (nk+1):(nk+k-1)) 
  {  
    for(h in (j+1):(nk+k)) 
    { 
     rho1 = rho1+Rm[j]*Rm[h] 
    } 
  } 
  nk = nk+k # ending point 
 } 
 rho1=rho1/var1/(df1-2) 
 rho2=0 
 
 for(i in (n1+1):ns) 
 { 
  k=nf[i] 
#  print(c(i,k,nk+1,nk+k,rho2)) 
  for(j in (nk+1):(nk+k-1)) 
  {  
    for(h in (j+1):(nk+k)) 
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    { 
     rho2 = rho2+Rm[j]*Rm[h] 
    } 
  } 
  nk = nk+k # ending point 
 } 
 rho2=rho2/var1/(df2-2) 
 print(c(maxit1,B1,var1, rho1,rho2)) 
} 
 
# Loglikelihood by family size 
LL1=rep(0,ns) 
nk1=0 
for(i in 1:n1)  
{ 
 k=nf[i] 
 m11=matrix(var1*c(rep(c(1, rep(rho1,k)),k-1),1),k,k) 
 Va1=solve(m11) 
 R1=Rm[(nk1+1):(nk1+k)] 
 g=k 
 LL1[i]=-log((2*pi))*g/2-log(det(m11))/2-t(R1)%*%Va1%*%R1/2 
 nk1 = nk1+k 
 #print(m11) 
 #print(c(g,R1[i,])) 
} 
 
nk2=0 
for(i in (n1+1):ns)  
{ 
 k=nf[i] 
 m22=matrix(var1*c(rep(c(1, rep(rho2,k)),k-1),1),k,k) 
 Va2=solve(m22) 
 R1=Rm[(nk2+1):(nk2+k)] 
 g=k 
 LL1[i]=-log((2*pi))*g/2-log(det(m22))/2-t(R1)%*%Va2%*%R1/2 
 nk = nk+k 
# print(m22) 
# print(c(g,R1[i,])) 
} 
ELL1=sum(LL1) 
ELL 
ELL1 
rho 
rho1 
rho2 
 
## Loglikelihood ratio Test 
L= -2*(ELL-ELL1) 
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L  

Appendix C:  S-plus/SAS code for NHANES Data 
 

#SAS 

LIBNAME dr1 XPORT 'Y:\thesis\db\dr1iff_d.xpt';  
LIBNAME db 'Y:\thesis\db';  
LIBNAME dm XPORT 'Y:\thesis\db\demo_d.xpt';  
LIBNAME bmx XPORT 'Y:\thesis\db\bmx_d.xpt';  
LIBNAME hoq XPORT 'Y:\thesis\db\hoq_d.xpt';  
LIBNAME smq XPORT 'Y:\thesis\db\smq_d.xpt'; 
*Merge data; 
DATA db.BPQ_DEMO;  
 MERGE DM.DEMO_D QX.BPQ_D (IN=A);  
 BY SEQN;  
 IF A;  
RUN;  
 
data demo_d;  
 set dm.demo_d;  
run;   
  
proc sort;by seqn; run;  
data dr1tot_d;  
 set db.dr1tot_d(keep=seqn dr1tfa dr1tfola dr1tff);  
run;  
proc sort;by seqn; run;  
data dr2tot_d;  
 set db.dr2tot_d(keep=seqn dr2tfa dr2tfola dr2tff);  
run;  
proc sort;by seqn; run; 
  
data drxtot_d;  
 merge dr1tot_d dr2tot_d demo_d;by seqn;  
 if dr1tfa ne . and dr2tfa ne .;  
 if dr1tff ne 0 and dr2tff ne 0;  
run;  
* female & age of 18~45; 
data drxtot_d;  
 set drxtot_d;by seqn;  
 where (18 <= ridageyr <=45) and ( RIAGENDR = 2);  
run;  
proc sort;by seqn;  
run;  
 
data nhanes;  
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 set drxtot_d;  
 if 18 <= RIDAGEYR <25 then age = 1;  
 else if 25 <= RIDAGEYR < 35 then age=2;  
 else if 35 <= RIDAGEYR <= 45 then age=3;  
 if RIDRETH1 = . then race = .;  
 else if RIDRETH1 in (1,2) then race = 1;  
 else if RIDRETH1 =3 then race=2;  
 else if RIDRETH1 = 4 then race=3;  
 else if RIDRETH1 = 5 then race =4;  
 drop RIDAGEYR RIDRETH1;  
run;  
 
*merge more dataset; 
DATA nhanes;  
 MERGE nhanes(IN=A) bmx.bmx_d hoq.hoq_d smq.smq_d;  
 BY SEQN;   
 if A; 
RUN;  
 data nhanes; 
 set nhanes; 
 if dr1tff ne 0; 
 if dr2tff ne 0;  
 if bmxbmi ne .; 
run; 
 
 
proc glm data=nhanes;  
 model dr1tff = age race INDFMINC INDHHINC RIDEXPRG bmxbmi/solution;  
run;  
proc glm data=nhanes;  
 model dr2tff = age race INDFMINC INDHHINC RIDEXPRG bmxbmi/solution;  
run;  
 
proc transreg data=nhanes; 
 model boxcox(dr1tff)=identity(age race RIDEXPRG); 
run; 
proc transreg data=nhanes; 
 model boxcox(dr2tff)=identity(age race RIDEXPRG); 
run; 
 
data box_nhanes; 
 set nhanes; 
 y1=dr1tff**0.25; 
 y2=dr2tff**0.25; 
run; 
 
proc univariate data=box_nhanes;  
 var dr1tff dr2tff y1 y2;  
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 qqplot dr1tff dr2tff y1 y2;  
 histogram dr1tff dr2tff y1 y2; 
run; 
*Dummy variables setting; 
data box_nhanes; 
 set box_nhanes; 
 a1=0; 
 a2=0; 
 a3=0; 
 if age = 1 then a1=1; 
 if age = 2 then a2=1; 
 if age = 3 then a3=1; 
 r1=0; 
 r2=0; 
 r3=0; 
 r4=0; 
 if race = 1 then r1=1; 
 if race = 2 then r2=1; 
 if race = 3 then r3=1; 
 if race = 4 then r4=1; 
run; 
proc sort data=box_nhanes;by age race;  
run;  
data db.box_nhanes; 
 set box_nhanes; 
run; 
data box_nhanes; 
 set db.box_nhanes; 
run; 
data intra_boxnhanes;  
 set box_nhanes;  
 array ff{1:2} y1 y2;  
 do i=1 to 2;  
 no = i; 
 drtff = ff(i); 
 output;  
 end;  
run;  
*Save dataset for analysis; 
data db.intra_boxnhanes; 
 set intra_boxnhanes; 
run; 
proc freq data=box_nhanes;  
 tables race age RIDEXPRG/list;  
run;  
data bmi; 
 set box_nhanes; 
 if bmxbmi <=18.5 then bmi=1; 
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 if 18.5 < bmxbmi <=24.9 then bmi=2; 
 if 25 <= bmxbmi <=29.9 then bmi=3; 
 if bmxbmi >=30 then bmi=4; 
run; 
 
proc freq data=bmi; 
 tables bmi/list; 
run; 
proc freq data=box_nhanes;  
 tables race*dr1tff race*age/list;  
run;  
proc means data=box_nhanes;  
var dr1tff dr2tff;by age race;  
run;  
proc glm data=intra_boxnhanes;  
 Class seqn;  
 model drtff = age race INDFMINC INDHHINC RIDEXPRG bmxbmi/solution;  
run;  
 
proc genmod descending data=intra_boxnhanes;  
 Class seqn;  
 model drtff = age race RIDEXPRG bmxbmi/d=n;  
 repeated subject=seqn/type=cs corrb corrw covb ;  
run; 
 
#S-plus 
 
folate=intra.boxnhanes$drtff 
age=intra.boxnhanes$age 
race=intra.boxnhanes$race 
RIDEXPRG=intra.boxnhanes$RIDEXPRG 
BMXBMI=intra.boxnhanes$BMXBMI 
ns=1352 
repn=2 
rho=0 
int=rep(1,repn*ns) 
X=c(int,age,race,RIDEXPRG,BMXBMI)#number of parameters  
p=1+4 
Xm=matrix(c(X),repn*ns,p) 
Ym=matrix(c(folate),repn*ns,1) # Total folate 
n1=168 
n2=322 
n3=462 
n4=490 
n5=640 
n6=840 
n7=929 
n8=956 
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n9=1058 
n10=1238 
n11=1321 
 
######################################### 
# Null Hypothesis : All correlation are equal    # 
# Compound symmetric 
######################################### 
m0=matrix(c(1,0,0,1), nrow=2,ncol=2) 
B=rep(0,p) 
old.rho=1 
var=1 
rho=0 
maxit=0 
n=0 
while(abs(old.rho-rho)>1E-6 & maxit <100) 
{ 
 maxit=maxit+1 
 old.rho=rho 
 V=solve(m0) 
 sum1=rep(0,p) 
 sum2=matrix(0,p,p) 
 for (i in 1:ns) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum1=sum1+t(xi)%*%V%*%yi 
  sum2=sum2+t(xi)%*%V%*%xi 
 } 
 B=solve(sum2)%*%sum1 
 Rm=(Ym-(Xm%*%B)) # Residual : Y - E(Y) 
 var = sum(Rm^2)/(repn*ns-p) 
 rho=0 
 for(i in 1:ns) 
 { 
  rho = rho+Rm[(repn*(i-1)+1)]*Rm[(repn*i)] 
 } 
 rho=rho/var/(ns-p) 
 m0=matrix(var*c(1,rho,rho,1), nrow=2, ncol=2) 
 print(c(B,maxit,var, rho)) 
} 
################################################### 
# Althernative Hypothesis :                   # 
################################################### 
m1=m2=m3=m4=m5=m6=m7=m8=m9=m10=m11=m12=matrix(c(1,0,0,1), nrow=2,ncol=2) 
B1=rep(0,p) 
old.B1=rep(1,p) 
var1=1 
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rho1=0 
maxit1=0 
rho1=0 
rho2=0 
rho3=0 
rho4=0 
rho5=0 
rho6=0 
rho7=0 
rho8=0 
rho9=0 
rho10=0 
rho11=0 
rho12=0 
 
while(abs(old.B1-B1)>1E-6 & maxit1 <100) 
{ 
 maxit1=maxit1+1 
 old.B1=B1 
 V1=solve(m1) 
 V2=solve(m2) 
 V3=solve(m3) 
 V4=solve(m4) 
 V5=solve(m5) 
 V6=solve(m6) 
 V7=solve(m7) 
 V8=solve(m8) 
 V9=solve(m9) 
 V10=solve(m10) 
 V11=solve(m11) 
 V12=solve(m12) 
 sum11=rep(0,p) 
 sum21=matrix(0,p,p) 
 for (i in 1:n1) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V1%*%yi 
  sum21=sum21+t(xi)%*%V1%*%xi 
 }  
 for (i in (n1+1):n2) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V2%*%yi 
  sum21=sum21+t(xi)%*%V2%*%xi 
 } 
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 for (i in (n2+1):n3) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V3%*%yi 
  sum21=sum21+t(xi)%*%V3%*%xi 
 } 
 for (i in (n3+1):n4) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V4%*%yi 
  sum21=sum21+t(xi)%*%V4%*%xi 
 } 
 for (i in (n4+1):n5) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V5%*%yi 
  sum21=sum21+t(xi)%*%V5%*%xi 
 } 
 
 for (i in (n5+1):n6) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V6%*%yi 
  sum21=sum21+t(xi)%*%V6%*%xi 
 } 
 for (i in (n6+1):n7) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V7%*%yi 
  sum21=sum21+t(xi)%*%V7%*%xi 
 } 
 
 for (i in (n7+1):n8) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V8%*%yi 
  sum21=sum21+t(xi)%*%V8%*%xi 
 } 
 for (i in (n8+1):n9) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 



45 
 

  sum11=sum11+t(xi)%*%V9%*%yi 
  sum21=sum21+t(xi)%*%V9%*%xi 
 } 
 for (i in (n9+1):n10) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V10%*%yi 
  sum21=sum21+t(xi)%*%V10%*%xi 
 } 
 
 for (i in (n10+1):n11) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V11%*%yi 
  sum21=sum21+t(xi)%*%V11%*%xi 
 } 
  
 for (i in (n11+1):ns) 
 { 
  xi=Xm[(repn*(i-1)+1):(repn*i),1:p] 
  yi=Ym[(repn*(i-1)+1):(repn*i)] 
  sum11=sum11+t(xi)%*%V12%*%yi 
  sum21=sum21+t(xi)%*%V12%*%xi 
 } 
 B1=solve(sum21)%*%sum11 
 Rm1=(Ym-(Xm%*%B1)) # Residual : Y - E(Y) 
 var1 = sum(Rm1^2)/(repn*ns-p) 
 
 for(i in 1:n1) 
 { 
  rho1 = rho1+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho1=rho1/var1/(n1-p) 
 m1=matrix(var1*c(1,rho1,rho1,1), nrow=2, ncol=2) 
 
 for(i in (n1+1):n2) 
 { 
  rho2 = rho2+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho2=rho2/var1/((n2-n1)-p) 
 m2=matrix(var1*c(1,rho2,rho2,1), nrow=2, ncol=2) 
  
 for(i in (n2+1):n3) 
 { 
  rho3 = rho3+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
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 rho3=rho3/var1/((n3-n2)-p) 
 m3=matrix(var1*c(1,rho3,rho3,1), nrow=2, ncol=2) 
 
 for(i in (n3+1):n4) 
 { 
  rho4 = rho4+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho4=rho4/var1/((n4-n3)-p) 
 m4=matrix(var1*c(1,rho4,rho4,1), nrow=2, ncol=2) 
 for(i in (n4+1):n5) 
 { 
  rho5 = rho5+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho5=rho5/var1/((n5-n4)-p) 
 m5=matrix(var1*c(1,rho5,rho5,1), nrow=2, ncol=2) 
 for(i in (n5+1):n6) 
 { 
  rho6 = rho6+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho6=rho6/var1/((n6-n5)-p) 
 m6=matrix(var1*c(1,rho6,rho6,1), nrow=2, ncol=2) 
 
 for(i in (n6+1):n7) 
 { 
  rho7 = rho7+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho7=rho7/var1/((n7-n6)-p) 
 m7=matrix(var1*c(1,rho7,rho7,1), nrow=2, ncol=2) 
 
 for(i in (n7+1):n8) 
 { 
  rho8 = rho8+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho8=rho8/var1/((n8-n7)-p) 
 m8=matrix(var1*c(1,rho8,rho8,1), nrow=2, ncol=2) 
 
 for(i in (n8+1):n9) 
 { 
  rho9 = rho9+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho9=rho9/var1/((n9-n8)-p) 
 m9=matrix(var1*c(1,rho9,rho9,1), nrow=2, ncol=2) 
 
 for(i in (n9+1):n10) 
 { 
  rho10 = rho10+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho10=rho10/var1/((n10-n9)-p) 
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 m10=matrix(var1*c(1,rho10,rho10,1), nrow=2, ncol=2) 
 
 for(i in (n10+1):n11) 
 { 
  rho11 = rho11+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho11=rho11/var1/((n11-n10)-p) 
 m11=matrix(var1*c(1,rho11,rho11,1), nrow=2, ncol=2) 
 
 for(i in (n11+1):ns) 
 { 
  rho12 = rho12+Rm1[(repn*(i-1)+1)]*Rm1[(repn*i)] 
 } 
 rho12=rho12/var1/((ns-n11)-p) 
 m12=matrix(var1*c(1,rho12,rho12,1), nrow=2, ncol=2) 
 print(c(B1,maxit1,var1, rho1, rho2, rho3, rho4, rho5, rho6, rho7, rho8, rho9, rho10, rho11, rho12)) 
} 
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